2 /* ns83820.c by Benjamin LaHaise with contributions.
4 * Questions/comments/discussion to linux-ns83820@kvack.org.
6 * $Revision: 1.34.2.23 $
8 * Copyright 2001 Benjamin LaHaise.
9 * Copyright 2001, 2002 Red Hat.
11 * Mmmm, chocolate vanilla mocha...
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, see <http://www.gnu.org/licenses/>.
30 * 20010414 0.1 - created
31 * 20010622 0.2 - basic rx and tx.
32 * 20010711 0.3 - added duplex and link state detection support.
33 * 20010713 0.4 - zero copy, no hangs.
34 * 0.5 - 64 bit dma support (davem will hate me for this)
35 * - disable jumbo frames to avoid tx hangs
36 * - work around tx deadlocks on my 1.02 card via
38 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
39 * 20010816 0.7 - misc cleanups
40 * 20010826 0.8 - fix critical zero copy bugs
41 * 0.9 - internal experiment
42 * 20010827 0.10 - fix ia64 unaligned access.
43 * 20010906 0.11 - accept all packets with checksum errors as
44 * otherwise fragments get lost
46 * 0.12 - add statistics counters
47 * - add allmulti/promisc support
48 * 20011009 0.13 - hotplug support, other smaller pci api cleanups
49 * 20011204 0.13a - optical transceiver support added
50 * by Michael Clark <michael@metaparadigm.com>
51 * 20011205 0.13b - call register_netdev earlier in initialization
52 * suppress duplicate link status messages
53 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
54 * 20011204 0.15 get ppc (big endian) working
55 * 20011218 0.16 various cleanups
56 * 20020310 0.17 speedups
57 * 20020610 0.18 - actually use the pci dma api for highmem
58 * - remove pci latency register fiddling
59 * 0.19 - better bist support
60 * - add ihr and reset_phy parameters
62 * - fix missed txok introduced during performance
64 * 0.20 - fix stupid RFEN thinko. i am such a smurf.
65 * 20040828 0.21 - add hardware vlan accleration
66 * by Neil Horman <nhorman@redhat.com>
67 * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
68 * - removal of dead code from Adrian Bunk
69 * - fix half duplex collision behaviour
73 * This driver was originally written for the National Semiconductor
74 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
75 * this code will turn out to be a) clean, b) correct, and c) fast.
76 * With that in mind, I'm aiming to split the code up as much as
77 * reasonably possible. At present there are X major sections that
78 * break down into a) packet receive, b) packet transmit, c) link
79 * management, d) initialization and configuration. Where possible,
80 * these code paths are designed to run in parallel.
82 * This driver has been tested and found to work with the following
83 * cards (in no particular order):
85 * Cameo SOHO-GA2000T SOHO-GA2500T
87 * PureData PDP8023Z-TG
88 * SMC SMC9452TX SMC9462TX
91 * Special thanks to SMC for providing hardware to test this driver on.
93 * Reports of success or failure would be greatly appreciated.
95 //#define dprintk printk
96 #define dprintk(x...) do { } while (0)
98 #include <linux/module.h>
99 #include <linux/moduleparam.h>
100 #include <linux/types.h>
101 #include <linux/pci.h>
102 #include <linux/dma-mapping.h>
103 #include <linux/netdevice.h>
104 #include <linux/etherdevice.h>
105 #include <linux/delay.h>
106 #include <linux/workqueue.h>
107 #include <linux/init.h>
108 #include <linux/interrupt.h>
109 #include <linux/ip.h> /* for iph */
110 #include <linux/in.h> /* for IPPROTO_... */
111 #include <linux/compiler.h>
112 #include <linux/prefetch.h>
113 #include <linux/ethtool.h>
114 #include <linux/sched.h>
115 #include <linux/timer.h>
116 #include <linux/if_vlan.h>
117 #include <linux/rtnetlink.h>
118 #include <linux/jiffies.h>
119 #include <linux/slab.h>
122 #include <linux/uaccess.h>
124 #define DRV_NAME "ns83820"
126 /* Global parameters. See module_param near the bottom. */
128 static int reset_phy
= 0;
129 static int lnksts
= 0; /* CFG_LNKSTS bit polarity */
131 /* Dprintk is used for more interesting debug events */
133 #define Dprintk dprintk
136 #define RX_BUF_SIZE 1500 /* 8192 */
137 #if IS_ENABLED(CONFIG_VLAN_8021Q)
138 #define NS83820_VLAN_ACCEL_SUPPORT
141 /* Must not exceed ~65000. */
142 #define NR_RX_DESC 64
143 #define NR_TX_DESC 128
146 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
148 #define MIN_TX_DESC_FREE 8
150 /* register defines */
153 #define CR_TXE 0x00000001
154 #define CR_TXD 0x00000002
155 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
156 * The Receive engine skips one descriptor and moves
157 * onto the next one!! */
158 #define CR_RXE 0x00000004
159 #define CR_RXD 0x00000008
160 #define CR_TXR 0x00000010
161 #define CR_RXR 0x00000020
162 #define CR_SWI 0x00000080
163 #define CR_RST 0x00000100
165 #define PTSCR_EEBIST_FAIL 0x00000001
166 #define PTSCR_EEBIST_EN 0x00000002
167 #define PTSCR_EELOAD_EN 0x00000004
168 #define PTSCR_RBIST_FAIL 0x000001b8
169 #define PTSCR_RBIST_DONE 0x00000200
170 #define PTSCR_RBIST_EN 0x00000400
171 #define PTSCR_RBIST_RST 0x00002000
173 #define MEAR_EEDI 0x00000001
174 #define MEAR_EEDO 0x00000002
175 #define MEAR_EECLK 0x00000004
176 #define MEAR_EESEL 0x00000008
177 #define MEAR_MDIO 0x00000010
178 #define MEAR_MDDIR 0x00000020
179 #define MEAR_MDC 0x00000040
181 #define ISR_TXDESC3 0x40000000
182 #define ISR_TXDESC2 0x20000000
183 #define ISR_TXDESC1 0x10000000
184 #define ISR_TXDESC0 0x08000000
185 #define ISR_RXDESC3 0x04000000
186 #define ISR_RXDESC2 0x02000000
187 #define ISR_RXDESC1 0x01000000
188 #define ISR_RXDESC0 0x00800000
189 #define ISR_TXRCMP 0x00400000
190 #define ISR_RXRCMP 0x00200000
191 #define ISR_DPERR 0x00100000
192 #define ISR_SSERR 0x00080000
193 #define ISR_RMABT 0x00040000
194 #define ISR_RTABT 0x00020000
195 #define ISR_RXSOVR 0x00010000
196 #define ISR_HIBINT 0x00008000
197 #define ISR_PHY 0x00004000
198 #define ISR_PME 0x00002000
199 #define ISR_SWI 0x00001000
200 #define ISR_MIB 0x00000800
201 #define ISR_TXURN 0x00000400
202 #define ISR_TXIDLE 0x00000200
203 #define ISR_TXERR 0x00000100
204 #define ISR_TXDESC 0x00000080
205 #define ISR_TXOK 0x00000040
206 #define ISR_RXORN 0x00000020
207 #define ISR_RXIDLE 0x00000010
208 #define ISR_RXEARLY 0x00000008
209 #define ISR_RXERR 0x00000004
210 #define ISR_RXDESC 0x00000002
211 #define ISR_RXOK 0x00000001
213 #define TXCFG_CSI 0x80000000
214 #define TXCFG_HBI 0x40000000
215 #define TXCFG_MLB 0x20000000
216 #define TXCFG_ATP 0x10000000
217 #define TXCFG_ECRETRY 0x00800000
218 #define TXCFG_BRST_DIS 0x00080000
219 #define TXCFG_MXDMA1024 0x00000000
220 #define TXCFG_MXDMA512 0x00700000
221 #define TXCFG_MXDMA256 0x00600000
222 #define TXCFG_MXDMA128 0x00500000
223 #define TXCFG_MXDMA64 0x00400000
224 #define TXCFG_MXDMA32 0x00300000
225 #define TXCFG_MXDMA16 0x00200000
226 #define TXCFG_MXDMA8 0x00100000
228 #define CFG_LNKSTS 0x80000000
229 #define CFG_SPDSTS 0x60000000
230 #define CFG_SPDSTS1 0x40000000
231 #define CFG_SPDSTS0 0x20000000
232 #define CFG_DUPSTS 0x10000000
233 #define CFG_TBI_EN 0x01000000
234 #define CFG_MODE_1000 0x00400000
235 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
236 * Read the Phy response and then configure the MAC accordingly */
237 #define CFG_AUTO_1000 0x00200000
238 #define CFG_PINT_CTL 0x001c0000
239 #define CFG_PINT_DUPSTS 0x00100000
240 #define CFG_PINT_LNKSTS 0x00080000
241 #define CFG_PINT_SPDSTS 0x00040000
242 #define CFG_TMRTEST 0x00020000
243 #define CFG_MRM_DIS 0x00010000
244 #define CFG_MWI_DIS 0x00008000
245 #define CFG_T64ADDR 0x00004000
246 #define CFG_PCI64_DET 0x00002000
247 #define CFG_DATA64_EN 0x00001000
248 #define CFG_M64ADDR 0x00000800
249 #define CFG_PHY_RST 0x00000400
250 #define CFG_PHY_DIS 0x00000200
251 #define CFG_EXTSTS_EN 0x00000100
252 #define CFG_REQALG 0x00000080
253 #define CFG_SB 0x00000040
254 #define CFG_POW 0x00000020
255 #define CFG_EXD 0x00000010
256 #define CFG_PESEL 0x00000008
257 #define CFG_BROM_DIS 0x00000004
258 #define CFG_EXT_125 0x00000002
259 #define CFG_BEM 0x00000001
261 #define EXTSTS_UDPPKT 0x00200000
262 #define EXTSTS_TCPPKT 0x00080000
263 #define EXTSTS_IPPKT 0x00020000
264 #define EXTSTS_VPKT 0x00010000
265 #define EXTSTS_VTG_MASK 0x0000ffff
