Merge branch 'akpm' (patches from Andrew)
[linux/fpc-iii.git] / mm / filemap.c
blob3f9afded581be1a013bda4db2c0ec3a721323364
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
44 * FIXME: remove all knowledge of the buffer layer from the core VM
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 #include <asm/mman.h>
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
54 * Shared mappings now work. 15.8.1995 Bruno.
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63 * Lock ordering:
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
113 static int page_cache_tree_insert(struct address_space *mapping,
114 struct page *page, void **shadowp)
116 struct radix_tree_node *node;
117 void **slot;
118 int error;
120 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 &node, &slot);
122 if (error)
123 return error;
124 if (*slot) {
125 void *p;
127 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 if (!radix_tree_exceptional_entry(p))
129 return -EEXIST;
131 mapping->nrexceptional--;
132 if (!dax_mapping(mapping)) {
133 if (shadowp)
134 *shadowp = p;
135 } else {
136 /* DAX can replace empty locked entry with a hole */
137 WARN_ON_ONCE(p !=
138 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
139 /* Wakeup waiters for exceptional entry lock */
140 dax_wake_mapping_entry_waiter(mapping, page->index, p,
141 true);
144 __radix_tree_replace(&mapping->page_tree, node, slot, page,
145 workingset_update_node, mapping);
146 mapping->nrpages++;
147 return 0;
150 static void page_cache_tree_delete(struct address_space *mapping,
151 struct page *page, void *shadow)
153 int i, nr;
155 /* hugetlb pages are represented by one entry in the radix tree */
156 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158 VM_BUG_ON_PAGE(!PageLocked(page), page);
159 VM_BUG_ON_PAGE(PageTail(page), page);
160 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162 for (i = 0; i < nr; i++) {
163 struct radix_tree_node *node;
164 void **slot;
166 __radix_tree_lookup(&mapping->page_tree, page->index + i,
167 &node, &slot);
169 VM_BUG_ON_PAGE(!node && nr != 1, page);
171 radix_tree_clear_tags(&mapping->page_tree, node, slot);
172 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
173 workingset_update_node, mapping);
176 if (shadow) {
177 mapping->nrexceptional += nr;
179 * Make sure the nrexceptional update is committed before
180 * the nrpages update so that final truncate racing
181 * with reclaim does not see both counters 0 at the
182 * same time and miss a shadow entry.
184 smp_wmb();
186 mapping->nrpages -= nr;
190 * Delete a page from the page cache and free it. Caller has to make
191 * sure the page is locked and that nobody else uses it - or that usage
192 * is safe. The caller must hold the mapping's tree_lock.
194 void __delete_from_page_cache(struct page *page, void *shadow)
196 struct address_space *mapping = page->mapping;
197 int nr = hpage_nr_pages(page);
199 trace_mm_filemap_delete_from_page_cache(page);
201 * if we're uptodate, flush out into the cleancache, otherwise
202 * invalidate any existing cleancache entries. We can't leave
203 * stale data around in the cleancache once our page is gone
205 if (PageUptodate(page) && PageMappedToDisk(page))
206 cleancache_put_page(page);
207 else
208 cleancache_invalidate_page(mapping, page);
210 VM_BUG_ON_PAGE(PageTail(page), page);
211 VM_BUG_ON_PAGE(page_mapped(page), page);
212 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
213 int mapcount;
215 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
216 current->comm, page_to_pfn(page));
217 dump_page(page, "still mapped when deleted");
218 dump_stack();
219 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221 mapcount = page_mapcount(page);
222 if (mapping_exiting(mapping) &&
223 page_count(page) >= mapcount + 2) {
225 * All vmas have already been torn down, so it's
226 * a good bet that actually the page is unmapped,
227 * and we'd prefer not to leak it: if we're wrong,
228 * some other bad page check should catch it later.
230 page_mapcount_reset(page);
231 page_ref_sub(page, mapcount);
235 page_cache_tree_delete(mapping, page, shadow);
237 page->mapping = NULL;
238 /* Leave page->index set: truncation lookup relies upon it */
240 /* hugetlb pages do not participate in page cache accounting. */
241 if (!PageHuge(page))
242 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
243 if (PageSwapBacked(page)) {
244 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
245 if (PageTransHuge(page))
246 __dec_node_page_state(page, NR_SHMEM_THPS);
247 } else {
248 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
252 * At this point page must be either written or cleaned by truncate.
253 * Dirty page here signals a bug and loss of unwritten data.
255 * This fixes dirty accounting after removing the page entirely but
256 * leaves PageDirty set: it has no effect for truncated page and
257 * anyway will be cleared before returning page into buddy allocator.
259 if (WARN_ON_ONCE(PageDirty(page)))
260 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
264 * delete_from_page_cache - delete page from page cache
265 * @page: the page which the kernel is trying to remove from page cache
267 * This must be called only on pages that have been verified to be in the page
268 * cache and locked. It will never put the page into the free list, the caller
269 * has a reference on the page.
271 void delete_from_page_cache(struct page *page)
273 struct address_space *mapping = page_mapping(page);
274 unsigned long flags;
275 void (*freepage)(struct page *);
277 BUG_ON(!PageLocked(page));
279 freepage = mapping->a_ops->freepage;
281 spin_lock_irqsave(&mapping->tree_lock, flags);
282 __delete_from_page_cache(page, NULL);
283 spin_unlock_irqrestore(&mapping->tree_lock, flags);
285 if (freepage)
286 freepage(page);
288 if (PageTransHuge(page) && !PageHuge(page)) {
289 page_ref_sub(page, HPAGE_PMD_NR);
290 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
291 } else {
292 put_page(page);
295 EXPORT_SYMBOL(delete_from_page_cache);
297 int filemap_check_errors(struct address_space *mapping)
299 int ret = 0;
300 /* Check for outstanding write errors */
301 if (test_bit(AS_ENOSPC, &mapping->flags) &&
302 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 ret = -ENOSPC;
304 if (test_bit(AS_EIO, &mapping->flags) &&
305 test_and_clear_bit(AS_EIO, &mapping->flags))
306 ret = -EIO;
307 return ret;
309 EXPORT_SYMBOL(filemap_check_errors);
312 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
313 * @mapping: address space structure to write
314 * @start: offset in bytes where the range starts
315 * @end: offset in bytes where the range ends (inclusive)
316 * @sync_mode: enable synchronous operation
318 * Start writeback against all of a mapping's dirty pages that lie
319 * within the byte offsets <start, end> inclusive.
321 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
322 * opposed to a regular memory cleansing writeback. The difference between
323 * these two operations is that if a dirty page/buffer is encountered, it must
324 * be waited upon, and not just skipped over.
326 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
327 loff_t end, int sync_mode)
329 int ret;
330 struct writeback_control wbc = {
331 .sync_mode = sync_mode,
332 .nr_to_write = LONG_MAX,
333 .range_start = start,
334 .range_end = end,
337 if (!mapping_cap_writeback_dirty(mapping))
338 return 0;
340 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
341 ret = do_writepages(mapping, &wbc);
342 wbc_detach_inode(&wbc);
343 return ret;
346 static inline int __filemap_fdatawrite(struct address_space *mapping,
347 int sync_mode)
349 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
352 int filemap_fdatawrite(struct address_space *mapping)
354 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
356 EXPORT_SYMBOL(filemap_fdatawrite);
358 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
359 loff_t end)
361 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
363 EXPORT_SYMBOL(filemap_fdatawrite_range);
366 * filemap_flush - mostly a non-blocking flush
367 * @mapping: target address_space
369 * This is a mostly non-blocking flush. Not suitable for data-integrity
370 * purposes - I/O may not be started against all dirty pages.
372 int filemap_flush(struct address_space *mapping)
374 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
376 EXPORT_SYMBOL(filemap_flush);
378 static int __filemap_fdatawait_range(struct address_space *mapping,
379 loff_t start_byte, loff_t end_byte)
381 pgoff_t index = start_byte >> PAGE_SHIFT;
382 pgoff_t end = end_byte >> PAGE_SHIFT;
383 struct pagevec pvec;
384 int nr_pages;
385 int ret = 0;
387 if (end_byte < start_byte)
388 goto out;
390 pagevec_init(&pvec, 0);
391 while ((index <= end) &&
392 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
393 PAGECACHE_TAG_WRITEBACK,
394 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
395 unsigned i;
397 for (i = 0; i < nr_pages; i++) {
398 struct page *page = pvec.pages[i];
400 /* until radix tree lookup accepts end_index */
401 if (page->index > end)
402 continue;
404 wait_on_page_writeback(page);
405 if (TestClearPageError(page))
406 ret = -EIO;
408 pagevec_release(&pvec);
409 cond_resched();
411 out:
412 return ret;
416 * filemap_fdatawait_range - wait for writeback to complete
417 * @mapping: address space structure to wait for
418 * @start_byte: offset in bytes where the range starts
419 * @end_byte: offset in bytes where the range ends (inclusive)
421 * Walk the list of under-writeback pages of the given address space
422 * in the given range and wait for all of them. Check error status of
423 * the address space and return it.
425 * Since the error status of the address space is cleared by this function,
426 * callers are responsible for checking the return value and handling and/or
427 * reporting the error.
429 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
430 loff_t end_byte)
432 int ret, ret2;
434 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
435 ret2 = filemap_check_errors(mapping);
436 if (!ret)
437 ret = ret2;
439 return ret;
441 EXPORT_SYMBOL(filemap_fdatawait_range);
444 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
445 * @mapping: address space structure to wait for
447 * Walk the list of under-writeback pages of the given address space
448 * and wait for all of them. Unlike filemap_fdatawait(), this function
449 * does not clear error status of the address space.
451 * Use this function if callers don't handle errors themselves. Expected
452 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
453 * fsfreeze(8)
455 void filemap_fdatawait_keep_errors(struct address_space *mapping)
457 loff_t i_size = i_size_read(mapping->host);
459 if (i_size == 0)
460 return;
462 __filemap_fdatawait_range(mapping, 0, i_size - 1);
466 * filemap_fdatawait - wait for all under-writeback pages to complete
467 * @mapping: address space structure to wait for
469 * Walk the list of under-writeback pages of the given address space
470 * and wait for all of them. Check error status of the address space
471 * and return it.
