2 * segment.c - NILFS segment constructor.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * Written by Ryusuke Konishi.
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/bitops.h>
24 #include <linux/bio.h>
25 #include <linux/completion.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/freezer.h>
29 #include <linux/kthread.h>
30 #include <linux/crc32.h>
31 #include <linux/pagevec.h>
32 #include <linux/slab.h>
33 #include <linux/sched/signal.h>
48 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
50 #define SC_MAX_SEGDELTA 64 /*
51 * Upper limit of the number of segments
52 * appended in collection retry loop
55 /* Construction mode */
57 SC_LSEG_SR
= 1, /* Make a logical segment having a super root */
59 * Flush data blocks of a given file and make
60 * a logical segment without a super root.
63 * Flush data files, leads to segment writes without
64 * creating a checkpoint.
67 * Flush DAT file. This also creates segments
68 * without a checkpoint.
72 /* Stage numbers of dirty block collection */
75 NILFS_ST_GC
, /* Collecting dirty blocks for GC */
81 NILFS_ST_SR
, /* Super root */
82 NILFS_ST_DSYNC
, /* Data sync blocks */
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/nilfs2.h>
90 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
91 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
92 * the variable must use them because transition of stage count must involve
93 * trace events (trace_nilfs2_collection_stage_transition).
95 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
96 * produce tracepoint events. It is provided just for making the intention
99 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info
*sci
)
101 sci
->sc_stage
.scnt
++;
102 trace_nilfs2_collection_stage_transition(sci
);
105 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info
*sci
, int next_scnt
)
107 sci
->sc_stage
.scnt
= next_scnt
;
108 trace_nilfs2_collection_stage_transition(sci
);
111 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info
*sci
)
113 return sci
->sc_stage
.scnt
;
116 /* State flags of collection */
117 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
118 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
119 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
120 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
122 /* Operations depending on the construction mode and file type */
123 struct nilfs_sc_operations
{
124 int (*collect_data
)(struct nilfs_sc_info
*, struct buffer_head
*,
126 int (*collect_node
)(struct nilfs_sc_info
*, struct buffer_head
*,
128 int (*collect_bmap
)(struct nilfs_sc_info
*, struct buffer_head
*,
130 void (*write_data_binfo
)(struct nilfs_sc_info
*,
131 struct nilfs_segsum_pointer
*,
132 union nilfs_binfo
*);
133 void (*write_node_binfo
)(struct nilfs_sc_info
*,
134 struct nilfs_segsum_pointer
*,
135 union nilfs_binfo
*);
141 static void nilfs_segctor_start_timer(struct nilfs_sc_info
*);
142 static void nilfs_segctor_do_flush(struct nilfs_sc_info
*, int);
143 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info
*);
144 static void nilfs_dispose_list(struct the_nilfs
*, struct list_head
*, int);
146 #define nilfs_cnt32_gt(a, b) \
147 (typecheck(__u32, a) && typecheck(__u32, b) && \
148 ((__s32)(b) - (__s32)(a) < 0))
149 #define nilfs_cnt32_ge(a, b) \
150 (typecheck(__u32, a) && typecheck(__u32, b) && \
151 ((__s32)(a) - (__s32)(b) >= 0))
152 #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
153 #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
155 static int nilfs_prepare_segment_lock(struct super_block
*sb
,
156 struct nilfs_transaction_info
*ti
)
158 struct nilfs_transaction_info
*cur_ti
= current
->journal_info
;
162 if (cur_ti
->ti_magic
== NILFS_TI_MAGIC
)
163 return ++cur_ti
->ti_count
;
166 * If journal_info field is occupied by other FS,
167 * it is saved and will be restored on
168 * nilfs_transaction_commit().
170 nilfs_msg(sb
, KERN_WARNING
, "journal info from a different FS");
171 save
= current
->journal_info
;
174 ti
= kmem_cache_alloc(nilfs_transaction_cachep
, GFP_NOFS
);
177 ti
->ti_flags
= NILFS_TI_DYNAMIC_ALLOC
;
183 ti
->ti_magic
= NILFS_TI_MAGIC
;
184 current
->journal_info
= ti
;
189 * nilfs_transaction_begin - start indivisible file operations.
191 * @ti: nilfs_transaction_info
192 * @vacancy_check: flags for vacancy rate checks
194 * nilfs_transaction_begin() acquires a reader/writer semaphore, called
195 * the segment semaphore, to make a segment construction and write tasks
196 * exclusive. The function is used with nilfs_transaction_commit() in pairs.
197 * The region enclosed by these two functions can be nested. To avoid a
198 * deadlock, the semaphore is only acquired or released in the outermost call.
200 * This function allocates a nilfs_transaction_info struct to keep context
201 * information on it. It is initialized and hooked onto the current task in
202 * the outermost call. If a pre-allocated struct is given to @ti, it is used
203 * instead; otherwise a new struct is assigned from a slab.
205 * When @vacancy_check flag is set, this function will check the amount of
206 * free space, and will wait for the GC to reclaim disk space if low capacity.
208 * Return Value: On success, 0 is returned. On error, one of the following
209 * negative error code is returned.
211 * %-ENOMEM - Insufficient memory available.
213 * %-ENOSPC - No space left on device
215 int nilfs_transaction_begin(struct super_block
*sb
,
216 struct nilfs_transaction_info
*ti
,
219 struct the_nilfs
*nilfs
;
220 int ret
= nilfs_prepare_segment_lock(sb
, ti
);
221 struct nilfs_transaction_info
*trace_ti
;
223 if (unlikely(ret
< 0))
226 trace_ti
= current
->journal_info
;
228 trace_nilfs2_transaction_transition(sb
, trace_ti
,
229 trace_ti
->ti_count
, trace_ti
->ti_flags
,
230 TRACE_NILFS2_TRANSACTION_BEGIN
);
234 sb_start_intwrite(sb
);
236 nilfs
= sb
->s_fs_info
;
237 down_read(&nilfs
->ns_segctor_sem
);
238 if (vacancy_check
&& nilfs_near_disk_full(nilfs
)) {
239 up_read(&nilfs
->ns_segctor_sem
);
244 trace_ti
= current
->journal_info
;
245 trace_nilfs2_transaction_transition(sb
, trace_ti
, trace_ti
->ti_count
,
247 TRACE_NILFS2_TRANSACTION_BEGIN
);
251 ti
= current
->journal_info
;
252 current
->journal_info
= ti
->ti_save
;
253 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
254 kmem_cache_free(nilfs_transaction_cachep
, ti
);
260 * nilfs_transaction_commit - commit indivisible file operations.
263 * nilfs_transaction_commit() releases the read semaphore which is
264 * acquired by nilfs_transaction_begin(). This is only performed
265 * in outermost call of this function. If a commit flag is set,
266 * nilfs_transaction_commit() sets a timer to start the segment
267 * constructor. If a sync flag is set, it starts construction
270 int nilfs_transaction_commit(struct super_block
*sb
)
272 struct nilfs_transaction_info
*ti
= current
->journal_info
;
273 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
276 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
277 ti
->ti_flags
|= NILFS_TI_COMMIT
;
278 if (ti
->ti_count
> 0) {
280 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
281 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_COMMIT
);
284 if (nilfs
->ns_writer
) {
285 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
287 if (ti
->ti_flags
& NILFS_TI_COMMIT
)
288 nilfs_segctor_start_timer(sci
);
289 if (atomic_read(&nilfs
->ns_ndirtyblks
) > sci
->sc_watermark
)
290 nilfs_segctor_do_flush(sci
, 0);
292 up_read(&nilfs
->ns_segctor_sem
);
293 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
294 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_COMMIT
);
296 current
->journal_info
= ti
->ti_save
;
298 if (ti
->ti_flags
& NILFS_TI_SYNC
)
299 err
= nilfs_construct_segment(sb
);
300 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
301 kmem_cache_free(nilfs_transaction_cachep
, ti
);
306 void nilfs_transaction_abort(struct super_block
*sb
)
308 struct nilfs_transaction_info
*ti
= current
->journal_info
;
309 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
311 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
312 if (ti
->ti_count
> 0) {
314 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
315 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_ABORT
);
318 up_read(&nilfs
->ns_segctor_sem
);
320 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
321 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_ABORT
);
323 current
->journal_info
= ti
->ti_save
;
324 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
325 kmem_cache_free(nilfs_transaction_cachep
, ti
);
329 void nilfs_relax_pressure_in_lock(struct super_block
*sb
)
331 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
332 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
334 if (!sci
|| !sci
->sc_flush_request
)
337 set_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
);
338 up_read(&nilfs
->ns_segctor_sem
);
340 down_write(&nilfs
->ns_segctor_sem
);
341 if (sci
->sc_flush_request
&&
342 test_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
)) {
343 struct nilfs_transaction_info
*ti
= current
->journal_info
;
345 ti
->ti_flags
|= NILFS_TI_WRITER
;
346 nilfs_segctor_do_immediate_flush(sci
);
347 ti
->ti_flags
&= ~NILFS_TI_WRITER
;
349 downgrade_write(&nilfs
->ns_segctor_sem
);
352 static void nilfs_transaction_lock(struct super_block
*sb
,
353 struct nilfs_transaction_info
*ti
,
356 struct nilfs_transaction_info
*cur_ti