267 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
269 #define MIBC_MIBS 0x00000008
270 #define MIBC_ACLR 0x00000004
271 #define MIBC_FRZ 0x00000002
272 #define MIBC_WRN 0x00000001
274 #define PCR_PSEN (1 << 31)
275 #define PCR_PS_MCAST (1 << 30)
276 #define PCR_PS_DA (1 << 29)
277 #define PCR_STHI_8 (3 << 23)
278 #define PCR_STLO_4 (1 << 23)
279 #define PCR_FFHI_8K (3 << 21)
280 #define PCR_FFLO_4K (1 << 21)
281 #define PCR_PAUSE_CNT 0xFFFE
283 #define RXCFG_AEP 0x80000000
284 #define RXCFG_ARP 0x40000000
285 #define RXCFG_STRIPCRC 0x20000000
286 #define RXCFG_RX_FD 0x10000000
287 #define RXCFG_ALP 0x08000000
288 #define RXCFG_AIRL 0x04000000
289 #define RXCFG_MXDMA512 0x00700000
290 #define RXCFG_DRTH 0x0000003e
291 #define RXCFG_DRTH0 0x00000002
293 #define RFCR_RFEN 0x80000000
294 #define RFCR_AAB 0x40000000
295 #define RFCR_AAM 0x20000000
296 #define RFCR_AAU 0x10000000
297 #define RFCR_APM 0x08000000
298 #define RFCR_APAT 0x07800000
299 #define RFCR_APAT3 0x04000000
300 #define RFCR_APAT2 0x02000000
301 #define RFCR_APAT1 0x01000000
302 #define RFCR_APAT0 0x00800000
303 #define RFCR_AARP 0x00400000
304 #define RFCR_MHEN 0x00200000
305 #define RFCR_UHEN 0x00100000
306 #define RFCR_ULM 0x00080000
308 #define VRCR_RUDPE 0x00000080
309 #define VRCR_RTCPE 0x00000040
310 #define VRCR_RIPE 0x00000020
311 #define VRCR_IPEN 0x00000010
312 #define VRCR_DUTF 0x00000008
313 #define VRCR_DVTF 0x00000004
314 #define VRCR_VTREN 0x00000002
315 #define VRCR_VTDEN 0x00000001
317 #define VTCR_PPCHK 0x00000008
318 #define VTCR_GCHK 0x00000004
319 #define VTCR_VPPTI 0x00000002
320 #define VTCR_VGTI 0x00000001
357 #define TBICR_MR_AN_ENABLE 0x00001000
358 #define TBICR_MR_RESTART_AN 0x00000200
360 #define TBISR_MR_LINK_STATUS 0x00000020
361 #define TBISR_MR_AN_COMPLETE 0x00000004
363 #define TANAR_PS2 0x00000100
364 #define TANAR_PS1 0x00000080
365 #define TANAR_HALF_DUP 0x00000040
366 #define TANAR_FULL_DUP 0x00000020
368 #define GPIOR_GP5_OE 0x00000200
369 #define GPIOR_GP4_OE 0x00000100
370 #define GPIOR_GP3_OE 0x00000080
371 #define GPIOR_GP2_OE 0x00000040
372 #define GPIOR_GP1_OE 0x00000020
373 #define GPIOR_GP3_OUT 0x00000004
374 #define GPIOR_GP1_OUT 0x00000001
376 #define LINK_AUTONEGOTIATE 0x01
377 #define LINK_DOWN 0x02
380 #define HW_ADDR_LEN sizeof(dma_addr_t)
381 #define desc_addr_set(desc, addr) \
383 ((desc)[0] = cpu_to_le32(addr)); \
384 if (HW_ADDR_LEN == 8) \
385 (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
387 #define desc_addr_get(desc) \
388 (le32_to_cpu((desc)[0]) | \
389 (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
392 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
393 #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
394 #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
396 #define CMDSTS_OWN 0x80000000
397 #define CMDSTS_MORE 0x40000000
398 #define CMDSTS_INTR 0x20000000
399 #define CMDSTS_ERR 0x10000000
400 #define CMDSTS_OK 0x08000000
401 #define CMDSTS_RUNT 0x00200000
402 #define CMDSTS_LEN_MASK 0x0000ffff
404 #define CMDSTS_DEST_MASK 0x01800000
405 #define CMDSTS_DEST_SELF 0x00800000
406 #define CMDSTS_DEST_MULTI 0x01000000
408 #define DESC_SIZE 8 /* Should be cache line sized */
415 struct sk_buff
*skbs
[NR_RX_DESC
];
417 __le32
*next_rx_desc
;
418 u16 next_rx
, next_empty
;
421 dma_addr_t phy_descs
;
428 struct pci_dev
*pci_dev
;
429 struct net_device
*ndev
;
431 struct rx_info rx_info
;
432 struct tasklet_struct rx_tasklet
;
435 struct work_struct tq_refill
;
437 /* protects everything below. irqsave when using. */
438 spinlock_t misc_lock
;
451 volatile u16 tx_free_idx
; /* idx of free desc chain */
455 struct sk_buff
*tx_skbs
[NR_TX_DESC
];
457 char pad
[16] __attribute__((aligned(16)));
459 dma_addr_t tx_phy_descs
;
461 struct timer_list tx_watchdog
;
464 static inline struct ns83820
*PRIV(struct net_device
*dev
)
466 return netdev_priv(dev
);
469 #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
471 static inline void kick_rx(struct net_device
*ndev
)
473 struct ns83820
*dev
= PRIV(ndev
);
474 dprintk("kick_rx: maybe kicking\n");
475 if (test_and_clear_bit(0, &dev
->rx_info
.idle
)) {
476 dprintk("actually kicking\n");
477 writel(dev
->rx_info
.phy_descs
+
478 (4 * DESC_SIZE
* dev
->rx_info
.next_rx
),
480 if (dev
->rx_info
.next_rx
== dev
->rx_info
.next_empty
)
481 printk(KERN_DEBUG
"%s: uh-oh: next_rx == next_empty???\n",
487 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
488 #define start_tx_okay(dev) \
489 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
493 * The hardware supports linked lists of receive descriptors for
494 * which ownership is transferred back and forth by means of an
495 * ownership bit. While the hardware does support the use of a
496 * ring for receive descriptors, we only make use of a chain in
497 * an attempt to reduce bus traffic under heavy load scenarios.
498 * This will also make bugs a bit more obvious. The current code
499 * only makes use of a single rx chain; I hope to implement
500 * priority based rx for version 1.0. Goal: even under overload
501 * conditions, still route realtime traffic with as low jitter as
504 static inline void build_rx_desc(struct ns83820
*dev
, __le32
*desc
, dma_addr_t link
, dma_addr_t buf
, u32 cmdsts
, u32 extsts
)
506 desc_addr_set(desc
+ DESC_LINK
, link
);
507 desc_addr_set(desc
+ DESC_BUFPTR
, buf
);
508 desc
[DESC_EXTSTS
] = cpu_to_le32(extsts
);
510 desc
[DESC_CMDSTS
] = cpu_to_le32(cmdsts
);
513 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
514 static inline int ns83820_add_rx_skb(struct ns83820
*dev
, struct sk_buff
*skb
)
521 next_empty
= dev
->rx_info
.next_empty
;
523 /* don't overrun last rx marker */
524 if (unlikely(nr_rx_empty(dev
) <= 2)) {
530 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
531 dev
->rx_info
.next_empty
,
532 dev
->rx_info
.nr_used
,
537 sg
= dev
->rx_info
.descs
+ (next_empty
* DESC_SIZE
);
538 BUG_ON(NULL
!= dev
->rx_info
.skbs
[next_empty
]);
539 dev
->rx_info
.skbs
[next_empty
] = skb
;
541 dev
->rx_info
.next_empty
= (next_empty
+ 1) % NR_RX_DESC
;
542 cmdsts
= REAL_RX_BUF_SIZE
| CMDSTS_INTR
;
543 buf
= pci_map_single(dev
->pci_dev
, skb
->data
,
544 REAL_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
545 build_rx_desc(dev
, sg
, 0, buf
, cmdsts
, 0);
546 /* update link of previous rx */
547 if (likely(next_empty
!= dev
->rx_info
.next_rx
))
548 dev
->rx_info
.descs
[((NR_RX_DESC
+ next_empty
- 1) % NR_RX_DESC
) * DESC_SIZE
] = cpu_to_le32(dev
->rx_info
.phy_descs
+ (next_empty
* DESC_SIZE
* 4));
553 static inline int rx_refill(struct net_device
*ndev
, gfp_t gfp
)
555 struct ns83820
*dev
= PRIV(ndev
);
557 unsigned long flags
= 0;
559 if (unlikely(nr_rx_empty(dev
) <= 2))
562 dprintk("rx_refill(%p)\n", ndev
);
563 if (gfp
== GFP_ATOMIC
)
564 spin_lock_irqsave(&dev
->rx_info
.lock
, flags
);
565 for (i
=0; i
<NR_RX_DESC
; i
++) {
569 /* extra 16 bytes for alignment */
570 skb
= __netdev_alloc_skb(ndev
, REAL_RX_BUF_SIZE
+16, gfp
);
574 skb_reserve(skb
, skb
->data
- PTR_ALIGN(skb
->data
, 16));
575 if (gfp
!= GFP_ATOMIC
)
576 spin_lock_irqsave(&dev
->rx_info
.lock
, flags
);
577 res
= ns83820_add_rx_skb(dev
, skb
);
578 if (gfp
!= GFP_ATOMIC
)
579 spin_unlock_irqrestore(&dev
->rx_info
.lock
, flags
);
585 if (gfp
== GFP_ATOMIC
)
586 spin_unlock_irqrestore(&dev
->rx_info
.lock
, flags
);
588 return i
? 0 : -ENOMEM
;
591 static void rx_refill_atomic(struct net_device
*ndev
)
593 rx_refill(ndev
, GFP_ATOMIC
);
597 static inline void queue_refill(struct work_struct
*work
)
599 struct ns83820
*dev
= container_of(work
, struct ns83820
, tq_refill
);
600 struct net_device
*ndev
= dev
->ndev
;
602 rx_refill(ndev
, GFP_KERNEL
);
607 static inline void clear_rx_desc(struct ns83820
*dev
, unsigned i
)
609 build_rx_desc(dev
, dev
->rx_info
.descs
+ (DESC_SIZE
* i
), 0, 0, CMDSTS_OWN
, 0);
612 static void phy_intr(struct net_device
*ndev
)
614 struct ns83820
*dev
= PRIV(ndev
);
615 static const char *speeds
[] = { "10", "100", "1000", "1000(?)", "1000F" };
617 u32 tbisr
, tanar
, tanlpar
;
618 int speed
, fullduplex
, newlinkstate
;
620 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