473 * Since the error status of the address space is cleared by this function,
474 * callers are responsible for checking the return value and handling and/or
475 * reporting the error.
477 int filemap_fdatawait(struct address_space *mapping)
479 loff_t i_size = i_size_read(mapping->host);
481 if (i_size == 0)
482 return 0;
484 return filemap_fdatawait_range(mapping, 0, i_size - 1);
486 EXPORT_SYMBOL(filemap_fdatawait);
488 int filemap_write_and_wait(struct address_space *mapping)
490 int err = 0;
492 if ((!dax_mapping(mapping) && mapping->nrpages) ||
493 (dax_mapping(mapping) && mapping->nrexceptional)) {
494 err = filemap_fdatawrite(mapping);
496 * Even if the above returned error, the pages may be
497 * written partially (e.g. -ENOSPC), so we wait for it.
498 * But the -EIO is special case, it may indicate the worst
499 * thing (e.g. bug) happened, so we avoid waiting for it.
501 if (err != -EIO) {
502 int err2 = filemap_fdatawait(mapping);
503 if (!err)
504 err = err2;
506 } else {
507 err = filemap_check_errors(mapping);
509 return err;
511 EXPORT_SYMBOL(filemap_write_and_wait);
514 * filemap_write_and_wait_range - write out & wait on a file range
515 * @mapping: the address_space for the pages
516 * @lstart: offset in bytes where the range starts
517 * @lend: offset in bytes where the range ends (inclusive)
519 * Write out and wait upon file offsets lstart->lend, inclusive.
521 * Note that `lend' is inclusive (describes the last byte to be written) so
522 * that this function can be used to write to the very end-of-file (end = -1).
524 int filemap_write_and_wait_range(struct address_space *mapping,
525 loff_t lstart, loff_t lend)
527 int err = 0;
529 if ((!dax_mapping(mapping) && mapping->nrpages) ||
530 (dax_mapping(mapping) && mapping->nrexceptional)) {
531 err = __filemap_fdatawrite_range(mapping, lstart, lend,
532 WB_SYNC_ALL);
533 /* See comment of filemap_write_and_wait() */
534 if (err != -EIO) {
535 int err2 = filemap_fdatawait_range(mapping,
536 lstart, lend);
537 if (!err)
538 err = err2;
540 } else {
541 err = filemap_check_errors(mapping);
543 return err;
545 EXPORT_SYMBOL(filemap_write_and_wait_range);
548 * replace_page_cache_page - replace a pagecache page with a new one
549 * @old: page to be replaced
550 * @new: page to replace with
551 * @gfp_mask: allocation mode
553 * This function replaces a page in the pagecache with a new one. On
554 * success it acquires the pagecache reference for the new page and
555 * drops it for the old page. Both the old and new pages must be
556 * locked. This function does not add the new page to the LRU, the
557 * caller must do that.
559 * The remove + add is atomic. The only way this function can fail is
560 * memory allocation failure.
562 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
564 int error;
566 VM_BUG_ON_PAGE(!PageLocked(old), old);
567 VM_BUG_ON_PAGE(!PageLocked(new), new);
568 VM_BUG_ON_PAGE(new->mapping, new);
570 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
571 if (!error) {
572 struct address_space *mapping = old->mapping;
573 void (*freepage)(struct page *);
574 unsigned long flags;
576 pgoff_t offset = old->index;
577 freepage = mapping->a_ops->freepage;
579 get_page(new);
580 new->mapping = mapping;
581 new->index = offset;
583 spin_lock_irqsave(&mapping->tree_lock, flags);
584 __delete_from_page_cache(old, NULL);
585 error = page_cache_tree_insert(mapping, new, NULL);
586 BUG_ON(error);
589 * hugetlb pages do not participate in page cache accounting.
591 if (!PageHuge(new))
592 __inc_node_page_state(new, NR_FILE_PAGES);
593 if (PageSwapBacked(new))
594 __inc_node_page_state(new, NR_SHMEM);
595 spin_unlock_irqrestore(&mapping->tree_lock, flags);
596 mem_cgroup_migrate(old, new);
597 radix_tree_preload_end();
598 if (freepage)
599 freepage(old);
600 put_page(old);
603 return error;
605 EXPORT_SYMBOL_GPL(replace_page_cache_page);
607 static int __add_to_page_cache_locked(struct page *page,
608 struct address_space *mapping,
609 pgoff_t offset, gfp_t gfp_mask,
610 void **shadowp)
612 int huge = PageHuge(page);
613 struct mem_cgroup *memcg;
614 int error;
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
619 if (!huge) {
620 error = mem_cgroup_try_charge(page, current->mm,
621 gfp_mask, &memcg, false);
622 if (error)
623 return error;
626 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
627 if (error) {
628 if (!huge)
629 mem_cgroup_cancel_charge(page, memcg, false);
630 return error;
633 get_page(page);
634 page->mapping = mapping;
635 page->index = offset;
637 spin_lock_irq(&mapping->tree_lock);
638 error = page_cache_tree_insert(mapping, page, shadowp);
639 radix_tree_preload_end();
640 if (unlikely(error))
641 goto err_insert;
643 /* hugetlb pages do not participate in page cache accounting. */
644 if (!huge)
645 __inc_node_page_state(page, NR_FILE_PAGES);
646 spin_unlock_irq(&mapping->tree_lock);
647 if (!huge)
648 mem_cgroup_commit_charge(page, memcg, false, false);
649 trace_mm_filemap_add_to_page_cache(page);
650 return 0;
651 err_insert:
652 page->mapping = NULL;
653 /* Leave page->index set: truncation relies upon it */
654 spin_unlock_irq(&mapping->tree_lock);
655 if (!huge)
656 mem_cgroup_cancel_charge(page, memcg, false);
657 put_page(page);
658 return error;
662 * add_to_page_cache_locked - add a locked page to the pagecache
663 * @page: page to add
664 * @mapping: the page's address_space
665 * @offset: page index
666 * @gfp_mask: page allocation mode
668 * This function is used to add a page to the pagecache. It must be locked.
669 * This function does not add the page to the LRU. The caller must do that.
671 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
672 pgoff_t offset, gfp_t gfp_mask)
674 return __add_to_page_cache_locked(page, mapping, offset,
675 gfp_mask, NULL);
677 EXPORT_SYMBOL(add_to_page_cache_locked);
679 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
680 pgoff_t offset, gfp_t gfp_mask)
682 void *shadow = NULL;
683 int ret;
685 __SetPageLocked(page);
686 ret = __add_to_page_cache_locked(page, mapping, offset,
687 gfp_mask, &shadow);
688 if (unlikely(ret))
689 __ClearPageLocked(page);
690 else {
692 * The page might have been evicted from cache only
693 * recently, in which case it should be activated like
694 * any other repeatedly accessed page.
695 * The exception is pages getting rewritten; evicting other
696 * data from the working set, only to cache data that will
697 * get overwritten with something else, is a waste of memory.
699 if (!(gfp_mask & __GFP_WRITE) &&
700 shadow && workingset_refault(shadow)) {
701 SetPageActive(page);
702 workingset_activation(page);
703 } else
704 ClearPageActive(page);
705 lru_cache_add(page);
707 return ret;
709 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
711 #ifdef CONFIG_NUMA
712 struct page *__page_cache_alloc(gfp_t gfp)
714 int n;
715 struct page *page;
717 if (cpuset_do_page_mem_spread()) {
718 unsigned int cpuset_mems_cookie;
719 do {
720 cpuset_mems_cookie = read_mems_allowed_begin();
721 n = cpuset_mem_spread_node();
722 page = __alloc_pages_node(n, gfp, 0);
723 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
725 return page;
727 return alloc_pages(gfp, 0);
729 EXPORT_SYMBOL(__page_cache_alloc);
730 #endif
733 * In order to wait for pages to become available there must be
734 * waitqueues associated with pages. By using a hash table of
735 * waitqueues where the bucket discipline is to maintain all
736 * waiters on the same queue and wake all when any of the pages
737 * become available, and for the woken contexts to check to be
738 * sure the appropriate page became available, this saves space
739 * at a cost of "thundering herd" phenomena during rare hash
740 * collisions.
742 #define PAGE_WAIT_TABLE_BITS 8
743 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
744 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
746 static wait_queue_head_t *page_waitqueue(struct page *page)
748 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
751 void __init pagecache_init(void)
753 int i;
755 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
756 init_waitqueue_head(&page_wait_table[i]);
758 page_writeback_init();
761 struct wait_page_key {
762 struct page *page;
763 int bit_nr;
764 int page_match;
767 struct wait_page_queue {
768 struct page *page;
769 int bit_nr;
770 wait_queue_t wait;
773 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
775 struct wait_page_key *key = arg;
776 struct wait_page_queue *wait_page
777 = container_of(wait, struct wait_page_queue, wait);
779 if (wait_page->page != key->page)
780 return 0;
781 key->page_match = 1;
783 if (wait_page->bit_nr != key->bit_nr)
784 return 0;
785 if (test_bit(key->bit_nr, &key->page->flags))
786 return 0;
788 return autoremove_wake_function(wait, mode, sync, key);
791 void wake_up_page_bit(struct page *page, int bit_nr)
793 wait_queue_head_t *q = page_waitqueue(page);
794 struct wait_page_key key;
795 unsigned long flags;
797 key.page = page;
798 key.bit_nr = bit_nr;
799 key.page_match = 0;
801 spin_lock_irqsave(&q->lock, flags);
802 __wake_up_locked_key(q, TASK_NORMAL, &key);
804 * It is possible for other pages to have collided on the waitqueue
805 * hash, so in that case check for a page match. That prevents a long-
806 * term waiter
808 * It is still possible to miss a case here, when we woke page waiters
809 * and removed them from the waitqueue, but there are still other
810 * page waiters.
812 if (!waitqueue_active(q) || !key.page_match) {
813 ClearPageWaiters(page);
815 * It's possible to miss clearing Waiters here, when we woke
816 * our page waiters, but the hashed waitqueue has waiters for
817 * other pages on it.
819 * That's okay, it's a rare case. The next waker will clear it.
