2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex
);
54 static LIST_HEAD(regulator_map_list
);
55 static LIST_HEAD(regulator_ena_gpio_list
);
56 static LIST_HEAD(regulator_supply_alias_list
);
57 static bool has_full_constraints
;
59 static struct dentry
*debugfs_root
;
62 * struct regulator_map
64 * Used to provide symbolic supply names to devices.
66 struct regulator_map
{
67 struct list_head list
;
68 const char *dev_name
; /* The dev_name() for the consumer */
70 struct regulator_dev
*regulator
;
74 * struct regulator_enable_gpio
76 * Management for shared enable GPIO pin
78 struct regulator_enable_gpio
{
79 struct list_head list
;
80 struct gpio_desc
*gpiod
;
81 u32 enable_count
; /* a number of enabled shared GPIO */
82 u32 request_count
; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert
:1;
87 * struct regulator_supply_alias
89 * Used to map lookups for a supply onto an alternative device.
91 struct regulator_supply_alias
{
92 struct list_head list
;
93 struct device
*src_dev
;
94 const char *src_supply
;
95 struct device
*alias_dev
;
96 const char *alias_supply
;
99 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
100 static int _regulator_disable(struct regulator_dev
*rdev
);
101 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
102 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
103 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
104 static int _notifier_call_chain(struct regulator_dev
*rdev
,
105 unsigned long event
, void *data
);
106 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
107 int min_uV
, int max_uV
);
108 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
110 const char *supply_name
);
111 static void _regulator_put(struct regulator
*regulator
);
113 static const char *rdev_get_name(struct regulator_dev
*rdev
)
115 if (rdev
->constraints
&& rdev
->constraints
->name
)
116 return rdev
->constraints
->name
;
117 else if (rdev
->desc
->name
)
118 return rdev
->desc
->name
;
123 static bool have_full_constraints(void)
125 return has_full_constraints
|| of_have_populated_dt();
128 static bool regulator_ops_is_valid(struct regulator_dev
*rdev
, int ops
)
130 if (!rdev
->constraints
) {
131 rdev_err(rdev
, "no constraints\n");
135 if (rdev
->constraints
->valid_ops_mask
& ops
)
141 static inline struct regulator_dev
*rdev_get_supply(struct regulator_dev
*rdev
)
143 if (rdev
&& rdev
->supply
)
144 return rdev
->supply
->rdev
;
150 * regulator_lock_nested - lock a single regulator
151 * @rdev: regulator source
152 * @subclass: mutex subclass used for lockdep
154 * This function can be called many times by one task on
155 * a single regulator and its mutex will be locked only
156 * once. If a task, which is calling this function is other
157 * than the one, which initially locked the mutex, it will
160 static void regulator_lock_nested(struct regulator_dev
*rdev
,
161 unsigned int subclass
)
163 if (!mutex_trylock(&rdev
->mutex
)) {
164 if (rdev
->mutex_owner
== current
) {
168 mutex_lock_nested(&rdev
->mutex
, subclass
);
172 rdev
->mutex_owner
= current
;
175 static inline void regulator_lock(struct regulator_dev
*rdev
)
177 regulator_lock_nested(rdev
, 0);
181 * regulator_unlock - unlock a single regulator
182 * @rdev: regulator_source
184 * This function unlocks the mutex when the
185 * reference counter reaches 0.
187 static void regulator_unlock(struct regulator_dev
*rdev
)
189 if (rdev
->ref_cnt
!= 0) {
192 if (!rdev
->ref_cnt
) {
193 rdev
->mutex_owner
= NULL
;
194 mutex_unlock(&rdev
->mutex
);
200 * regulator_lock_supply - lock a regulator and its supplies
201 * @rdev: regulator source
203 static void regulator_lock_supply(struct regulator_dev
*rdev
)
207 for (i
= 0; rdev
; rdev
= rdev_get_supply(rdev
), i
++)
208 regulator_lock_nested(rdev
, i
);
212 * regulator_unlock_supply - unlock a regulator and its supplies
213 * @rdev: regulator source
215 static void regulator_unlock_supply(struct regulator_dev
*rdev
)
217 struct regulator
*supply
;
220 regulator_unlock(rdev
);
221 supply
= rdev
->supply
;
231 * of_get_regulator - get a regulator device node based on supply name
232 * @dev: Device pointer for the consumer (of regulator) device
233 * @supply: regulator supply name
235 * Extract the regulator device node corresponding to the supply name.