622 if (dev
->CFG_cache
& CFG_TBI_EN
) {
623 /* we have an optical transceiver */
624 tbisr
= readl(dev
->base
+ TBISR
);
625 tanar
= readl(dev
->base
+ TANAR
);
626 tanlpar
= readl(dev
->base
+ TANLPAR
);
627 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
628 tbisr
, tanar
, tanlpar
);
630 if ( (fullduplex
= (tanlpar
& TANAR_FULL_DUP
) &&
631 (tanar
& TANAR_FULL_DUP
)) ) {
633 /* both of us are full duplex */
634 writel(readl(dev
->base
+ TXCFG
)
635 | TXCFG_CSI
| TXCFG_HBI
| TXCFG_ATP
,
637 writel(readl(dev
->base
+ RXCFG
) | RXCFG_RX_FD
,
639 /* Light up full duplex LED */
640 writel(readl(dev
->base
+ GPIOR
) | GPIOR_GP1_OUT
,
643 } else if (((tanlpar
& TANAR_HALF_DUP
) &&
644 (tanar
& TANAR_HALF_DUP
)) ||
645 ((tanlpar
& TANAR_FULL_DUP
) &&
646 (tanar
& TANAR_HALF_DUP
)) ||
647 ((tanlpar
& TANAR_HALF_DUP
) &&
648 (tanar
& TANAR_FULL_DUP
))) {
650 /* one or both of us are half duplex */
651 writel((readl(dev
->base
+ TXCFG
)
652 & ~(TXCFG_CSI
| TXCFG_HBI
)) | TXCFG_ATP
,
654 writel(readl(dev
->base
+ RXCFG
) & ~RXCFG_RX_FD
,
656 /* Turn off full duplex LED */
657 writel(readl(dev
->base
+ GPIOR
) & ~GPIOR_GP1_OUT
,
661 speed
= 4; /* 1000F */
664 /* we have a copper transceiver */
665 new_cfg
= dev
->CFG_cache
& ~(CFG_SB
| CFG_MODE_1000
| CFG_SPDSTS
);
667 if (cfg
& CFG_SPDSTS1
)
668 new_cfg
|= CFG_MODE_1000
;
670 new_cfg
&= ~CFG_MODE_1000
;
672 speed
= ((cfg
/ CFG_SPDSTS0
) & 3);
673 fullduplex
= (cfg
& CFG_DUPSTS
);
677 writel(readl(dev
->base
+ TXCFG
)
678 | TXCFG_CSI
| TXCFG_HBI
,
680 writel(readl(dev
->base
+ RXCFG
) | RXCFG_RX_FD
,
683 writel(readl(dev
->base
+ TXCFG
)
684 & ~(TXCFG_CSI
| TXCFG_HBI
),
686 writel(readl(dev
->base
+ RXCFG
) & ~(RXCFG_RX_FD
),
690 if ((cfg
& CFG_LNKSTS
) &&
691 ((new_cfg
^ dev
->CFG_cache
) != 0)) {
692 writel(new_cfg
, dev
->base
+ CFG
);
693 dev
->CFG_cache
= new_cfg
;
696 dev
->CFG_cache
&= ~CFG_SPDSTS
;
697 dev
->CFG_cache
|= cfg
& CFG_SPDSTS
;
700 newlinkstate
= (cfg
& CFG_LNKSTS
) ? LINK_UP
: LINK_DOWN
;
702 if (newlinkstate
& LINK_UP
&&
703 dev
->linkstate
!= newlinkstate
) {
704 netif_start_queue(ndev
);
705 netif_wake_queue(ndev
);
706 printk(KERN_INFO
"%s: link now %s mbps, %s duplex and up.\n",
709 fullduplex
? "full" : "half");
710 } else if (newlinkstate
& LINK_DOWN
&&
711 dev
->linkstate
!= newlinkstate
) {
712 netif_stop_queue(ndev
);
713 printk(KERN_INFO
"%s: link now down.\n", ndev
->name
);
716 dev
->linkstate
= newlinkstate
;
719 static int ns83820_setup_rx(struct net_device
*ndev
)
721 struct ns83820
*dev
= PRIV(ndev
);
725 dprintk("ns83820_setup_rx(%p)\n", ndev
);
727 dev
->rx_info
.idle
= 1;
728 dev
->rx_info
.next_rx
= 0;
729 dev
->rx_info
.next_rx_desc
= dev
->rx_info
.descs
;
730 dev
->rx_info
.next_empty
= 0;
732 for (i
=0; i
<NR_RX_DESC
; i
++)
733 clear_rx_desc(dev
, i
);
735 writel(0, dev
->base
+ RXDP_HI
);
736 writel(dev
->rx_info
.phy_descs
, dev
->base
+ RXDP
);
738 ret
= rx_refill(ndev
, GFP_KERNEL
);
740 dprintk("starting receiver\n");
741 /* prevent the interrupt handler from stomping on us */
742 spin_lock_irq(&dev
->rx_info
.lock
);
744 writel(0x0001, dev
->base
+ CCSR
);
745 writel(0, dev
->base
+ RFCR
);
746 writel(0x7fc00000, dev
->base
+ RFCR
);
747 writel(0xffc00000, dev
->base
+ RFCR
);
753 /* Okay, let it rip */
754 spin_lock(&dev
->misc_lock
);
755 dev
->IMR_cache
|= ISR_PHY
;
756 dev
->IMR_cache
|= ISR_RXRCMP
;
757 //dev->IMR_cache |= ISR_RXERR;
758 //dev->IMR_cache |= ISR_RXOK;
759 dev
->IMR_cache
|= ISR_RXORN
;
760 dev
->IMR_cache
|= ISR_RXSOVR
;
761 dev
->IMR_cache
|= ISR_RXDESC
;
762 dev
->IMR_cache
|= ISR_RXIDLE
;
763 dev
->IMR_cache
|= ISR_TXDESC
;
764 dev
->IMR_cache
|= ISR_TXIDLE
;
766 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
767 writel(1, dev
->base
+ IER
);
768 spin_unlock(&dev
->misc_lock
);
772 spin_unlock_irq(&dev
->rx_info
.lock
);
777 static void ns83820_cleanup_rx(struct ns83820
*dev
)
782 dprintk("ns83820_cleanup_rx(%p)\n", dev
);
784 /* disable receive interrupts */
785 spin_lock_irqsave(&dev
->misc_lock
, flags
);
786 dev
->IMR_cache
&= ~(ISR_RXOK
| ISR_RXDESC
| ISR_RXERR
| ISR_RXEARLY
| ISR_RXIDLE
);
787 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
788 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
790 /* synchronize with the interrupt handler and kill it */
792 synchronize_irq(dev
->pci_dev
->irq
);
794 /* touch the pci bus... */
795 readl(dev
->base
+ IMR
);
797 /* assumes the transmitter is already disabled and reset */
798 writel(0, dev
->base
+ RXDP_HI
);
799 writel(0, dev
->base
+ RXDP
);
801 for (i
=0; i
<NR_RX_DESC
; i
++) {
802 struct sk_buff
*skb
= dev
->rx_info
.skbs
[i
];
803 dev
->rx_info
.skbs
[i
] = NULL
;
804 clear_rx_desc(dev
, i
);
809 static void ns83820_rx_kick(struct net_device
*ndev
)
811 struct ns83820
*dev
= PRIV(ndev
);
812 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
813 if (dev
->rx_info
.up
) {
814 rx_refill_atomic(ndev
);
819 if (dev
->rx_info
.up
&& nr_rx_empty(dev
) > NR_RX_DESC
*3/4)
820 schedule_work(&dev
->tq_refill
);
823 if (dev
->rx_info
.idle
)
824 printk(KERN_DEBUG
"%s: BAD\n", ndev
->name
);
830 static void rx_irq(struct net_device
*ndev
)
832 struct ns83820
*dev
= PRIV(ndev
);
833 struct rx_info
*info
= &dev
->rx_info
;
841 dprintk("rx_irq(%p)\n", ndev
);
842 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
843 readl(dev
->base
+ RXDP
),
844 (long)(dev
->rx_info
.phy_descs
),
845 (int)dev
->rx_info
.next_rx
,
846 (dev
->rx_info
.descs
+ (DESC_SIZE
* dev
->rx_info
.next_rx
)),
847 (int)dev
->rx_info
.next_empty
,
848 (dev
->rx_info
.descs
+ (DESC_SIZE
* dev
->rx_info
.next_empty
))
851 spin_lock_irqsave(&info
->lock
, flags
);
855 dprintk("walking descs\n");
856 next_rx
= info
->next_rx
;
857 desc
= info
->next_rx_desc
;
858 while ((CMDSTS_OWN
& (cmdsts
= le32_to_cpu(desc
[DESC_CMDSTS
]))) &&
859 (cmdsts
!= CMDSTS_OWN
)) {
861 u32 extsts
= le32_to_cpu(desc
[DESC_EXTSTS
]);
862 dma_addr_t bufptr
= desc_addr_get(desc
+ DESC_BUFPTR
);
864 dprintk("cmdsts: %08x\n", cmdsts
);
865 dprintk("link: %08x\n", cpu_to_le32(desc
[DESC_LINK
]));
866 dprintk("extsts: %08x\n", extsts
);
868 skb
= info
->skbs
[next_rx
];
869 info
->skbs
[next_rx
] = NULL
;
870 info
->next_rx
= (next_rx
+ 1) % NR_RX_DESC
;
873 clear_rx_desc(dev
, next_rx
);
875 pci_unmap_single(dev
->pci_dev
, bufptr
,
876 RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
877 len
= cmdsts
& CMDSTS_LEN_MASK
;
878 #ifdef NS83820_VLAN_ACCEL_SUPPORT
879 /* NH: As was mentioned below, this chip is kinda
880 * brain dead about vlan tag stripping. Frames
881 * that are 64 bytes with a vlan header appended
882 * like arp frames, or pings, are flagged as Runts
883 * when the tag is stripped and hardware. This
884 * also means that the OK bit in the descriptor
885 * is cleared when the frame comes in so we have
886 * to do a specific length check here to make sure
887 * the frame would have been ok, had we not stripped
890 if (likely((CMDSTS_OK
& cmdsts
) ||
891 ((cmdsts
& CMDSTS_RUNT
) && len
>= 56))) {
893 if (likely(CMDSTS_OK
& cmdsts
)) {
897 goto netdev_mangle_me_harder_failed
;
898 if (cmdsts
& CMDSTS_DEST_MULTI
)
899 ndev
->stats
.multicast
++;
900 ndev
->stats
.rx_packets
++;
901 ndev
->stats
.rx_bytes
+= len
;
902 if ((extsts
& 0x002a0000) && !(extsts
& 0x00540000)) {
903 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
905 skb_checksum_none_assert(skb
);
907 skb
->protocol
= eth_type_trans(skb
, ndev
);
908 #ifdef NS83820_VLAN_ACCEL_SUPPORT
909 if(extsts
& EXTSTS_VPKT
) {
912 tag
= ntohs(extsts
& EXTSTS_VTG_MASK
);
913 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_IPV6
), tag
);
916 rx_rc
= netif_rx(skb
);
917 if (NET_RX_DROP
== rx_rc
) {
918 netdev_mangle_me_harder_failed
:
919 ndev
->stats
.rx_dropped
++;
922 dev_kfree_skb_irq(skb
);
926 next_rx
= info
->next_rx
;
927 desc
= info
->descs
+ (DESC_SIZE
* next_rx
);
929 info
->next_rx
= next_rx
;
930 info
->next_rx_desc
= info
->descs
+ (DESC_SIZE
* next_rx
);
934 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts
);
937 spin_unlock_irqrestore(&info
->lock
, flags
);
940 static void rx_action(unsigned long _dev
)