822 spin_unlock_irqrestore(&q->lock, flags);
824 EXPORT_SYMBOL(wake_up_page_bit);
826 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
827 struct page *page, int bit_nr, int state, bool lock)
829 struct wait_page_queue wait_page;
830 wait_queue_t *wait = &wait_page.wait;
831 int ret = 0;
833 init_wait(wait);
834 wait->func = wake_page_function;
835 wait_page.page = page;
836 wait_page.bit_nr = bit_nr;
838 for (;;) {
839 spin_lock_irq(&q->lock);
841 if (likely(list_empty(&wait->task_list))) {
842 if (lock)
843 __add_wait_queue_tail_exclusive(q, wait);
844 else
845 __add_wait_queue(q, wait);
846 SetPageWaiters(page);
849 set_current_state(state);
851 spin_unlock_irq(&q->lock);
853 if (likely(test_bit(bit_nr, &page->flags))) {
854 io_schedule();
855 if (unlikely(signal_pending_state(state, current))) {
856 ret = -EINTR;
857 break;
861 if (lock) {
862 if (!test_and_set_bit_lock(bit_nr, &page->flags))
863 break;
864 } else {
865 if (!test_bit(bit_nr, &page->flags))
866 break;
870 finish_wait(q, wait);
873 * A signal could leave PageWaiters set. Clearing it here if
874 * !waitqueue_active would be possible (by open-coding finish_wait),
875 * but still fail to catch it in the case of wait hash collision. We
876 * already can fail to clear wait hash collision cases, so don't
877 * bother with signals either.
880 return ret;
883 void wait_on_page_bit(struct page *page, int bit_nr)
885 wait_queue_head_t *q = page_waitqueue(page);
886 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
888 EXPORT_SYMBOL(wait_on_page_bit);
890 int wait_on_page_bit_killable(struct page *page, int bit_nr)
892 wait_queue_head_t *q = page_waitqueue(page);
893 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
897 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
898 * @page: Page defining the wait queue of interest
899 * @waiter: Waiter to add to the queue
901 * Add an arbitrary @waiter to the wait queue for the nominated @page.
903 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
905 wait_queue_head_t *q = page_waitqueue(page);
906 unsigned long flags;
908 spin_lock_irqsave(&q->lock, flags);
909 __add_wait_queue(q, waiter);
910 SetPageWaiters(page);
911 spin_unlock_irqrestore(&q->lock, flags);
913 EXPORT_SYMBOL_GPL(add_page_wait_queue);
915 #ifndef clear_bit_unlock_is_negative_byte
918 * PG_waiters is the high bit in the same byte as PG_lock.
920 * On x86 (and on many other architectures), we can clear PG_lock and
921 * test the sign bit at the same time. But if the architecture does
922 * not support that special operation, we just do this all by hand
923 * instead.
925 * The read of PG_waiters has to be after (or concurrently with) PG_locked
926 * being cleared, but a memory barrier should be unneccssary since it is
927 * in the same byte as PG_locked.
929 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
931 clear_bit_unlock(nr, mem);
932 /* smp_mb__after_atomic(); */
933 return test_bit(PG_waiters, mem);
936 #endif
939 * unlock_page - unlock a locked page
940 * @page: the page
942 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
943 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
944 * mechanism between PageLocked pages and PageWriteback pages is shared.
945 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
947 * Note that this depends on PG_waiters being the sign bit in the byte
948 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
949 * clear the PG_locked bit and test PG_waiters at the same time fairly
950 * portably (architectures that do LL/SC can test any bit, while x86 can
951 * test the sign bit).
953 void unlock_page(struct page *page)
955 BUILD_BUG_ON(PG_waiters != 7);
956 page = compound_head(page);
957 VM_BUG_ON_PAGE(!PageLocked(page), page);
958 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
959 wake_up_page_bit(page, PG_locked);
961 EXPORT_SYMBOL(unlock_page);
964 * end_page_writeback - end writeback against a page
965 * @page: the page
967 void end_page_writeback(struct page *page)
970 * TestClearPageReclaim could be used here but it is an atomic
971 * operation and overkill in this particular case. Failing to
972 * shuffle a page marked for immediate reclaim is too mild to
973 * justify taking an atomic operation penalty at the end of
974 * ever page writeback.
976 if (PageReclaim(page)) {
977 ClearPageReclaim(page);
978 rotate_reclaimable_page(page);
981 if (!test_clear_page_writeback(page))
982 BUG();
984 smp_mb__after_atomic();
985 wake_up_page(page, PG_writeback);
987 EXPORT_SYMBOL(end_page_writeback);
990 * After completing I/O on a page, call this routine to update the page
991 * flags appropriately
993 void page_endio(struct page *page, bool is_write, int err)
995 if (!is_write) {
996 if (!err) {
997 SetPageUptodate(page);
998 } else {
999 ClearPageUptodate(page);
1000 SetPageError(page);
1002 unlock_page(page);
1003 } else {
1004 if (err) {
1005 SetPageError(page);
1006 if (page->mapping)
1007 mapping_set_error(page->mapping, err);
1009 end_page_writeback(page);
1012 EXPORT_SYMBOL_GPL(page_endio);
1015 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1016 * @page: the page to lock
1018 void __lock_page(struct page *__page)
1020 struct page *page = compound_head(__page);
1021 wait_queue_head_t *q = page_waitqueue(page);
1022 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1024 EXPORT_SYMBOL(__lock_page);
1026 int __lock_page_killable(struct page *__page)
1028 struct page *page = compound_head(__page);
1029 wait_queue_head_t *q = page_waitqueue(page);
1030 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1032 EXPORT_SYMBOL_GPL(__lock_page_killable);
1035 * Return values:
1036 * 1 - page is locked; mmap_sem is still held.
1037 * 0 - page is not locked.
1038 * mmap_sem has been released (up_read()), unless flags had both
1039 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1040 * which case mmap_sem is still held.
1042 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1043 * with the page locked and the mmap_sem unperturbed.
1045 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1046 unsigned int flags)
1048 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1050 * CAUTION! In this case, mmap_sem is not released
1051 * even though return 0.
1053 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1054 return 0;
1056 up_read(&mm->mmap_sem);
1057 if (flags & FAULT_FLAG_KILLABLE)
1058 wait_on_page_locked_killable(page);
1059 else
1060 wait_on_page_locked(page);
1061 return 0;
1062 } else {
1063 if (flags & FAULT_FLAG_KILLABLE) {
1064 int ret;
1066 ret = __lock_page_killable(page);
1067 if (ret) {
1068 up_read(&mm->mmap_sem);
1069 return 0;
1071 } else
1072 __lock_page(page);
1073 return 1;
1078 * page_cache_next_hole - find the next hole (not-present entry)
1079 * @mapping: mapping
1080 * @index: index
1081 * @max_scan: maximum range to search
1083 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1084 * lowest indexed hole.
1086 * Returns: the index of the hole if found, otherwise returns an index
1087 * outside of the set specified (in which case 'return - index >=
1088 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1089 * be returned.
1091 * page_cache_next_hole may be called under rcu_read_lock. However,
1092 * like radix_tree_gang_lookup, this will not atomically search a
1093 * snapshot of the tree at a single point in time. For example, if a
1094 * hole is created at index 5, then subsequently a hole is created at
1095 * index 10, page_cache_next_hole covering both indexes may return 10
1096 * if called under rcu_read_lock.
1098 pgoff_t page_cache_next_hole(struct address_space *mapping,
1099 pgoff_t index, unsigned long max_scan)
1101 unsigned long i;
1103 for (i = 0; i < max_scan; i++) {
1104 struct page *page;
1106 page = radix_tree_lookup(&mapping->page_tree, index);
1107 if (!page || radix_tree_exceptional_entry(page))
1108 break;
1109 index++;
1110 if (index == 0)
1111 break;
1114 return index;
1116 EXPORT_SYMBOL(page_cache_next_hole);
1119 * page_cache_prev_hole - find the prev hole (not-present entry)
1120 * @mapping: mapping
1121 * @index: index
1122 * @max_scan: maximum range to search
1124 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1125 * the first hole.
1127 * Returns: the index of the hole if found, otherwise returns an index
1128 * outside of the set specified (in which case 'index - return >=
1129 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1130 * will be returned.
1132 * page_cache_prev_hole may be called under rcu_read_lock. However,
1133 * like radix_tree_gang_lookup, this will not atomically search a
1134 * snapshot of the tree at a single point in time. For example, if a
1135 * hole is created at index 10, then subsequently a hole is created at
1136 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1137 * called under rcu_read_lock.
1139 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1140 pgoff_t index, unsigned long max_scan)
1142 unsigned long i;
1144 for (i = 0; i < max_scan; i++) {
1145 struct page *page;
1147 page = radix_tree_lookup(&mapping->page_tree, index);
1148 if (!page || radix_tree_exceptional_entry(page))
1149 break;
1150 index--;
1151 if (index == ULONG_MAX)
1152 break;
1155 return index;
1157 EXPORT_SYMBOL(page_cache_prev_hole);
1160 * find_get_entry - find and get a page cache entry
1161 * @mapping: the address_space to search
1162 * @offset: the page cache index
1164 * Looks up the page cache slot at @mapping & @offset. If there is a
1165 * page cache page, it is returned with an increased refcount.
1167 * If the slot holds a shadow entry of a previously evicted page, or a
1168 * swap entry from shmem/tmpfs, it is returned.
1170 * Otherwise, %NULL is returned.
1172 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1174 void **pagep;
1175 struct page *head, *page;
1177 rcu_read_lock();
1178 repeat:
1179 page = NULL;
1180 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1181 if (pagep) {
1182 page = radix_tree_deref_slot(pagep);
1183 if (unlikely(!page))
1184 goto out;
1185 if (radix_tree_exception(page)) {
1186 if (radix_tree_deref_retry(page))
1187 goto repeat;
1189 * A shadow entry of a recently evicted page,
1190 * or a swap entry from shmem/tmpfs. Return
1191 * it without attempting to raise page count.
1193 goto out;
1196 head = compound_head(page);
1197 if (!page_cache_get_speculative(head))
1198 goto repeat;
1200 /* The page was split under us? */
1201 if (compound_head(page) != head) {
1202 put_page(head);
1203 goto repeat;
1207 * Has the page moved?
