staging: rtl8188eu: Replace function name in string with __func__
[linux/fpc-iii.git] / drivers / net / ethernet / qlogic / qed / qed_hw.c
blobfca2dbd93ad95858d5a40e4a0679b7e579e4da67
1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/types.h>
34 #include <linux/io.h>
35 #include <linux/delay.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/errno.h>
38 #include <linux/kernel.h>
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/qed/qed_chain.h>
46 #include "qed.h"
47 #include "qed_hsi.h"
48 #include "qed_hw.h"
49 #include "qed_reg_addr.h"
50 #include "qed_sriov.h"
52 #define QED_BAR_ACQUIRE_TIMEOUT 1000
54 /* Invalid values */
55 #define QED_BAR_INVALID_OFFSET (cpu_to_le32(-1))
57 struct qed_ptt {
58 struct list_head list_entry;
59 unsigned int idx;
60 struct pxp_ptt_entry pxp;
61 u8 hwfn_id;
64 struct qed_ptt_pool {
65 struct list_head free_list;
66 spinlock_t lock; /* ptt synchronized access */
67 struct qed_ptt ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
70 int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
72 struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool), GFP_KERNEL);
73 int i;
75 if (!p_pool)
76 return -ENOMEM;
78 INIT_LIST_HEAD(&p_pool->free_list);
79 for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
80 p_pool->ptts[i].idx = i;
81 p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
82 p_pool->ptts[i].pxp.pretend.control = 0;
83 p_pool->ptts[i].hwfn_id = p_hwfn->my_id;
84 if (i >= RESERVED_PTT_MAX)
85 list_add(&p_pool->ptts[i].list_entry,
86 &p_pool->free_list);
89 p_hwfn->p_ptt_pool = p_pool;
90 spin_lock_init(&p_pool->lock);
92 return 0;
95 void qed_ptt_invalidate(struct qed_hwfn *p_hwfn)
97 struct qed_ptt *p_ptt;
98 int i;
100 for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
101 p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
102 p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET;
106 void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
108 kfree(p_hwfn->p_ptt_pool);
109 p_hwfn->p_ptt_pool = NULL;
112 struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
114 struct qed_ptt *p_ptt;
115 unsigned int i;
117 /* Take the free PTT from the list */
118 for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) {
119 spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
121 if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
122 p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
123 struct qed_ptt, list_entry);
124 list_del(&p_ptt->list_entry);
126 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
128 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
129 "allocated ptt %d\n", p_ptt->idx);
130 return p_ptt;
133 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
134 usleep_range(1000, 2000);
137 DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
138 return NULL;
141 void qed_ptt_release(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
143 spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
144 list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
145 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
148 u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
150 /* The HW is using DWORDS and we need to translate it to Bytes */
151 return le32_to_cpu(p_ptt->pxp.offset) << 2;
154 static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
156 return PXP_PF_WINDOW_ADMIN_PER_PF_START +
157 p_ptt->idx * sizeof(struct pxp_ptt_entry);
160 u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
162 return PXP_EXTERNAL_BAR_PF_WINDOW_START +
163 p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
166 void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
167 struct qed_ptt *p_ptt, u32 new_hw_addr)
169 u32 prev_hw_addr;
171 prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
173 if (new_hw_addr == prev_hw_addr)
174 return;
176 /* Update PTT entery in admin window */
177 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
178 "Updating PTT entry %d to offset 0x%x\n",
179 p_ptt->idx, new_hw_addr);
181 /* The HW is using DWORDS and the address is in Bytes */
182 p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);
184 REG_WR(p_hwfn,
185 qed_ptt_config_addr(p_ptt) +
186 offsetof(struct pxp_ptt_entry, offset),
187 le32_to_cpu(p_ptt->pxp.offset));
190 static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
191 struct qed_ptt *p_ptt, u32 hw_addr)
193 u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
194 u32 offset;
196 offset = hw_addr - win_hw_addr;
198 if (p_ptt->hwfn_id != p_hwfn->my_id)
199 DP_NOTICE(p_hwfn,
200 "ptt[%d] of hwfn[%02x] is used by hwfn[%02x]!\n",
201 p_ptt->idx, p_ptt->hwfn_id, p_hwfn->my_id);
203 /* Verify the address is within the window */
204 if (hw_addr < win_hw_addr ||
205 offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
206 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
207 offset = 0;