942 struct net_device
*ndev
= (void *)_dev
;
943 struct ns83820
*dev
= PRIV(ndev
);
945 writel(ihr
, dev
->base
+ IHR
);
947 spin_lock_irq(&dev
->misc_lock
);
948 dev
->IMR_cache
|= ISR_RXDESC
;
949 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
950 spin_unlock_irq(&dev
->misc_lock
);
953 ns83820_rx_kick(ndev
);
956 /* Packet Transmit code
958 static inline void kick_tx(struct ns83820
*dev
)
960 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
961 dev
, dev
->tx_idx
, dev
->tx_free_idx
);
962 writel(CR_TXE
, dev
->base
+ CR
);
965 /* No spinlock needed on the transmit irq path as the interrupt handler is
968 static void do_tx_done(struct net_device
*ndev
)
970 struct ns83820
*dev
= PRIV(ndev
);
971 u32 cmdsts
, tx_done_idx
;
974 dprintk("do_tx_done(%p)\n", ndev
);
975 tx_done_idx
= dev
->tx_done_idx
;
976 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
978 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
979 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
980 while ((tx_done_idx
!= dev
->tx_free_idx
) &&
981 !(CMDSTS_OWN
& (cmdsts
= le32_to_cpu(desc
[DESC_CMDSTS
]))) ) {
986 if (cmdsts
& CMDSTS_ERR
)
987 ndev
->stats
.tx_errors
++;
988 if (cmdsts
& CMDSTS_OK
)
989 ndev
->stats
.tx_packets
++;
990 if (cmdsts
& CMDSTS_OK
)
991 ndev
->stats
.tx_bytes
+= cmdsts
& 0xffff;
993 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
994 tx_done_idx
, dev
->tx_free_idx
, cmdsts
);
995 skb
= dev
->tx_skbs
[tx_done_idx
];
996 dev
->tx_skbs
[tx_done_idx
] = NULL
;
997 dprintk("done(%p)\n", skb
);
999 len
= cmdsts
& CMDSTS_LEN_MASK
;
1000 addr
= desc_addr_get(desc
+ DESC_BUFPTR
);
1002 pci_unmap_single(dev
->pci_dev
,
1006 dev_kfree_skb_irq(skb
);
1007 atomic_dec(&dev
->nr_tx_skbs
);
1009 pci_unmap_page(dev
->pci_dev
,
1014 tx_done_idx
= (tx_done_idx
+ 1) % NR_TX_DESC
;
1015 dev
->tx_done_idx
= tx_done_idx
;
1016 desc
[DESC_CMDSTS
] = cpu_to_le32(0);
1018 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1021 /* Allow network stack to resume queueing packets after we've
1022 * finished transmitting at least 1/4 of the packets in the queue.
1024 if (netif_queue_stopped(ndev
) && start_tx_okay(dev
)) {
1025 dprintk("start_queue(%p)\n", ndev
);
1026 netif_start_queue(ndev
);
1027 netif_wake_queue(ndev
);
1031 static void ns83820_cleanup_tx(struct ns83820
*dev
)
1035 for (i
=0; i
<NR_TX_DESC
; i
++) {
1036 struct sk_buff
*skb
= dev
->tx_skbs
[i
];
1037 dev
->tx_skbs
[i
] = NULL
;
1039 __le32
*desc
= dev
->tx_descs
+ (i
* DESC_SIZE
);
1040 pci_unmap_single(dev
->pci_dev
,
1041 desc_addr_get(desc
+ DESC_BUFPTR
),
1042 le32_to_cpu(desc
[DESC_CMDSTS
]) & CMDSTS_LEN_MASK
,
1044 dev_kfree_skb_irq(skb
);
1045 atomic_dec(&dev
->nr_tx_skbs
);
1049 memset(dev
->tx_descs
, 0, NR_TX_DESC
* DESC_SIZE
* 4);
1052 /* transmit routine. This code relies on the network layer serializing
1053 * its calls in, but will run happily in parallel with the interrupt
1054 * handler. This code currently has provisions for fragmenting tx buffers
1055 * while trying to track down a bug in either the zero copy code or
1056 * the tx fifo (hence the MAX_FRAG_LEN).
1058 static netdev_tx_t
ns83820_hard_start_xmit(struct sk_buff
*skb
,
1059 struct net_device
*ndev
)
1061 struct ns83820
*dev
= PRIV(ndev
);
1062 u32 free_idx
, cmdsts
, extsts
;
1063 int nr_free
, nr_frags
;
1064 unsigned tx_done_idx
, last_idx
;
1070 volatile __le32
*first_desc
;
1072 dprintk("ns83820_hard_start_xmit\n");
1074 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1076 if (unlikely(dev
->CFG_cache
& CFG_LNKSTS
)) {
1077 netif_stop_queue(ndev
);
1078 if (unlikely(dev
->CFG_cache
& CFG_LNKSTS
))
1079 return NETDEV_TX_BUSY
;
1080 netif_start_queue(ndev
);
1083 last_idx
= free_idx
= dev
->tx_free_idx
;
1084 tx_done_idx
= dev
->tx_done_idx
;
1085 nr_free
= (tx_done_idx
+ NR_TX_DESC
-2 - free_idx
) % NR_TX_DESC
;
1087 if (nr_free
<= nr_frags
) {
1088 dprintk("stop_queue - not enough(%p)\n", ndev
);
1089 netif_stop_queue(ndev
);
1091 /* Check again: we may have raced with a tx done irq */
1092 if (dev
->tx_done_idx
!= tx_done_idx
) {
1093 dprintk("restart queue(%p)\n", ndev
);
1094 netif_start_queue(ndev
);
1097 return NETDEV_TX_BUSY
;
1100 if (free_idx
== dev
->tx_intr_idx
) {
1102 dev
->tx_intr_idx
= (dev
->tx_intr_idx
+ NR_TX_DESC
/4) % NR_TX_DESC
;
1105 nr_free
-= nr_frags
;
1106 if (nr_free
< MIN_TX_DESC_FREE
) {
1107 dprintk("stop_queue - last entry(%p)\n", ndev
);
1108 netif_stop_queue(ndev
);
1112 frag
= skb_shinfo(skb
)->frags
;
1116 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1117 extsts
|= EXTSTS_IPPKT
;
1118 if (IPPROTO_TCP
== ip_hdr(skb
)->protocol
)
1119 extsts
|= EXTSTS_TCPPKT
;
1120 else if (IPPROTO_UDP
== ip_hdr(skb
)->protocol
)
1121 extsts
|= EXTSTS_UDPPKT
;
1124 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1125 if (skb_vlan_tag_present(skb
)) {
1126 /* fetch the vlan tag info out of the
1127 * ancillary data if the vlan code
1128 * is using hw vlan acceleration
1130 short tag
= skb_vlan_tag_get(skb
);
1131 extsts
|= (EXTSTS_VPKT
| htons(tag
));
1137 len
-= skb
->data_len
;
1138 buf
= pci_map_single(dev
->pci_dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
1140 first_desc
= dev
->tx_descs
+ (free_idx
* DESC_SIZE
);
1143 volatile __le32
*desc
= dev
->tx_descs
+ (free_idx
* DESC_SIZE
);
1145 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx
, len
,
1146 (unsigned long long)buf
);
1147 last_idx
= free_idx
;
1148 free_idx
= (free_idx
+ 1) % NR_TX_DESC
;
1149 desc
[DESC_LINK
] = cpu_to_le32(dev
->tx_phy_descs
+ (free_idx
* DESC_SIZE
* 4));
1150 desc_addr_set(desc
+ DESC_BUFPTR
, buf
);
1151 desc
[DESC_EXTSTS
] = cpu_to_le32(extsts
);
1153 cmdsts
= ((nr_frags
) ? CMDSTS_MORE
: do_intr
? CMDSTS_INTR
: 0);
1154 cmdsts
|= (desc
== first_desc
) ? 0 : CMDSTS_OWN
;
1156 desc
[DESC_CMDSTS
] = cpu_to_le32(cmdsts
);
1161 buf
= skb_frag_dma_map(&dev
->pci_dev
->dev
, frag
, 0,
1162 skb_frag_size(frag
), DMA_TO_DEVICE
);
1163 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
1164 (long long)buf
, (long) page_to_pfn(frag
->page
),
1166 len
= skb_frag_size(frag
);
1170 dprintk("done pkt\n");
1172 spin_lock_irq(&dev
->tx_lock
);
1173 dev
->tx_skbs
[last_idx
] = skb
;
1174 first_desc
[DESC_CMDSTS
] |= cpu_to_le32(CMDSTS_OWN
);
1175 dev
->tx_free_idx
= free_idx
;
1176 atomic_inc(&dev
->nr_tx_skbs
);
1177 spin_unlock_irq(&dev
->tx_lock
);
1181 /* Check again: we may have raced with a tx done irq */
1182 if (stopped
&& (dev
->tx_done_idx
!= tx_done_idx
) && start_tx_okay(dev
))
1183 netif_start_queue(ndev
);
1185 return NETDEV_TX_OK
;
1188 static void ns83820_update_stats(struct ns83820
*dev
)
1190 struct net_device
*ndev
= dev
->ndev
;
1191 u8 __iomem
*base
= dev
->base
;
1193 /* the DP83820 will freeze counters, so we need to read all of them */
1194 ndev
->stats
.rx_errors
+= readl(base
+ 0x60) & 0xffff;
1195 ndev
->stats
.rx_crc_errors
+= readl(base
+ 0x64) & 0xffff;
1196 ndev
->stats
.rx_missed_errors
+= readl(base
+ 0x68) & 0xffff;
1197 ndev
->stats
.rx_frame_errors
+= readl(base
+ 0x6c) & 0xffff;
1198 /*ndev->stats.rx_symbol_errors +=*/ readl(base
+ 0x70);
1199 ndev
->stats
.rx_length_errors
+= readl(base
+ 0x74) & 0xffff;
1200 ndev
->stats
.rx_length_errors
+= readl(base
+ 0x78) & 0xffff;
1201 /*ndev->stats.rx_badopcode_errors += */ readl(base
+ 0x7c);
1202 /*ndev->stats.rx_pause_count += */ readl(base
+ 0x80);
1203 /*ndev->stats.tx_pause_count += */ readl(base
+ 0x84);
1204 ndev
->stats
.tx_carrier_errors
+= readl(base
+ 0x88) & 0xff;
1207 static struct net_device_stats
*ns83820_get_stats(struct net_device
*ndev
)
1209 struct ns83820
*dev
= PRIV(ndev
);
1211 /* somewhat overkill */
1212 spin_lock_irq(&dev
->misc_lock
);
1213 ns83820_update_stats(dev
);
1214 spin_unlock_irq(&dev
->misc_lock
);
1216 return &ndev
->stats
;
1219 /* Let ethtool retrieve info */
1220 static int ns83820_get_link_ksettings(struct net_device
*ndev
,
1221 struct ethtool_link_ksettings
*cmd
)
1223 struct ns83820
*dev
= PRIV(ndev
);
1224 u32 cfg
, tanar
, tbicr
;
1229 * Here's the list of available ethtool commands from other drivers:
1230 * cmd->advertising =
1231 * ethtool_cmd_speed_set(cmd, ...)