1208 * This is part of the lockless pagecache protocol. See
1209 * include/linux/pagemap.h for details.
1211 if (unlikely(page != *pagep)) {
1212 put_page(head);
1213 goto repeat;
1216 out:
1217 rcu_read_unlock();
1219 return page;
1221 EXPORT_SYMBOL(find_get_entry);
1224 * find_lock_entry - locate, pin and lock a page cache entry
1225 * @mapping: the address_space to search
1226 * @offset: the page cache index
1228 * Looks up the page cache slot at @mapping & @offset. If there is a
1229 * page cache page, it is returned locked and with an increased
1230 * refcount.
1232 * If the slot holds a shadow entry of a previously evicted page, or a
1233 * swap entry from shmem/tmpfs, it is returned.
1235 * Otherwise, %NULL is returned.
1237 * find_lock_entry() may sleep.
1239 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1241 struct page *page;
1243 repeat:
1244 page = find_get_entry(mapping, offset);
1245 if (page && !radix_tree_exception(page)) {
1246 lock_page(page);
1247 /* Has the page been truncated? */
1248 if (unlikely(page_mapping(page) != mapping)) {
1249 unlock_page(page);
1250 put_page(page);
1251 goto repeat;
1253 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1255 return page;
1257 EXPORT_SYMBOL(find_lock_entry);
1260 * pagecache_get_page - find and get a page reference
1261 * @mapping: the address_space to search
1262 * @offset: the page index
1263 * @fgp_flags: PCG flags
1264 * @gfp_mask: gfp mask to use for the page cache data page allocation
1266 * Looks up the page cache slot at @mapping & @offset.
1268 * PCG flags modify how the page is returned.
1270 * FGP_ACCESSED: the page will be marked accessed
1271 * FGP_LOCK: Page is return locked
1272 * FGP_CREAT: If page is not present then a new page is allocated using
1273 * @gfp_mask and added to the page cache and the VM's LRU
1274 * list. The page is returned locked and with an increased
1275 * refcount. Otherwise, %NULL is returned.
1277 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1278 * if the GFP flags specified for FGP_CREAT are atomic.
1280 * If there is a page cache page, it is returned with an increased refcount.
1282 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1283 int fgp_flags, gfp_t gfp_mask)
1285 struct page *page;
1287 repeat:
1288 page = find_get_entry(mapping, offset);
1289 if (radix_tree_exceptional_entry(page))
1290 page = NULL;
1291 if (!page)
1292 goto no_page;
1294 if (fgp_flags & FGP_LOCK) {
1295 if (fgp_flags & FGP_NOWAIT) {
1296 if (!trylock_page(page)) {
1297 put_page(page);
1298 return NULL;
1300 } else {
1301 lock_page(page);
1304 /* Has the page been truncated? */
1305 if (unlikely(page->mapping != mapping)) {
1306 unlock_page(page);
1307 put_page(page);
1308 goto repeat;
1310 VM_BUG_ON_PAGE(page->index != offset, page);
1313 if (page && (fgp_flags & FGP_ACCESSED))
1314 mark_page_accessed(page);
1316 no_page:
1317 if (!page && (fgp_flags & FGP_CREAT)) {
1318 int err;
1319 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1320 gfp_mask |= __GFP_WRITE;
1321 if (fgp_flags & FGP_NOFS)
1322 gfp_mask &= ~__GFP_FS;
1324 page = __page_cache_alloc(gfp_mask);
1325 if (!page)
1326 return NULL;
1328 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1329 fgp_flags |= FGP_LOCK;
1331 /* Init accessed so avoid atomic mark_page_accessed later */
1332 if (fgp_flags & FGP_ACCESSED)
1333 __SetPageReferenced(page);
1335 err = add_to_page_cache_lru(page, mapping, offset,
1336 gfp_mask & GFP_RECLAIM_MASK);
1337 if (unlikely(err)) {
1338 put_page(page);
1339 page = NULL;
1340 if (err == -EEXIST)
1341 goto repeat;
1345 return page;
1347 EXPORT_SYMBOL(pagecache_get_page);
1350 * find_get_entries - gang pagecache lookup
1351 * @mapping: The address_space to search
1352 * @start: The starting page cache index
1353 * @nr_entries: The maximum number of entries
1354 * @entries: Where the resulting entries are placed
1355 * @indices: The cache indices corresponding to the entries in @entries
1357 * find_get_entries() will search for and return a group of up to
1358 * @nr_entries entries in the mapping. The entries are placed at
1359 * @entries. find_get_entries() takes a reference against any actual
1360 * pages it returns.
1362 * The search returns a group of mapping-contiguous page cache entries
1363 * with ascending indexes. There may be holes in the indices due to
1364 * not-present pages.
1366 * Any shadow entries of evicted pages, or swap entries from
1367 * shmem/tmpfs, are included in the returned array.
1369 * find_get_entries() returns the number of pages and shadow entries
1370 * which were found.
1372 unsigned find_get_entries(struct address_space *mapping,
1373 pgoff_t start, unsigned int nr_entries,
1374 struct page **entries, pgoff_t *indices)
1376 void **slot;
1377 unsigned int ret = 0;
1378 struct radix_tree_iter iter;
1380 if (!nr_entries)
1381 return 0;
1383 rcu_read_lock();
1384 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1385 struct page *head, *page;
1386 repeat:
1387 page = radix_tree_deref_slot(slot);
1388 if (unlikely(!page))
1389 continue;
1390 if (radix_tree_exception(page)) {
1391 if (radix_tree_deref_retry(page)) {
1392 slot = radix_tree_iter_retry(&iter);
1393 continue;
1396 * A shadow entry of a recently evicted page, a swap
1397 * entry from shmem/tmpfs or a DAX entry. Return it
1398 * without attempting to raise page count.
1400 goto export;
1403 head = compound_head(page);
1404 if (!page_cache_get_speculative(head))
1405 goto repeat;
1407 /* The page was split under us? */
1408 if (compound_head(page) != head) {
1409 put_page(head);
1410 goto repeat;
1413 /* Has the page moved? */
1414 if (unlikely(page != *slot)) {
1415 put_page(head);
1416 goto repeat;
1418 export:
1419 indices[ret] = iter.index;
1420 entries[ret] = page;
1421 if (++ret == nr_entries)
1422 break;
1424 rcu_read_unlock();
1425 return ret;
1429 * find_get_pages - gang pagecache lookup
1430 * @mapping: The address_space to search
1431 * @start: The starting page index
1432 * @nr_pages: The maximum number of pages
1433 * @pages: Where the resulting pages are placed
1435 * find_get_pages() will search for and return a group of up to
1436 * @nr_pages pages in the mapping. The pages are placed at @pages.
1437 * find_get_pages() takes a reference against the returned pages.
1439 * The search returns a group of mapping-contiguous pages with ascending
1440 * indexes. There may be holes in the indices due to not-present pages.
1442 * find_get_pages() returns the number of pages which were found.
1444 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1445 unsigned int nr_pages, struct page **pages)
1447 struct radix_tree_iter iter;
1448 void **slot;
1449 unsigned ret = 0;
1451 if (unlikely(!nr_pages))
1452 return 0;
1454 rcu_read_lock();
1455 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1456 struct page *head, *page;
1457 repeat:
1458 page = radix_tree_deref_slot(slot);
1459 if (unlikely(!page))
1460 continue;
1462 if (radix_tree_exception(page)) {
1463 if (radix_tree_deref_retry(page)) {
1464 slot = radix_tree_iter_retry(&iter);
1465 continue;
1468 * A shadow entry of a recently evicted page,
1469 * or a swap entry from shmem/tmpfs. Skip
1470 * over it.
1472 continue;
1475 head = compound_head(page);
1476 if (!page_cache_get_speculative(head))
1477 goto repeat;
1479 /* The page was split under us? */
1480 if (compound_head(page) != head) {
1481 put_page(head);
1482 goto repeat;
1485 /* Has the page moved? */
1486 if (unlikely(page != *slot)) {
1487 put_page(head);
1488 goto repeat;
1491 pages[ret] = page;
1492 if (++ret == nr_pages)
1493 break;
1496 rcu_read_unlock();
1497 return ret;
1501 * find_get_pages_contig - gang contiguous pagecache lookup
1502 * @mapping: The address_space to search
1503 * @index: The starting page index
1504 * @nr_pages: The maximum number of pages
1505 * @pages: Where the resulting pages are placed
1507 * find_get_pages_contig() works exactly like find_get_pages(), except
1508 * that the returned number of pages are guaranteed to be contiguous.
1510 * find_get_pages_contig() returns the number of pages which were found.
1512 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1513 unsigned int nr_pages, struct page **pages)
1515 struct radix_tree_iter iter;
1516 void **slot;
1517 unsigned int ret = 0;
1519 if (unlikely(!nr_pages))
1520 return 0;
1522 rcu_read_lock();
1523 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1524 struct page *head, *page;
1525 repeat:
1526 page = radix_tree_deref_slot(slot);
1527 /* The hole, there no reason to continue */
1528 if (unlikely(!page))
1529 break;
1531 if (radix_tree_exception(page)) {
1532 if (radix_tree_deref_retry(page)) {
1533 slot = radix_tree_iter_retry(&iter);
1534 continue;
1537 * A shadow entry of a recently evicted page,
1538 * or a swap entry from shmem/tmpfs. Stop
1539 * looking for contiguous pages.
1541 break;
1544 head = compound_head(page);
1545 if (!page_cache_get_speculative(head))
1546 goto repeat;
1548 /* The page was split under us? */
1549 if (compound_head(page) != head) {
1550 put_page(head);
1551 goto repeat;
1554 /* Has the page moved? */
1555 if (unlikely(page != *slot)) {
1556 put_page(head);
1557 goto repeat;
1561 * must check mapping and index after taking the ref.
1562 * otherwise we can get both false positives and false
1563 * negatives, which is just confusing to the caller.