236 * returns the device node corresponding to the regulator if found, else
239 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
241 struct device_node
*regnode
= NULL
;
242 char prop_name
[32]; /* 32 is max size of property name */
244 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
246 snprintf(prop_name
, 32, "%s-supply", supply
);
247 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
250 dev_dbg(dev
, "Looking up %s property in node %pOF failed\n",
251 prop_name
, dev
->of_node
);
257 /* Platform voltage constraint check */
258 static int regulator_check_voltage(struct regulator_dev
*rdev
,
259 int *min_uV
, int *max_uV
)
261 BUG_ON(*min_uV
> *max_uV
);
263 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
264 rdev_err(rdev
, "voltage operation not allowed\n");
268 if (*max_uV
> rdev
->constraints
->max_uV
)
269 *max_uV
= rdev
->constraints
->max_uV
;
270 if (*min_uV
< rdev
->constraints
->min_uV
)
271 *min_uV
= rdev
->constraints
->min_uV
;
273 if (*min_uV
> *max_uV
) {
274 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
282 /* return 0 if the state is valid */
283 static int regulator_check_states(suspend_state_t state
)
285 return (state
> PM_SUSPEND_MAX
|| state
== PM_SUSPEND_TO_IDLE
);
288 /* Make sure we select a voltage that suits the needs of all
289 * regulator consumers
291 static int regulator_check_consumers(struct regulator_dev
*rdev
,
292 int *min_uV
, int *max_uV
,
293 suspend_state_t state
)
295 struct regulator
*regulator
;
296 struct regulator_voltage
*voltage
;
298 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
299 voltage
= ®ulator
->voltage
[state
];
301 * Assume consumers that didn't say anything are OK
302 * with anything in the constraint range.
304 if (!voltage
->min_uV
&& !voltage
->max_uV
)
307 if (*max_uV
> voltage
->max_uV
)
308 *max_uV
= voltage
->max_uV
;
309 if (*min_uV
< voltage
->min_uV
)
310 *min_uV
= voltage
->min_uV
;
313 if (*min_uV
> *max_uV
) {
314 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
322 /* current constraint check */
323 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
324 int *min_uA
, int *max_uA
)
326 BUG_ON(*min_uA
> *max_uA
);
328 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_CURRENT
)) {
329 rdev_err(rdev
, "current operation not allowed\n");
333 if (*max_uA
> rdev
->constraints
->max_uA
)
334 *max_uA
= rdev
->constraints
->max_uA
;
335 if (*min_uA
< rdev
->constraints
->min_uA
)
336 *min_uA
= rdev
->constraints
->min_uA
;
338 if (*min_uA
> *max_uA
) {
339 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
347 /* operating mode constraint check */
348 static int regulator_mode_constrain(struct regulator_dev
*rdev
,
352 case REGULATOR_MODE_FAST
:
353 case REGULATOR_MODE_NORMAL
:
354 case REGULATOR_MODE_IDLE
:
355 case REGULATOR_MODE_STANDBY
:
358 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
362 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_MODE
)) {
363 rdev_err(rdev
, "mode operation not allowed\n");
367 /* The modes are bitmasks, the most power hungry modes having
368 * the lowest values. If the requested mode isn't supported
369 * try higher modes. */
371 if (rdev
->constraints
->valid_modes_mask
& *mode
)
379 static inline struct regulator_state
*
380 regulator_get_suspend_state(struct regulator_dev
*rdev
, suspend_state_t state
)
382 if (rdev
->constraints
== NULL
)
386 case PM_SUSPEND_STANDBY
:
387 return &rdev
->constraints
->state_standby
;
389 return &rdev
->constraints
->state_mem
;
391 return &rdev
->constraints
->state_disk
;
397 static ssize_t
regulator_uV_show(struct device
*dev
,
398 struct device_attribute
*attr
, char *buf
)
400 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
403 regulator_lock(rdev
);
404 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
405 regulator_unlock(rdev
);
409 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
411 static ssize_t
regulator_uA_show(struct device
*dev
,
412 struct device_attribute
*attr
, char *buf
)
414 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
416 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
418 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
420 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
423 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
425 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
427 static DEVICE_ATTR_RO(name
);
429 static const char *regulator_opmode_to_str(int mode
)
432 case REGULATOR_MODE_FAST
:
434 case REGULATOR_MODE_NORMAL
:
436 case REGULATOR_MODE_IDLE
:
438 case REGULATOR_MODE_STANDBY
:
444 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
446 return sprintf(buf
, "%s\n", regulator_opmode_to_str(mode
));
449 static ssize_t