1234 * cmd->phy_address =
1235 * cmd->transceiver = 0;
1237 * cmd->maxtxpkt = 0;
1238 * cmd->maxrxpkt = 0;
1241 /* read current configuration */
1242 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
1243 tanar
= readl(dev
->base
+ TANAR
);
1244 tbicr
= readl(dev
->base
+ TBICR
);
1246 fullduplex
= (cfg
& CFG_DUPSTS
) ? 1 : 0;
1248 supported
= SUPPORTED_Autoneg
;
1250 if (dev
->CFG_cache
& CFG_TBI_EN
) {
1251 /* we have optical interface */
1252 supported
|= SUPPORTED_1000baseT_Half
|
1253 SUPPORTED_1000baseT_Full
|
1255 cmd
->base
.port
= PORT_FIBRE
;
1257 /* we have copper */
1258 supported
|= SUPPORTED_10baseT_Half
|
1259 SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
|
1260 SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Half
|
1261 SUPPORTED_1000baseT_Full
|
1263 cmd
->base
.port
= PORT_MII
;
1266 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
1269 cmd
->base
.duplex
= fullduplex
? DUPLEX_FULL
: DUPLEX_HALF
;
1270 switch (cfg
/ CFG_SPDSTS0
& 3) {
1272 cmd
->base
.speed
= SPEED_1000
;
1275 cmd
->base
.speed
= SPEED_100
;
1278 cmd
->base
.speed
= SPEED_10
;
1281 cmd
->base
.autoneg
= (tbicr
& TBICR_MR_AN_ENABLE
)
1282 ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
1286 /* Let ethool change settings*/
1287 static int ns83820_set_link_ksettings(struct net_device
*ndev
,
1288 const struct ethtool_link_ksettings
*cmd
)
1290 struct ns83820
*dev
= PRIV(ndev
);
1292 int have_optical
= 0;
1295 /* read current configuration */
1296 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
1297 tanar
= readl(dev
->base
+ TANAR
);
1299 if (dev
->CFG_cache
& CFG_TBI_EN
) {
1300 /* we have optical */
1302 fullduplex
= (tanar
& TANAR_FULL_DUP
);
1305 /* we have copper */
1306 fullduplex
= cfg
& CFG_DUPSTS
;
1309 spin_lock_irq(&dev
->misc_lock
);
1310 spin_lock(&dev
->tx_lock
);
1313 if (cmd
->base
.duplex
!= fullduplex
) {
1316 if (cmd
->base
.duplex
== DUPLEX_FULL
) {
1317 /* force full duplex */
1318 writel(readl(dev
->base
+ TXCFG
)
1319 | TXCFG_CSI
| TXCFG_HBI
| TXCFG_ATP
,
1321 writel(readl(dev
->base
+ RXCFG
) | RXCFG_RX_FD
,
1323 /* Light up full duplex LED */
1324 writel(readl(dev
->base
+ GPIOR
) | GPIOR_GP1_OUT
,
1327 /*TODO: set half duplex */
1332 /* TODO: Set duplex for copper cards */
1334 printk(KERN_INFO
"%s: Duplex set via ethtool\n",
1338 /* Set autonegotiation */
1340 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
) {
1341 /* restart auto negotiation */
1342 writel(TBICR_MR_AN_ENABLE
| TBICR_MR_RESTART_AN
,
1344 writel(TBICR_MR_AN_ENABLE
, dev
->base
+ TBICR
);
1345 dev
->linkstate
= LINK_AUTONEGOTIATE
;
1347 printk(KERN_INFO
"%s: autoneg enabled via ethtool\n",
1350 /* disable auto negotiation */
1351 writel(0x00000000, dev
->base
+ TBICR
);
1354 printk(KERN_INFO
"%s: autoneg %s via ethtool\n", ndev
->name
,
1355 cmd
->base
.autoneg
? "ENABLED" : "DISABLED");
1359 spin_unlock(&dev
->tx_lock
);
1360 spin_unlock_irq(&dev
->misc_lock
);
1364 /* end ethtool get/set support -df */
1366 static void ns83820_get_drvinfo(struct net_device
*ndev
, struct ethtool_drvinfo
*info
)
1368 struct ns83820
*dev
= PRIV(ndev
);
1369 strlcpy(info
->driver
, "ns83820", sizeof(info
->driver
));
1370 strlcpy(info
->version
, VERSION
, sizeof(info
->version
));
1371 strlcpy(info
->bus_info
, pci_name(dev
->pci_dev
), sizeof(info
->bus_info
));
1374 static u32
ns83820_get_link(struct net_device
*ndev
)
1376 struct ns83820
*dev
= PRIV(ndev
);
1377 u32 cfg
= readl(dev
->base
+ CFG
) ^ SPDSTS_POLARITY
;
1378 return cfg
& CFG_LNKSTS
? 1 : 0;
1381 static const struct ethtool_ops ops
= {
1382 .get_drvinfo
= ns83820_get_drvinfo
,
1383 .get_link
= ns83820_get_link
,
1384 .get_link_ksettings
= ns83820_get_link_ksettings
,
1385 .set_link_ksettings
= ns83820_set_link_ksettings
,
1388 static inline void ns83820_disable_interrupts(struct ns83820
*dev
)
1390 writel(0, dev
->base
+ IMR
);
1391 writel(0, dev
->base
+ IER
);
1392 readl(dev
->base
+ IER
);
1395 /* this function is called in irq context from the ISR */
1396 static void ns83820_mib_isr(struct ns83820
*dev
)
1398 unsigned long flags
;
1399 spin_lock_irqsave(&dev
->misc_lock
, flags
);
1400 ns83820_update_stats(dev
);
1401 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
1404 static void ns83820_do_isr(struct net_device
*ndev
, u32 isr
);
1405 static irqreturn_t
ns83820_irq(int foo
, void *data
)
1407 struct net_device
*ndev
= data
;
1408 struct ns83820
*dev
= PRIV(ndev
);
1410 dprintk("ns83820_irq(%p)\n", ndev
);
1414 isr
= readl(dev
->base
+ ISR
);
1415 dprintk("irq: %08x\n", isr
);
1416 ns83820_do_isr(ndev
, isr
);
1420 static void ns83820_do_isr(struct net_device
*ndev
, u32 isr
)
1422 struct ns83820
*dev
= PRIV(ndev
);
1423 unsigned long flags
;
1426 if (isr
& ~(ISR_PHY
| ISR_RXDESC
| ISR_RXEARLY
| ISR_RXOK
| ISR_RXERR
| ISR_TXIDLE
| ISR_TXOK
| ISR_TXDESC
))
1427 Dprintk("odd isr? 0x%08x\n", isr
);
1430 if (ISR_RXIDLE
& isr
) {
1431 dev
->rx_info
.idle
= 1;
1432 Dprintk("oh dear, we are idle\n");
1433 ns83820_rx_kick(ndev
);
1436 if ((ISR_RXDESC
| ISR_RXOK
) & isr
) {
1437 prefetch(dev
->rx_info
.next_rx_desc
);
1439 spin_lock_irqsave(&dev
->misc_lock
, flags
);
1440 dev
->IMR_cache
&= ~(ISR_RXDESC
| ISR_RXOK
);
1441 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1442 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
1444 tasklet_schedule(&dev
->rx_tasklet
);
1446 //writel(4, dev->base + IHR);
1449 if ((ISR_RXIDLE
| ISR_RXORN
| ISR_RXDESC
| ISR_RXOK
| ISR_RXERR
) & isr
)
1450 ns83820_rx_kick(ndev
);
1452 if (unlikely(ISR_RXSOVR
& isr
)) {
1453 //printk("overrun: rxsovr\n");
1454 ndev
->stats
.rx_fifo_errors
++;
1457 if (unlikely(ISR_RXORN
& isr
)) {
1458 //printk("overrun: rxorn\n");
1459 ndev
->stats
.rx_fifo_errors
++;
1462 if ((ISR_RXRCMP
& isr
) && dev
->rx_info
.up
)
1463 writel(CR_RXE
, dev
->base
+ CR
);
1465 if (ISR_TXIDLE
& isr
) {
1467 txdp
= readl(dev
->base
+ TXDP
);
1468 dprintk("txdp: %08x\n", txdp
);
1469 txdp
-= dev
->tx_phy_descs
;
1470 dev
->tx_idx
= txdp
/ (DESC_SIZE
* 4);
1471 if (dev
->tx_idx
>= NR_TX_DESC
) {
1472 printk(KERN_ALERT
"%s: BUG -- txdp out of range\n", ndev
->name
);
1475 /* The may have been a race between a pci originated read
1476 * and the descriptor update from the cpu. Just in case,
1477 * kick the transmitter if the hardware thinks it is on a
1478 * different descriptor than we are.
