4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
41 #include "delegation.h"
48 /* #define NFS_DEBUG_VERBOSE 1 */
50 static int nfs_opendir(struct inode
*, struct file
*);
51 static int nfs_closedir(struct inode
*, struct file
*);
52 static int nfs_readdir(struct file
*, struct dir_context
*);
53 static int nfs_fsync_dir(struct file
*, loff_t
, loff_t
, int);
54 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
55 static void nfs_readdir_clear_array(struct page
*);
57 const struct file_operations nfs_dir_operations
= {
58 .llseek
= nfs_llseek_dir
,
59 .read
= generic_read_dir
,
60 .iterate
= nfs_readdir
,
62 .release
= nfs_closedir
,
63 .fsync
= nfs_fsync_dir
,
66 const struct address_space_operations nfs_dir_aops
= {
67 .freepage
= nfs_readdir_clear_array
,
70 static struct nfs_open_dir_context
*alloc_nfs_open_dir_context(struct inode
*dir
, struct rpc_cred
*cred
)
72 struct nfs_inode
*nfsi
= NFS_I(dir
);
73 struct nfs_open_dir_context
*ctx
;
74 ctx
= kmalloc(sizeof(*ctx
), GFP_KERNEL
);
77 ctx
->attr_gencount
= nfsi
->attr_gencount
;
80 ctx
->cred
= get_rpccred(cred
);
81 spin_lock(&dir
->i_lock
);
82 list_add(&ctx
->list
, &nfsi
->open_files
);
83 spin_unlock(&dir
->i_lock
);
86 return ERR_PTR(-ENOMEM
);
89 static void put_nfs_open_dir_context(struct inode
*dir
, struct nfs_open_dir_context
*ctx
)
91 spin_lock(&dir
->i_lock
);
93 spin_unlock(&dir
->i_lock
);
94 put_rpccred(ctx
->cred
);
102 nfs_opendir(struct inode
*inode
, struct file
*filp
)
105 struct nfs_open_dir_context
*ctx
;
106 struct rpc_cred
*cred
;
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp
);
110 nfs_inc_stats(inode
, NFSIOS_VFSOPEN
);
112 cred
= rpc_lookup_cred();
114 return PTR_ERR(cred
);
115 ctx
= alloc_nfs_open_dir_context(inode
, cred
);
120 filp
->private_data
= ctx
;
127 nfs_closedir(struct inode
*inode
, struct file
*filp
)
129 put_nfs_open_dir_context(file_inode(filp
), filp
->private_data
);
133 struct nfs_cache_array_entry
{
137 unsigned char d_type
;
140 struct nfs_cache_array
{
144 struct nfs_cache_array_entry array
[0];
147 typedef int (*decode_dirent_t
)(struct xdr_stream
*, struct nfs_entry
*, bool);
151 struct dir_context
*ctx
;
152 unsigned long page_index
;
155 loff_t current_index
;
156 decode_dirent_t decode
;
158 unsigned long timestamp
;
159 unsigned long gencount
;
160 unsigned int cache_entry_index
;
163 } nfs_readdir_descriptor_t
;
166 * we are freeing strings created by nfs_add_to_readdir_array()
169 void nfs_readdir_clear_array(struct page
*page
)
171 struct nfs_cache_array
*array
;
174 array
= kmap_atomic(page
);
175 for (i
= 0; i
< array
->size
; i
++)
176 kfree(array
->array
[i
].string
.name
);
177 kunmap_atomic(array
);
181 * the caller is responsible for freeing qstr.name
182 * when called by nfs_readdir_add_to_array, the strings will be freed in
183 * nfs_clear_readdir_array()
186 int nfs_readdir_make_qstr(struct qstr
*string
, const char *name
, unsigned int len
)
189 string
->name
= kmemdup(name
, len
, GFP_KERNEL
);
190 if (string
->name
== NULL
)
193 * Avoid a kmemleak false positive. The pointer to the name is stored
194 * in a page cache page which kmemleak does not scan.
196 kmemleak_not_leak(string
->name
);
197 string
->hash
= full_name_hash(NULL
, name
, len
);
202 int nfs_readdir_add_to_array(struct nfs_entry
*entry
, struct page
*page
)
204 struct nfs_cache_array
*array
= kmap(page
);
205 struct nfs_cache_array_entry
*cache_entry
;
208 cache_entry
= &array
->array
[array
->size
];
210 /* Check that this entry lies within the page bounds */
212 if ((char *)&cache_entry
[1] - (char *)page_address(page
) > PAGE_SIZE
)
215 cache_entry
->cookie
= entry
->prev_cookie
;
216 cache_entry
->ino
= entry
->ino
;
217 cache_entry
->d_type
= entry
->d_type
;
218 ret
= nfs_readdir_make_qstr(&cache_entry
->string
, entry
->name
, entry
->len
);
221 array
->last_cookie
= entry
->cookie
;
224 array
->eof_index
= array
->size
;
231 int nfs_readdir_search_for_pos(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
233 loff_t diff
= desc
->ctx
->pos
- desc
->current_index
;
238 if (diff
>= array
->size
) {
239 if (array
->eof_index
>= 0)
244 index
= (unsigned int)diff
;
245 *desc
->dir_cookie
= array
->array
[index
].cookie
;
246 desc
->cache_entry_index
= index
;
254 nfs_readdir_inode_mapping_valid(struct nfs_inode
*nfsi
)
256 if (nfsi
->cache_validity
& (NFS_INO_INVALID_ATTR
|NFS_INO_INVALID_DATA
))
259 return !test_bit(NFS_INO_INVALIDATING
, &nfsi
->flags
);
263 int nfs_readdir_search_for_cookie(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
267 int status
= -EAGAIN
;
269 for (i
= 0; i
< array
->size
; i
++) {
270 if (array
->array
[i
].cookie
== *desc
->dir_cookie
) {
271 struct nfs_inode
*nfsi
= NFS_I(file_inode(desc
->file
));
272 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
274 new_pos
= desc
->current_index
+ i
;
275 if (ctx
->attr_gencount
!= nfsi
->attr_gencount
||
276 !nfs_readdir_inode_mapping_valid(nfsi
)) {
278 ctx
->attr_gencount
= nfsi
->attr_gencount
;
279 } else if (new_pos
< desc
->ctx
->pos
) {
281 && ctx
->dup_cookie
== *desc
->dir_cookie
) {
282 if (printk_ratelimit()) {
283 pr_notice("NFS: directory %pD2 contains a readdir loop."