210 return qed_ptt_get_bar_addr(p_ptt) + offset;
213 struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
214 enum reserved_ptts ptt_idx)
216 if (ptt_idx >= RESERVED_PTT_MAX) {
217 DP_NOTICE(p_hwfn,
218 "Requested PTT %d is out of range\n", ptt_idx);
219 return NULL;
222 return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
225 void qed_wr(struct qed_hwfn *p_hwfn,
226 struct qed_ptt *p_ptt,
227 u32 hw_addr, u32 val)
229 u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
231 REG_WR(p_hwfn, bar_addr, val);
232 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
233 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
234 bar_addr, hw_addr, val);
237 u32 qed_rd(struct qed_hwfn *p_hwfn,
238 struct qed_ptt *p_ptt,
239 u32 hw_addr)
241 u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
242 u32 val = REG_RD(p_hwfn, bar_addr);
244 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
245 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
246 bar_addr, hw_addr, val);
248 return val;
251 static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
252 struct qed_ptt *p_ptt,
253 void *addr, u32 hw_addr, size_t n, bool to_device)
255 u32 dw_count, *host_addr, hw_offset;
256 size_t quota, done = 0;
257 u32 __iomem *reg_addr;
259 while (done < n) {
260 quota = min_t(size_t, n - done,
261 PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
263 if (IS_PF(p_hwfn->cdev)) {
264 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
265 hw_offset = qed_ptt_get_bar_addr(p_ptt);
266 } else {
267 hw_offset = hw_addr + done;
270 dw_count = quota / 4;
271 host_addr = (u32 *)((u8 *)addr + done);
272 reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
273 if (to_device)
274 while (dw_count--)
275 DIRECT_REG_WR(reg_addr++, *host_addr++);
276 else
277 while (dw_count--)
278 *host_addr++ = DIRECT_REG_RD(reg_addr++);
280 done += quota;
284 void qed_memcpy_from(struct qed_hwfn *p_hwfn,
285 struct qed_ptt *p_ptt, void *dest, u32 hw_addr, size_t n)
287 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
288 "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
289 hw_addr, dest, hw_addr, (unsigned long)n);
291 qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
294 void qed_memcpy_to(struct qed_hwfn *p_hwfn,
295 struct qed_ptt *p_ptt, u32 hw_addr, void *src, size_t n)
297 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
298 "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
299 hw_addr, hw_addr, src, (unsigned long)n);
301 qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
304 void qed_fid_pretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 fid)
306 u16 control = 0;
308 SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
309 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
311 /* Every pretend undos previous pretends, including
312 * previous port pretend.
314 SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
315 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
316 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
318 if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
319 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
321 p_ptt->pxp.pretend.control = cpu_to_le16(control);
322 p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
324 REG_WR(p_hwfn,
325 qed_ptt_config_addr(p_ptt) +
326 offsetof(struct pxp_ptt_entry, pretend),
327 *(u32 *)&p_ptt->pxp.pretend);
330 void qed_port_pretend(struct qed_hwfn *p_hwfn,
331 struct qed_ptt *p_ptt, u8 port_id)
333 u16 control = 0;
335 SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
336 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
337 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
339 p_ptt->pxp.pretend.control = cpu_to_le16(control);
341 REG_WR(p_hwfn,
342 qed_ptt_config_addr(p_ptt) +
343 offsetof(struct pxp_ptt_entry, pretend),
344 *(u32 *)&p_ptt->pxp.pretend);
347 void qed_port_unpretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
349 u16 control = 0;
351 SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
352 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
353 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
355 p_ptt->pxp.pretend.control = cpu_to_le16(control);
357 REG_WR(p_hwfn,
358 qed_ptt_config_addr(p_ptt) +
359 offsetof(struct pxp_ptt_entry, pretend),
360 *(u32 *)&p_ptt->pxp.pretend);
363 u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid)
365 u32 concrete_fid = 0;
367 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
368 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
369 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
371 return concrete_fid;
374 /* DMAE */
375 static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
376 const u8 is_src_type_grc,
377 const u8 is_dst_type_grc,
378 struct qed_dmae_params *p_params)
380 u16 opcode_b = 0;
381 u32 opcode = 0;
383 /* Whether the source is the PCIe or the GRC.