= current
->journal_info
;
357 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
358 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
361 ti
->ti_flags
= NILFS_TI_WRITER
;
363 ti
->ti_save
= cur_ti
;
364 ti
->ti_magic
= NILFS_TI_MAGIC
;
365 current
->journal_info
= ti
;
368 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
369 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_TRYLOCK
);
371 down_write(&nilfs
->ns_segctor_sem
);
372 if (!test_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
))
375 nilfs_segctor_do_immediate_flush(sci
);
377 up_write(&nilfs
->ns_segctor_sem
);
381 ti
->ti_flags
|= NILFS_TI_GC
;
383 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
384 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_LOCK
);
387 static void nilfs_transaction_unlock(struct super_block
*sb
)
389 struct nilfs_transaction_info
*ti
= current
->journal_info
;
390 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
392 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
393 BUG_ON(ti
->ti_count
> 0);
395 up_write(&nilfs
->ns_segctor_sem
);
396 current
->journal_info
= ti
->ti_save
;
398 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
399 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_UNLOCK
);
402 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info
*sci
,
403 struct nilfs_segsum_pointer
*ssp
,
406 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
407 unsigned int blocksize
= sci
->sc_super
->s_blocksize
;
410 if (unlikely(ssp
->offset
+ bytes
> blocksize
)) {
412 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp
->bh
,
413 &segbuf
->sb_segsum_buffers
));
414 ssp
->bh
= NILFS_SEGBUF_NEXT_BH(ssp
->bh
);
416 p
= ssp
->bh
->b_data
+ ssp
->offset
;
417 ssp
->offset
+= bytes
;
422 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
423 * @sci: nilfs_sc_info
425 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info
*sci
)
427 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
428 struct buffer_head
*sumbh
;
429 unsigned int sumbytes
;
430 unsigned int flags
= 0;
433 if (nilfs_doing_gc())
435 err
= nilfs_segbuf_reset(segbuf
, flags
, sci
->sc_seg_ctime
, sci
->sc_cno
);
439 sumbh
= NILFS_SEGBUF_FIRST_BH(&segbuf
->sb_segsum_buffers
);
440 sumbytes
= segbuf
->sb_sum
.sumbytes
;
441 sci
->sc_finfo_ptr
.bh
= sumbh
; sci
->sc_finfo_ptr
.offset
= sumbytes
;
442 sci
->sc_binfo_ptr
.bh
= sumbh
; sci
->sc_binfo_ptr
.offset
= sumbytes
;
443 sci
->sc_blk_cnt
= sci
->sc_datablk_cnt
= 0;
447 static int nilfs_segctor_feed_segment(struct nilfs_sc_info
*sci
)
449 sci
->sc_nblk_this_inc
+= sci
->sc_curseg
->sb_sum
.nblocks
;
450 if (NILFS_SEGBUF_IS_LAST(sci
->sc_curseg
, &sci
->sc_segbufs
))
452 * The current segment is filled up
455 sci
->sc_curseg
= NILFS_NEXT_SEGBUF(sci
->sc_curseg
);
456 return nilfs_segctor_reset_segment_buffer(sci
);
459 static int nilfs_segctor_add_super_root(struct nilfs_sc_info
*sci
)
461 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
464 if (segbuf
->sb_sum
.nblocks
>= segbuf
->sb_rest_blocks
) {
465 err
= nilfs_segctor_feed_segment(sci
);
468 segbuf
= sci
->sc_curseg
;
470 err
= nilfs_segbuf_extend_payload(segbuf
, &segbuf
->sb_super_root
);
472 segbuf
->sb_sum
.flags
|= NILFS_SS_SR
;
477 * Functions for making segment summary and payloads
479 static int nilfs_segctor_segsum_block_required(
480 struct nilfs_sc_info
*sci
, const struct nilfs_segsum_pointer
*ssp
,
481 unsigned int binfo_size
)
483 unsigned int blocksize
= sci
->sc_super
->s_blocksize
;
484 /* Size of finfo and binfo is enough small against blocksize */
486 return ssp
->offset
+ binfo_size
+
487 (!sci
->sc_blk_cnt
? sizeof(struct nilfs_finfo
) : 0) >
491 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info
*sci
,
494 sci
->sc_curseg
->sb_sum
.nfinfo
++;
495 sci
->sc_binfo_ptr
= sci
->sc_finfo_ptr
;
496 nilfs_segctor_map_segsum_entry(
497 sci
, &sci
->sc_binfo_ptr
, sizeof(struct nilfs_finfo
));
499 if (NILFS_I(inode
)->i_root
&&
500 !test_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
))
501 set_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
);
505 static void nilfs_segctor_end_finfo(struct nilfs_sc_info
*sci
,
508 struct nilfs_finfo
*finfo
;
509 struct nilfs_inode_info
*ii
;
510 struct nilfs_segment_buffer
*segbuf
;
513 if (sci
->sc_blk_cnt
== 0)
518 if (test_bit(NILFS_I_GCINODE
, &ii
->i_state
))
520 else if (NILFS_ROOT_METADATA_FILE(inode
->i_ino
))
525 finfo
= nilfs_segctor_map_segsum_entry(sci
, &sci
->sc_finfo_ptr
,
527 finfo
->fi_ino
= cpu_to_le64(inode
->i_ino
);
528 finfo
->fi_nblocks
= cpu_to_le32(sci
->sc_blk_cnt
);
529 finfo
->fi_ndatablk
= cpu_to_le32(sci
->sc_datablk_cnt
);
530 finfo
->fi_cno
= cpu_to_le64(cno
);
532 segbuf
= sci
->sc_curseg
;
533 segbuf
->sb_sum
.sumbytes
= sci
->sc_binfo_ptr
.offset
+
534 sci
->sc_super
->s_blocksize
* (segbuf
->sb_sum
.nsumblk
- 1);
535 sci
->sc_finfo_ptr
= sci
->sc_binfo_ptr
;
536 sci
->sc_blk_cnt
= sci
->sc_datablk_cnt
= 0;
539 static int nilfs_segctor_add_file_block(struct nilfs_sc_info
*sci
,
540 struct buffer_head
*bh
,
542 unsigned int binfo_size
)
544 struct nilfs_segment_buffer
*segbuf
;
545 int required
, err
= 0;
548 segbuf
= sci
->sc_curseg
;
549 required
= nilfs_segctor_segsum_block_required(
550 sci
, &sci
->sc_binfo_ptr
, binfo_size
);
551 if (segbuf
->sb_sum
.nblocks
+ required
+ 1 > segbuf
->sb_rest_blocks
) {
552 nilfs_segctor_end_finfo(sci
, inode
);
553 err
= nilfs_segctor_feed_segment(sci
);
558 if (unlikely(required
)) {
559 err
= nilfs_segbuf_extend_segsum(segbuf
);
563 if (sci
->sc_blk_cnt
== 0)
564 nilfs_segctor_begin_finfo(sci
, inode
);
566 nilfs_segctor_map_segsum_entry(sci
, &sci
->sc_binfo_ptr
, binfo_size
);
567 /* Substitution to vblocknr is delayed until update_blocknr() */
568 nilfs_segbuf_add_file_buffer(segbuf
, bh
);
575 * Callback functions that enumerate, mark, and collect dirty blocks
577 static int nilfs_collect_file_data(struct nilfs_sc_info
*sci
,
578 struct buffer_head
*bh
, struct inode
*inode
)
582 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
586 err
= nilfs_segctor_add_file_block(sci
, bh
, inode
,
587 sizeof(struct nilfs_binfo_v
));
589 sci
->sc_datablk_cnt
++;
593 static int nilfs_collect_file_node(struct nilfs_sc_info
*sci
,
594 struct buffer_head
*bh
,
597 return nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
600 static int nilfs_collect_file_bmap(struct nilfs_sc_info
*sci
,
601 struct buffer_head
*bh
,
604 WARN_ON(!buffer_dirty(bh
));
605 return nilfs_segctor_add_file_block(sci
, bh
, inode
, sizeof(__le64
));
608 static void nilfs_write_file_data_binfo(struct nilfs_sc_info
*sci
,
609 struct nilfs_segsum_pointer
*ssp
,
610 union nilfs_binfo
*binfo
)
612 struct nilfs_binfo_v
*binfo_v
= nilfs_segctor_map_segsum_entry(
613 sci
, ssp
, sizeof(*binfo_v
));
614 *binfo_v
= binfo
->bi_v
;
617 static void nilfs_write_file_node_binfo(struct nilfs_sc_info
*sci
,
618 struct nilfs_segsum_pointer
*ssp
,
619 union nilfs_binfo
*binfo
)
621 __le64
*vblocknr
= nilfs_segctor_map_segsum_entry(
622 sci
, ssp
, sizeof(*vblocknr
));
623 *vblocknr
= binfo
->bi_v
.bi_vblocknr
;
626 static const struct nilfs_sc_operations nilfs_sc_file_ops
= {
627 .collect_data
= nilfs_collect_file_data
,
628 .collect_node
= nilfs_collect_file_node
,
629 .collect_bmap
= nilfs_collect_file_bmap
,
630 .write_data_binfo
= nilfs_write_file_data_binfo
,
631 .write_node_binfo
= nilfs_write_file_node_binfo
,
634 static int nilfs_collect_dat_data(struct nilfs_sc_info
*sci
,
635 struct buffer_head
*bh
, struct inode
*inode
)
639 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
643 err
= nilfs_segctor_add_file_block(sci
, bh
, inode
, sizeof(__le64
));
645 sci
->sc_datablk_cnt
++;
649 static int nilfs_collect_dat_bmap(struct nilfs_sc_info
*sci
,
650 struct buffer_head
*bh
, struct inode
*inode
)
652 WARN_ON(!buffer_dirty(bh
));
653 return nilfs_segctor_add_file_block(sci
, bh
, inode
,
654 sizeof(struct nilfs_binfo_dat
));
657 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info
*sci
,
658 struct nilfs_segsum_pointer
*ssp
,
659 union nilfs_binfo
*binfo
)
661 __le64
*blkoff
= nilfs_segctor_map_segsum_entry(sci
, ssp
,
663 *blkoff
= binfo
->bi_dat
.bi_blkoff
;
666 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info
*sci
,
667 struct nilfs_segsum_pointer
*ssp
,
668 union nilfs_binfo
*binfo
)
670 struct nilfs_binfo_dat
*binfo_dat
=
671 nilfs_segctor_map_segsum_entry(sci
, ssp
, sizeof(*binfo_dat
));
672 *binfo_dat
= binfo
->bi_dat
;
675 static const struct nilfs_sc_operations nilfs_sc_dat_ops
= {
676 .collect_data
= nilfs_collect_dat_data
,
677 .collect_node
= nilfs_collect_file_node
,
678 .collect_bmap
= nilfs_collect_dat_bmap
,
679 .write_data_binfo
= nilfs_write_dat_data_binfo
,
680 .write_node_binfo
= nilfs_write_dat_node_binfo
,
683 static const struct nilfs_sc_operations nilfs_sc_dsync_ops
= {
684 .collect_data
= nilfs_collect_file_data
,
685 .collect_node
= NULL
,
686 .collect_bmap
= NULL
,
687 .write_data_binfo
= nilfs_write_file_data_binfo
,
688 .write_node_binfo
= NULL
,
691 static size_t nilfs_lookup_dirty_data_buffers(struct inode
*inode
,
692 struct list_head
*listp
,
694 loff_t start
, loff_t end
)
696 struct address_space
*mapping
= inode
->i_mapping
;
698 pgoff_t index
= 0, last
= ULONG_MAX
;
702 if (unlikely(start
!= 0 || end
!= LLONG_MAX
)) {
704 * A valid range is given for sync-ing data pages. The
705 * range is rounded to per-page; extra dirty buffers
706 * may be included if blocksize < pagesize.