284 "Please contact your server vendor. "
285 "The file: %.*s has duplicate cookie %llu\n",
286 desc
->file
, array
->array
[i
].string
.len
,
287 array
->array
[i
].string
.name
, *desc
->dir_cookie
);
292 ctx
->dup_cookie
= *desc
->dir_cookie
;
295 desc
->ctx
->pos
= new_pos
;
296 desc
->cache_entry_index
= i
;
300 if (array
->eof_index
>= 0) {
301 status
= -EBADCOOKIE
;
302 if (*desc
->dir_cookie
== array
->last_cookie
)
310 int nfs_readdir_search_array(nfs_readdir_descriptor_t
*desc
)
312 struct nfs_cache_array
*array
;
315 array
= kmap(desc
->page
);
317 if (*desc
->dir_cookie
== 0)
318 status
= nfs_readdir_search_for_pos(array
, desc
);
320 status
= nfs_readdir_search_for_cookie(array
, desc
);
322 if (status
== -EAGAIN
) {
323 desc
->last_cookie
= array
->last_cookie
;
324 desc
->current_index
+= array
->size
;
331 /* Fill a page with xdr information before transferring to the cache page */
333 int nfs_readdir_xdr_filler(struct page
**pages
, nfs_readdir_descriptor_t
*desc
,
334 struct nfs_entry
*entry
, struct file
*file
, struct inode
*inode
)
336 struct nfs_open_dir_context
*ctx
= file
->private_data
;
337 struct rpc_cred
*cred
= ctx
->cred
;
338 unsigned long timestamp
, gencount
;
343 gencount
= nfs_inc_attr_generation_counter();
344 error
= NFS_PROTO(inode
)->readdir(file_dentry(file
), cred
, entry
->cookie
, pages
,
345 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
347 /* We requested READDIRPLUS, but the server doesn't grok it */
348 if (error
== -ENOTSUPP
&& desc
->plus
) {
349 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
350 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
356 desc
->timestamp
= timestamp
;
357 desc
->gencount
= gencount
;
362 static int xdr_decode(nfs_readdir_descriptor_t
*desc
,
363 struct nfs_entry
*entry
, struct xdr_stream
*xdr
)
367 error
= desc
->decode(xdr
, entry
, desc
->plus
);
370 entry
->fattr
->time_start
= desc
->timestamp
;
371 entry
->fattr
->gencount
= desc
->gencount
;
375 /* Match file and dirent using either filehandle or fileid
376 * Note: caller is responsible for checking the fsid
379 int nfs_same_file(struct dentry
*dentry
, struct nfs_entry
*entry
)
382 struct nfs_inode
*nfsi
;
384 if (d_really_is_negative(dentry
))
387 inode
= d_inode(dentry
);
388 if (is_bad_inode(inode
) || NFS_STALE(inode
))
392 if (entry
->fattr
->fileid
!= nfsi
->fileid
)
394 if (entry
->fh
->size
&& nfs_compare_fh(entry
->fh
, &nfsi
->fh
) != 0)
400 bool nfs_use_readdirplus(struct inode
*dir
, struct dir_context
*ctx
)
402 if (!nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
))
404 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(dir
)->flags
))
412 * This function is called by the lookup and getattr code to request the
413 * use of readdirplus to accelerate any future lookups in the same
416 void nfs_advise_use_readdirplus(struct inode
*dir
)
418 struct nfs_inode
*nfsi
= NFS_I(dir
);
420 if (nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
) &&
421 !list_empty(&nfsi
->open_files
))
422 set_bit(NFS_INO_ADVISE_RDPLUS
, &nfsi
->flags
);
426 * This function is mainly for use by nfs_getattr().
428 * If this is an 'ls -l', we want to force use of readdirplus.
429 * Do this by checking if there is an active file descriptor
430 * and calling nfs_advise_use_readdirplus, then forcing a
433 void nfs_force_use_readdirplus(struct inode
*dir
)
435 struct nfs_inode
*nfsi
= NFS_I(dir
);
437 if (nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
) &&
438 !list_empty(&nfsi
->open_files
)) {
439 set_bit(NFS_INO_ADVISE_RDPLUS
, &nfsi
->flags
);
440 invalidate_mapping_pages(dir
->i_mapping
, 0, -1);
445 void nfs_prime_dcache(struct dentry
*parent
, struct nfs_entry
*entry
)
447 struct qstr filename
= QSTR_INIT(entry
->name
, entry
->len
);
448 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
449 struct dentry
*dentry
;
450 struct dentry
*alias
;
451 struct inode
*dir
= d_inode(parent
);
455 if (!(entry
->fattr
->valid
& NFS_ATTR_FATTR_FILEID
))
457 if (!(entry
->fattr
->valid
& NFS_ATTR_FATTR_FSID
))
459 if (filename
.len
== 0)
461 /* Validate that the name doesn't contain any illegal '\0' */
462 if (strnlen(filename
.name
, filename
.len
) != filename
.len
)
465 if (strnchr(filename
.name
, filename
.len
, '/'))
467 if (filename
.name
[0] == '.') {
468 if (filename
.len
== 1)
470 if (filename
.len
== 2 && filename
.name
[1] == '.')
473 filename
.hash
= full_name_hash(parent
, filename
.name
, filename
.len
);
475 dentry
= d_lookup(parent
, &filename
);
478 dentry
= d_alloc_parallel(parent
, &filename
, &wq
);
482 if (!d_in_lookup(dentry
)) {
483 /* Is there a mountpoint here? If so, just exit */
484 if (!nfs_fsid_equal(&NFS_SB(dentry
->d_sb
)->fsid
,
485 &entry
->fattr
->fsid
))
487 if (nfs_same_file(dentry
, entry
)) {
488 if (!entry
->fh
->size
)
490 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
491 status
= nfs_refresh_inode(d_inode(dentry
), entry
->fattr
);
493 nfs_setsecurity(d_inode(dentry
), entry
->fattr
, entry
->label
);
496 d_invalidate(dentry
);
502 if (!entry
->fh
->size
) {
503 d_lookup_done(dentry
);
507 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
, entry
->label
);
508 alias
= d_splice_alias(inode
, dentry
);
509 d_lookup_done(dentry
);
516 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
521 /* Perform conversion from xdr to cache array */
523 int nfs_readdir_page_filler(nfs_readdir_descriptor_t
*desc
, struct nfs_entry
*entry
,
524 struct page
**xdr_pages
, struct page
*page
, unsigned int buflen
)
526 struct xdr_stream stream
;
528 struct page
*scratch
;
529 struct nfs_cache_array
*array
;
530 unsigned int count
= 0;
533 scratch
= alloc_page(GFP_KERNEL
);
540 xdr_init_decode_pages(&stream
, &buf
, xdr_pages
, buflen
);
541 xdr_set_scratch_buffer(&stream
, page_address(scratch
), PAGE_SIZE
);
544 status
= xdr_decode(desc
, entry
, &stream
);
546 if (status
== -EAGAIN
)
554 nfs_prime_dcache(file_dentry(desc
->file
), entry
);
556 status
= nfs_readdir_add_to_array(entry
, page
);
559 } while (!entry
->eof
);
562 if (count
== 0 || (status
== -EBADCOOKIE
&& entry
->eof
!= 0)) {
564 array
->eof_index
= array
->size
;
574 void nfs_readdir_free_pages(struct page
**pages
, unsigned int npages
)
577 for (i
= 0; i
< npages
; i
++)
582 * nfs_readdir_large_page will allocate pages that must be freed with a call
583 * to nfs_readdir_free_pagearray
586 int nfs_readdir_alloc_pages(struct page
**pages
, unsigned int npages
)
590 for (i
= 0; i
< npages
; i
++) {
591 struct page
*page
= alloc_page(GFP_KERNEL
);
599 nfs_readdir_free_pages(pages
, i
);
604 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t
*desc
, struct page
*page
, struct inode
*inode
)
606 struct page
*pages
[NFS_MAX_READDIR_PAGES
];
607 struct nfs_entry entry
;
608 struct file
*file
= desc
->file
;
609 struct nfs_cache_array
*array
;
610 int status
= -ENOMEM
;
611 unsigned int array_size
= ARRAY_SIZE(pages
);
613 entry
.prev_cookie
= 0;
614 entry
.cookie
= desc
->last_cookie
;
616 entry
.fh
= nfs_alloc_fhandle();
617 entry
.fattr
= nfs_alloc_fattr();
618 entry
.server
= NFS_SERVER(inode
);
619 if (entry
.fh
== NULL
|| entry
.fattr
== NULL
)
622 entry
.label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
623 if (IS_ERR(entry
.label
)) {
624 status
= PTR_ERR(entry
.label
);
629 memset(array
, 0, sizeof(struct nfs_cache_array
));
630 array
->eof_index
= -1;
632 status
= nfs_readdir_alloc_pages(pages
, array_size
);
634 goto out_release_array
;
637 status
= nfs_readdir_xdr_filler(pages
, desc
, &entry
, file
, inode
);
642 status
= nfs_readdir_page_filler(desc
, &entry
, pages
, page
, pglen
);
644 if (status
== -ENOSPC
)
648 } while (array
->eof_index
< 0);
650 nfs_readdir_free_pages(pages
, array_size
);
653 nfs4_label_free(entry
.label
);
655 nfs_free_fattr(entry
.fattr
);
656 nfs_free_fhandle(entry
.fh
);
661 * Now we cache directories properly, by converting xdr information
662 * to an array that can be used for lookups later. This results in
663 * fewer cache pages, since we can store more information on each page.