384 * 0- The source is the PCIe
385 * 1- The source is the GRC.
387 opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
388 : DMAE_CMD_SRC_MASK_PCIE) <<
389 DMAE_CMD_SRC_SHIFT;
390 opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_SRC_PF_ID_MASK) <<
391 DMAE_CMD_SRC_PF_ID_SHIFT);
393 /* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
394 opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
395 : DMAE_CMD_DST_MASK_PCIE) <<
396 DMAE_CMD_DST_SHIFT;
397 opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_DST_PF_ID_MASK) <<
398 DMAE_CMD_DST_PF_ID_SHIFT);
400 /* Whether to write a completion word to the completion destination:
401 * 0-Do not write a completion word
402 * 1-Write the completion word
404 opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT);
405 opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
406 DMAE_CMD_SRC_ADDR_RESET_SHIFT);
408 if (p_params->flags & QED_DMAE_FLAG_COMPLETION_DST)
409 opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT);
411 opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT);
413 opcode |= ((p_hwfn->port_id) << DMAE_CMD_PORT_ID_SHIFT);
415 /* reset source address in next go */
416 opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
417 DMAE_CMD_SRC_ADDR_RESET_SHIFT);
419 /* reset dest address in next go */
420 opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK <<
421 DMAE_CMD_DST_ADDR_RESET_SHIFT);
423 /* SRC/DST VFID: all 1's - pf, otherwise VF id */
424 if (p_params->flags & QED_DMAE_FLAG_VF_SRC) {
425 opcode |= 1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT;
426 opcode_b |= p_params->src_vfid << DMAE_CMD_SRC_VF_ID_SHIFT;
427 } else {
428 opcode_b |= DMAE_CMD_SRC_VF_ID_MASK <<
429 DMAE_CMD_SRC_VF_ID_SHIFT;
432 if (p_params->flags & QED_DMAE_FLAG_VF_DST) {
433 opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT;
434 opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT;
435 } else {
436 opcode_b |= DMAE_CMD_DST_VF_ID_MASK << DMAE_CMD_DST_VF_ID_SHIFT;
439 p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
440 p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b);
443 u32 qed_dmae_idx_to_go_cmd(u8 idx)
445 /* All the DMAE 'go' registers form an array in internal memory */
446 return DMAE_REG_GO_C0 + (idx << 2);
449 static int qed_dmae_post_command(struct qed_hwfn *p_hwfn,
450 struct qed_ptt *p_ptt)
452 struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd;
453 u8 idx_cmd = p_hwfn->dmae_info.channel, i;
454 int qed_status = 0;
456 /* verify address is not NULL */
457 if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) ||
458 ((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) {
459 DP_NOTICE(p_hwfn,
460 "source or destination address 0 idx_cmd=%d\n"
461 "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
462 idx_cmd,
463 le32_to_cpu(p_command->opcode),
464 le16_to_cpu(p_command->opcode_b),
465 le16_to_cpu(p_command->length_dw),
466 le32_to_cpu(p_command->src_addr_hi),
467 le32_to_cpu(p_command->src_addr_lo),
468 le32_to_cpu(p_command->dst_addr_hi),
469 le32_to_cpu(p_command->dst_addr_lo));
471 return -EINVAL;
474 DP_VERBOSE(p_hwfn,
475 NETIF_MSG_HW,
476 "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
477 idx_cmd,
478 le32_to_cpu(p_command->opcode),
479 le16_to_cpu(p_command->opcode_b),
480 le16_to_cpu(p_command->length_dw),
481 le32_to_cpu(p_command->src_addr_hi),
482 le32_to_cpu(p_command->src_addr_lo),
483 le32_to_cpu(p_command->dst_addr_hi),
484 le32_to_cpu(p_command->dst_addr_lo));
486 /* Copy the command to DMAE - need to do it before every call
487 * for source/dest address no reset.