708 index
= start
>> PAGE_SHIFT
;
709 last
= end
>> PAGE_SHIFT
;
713 if (unlikely(index
> last
) ||
714 !pagevec_lookup_range_tag(&pvec
, mapping
, &index
, last
,
715 PAGECACHE_TAG_DIRTY
))
718 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
719 struct buffer_head
*bh
, *head
;
720 struct page
*page
= pvec
.pages
[i
];
723 if (!page_has_buffers(page
))
724 create_empty_buffers(page
, i_blocksize(inode
), 0);
727 bh
= head
= page_buffers(page
);
729 if (!buffer_dirty(bh
) || buffer_async_write(bh
))
732 list_add_tail(&bh
->b_assoc_buffers
, listp
);
734 if (unlikely(ndirties
>= nlimit
)) {
735 pagevec_release(&pvec
);
739 } while (bh
= bh
->b_this_page
, bh
!= head
);
741 pagevec_release(&pvec
);
746 static void nilfs_lookup_dirty_node_buffers(struct inode
*inode
,
747 struct list_head
*listp
)
749 struct nilfs_inode_info
*ii
= NILFS_I(inode
);
750 struct address_space
*mapping
= &ii
->i_btnode_cache
;
752 struct buffer_head
*bh
, *head
;
758 while (pagevec_lookup_tag(&pvec
, mapping
, &index
,
759 PAGECACHE_TAG_DIRTY
)) {
760 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
761 bh
= head
= page_buffers(pvec
.pages
[i
]);
763 if (buffer_dirty(bh
) &&
764 !buffer_async_write(bh
)) {
766 list_add_tail(&bh
->b_assoc_buffers
,
769 bh
= bh
->b_this_page
;
770 } while (bh
!= head
);
772 pagevec_release(&pvec
);
777 static void nilfs_dispose_list(struct the_nilfs
*nilfs
,
778 struct list_head
*head
, int force
)
780 struct nilfs_inode_info
*ii
, *n
;
781 struct nilfs_inode_info
*ivec
[SC_N_INODEVEC
], **pii
;
784 while (!list_empty(head
)) {
785 spin_lock(&nilfs
->ns_inode_lock
);
786 list_for_each_entry_safe(ii
, n
, head
, i_dirty
) {
787 list_del_init(&ii
->i_dirty
);
789 if (unlikely(ii
->i_bh
)) {
793 } else if (test_bit(NILFS_I_DIRTY
, &ii
->i_state
)) {
794 set_bit(NILFS_I_QUEUED
, &ii
->i_state
);
795 list_add_tail(&ii
->i_dirty
,
796 &nilfs
->ns_dirty_files
);
800 if (nv
== SC_N_INODEVEC
)
803 spin_unlock(&nilfs
->ns_inode_lock
);
805 for (pii
= ivec
; nv
> 0; pii
++, nv
--)
806 iput(&(*pii
)->vfs_inode
);
810 static void nilfs_iput_work_func(struct work_struct
*work
)
812 struct nilfs_sc_info
*sci
= container_of(work
, struct nilfs_sc_info
,
814 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
816 nilfs_dispose_list(nilfs
, &sci
->sc_iput_queue
, 0);
819 static int nilfs_test_metadata_dirty(struct the_nilfs
*nilfs
,
820 struct nilfs_root
*root
)
824 if (nilfs_mdt_fetch_dirty(root
->ifile
))
826 if (nilfs_mdt_fetch_dirty(nilfs
->ns_cpfile
))
828 if (nilfs_mdt_fetch_dirty(nilfs
->ns_sufile
))
830 if ((ret
|| nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs
->ns_dat
))
835 static int nilfs_segctor_clean(struct nilfs_sc_info
*sci
)
837 return list_empty(&sci
->sc_dirty_files
) &&
838 !test_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
) &&
839 sci
->sc_nfreesegs
== 0 &&
840 (!nilfs_doing_gc() || list_empty(&sci
->sc_gc_inodes
));
843 static int nilfs_segctor_confirm(struct nilfs_sc_info
*sci
)
845 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
848 if (nilfs_test_metadata_dirty(nilfs
, sci
->sc_root
))
849 set_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
851 spin_lock(&nilfs
->ns_inode_lock
);
852 if (list_empty(&nilfs
->ns_dirty_files
) && nilfs_segctor_clean(sci
))
855 spin_unlock(&nilfs
->ns_inode_lock
);
859 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info
*sci
)
861 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
863 nilfs_mdt_clear_dirty(sci
->sc_root
->ifile
);
864 nilfs_mdt_clear_dirty(nilfs
->ns_cpfile
);
865 nilfs_mdt_clear_dirty(nilfs
->ns_sufile
);
866 nilfs_mdt_clear_dirty(nilfs
->ns_dat
);
869 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info
*sci
)
871 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
872 struct buffer_head
*bh_cp
;
873 struct nilfs_checkpoint
*raw_cp
;
876 /* XXX: this interface will be changed */
877 err
= nilfs_cpfile_get_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, 1,
881 * The following code is duplicated with cpfile. But, it is
882 * needed to collect the checkpoint even if it was not newly
885 mark_buffer_dirty(bh_cp
);
886 nilfs_mdt_mark_dirty(nilfs
->ns_cpfile
);
887 nilfs_cpfile_put_checkpoint(
888 nilfs
->ns_cpfile
, nilfs
->ns_cno
, bh_cp
);
890 WARN_ON(err
== -EINVAL
|| err
== -ENOENT
);
895 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info
*sci
)
897 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
898 struct buffer_head
*bh_cp
;
899 struct nilfs_checkpoint
*raw_cp
;
902 err
= nilfs_cpfile_get_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, 0,
905 WARN_ON(err
== -EINVAL
|| err
== -ENOENT
);
908 raw_cp
->cp_snapshot_list
.ssl_next
= 0;
909 raw_cp
->cp_snapshot_list
.ssl_prev
= 0;
910 raw_cp
->cp_inodes_count
=
911 cpu_to_le64(atomic64_read(&sci
->sc_root
->inodes_count
));
912 raw_cp
->cp_blocks_count
=
913 cpu_to_le64(atomic64_read(&sci
->sc_root
->blocks_count
));
914 raw_cp
->cp_nblk_inc
=
915 cpu_to_le64(sci
->sc_nblk_inc
+ sci
->sc_nblk_this_inc
);
916 raw_cp
->cp_create
= cpu_to_le64(sci
->sc_seg_ctime
);
917 raw_cp
->cp_cno
= cpu_to_le64(nilfs
->ns_cno
);
919 if (test_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
))
920 nilfs_checkpoint_clear_minor(raw_cp
);
922 nilfs_checkpoint_set_minor(raw_cp
);
924 nilfs_write_inode_common(sci
->sc_root
->ifile
,
925 &raw_cp
->cp_ifile_inode
, 1);
926 nilfs_cpfile_put_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, bh_cp
);
933 static void nilfs_fill_in_file_bmap(struct inode
*ifile
,
934 struct nilfs_inode_info
*ii
)
937 struct buffer_head
*ibh
;
938 struct nilfs_inode
*raw_inode
;
940 if (test_bit(NILFS_I_BMAP
, &ii
->i_state
)) {
943 raw_inode
= nilfs_ifile_map_inode(ifile
, ii
->vfs_inode
.i_ino
,
945 nilfs_bmap_write(ii
->i_bmap
, raw_inode
);
946 nilfs_ifile_unmap_inode(ifile
, ii
->vfs_inode
.i_ino
, ibh
);
950 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info
*sci
)
952 struct nilfs_inode_info
*ii
;
954 list_for_each_entry(ii
, &sci
->sc_dirty_files
, i_dirty
) {
955 nilfs_fill_in_file_bmap(sci
->sc_root
->ifile
, ii
);
956 set_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
960 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info
*sci
,
961 struct the_nilfs
*nilfs
)
963 struct buffer_head
*bh_sr
;
964 struct nilfs_super_root
*raw_sr
;
965 unsigned int isz
, srsz
;
967 bh_sr
= NILFS_LAST_SEGBUF(&sci
->sc_segbufs
)->sb_super_root
;
968 raw_sr
= (struct nilfs_super_root
*)bh_sr
->b_data
;
969 isz
= nilfs
->ns_inode_size
;
970 srsz
= NILFS_SR_BYTES(isz
);
972 raw_sr
->sr_bytes
= cpu_to_le16(srsz
);
973 raw_sr
->sr_nongc_ctime
974 = cpu_to_le64(nilfs_doing_gc() ?
975 nilfs
->ns_nongc_ctime
: sci
->sc_seg_ctime
);
976 raw_sr
->sr_flags
= 0;
978 nilfs_write_inode_common(nilfs
->ns_dat
, (void *)raw_sr
+
979 NILFS_SR_DAT_OFFSET(isz
), 1);
980 nilfs_write_inode_common(nilfs
->ns_cpfile
, (void *)raw_sr
+
981 NILFS_SR_CPFILE_OFFSET(isz
), 1);
982 nilfs_write_inode_common(nilfs
->ns_sufile
, (void *)raw_sr
+
983 NILFS_SR_SUFILE_OFFSET(isz
), 1);
984 memset((void *)raw_sr
+ srsz
, 0, nilfs
->ns_blocksize
- srsz
);
987 static void nilfs_redirty_inodes(struct list_head
*head
)
989 struct nilfs_inode_info
*ii
;
991 list_for_each_entry(ii
, head
, i_dirty
) {
992 if (test_bit(NILFS_I_COLLECTED
, &ii
->i_state
))
993 clear_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
997 static void nilfs_drop_collected_inodes(struct list_head
*head
)
999 struct nilfs_inode_info
*ii
;
1001 list_for_each_entry(ii
, head
, i_dirty
) {
1002 if (!test_and_clear_bit(NILFS_I_COLLECTED
, &ii
->i_state
))
1005 clear_bit(NILFS_I_INODE_SYNC
, &ii
->i_state
);
1006 set_bit(NILFS_I_UPDATED
, &ii
->i_state
);
1010 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info
*sci
,
1011 struct inode
*inode
,
1012 struct list_head
*listp
,
1013 int (*collect
)(struct nilfs_sc_info
*,
1014 struct buffer_head
*,
1017 struct buffer_head
*bh
, *n
;
1021 list_for_each_entry_safe(bh
, n
, listp
, b_assoc_buffers
) {
1022 list_del_init(&bh
->b_assoc_buffers
);
1023 err
= collect(sci
, bh
, inode
);
1026 goto dispose_buffers