1565 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1566 put_page(page);
1567 break;
1570 pages[ret] = page;
1571 if (++ret == nr_pages)
1572 break;
1574 rcu_read_unlock();
1575 return ret;
1577 EXPORT_SYMBOL(find_get_pages_contig);
1580 * find_get_pages_tag - find and return pages that match @tag
1581 * @mapping: the address_space to search
1582 * @index: the starting page index
1583 * @tag: the tag index
1584 * @nr_pages: the maximum number of pages
1585 * @pages: where the resulting pages are placed
1587 * Like find_get_pages, except we only return pages which are tagged with
1588 * @tag. We update @index to index the next page for the traversal.
1590 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1591 int tag, unsigned int nr_pages, struct page **pages)
1593 struct radix_tree_iter iter;
1594 void **slot;
1595 unsigned ret = 0;
1597 if (unlikely(!nr_pages))
1598 return 0;
1600 rcu_read_lock();
1601 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1602 &iter, *index, tag) {
1603 struct page *head, *page;
1604 repeat:
1605 page = radix_tree_deref_slot(slot);
1606 if (unlikely(!page))
1607 continue;
1609 if (radix_tree_exception(page)) {
1610 if (radix_tree_deref_retry(page)) {
1611 slot = radix_tree_iter_retry(&iter);
1612 continue;
1615 * A shadow entry of a recently evicted page.
1617 * Those entries should never be tagged, but
1618 * this tree walk is lockless and the tags are
1619 * looked up in bulk, one radix tree node at a
1620 * time, so there is a sizable window for page
1621 * reclaim to evict a page we saw tagged.
1623 * Skip over it.
1625 continue;
1628 head = compound_head(page);
1629 if (!page_cache_get_speculative(head))
1630 goto repeat;
1632 /* The page was split under us? */
1633 if (compound_head(page) != head) {
1634 put_page(head);
1635 goto repeat;
1638 /* Has the page moved? */
1639 if (unlikely(page != *slot)) {
1640 put_page(head);
1641 goto repeat;
1644 pages[ret] = page;
1645 if (++ret == nr_pages)
1646 break;
1649 rcu_read_unlock();
1651 if (ret)
1652 *index = pages[ret - 1]->index + 1;
1654 return ret;
1656 EXPORT_SYMBOL(find_get_pages_tag);
1659 * find_get_entries_tag - find and return entries that match @tag
1660 * @mapping: the address_space to search
1661 * @start: the starting page cache index
1662 * @tag: the tag index
1663 * @nr_entries: the maximum number of entries
1664 * @entries: where the resulting entries are placed
1665 * @indices: the cache indices corresponding to the entries in @entries
1667 * Like find_get_entries, except we only return entries which are tagged with
1668 * @tag.
1670 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1671 int tag, unsigned int nr_entries,
1672 struct page **entries, pgoff_t *indices)
1674 void **slot;
1675 unsigned int ret = 0;
1676 struct radix_tree_iter iter;
1678 if (!nr_entries)
1679 return 0;
1681 rcu_read_lock();
1682 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1683 &iter, start, tag) {
1684 struct page *head, *page;
1685 repeat:
1686 page = radix_tree_deref_slot(slot);
1687 if (unlikely(!page))
1688 continue;
1689 if (radix_tree_exception(page)) {
1690 if (radix_tree_deref_retry(page)) {
1691 slot = radix_tree_iter_retry(&iter);
1692 continue;
1696 * A shadow entry of a recently evicted page, a swap
1697 * entry from shmem/tmpfs or a DAX entry. Return it
1698 * without attempting to raise page count.
1700 goto export;
1703 head = compound_head(page);
1704 if (!page_cache_get_speculative(head))
1705 goto repeat;
1707 /* The page was split under us? */
1708 if (compound_head(page) != head) {
1709 put_page(head);
1710 goto repeat;
1713 /* Has the page moved? */
1714 if (unlikely(page != *slot)) {
1715 put_page(head);
1716 goto repeat;
1718 export:
1719 indices[ret] = iter.index;
1720 entries[ret] = page;
1721 if (++ret == nr_entries)
1722 break;
1724 rcu_read_unlock();
1725 return ret;
1727 EXPORT_SYMBOL(find_get_entries_tag);
1730 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1731 * a _large_ part of the i/o request. Imagine the worst scenario:
1733 * ---R__________________________________________B__________
1734 * ^ reading here ^ bad block(assume 4k)
1736 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1737 * => failing the whole request => read(R) => read(R+1) =>
1738 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1739 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1740 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1742 * It is going insane. Fix it by quickly scaling down the readahead size.
1744 static void shrink_readahead_size_eio(struct file *filp,
1745 struct file_ra_state *ra)
1747 ra->ra_pages /= 4;
1751 * do_generic_file_read - generic file read routine
1752 * @filp: the file to read
1753 * @ppos: current file position
1754 * @iter: data destination
1755 * @written: already copied
1757 * This is a generic file read routine, and uses the
1758 * mapping->a_ops->readpage() function for the actual low-level stuff.
1760 * This is really ugly. But the goto's actually try to clarify some
1761 * of the logic when it comes to error handling etc.
1763 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1764 struct iov_iter *iter, ssize_t written)
1766 struct address_space *mapping = filp->f_mapping;
1767 struct inode *inode = mapping->host;
1768 struct file_ra_state *ra = &filp->f_ra;
1769 pgoff_t index;
1770 pgoff_t last_index;
1771 pgoff_t prev_index;
1772 unsigned long offset; /* offset into pagecache page */
1773 unsigned int prev_offset;
1774 int error = 0;
1776 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1777 return 0;
1778 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1780 index = *ppos >> PAGE_SHIFT;
1781 prev_index = ra->prev_pos >> PAGE_SHIFT;
1782 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1783 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1784 offset = *ppos & ~PAGE_MASK;
1786 for (;;) {
1787 struct page *page;
1788 pgoff_t end_index;
1789 loff_t isize;
1790 unsigned long nr, ret;
1792 cond_resched();
1793 find_page:
1794 if (fatal_signal_pending(current)) {
1795 error = -EINTR;
1796 goto out;
1799 page = find_get_page(mapping, index);
1800 if (!page) {
1801 page_cache_sync_readahead(mapping,
1802 ra, filp,
1803 index, last_index - index);
1804 page = find_get_page(mapping, index);
1805 if (unlikely(page == NULL))
1806 goto no_cached_page;
1808 if (PageReadahead(page)) {
1809 page_cache_async_readahead(mapping,
1810 ra, filp, page,
1811 index, last_index - index);
1813 if (!PageUptodate(page)) {
1815 * See comment in do_read_cache_page on why
1816 * wait_on_page_locked is used to avoid unnecessarily
1817 * serialisations and why it's safe.
1819 error = wait_on_page_locked_killable(page);
1820 if (unlikely(error))
1821 goto readpage_error;
1822 if (PageUptodate(page))
1823 goto page_ok;
1825 if (inode->i_blkbits == PAGE_SHIFT ||
1826 !mapping->a_ops->is_partially_uptodate)
1827 goto page_not_up_to_date;
1828 /* pipes can't handle partially uptodate pages */
1829 if (unlikely(iter->type & ITER_PIPE))
1830 goto page_not_up_to_date;
1831 if (!trylock_page(page))
1832 goto page_not_up_to_date;
1833 /* Did it get truncated before we got the lock? */
1834 if (!page->mapping)
1835 goto page_not_up_to_date_locked;
1836 if (!mapping->a_ops->is_partially_uptodate(page,
1837 offset, iter->count))
1838 goto page_not_up_to_date_locked;
1839 unlock_page(page);
1841 page_ok:
1843 * i_size must be checked after we know the page is Uptodate.
1845 * Checking i_size after the check allows us to calculate
1846 * the correct value for "nr", which means the zero-filled
1847 * part of the page is not copied back to userspace (unless
1848 * another truncate extends the file - this is desired though).
1851 isize = i_size_read(inode);
1852 end_index = (isize - 1) >> PAGE_SHIFT;
1853 if (unlikely(!isize || index > end_index)) {
1854 put_page(page);
1855 goto out;
1858 /* nr is the maximum number of bytes to copy from this page */
1859 nr = PAGE_SIZE;
1860 if (index == end_index) {
1861 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1862 if (nr <= offset) {
1863 put_page(page);
1864 goto out;
1867 nr = nr - offset;
1869 /* If users can be writing to this page using arbitrary
1870 * virtual addresses, take care about potential aliasing
1871 * before reading the page on the kernel side.
1873 if (mapping_writably_mapped(mapping))
1874 flush_dcache_page(page);
1877 * When a sequential read accesses a page several times,
1878 * only mark it as accessed the first time.
1880 if (prev_index != index || offset != prev_offset)
1881 mark_page_accessed(page);
1882 prev_index = index;
1885 * Ok, we have the page, and it's up-to-date, so
1886 * now we can copy it to user space...
1889 ret = copy_page_to_iter(page, offset, nr, iter);
1890 offset += ret;
1891 index += offset >> PAGE_SHIFT;
1892 offset &= ~PAGE_MASK;
1893 prev_offset = offset;
1895 put_page(page);
1896 written += ret;
1897 if (!iov_iter_count(iter))
1898 goto out;
1899 if (ret < nr) {
1900 error = -EFAULT;
1901 goto out;
1903 continue;
1905 page_not_up_to_date:
1906 /* Get exclusive access to the page ... */
1907 error = lock_page_killable(page);
1908 if (unlikely(error))
1909 goto readpage_error;
1911 page_not_up_to_date_locked:
1912 /* Did it get truncated before we got the lock? */
1913 if (!page->mapping) {
1914 unlock_page(page);
1915 put_page(page);
1916 continue;
1919 /* Did somebody else fill it already? */
1920 if (PageUptodate(page)) {
1921 unlock_page(page);
1922 goto page_ok;
1925 readpage:
1927 * A previous I/O error may have been due to temporary
1928 * failures, eg. multipath errors.
1929 * PG_error will be set again if readpage fails.