664 * We only need to convert from xdr once so future lookups are much simpler
667 int nfs_readdir_filler(nfs_readdir_descriptor_t
*desc
, struct page
* page
)
669 struct inode
*inode
= file_inode(desc
->file
);
672 ret
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
675 SetPageUptodate(page
);
677 if (invalidate_inode_pages2_range(inode
->i_mapping
, page
->index
+ 1, -1) < 0) {
678 /* Should never happen */
679 nfs_zap_mapping(inode
, inode
->i_mapping
);
689 void cache_page_release(nfs_readdir_descriptor_t
*desc
)
691 if (!desc
->page
->mapping
)
692 nfs_readdir_clear_array(desc
->page
);
693 put_page(desc
->page
);
698 struct page
*get_cache_page(nfs_readdir_descriptor_t
*desc
)
700 return read_cache_page(desc
->file
->f_mapping
,
701 desc
->page_index
, (filler_t
*)nfs_readdir_filler
, desc
);
705 * Returns 0 if desc->dir_cookie was found on page desc->page_index
708 int find_cache_page(nfs_readdir_descriptor_t
*desc
)
712 desc
->page
= get_cache_page(desc
);
713 if (IS_ERR(desc
->page
))
714 return PTR_ERR(desc
->page
);
716 res
= nfs_readdir_search_array(desc
);
718 cache_page_release(desc
);
722 /* Search for desc->dir_cookie from the beginning of the page cache */
724 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
728 if (desc
->page_index
== 0) {
729 desc
->current_index
= 0;
730 desc
->last_cookie
= 0;
733 res
= find_cache_page(desc
);
734 } while (res
== -EAGAIN
);
739 * Once we've found the start of the dirent within a page: fill 'er up...
742 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
)
744 struct file
*file
= desc
->file
;
747 struct nfs_cache_array
*array
= NULL
;
748 struct nfs_open_dir_context
*ctx
= file
->private_data
;
750 array
= kmap(desc
->page
);
751 for (i
= desc
->cache_entry_index
; i
< array
->size
; i
++) {
752 struct nfs_cache_array_entry
*ent
;
754 ent
= &array
->array
[i
];
755 if (!dir_emit(desc
->ctx
, ent
->string
.name
, ent
->string
.len
,
756 nfs_compat_user_ino64(ent
->ino
), ent
->d_type
)) {
761 if (i
< (array
->size
-1))
762 *desc
->dir_cookie
= array
->array
[i
+1].cookie
;
764 *desc
->dir_cookie
= array
->last_cookie
;
768 if (array
->eof_index
>= 0)
772 cache_page_release(desc
);
773 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
774 (unsigned long long)*desc
->dir_cookie
, res
);
779 * If we cannot find a cookie in our cache, we suspect that this is
780 * because it points to a deleted file, so we ask the server to return
781 * whatever it thinks is the next entry. We then feed this to filldir.
782 * If all goes well, we should then be able to find our way round the
783 * cache on the next call to readdir_search_pagecache();
785 * NOTE: we cannot add the anonymous page to the pagecache because
786 * the data it contains might not be page aligned. Besides,
787 * we should already have a complete representation of the
788 * directory in the page cache by the time we get here.
791 int uncached_readdir(nfs_readdir_descriptor_t
*desc
)
793 struct page
*page
= NULL
;
795 struct inode
*inode
= file_inode(desc
->file
);
796 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
798 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
799 (unsigned long long)*desc
->dir_cookie
);
801 page
= alloc_page(GFP_HIGHUSER
);
807 desc
->page_index
= 0;
808 desc
->last_cookie
= *desc
->dir_cookie
;
812 status
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
816 status
= nfs_do_filldir(desc
);
819 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
823 cache_page_release(desc
);
827 /* The file offset position represents the dirent entry number. A
828 last cookie cache takes care of the common case of reading the
831 static int nfs_readdir(struct file
*file
, struct dir_context
*ctx
)
833 struct dentry
*dentry
= file_dentry(file
);
834 struct inode
*inode
= d_inode(dentry
);
835 nfs_readdir_descriptor_t my_desc
,
837 struct nfs_open_dir_context
*dir_ctx
= file
->private_data
;
840 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
841 file
, (long long)ctx
->pos
);
842 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
845 * ctx->pos points to the dirent entry number.
846 * *desc->dir_cookie has the cookie for the next entry. We have
847 * to either find the entry with the appropriate number or
848 * revalidate the cookie.
850 memset(desc
, 0, sizeof(*desc
));
854 desc
->dir_cookie
= &dir_ctx
->dir_cookie
;
855 desc
->decode
= NFS_PROTO(inode
)->decode_dirent
;
856 desc
->plus
= nfs_use_readdirplus(inode
, ctx
);
858 if (ctx
->pos
== 0 || nfs_attribute_cache_expired(inode
))
859 res
= nfs_revalidate_mapping(inode
, file
->f_mapping
);
864 res
= readdir_search_pagecache(desc
);
866 if (res
== -EBADCOOKIE
) {
868 /* This means either end of directory */
869 if (*desc
->dir_cookie
&& !desc
->eof
) {
870 /* Or that the server has 'lost' a cookie */
871 res
= uncached_readdir(desc
);
877 if (res
== -ETOOSMALL
&& desc
->plus
) {
878 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
879 nfs_zap_caches(inode
);
880 desc
->page_index
= 0;
888 res
= nfs_do_filldir(desc
);
891 } while (!desc
->eof
);
895 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file
, res
);
899 static loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int whence
)
901 struct inode
*inode
= file_inode(filp
);
902 struct nfs_open_dir_context
*dir_ctx
= filp
->private_data
;
904 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
905 filp
, offset
, whence
);
910 offset
+= filp
->f_pos
;
918 if (offset
!= filp
->f_pos
) {
919 filp
->f_pos
= offset
;
920 dir_ctx
->dir_cookie
= 0;
929 * All directory operations under NFS are synchronous, so fsync()
930 * is a dummy operation.
932 static int nfs_fsync_dir(struct file
*filp
, loff_t start
, loff_t end
,
935 struct inode
*inode
= file_inode(filp
);
937 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp
, datasync
);
940 nfs_inc_stats(inode
, NFSIOS_VFSFSYNC
);
946 * nfs_force_lookup_revalidate - Mark the directory as having changed
947 * @dir - pointer to directory inode
949 * This forces the revalidation code in nfs_lookup_revalidate() to do a
950 * full lookup on all child dentries of 'dir' whenever a change occurs
951 * on the server that might have invalidated our dcache.
953 * The caller should be holding dir->i_lock
955 void nfs_force_lookup_revalidate(struct inode
*dir
)
957 NFS_I(dir
)->cache_change_attribute
++;
959 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate
);
962 * A check for whether or not the parent directory has changed.
963 * In the case it has, we assume that the dentries are untrustworthy
964 * and may need to be looked up again.
965 * If rcu_walk prevents us from performing a full check, return 0.
967 static int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
,
972 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONE
)
974 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
976 /* Revalidate nfsi->cache_change_attribute before we declare a match */
977 if (nfs_mapping_need_revalidate_inode(dir
)) {
980 if (__nfs_revalidate_inode(NFS_SERVER(dir
), dir
) < 0)
983 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
989 * Use intent information to check whether or not we're going to do
990 * an O_EXCL create using this path component.
992 static int nfs_is_exclusive_create(struct inode
*dir
, unsigned int flags
)
994 if (NFS_PROTO(dir
)->version
== 2)
996 return flags
& LOOKUP_EXCL
;
1000 * Inode and filehandle revalidation for lookups.
1002 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1003 * or if the intent information indicates that we're about to open this
1004 * particular file and the "nocto" mount flag is not set.
1008 int nfs_lookup_verify_inode(struct inode
*inode
, unsigned int flags
)
1010 struct nfs_server
*server
= NFS_SERVER(inode
);
1013 if (IS_AUTOMOUNT(inode
))
1015 /* VFS wants an on-the-wire revalidation */
1016 if (flags
& LOOKUP_REVAL
)
1018 /* This is an open(2) */
1019 if ((flags
& LOOKUP_OPEN
) && !(server
->flags
& NFS_MOUNT_NOCTO
) &&
1020 (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
)))
1023 return (inode
->i_nlink
== 0) ? -ENOENT
: 0;
1025 if (flags
& LOOKUP_RCU
)
1027 ret
= __nfs_revalidate_inode(server
, inode
);
1034 * We judge how long we want to trust negative
1035 * dentries by looking at the parent inode mtime.
1037 * If parent mtime has changed, we revalidate, else we wait for a
1038 * period corresponding to the parent's attribute cache timeout value.