;
1032 while (!list_empty(listp
)) {
1033 bh
= list_first_entry(listp
, struct buffer_head
,
1035 list_del_init(&bh
->b_assoc_buffers
);
1041 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info
*sci
)
1043 /* Remaining number of blocks within segment buffer */
1044 return sci
->sc_segbuf_nblocks
-
1045 (sci
->sc_nblk_this_inc
+ sci
->sc_curseg
->sb_sum
.nblocks
);
1048 static int nilfs_segctor_scan_file(struct nilfs_sc_info
*sci
,
1049 struct inode
*inode
,
1050 const struct nilfs_sc_operations
*sc_ops
)
1052 LIST_HEAD(data_buffers
);
1053 LIST_HEAD(node_buffers
);
1056 if (!(sci
->sc_stage
.flags
& NILFS_CF_NODE
)) {
1057 size_t n
, rest
= nilfs_segctor_buffer_rest(sci
);
1059 n
= nilfs_lookup_dirty_data_buffers(
1060 inode
, &data_buffers
, rest
+ 1, 0, LLONG_MAX
);
1062 err
= nilfs_segctor_apply_buffers(
1063 sci
, inode
, &data_buffers
,
1064 sc_ops
->collect_data
);
1065 BUG_ON(!err
); /* always receive -E2BIG or true error */
1069 nilfs_lookup_dirty_node_buffers(inode
, &node_buffers
);
1071 if (!(sci
->sc_stage
.flags
& NILFS_CF_NODE
)) {
1072 err
= nilfs_segctor_apply_buffers(
1073 sci
, inode
, &data_buffers
, sc_ops
->collect_data
);
1074 if (unlikely(err
)) {
1075 /* dispose node list */
1076 nilfs_segctor_apply_buffers(
1077 sci
, inode
, &node_buffers
, NULL
);
1080 sci
->sc_stage
.flags
|= NILFS_CF_NODE
;
1083 err
= nilfs_segctor_apply_buffers(
1084 sci
, inode
, &node_buffers
, sc_ops
->collect_node
);
1088 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode
)->i_bmap
, &node_buffers
);
1089 err
= nilfs_segctor_apply_buffers(
1090 sci
, inode
, &node_buffers
, sc_ops
->collect_bmap
);
1094 nilfs_segctor_end_finfo(sci
, inode
);
1095 sci
->sc_stage
.flags
&= ~NILFS_CF_NODE
;
1101 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info
*sci
,
1102 struct inode
*inode
)
1104 LIST_HEAD(data_buffers
);
1105 size_t n
, rest
= nilfs_segctor_buffer_rest(sci
);
1108 n
= nilfs_lookup_dirty_data_buffers(inode
, &data_buffers
, rest
+ 1,
1109 sci
->sc_dsync_start
,
1112 err
= nilfs_segctor_apply_buffers(sci
, inode
, &data_buffers
,
1113 nilfs_collect_file_data
);
1115 nilfs_segctor_end_finfo(sci
, inode
);
1117 /* always receive -E2BIG or true error if n > rest */
1122 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info
*sci
, int mode
)
1124 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
1125 struct list_head
*head
;
1126 struct nilfs_inode_info
*ii
;
1130 switch (nilfs_sc_cstage_get(sci
)) {
1133 sci
->sc_stage
.flags
= 0;
1135 if (!test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
)) {
1136 sci
->sc_nblk_inc
= 0;
1137 sci
->sc_curseg
->sb_sum
.flags
= NILFS_SS_LOGBGN
;
1138 if (mode
== SC_LSEG_DSYNC
) {
1139 nilfs_sc_cstage_set(sci
, NILFS_ST_DSYNC
);
1144 sci
->sc_stage
.dirty_file_ptr
= NULL
;
1145 sci
->sc_stage
.gc_inode_ptr
= NULL
;
1146 if (mode
== SC_FLUSH_DAT
) {
1147 nilfs_sc_cstage_set(sci
, NILFS_ST_DAT
);
1150 nilfs_sc_cstage_inc(sci
); /* Fall through */
1152 if (nilfs_doing_gc()) {
1153 head
= &sci
->sc_gc_inodes
;
1154 ii
= list_prepare_entry(sci
->sc_stage
.gc_inode_ptr
,
1156 list_for_each_entry_continue(ii
, head
, i_dirty
) {
1157 err
= nilfs_segctor_scan_file(
1158 sci
, &ii
->vfs_inode
,
1159 &nilfs_sc_file_ops
);
1160 if (unlikely(err
)) {
1161 sci
->sc_stage
.gc_inode_ptr
= list_entry(
1163 struct nilfs_inode_info
,
1167 set_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
1169 sci
->sc_stage
.gc_inode_ptr
= NULL
;
1171 nilfs_sc_cstage_inc(sci
); /* Fall through */
1173 head
= &sci
->sc_dirty_files
;
1174 ii
= list_prepare_entry(sci
->sc_stage
.dirty_file_ptr
, head
,
1176 list_for_each_entry_continue(ii
, head
, i_dirty
) {
1177 clear_bit(NILFS_I_DIRTY
, &ii
->i_state
);
1179 err
= nilfs_segctor_scan_file(sci
, &ii
->vfs_inode
,
1180 &nilfs_sc_file_ops
);
1181 if (unlikely(err
)) {
1182 sci
->sc_stage
.dirty_file_ptr
=
1183 list_entry(ii
->i_dirty
.prev
,
1184 struct nilfs_inode_info
,
1188 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1189 /* XXX: required ? */
1191 sci
->sc_stage
.dirty_file_ptr
= NULL
;
1192 if (mode
== SC_FLUSH_FILE
) {
1193 nilfs_sc_cstage_set(sci
, NILFS_ST_DONE
);
1196 nilfs_sc_cstage_inc(sci
);
1197 sci
->sc_stage
.flags
|= NILFS_CF_IFILE_STARTED
;
1199 case NILFS_ST_IFILE
:
1200 err
= nilfs_segctor_scan_file(sci
, sci
->sc_root
->ifile
,
1201 &nilfs_sc_file_ops
);
1204 nilfs_sc_cstage_inc(sci
);
1205 /* Creating a checkpoint */
1206 err
= nilfs_segctor_create_checkpoint(sci
);
1210 case NILFS_ST_CPFILE
:
1211 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_cpfile
,
1212 &nilfs_sc_file_ops
);
1215 nilfs_sc_cstage_inc(sci
); /* Fall through */
1216 case NILFS_ST_SUFILE
:
1217 err
= nilfs_sufile_freev(nilfs
->ns_sufile
, sci
->sc_freesegs
,
1218 sci
->sc_nfreesegs
, &ndone
);
1219 if (unlikely(err
)) {
1220 nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1221 sci
->sc_freesegs
, ndone
,
1225 sci
->sc_stage
.flags
|= NILFS_CF_SUFREED
;
1227 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_sufile
,
1228 &nilfs_sc_file_ops
);
1231 nilfs_sc_cstage_inc(sci
); /* Fall through */
1234 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_dat
,
1238 if (mode
== SC_FLUSH_DAT
) {
1239 nilfs_sc_cstage_set(sci
, NILFS_ST_DONE
);
1242 nilfs_sc_cstage_inc(sci
); /* Fall through */
1244 if (mode
== SC_LSEG_SR
) {
1245 /* Appending a super root */
1246 err
= nilfs_segctor_add_super_root(sci
);
1250 /* End of a logical segment */
1251 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_LOGEND
;
1252 nilfs_sc_cstage_set(sci
, NILFS_ST_DONE
);
1254 case NILFS_ST_DSYNC
:
1256 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_SYNDT
;
1257 ii
= sci
->sc_dsync_inode
;
1258 if (!test_bit(NILFS_I_BUSY
, &ii
->i_state
))
1261 err
= nilfs_segctor_scan_file_dsync(sci
, &ii
->vfs_inode
);
1264 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_LOGEND
;
1265 nilfs_sc_cstage_set(sci
, NILFS_ST_DONE
);
1278 * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1279 * @sci: nilfs_sc_info
1280 * @nilfs: nilfs object
1282 static int nilfs_segctor_begin_construction(struct nilfs_sc_info
*sci
,
1283 struct the_nilfs
*nilfs
)
1285 struct nilfs_segment_buffer
*segbuf
, *prev
;
1289 segbuf
= nilfs_segbuf_new(sci
->sc_super
);
1290 if (unlikely(!segbuf
))
1293 if (list_empty(&sci
->sc_write_logs
)) {
1294 nilfs_segbuf_map(segbuf
, nilfs
->ns_segnum
,
1295 nilfs
->ns_pseg_offset
, nilfs
);
1296 if (segbuf
->sb_rest_blocks
< NILFS_PSEG_MIN_BLOCKS
) {
1297 nilfs_shift_to_next_segment(nilfs
);
1298 nilfs_segbuf_map(segbuf
, nilfs
->ns_segnum
, 0, nilfs
);
1301 segbuf
->sb_sum
.seg_seq
= nilfs
->ns_seg_seq
;
1302 nextnum
= nilfs
->ns_nextnum
;
1304 if (nilfs
->ns_segnum
== nilfs
->ns_nextnum
)
1305 /* Start from the head of a new full segment */
1309 prev
= NILFS_LAST_SEGBUF(&sci
->sc_write_logs
);
1310 nilfs_segbuf_map_cont(segbuf
, prev
);
1311 segbuf
->sb_sum
.seg_seq
= prev
->sb_sum
.seg_seq
;
1312 nextnum
= prev
->sb_nextnum
;
1314 if (segbuf
->sb_rest_blocks
< NILFS_PSEG_MIN_BLOCKS
) {
1315 nilfs_segbuf_map(segbuf
, prev
->sb_nextnum
, 0, nilfs
);
1316 segbuf
->sb_sum
.seg_seq
++;
1321 err
= nilfs_sufile_mark_dirty(nilfs
->ns_sufile
, segbuf
->sb_segnum
);
1326 err
= nilfs_sufile_alloc(nilfs
->ns_sufile
, &nextnum
);
1330 nilfs_segbuf_set_next_segnum(segbuf
, nextnum
, nilfs
);
1332 BUG_ON(!list_empty(&sci
->sc_segbufs
));
1333 list_add_tail(&segbuf
->sb_list
, &sci
->sc_segbufs
);
1334 sci
->sc_segbuf_nblocks
= segbuf
->sb_rest_blocks
;
1338 nilfs_segbuf_free(segbuf
);
1342 static int nilfs_segctor_extend_segments(struct nilfs_sc_info
*sci
,
1343 struct the_nilfs
*nilfs
, int nadd
)
1345 struct nilfs_segment_buffer
*segbuf
, *prev
;
1346 struct inode
*sufile
= nilfs
->ns_sufile
;
1351 prev
= NILFS_LAST_SEGBUF(&sci
->sc_segbufs
);
1353 * Since the segment specified with nextnum might be allocated during
1354 * the previous construction, the buffer including its segusage may
1355 * not be dirty. The following call ensures that the buffer is dirty
1356 * and will pin the buffer on memory until the sufile is written.