1931 ClearPageError(page);
1932 /* Start the actual read. The read will unlock the page. */
1933 error = mapping->a_ops->readpage(filp, page);
1935 if (unlikely(error)) {
1936 if (error == AOP_TRUNCATED_PAGE) {
1937 put_page(page);
1938 error = 0;
1939 goto find_page;
1941 goto readpage_error;
1944 if (!PageUptodate(page)) {
1945 error = lock_page_killable(page);
1946 if (unlikely(error))
1947 goto readpage_error;
1948 if (!PageUptodate(page)) {
1949 if (page->mapping == NULL) {
1951 * invalidate_mapping_pages got it
1953 unlock_page(page);
1954 put_page(page);
1955 goto find_page;
1957 unlock_page(page);
1958 shrink_readahead_size_eio(filp, ra);
1959 error = -EIO;
1960 goto readpage_error;
1962 unlock_page(page);
1965 goto page_ok;
1967 readpage_error:
1968 /* UHHUH! A synchronous read error occurred. Report it */
1969 put_page(page);
1970 goto out;
1972 no_cached_page:
1974 * Ok, it wasn't cached, so we need to create a new
1975 * page..
1977 page = page_cache_alloc_cold(mapping);
1978 if (!page) {
1979 error = -ENOMEM;
1980 goto out;
1982 error = add_to_page_cache_lru(page, mapping, index,
1983 mapping_gfp_constraint(mapping, GFP_KERNEL));
1984 if (error) {
1985 put_page(page);
1986 if (error == -EEXIST) {
1987 error = 0;
1988 goto find_page;
1990 goto out;
1992 goto readpage;
1995 out:
1996 ra->prev_pos = prev_index;
1997 ra->prev_pos <<= PAGE_SHIFT;
1998 ra->prev_pos |= prev_offset;
2000 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2001 file_accessed(filp);
2002 return written ? written : error;
2006 * generic_file_read_iter - generic filesystem read routine
2007 * @iocb: kernel I/O control block
2008 * @iter: destination for the data read
2010 * This is the "read_iter()" routine for all filesystems
2011 * that can use the page cache directly.
2013 ssize_t
2014 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2016 struct file *file = iocb->ki_filp;
2017 ssize_t retval = 0;
2018 size_t count = iov_iter_count(iter);
2020 if (!count)
2021 goto out; /* skip atime */
2023 if (iocb->ki_flags & IOCB_DIRECT) {
2024 struct address_space *mapping = file->f_mapping;
2025 struct inode *inode = mapping->host;
2026 struct iov_iter data = *iter;
2027 loff_t size;
2029 size = i_size_read(inode);
2030 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2031 iocb->ki_pos + count - 1);
2032 if (retval < 0)
2033 goto out;
2035 file_accessed(file);
2037 retval = mapping->a_ops->direct_IO(iocb, &data);
2038 if (retval >= 0) {
2039 iocb->ki_pos += retval;
2040 iov_iter_advance(iter, retval);
2044 * Btrfs can have a short DIO read if we encounter
2045 * compressed extents, so if there was an error, or if
2046 * we've already read everything we wanted to, or if
2047 * there was a short read because we hit EOF, go ahead
2048 * and return. Otherwise fallthrough to buffered io for
2049 * the rest of the read. Buffered reads will not work for
2050 * DAX files, so don't bother trying.
2052 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
2053 IS_DAX(inode))
2054 goto out;
2057 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2058 out:
2059 return retval;
2061 EXPORT_SYMBOL(generic_file_read_iter);
2063 #ifdef CONFIG_MMU
2065 * page_cache_read - adds requested page to the page cache if not already there
2066 * @file: file to read
2067 * @offset: page index
2068 * @gfp_mask: memory allocation flags
2070 * This adds the requested page to the page cache if it isn't already there,
2071 * and schedules an I/O to read in its contents from disk.
2073 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2075 struct address_space *mapping = file->f_mapping;
2076 struct page *page;
2077 int ret;
2079 do {
2080 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2081 if (!page)
2082 return -ENOMEM;
2084 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2085 if (ret == 0)
2086 ret = mapping->a_ops->readpage(file, page);
2087 else if (ret == -EEXIST)
2088 ret = 0; /* losing race to add is OK */
2090 put_page(page);
2092 } while (ret == AOP_TRUNCATED_PAGE);
2094 return ret;
2097 #define MMAP_LOTSAMISS (100)
2100 * Synchronous readahead happens when we don't even find
2101 * a page in the page cache at all.
2103 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2104 struct file_ra_state *ra,
2105 struct file *file,
2106 pgoff_t offset)
2108 struct address_space *mapping = file->f_mapping;
2110 /* If we don't want any read-ahead, don't bother */
2111 if (vma->vm_flags & VM_RAND_READ)
2112 return;
2113 if (!ra->ra_pages)
2114 return;
2116 if (vma->vm_flags & VM_SEQ_READ) {
2117 page_cache_sync_readahead(mapping, ra, file, offset,
2118 ra->ra_pages);
2119 return;
2122 /* Avoid banging the cache line if not needed */
2123 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2124 ra->mmap_miss++;
2127 * Do we miss much more than hit in this file? If so,
2128 * stop bothering with read-ahead. It will only hurt.
2130 if (ra->mmap_miss > MMAP_LOTSAMISS)
2131 return;
2134 * mmap read-around
2136 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2137 ra->size = ra->ra_pages;
2138 ra->async_size = ra->ra_pages / 4;
2139 ra_submit(ra, mapping, file);
2143 * Asynchronous readahead happens when we find the page and PG_readahead,
2144 * so we want to possibly extend the readahead further..
2146 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2147 struct file_ra_state *ra,
2148 struct file *file,
2149 struct page *page,
2150 pgoff_t offset)
2152 struct address_space *mapping = file->f_mapping;
2154 /* If we don't want any read-ahead, don't bother */
2155 if (vma->vm_flags & VM_RAND_READ)
2156 return;
2157 if (ra->mmap_miss > 0)
2158 ra->mmap_miss--;
2159 if (PageReadahead(page))
2160 page_cache_async_readahead(mapping, ra, file,
2161 page, offset, ra->ra_pages);
2165 * filemap_fault - read in file data for page fault handling
2166 * @vma: vma in which the fault was taken
2167 * @vmf: struct vm_fault containing details of the fault
2169 * filemap_fault() is invoked via the vma operations vector for a
2170 * mapped memory region to read in file data during a page fault.
2172 * The goto's are kind of ugly, but this streamlines the normal case of having
2173 * it in the page cache, and handles the special cases reasonably without
2174 * having a lot of duplicated code.
2176 * vma->vm_mm->mmap_sem must be held on entry.
2178 * If our return value has VM_FAULT_RETRY set, it's because
2179 * lock_page_or_retry() returned 0.
2180 * The mmap_sem has usually been released in this case.
2181 * See __lock_page_or_retry() for the exception.
2183 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2184 * has not been released.
2186 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2188 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2190 int error;
2191 struct file *file = vma->vm_file;
2192 struct address_space *mapping = file->f_mapping;
2193 struct file_ra_state *ra = &file->f_ra;
2194 struct inode *inode = mapping->host;
2195 pgoff_t offset = vmf->pgoff;
2196 struct page *page;
2197 loff_t size;
2198 int ret = 0;
2200 size = round_up(i_size_read(inode), PAGE_SIZE);
2201 if (offset >= size >> PAGE_SHIFT)
2202 return VM_FAULT_SIGBUS;
2205 * Do we have something in the page cache already?
2207 page = find_get_page(mapping, offset);
2208 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2210 * We found the page, so try async readahead before
2211 * waiting for the lock.
2213 do_async_mmap_readahead(vma, ra, file, page, offset);
2214 } else if (!page) {
2215 /* No page in the page cache at all */
2216 do_sync_mmap_readahead(vma, ra, file, offset);
2217 count_vm_event(PGMAJFAULT);
2218 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2219 ret = VM_FAULT_MAJOR;
2220 retry_find:
2221 page = find_get_page(mapping, offset);
2222 if (!page)
2223 goto no_cached_page;
2226 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2227 put_page(page);
2228 return ret | VM_FAULT_RETRY;
2231 /* Did it get truncated? */
2232 if (unlikely(page->mapping != mapping)) {
2233 unlock_page(page);
2234 put_page(page);
2235 goto retry_find;
2237 VM_BUG_ON_PAGE(page->index != offset, page);
2240 * We have a locked page in the page cache, now we need to check
2241 * that it's up-to-date. If not, it is going to be due to an error.
2243 if (unlikely(!PageUptodate(page)))
2244 goto page_not_uptodate;
2247 * Found the page and have a reference on it.
2248 * We must recheck i_size under page lock.
2250 size = round_up(i_size_read(inode), PAGE_SIZE);
2251 if (unlikely(offset >= size >> PAGE_SHIFT)) {
2252 unlock_page(page);
2253 put_page(page);
2254 return VM_FAULT_SIGBUS;
2257 vmf->page = page;
2258 return ret | VM_FAULT_LOCKED;
2260 no_cached_page:
2262 * We're only likely to ever get here if MADV_RANDOM is in
2263 * effect.
2265 error = page_cache_read(file, offset, vmf->gfp_mask);
2268 * The page we want has now been added to the page cache.
2269 * In the unlikely event that someone removed it in the
2270 * meantime, we'll just come back here and read it again.
2272 if (error >= 0)
2273 goto retry_find;
2276 * An error return from page_cache_read can result if the
2277 * system is low on memory, or a problem occurs while trying
2278 * to schedule I/O.
2280 if (error == -ENOMEM)
2281 return VM_FAULT_OOM;
2282 return VM_FAULT_SIGBUS;
2284 page_not_uptodate:
2286 * Umm, take care of errors if the page isn't up-to-date.
2287 * Try to re-read it _once_. We do this synchronously,
2288 * because there really aren't any performance issues here
2289 * and we need to check for errors.