1040 * If LOOKUP_RCU prevents us from performing a full check, return 1
1041 * suggesting a reval is needed.
1044 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
1047 /* Don't revalidate a negative dentry if we're creating a new file */
1048 if (flags
& LOOKUP_CREATE
)
1050 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONEG
)
1052 return !nfs_check_verifier(dir
, dentry
, flags
& LOOKUP_RCU
);
1056 * This is called every time the dcache has a lookup hit,
1057 * and we should check whether we can really trust that
1060 * NOTE! The hit can be a negative hit too, don't assume
1063 * If the parent directory is seen to have changed, we throw out the
1064 * cached dentry and do a new lookup.
1066 static int nfs_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1069 struct inode
*inode
;
1070 struct dentry
*parent
;
1071 struct nfs_fh
*fhandle
= NULL
;
1072 struct nfs_fattr
*fattr
= NULL
;
1073 struct nfs4_label
*label
= NULL
;
1076 if (flags
& LOOKUP_RCU
) {
1077 parent
= READ_ONCE(dentry
->d_parent
);
1078 dir
= d_inode_rcu(parent
);
1082 parent
= dget_parent(dentry
);
1083 dir
= d_inode(parent
);
1085 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
1086 inode
= d_inode(dentry
);
1089 if (nfs_neg_need_reval(dir
, dentry
, flags
)) {
1090 if (flags
& LOOKUP_RCU
)
1097 if (is_bad_inode(inode
)) {
1098 if (flags
& LOOKUP_RCU
)
1100 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1105 if (NFS_PROTO(dir
)->have_delegation(inode
, FMODE_READ
))
1106 goto out_set_verifier
;
1108 /* Force a full look up iff the parent directory has changed */
1109 if (!nfs_is_exclusive_create(dir
, flags
) &&
1110 nfs_check_verifier(dir
, dentry
, flags
& LOOKUP_RCU
)) {
1111 error
= nfs_lookup_verify_inode(inode
, flags
);
1113 if (flags
& LOOKUP_RCU
)
1115 if (error
== -ESTALE
)
1116 goto out_zap_parent
;
1119 nfs_advise_use_readdirplus(dir
);
1123 if (flags
& LOOKUP_RCU
)
1126 if (NFS_STALE(inode
))
1130 fhandle
= nfs_alloc_fhandle();
1131 fattr
= nfs_alloc_fattr();
1132 if (fhandle
== NULL
|| fattr
== NULL
)
1135 label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
1139 trace_nfs_lookup_revalidate_enter(dir
, dentry
, flags
);
1140 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, label
);
1141 trace_nfs_lookup_revalidate_exit(dir
, dentry
, flags
, error
);
1142 if (error
== -ESTALE
|| error
== -ENOENT
)
1146 if (nfs_compare_fh(NFS_FH(inode
), fhandle
))
1148 if ((error
= nfs_refresh_inode(inode
, fattr
)) != 0)
1151 nfs_setsecurity(inode
, fattr
, label
);
1153 nfs_free_fattr(fattr
);
1154 nfs_free_fhandle(fhandle
);
1155 nfs4_label_free(label
);
1157 /* set a readdirplus hint that we had a cache miss */
1158 nfs_force_use_readdirplus(dir
);
1161 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1163 if (flags
& LOOKUP_RCU
) {
1164 if (parent
!= READ_ONCE(dentry
->d_parent
))
1168 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is valid\n",
1172 nfs_zap_caches(dir
);
1174 WARN_ON(flags
& LOOKUP_RCU
);
1175 nfs_free_fattr(fattr
);
1176 nfs_free_fhandle(fhandle
);
1177 nfs4_label_free(label
);
1178 nfs_mark_for_revalidate(dir
);
1179 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1180 /* Purge readdir caches. */
1181 nfs_zap_caches(inode
);
1183 * We can't d_drop the root of a disconnected tree:
1184 * its d_hash is on the s_anon list and d_drop() would hide
1185 * it from shrink_dcache_for_unmount(), leading to busy
1186 * inodes on unmount and further oopses.
1188 if (IS_ROOT(dentry
))
1192 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is invalid\n",
1196 WARN_ON(flags
& LOOKUP_RCU
);
1197 nfs_free_fattr(fattr
);
1198 nfs_free_fhandle(fhandle
);
1199 nfs4_label_free(label
);
1201 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) lookup returned error %d\n",
1202 __func__
, dentry
, error
);
1207 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1208 * when we don't really care about the dentry name. This is called when a
1209 * pathwalk ends on a dentry that was not found via a normal lookup in the
1210 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1212 * In this situation, we just want to verify that the inode itself is OK
1213 * since the dentry might have changed on the server.
1215 static int nfs_weak_revalidate(struct dentry
*dentry
, unsigned int flags
)
1217 struct inode
*inode
= d_inode(dentry
);
1221 * I believe we can only get a negative dentry here in the case of a
1222 * procfs-style symlink. Just assume it's correct for now, but we may
1223 * eventually need to do something more here.
1226 dfprintk(LOOKUPCACHE
, "%s: %pd2 has negative inode\n",
1231 if (is_bad_inode(inode
)) {
1232 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1237 error
= nfs_lookup_verify_inode(inode
, flags
);
1238 dfprintk(LOOKUPCACHE
, "NFS: %s: inode %lu is %s\n",
1239 __func__
, inode
->i_ino
, error
? "invalid" : "valid");
1244 * This is called from dput() when d_count is going to 0.
1246 static int nfs_dentry_delete(const struct dentry
*dentry
)
1248 dfprintk(VFS
, "NFS: dentry_delete(%pd2, %x)\n",
1249 dentry
, dentry
->d_flags
);
1251 /* Unhash any dentry with a stale inode */
1252 if (d_really_is_positive(dentry
) && NFS_STALE(d_inode(dentry
)))
1255 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1256 /* Unhash it, so that ->d_iput() would be called */
1259 if (!(dentry
->d_sb
->s_flags
& SB_ACTIVE
)) {
1260 /* Unhash it, so that ancestors of killed async unlink
1261 * files will be cleaned up during umount */
1268 /* Ensure that we revalidate inode->i_nlink */
1269 static void nfs_drop_nlink(struct inode
*inode
)
1271 spin_lock(&inode
->i_lock
);
1272 /* drop the inode if we're reasonably sure this is the last link */
1273 if (inode
->i_nlink
== 1)
1275 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_ATTR
;
1276 spin_unlock(&inode
->i_lock
);
1280 * Called when the dentry loses inode.
1281 * We use it to clean up silly-renamed files.
1283 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
1285 if (S_ISDIR(inode
->i_mode
))
1286 /* drop any readdir cache as it could easily be old */
1287 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_DATA
;
1289 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1290 nfs_complete_unlink(dentry
, inode
);
1291 nfs_drop_nlink(inode
);
1296 static void nfs_d_release(struct dentry
*dentry
)
1298 /* free cached devname value, if it survived that far */
1299 if (unlikely(dentry
->d_fsdata
)) {
1300 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1303 kfree(dentry
->d_fsdata
);
1307 const struct dentry_operations nfs_dentry_operations
= {
1308 .d_revalidate
= nfs_lookup_revalidate
,
1309 .d_weak_revalidate
= nfs_weak_revalidate
,
1310 .d_delete
= nfs_dentry_delete
,
1311 .d_iput
= nfs_dentry_iput
,
1312 .d_automount
= nfs_d_automount
,
1313 .d_release
= nfs_d_release
,
1315 EXPORT_SYMBOL_GPL(nfs_dentry_operations
);
1317 struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, unsigned int flags
)
1320 struct inode
*inode
= NULL
;
1321 struct nfs_fh
*fhandle
= NULL
;
1322 struct nfs_fattr
*fattr
= NULL
;
1323 struct nfs4_label
*label
= NULL
;
1326 dfprintk(VFS
, "NFS: lookup(%pd2)\n", dentry
);
1327 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
1329 if (unlikely(dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
))
1330 return ERR_PTR(-ENAMETOOLONG
);
1333 * If we're doing an exclusive create, optimize away the lookup
1334 * but don't hash the dentry.