1358 err
= nilfs_sufile_mark_dirty(sufile
, prev
->sb_nextnum
);
1362 for (i
= 0; i
< nadd
; i
++) {
1363 /* extend segment info */
1365 segbuf
= nilfs_segbuf_new(sci
->sc_super
);
1366 if (unlikely(!segbuf
))
1369 /* map this buffer to region of segment on-disk */
1370 nilfs_segbuf_map(segbuf
, prev
->sb_nextnum
, 0, nilfs
);
1371 sci
->sc_segbuf_nblocks
+= segbuf
->sb_rest_blocks
;
1373 /* allocate the next next full segment */
1374 err
= nilfs_sufile_alloc(sufile
, &nextnextnum
);
1378 segbuf
->sb_sum
.seg_seq
= prev
->sb_sum
.seg_seq
+ 1;
1379 nilfs_segbuf_set_next_segnum(segbuf
, nextnextnum
, nilfs
);
1381 list_add_tail(&segbuf
->sb_list
, &list
);
1384 list_splice_tail(&list
, &sci
->sc_segbufs
);
1388 nilfs_segbuf_free(segbuf
);
1390 list_for_each_entry(segbuf
, &list
, sb_list
) {
1391 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1392 WARN_ON(ret
); /* never fails */
1394 nilfs_destroy_logs(&list
);
1398 static void nilfs_free_incomplete_logs(struct list_head
*logs
,
1399 struct the_nilfs
*nilfs
)
1401 struct nilfs_segment_buffer
*segbuf
, *prev
;
1402 struct inode
*sufile
= nilfs
->ns_sufile
;
1405 segbuf
= NILFS_FIRST_SEGBUF(logs
);
1406 if (nilfs
->ns_nextnum
!= segbuf
->sb_nextnum
) {
1407 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1408 WARN_ON(ret
); /* never fails */
1410 if (atomic_read(&segbuf
->sb_err
)) {
1411 /* Case 1: The first segment failed */
1412 if (segbuf
->sb_pseg_start
!= segbuf
->sb_fseg_start
)
1414 * Case 1a: Partial segment appended into an existing
1417 nilfs_terminate_segment(nilfs
, segbuf
->sb_fseg_start
,
1418 segbuf
->sb_fseg_end
);
1419 else /* Case 1b: New full segment */
1420 set_nilfs_discontinued(nilfs
);
1424 list_for_each_entry_continue(segbuf
, logs
, sb_list
) {
1425 if (prev
->sb_nextnum
!= segbuf
->sb_nextnum
) {
1426 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1427 WARN_ON(ret
); /* never fails */
1429 if (atomic_read(&segbuf
->sb_err
) &&
1430 segbuf
->sb_segnum
!= nilfs
->ns_nextnum
)
1431 /* Case 2: extended segment (!= next) failed */
1432 nilfs_sufile_set_error(sufile
, segbuf
->sb_segnum
);
1437 static void nilfs_segctor_update_segusage(struct nilfs_sc_info
*sci
,
1438 struct inode
*sufile
)
1440 struct nilfs_segment_buffer
*segbuf
;
1441 unsigned long live_blocks
;
1444 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1445 live_blocks
= segbuf
->sb_sum
.nblocks
+
1446 (segbuf
->sb_pseg_start
- segbuf
->sb_fseg_start
);
1447 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1450 WARN_ON(ret
); /* always succeed because the segusage is dirty */
1454 static void nilfs_cancel_segusage(struct list_head
*logs
, struct inode
*sufile
)
1456 struct nilfs_segment_buffer
*segbuf
;
1459 segbuf
= NILFS_FIRST_SEGBUF(logs
);
1460 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1461 segbuf
->sb_pseg_start
-
1462 segbuf
->sb_fseg_start
, 0);
1463 WARN_ON(ret
); /* always succeed because the segusage is dirty */
1465 list_for_each_entry_continue(segbuf
, logs
, sb_list
) {
1466 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1468 WARN_ON(ret
); /* always succeed */
1472 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info
*sci
,
1473 struct nilfs_segment_buffer
*last
,
1474 struct inode
*sufile
)
1476 struct nilfs_segment_buffer
*segbuf
= last
;
1479 list_for_each_entry_continue(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1480 sci
->sc_segbuf_nblocks
-= segbuf
->sb_rest_blocks
;
1481 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1484 nilfs_truncate_logs(&sci
->sc_segbufs
, last
);
1488 static int nilfs_segctor_collect(struct nilfs_sc_info
*sci
,
1489 struct the_nilfs
*nilfs
, int mode
)
1491 struct nilfs_cstage prev_stage
= sci
->sc_stage
;
1494 /* Collection retry loop */
1496 sci
->sc_nblk_this_inc
= 0;
1497 sci
->sc_curseg
= NILFS_FIRST_SEGBUF(&sci
->sc_segbufs
);
1499 err
= nilfs_segctor_reset_segment_buffer(sci
);
1503 err
= nilfs_segctor_collect_blocks(sci
, mode
);
1504 sci
->sc_nblk_this_inc
+= sci
->sc_curseg
->sb_sum
.nblocks
;
1508 if (unlikely(err
!= -E2BIG
))
1511 /* The current segment is filled up */
1512 if (mode
!= SC_LSEG_SR
||
1513 nilfs_sc_cstage_get(sci
) < NILFS_ST_CPFILE
)
1516 nilfs_clear_logs(&sci
->sc_segbufs
);
1518 if (sci
->sc_stage
.flags
& NILFS_CF_SUFREED
) {
1519 err
= nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1523 WARN_ON(err
); /* do not happen */
1524 sci
->sc_stage
.flags
&= ~NILFS_CF_SUFREED
;
1527 err
= nilfs_segctor_extend_segments(sci
, nilfs
, nadd
);
1531 nadd
= min_t(int, nadd
<< 1, SC_MAX_SEGDELTA
);
1532 sci
->sc_stage
= prev_stage
;
1534 nilfs_segctor_truncate_segments(sci
, sci
->sc_curseg
, nilfs
->ns_sufile
);
1541 static void nilfs_list_replace_buffer(struct buffer_head
*old_bh
,
1542 struct buffer_head
*new_bh
)
1544 BUG_ON(!list_empty(&new_bh
->b_assoc_buffers
));
1546 list_replace_init(&old_bh
->b_assoc_buffers
, &new_bh
->b_assoc_buffers
);
1547 /* The caller must release old_bh */
1551 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info
*sci
,
1552 struct nilfs_segment_buffer
*segbuf
,
1555 struct inode
*inode
= NULL
;
1557 unsigned long nfinfo
= segbuf
->sb_sum
.nfinfo
;
1558 unsigned long nblocks
= 0, ndatablk
= 0;
1559 const struct nilfs_sc_operations
*sc_op
= NULL
;
1560 struct nilfs_segsum_pointer ssp
;
1561 struct nilfs_finfo
*finfo
= NULL
;
1562 union nilfs_binfo binfo
;
1563 struct buffer_head
*bh
, *bh_org
;
1570 blocknr
= segbuf
->sb_pseg_start
+ segbuf
->sb_sum
.nsumblk
;
1571 ssp
.bh
= NILFS_SEGBUF_FIRST_BH(&segbuf
->sb_segsum_buffers
);
1572 ssp
.offset
= sizeof(struct nilfs_segment_summary
);
1574 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
, b_assoc_buffers
) {
1575 if (bh
== segbuf
->sb_super_root
)
1578 finfo
= nilfs_segctor_map_segsum_entry(
1579 sci
, &ssp
, sizeof(*finfo
));
1580 ino
= le64_to_cpu(finfo
->fi_ino
);
1581 nblocks
= le32_to_cpu(finfo
->fi_nblocks
);
1582 ndatablk
= le32_to_cpu(finfo
->fi_ndatablk
);
1584 inode
= bh
->b_page
->mapping
->host
;
1586 if (mode
== SC_LSEG_DSYNC
)
1587 sc_op
= &nilfs_sc_dsync_ops
;
1588 else if (ino
== NILFS_DAT_INO
)
1589 sc_op
= &nilfs_sc_dat_ops
;
1590 else /* file blocks */
1591 sc_op
= &nilfs_sc_file_ops
;
1595 err
= nilfs_bmap_assign(NILFS_I(inode
)->i_bmap
, &bh
, blocknr
,
1598 nilfs_list_replace_buffer(bh_org
, bh
);
1604 sc_op
->write_data_binfo(sci
, &ssp
, &binfo
);
1606 sc_op
->write_node_binfo(sci
, &ssp
, &binfo
);
1609 if (--nblocks
== 0) {
1613 } else if (ndatablk
> 0)
1623 static int nilfs_segctor_assign(struct nilfs_sc_info
*sci
, int mode
)
1625 struct nilfs_segment_buffer
*segbuf
;
1628 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1629 err
= nilfs_segctor_update_payload_blocknr(sci
, segbuf
, mode
);
1632 nilfs_segbuf_fill_in_segsum(segbuf
);
1637 static void nilfs_begin_page_io(struct page
*page
)
1639 if (!page
|| PageWriteback(page
))
1641 * For split b-tree node pages, this function may be called
1642 * twice. We ignore the 2nd or later calls by this check.
1647 clear_page_dirty_for_io(page
);
1648 set_page_writeback(page
);
1652 static void nilfs_segctor_prepare_write(struct nilfs_sc_info
*sci
)
1654 struct nilfs_segment_buffer
*segbuf
;
1655 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1657 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1658 struct buffer_head
*bh
;
1660 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1662 if (bh
->b_page
!= bd_page
) {
1665 clear_page_dirty_for_io(bd_page
);
1666 set_page_writeback(bd_page
);
1667 unlock_page(bd_page
);
1669 bd_page
= bh
->b_page
;
1673 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1675 set_buffer_async_write(bh
);
1676 if (bh
== segbuf
->sb_super_root
) {
1677 if (bh
->b_page
!= bd_page
) {
1679 clear_page_dirty_for_io(bd_page
);
1680 set_page_writeback(bd_page
);
1681 unlock_page(bd_page
);
1682 bd_page
= bh
->b_page
;
1686 if (bh
->b_page
!= fs_page
) {
1687 nilfs_begin_page_io(fs_page
);
1688 fs_page
= bh
->b_page
;
1694 clear_page_dirty_for_io(bd_page
);
1695 set_page_writeback(bd_page
);
1696 unlock_page(bd_page
);
1698 nilfs_begin_page_io(fs_page
);
1701 static int nilfs_segctor_write(struct nilfs_sc_info
*sci
,
1702 struct the_nilfs
*nilfs
)
1706 ret
= nilfs_write_logs(&sci
->sc_segbufs
, nilfs
);
1707 list_splice_tail_init(&sci
->sc_segbufs
, &sci
->sc_write_logs
);
1711 static void nilfs_end_page_io(struct page
*page
, int err
)
1716 if (buffer_nilfs_node(page_buffers(page
)) && !PageWriteback(page
)) {
1718 * For b-tree node pages, this function may be called twice
1719 * or more because they might be split in a segment.
1721 if (PageDirty(page
)) {
1723 * For pages holding split b-tree node buffers, dirty
1724 * flag on the buffers may be cleared discretely.
1725 * In that case, the page is once redirtied for
1726 * remaining buffers, and it must be cancelled if
1727 * all the buffers get cleaned later.
1730 if (nilfs_page_buffers_clean(page
))
1731 __nilfs_clear_page_dirty(page
);
1738 if (!nilfs_page_buffers_clean(page
))
1739 __set_page_dirty_nobuffers(page
);
1740 ClearPageError(page
);
1742 __set_page_dirty_nobuffers(page
);
1746 end_page_writeback(page
);
1749 static void nilfs_abort_logs(struct list_head
*logs
, int err
)
1751 struct nilfs_segment_buffer
*segbuf
;
1752 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1753 struct buffer_head
*bh
;
1755 if (list_empty(logs
))
1758 list_for_each_entry(segbuf
, logs
, sb_list
) {
1759 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1761 if (bh
->b_page
!= bd_page
) {
1763 end_page_writeback(bd_page
);
1764 bd_page
= bh
->b_page
;
1768 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1770 clear_buffer_async_write(bh
);
1771 if (bh
== segbuf
->sb_super_root
) {
1772 if (bh
->b_page
!= bd_page
) {
1773 end_page_writeback(bd_page
);
1774 bd_page
= bh
->b_page
;
1778 if (bh
->b_page
!= fs_page
) {
1779 nilfs_end_page_io(fs_page
, err
);
1780 fs_page
= bh
->b_page
;
1785 end_page_writeback(bd_page
);
1787 nilfs_end_page_io(fs_page
, err
);
1790 static void nilfs_segctor_abort_construction(struct nilfs_sc_info
*sci
,
1791 struct the_nilfs
*nilfs
, int err
)
1796 list_splice_tail_init(&sci
->sc_write_logs
, &logs
);
1797 ret
= nilfs_wait_on_logs(&logs
);
1798 nilfs_abort_logs(&logs
, ret
? : err
);
1800 list_splice_tail_init(&sci
->sc_segbufs
, &logs
);
1801 nilfs_cancel_segusage(&logs
, nilfs
->ns_sufile
);
1802 nilfs_free_incomplete_logs(&logs
, nilfs
);
1804 if (sci
->sc_stage
.flags
& NILFS_CF_SUFREED
) {
1805 ret
= nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1809 WARN_ON(ret
); /* do not happen */
1812 nilfs_destroy_logs(&logs
);
1815 static void nilfs_set_next_segment(struct the_nilfs
*nilfs
,
1816 struct nilfs_segment_buffer
*segbuf
)
1818 nilfs
->ns_segnum
= segbuf
->sb_segnum
;
1819 nilfs
->ns_nextnum
= segbuf
->sb_nextnum
;
1820 nilfs
->ns_pseg_offset
= segbuf
->sb_pseg_start
- segbuf
->sb_fseg_start
1821 + segbuf
->sb_sum
.nblocks
;
1822 nilfs
->ns_seg_seq
= segbuf
->sb_sum
.seg_seq
;
1823 nilfs
->ns_ctime
= segbuf
->sb_sum
.ctime
;
1826 static void nilfs_segctor_complete_write(struct nilfs_sc_info
*sci
)
1828 struct nilfs_segment_buffer
*segbuf
;
1829 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1830 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
1831 int update_sr
= false;
1833 list_for_each_entry(segbuf
, &sci
->sc_write_logs
, sb_list
) {
1834 struct buffer_head
*bh
;
1836 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1838 set_buffer_uptodate(bh
);
1839 clear_buffer_dirty(bh
);
1840 if (bh
->b_page
!= bd_page
) {
1842 end_page_writeback(bd_page
);
1843 bd_page
= bh
->b_page
;
1847 * We assume that the buffers which belong to the same page
1848 * continue over the buffer list.