1480 if (dev
->tx_idx
!= dev
->tx_free_idx
)
1484 /* Defer tx ring processing until more than a minimum amount of
1485 * work has accumulated
1487 if ((ISR_TXDESC
| ISR_TXIDLE
| ISR_TXOK
| ISR_TXERR
) & isr
) {
1488 spin_lock_irqsave(&dev
->tx_lock
, flags
);
1490 spin_unlock_irqrestore(&dev
->tx_lock
, flags
);
1492 /* Disable TxOk if there are no outstanding tx packets.
1494 if ((dev
->tx_done_idx
== dev
->tx_free_idx
) &&
1495 (dev
->IMR_cache
& ISR_TXOK
)) {
1496 spin_lock_irqsave(&dev
->misc_lock
, flags
);
1497 dev
->IMR_cache
&= ~ISR_TXOK
;
1498 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1499 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
1503 /* The TxIdle interrupt can come in before the transmit has
1504 * completed. Normally we reap packets off of the combination
1505 * of TxDesc and TxIdle and leave TxOk disabled (since it
1506 * occurs on every packet), but when no further irqs of this
1507 * nature are expected, we must enable TxOk.
1509 if ((ISR_TXIDLE
& isr
) && (dev
->tx_done_idx
!= dev
->tx_free_idx
)) {
1510 spin_lock_irqsave(&dev
->misc_lock
, flags
);
1511 dev
->IMR_cache
|= ISR_TXOK
;
1512 writel(dev
->IMR_cache
, dev
->base
+ IMR
);
1513 spin_unlock_irqrestore(&dev
->misc_lock
, flags
);
1516 /* MIB interrupt: one of the statistics counters is about to overflow */
1517 if (unlikely(ISR_MIB
& isr
))
1518 ns83820_mib_isr(dev
);
1520 /* PHY: Link up/down/negotiation state change */
1521 if (unlikely(ISR_PHY
& isr
))
1524 #if 0 /* Still working on the interrupt mitigation strategy */
1526 writel(dev
->ihr
, dev
->base
+ IHR
);
1530 static void ns83820_do_reset(struct ns83820
*dev
, u32 which
)
1532 Dprintk("resetting chip...\n");
1533 writel(which
, dev
->base
+ CR
);
1536 } while (readl(dev
->base
+ CR
) & which
);
1540 static int ns83820_stop(struct net_device
*ndev
)
1542 struct ns83820
*dev
= PRIV(ndev
);
1544 /* FIXME: protect against interrupt handler? */
1545 del_timer_sync(&dev
->tx_watchdog
);
1547 ns83820_disable_interrupts(dev
);
1549 dev
->rx_info
.up
= 0;
1550 synchronize_irq(dev
->pci_dev
->irq
);
1552 ns83820_do_reset(dev
, CR_RST
);
1554 synchronize_irq(dev
->pci_dev
->irq
);
1556 spin_lock_irq(&dev
->misc_lock
);
1557 dev
->IMR_cache
&= ~(ISR_TXURN
| ISR_TXIDLE
| ISR_TXERR
| ISR_TXDESC
| ISR_TXOK
);
1558 spin_unlock_irq(&dev
->misc_lock
);
1560 ns83820_cleanup_rx(dev
);
1561 ns83820_cleanup_tx(dev
);
1566 static void ns83820_tx_timeout(struct net_device
*ndev
)
1568 struct ns83820
*dev
= PRIV(ndev
);
1571 unsigned long flags
;
1573 spin_lock_irqsave(&dev
->tx_lock
, flags
);
1575 tx_done_idx
= dev
->tx_done_idx
;
1576 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1578 printk(KERN_INFO
"%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1580 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
1585 isr
= readl(dev
->base
+ ISR
);
1586 printk("irq: %08x imr: %08x\n", isr
, dev
->IMR_cache
);
1587 ns83820_do_isr(ndev
, isr
);
1593 tx_done_idx
= dev
->tx_done_idx
;
1594 desc
= dev
->tx_descs
+ (tx_done_idx
* DESC_SIZE
);
1596 printk(KERN_INFO
"%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1598 tx_done_idx
, dev
->tx_free_idx
, le32_to_cpu(desc
[DESC_CMDSTS
]));
1600 spin_unlock_irqrestore(&dev
->tx_lock
, flags
);
1603 static void ns83820_tx_watch(struct timer_list
*t
)
1605 struct ns83820
*dev
= from_timer(dev
, t
, tx_watchdog
);
1606 struct net_device
*ndev
= dev
->ndev
;
1609 printk("ns83820_tx_watch: %u %u %d\n",
1610 dev
->tx_done_idx
, dev
->tx_free_idx
, atomic_read(&dev
->nr_tx_skbs
)
1614 if (time_after(jiffies
, dev_trans_start(ndev
) + 1*HZ
) &&
1615 dev
->tx_done_idx
!= dev
->tx_free_idx
) {
1616 printk(KERN_DEBUG
"%s: ns83820_tx_watch: %u %u %d\n",
1618 dev
->tx_done_idx
, dev
->tx_free_idx
,
1619 atomic_read(&dev
->nr_tx_skbs
));
1620 ns83820_tx_timeout(ndev
);
1623 mod_timer(&dev
->tx_watchdog
, jiffies
+ 2*HZ
);
1626 static int ns83820_open(struct net_device
*ndev
)
1628 struct ns83820
*dev
= PRIV(ndev
);
1633 dprintk("ns83820_open\n");
1635 writel(0, dev
->base
+ PQCR
);
1637 ret
= ns83820_setup_rx(ndev
);
1641 memset(dev
->tx_descs
, 0, 4 * NR_TX_DESC
* DESC_SIZE
);
1642 for (i
=0; i
<NR_TX_DESC
; i
++) {
1643 dev
->tx_descs
[(i
* DESC_SIZE
) + DESC_LINK
]
1646 + ((i
+1) % NR_TX_DESC
) * DESC_SIZE
* 4);
1650 dev
->tx_done_idx
= 0;
1651 desc
= dev
->tx_phy_descs
;
1652 writel(0, dev
->base
+ TXDP_HI
);
1653 writel(desc
, dev
->base
+ TXDP
);
1655 timer_setup(&dev
->tx_watchdog
, ns83820_tx_watch
, 0);
1656 mod_timer(&dev
->tx_watchdog
, jiffies
+ 2*HZ
);
1658 netif_start_queue(ndev
); /* FIXME: wait for phy to come up */
1667 static void ns83820_getmac(struct ns83820
*dev
, u8
*mac
)
1670 for (i
=0; i
<3; i
++) {
1673 /* Read from the perfect match memory: this is loaded by
1674 * the chip from the EEPROM via the EELOAD self test.