1336 if (nfs_is_exclusive_create(dir
, flags
))
1339 res
= ERR_PTR(-ENOMEM
);
1340 fhandle
= nfs_alloc_fhandle();
1341 fattr
= nfs_alloc_fattr();
1342 if (fhandle
== NULL
|| fattr
== NULL
)
1345 label
= nfs4_label_alloc(NFS_SERVER(dir
), GFP_NOWAIT
);
1349 trace_nfs_lookup_enter(dir
, dentry
, flags
);
1350 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, label
);
1351 if (error
== -ENOENT
)
1354 res
= ERR_PTR(error
);
1357 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1358 res
= ERR_CAST(inode
);
1362 /* Notify readdir to use READDIRPLUS */
1363 nfs_force_use_readdirplus(dir
);
1366 res
= d_splice_alias(inode
, dentry
);
1372 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1374 trace_nfs_lookup_exit(dir
, dentry
, flags
, error
);
1375 nfs4_label_free(label
);
1377 nfs_free_fattr(fattr
);
1378 nfs_free_fhandle(fhandle
);
1381 EXPORT_SYMBOL_GPL(nfs_lookup
);
1383 #if IS_ENABLED(CONFIG_NFS_V4)
1384 static int nfs4_lookup_revalidate(struct dentry
*, unsigned int);
1386 const struct dentry_operations nfs4_dentry_operations
= {
1387 .d_revalidate
= nfs4_lookup_revalidate
,
1388 .d_weak_revalidate
= nfs_weak_revalidate
,
1389 .d_delete
= nfs_dentry_delete
,
1390 .d_iput
= nfs_dentry_iput
,
1391 .d_automount
= nfs_d_automount
,
1392 .d_release
= nfs_d_release
,
1394 EXPORT_SYMBOL_GPL(nfs4_dentry_operations
);
1396 static fmode_t
flags_to_mode(int flags
)
1398 fmode_t res
= (__force fmode_t
)flags
& FMODE_EXEC
;
1399 if ((flags
& O_ACCMODE
) != O_WRONLY
)
1401 if ((flags
& O_ACCMODE
) != O_RDONLY
)
1406 static struct nfs_open_context
*create_nfs_open_context(struct dentry
*dentry
, int open_flags
, struct file
*filp
)
1408 return alloc_nfs_open_context(dentry
, flags_to_mode(open_flags
), filp
);
1411 static int do_open(struct inode
*inode
, struct file
*filp
)
1413 nfs_fscache_open_file(inode
, filp
);
1417 static int nfs_finish_open(struct nfs_open_context
*ctx
,
1418 struct dentry
*dentry
,
1419 struct file
*file
, unsigned open_flags
,
1424 err
= finish_open(file
, dentry
, do_open
, opened
);
1427 if (S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
1428 nfs_file_set_open_context(file
, ctx
);
1435 int nfs_atomic_open(struct inode
*dir
, struct dentry
*dentry
,
1436 struct file
*file
, unsigned open_flags
,
1437 umode_t mode
, int *opened
)
1439 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
1440 struct nfs_open_context
*ctx
;
1442 struct iattr attr
= { .ia_valid
= ATTR_OPEN
};
1443 struct inode
*inode
;
1444 unsigned int lookup_flags
= 0;
1445 bool switched
= false;
1448 /* Expect a negative dentry */
1449 BUG_ON(d_inode(dentry
));
1451 dfprintk(VFS
, "NFS: atomic_open(%s/%lu), %pd\n",
1452 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1454 err
= nfs_check_flags(open_flags
);
1458 /* NFS only supports OPEN on regular files */
1459 if ((open_flags
& O_DIRECTORY
)) {
1460 if (!d_in_lookup(dentry
)) {
1462 * Hashed negative dentry with O_DIRECTORY: dentry was
1463 * revalidated and is fine, no need to perform lookup
1468 lookup_flags
= LOOKUP_OPEN
|LOOKUP_DIRECTORY
;
1472 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
1473 return -ENAMETOOLONG
;
1475 if (open_flags
& O_CREAT
) {
1476 struct nfs_server
*server
= NFS_SERVER(dir
);
1478 if (!(server
->attr_bitmask
[2] & FATTR4_WORD2_MODE_UMASK
))
1479 mode
&= ~current_umask();
1481 attr
.ia_valid
|= ATTR_MODE
;
1482 attr
.ia_mode
= mode
;
1484 if (open_flags
& O_TRUNC
) {
1485 attr
.ia_valid
|= ATTR_SIZE
;
1489 if (!(open_flags
& O_CREAT
) && !d_in_lookup(dentry
)) {
1492 dentry
= d_alloc_parallel(dentry
->d_parent
,
1493 &dentry
->d_name
, &wq
);
1495 return PTR_ERR(dentry
);
1496 if (unlikely(!d_in_lookup(dentry
)))
1497 return finish_no_open(file
, dentry
);
1500 ctx
= create_nfs_open_context(dentry
, open_flags
, file
);
1505 trace_nfs_atomic_open_enter(dir
, ctx
, open_flags
);
1506 inode
= NFS_PROTO(dir
)->open_context(dir
, ctx
, open_flags
, &attr
, opened
);
1507 if (IS_ERR(inode
)) {
1508 err
= PTR_ERR(inode
);
1509 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1510 put_nfs_open_context(ctx
);
1514 d_splice_alias(NULL
, dentry
);
1515 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1521 if (!(open_flags
& O_NOFOLLOW
))
1531 err
= nfs_finish_open(ctx
, ctx
->dentry
, file
, open_flags
, opened
);
1532 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1533 put_nfs_open_context(ctx
);
1535 if (unlikely(switched
)) {
1536 d_lookup_done(dentry
);
1542 res
= nfs_lookup(dir
, dentry
, lookup_flags
);
1544 d_lookup_done(dentry
);
1551 return PTR_ERR(res
);
1552 return finish_no_open(file
, res
);
1554 EXPORT_SYMBOL_GPL(nfs_atomic_open
);
1556 static int nfs4_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1558 struct inode
*inode
;
1561 if (!(flags
& LOOKUP_OPEN
) || (flags
& LOOKUP_DIRECTORY
))
1563 if (d_mountpoint(dentry
))
1565 if (NFS_SB(dentry
->d_sb
)->caps
& NFS_CAP_ATOMIC_OPEN_V1
)
1568 inode
= d_inode(dentry
);
1570 /* We can't create new files in nfs_open_revalidate(), so we
1571 * optimize away revalidation of negative dentries.
1573 if (inode
== NULL
) {
1574 struct dentry
*parent
;
1577 if (flags
& LOOKUP_RCU
) {
1578 parent
= READ_ONCE(dentry
->d_parent
);
1579 dir
= d_inode_rcu(parent
);
1583 parent
= dget_parent(dentry
);
1584 dir
= d_inode(parent
);
1586 if (!nfs_neg_need_reval(dir
, dentry
, flags
))
1588 else if (flags
& LOOKUP_RCU
)
1590 if (!(flags
& LOOKUP_RCU
))
1592 else if (parent
!= READ_ONCE(dentry
->d_parent
))
1597 /* NFS only supports OPEN on regular files */
1598 if (!S_ISREG(inode
->i_mode
))
1600 /* We cannot do exclusive creation on a positive dentry */
1601 if (flags
& LOOKUP_EXCL
)
1604 /* Let f_op->open() actually open (and revalidate) the file */
1611 return nfs_lookup_revalidate(dentry
, flags
);
1614 #endif /* CONFIG_NFSV4 */
1617 * Code common to create, mkdir, and mknod.
1619 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1620 struct nfs_fattr
*fattr
,
1621 struct nfs4_label
*label
)
1623 struct dentry
*parent
= dget_parent(dentry
);
1624 struct inode
*dir
= d_inode(parent
);
1625 struct inode
*inode
;
1626 int error
= -EACCES
;
1630 /* We may have been initialized further down */
1631 if (d_really_is_positive(dentry
))
1633 if (fhandle
->size
== 0) {
1634 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, NULL
);
1638 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1639 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1640 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1641 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
, fattr
, NULL
);
1645 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1646 error
= PTR_ERR(inode
);
1649 d_add(dentry
, inode
);
1654 nfs_mark_for_revalidate(dir
);
1658 EXPORT_SYMBOL_GPL(nfs_instantiate
);
1661 * Following a failed create operation, we drop the dentry rather
1662 * than retain a negative dentry. This avoids a problem in the event
1663 * that the operation succeeded on the server, but an error in the
1664 * reply path made it appear to have failed.