regulator_opmode_show(struct device
*dev
,
450 struct device_attribute
*attr
, char *buf
)
452 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
454 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
456 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
458 static ssize_t
regulator_print_state(char *buf
, int state
)
461 return sprintf(buf
, "enabled\n");
463 return sprintf(buf
, "disabled\n");
465 return sprintf(buf
, "unknown\n");
468 static ssize_t
regulator_state_show(struct device
*dev
,
469 struct device_attribute
*attr
, char *buf
)
471 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
474 regulator_lock(rdev
);
475 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
476 regulator_unlock(rdev
);
480 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
482 static ssize_t
regulator_status_show(struct device
*dev
,
483 struct device_attribute
*attr
, char *buf
)
485 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
489 status
= rdev
->desc
->ops
->get_status(rdev
);
494 case REGULATOR_STATUS_OFF
:
497 case REGULATOR_STATUS_ON
:
500 case REGULATOR_STATUS_ERROR
:
503 case REGULATOR_STATUS_FAST
:
506 case REGULATOR_STATUS_NORMAL
:
509 case REGULATOR_STATUS_IDLE
:
512 case REGULATOR_STATUS_STANDBY
:
515 case REGULATOR_STATUS_BYPASS
:
518 case REGULATOR_STATUS_UNDEFINED
:
525 return sprintf(buf
, "%s\n", label
);
527 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
529 static ssize_t
regulator_min_uA_show(struct device
*dev
,
530 struct device_attribute
*attr
, char *buf
)
532 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
534 if (!rdev
->constraints
)
535 return sprintf(buf
, "constraint not defined\n");
537 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
539 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
541 static ssize_t
regulator_max_uA_show(struct device
*dev
,
542 struct device_attribute
*attr
, char *buf
)
544 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
546 if (!rdev
->constraints
)
547 return sprintf(buf
, "constraint not defined\n");
549 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
551 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
553 static ssize_t
regulator_min_uV_show(struct device
*dev
,
554 struct device_attribute
*attr
, char *buf
)
556 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
558 if (!rdev
->constraints
)
559 return sprintf(buf
, "constraint not defined\n");
561 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
563 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
565 static ssize_t
regulator_max_uV_show(struct device
*dev
,
566 struct device_attribute
*attr
, char *buf
)
568 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
570 if (!rdev
->constraints
)
571 return sprintf(buf
, "constraint not defined\n");
573 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
575 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
577 static ssize_t
regulator_total_uA_show(struct device
*dev
,
578 struct device_attribute
*attr
, char *buf
)
580 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
581 struct regulator
*regulator
;
584 regulator_lock(rdev
);
585 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
586 uA
+= regulator
->uA_load
;
587 regulator_unlock(rdev
);
588 return sprintf(buf
, "%d\n", uA
);
590 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
592 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
595 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
596 return sprintf(buf
, "%d\n", rdev
->use_count
);
598 static DEVICE_ATTR_RO(num_users
);
600 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
603 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
605 switch (rdev
->desc
->type
) {
606 case REGULATOR_VOLTAGE
:
607 return sprintf(buf
, "voltage\n");
608 case REGULATOR_CURRENT
:
609 return sprintf(buf
, "current\n");
611 return sprintf(buf
, "unknown\n");
613 static DEVICE_ATTR_RO(type
);
615 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
616 struct device_attribute
*attr
, char *buf
)
618 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
620 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
622 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
623 regulator_suspend_mem_uV_show
, NULL
);
625 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
626 struct device_attribute
*attr
, char *buf
)
628 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
630 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
632 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
633 regulator_suspend_disk_uV_show
, NULL
);
635 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
636 struct device_attribute
*attr
, char *buf
)
638 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