1849 * Under this assumption, the last BHs of pages is
1850 * identifiable by the discontinuity of bh->b_page
1851 * (page != fs_page).
1853 * For B-tree node blocks, however, this assumption is not
1854 * guaranteed. The cleanup code of B-tree node pages needs
1857 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1859 const unsigned long set_bits
= BIT(BH_Uptodate
);
1860 const unsigned long clear_bits
=
1861 (BIT(BH_Dirty
) | BIT(BH_Async_Write
) |
1862 BIT(BH_Delay
) | BIT(BH_NILFS_Volatile
) |
1863 BIT(BH_NILFS_Redirected
));
1865 set_mask_bits(&bh
->b_state
, clear_bits
, set_bits
);
1866 if (bh
== segbuf
->sb_super_root
) {
1867 if (bh
->b_page
!= bd_page
) {
1868 end_page_writeback(bd_page
);
1869 bd_page
= bh
->b_page
;
1874 if (bh
->b_page
!= fs_page
) {
1875 nilfs_end_page_io(fs_page
, 0);
1876 fs_page
= bh
->b_page
;
1880 if (!nilfs_segbuf_simplex(segbuf
)) {
1881 if (segbuf
->sb_sum
.flags
& NILFS_SS_LOGBGN
) {
1882 set_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
);
1883 sci
->sc_lseg_stime
= jiffies
;
1885 if (segbuf
->sb_sum
.flags
& NILFS_SS_LOGEND
)
1886 clear_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
);
1890 * Since pages may continue over multiple segment buffers,
1891 * end of the last page must be checked outside of the loop.
1894 end_page_writeback(bd_page
);
1896 nilfs_end_page_io(fs_page
, 0);
1898 nilfs_drop_collected_inodes(&sci
->sc_dirty_files
);
1900 if (nilfs_doing_gc())
1901 nilfs_drop_collected_inodes(&sci
->sc_gc_inodes
);
1903 nilfs
->ns_nongc_ctime
= sci
->sc_seg_ctime
;
1905 sci
->sc_nblk_inc
+= sci
->sc_nblk_this_inc
;
1907 segbuf
= NILFS_LAST_SEGBUF(&sci
->sc_write_logs
);
1908 nilfs_set_next_segment(nilfs
, segbuf
);
1911 nilfs
->ns_flushed_device
= 0;
1912 nilfs_set_last_segment(nilfs
, segbuf
->sb_pseg_start
,
1913 segbuf
->sb_sum
.seg_seq
, nilfs
->ns_cno
++);
1915 clear_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
);
1916 clear_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
1917 set_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
);
1918 nilfs_segctor_clear_metadata_dirty(sci
);
1920 clear_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
);
1923 static int nilfs_segctor_wait(struct nilfs_sc_info
*sci
)
1927 ret
= nilfs_wait_on_logs(&sci
->sc_write_logs
);
1929 nilfs_segctor_complete_write(sci
);
1930 nilfs_destroy_logs(&sci
->sc_write_logs
);
1935 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info
*sci
,
1936 struct the_nilfs
*nilfs
)
1938 struct nilfs_inode_info
*ii
, *n
;
1939 struct inode
*ifile
= sci
->sc_root
->ifile
;
1941 spin_lock(&nilfs
->ns_inode_lock
);
1943 list_for_each_entry_safe(ii
, n
, &nilfs
->ns_dirty_files
, i_dirty
) {
1945 struct buffer_head
*ibh
;
1948 spin_unlock(&nilfs
->ns_inode_lock
);
1949 err
= nilfs_ifile_get_inode_block(
1950 ifile
, ii
->vfs_inode
.i_ino
, &ibh
);
1951 if (unlikely(err
)) {
1952 nilfs_msg(sci
->sc_super
, KERN_WARNING
,
1953 "log writer: error %d getting inode block (ino=%lu)",
1954 err
, ii
->vfs_inode
.i_ino
);
1957 spin_lock(&nilfs
->ns_inode_lock
);
1958 if (likely(!ii
->i_bh
))
1965 // Always redirty the buffer to avoid race condition
1966 mark_buffer_dirty(ii
->i_bh
);
1967 nilfs_mdt_mark_dirty(ifile
);
1969 clear_bit(NILFS_I_QUEUED
, &ii
->i_state
);
1970 set_bit(NILFS_I_BUSY
, &ii
->i_state
);
1971 list_move_tail(&ii
->i_dirty
, &sci
->sc_dirty_files
);
1973 spin_unlock(&nilfs
->ns_inode_lock
);
1978 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info
*sci
,
1979 struct the_nilfs
*nilfs
)
1981 struct nilfs_inode_info
*ii
, *n
;
1982 int during_mount
= !(sci
->sc_super
->s_flags
& SB_ACTIVE
);
1983 int defer_iput
= false;
1985 spin_lock(&nilfs
->ns_inode_lock
);
1986 list_for_each_entry_safe(ii
, n
, &sci
->sc_dirty_files
, i_dirty
) {
1987 if (!test_and_clear_bit(NILFS_I_UPDATED
, &ii
->i_state
) ||
1988 test_bit(NILFS_I_DIRTY
, &ii
->i_state
))
1991 clear_bit(NILFS_I_BUSY
, &ii
->i_state
);
1994 list_del_init(&ii
->i_dirty
);
1995 if (!ii
->vfs_inode
.i_nlink
|| during_mount
) {
1997 * Defer calling iput() to avoid deadlocks if
1998 * i_nlink == 0 or mount is not yet finished.
2000 list_add_tail(&ii
->i_dirty
, &sci
->sc_iput_queue
);
2003 spin_unlock(&nilfs
->ns_inode_lock
);
2004 iput(&ii
->vfs_inode
);
2005 spin_lock(&nilfs
->ns_inode_lock
);
2008 spin_unlock(&nilfs
->ns_inode_lock
);
2011 schedule_work(&sci
->sc_iput_work
);
2015 * Main procedure of segment constructor
2017 static int nilfs_segctor_do_construct(struct nilfs_sc_info
*sci
, int mode
)
2019 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2022 nilfs_sc_cstage_set(sci
, NILFS_ST_INIT
);
2023 sci
->sc_cno
= nilfs
->ns_cno
;
2025 err
= nilfs_segctor_collect_dirty_files(sci
, nilfs
);
2029 if (nilfs_test_metadata_dirty(nilfs
, sci
->sc_root
))
2030 set_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
2032 if (nilfs_segctor_clean(sci
))
2036 sci
->sc_stage
.flags
&= ~NILFS_CF_HISTORY_MASK
;
2038 err
= nilfs_segctor_begin_construction(sci
, nilfs
);
2042 /* Update time stamp */
2043 sci
->sc_seg_ctime
= ktime_get_real_seconds();
2045 err
= nilfs_segctor_collect(sci
, nilfs
, mode
);
2049 /* Avoid empty segment */
2050 if (nilfs_sc_cstage_get(sci
) == NILFS_ST_DONE
&&
2051 nilfs_segbuf_empty(sci
->sc_curseg
)) {
2052 nilfs_segctor_abort_construction(sci
, nilfs
, 1);
2056 err
= nilfs_segctor_assign(sci
, mode
);
2060 if (sci
->sc_stage
.flags
& NILFS_CF_IFILE_STARTED
)
2061 nilfs_segctor_fill_in_file_bmap(sci
);
2063 if (mode
== SC_LSEG_SR
&&
2064 nilfs_sc_cstage_get(sci
) >= NILFS_ST_CPFILE
) {
2065 err
= nilfs_segctor_fill_in_checkpoint(sci
);
2067 goto failed_to_write
;
2069 nilfs_segctor_fill_in_super_root(sci
, nilfs
);
2071 nilfs_segctor_update_segusage(sci
, nilfs
->ns_sufile
);
2073 /* Write partial segments */
2074 nilfs_segctor_prepare_write(sci
);
2076 nilfs_add_checksums_on_logs(&sci
->sc_segbufs
,
2077 nilfs
->ns_crc_seed
);
2079 err
= nilfs_segctor_write(sci
, nilfs
);
2081 goto failed_to_write
;
2083 if (nilfs_sc_cstage_get(sci
) == NILFS_ST_DONE
||
2084 nilfs
->ns_blocksize_bits
!= PAGE_SHIFT
) {
2086 * At this point, we avoid double buffering
2087 * for blocksize < pagesize because page dirty
2088 * flag is turned off during write and dirty
2089 * buffers are not properly collected for
2090 * pages crossing over segments.
2092 err
= nilfs_segctor_wait(sci
);
2094 goto failed_to_write
;
2096 } while (nilfs_sc_cstage_get(sci
) != NILFS_ST_DONE
);
2099 nilfs_segctor_drop_written_files(sci
, nilfs
);
2103 if (sci
->sc_stage
.flags
& NILFS_CF_IFILE_STARTED
)
2104 nilfs_redirty_inodes(&sci
->sc_dirty_files
);
2107 if (nilfs_doing_gc())
2108 nilfs_redirty_inodes(&sci
->sc_gc_inodes
);
2109 nilfs_segctor_abort_construction(sci
, nilfs
, err
);
2114 * nilfs_segctor_start_timer - set timer of background write
2115 * @sci: nilfs_sc_info
2117 * If the timer has already been set, it ignores the new request.
2118 * This function MUST be called within a section locking the segment
2121 static void nilfs_segctor_start_timer(struct nilfs_sc_info
*sci
)
2123 spin_lock(&sci
->sc_state_lock
);
2124 if (!(sci
->sc_state
& NILFS_SEGCTOR_COMMIT
)) {
2125 sci
->sc_timer
.expires
= jiffies
+ sci
->sc_interval
;
2126 add_timer(&sci
->sc_timer
);
2127 sci
->sc_state
|= NILFS_SEGCTOR_COMMIT
;
2129 spin_unlock(&sci
->sc_state_lock
);
2132 static void nilfs_segctor_do_flush(struct nilfs_sc_info
*sci
, int bn
)
2134 spin_lock(&sci
->sc_state_lock
);
2135 if (!(sci
->sc_flush_request
& BIT(bn
))) {
2136 unsigned long prev_req
= sci
->sc_flush_request
;
2138 sci
->sc_flush_request
|= BIT(bn
);
2140 wake_up(&sci
->sc_wait_daemon
);
2142 spin_unlock(&sci
->sc_state_lock
);
2146 * nilfs_flush_segment - trigger a segment construction for resource control
2148 * @ino: inode number of the file to be flushed out.