1666 int nfs_create(struct inode
*dir
, struct dentry
*dentry
,
1667 umode_t mode
, bool excl
)
1670 int open_flags
= excl
? O_CREAT
| O_EXCL
: O_CREAT
;
1673 dfprintk(VFS
, "NFS: create(%s/%lu), %pd\n",
1674 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1676 attr
.ia_mode
= mode
;
1677 attr
.ia_valid
= ATTR_MODE
;
1679 trace_nfs_create_enter(dir
, dentry
, open_flags
);
1680 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
);
1681 trace_nfs_create_exit(dir
, dentry
, open_flags
, error
);
1689 EXPORT_SYMBOL_GPL(nfs_create
);
1692 * See comments for nfs_proc_create regarding failed operations.
1695 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t rdev
)
1700 dfprintk(VFS
, "NFS: mknod(%s/%lu), %pd\n",
1701 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1703 attr
.ia_mode
= mode
;
1704 attr
.ia_valid
= ATTR_MODE
;
1706 trace_nfs_mknod_enter(dir
, dentry
);
1707 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1708 trace_nfs_mknod_exit(dir
, dentry
, status
);
1716 EXPORT_SYMBOL_GPL(nfs_mknod
);
1719 * See comments for nfs_proc_create regarding failed operations.
1721 int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1726 dfprintk(VFS
, "NFS: mkdir(%s/%lu), %pd\n",
1727 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1729 attr
.ia_valid
= ATTR_MODE
;
1730 attr
.ia_mode
= mode
| S_IFDIR
;
1732 trace_nfs_mkdir_enter(dir
, dentry
);
1733 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1734 trace_nfs_mkdir_exit(dir
, dentry
, error
);
1742 EXPORT_SYMBOL_GPL(nfs_mkdir
);
1744 static void nfs_dentry_handle_enoent(struct dentry
*dentry
)
1746 if (simple_positive(dentry
))
1750 int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1754 dfprintk(VFS
, "NFS: rmdir(%s/%lu), %pd\n",
1755 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1757 trace_nfs_rmdir_enter(dir
, dentry
);
1758 if (d_really_is_positive(dentry
)) {
1759 down_write(&NFS_I(d_inode(dentry
))->rmdir_sem
);
1760 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1761 /* Ensure the VFS deletes this inode */
1764 clear_nlink(d_inode(dentry
));
1767 nfs_dentry_handle_enoent(dentry
);
1769 up_write(&NFS_I(d_inode(dentry
))->rmdir_sem
);
1771 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1772 trace_nfs_rmdir_exit(dir
, dentry
, error
);
1776 EXPORT_SYMBOL_GPL(nfs_rmdir
);
1779 * Remove a file after making sure there are no pending writes,
1780 * and after checking that the file has only one user.
1782 * We invalidate the attribute cache and free the inode prior to the operation
1783 * to avoid possible races if the server reuses the inode.
1785 static int nfs_safe_remove(struct dentry
*dentry
)
1787 struct inode
*dir
= d_inode(dentry
->d_parent
);
1788 struct inode
*inode
= d_inode(dentry
);
1791 dfprintk(VFS
, "NFS: safe_remove(%pd2)\n", dentry
);
1793 /* If the dentry was sillyrenamed, we simply call d_delete() */
1794 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1799 trace_nfs_remove_enter(dir
, dentry
);
1800 if (inode
!= NULL
) {
1801 NFS_PROTO(inode
)->return_delegation(inode
);
1802 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1804 nfs_drop_nlink(inode
);
1806 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1807 if (error
== -ENOENT
)
1808 nfs_dentry_handle_enoent(dentry
);
1809 trace_nfs_remove_exit(dir
, dentry
, error
);
1814 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1815 * belongs to an active ".nfs..." file and we return -EBUSY.
1817 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1819 int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
1822 int need_rehash
= 0;
1824 dfprintk(VFS
, "NFS: unlink(%s/%lu, %pd)\n", dir
->i_sb
->s_id
,
1825 dir
->i_ino
, dentry
);
1827 trace_nfs_unlink_enter(dir
, dentry
);
1828 spin_lock(&dentry
->d_lock
);
1829 if (d_count(dentry
) > 1) {
1830 spin_unlock(&dentry
->d_lock
);
1831 /* Start asynchronous writeout of the inode */
1832 write_inode_now(d_inode(dentry
), 0);
1833 error
= nfs_sillyrename(dir
, dentry
);
1836 if (!d_unhashed(dentry
)) {
1840 spin_unlock(&dentry
->d_lock
);
1841 error
= nfs_safe_remove(dentry
);
1842 if (!error
|| error
== -ENOENT
) {
1843 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1844 } else if (need_rehash
)
1847 trace_nfs_unlink_exit(dir
, dentry
, error
);
1850 EXPORT_SYMBOL_GPL(nfs_unlink
);
1853 * To create a symbolic link, most file systems instantiate a new inode,
1854 * add a page to it containing the path, then write it out to the disk
1855 * using prepare_write/commit_write.
1857 * Unfortunately the NFS client can't create the in-core inode first
1858 * because it needs a file handle to create an in-core inode (see
1859 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1860 * symlink request has completed on the server.
1862 * So instead we allocate a raw page, copy the symname into it, then do
1863 * the SYMLINK request with the page as the buffer. If it succeeds, we
1864 * now have a new file handle and can instantiate an in-core NFS inode
1865 * and move the raw page into its mapping.
1867 int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1872 unsigned int pathlen
= strlen(symname
);
1875 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s)\n", dir
->i_sb
->s_id
,
1876 dir
->i_ino
, dentry
, symname
);
1878 if (pathlen
> PAGE_SIZE
)
1879 return -ENAMETOOLONG
;
1881 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
1882 attr
.ia_valid
= ATTR_MODE
;
1884 page
= alloc_page(GFP_USER
);
1888 kaddr
= page_address(page
);
1889 memcpy(kaddr
, symname
, pathlen
);
1890 if (pathlen
< PAGE_SIZE
)
1891 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
1893 trace_nfs_symlink_enter(dir
, dentry
);
1894 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
1895 trace_nfs_symlink_exit(dir
, dentry
, error
);
1897 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1898 dir
->i_sb
->s_id
, dir
->i_ino
,
1899 dentry
, symname
, error
);
1906 * No big deal if we can't add this page to the page cache here.
1907 * READLINK will get the missing page from the server if needed.
1909 if (!add_to_page_cache_lru(page
, d_inode(dentry
)->i_mapping
, 0,
1911 SetPageUptodate(page
);
1914 * add_to_page_cache_lru() grabs an extra page refcount.
1915 * Drop it here to avoid leaking this page later.
1923 EXPORT_SYMBOL_GPL(nfs_symlink
);
1926 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1928 struct inode
*inode
= d_inode(old_dentry
);
1931 dfprintk(VFS
, "NFS: link(%pd2 -> %pd2)\n",
1932 old_dentry
, dentry
);
1934 trace_nfs_link_enter(inode
, dir
, dentry
);
1935 NFS_PROTO(inode
)->return_delegation(inode
);
1938 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
1941 d_add(dentry
, inode
);
1943 trace_nfs_link_exit(inode
, dir
, dentry
, error
);
1946 EXPORT_SYMBOL_GPL(nfs_link
);
1950 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1951 * different file handle for the same inode after a rename (e.g. when
1952 * moving to a different directory). A fail-safe method to do so would
1953 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1954 * rename the old file using the sillyrename stuff. This way, the original
1955 * file in old_dir will go away when the last process iput()s the inode.
1959 * It actually works quite well. One needs to have the possibility for
1960 * at least one ".nfs..." file in each directory the file ever gets
1961 * moved or linked to which happens automagically with the new
1962 * implementation that only depends on the dcache stuff instead of
1963 * using the inode layer
1965 * Unfortunately, things are a little more complicated than indicated
1966 * above. For a cross-directory move, we want to make sure we can get
1967 * rid of the old inode after the operation. This means there must be
1968 * no pending writes (if it's a file), and the use count must be 1.