1676 writel(i
*2, dev
->base
+ RFCR
);
1677 data
= readl(dev
->base
+ RFDR
);
1684 static void ns83820_set_multicast(struct net_device
*ndev
)
1686 struct ns83820
*dev
= PRIV(ndev
);
1687 u8 __iomem
*rfcr
= dev
->base
+ RFCR
;
1688 u32 and_mask
= 0xffffffff;
1692 if (ndev
->flags
& IFF_PROMISC
)
1693 or_mask
|= RFCR_AAU
| RFCR_AAM
;
1695 and_mask
&= ~(RFCR_AAU
| RFCR_AAM
);
1697 if (ndev
->flags
& IFF_ALLMULTI
|| netdev_mc_count(ndev
))
1698 or_mask
|= RFCR_AAM
;
1700 and_mask
&= ~RFCR_AAM
;
1702 spin_lock_irq(&dev
->misc_lock
);
1703 val
= (readl(rfcr
) & and_mask
) | or_mask
;
1704 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1705 writel(val
& ~RFCR_RFEN
, rfcr
);
1707 spin_unlock_irq(&dev
->misc_lock
);
1710 static void ns83820_run_bist(struct net_device
*ndev
, const char *name
, u32 enable
, u32 done
, u32 fail
)
1712 struct ns83820
*dev
= PRIV(ndev
);
1714 unsigned long start
;
1718 dprintk("%s: start %s\n", ndev
->name
, name
);
1722 writel(enable
, dev
->base
+ PTSCR
);
1725 status
= readl(dev
->base
+ PTSCR
);
1726 if (!(status
& enable
))
1732 if (time_after_eq(jiffies
, start
+ HZ
)) {
1736 schedule_timeout_uninterruptible(1);
1740 printk(KERN_INFO
"%s: %s failed! (0x%08x & 0x%08x)\n",
1741 ndev
->name
, name
, status
, fail
);
1743 printk(KERN_INFO
"%s: run_bist %s timed out! (%08x)\n",
1744 ndev
->name
, name
, status
);
1746 dprintk("%s: done %s in %d loops\n", ndev
->name
, name
, loops
);
1749 #ifdef PHY_CODE_IS_FINISHED
1750 static void ns83820_mii_write_bit(struct ns83820
*dev
, int bit
)
1753 dev
->MEAR_cache
&= ~MEAR_MDC
;
1754 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1755 readl(dev
->base
+ MEAR
);
1757 /* enable output, set bit */
1758 dev
->MEAR_cache
|= MEAR_MDDIR
;
1760 dev
->MEAR_cache
|= MEAR_MDIO
;
1762 dev
->MEAR_cache
&= ~MEAR_MDIO
;
1764 /* set the output bit */
1765 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1766 readl(dev
->base
+ MEAR
);
1768 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1771 /* drive MDC high causing the data bit to be latched */
1772 dev
->MEAR_cache
|= MEAR_MDC
;
1773 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1774 readl(dev
->base
+ MEAR
);
1780 static int ns83820_mii_read_bit(struct ns83820
*dev
)
1784 /* drive MDC low, disable output */
1785 dev
->MEAR_cache
&= ~MEAR_MDC
;
1786 dev
->MEAR_cache
&= ~MEAR_MDDIR
;
1787 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1788 readl(dev
->base
+ MEAR
);
1790 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1793 /* drive MDC high causing the data bit to be latched */
1794 bit
= (readl(dev
->base
+ MEAR
) & MEAR_MDIO
) ? 1 : 0;
1795 dev
->MEAR_cache
|= MEAR_MDC
;
1796 writel(dev
->MEAR_cache
, dev
->base
+ MEAR
);
1804 static unsigned ns83820_mii_read_reg(struct ns83820
*dev
, unsigned phy
, unsigned reg
)
1809 /* read some garbage so that we eventually sync up */
1810 for (i
=0; i
<64; i
++)
1811 ns83820_mii_read_bit(dev
);
1813 ns83820_mii_write_bit(dev
, 0); /* start */
1814 ns83820_mii_write_bit(dev
, 1);
1815 ns83820_mii_write_bit(dev
, 1); /* opcode read */
1816 ns83820_mii_write_bit(dev
, 0);
1818 /* write out the phy address: 5 bits, msb first */
1820 ns83820_mii_write_bit(dev
, phy
& (0x10 >> i
));
1822 /* write out the register address, 5 bits, msb first */
1824 ns83820_mii_write_bit(dev
, reg
& (0x10 >> i
));
1826 ns83820_mii_read_bit(dev
); /* turn around cycles */
1827 ns83820_mii_read_bit(dev
);
1829 /* read in the register data, 16 bits msb first */
1830 for (i
=0; i
<16; i
++) {
1832 data
|= ns83820_mii_read_bit(dev
);
1838 static unsigned ns83820_mii_write_reg(struct ns83820
*dev
, unsigned phy
, unsigned reg
, unsigned data
)
1842 /* read some garbage so that we eventually sync up */
1843 for (i
=0; i
<64; i
++)
1844 ns83820_mii_read_bit(dev
);
1846 ns83820_mii_write_bit(dev
, 0); /* start */
1847 ns83820_mii_write_bit(dev
, 1);
1848 ns83820_mii_write_bit(dev
, 0); /* opcode read */
1849 ns83820_mii_write_bit(dev
, 1);
1851 /* write out the phy address: 5 bits, msb first */
1853 ns83820_mii_write_bit(dev
, phy
& (0x10 >> i
));
1855 /* write out the register address, 5 bits, msb first */
1857 ns83820_mii_write_bit(dev
, reg
& (0x10 >> i
));
1859 ns83820_mii_read_bit(dev
); /* turn around cycles */
1860 ns83820_mii_read_bit(dev
);
1862 /* read in the register data, 16 bits msb first */
1863 for (i
=0; i
<16; i
++)
1864 ns83820_mii_write_bit(dev
, (data
>> (15 - i
)) & 1);
1869 static void ns83820_probe_phy(struct net_device
*ndev
)
1871 struct ns83820
*dev
= PRIV(ndev
);
1874 #define MII_PHYIDR1 0x02
1875 #define MII_PHYIDR2 0x03
1880 ns83820_mii_read_reg(dev
, 1, 0x09);
1881 ns83820_mii_write_reg(dev
, 1, 0x10, 0x0d3e);
1883 tmp
= ns83820_mii_read_reg(dev
, 1, 0x00);
1884 ns83820_mii_write_reg(dev
, 1, 0x00, tmp
| 0x8000);
1886 ns83820_mii_read_reg(dev
, 1, 0x09);
1891 for (i
=1; i
<2; i
++) {
1894 a
= ns83820_mii_read_reg(dev
, i
, MII_PHYIDR1
);
1895 b
= ns83820_mii_read_reg(dev
, i
, MII_PHYIDR2
);
1897 //printk("%s: phy %d: 0x%04x 0x%04x\n",
1898 // ndev->name, i, a, b);
1900 for (j
=0; j
<0x16; j
+=4) {
1901 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1903 ns83820_mii_read_reg(dev
, i
, 0 + j
),
1904 ns83820_mii_read_reg(dev
, i
, 1 + j
),
1905 ns83820_mii_read_reg(dev
, i
, 2 + j
),
1906 ns83820_mii_read_reg(dev
, i
, 3 + j
)
1912 /* read firmware version: memory addr is 0x8402 and 0x8403 */
1913 ns83820_mii_write_reg(dev
, 1, 0x16, 0x000d);
1914 ns83820_mii_write_reg(dev
, 1, 0x1e, 0x810e);
1915 a
= ns83820_mii_read_reg(dev
, 1, 0x1d);
1917 ns83820_mii_write_reg(dev
, 1, 0x16, 0x000d);
1918 ns83820_mii_write_reg(dev
, 1, 0x1e, 0x810e);
1919 b
= ns83820_mii_read_reg(dev
, 1, 0x1d);
1920 dprintk("version: 0x%04x 0x%04x\n", a
, b
);
1925 static const struct net_device_ops netdev_ops
= {
1926 .ndo_open
= ns83820_open
,
1927 .ndo_stop
= ns83820_stop
,
1928 .ndo_start_xmit
= ns83820_hard_start_xmit
,
1929 .ndo_get_stats
= ns83820_get_stats
,
1930 .ndo_set_rx_mode
= ns83820_set_multicast
,
1931 .ndo_validate_addr
= eth_validate_addr
,
1932 .ndo_set_mac_address
= eth_mac_addr
,
1933 .ndo_tx_timeout
= ns83820_tx_timeout
,
1936 static int ns83820_init_one(struct pci_dev
*pci_dev
,
1937 const struct pci_device_id
*id
)
1939 struct net_device
*ndev
;
1940 struct ns83820
*dev
;
1945 /* See if we can set the dma mask early on; failure is fatal. */
1946 if (sizeof(dma_addr_t
) == 8 &&
1947 !pci_set_dma_mask(pci_dev
, DMA_BIT_MASK(64))) {
1949 } else if (!pci_set_dma_mask(pci_dev
, DMA_BIT_MASK(32))) {
1952 dev_warn(&pci_dev
->dev
, "pci_set_dma_mask failed!\n");
1956 ndev
= alloc_etherdev(sizeof(struct ns83820
));
1964 spin_lock_init(&dev
->rx_info
.lock
);
1965 spin_lock_init(&dev
->tx_lock
);
1966 spin_lock_init(&dev
->misc_lock
);
1967 dev
->pci_dev
= pci_dev
;
1969 SET_NETDEV_DEV(ndev
, &pci_dev
->dev
);
1971 INIT_WORK(&dev
->tq_refill
, queue_refill
);
1972 tasklet_init(&dev
->rx_tasklet
, rx_action
, (unsigned long)ndev
);
1974 err
= pci_enable_device(pci_dev
);
1976 dev_info(&pci_dev
->dev
, "pci_enable_dev failed: %d\n", err
);
1980 pci_set_master(pci_dev
);
1981 addr
= pci_resource_start(pci_dev
, 1);
1982 dev
->base
= ioremap_nocache(addr
, PAGE_SIZE
);
1983 dev
->tx_descs
= pci_alloc_consistent(pci_dev
,
1984 4 * DESC_SIZE
* NR_TX_DESC
, &dev
->tx_phy_descs
);
1985 dev
->rx_info
.descs
= pci_alloc_consistent(pci_dev
,
1986 4 * DESC_SIZE
* NR_RX_DESC
, &dev
->rx_info
.phy_descs
);
1988 if (!dev
->base
|| !dev
->tx_descs
|| !dev
->rx_info
.descs
)
1991 dprintk("%p: %08lx %p: %08lx\n",
1992 dev
->tx_descs
, (long)dev
->tx_phy_descs
,
1993 dev
->rx_info
.descs
, (long)dev
->rx_info
.phy_descs
);
1995 ns83820_disable_interrupts(dev
);
1999 err
= request_irq(pci_dev
->irq
, ns83820_irq
, IRQF_SHARED
,
2002 dev_info(&pci_dev
->dev
, "unable to register irq %d, err %d\n",
2008 * FIXME: we are holding rtnl_lock() over obscenely long area only
2009 * because some of the setup code uses dev->name. It's Wrong(tm) -
2010 * we should be using driver-specific names for all that stuff.
2011 * For now that will do, but we really need to come back and kill
2012 * most of the dev_alloc_name() users later.