2150 void nilfs_flush_segment(struct super_block
*sb
, ino_t ino
)
2152 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2153 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2155 if (!sci
|| nilfs_doing_construction())
2157 nilfs_segctor_do_flush(sci
, NILFS_MDT_INODE(sb
, ino
) ? ino
: 0);
2158 /* assign bit 0 to data files */
2161 struct nilfs_segctor_wait_request
{
2162 wait_queue_entry_t wq
;
2168 static int nilfs_segctor_sync(struct nilfs_sc_info
*sci
)
2170 struct nilfs_segctor_wait_request wait_req
;
2173 spin_lock(&sci
->sc_state_lock
);
2174 init_wait(&wait_req
.wq
);
2176 atomic_set(&wait_req
.done
, 0);
2177 wait_req
.seq
= ++sci
->sc_seq_request
;
2178 spin_unlock(&sci
->sc_state_lock
);
2180 init_waitqueue_entry(&wait_req
.wq
, current
);
2181 add_wait_queue(&sci
->sc_wait_request
, &wait_req
.wq
);
2182 set_current_state(TASK_INTERRUPTIBLE
);
2183 wake_up(&sci
->sc_wait_daemon
);
2186 if (atomic_read(&wait_req
.done
)) {
2190 if (!signal_pending(current
)) {
2197 finish_wait(&sci
->sc_wait_request
, &wait_req
.wq
);
2201 static void nilfs_segctor_wakeup(struct nilfs_sc_info
*sci
, int err
)
2203 struct nilfs_segctor_wait_request
*wrq
, *n
;
2204 unsigned long flags
;
2206 spin_lock_irqsave(&sci
->sc_wait_request
.lock
, flags
);
2207 list_for_each_entry_safe(wrq
, n
, &sci
->sc_wait_request
.head
, wq
.entry
) {
2208 if (!atomic_read(&wrq
->done
) &&
2209 nilfs_cnt32_ge(sci
->sc_seq_done
, wrq
->seq
)) {
2211 atomic_set(&wrq
->done
, 1);
2213 if (atomic_read(&wrq
->done
)) {
2214 wrq
->wq
.func(&wrq
->wq
,
2215 TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
2219 spin_unlock_irqrestore(&sci
->sc_wait_request
.lock
, flags
);
2223 * nilfs_construct_segment - construct a logical segment
2226 * Return Value: On success, 0 is retured. On errors, one of the following
2227 * negative error code is returned.
2229 * %-EROFS - Read only filesystem.
2233 * %-ENOSPC - No space left on device (only in a panic state).
2235 * %-ERESTARTSYS - Interrupted.
2237 * %-ENOMEM - Insufficient memory available.
2239 int nilfs_construct_segment(struct super_block
*sb
)
2241 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2242 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2243 struct nilfs_transaction_info
*ti
;
2249 /* A call inside transactions causes a deadlock. */
2250 BUG_ON((ti
= current
->journal_info
) && ti
->ti_magic
== NILFS_TI_MAGIC
);
2252 err
= nilfs_segctor_sync(sci
);
2257 * nilfs_construct_dsync_segment - construct a data-only logical segment
2259 * @inode: inode whose data blocks should be written out
2260 * @start: start byte offset
2261 * @end: end byte offset (inclusive)
2263 * Return Value: On success, 0 is retured. On errors, one of the following
2264 * negative error code is returned.
2266 * %-EROFS - Read only filesystem.
2270 * %-ENOSPC - No space left on device (only in a panic state).
2272 * %-ERESTARTSYS - Interrupted.
2274 * %-ENOMEM - Insufficient memory available.
2276 int nilfs_construct_dsync_segment(struct super_block
*sb
, struct inode
*inode
,
2277 loff_t start
, loff_t end
)
2279 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2280 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2281 struct nilfs_inode_info
*ii
;
2282 struct nilfs_transaction_info ti
;
2288 nilfs_transaction_lock(sb
, &ti
, 0);
2290 ii
= NILFS_I(inode
);
2291 if (test_bit(NILFS_I_INODE_SYNC
, &ii
->i_state
) ||
2292 nilfs_test_opt(nilfs
, STRICT_ORDER
) ||
2293 test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
) ||
2294 nilfs_discontinued(nilfs
)) {
2295 nilfs_transaction_unlock(sb
);
2296 err
= nilfs_segctor_sync(sci
);
2300 spin_lock(&nilfs
->ns_inode_lock
);
2301 if (!test_bit(NILFS_I_QUEUED
, &ii
->i_state
) &&
2302 !test_bit(NILFS_I_BUSY
, &ii
->i_state
)) {
2303 spin_unlock(&nilfs
->ns_inode_lock
);
2304 nilfs_transaction_unlock(sb
);
2307 spin_unlock(&nilfs
->ns_inode_lock
);
2308 sci
->sc_dsync_inode
= ii
;
2309 sci
->sc_dsync_start
= start
;
2310 sci
->sc_dsync_end
= end
;
2312 err
= nilfs_segctor_do_construct(sci
, SC_LSEG_DSYNC
);
2314 nilfs
->ns_flushed_device
= 0;
2316 nilfs_transaction_unlock(sb
);
2320 #define FLUSH_FILE_BIT (0x1) /* data file only */
2321 #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */
2324 * nilfs_segctor_accept - record accepted sequence count of log-write requests
2325 * @sci: segment constructor object
2327 static void nilfs_segctor_accept(struct nilfs_sc_info
*sci
)
2329 spin_lock(&sci
->sc_state_lock
);
2330 sci
->sc_seq_accepted
= sci
->sc_seq_request
;
2331 spin_unlock(&sci
->sc_state_lock
);
2332 del_timer_sync(&sci
->sc_timer
);
2336 * nilfs_segctor_notify - notify the result of request to caller threads
2337 * @sci: segment constructor object
2338 * @mode: mode of log forming
2339 * @err: error code to be notified
2341 static void nilfs_segctor_notify(struct nilfs_sc_info
*sci
, int mode
, int err
)
2343 /* Clear requests (even when the construction failed) */
2344 spin_lock(&sci
->sc_state_lock
);
2346 if (mode
== SC_LSEG_SR
) {
2347 sci
->sc_state
&= ~NILFS_SEGCTOR_COMMIT
;
2348 sci
->sc_seq_done
= sci
->sc_seq_accepted
;
2349 nilfs_segctor_wakeup(sci
, err
);
2350 sci
->sc_flush_request
= 0;
2352 if (mode
== SC_FLUSH_FILE
)
2353 sci
->sc_flush_request
&= ~FLUSH_FILE_BIT
;
2354 else if (mode
== SC_FLUSH_DAT
)
2355 sci
->sc_flush_request
&= ~FLUSH_DAT_BIT
;
2357 /* re-enable timer if checkpoint creation was not done */
2358 if ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) &&
2359 time_before(jiffies
, sci
->sc_timer
.expires
))
2360 add_timer(&sci
->sc_timer
);
2362 spin_unlock(&sci
->sc_state_lock
);
2366 * nilfs_segctor_construct - form logs and write them to disk
2367 * @sci: segment constructor object
2368 * @mode: mode of log forming
2370 static int nilfs_segctor_construct(struct nilfs_sc_info
*sci
, int mode
)
2372 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2373 struct nilfs_super_block
**sbp
;
2376 nilfs_segctor_accept(sci
);
2378 if (nilfs_discontinued(nilfs
))
2380 if (!nilfs_segctor_confirm(sci
))
2381 err
= nilfs_segctor_do_construct(sci
, mode
);
2384 if (mode
!= SC_FLUSH_DAT
)
2385 atomic_set(&nilfs
->ns_ndirtyblks
, 0);
2386 if (test_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
) &&
2387 nilfs_discontinued(nilfs
)) {
2388 down_write(&nilfs
->ns_sem
);
2390 sbp
= nilfs_prepare_super(sci
->sc_super
,
2391 nilfs_sb_will_flip(nilfs
));
2393 nilfs_set_log_cursor(sbp
[0], nilfs
);
2394 err
= nilfs_commit_super(sci
->sc_super
,
2397 up_write(&nilfs
->ns_sem
);
2401 nilfs_segctor_notify(sci
, mode
, err
);
2405 static void nilfs_construction_timeout(struct timer_list
*t
)
2407 struct nilfs_sc_info
*sci
= from_timer(sci
, t
, sc_timer
);
2409 wake_up_process(sci
->sc_timer_task
);
2413 nilfs_remove_written_gcinodes(struct the_nilfs
*nilfs
, struct list_head
*head
)
2415 struct nilfs_inode_info
*ii
, *n
;
2417 list_for_each_entry_safe(ii
, n
, head
, i_dirty
) {
2418 if (!test_bit(NILFS_I_UPDATED
, &ii
->i_state
))
2420 list_del_init(&ii
->i_dirty
);
2421 truncate_inode_pages(&ii
->vfs_inode
.i_data
, 0);
2422 nilfs_btnode_cache_clear(&ii
->i_btnode_cache
);
2423 iput(&ii
->vfs_inode
);
2427 int nilfs_clean_segments(struct super_block
*sb
, struct nilfs_argv
*argv
,
2430 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2431 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2432 struct nilfs_transaction_info ti
;
2438 nilfs_transaction_lock(sb
, &ti
, 1);
2440 err
= nilfs_mdt_save_to_shadow_map(nilfs
->ns_dat
);
2444 err
= nilfs_ioctl_prepare_clean_segments(nilfs
, argv
, kbufs
);
2445 if (unlikely(err
)) {
2446 nilfs_mdt_restore_from_shadow_map(nilfs
->ns_dat
);
2450 sci
->sc_freesegs
= kbufs
[4];
2451 sci
->sc_nfreesegs
= argv
[4].v_nmembs
;
2452 list_splice_tail_init(&nilfs
->ns_gc_inodes
, &sci
->sc_gc_inodes
);
2455 err
= nilfs_segctor_construct(sci
, SC_LSEG_SR
);
2456 nilfs_remove_written_gcinodes(nilfs
, &sci
->sc_gc_inodes
);
2461 nilfs_msg(sb
, KERN_WARNING
, "error %d cleaning segments", err
);
2462 set_current_state(TASK_INTERRUPTIBLE
);
2463 schedule_timeout(sci
->sc_interval
);
2465 if (nilfs_test_opt(nilfs
, DISCARD
)) {
2466 int ret
= nilfs_discard_segments(nilfs
, sci
->sc_freesegs
,
2469 nilfs_msg(sb
, KERN_WARNING
,
2470 "error %d on discard request, turning discards off for the device",
2472 nilfs_clear_opt(nilfs
, DISCARD
);
2477 sci
->sc_freesegs
= NULL
;
2478 sci
->sc_nfreesegs
= 0;
2479 nilfs_mdt_clear_shadow_map(nilfs
->ns_dat
);
2480 nilfs_transaction_unlock(sb
);
2484 static void nilfs_segctor_thread_construct(struct nilfs_sc_info
*sci
, int mode
)
2486 struct nilfs_transaction_info ti
;
2488 nilfs_transaction_lock(sci
->sc_super
, &ti
, 0);
2489 nilfs_segctor_construct(sci
, mode
);
2492 * Unclosed segment should be retried. We do this using sc_timer.
2493 * Timeout of sc_timer will invoke complete construction which leads
2494 * to close the current logical segment.
2496 if (test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
))
2497 nilfs_segctor_start_timer(sci
);
2499 nilfs_transaction_unlock(sci
->sc_super
);
2502 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info
*sci
)
2506 spin_lock(&sci
->sc_state_lock
);
2507 mode
= (sci
->sc_flush_request
& FLUSH_DAT_BIT
) ?