1969 * If these conditions are met, we can drop the dentries before doing
1972 int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1973 struct inode
*new_dir
, struct dentry
*new_dentry
,
1976 struct inode
*old_inode
= d_inode(old_dentry
);
1977 struct inode
*new_inode
= d_inode(new_dentry
);
1978 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
1979 struct rpc_task
*task
;
1985 dfprintk(VFS
, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1986 old_dentry
, new_dentry
,
1987 d_count(new_dentry
));
1989 trace_nfs_rename_enter(old_dir
, old_dentry
, new_dir
, new_dentry
);
1991 * For non-directories, check whether the target is busy and if so,
1992 * make a copy of the dentry and then do a silly-rename. If the
1993 * silly-rename succeeds, the copied dentry is hashed and becomes
1996 if (new_inode
&& !S_ISDIR(new_inode
->i_mode
)) {
1998 * To prevent any new references to the target during the
1999 * rename, we unhash the dentry in advance.
2001 if (!d_unhashed(new_dentry
)) {
2003 rehash
= new_dentry
;
2006 if (d_count(new_dentry
) > 2) {
2009 /* copy the target dentry's name */
2010 dentry
= d_alloc(new_dentry
->d_parent
,
2011 &new_dentry
->d_name
);
2015 /* silly-rename the existing target ... */
2016 err
= nfs_sillyrename(new_dir
, new_dentry
);
2020 new_dentry
= dentry
;
2026 NFS_PROTO(old_inode
)->return_delegation(old_inode
);
2027 if (new_inode
!= NULL
)
2028 NFS_PROTO(new_inode
)->return_delegation(new_inode
);
2030 task
= nfs_async_rename(old_dir
, new_dir
, old_dentry
, new_dentry
, NULL
);
2032 error
= PTR_ERR(task
);
2036 error
= rpc_wait_for_completion_task(task
);
2038 ((struct nfs_renamedata
*)task
->tk_calldata
)->cancelled
= 1;
2039 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2042 error
= task
->tk_status
;
2044 nfs_mark_for_revalidate(old_inode
);
2048 trace_nfs_rename_exit(old_dir
, old_dentry
,
2049 new_dir
, new_dentry
, error
);
2051 if (new_inode
!= NULL
)
2052 nfs_drop_nlink(new_inode
);
2054 * The d_move() should be here instead of in an async RPC completion
2055 * handler because we need the proper locks to move the dentry. If
2056 * we're interrupted by a signal, the async RPC completion handler
2057 * should mark the directories for revalidation.
2059 d_move(old_dentry
, new_dentry
);
2060 nfs_set_verifier(old_dentry
,
2061 nfs_save_change_attribute(new_dir
));
2062 } else if (error
== -ENOENT
)
2063 nfs_dentry_handle_enoent(old_dentry
);
2065 /* new dentry created? */
2070 EXPORT_SYMBOL_GPL(nfs_rename
);
2072 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
2073 static LIST_HEAD(nfs_access_lru_list
);
2074 static atomic_long_t nfs_access_nr_entries
;
2076 static unsigned long nfs_access_max_cachesize
= ULONG_MAX
;
2077 module_param(nfs_access_max_cachesize
, ulong
, 0644);
2078 MODULE_PARM_DESC(nfs_access_max_cachesize
, "NFS access maximum total cache length");
2080 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
2082 put_rpccred(entry
->cred
);
2083 kfree_rcu(entry
, rcu_head
);
2084 smp_mb__before_atomic();
2085 atomic_long_dec(&nfs_access_nr_entries
);
2086 smp_mb__after_atomic();
2089 static void nfs_access_free_list(struct list_head
*head
)
2091 struct nfs_access_entry
*cache
;
2093 while (!list_empty(head
)) {
2094 cache
= list_entry(head
->next
, struct nfs_access_entry
, lru
);
2095 list_del(&cache
->lru
);
2096 nfs_access_free_entry(cache
);
2100 static unsigned long
2101 nfs_do_access_cache_scan(unsigned int nr_to_scan
)
2104 struct nfs_inode
*nfsi
, *next
;
2105 struct nfs_access_entry
*cache
;
2108 spin_lock(&nfs_access_lru_lock
);
2109 list_for_each_entry_safe(nfsi
, next
, &nfs_access_lru_list
, access_cache_inode_lru
) {
2110 struct inode
*inode
;
2112 if (nr_to_scan
-- == 0)
2114 inode
= &nfsi
->vfs_inode
;
2115 spin_lock(&inode
->i_lock
);
2116 if (list_empty(&nfsi
->access_cache_entry_lru
))
2117 goto remove_lru_entry
;
2118 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
2119 struct nfs_access_entry
, lru
);
2120 list_move(&cache
->lru
, &head
);
2121 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
2123 if (!list_empty(&nfsi
->access_cache_entry_lru
))
2124 list_move_tail(&nfsi
->access_cache_inode_lru
,
2125 &nfs_access_lru_list
);
2128 list_del_init(&nfsi
->access_cache_inode_lru
);
2129 smp_mb__before_atomic();
2130 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
2131 smp_mb__after_atomic();
2133 spin_unlock(&inode
->i_lock
);
2135 spin_unlock(&nfs_access_lru_lock
);
2136 nfs_access_free_list(&head
);
2141 nfs_access_cache_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
2143 int nr_to_scan
= sc
->nr_to_scan
;
2144 gfp_t gfp_mask
= sc
->gfp_mask
;
2146 if ((gfp_mask
& GFP_KERNEL
) != GFP_KERNEL
)
2148 return nfs_do_access_cache_scan(nr_to_scan
);
2153 nfs_access_cache_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
2155 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries
));
2159 nfs_access_cache_enforce_limit(void)
2161 long nr_entries
= atomic_long_read(&nfs_access_nr_entries
);
2163 unsigned int nr_to_scan
;
2165 if (nr_entries
< 0 || nr_entries
<= nfs_access_max_cachesize
)
2168 diff
= nr_entries
- nfs_access_max_cachesize
;
2169 if (diff
< nr_to_scan
)
2171 nfs_do_access_cache_scan(nr_to_scan
);
2174 static void __nfs_access_zap_cache(struct nfs_inode
*nfsi
, struct list_head
*head
)
2176 struct rb_root
*root_node
= &nfsi
->access_cache
;
2178 struct nfs_access_entry
*entry
;
2180 /* Unhook entries from the cache */
2181 while ((n
= rb_first(root_node
)) != NULL
) {
2182 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2183 rb_erase(n
, root_node
);
2184 list_move(&entry
->lru
, head
);
2186 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
2189 void nfs_access_zap_cache(struct inode
*inode
)
2193 if (test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
) == 0)
2195 /* Remove from global LRU init */
2196 spin_lock(&nfs_access_lru_lock
);
2197 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2198 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
2200 spin_lock(&inode
->i_lock
);
2201 __nfs_access_zap_cache(NFS_I(inode
), &head
);
2202 spin_unlock(&inode
->i_lock
);
2203 spin_unlock(&nfs_access_lru_lock
);
2204 nfs_access_free_list(&head
);
2206 EXPORT_SYMBOL_GPL(nfs_access_zap_cache
);
2208 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, struct rpc_cred
*cred
)
2210 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
2211 struct nfs_access_entry
*entry
;
2214 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2216 if (cred
< entry
->cred
)
2218 else if (cred
> entry
->cred
)
2226 static int nfs_access_get_cached(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
, bool may_block
)
2228 struct nfs_inode
*nfsi
= NFS_I(inode
);
2229 struct nfs_access_entry
*cache
;
2233 spin_lock(&inode
->i_lock
);
2235 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2237 cache
= nfs_access_search_rbtree(inode
, cred
);
2241 /* Found an entry, is our attribute cache valid? */
2242 if (!nfs_check_cache_invalid(inode
, NFS_INO_INVALID_ACCESS
))
2249 spin_unlock(&inode
->i_lock
);
2250 err
= __nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2253 spin_lock(&inode
->i_lock
);
2256 res
->cred
= cache
->cred
;
2257 res
->mask
= cache
->mask
;
2258 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
2261 spin_unlock(&inode
->i_lock
);
2264 spin_unlock(&inode
->i_lock
);
2265 nfs_access_zap_cache(inode
);
2269 static int nfs_access_get_cached_rcu(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
)
2271 /* Only check the most recently returned cache entry,
2272 * but do it without locking.