488 * The first 9 DWs are the command registers, the 10 DW is the
489 * GO register, and the rest are result registers
490 * (which are read only by the client).
492 for (i = 0; i < DMAE_CMD_SIZE; i++) {
493 u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
494 *(((u32 *)p_command) + i) : 0;
496 qed_wr(p_hwfn, p_ptt,
497 DMAE_REG_CMD_MEM +
498 (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
499 (i * sizeof(u32)), data);
502 qed_wr(p_hwfn, p_ptt, qed_dmae_idx_to_go_cmd(idx_cmd), DMAE_GO_VALUE);
504 return qed_status;
507 int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
509 dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
510 struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
511 u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
512 u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
514 *p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
515 sizeof(u32), p_addr, GFP_KERNEL);
516 if (!*p_comp)
517 goto err;
519 p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
520 *p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
521 sizeof(struct dmae_cmd),
522 p_addr, GFP_KERNEL);
523 if (!*p_cmd)
524 goto err;
526 p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
527 *p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
528 sizeof(u32) * DMAE_MAX_RW_SIZE,
529 p_addr, GFP_KERNEL);
530 if (!*p_buff)
531 goto err;
533 p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
535 return 0;
536 err:
537 qed_dmae_info_free(p_hwfn);
538 return -ENOMEM;
541 void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
543 dma_addr_t p_phys;
545 /* Just make sure no one is in the middle */
546 mutex_lock(&p_hwfn->dmae_info.mutex);
548 if (p_hwfn->dmae_info.p_completion_word) {
549 p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
550 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
551 sizeof(u32),
552 p_hwfn->dmae_info.p_completion_word, p_phys);
553 p_hwfn->dmae_info.p_completion_word = NULL;
556 if (p_hwfn->dmae_info.p_dmae_cmd) {
557 p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
558 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
559 sizeof(struct dmae_cmd),
560 p_hwfn->dmae_info.p_dmae_cmd, p_phys);
561 p_hwfn->dmae_info.p_dmae_cmd = NULL;
564 if (p_hwfn->dmae_info.p_intermediate_buffer) {
565 p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
566 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
567 sizeof(u32) * DMAE_MAX_RW_SIZE,
568 p_hwfn->dmae_info.p_intermediate_buffer,
569 p_phys);
570 p_hwfn->dmae_info.p_intermediate_buffer = NULL;
573 mutex_unlock(&p_hwfn->dmae_info.mutex);
576 static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
578 u32 wait_cnt_limit = 10000, wait_cnt = 0;
579 int qed_status = 0;
581 barrier();
582 while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
583 udelay(DMAE_MIN_WAIT_TIME);
584 if (++wait_cnt > wait_cnt_limit) {
585 DP_NOTICE(p_hwfn->cdev,
586 "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
587 *p_hwfn->dmae_info.p_completion_word,
588 DMAE_COMPLETION_VAL);
589 qed_status = -EBUSY;
590 break;
593 /* to sync the completion_word since we are not
594 * using the volatile keyword for p_completion_word
596 barrier();
599 if (qed_status == 0)
600 *p_hwfn->dmae_info.p_completion_word = 0;
602 return qed_status;
605 static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
606 struct qed_ptt *p_ptt,
607 u64 src_addr,
608 u64 dst_addr,
609 u8 src_type,
610 u8 dst_type,
611 u32 length_dw)
613 dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
614 struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