2291 ClearPageError(page);
2292 error = mapping->a_ops->readpage(file, page);
2293 if (!error) {
2294 wait_on_page_locked(page);
2295 if (!PageUptodate(page))
2296 error = -EIO;
2298 put_page(page);
2300 if (!error || error == AOP_TRUNCATED_PAGE)
2301 goto retry_find;
2303 /* Things didn't work out. Return zero to tell the mm layer so. */
2304 shrink_readahead_size_eio(file, ra);
2305 return VM_FAULT_SIGBUS;
2307 EXPORT_SYMBOL(filemap_fault);
2309 void filemap_map_pages(struct vm_fault *vmf,
2310 pgoff_t start_pgoff, pgoff_t end_pgoff)
2312 struct radix_tree_iter iter;
2313 void **slot;
2314 struct file *file = vmf->vma->vm_file;
2315 struct address_space *mapping = file->f_mapping;
2316 pgoff_t last_pgoff = start_pgoff;
2317 loff_t size;
2318 struct page *head, *page;
2320 rcu_read_lock();
2321 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2322 start_pgoff) {
2323 if (iter.index > end_pgoff)
2324 break;
2325 repeat:
2326 page = radix_tree_deref_slot(slot);
2327 if (unlikely(!page))
2328 goto next;
2329 if (radix_tree_exception(page)) {
2330 if (radix_tree_deref_retry(page)) {
2331 slot = radix_tree_iter_retry(&iter);
2332 continue;
2334 goto next;
2337 head = compound_head(page);
2338 if (!page_cache_get_speculative(head))
2339 goto repeat;
2341 /* The page was split under us? */
2342 if (compound_head(page) != head) {
2343 put_page(head);
2344 goto repeat;
2347 /* Has the page moved? */
2348 if (unlikely(page != *slot)) {
2349 put_page(head);
2350 goto repeat;
2353 if (!PageUptodate(page) ||
2354 PageReadahead(page) ||
2355 PageHWPoison(page))
2356 goto skip;
2357 if (!trylock_page(page))
2358 goto skip;
2360 if (page->mapping != mapping || !PageUptodate(page))
2361 goto unlock;
2363 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2364 if (page->index >= size >> PAGE_SHIFT)
2365 goto unlock;
2367 if (file->f_ra.mmap_miss > 0)
2368 file->f_ra.mmap_miss--;
2370 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2371 if (vmf->pte)
2372 vmf->pte += iter.index - last_pgoff;
2373 last_pgoff = iter.index;
2374 if (alloc_set_pte(vmf, NULL, page))
2375 goto unlock;
2376 unlock_page(page);
2377 goto next;
2378 unlock:
2379 unlock_page(page);
2380 skip:
2381 put_page(page);
2382 next:
2383 /* Huge page is mapped? No need to proceed. */
2384 if (pmd_trans_huge(*vmf->pmd))
2385 break;
2386 if (iter.index == end_pgoff)
2387 break;
2389 rcu_read_unlock();
2391 EXPORT_SYMBOL(filemap_map_pages);
2393 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2395 struct page *page = vmf->page;
2396 struct inode *inode = file_inode(vma->vm_file);
2397 int ret = VM_FAULT_LOCKED;
2399 sb_start_pagefault(inode->i_sb);
2400 file_update_time(vma->vm_file);
2401 lock_page(page);
2402 if (page->mapping != inode->i_mapping) {
2403 unlock_page(page);
2404 ret = VM_FAULT_NOPAGE;
2405 goto out;
2408 * We mark the page dirty already here so that when freeze is in
2409 * progress, we are guaranteed that writeback during freezing will
2410 * see the dirty page and writeprotect it again.
2412 set_page_dirty(page);
2413 wait_for_stable_page(page);
2414 out:
2415 sb_end_pagefault(inode->i_sb);
2416 return ret;
2418 EXPORT_SYMBOL(filemap_page_mkwrite);
2420 const struct vm_operations_struct generic_file_vm_ops = {
2421 .fault = filemap_fault,
2422 .map_pages = filemap_map_pages,
2423 .page_mkwrite = filemap_page_mkwrite,
2426 /* This is used for a general mmap of a disk file */
2428 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2430 struct address_space *mapping = file->f_mapping;
2432 if (!mapping->a_ops->readpage)
2433 return -ENOEXEC;
2434 file_accessed(file);
2435 vma->vm_ops = &generic_file_vm_ops;
2436 return 0;
2440 * This is for filesystems which do not implement ->writepage.
2442 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2444 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2445 return -EINVAL;
2446 return generic_file_mmap(file, vma);
2448 #else
2449 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2451 return -ENOSYS;
2453 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2455 return -ENOSYS;
2457 #endif /* CONFIG_MMU */
2459 EXPORT_SYMBOL(generic_file_mmap);
2460 EXPORT_SYMBOL(generic_file_readonly_mmap);
2462 static struct page *wait_on_page_read(struct page *page)
2464 if (!IS_ERR(page)) {
2465 wait_on_page_locked(page);
2466 if (!PageUptodate(page)) {
2467 put_page(page);
2468 page = ERR_PTR(-EIO);
2471 return page;
2474 static struct page *do_read_cache_page(struct address_space *mapping,
2475 pgoff_t index,
2476 int (*filler)(void *, struct page *),
2477 void *data,
2478 gfp_t gfp)
2480 struct page *page;
2481 int err;
2482 repeat:
2483 page = find_get_page(mapping, index);
2484 if (!page) {
2485 page = __page_cache_alloc(gfp | __GFP_COLD);
2486 if (!page)
2487 return ERR_PTR(-ENOMEM);
2488 err = add_to_page_cache_lru(page, mapping, index, gfp);
2489 if (unlikely(err)) {
2490 put_page(page);
2491 if (err == -EEXIST)
2492 goto repeat;
2493 /* Presumably ENOMEM for radix tree node */
2494 return ERR_PTR(err);
2497 filler:
2498 err = filler(data, page);
2499 if (err < 0) {
2500 put_page(page);
2501 return ERR_PTR(err);
2504 page = wait_on_page_read(page);
2505 if (IS_ERR(page))
2506 return page;
2507 goto out;
2509 if (PageUptodate(page))
2510 goto out;
2513 * Page is not up to date and may be locked due one of the following
2514 * case a: Page is being filled and the page lock is held
2515 * case b: Read/write error clearing the page uptodate status
2516 * case c: Truncation in progress (page locked)
2517 * case d: Reclaim in progress
2519 * Case a, the page will be up to date when the page is unlocked.
2520 * There is no need to serialise on the page lock here as the page
2521 * is pinned so the lock gives no additional protection. Even if the
2522 * the page is truncated, the data is still valid if PageUptodate as
2523 * it's a race vs truncate race.
2524 * Case b, the page will not be up to date
2525 * Case c, the page may be truncated but in itself, the data may still
2526 * be valid after IO completes as it's a read vs truncate race. The
2527 * operation must restart if the page is not uptodate on unlock but
2528 * otherwise serialising on page lock to stabilise the mapping gives
2529 * no additional guarantees to the caller as the page lock is
2530 * released before return.
2531 * Case d, similar to truncation. If reclaim holds the page lock, it
2532 * will be a race with remove_mapping that determines if the mapping
2533 * is valid on unlock but otherwise the data is valid and there is
2534 * no need to serialise with page lock.
2536 * As the page lock gives no additional guarantee, we optimistically
2537 * wait on the page to be unlocked and check if it's up to date and
2538 * use the page if it is. Otherwise, the page lock is required to
2539 * distinguish between the different cases. The motivation is that we
2540 * avoid spurious serialisations and wakeups when multiple processes
2541 * wait on the same page for IO to complete.
2543 wait_on_page_locked(page);
2544 if (PageUptodate(page))
2545 goto out;
2547 /* Distinguish between all the cases under the safety of the lock */
2548 lock_page(page);
2550 /* Case c or d, restart the operation */
2551 if (!page->mapping) {
2552 unlock_page(page);
2553 put_page(page);
2554 goto repeat;
2557 /* Someone else locked and filled the page in a very small window */
2558 if (PageUptodate(page)) {
2559 unlock_page(page);
2560 goto out;
2562 goto filler;
2564 out:
2565 mark_page_accessed(page);
2566 return page;
2570 * read_cache_page - read into page cache, fill it if needed
2571 * @mapping: the page's address_space
2572 * @index: the page index
2573 * @filler: function to perform the read
2574 * @data: first arg to filler(data, page) function, often left as NULL
2576 * Read into the page cache. If a page already exists, and PageUptodate() is
2577 * not set, try to fill the page and wait for it to become unlocked.
2579 * If the page does not get brought uptodate, return -EIO.
2581 struct page *read_cache_page(struct address_space *mapping,
2582 pgoff_t index,
2583 int (*filler)(void *, struct page *),
2584 void *data)
2586 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2588 EXPORT_SYMBOL(read_cache_page);
2591 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2592 * @mapping: the page's address_space
2593 * @index: the page index
2594 * @gfp: the page allocator flags to use if allocating
2596 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2597 * any new page allocations done using the specified allocation flags.
2599 * If the page does not get brought uptodate, return -EIO.
2601 struct page *read_cache_page_gfp(struct address_space *mapping,
2602 pgoff_t index,
2603 gfp_t gfp)
2605 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2607 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2609 EXPORT_SYMBOL(read_cache_page_gfp);
2612 * Performs necessary checks before doing a write
2614 * Can adjust writing position or amount of bytes to write.
2615 * Returns appropriate error code that caller should return or
2616 * zero in case that write should be allowed.
2618 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2620 struct file *file = iocb->ki_filp;
2621 struct inode *inode = file->f_mapping->host;
2622 unsigned long limit = rlimit(RLIMIT_FSIZE);
2623 loff_t pos;
2625 if (!iov_iter_count(from))
2626 return 0;
2628 /* FIXME: this is for backwards compatibility with 2.4 */
2629 if (iocb->ki_flags & IOCB_APPEND)
2630 iocb->ki_pos = i_size_read(inode);
2632 pos = iocb->ki_pos;
2634 if (limit != RLIM_INFINITY) {
2635 if (iocb->ki_pos >= limit) {
2636 send_sig(SIGXFSZ, current, 0);
2637 return -EFBIG;
2639 iov_iter_truncate(from, limit - (unsigned long)pos);
2643 * LFS rule
2645 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2646 !(file->f_flags & O_LARGEFILE))) {
2647 if (pos >= MAX_NON_LFS)
2648 return -EFBIG;
2649 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2653 * Are we about to exceed the fs block limit ?
2655 * If we have written data it becomes a short write. If we have
2656 * exceeded without writing data we send a signal and return EFBIG.
2657 * Linus frestrict idea will clean these up nicely..