2508 SC_FLUSH_DAT
: SC_FLUSH_FILE
;
2509 spin_unlock(&sci
->sc_state_lock
);
2512 nilfs_segctor_do_construct(sci
, mode
);
2514 spin_lock(&sci
->sc_state_lock
);
2515 sci
->sc_flush_request
&= (mode
== SC_FLUSH_FILE
) ?
2516 ~FLUSH_FILE_BIT
: ~FLUSH_DAT_BIT
;
2517 spin_unlock(&sci
->sc_state_lock
);
2519 clear_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
);
2522 static int nilfs_segctor_flush_mode(struct nilfs_sc_info
*sci
)
2524 if (!test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
) ||
2525 time_before(jiffies
, sci
->sc_lseg_stime
+ sci
->sc_mjcp_freq
)) {
2526 if (!(sci
->sc_flush_request
& ~FLUSH_FILE_BIT
))
2527 return SC_FLUSH_FILE
;
2528 else if (!(sci
->sc_flush_request
& ~FLUSH_DAT_BIT
))
2529 return SC_FLUSH_DAT
;
2535 * nilfs_segctor_thread - main loop of the segment constructor thread.
2536 * @arg: pointer to a struct nilfs_sc_info.
2538 * nilfs_segctor_thread() initializes a timer and serves as a daemon
2539 * to execute segment constructions.
2541 static int nilfs_segctor_thread(void *arg
)
2543 struct nilfs_sc_info
*sci
= (struct nilfs_sc_info
*)arg
;
2544 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2547 sci
->sc_timer_task
= current
;
2550 sci
->sc_task
= current
;
2551 wake_up(&sci
->sc_wait_task
); /* for nilfs_segctor_start_thread() */
2552 nilfs_msg(sci
->sc_super
, KERN_INFO
,
2553 "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds",
2554 sci
->sc_interval
/ HZ
, sci
->sc_mjcp_freq
/ HZ
);
2556 spin_lock(&sci
->sc_state_lock
);
2561 if (sci
->sc_state
& NILFS_SEGCTOR_QUIT
)
2564 if (timeout
|| sci
->sc_seq_request
!= sci
->sc_seq_done
)
2566 else if (sci
->sc_flush_request
)
2567 mode
= nilfs_segctor_flush_mode(sci
);
2571 spin_unlock(&sci
->sc_state_lock
);
2572 nilfs_segctor_thread_construct(sci
, mode
);
2573 spin_lock(&sci
->sc_state_lock
);
2578 if (freezing(current
)) {
2579 spin_unlock(&sci
->sc_state_lock
);
2581 spin_lock(&sci
->sc_state_lock
);
2584 int should_sleep
= 1;
2586 prepare_to_wait(&sci
->sc_wait_daemon
, &wait
,
2587 TASK_INTERRUPTIBLE
);
2589 if (sci
->sc_seq_request
!= sci
->sc_seq_done
)
2591 else if (sci
->sc_flush_request
)
2593 else if (sci
->sc_state
& NILFS_SEGCTOR_COMMIT
)
2594 should_sleep
= time_before(jiffies
,
2595 sci
->sc_timer
.expires
);
2598 spin_unlock(&sci
->sc_state_lock
);
2600 spin_lock(&sci
->sc_state_lock
);
2602 finish_wait(&sci
->sc_wait_daemon
, &wait
);
2603 timeout
= ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) &&
2604 time_after_eq(jiffies
, sci
->sc_timer
.expires
));
2606 if (nilfs_sb_dirty(nilfs
) && nilfs_sb_need_update(nilfs
))
2607 set_nilfs_discontinued(nilfs
);
2612 spin_unlock(&sci
->sc_state_lock
);
2615 sci
->sc_task
= NULL
;
2616 wake_up(&sci
->sc_wait_task
); /* for nilfs_segctor_kill_thread() */
2620 static int nilfs_segctor_start_thread(struct nilfs_sc_info
*sci
)
2622 struct task_struct
*t
;
2624 t
= kthread_run(nilfs_segctor_thread
, sci
, "segctord");
2626 int err
= PTR_ERR(t
);
2628 nilfs_msg(sci
->sc_super
, KERN_ERR
,
2629 "error %d creating segctord thread", err
);
2632 wait_event(sci
->sc_wait_task
, sci
->sc_task
!= NULL
);
2636 static void nilfs_segctor_kill_thread(struct nilfs_sc_info
*sci
)
2637 __acquires(&sci
->sc_state_lock
)
2638 __releases(&sci
->sc_state_lock
)
2640 sci
->sc_state
|= NILFS_SEGCTOR_QUIT
;
2642 while (sci
->sc_task
) {
2643 wake_up(&sci
->sc_wait_daemon
);
2644 spin_unlock(&sci
->sc_state_lock
);
2645 wait_event(sci
->sc_wait_task
, sci
->sc_task
== NULL
);
2646 spin_lock(&sci
->sc_state_lock
);
2651 * Setup & clean-up functions
2653 static struct nilfs_sc_info
*nilfs_segctor_new(struct super_block
*sb
,
2654 struct nilfs_root
*root
)
2656 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2657 struct nilfs_sc_info
*sci
;
2659 sci
= kzalloc(sizeof(*sci
), GFP_KERNEL
);
2665 nilfs_get_root(root
);
2666 sci
->sc_root
= root
;
2668 init_waitqueue_head(&sci
->sc_wait_request
);
2669 init_waitqueue_head(&sci
->sc_wait_daemon
);
2670 init_waitqueue_head(&sci
->sc_wait_task
);
2671 spin_lock_init(&sci
->sc_state_lock
);
2672 INIT_LIST_HEAD(&sci
->sc_dirty_files
);
2673 INIT_LIST_HEAD(&sci
->sc_segbufs
);
2674 INIT_LIST_HEAD(&sci
->sc_write_logs
);
2675 INIT_LIST_HEAD(&sci
->sc_gc_inodes
);
2676 INIT_LIST_HEAD(&sci
->sc_iput_queue
);
2677 INIT_WORK(&sci
->sc_iput_work
, nilfs_iput_work_func
);
2678 timer_setup(&sci
->sc_timer
, nilfs_construction_timeout
, 0);
2680 sci
->sc_interval
= HZ
* NILFS_SC_DEFAULT_TIMEOUT
;
2681 sci
->sc_mjcp_freq
= HZ
* NILFS_SC_DEFAULT_SR_FREQ
;
2682 sci
->sc_watermark
= NILFS_SC_DEFAULT_WATERMARK
;
2684 if (nilfs
->ns_interval
)
2685 sci
->sc_interval
= HZ
* nilfs
->ns_interval
;
2686 if (nilfs
->ns_watermark
)
2687 sci
->sc_watermark
= nilfs
->ns_watermark
;
2691 static void nilfs_segctor_write_out(struct nilfs_sc_info
*sci
)
2693 int ret
, retrycount
= NILFS_SC_CLEANUP_RETRY
;
2696 * The segctord thread was stopped and its timer was removed.
2697 * But some tasks remain.
2700 struct nilfs_transaction_info ti
;
2702 nilfs_transaction_lock(sci
->sc_super
, &ti
, 0);
2703 ret
= nilfs_segctor_construct(sci
, SC_LSEG_SR
);
2704 nilfs_transaction_unlock(sci
->sc_super
);
2706 flush_work(&sci
->sc_iput_work
);
2708 } while (ret
&& retrycount
-- > 0);
2712 * nilfs_segctor_destroy - destroy the segment constructor.
2713 * @sci: nilfs_sc_info
2715 * nilfs_segctor_destroy() kills the segctord thread and frees
2716 * the nilfs_sc_info struct.
2717 * Caller must hold the segment semaphore.
2719 static void nilfs_segctor_destroy(struct nilfs_sc_info
*sci
)
2721 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2724 up_write(&nilfs
->ns_segctor_sem
);
2726 spin_lock(&sci
->sc_state_lock
);
2727 nilfs_segctor_kill_thread(sci
);
2728 flag
= ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) || sci
->sc_flush_request
2729 || sci
->sc_seq_request
!= sci
->sc_seq_done
);
2730 spin_unlock(&sci
->sc_state_lock
);
2732 if (flush_work(&sci
->sc_iput_work
))
2735 if (flag
|| !nilfs_segctor_confirm(sci
))
2736 nilfs_segctor_write_out(sci
);
2738 if (!list_empty(&sci
->sc_dirty_files
)) {
2739 nilfs_msg(sci
->sc_super
, KERN_WARNING
,
2740 "disposed unprocessed dirty file(s) when stopping log writer");
2741 nilfs_dispose_list(nilfs
, &sci
->sc_dirty_files
, 1);
2744 if (!list_empty(&sci
->sc_iput_queue
)) {
2745 nilfs_msg(sci
->sc_super
, KERN_WARNING
,
2746 "disposed unprocessed inode(s) in iput queue when stopping log writer");
2747 nilfs_dispose_list(nilfs
, &sci
->sc_iput_queue
, 1);
2750 WARN_ON(!list_empty(&sci
->sc_segbufs
));
2751 WARN_ON(!list_empty(&sci
->sc_write_logs
));
2753 nilfs_put_root(sci
->sc_root
);
2755 down_write(&nilfs
->ns_segctor_sem
);
2757 del_timer_sync(&sci
->sc_timer
);
2762 * nilfs_attach_log_writer - attach log writer
2763 * @sb: super block instance
2764 * @root: root object of the current filesystem tree
2766 * This allocates a log writer object, initializes it, and starts the
2769 * Return Value: On success, 0 is returned. On error, one of the following
2770 * negative error code is returned.
2772 * %-ENOMEM - Insufficient memory available.
2774 int nilfs_attach_log_writer(struct super_block
*sb
, struct nilfs_root
*root
)
2776 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2779 if (nilfs
->ns_writer
) {
2781 * This happens if the filesystem was remounted
2782 * read/write after nilfs_error degenerated it into a
2785 nilfs_detach_log_writer(sb
);
2788 nilfs
->ns_writer
= nilfs_segctor_new(sb
, root
);
2789 if (!nilfs
->ns_writer
)
2792 err
= nilfs_segctor_start_thread(nilfs
->ns_writer
);
2794 kfree(nilfs
->ns_writer
);
2795 nilfs
->ns_writer
= NULL
;
2801 * nilfs_detach_log_writer - destroy log writer
2802 * @sb: super block instance
2804 * This kills log writer daemon, frees the log writer object, and
2805 * destroys list of dirty files.
2807 void nilfs_detach_log_writer(struct super_block
*sb
)
2809 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2810 LIST_HEAD(garbage_list
);
2812 down_write(&nilfs
->ns_segctor_sem
);
2813 if (nilfs
->ns_writer
) {
2814 nilfs_segctor_destroy(nilfs
->ns_writer
);
2815 nilfs
->ns_writer
= NULL
;
2818 /* Force to free the list of dirty files */
2819 spin_lock(&nilfs
->ns_inode_lock
);
2820 if (!list_empty(&nilfs
->ns_dirty_files
)) {
2821 list_splice_init(&nilfs
->ns_dirty_files
, &garbage_list
);
2822 nilfs_msg(sb
, KERN_WARNING
,
2823 "disposed unprocessed dirty file(s) when detaching log writer");
2825 spin_unlock(&nilfs
->ns_inode_lock
);
2826 up_write(&nilfs
->ns_segctor_sem
);
2828 nilfs_dispose_list(nilfs
, &garbage_list
, 1);