615 int qed_status = 0;
617 switch (src_type) {
618 case QED_DMAE_ADDRESS_GRC:
619 case QED_DMAE_ADDRESS_HOST_PHYS:
620 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
621 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
622 break;
623 /* for virtual source addresses we use the intermediate buffer. */
624 case QED_DMAE_ADDRESS_HOST_VIRT:
625 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
626 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
627 memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
628 (void *)(uintptr_t)src_addr,
629 length_dw * sizeof(u32));
630 break;
631 default:
632 return -EINVAL;
635 switch (dst_type) {
636 case QED_DMAE_ADDRESS_GRC:
637 case QED_DMAE_ADDRESS_HOST_PHYS:
638 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
639 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
640 break;
641 /* for virtual source addresses we use the intermediate buffer. */
642 case QED_DMAE_ADDRESS_HOST_VIRT:
643 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
644 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
645 break;
646 default:
647 return -EINVAL;
650 cmd->length_dw = cpu_to_le16((u16)length_dw);
652 qed_dmae_post_command(p_hwfn, p_ptt);
654 qed_status = qed_dmae_operation_wait(p_hwfn);
656 if (qed_status) {
657 DP_NOTICE(p_hwfn,
658 "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
659 src_addr, dst_addr, length_dw);
660 return qed_status;
663 if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
664 memcpy((void *)(uintptr_t)(dst_addr),
665 &p_hwfn->dmae_info.p_intermediate_buffer[0],
666 length_dw * sizeof(u32));
668 return 0;
671 static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
672 struct qed_ptt *p_ptt,
673 u64 src_addr, u64 dst_addr,
674 u8 src_type, u8 dst_type,
675 u32 size_in_dwords,
676 struct qed_dmae_params *p_params)
678 dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
679 u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
680 struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
681 u64 src_addr_split = 0, dst_addr_split = 0;
682 u16 length_limit = DMAE_MAX_RW_SIZE;
683 int qed_status = 0;
684 u32 offset = 0;
686 qed_dmae_opcode(p_hwfn,
687 (src_type == QED_DMAE_ADDRESS_GRC),
688 (dst_type == QED_DMAE_ADDRESS_GRC),
689 p_params);
691 cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
692 cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
693 cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);
695 /* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
696 cnt_split = size_in_dwords / length_limit;
697 length_mod = size_in_dwords % length_limit;
699 src_addr_split = src_addr;
700 dst_addr_split = dst_addr;
702 for (i = 0; i <= cnt_split; i++) {
703 offset = length_limit * i;
705 if (!(p_params->flags & QED_DMAE_FLAG_RW_REPL_SRC)) {
706 if (src_type == QED_DMAE_ADDRESS_GRC)
707 src_addr_split = src_addr + offset;
708 else
709 src_addr_split = src_addr + (offset * 4);
712 if (dst_type == QED_DMAE_ADDRESS_GRC)
713 dst_addr_split = dst_addr + offset;
714 else
715 dst_addr_split = dst_addr + (offset * 4);
717 length_cur = (cnt_split == i) ? length_mod : length_limit;
719 /* might be zero on last iteration */
720 if (!length_cur)
721 continue;
723 qed_status = qed_dmae_execute_sub_operation(p_hwfn,
724 p_ptt,
725 src_addr_split,
726 dst_addr_split,
727 src_type,
728 dst_type,
729 length_cur);
730 if (qed_status) {
731 DP_NOTICE(p_hwfn,
732 "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
733 qed_status, src_addr, dst_addr, length_cur);
734 break;
738 return qed_status;
741 int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