2659 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2660 return -EFBIG;
2662 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2663 return iov_iter_count(from);
2665 EXPORT_SYMBOL(generic_write_checks);
2667 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2668 loff_t pos, unsigned len, unsigned flags,
2669 struct page **pagep, void **fsdata)
2671 const struct address_space_operations *aops = mapping->a_ops;
2673 return aops->write_begin(file, mapping, pos, len, flags,
2674 pagep, fsdata);
2676 EXPORT_SYMBOL(pagecache_write_begin);
2678 int pagecache_write_end(struct file *file, struct address_space *mapping,
2679 loff_t pos, unsigned len, unsigned copied,
2680 struct page *page, void *fsdata)
2682 const struct address_space_operations *aops = mapping->a_ops;
2684 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2686 EXPORT_SYMBOL(pagecache_write_end);
2688 ssize_t
2689 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2691 struct file *file = iocb->ki_filp;
2692 struct address_space *mapping = file->f_mapping;
2693 struct inode *inode = mapping->host;
2694 loff_t pos = iocb->ki_pos;
2695 ssize_t written;
2696 size_t write_len;
2697 pgoff_t end;
2698 struct iov_iter data;
2700 write_len = iov_iter_count(from);
2701 end = (pos + write_len - 1) >> PAGE_SHIFT;
2703 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2704 if (written)
2705 goto out;
2708 * After a write we want buffered reads to be sure to go to disk to get
2709 * the new data. We invalidate clean cached page from the region we're
2710 * about to write. We do this *before* the write so that we can return
2711 * without clobbering -EIOCBQUEUED from ->direct_IO().
2713 if (mapping->nrpages) {
2714 written = invalidate_inode_pages2_range(mapping,
2715 pos >> PAGE_SHIFT, end);
2717 * If a page can not be invalidated, return 0 to fall back
2718 * to buffered write.
2720 if (written) {
2721 if (written == -EBUSY)
2722 return 0;
2723 goto out;
2727 data = *from;
2728 written = mapping->a_ops->direct_IO(iocb, &data);
2731 * Finally, try again to invalidate clean pages which might have been
2732 * cached by non-direct readahead, or faulted in by get_user_pages()
2733 * if the source of the write was an mmap'ed region of the file
2734 * we're writing. Either one is a pretty crazy thing to do,
2735 * so we don't support it 100%. If this invalidation
2736 * fails, tough, the write still worked...
2738 if (mapping->nrpages) {
2739 invalidate_inode_pages2_range(mapping,
2740 pos >> PAGE_SHIFT, end);
2743 if (written > 0) {
2744 pos += written;
2745 iov_iter_advance(from, written);
2746 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2747 i_size_write(inode, pos);
2748 mark_inode_dirty(inode);
2750 iocb->ki_pos = pos;
2752 out:
2753 return written;
2755 EXPORT_SYMBOL(generic_file_direct_write);
2758 * Find or create a page at the given pagecache position. Return the locked
2759 * page. This function is specifically for buffered writes.
2761 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2762 pgoff_t index, unsigned flags)
2764 struct page *page;
2765 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2767 if (flags & AOP_FLAG_NOFS)
2768 fgp_flags |= FGP_NOFS;
2770 page = pagecache_get_page(mapping, index, fgp_flags,
2771 mapping_gfp_mask(mapping));
2772 if (page)
2773 wait_for_stable_page(page);
2775 return page;
2777 EXPORT_SYMBOL(grab_cache_page_write_begin);
2779 ssize_t generic_perform_write(struct file *file,
2780 struct iov_iter *i, loff_t pos)
2782 struct address_space *mapping = file->f_mapping;
2783 const struct address_space_operations *a_ops = mapping->a_ops;
2784 long status = 0;
2785 ssize_t written = 0;
2786 unsigned int flags = 0;
2789 * Copies from kernel address space cannot fail (NFSD is a big user).
2791 if (!iter_is_iovec(i))
2792 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2794 do {
2795 struct page *page;
2796 unsigned long offset; /* Offset into pagecache page */
2797 unsigned long bytes; /* Bytes to write to page */
2798 size_t copied; /* Bytes copied from user */
2799 void *fsdata;
2801 offset = (pos & (PAGE_SIZE - 1));
2802 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2803 iov_iter_count(i));
2805 again:
2807 * Bring in the user page that we will copy from _first_.
2808 * Otherwise there's a nasty deadlock on copying from the
2809 * same page as we're writing to, without it being marked
2810 * up-to-date.
2812 * Not only is this an optimisation, but it is also required
2813 * to check that the address is actually valid, when atomic
2814 * usercopies are used, below.
2816 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2817 status = -EFAULT;
2818 break;
2821 if (fatal_signal_pending(current)) {
2822 status = -EINTR;
2823 break;
2826 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2827 &page, &fsdata);
2828 if (unlikely(status < 0))
2829 break;
2831 if (mapping_writably_mapped(mapping))
2832 flush_dcache_page(page);
2834 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2835 flush_dcache_page(page);
2837 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2838 page, fsdata);
2839 if (unlikely(status < 0))
2840 break;
2841 copied = status;
2843 cond_resched();
2845 iov_iter_advance(i, copied);
2846 if (unlikely(copied == 0)) {
2848 * If we were unable to copy any data at all, we must
2849 * fall back to a single segment length write.
2851 * If we didn't fallback here, we could livelock
2852 * because not all segments in the iov can be copied at
2853 * once without a pagefault.
2855 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2856 iov_iter_single_seg_count(i));
2857 goto again;
2859 pos += copied;
2860 written += copied;
2862 balance_dirty_pages_ratelimited(mapping);
2863 } while (iov_iter_count(i));
2865 return written ? written : status;
2867 EXPORT_SYMBOL(generic_perform_write);
2870 * __generic_file_write_iter - write data to a file
2871 * @iocb: IO state structure (file, offset, etc.)
2872 * @from: iov_iter with data to write
2874 * This function does all the work needed for actually writing data to a
2875 * file. It does all basic checks, removes SUID from the file, updates
2876 * modification times and calls proper subroutines depending on whether we
2877 * do direct IO or a standard buffered write.
2879 * It expects i_mutex to be grabbed unless we work on a block device or similar
2880 * object which does not need locking at all.
2882 * This function does *not* take care of syncing data in case of O_SYNC write.
2883 * A caller has to handle it. This is mainly due to the fact that we want to
2884 * avoid syncing under i_mutex.
2886 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2888 struct file *file = iocb->ki_filp;
2889 struct address_space * mapping = file->f_mapping;
2890 struct inode *inode = mapping->host;
2891 ssize_t written = 0;
2892 ssize_t err;
2893 ssize_t status;
2895 /* We can write back this queue in page reclaim */
2896 current->backing_dev_info = inode_to_bdi(inode);
2897 err = file_remove_privs(file);
2898 if (err)
2899 goto out;
2901 err = file_update_time(file);
2902 if (err)
2903 goto out;
2905 if (iocb->ki_flags & IOCB_DIRECT) {
2906 loff_t pos, endbyte;
2908 written = generic_file_direct_write(iocb, from);
2910 * If the write stopped short of completing, fall back to
2911 * buffered writes. Some filesystems do this for writes to
2912 * holes, for example. For DAX files, a buffered write will
2913 * not succeed (even if it did, DAX does not handle dirty
2914 * page-cache pages correctly).
2916 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2917 goto out;
2919 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2921 * If generic_perform_write() returned a synchronous error
2922 * then we want to return the number of bytes which were
2923 * direct-written, or the error code if that was zero. Note
2924 * that this differs from normal direct-io semantics, which
2925 * will return -EFOO even if some bytes were written.
2927 if (unlikely(status < 0)) {
2928 err = status;
2929 goto out;
2932 * We need to ensure that the page cache pages are written to
2933 * disk and invalidated to preserve the expected O_DIRECT
2934 * semantics.
2936 endbyte = pos + status - 1;
2937 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2938 if (err == 0) {
2939 iocb->ki_pos = endbyte + 1;
2940 written += status;
2941 invalidate_mapping_pages(mapping,
2942 pos >> PAGE_SHIFT,
2943 endbyte >> PAGE_SHIFT);
2944 } else {
2946 * We don't know how much we wrote, so just return
2947 * the number of bytes which were direct-written
2950 } else {
2951 written = generic_perform_write(file, from, iocb->ki_pos);
2952 if (likely(written > 0))
2953 iocb->ki_pos += written;
2955 out:
2956 current->backing_dev_info = NULL;
2957 return written ? written : err;
2959 EXPORT_SYMBOL(__generic_file_write_iter);
2962 * generic_file_write_iter - write data to a file
2963 * @iocb: IO state structure
2964 * @from: iov_iter with data to write
2966 * This is a wrapper around __generic_file_write_iter() to be used by most
2967 * filesystems. It takes care of syncing the file in case of O_SYNC file
2968 * and acquires i_mutex as needed.
2970 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2972 struct file *file = iocb->ki_filp;
2973 struct inode *inode = file->f_mapping->host;
2974 ssize_t ret;
2976 inode_lock(inode);
2977 ret = generic_write_checks(iocb, from);
2978 if (ret > 0)
2979 ret = __generic_file_write_iter(iocb, from);
2980 inode_unlock(inode);
2982 if (ret > 0)
2983 ret = generic_write_sync(iocb, ret);
2984 return ret;
2986 EXPORT_SYMBOL(generic_file_write_iter);
2989 * try_to_release_page() - release old fs-specific metadata on a page
2991 * @page: the page which the kernel is trying to free
2992 * @gfp_mask: memory allocation flags (and I/O mode)
2994 * The address_space is to try to release any data against the page
2995 * (presumably at page->private). If the release was successful, return `1'.
2996 * Otherwise return zero.
2998 * This may also be called if PG_fscache is set on a page, indicating that the
2999 * page is known to the local caching routines.
3001 * The @gfp_mask argument specifies whether I/O may be performed to release
3002 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3005 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3007 struct address_space * const mapping = page->mapping;
3009 BUG_ON(!PageLocked(page));
3010 if (PageWriteback(page))
3011 return 0;
3013 if (mapping && mapping->a_ops->releasepage)
3014 return mapping->a_ops->releasepage(page, gfp_mask);
3015 return try_to_free_buffers(page);
3018 EXPORT_SYMBOL(try_to_release_page);