2274 struct nfs_inode
*nfsi
= NFS_I(inode
);
2275 struct nfs_access_entry
*cache
;
2277 struct list_head
*lh
;
2280 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2282 lh
= rcu_dereference(nfsi
->access_cache_entry_lru
.prev
);
2283 cache
= list_entry(lh
, struct nfs_access_entry
, lru
);
2284 if (lh
== &nfsi
->access_cache_entry_lru
||
2285 cred
!= cache
->cred
)
2289 if (nfs_check_cache_invalid(inode
, NFS_INO_INVALID_ACCESS
))
2291 res
->cred
= cache
->cred
;
2292 res
->mask
= cache
->mask
;
2299 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
2301 struct nfs_inode
*nfsi
= NFS_I(inode
);
2302 struct rb_root
*root_node
= &nfsi
->access_cache
;
2303 struct rb_node
**p
= &root_node
->rb_node
;
2304 struct rb_node
*parent
= NULL
;
2305 struct nfs_access_entry
*entry
;
2307 spin_lock(&inode
->i_lock
);
2308 while (*p
!= NULL
) {
2310 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
2312 if (set
->cred
< entry
->cred
)
2313 p
= &parent
->rb_left
;
2314 else if (set
->cred
> entry
->cred
)
2315 p
= &parent
->rb_right
;
2319 rb_link_node(&set
->rb_node
, parent
, p
);
2320 rb_insert_color(&set
->rb_node
, root_node
);
2321 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2322 spin_unlock(&inode
->i_lock
);
2325 rb_replace_node(parent
, &set
->rb_node
, root_node
);
2326 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2327 list_del(&entry
->lru
);
2328 spin_unlock(&inode
->i_lock
);
2329 nfs_access_free_entry(entry
);
2332 void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
2334 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
2337 RB_CLEAR_NODE(&cache
->rb_node
);
2338 cache
->cred
= get_rpccred(set
->cred
);
2339 cache
->mask
= set
->mask
;
2341 /* The above field assignments must be visible
2342 * before this item appears on the lru. We cannot easily
2343 * use rcu_assign_pointer, so just force the memory barrier.
2346 nfs_access_add_rbtree(inode
, cache
);
2348 /* Update accounting */
2349 smp_mb__before_atomic();
2350 atomic_long_inc(&nfs_access_nr_entries
);
2351 smp_mb__after_atomic();
2353 /* Add inode to global LRU list */
2354 if (!test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
)) {
2355 spin_lock(&nfs_access_lru_lock
);
2356 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2357 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
,
2358 &nfs_access_lru_list
);
2359 spin_unlock(&nfs_access_lru_lock
);
2361 nfs_access_cache_enforce_limit();
2363 EXPORT_SYMBOL_GPL(nfs_access_add_cache
);
2365 #define NFS_MAY_READ (NFS_ACCESS_READ)
2366 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2367 NFS_ACCESS_EXTEND | \
2369 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2371 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2372 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2373 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2375 nfs_access_calc_mask(u32 access_result
, umode_t umode
)
2379 if (access_result
& NFS_MAY_READ
)
2381 if (S_ISDIR(umode
)) {
2382 if ((access_result
& NFS_DIR_MAY_WRITE
) == NFS_DIR_MAY_WRITE
)
2384 if ((access_result
& NFS_MAY_LOOKUP
) == NFS_MAY_LOOKUP
)
2386 } else if (S_ISREG(umode
)) {
2387 if ((access_result
& NFS_FILE_MAY_WRITE
) == NFS_FILE_MAY_WRITE
)
2389 if ((access_result
& NFS_MAY_EXECUTE
) == NFS_MAY_EXECUTE
)
2391 } else if (access_result
& NFS_MAY_WRITE
)
2396 void nfs_access_set_mask(struct nfs_access_entry
*entry
, u32 access_result
)
2398 entry
->mask
= access_result
;
2400 EXPORT_SYMBOL_GPL(nfs_access_set_mask
);
2402 static int nfs_do_access(struct inode
*inode
, struct rpc_cred
*cred
, int mask
)
2404 struct nfs_access_entry cache
;
2405 bool may_block
= (mask
& MAY_NOT_BLOCK
) == 0;
2409 trace_nfs_access_enter(inode
);
2411 status
= nfs_access_get_cached_rcu(inode
, cred
, &cache
);
2413 status
= nfs_access_get_cached(inode
, cred
, &cache
, may_block
);
2422 * Determine which access bits we want to ask for...
2424 cache
.mask
= NFS_ACCESS_READ
| NFS_ACCESS_MODIFY
| NFS_ACCESS_EXTEND
;
2425 if (S_ISDIR(inode
->i_mode
))
2426 cache
.mask
|= NFS_ACCESS_DELETE
| NFS_ACCESS_LOOKUP
;
2428 cache
.mask
|= NFS_ACCESS_EXECUTE
;
2430 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
2432 if (status
== -ESTALE
) {
2433 nfs_zap_caches(inode
);
2434 if (!S_ISDIR(inode
->i_mode
))
2435 set_bit(NFS_INO_STALE
, &NFS_I(inode
)->flags
);
2439 nfs_access_add_cache(inode
, &cache
);
2441 cache_mask
= nfs_access_calc_mask(cache
.mask
, inode
->i_mode
);
2442 if ((mask
& ~cache_mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) != 0)
2445 trace_nfs_access_exit(inode
, status
);
2449 static int nfs_open_permission_mask(int openflags
)
2453 if (openflags
& __FMODE_EXEC
) {
2454 /* ONLY check exec rights */
2457 if ((openflags
& O_ACCMODE
) != O_WRONLY
)
2459 if ((openflags
& O_ACCMODE
) != O_RDONLY
)
2466 int nfs_may_open(struct inode
*inode
, struct rpc_cred
*cred
, int openflags
)
2468 return nfs_do_access(inode
, cred
, nfs_open_permission_mask(openflags
));
2470 EXPORT_SYMBOL_GPL(nfs_may_open
);
2472 static int nfs_execute_ok(struct inode
*inode
, int mask
)
2474 struct nfs_server
*server
= NFS_SERVER(inode
);
2477 if (nfs_check_cache_invalid(inode
, NFS_INO_INVALID_ACCESS
)) {
2478 if (mask
& MAY_NOT_BLOCK
)
2480 ret
= __nfs_revalidate_inode(server
, inode
);
2482 if (ret
== 0 && !execute_ok(inode
))
2487 int nfs_permission(struct inode
*inode
, int mask
)
2489 struct rpc_cred
*cred
;
2492 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
2494 if ((mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) == 0)
2496 /* Is this sys_access() ? */
2497 if (mask
& (MAY_ACCESS
| MAY_CHDIR
))
2500 switch (inode
->i_mode
& S_IFMT
) {
2504 if ((mask
& MAY_OPEN
) &&
2505 nfs_server_capable(inode
, NFS_CAP_ATOMIC_OPEN
))
2510 * Optimize away all write operations, since the server
2511 * will check permissions when we perform the op.
2513 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
2518 if (!NFS_PROTO(inode
)->access
)
2521 /* Always try fast lookups first */
2523 cred
= rpc_lookup_cred_nonblock();
2525 res
= nfs_do_access(inode
, cred
, mask
|MAY_NOT_BLOCK
);
2527 res
= PTR_ERR(cred
);
2529 if (res
== -ECHILD
&& !(mask
& MAY_NOT_BLOCK
)) {
2530 /* Fast lookup failed, try the slow way */
2531 cred
= rpc_lookup_cred();
2532 if (!IS_ERR(cred
)) {
2533 res
= nfs_do_access(inode
, cred
, mask
);
2536 res
= PTR_ERR(cred
);
2539 if (!res
&& (mask
& MAY_EXEC
))
2540 res
= nfs_execute_ok(inode
, mask
);
2542 dfprintk(VFS
, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2543 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
2546 if (mask
& MAY_NOT_BLOCK
)
2549 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2551 res
= generic_permission(inode
, mask
);
2554 EXPORT_SYMBOL_GPL(nfs_permission
);
2558 * version-control: t
2559 * kept-new-versions: 5