742 struct qed_ptt *p_ptt,
743 u64 source_addr, u32 grc_addr, u32 size_in_dwords, u32 flags)
745 u32 grc_addr_in_dw = grc_addr / sizeof(u32);
746 struct qed_dmae_params params;
747 int rc;
749 memset(&params, 0, sizeof(struct qed_dmae_params));
750 params.flags = flags;
752 mutex_lock(&p_hwfn->dmae_info.mutex);
754 rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
755 grc_addr_in_dw,
756 QED_DMAE_ADDRESS_HOST_VIRT,
757 QED_DMAE_ADDRESS_GRC,
758 size_in_dwords, &params);
760 mutex_unlock(&p_hwfn->dmae_info.mutex);
762 return rc;
765 int qed_dmae_grc2host(struct qed_hwfn *p_hwfn,
766 struct qed_ptt *p_ptt,
767 u32 grc_addr,
768 dma_addr_t dest_addr, u32 size_in_dwords, u32 flags)
770 u32 grc_addr_in_dw = grc_addr / sizeof(u32);
771 struct qed_dmae_params params;
772 int rc;
774 memset(&params, 0, sizeof(struct qed_dmae_params));
775 params.flags = flags;
777 mutex_lock(&p_hwfn->dmae_info.mutex);
779 rc = qed_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
780 dest_addr, QED_DMAE_ADDRESS_GRC,
781 QED_DMAE_ADDRESS_HOST_VIRT,
782 size_in_dwords, &params);
784 mutex_unlock(&p_hwfn->dmae_info.mutex);
786 return rc;
789 int qed_dmae_host2host(struct qed_hwfn *p_hwfn,
790 struct qed_ptt *p_ptt,
791 dma_addr_t source_addr,
792 dma_addr_t dest_addr,
793 u32 size_in_dwords, struct qed_dmae_params *p_params)
795 int rc;
797 mutex_lock(&(p_hwfn->dmae_info.mutex));
799 rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
800 dest_addr,
801 QED_DMAE_ADDRESS_HOST_PHYS,
802 QED_DMAE_ADDRESS_HOST_PHYS,
803 size_in_dwords, p_params);
805 mutex_unlock(&(p_hwfn->dmae_info.mutex));
807 return rc;
810 int qed_dmae_sanity(struct qed_hwfn *p_hwfn,
811 struct qed_ptt *p_ptt, const char *phase)
813 u32 size = PAGE_SIZE / 2, val;
814 struct qed_dmae_params params;
815 int rc = 0;
816 dma_addr_t p_phys;
817 void *p_virt;
818 u32 *p_tmp;
820 p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
821 2 * size, &p_phys, GFP_KERNEL);
822 if (!p_virt) {
823 DP_NOTICE(p_hwfn,
824 "DMAE sanity [%s]: failed to allocate memory\n",
825 phase);
826 return -ENOMEM;
829 /* Fill the bottom half of the allocated memory with a known pattern */
830 for (p_tmp = (u32 *)p_virt;
831 p_tmp < (u32 *)((u8 *)p_virt + size); p_tmp++) {
832 /* Save the address itself as the value */
833 val = (u32)(uintptr_t)p_tmp;
834 *p_tmp = val;
837 /* Zero the top half of the allocated memory */
838 memset((u8 *)p_virt + size, 0, size);
840 DP_VERBOSE(p_hwfn,
841 QED_MSG_SP,
842 "DMAE sanity [%s]: src_addr={phys 0x%llx, virt %p}, dst_addr={phys 0x%llx, virt %p}, size 0x%x\n",
843 phase,
844 (u64)p_phys,
845 p_virt, (u64)(p_phys + size), (u8 *)p_virt + size, size);
847 memset(&params, 0, sizeof(params));
848 rc = qed_dmae_host2host(p_hwfn, p_ptt, p_phys, p_phys + size,
849 size / 4 /* size_in_dwords */, &params);
850 if (rc) {
851 DP_NOTICE(p_hwfn,
852 "DMAE sanity [%s]: qed_dmae_host2host() failed. rc = %d.\n",
853 phase, rc);
854 goto out;
857 /* Verify that the top half of the allocated memory has the pattern */
858 for (p_tmp = (u32 *)((u8 *)p_virt + size);
859 p_tmp < (u32 *)((u8 *)p_virt + (2 * size)); p_tmp++) {
860 /* The corresponding address in the bottom half */
861 val = (u32)(uintptr_t)p_tmp - size;
863 if (*p_tmp != val) {
864 DP_NOTICE(p_hwfn,
865 "DMAE sanity [%s]: addr={phys 0x%llx, virt %p}, read_val 0x%08x, expected_val 0x%08x\n",
866 phase,
867 (u64)p_phys + ((u8 *)p_tmp - (u8 *)p_virt),
868 p_tmp, *p_tmp, val);
869 rc = -EINVAL;
870 goto out;
874 out:
875 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 2 * size, p_virt, p_phys);
876 return rc;