2015 err
= dev_alloc_name(ndev
, ndev
->name
);
2017 dev_info(&pci_dev
->dev
, "unable to get netdev name: %d\n", err
);
2021 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2022 ndev
->name
, le32_to_cpu(readl(dev
->base
+ 0x22c)),
2023 pci_dev
->subsystem_vendor
, pci_dev
->subsystem_device
);
2025 ndev
->netdev_ops
= &netdev_ops
;
2026 ndev
->ethtool_ops
= &ops
;
2027 ndev
->watchdog_timeo
= 5 * HZ
;
2028 pci_set_drvdata(pci_dev
, ndev
);
2030 ns83820_do_reset(dev
, CR_RST
);
2032 /* Must reset the ram bist before running it */
2033 writel(PTSCR_RBIST_RST
, dev
->base
+ PTSCR
);
2034 ns83820_run_bist(ndev
, "sram bist", PTSCR_RBIST_EN
,
2035 PTSCR_RBIST_DONE
, PTSCR_RBIST_FAIL
);
2036 ns83820_run_bist(ndev
, "eeprom bist", PTSCR_EEBIST_EN
, 0,
2038 ns83820_run_bist(ndev
, "eeprom load", PTSCR_EELOAD_EN
, 0, 0);
2040 /* I love config registers */
2041 dev
->CFG_cache
= readl(dev
->base
+ CFG
);
2043 if ((dev
->CFG_cache
& CFG_PCI64_DET
)) {
2044 printk(KERN_INFO
"%s: detected 64 bit PCI data bus.\n",
2046 /*dev->CFG_cache |= CFG_DATA64_EN;*/
2047 if (!(dev
->CFG_cache
& CFG_DATA64_EN
))
2048 printk(KERN_INFO
"%s: EEPROM did not enable 64 bit bus. Disabled.\n",
2051 dev
->CFG_cache
&= ~(CFG_DATA64_EN
);
2053 dev
->CFG_cache
&= (CFG_TBI_EN
| CFG_MRM_DIS
| CFG_MWI_DIS
|
2054 CFG_T64ADDR
| CFG_DATA64_EN
| CFG_EXT_125
|
2056 dev
->CFG_cache
|= CFG_PINT_DUPSTS
| CFG_PINT_LNKSTS
| CFG_PINT_SPDSTS
|
2057 CFG_EXTSTS_EN
| CFG_EXD
| CFG_PESEL
;
2058 dev
->CFG_cache
|= CFG_REQALG
;
2059 dev
->CFG_cache
|= CFG_POW
;
2060 dev
->CFG_cache
|= CFG_TMRTEST
;
2062 /* When compiled with 64 bit addressing, we must always enable
2063 * the 64 bit descriptor format.
2065 if (sizeof(dma_addr_t
) == 8)
2066 dev
->CFG_cache
|= CFG_M64ADDR
;
2068 dev
->CFG_cache
|= CFG_T64ADDR
;
2070 /* Big endian mode does not seem to do what the docs suggest */
2071 dev
->CFG_cache
&= ~CFG_BEM
;
2073 /* setup optical transceiver if we have one */
2074 if (dev
->CFG_cache
& CFG_TBI_EN
) {
2075 printk(KERN_INFO
"%s: enabling optical transceiver\n",
2077 writel(readl(dev
->base
+ GPIOR
) | 0x3e8, dev
->base
+ GPIOR
);
2079 /* setup auto negotiation feature advertisement */
2080 writel(readl(dev
->base
+ TANAR
)
2081 | TANAR_HALF_DUP
| TANAR_FULL_DUP
,
2084 /* start auto negotiation */
2085 writel(TBICR_MR_AN_ENABLE
| TBICR_MR_RESTART_AN
,
2087 writel(TBICR_MR_AN_ENABLE
, dev
->base
+ TBICR
);
2088 dev
->linkstate
= LINK_AUTONEGOTIATE
;
2090 dev
->CFG_cache
|= CFG_MODE_1000
;
2093 writel(dev
->CFG_cache
, dev
->base
+ CFG
);
2094 dprintk("CFG: %08x\n", dev
->CFG_cache
);
2097 printk(KERN_INFO
"%s: resetting phy\n", ndev
->name
);
2098 writel(dev
->CFG_cache
| CFG_PHY_RST
, dev
->base
+ CFG
);
2100 writel(dev
->CFG_cache
, dev
->base
+ CFG
);
2103 #if 0 /* Huh? This sets the PCI latency register. Should be done via
2104 * the PCI layer. FIXME.
2106 if (readl(dev
->base
+ SRR
))
2107 writel(readl(dev
->base
+0x20c) | 0xfe00, dev
->base
+ 0x20c);
2110 /* Note! The DMA burst size interacts with packet
2111 * transmission, such that the largest packet that
2112 * can be transmitted is 8192 - FLTH - burst size.
2113 * If only the transmit fifo was larger...
2115 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2116 * some DELL and COMPAQ SMP systems */
2117 writel(TXCFG_CSI
| TXCFG_HBI
| TXCFG_ATP
| TXCFG_MXDMA512
2118 | ((1600 / 32) * 0x100),
2121 /* Flush the interrupt holdoff timer */
2122 writel(0x000, dev
->base
+ IHR
);
2123 writel(0x100, dev
->base
+ IHR
);
2124 writel(0x000, dev
->base
+ IHR
);
2126 /* Set Rx to full duplex, don't accept runt, errored, long or length
2127 * range errored packets. Use 512 byte DMA.
2129 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2130 * some DELL and COMPAQ SMP systems
2131 * Turn on ALP, only we are accpeting Jumbo Packets */
2132 writel(RXCFG_AEP
| RXCFG_ARP
| RXCFG_AIRL
| RXCFG_RX_FD
2135 | (RXCFG_MXDMA512
) | 0, dev
->base
+ RXCFG
);
2137 /* Disable priority queueing */
2138 writel(0, dev
->base
+ PQCR
);
2140 /* Enable IP checksum validation and detetion of VLAN headers.
2141 * Note: do not set the reject options as at least the 0x102
2142 * revision of the chip does not properly accept IP fragments
2145 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2146 * the MAC it calculates the packetsize AFTER stripping the VLAN
2147 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2148 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2149 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2150 * it discrards it!. These guys......
2151 * also turn on tag stripping if hardware acceleration is enabled
2153 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2154 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2156 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2158 writel(VRCR_INIT_VALUE
, dev
->base
+ VRCR
);
2160 /* Enable per-packet TCP/UDP/IP checksumming
2161 * and per packet vlan tag insertion if
2162 * vlan hardware acceleration is enabled
2164 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2165 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2167 #define VTCR_INIT_VALUE VTCR_PPCHK
2169 writel(VTCR_INIT_VALUE
, dev
->base
+ VTCR
);
2171 /* Ramit : Enable async and sync pause frames */
2172 /* writel(0, dev->base + PCR); */
2173 writel((PCR_PS_MCAST
| PCR_PS_DA
| PCR_PSEN
| PCR_FFLO_4K
|
2174 PCR_FFHI_8K
| PCR_STLO_4
| PCR_STHI_8
| PCR_PAUSE_CNT
),
2177 /* Disable Wake On Lan */
2178 writel(0, dev
->base
+ WCSR
);
2180 ns83820_getmac(dev
, ndev
->dev_addr
);
2182 /* Yes, we support dumb IP checksum on transmit */
2183 ndev
->features
|= NETIF_F_SG
;
2184 ndev
->features
|= NETIF_F_IP_CSUM
;
2188 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2189 /* We also support hardware vlan acceleration */
2190 ndev
->features
|= NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
;
2194 printk(KERN_INFO
"%s: using 64 bit addressing.\n",
2196 ndev
->features
|= NETIF_F_HIGHDMA
;
2199 printk(KERN_INFO
"%s: ns83820 v" VERSION
": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2201 (unsigned)readl(dev
->base
+ SRR
) >> 8,
2202 (unsigned)readl(dev
->base
+ SRR
) & 0xff,
2203 ndev
->dev_addr
, addr
, pci_dev
->irq
,
2204 (ndev
->features
& NETIF_F_HIGHDMA
) ? "h,sg" : "sg"
2207 #ifdef PHY_CODE_IS_FINISHED
2208 ns83820_probe_phy(ndev
);
2211 err
= register_netdevice(ndev
);
2213 printk(KERN_INFO
"ns83820: unable to register netdev: %d\n", err
);
2221 ns83820_disable_interrupts(dev
); /* paranoia */
2224 free_irq(pci_dev
->irq
, ndev
);
2228 pci_free_consistent(pci_dev
, 4 * DESC_SIZE
* NR_TX_DESC
, dev
->tx_descs
, dev
->tx_phy_descs
);
2229 pci_free_consistent(pci_dev
, 4 * DESC_SIZE
* NR_RX_DESC
, dev
->rx_info
.descs
, dev
->rx_info
.phy_descs
);
2230 pci_disable_device(pci_dev
);
2237 static void ns83820_remove_one(struct pci_dev
*pci_dev
)
2239 struct net_device
*ndev
= pci_get_drvdata(pci_dev
);
2240 struct ns83820
*dev
= PRIV(ndev
); /* ok even if NULL */
2242 if (!ndev
) /* paranoia */
2245 ns83820_disable_interrupts(dev
); /* paranoia */
2247 unregister_netdev(ndev
);
2248 free_irq(dev
->pci_dev
->irq
, ndev
);
2250 pci_free_consistent(dev
->pci_dev
, 4 * DESC_SIZE
* NR_TX_DESC
,
2251 dev
->tx_descs
, dev
->tx_phy_descs
);
2252 pci_free_consistent(dev
->pci_dev
, 4 * DESC_SIZE
* NR_RX_DESC
,
2253 dev
->rx_info
.descs
, dev
->rx_info
.phy_descs
);
2254 pci_disable_device(dev
->pci_dev
);
2258 static const struct pci_device_id ns83820_pci_tbl
[] = {
2259 { 0x100b, 0x0022, PCI_ANY_ID
, PCI_ANY_ID
, 0, .driver_data
= 0, },
2263 static struct pci_driver driver
= {
2265 .id_table
= ns83820_pci_tbl
,
2266 .probe
= ns83820_init_one
,
2267 .remove
= ns83820_remove_one
,
2268 #if 0 /* FIXME: implement */
2275 static int __init
ns83820_init(void)
2277 printk(KERN_INFO
"ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2278 return pci_register_driver(&driver
);
2281 static void __exit
ns83820_exit(void)
2283 pci_unregister_driver(&driver
);
2286 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2287 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2288 MODULE_LICENSE("GPL");
2290 MODULE_DEVICE_TABLE(pci
, ns83820_pci_tbl
);
2292 module_param(lnksts
, int, 0);
2293 MODULE_PARM_DESC(lnksts
, "Polarity of LNKSTS bit");
2295 module_param(ihr
, int, 0);
2296 MODULE_PARM_DESC(ihr
, "Time in 100 us increments to delay interrupts (range 0-127)");
2298 module_param(reset_phy
, int, 0);
2299 MODULE_PARM_DESC(reset_phy
, "Set to 1 to reset the PHY on startup");
2301 module_init(ns83820_init
);
2302 module_exit(ns83820_exit
);