640 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
642 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
643 regulator_suspend_standby_uV_show
, NULL
);
645 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
646 struct device_attribute
*attr
, char *buf
)
648 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
650 return regulator_print_opmode(buf
,
651 rdev
->constraints
->state_mem
.mode
);
653 static DEVICE_ATTR(suspend_mem_mode
, 0444,
654 regulator_suspend_mem_mode_show
, NULL
);
656 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
657 struct device_attribute
*attr
, char *buf
)
659 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
661 return regulator_print_opmode(buf
,
662 rdev
->constraints
->state_disk
.mode
);
664 static DEVICE_ATTR(suspend_disk_mode
, 0444,
665 regulator_suspend_disk_mode_show
, NULL
);
667 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
668 struct device_attribute
*attr
, char *buf
)
670 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
672 return regulator_print_opmode(buf
,
673 rdev
->constraints
->state_standby
.mode
);
675 static DEVICE_ATTR(suspend_standby_mode
, 0444,
676 regulator_suspend_standby_mode_show
, NULL
);
678 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
679 struct device_attribute
*attr
, char *buf
)
681 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
683 return regulator_print_state(buf
,
684 rdev
->constraints
->state_mem
.enabled
);
686 static DEVICE_ATTR(suspend_mem_state
, 0444,
687 regulator_suspend_mem_state_show
, NULL
);
689 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
690 struct device_attribute
*attr
, char *buf
)
692 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
694 return regulator_print_state(buf
,
695 rdev
->constraints
->state_disk
.enabled
);
697 static DEVICE_ATTR(suspend_disk_state
, 0444,
698 regulator_suspend_disk_state_show
, NULL
);
700 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
701 struct device_attribute
*attr
, char *buf
)
703 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
705 return regulator_print_state(buf
,
706 rdev
->constraints
->state_standby
.enabled
);
708 static DEVICE_ATTR(suspend_standby_state
, 0444,
709 regulator_suspend_standby_state_show
, NULL
);
711 static ssize_t
regulator_bypass_show(struct device
*dev
,
712 struct device_attribute
*attr
, char *buf
)
714 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
719 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
728 return sprintf(buf
, "%s\n", report
);
730 static DEVICE_ATTR(bypass
, 0444,
731 regulator_bypass_show
, NULL
);
733 /* Calculate the new optimum regulator operating mode based on the new total
734 * consumer load. All locks held by caller */
735 static int drms_uA_update(struct regulator_dev
*rdev
)
737 struct regulator
*sibling
;
738 int current_uA
= 0, output_uV
, input_uV
, err
;
741 lockdep_assert_held_once(&rdev
->mutex
);
744 * first check to see if we can set modes at all, otherwise just
745 * tell the consumer everything is OK.
747 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
))
750 if (!rdev
->desc
->ops
->get_optimum_mode
&&
751 !rdev
->desc
->ops
->set_load
)
754 if (!rdev
->desc
->ops
->set_mode
&&
755 !rdev
->desc
->ops
->set_load
)
758 /* calc total requested load */
759 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
760 current_uA
+= sibling
->uA_load
;
762 current_uA
+= rdev
->constraints
->system_load
;
764 if (rdev
->desc
->ops
->set_load
) {
765 /* set the optimum mode for our new total regulator load */
766 err
= rdev
->desc
->ops
->set_load(rdev
, current_uA
);
768 rdev_err(rdev
, "failed to set load %d\n", current_uA
);
770 /* get output voltage */
771 output_uV
= _regulator_get_voltage(rdev
);
772 if (output_uV
<= 0) {
773 rdev_err(rdev
, "invalid output voltage found\n");
777 /* get input voltage */
780 input_uV
= regulator_get_voltage(rdev
->supply
);
782 input_uV
= rdev
->constraints
->input_uV
;
784 rdev_err(rdev
, "invalid input voltage found\n");
788 /* now get the optimum mode for our new total regulator load */
789 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
790 output_uV
, current_uA
);
792 /* check the new mode is allowed */
793 err
= regulator_mode_constrain(rdev
, &mode
);
795 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
796 current_uA
, input_uV
, output_uV
);
800 err
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
802 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
808 static int suspend_set_state(struct regulator_dev
*rdev
,
809 suspend_state_t state
)
812 struct regulator_state
*rstate
;
814 rstate
= regulator_get_suspend_state(rdev
, state
);
818 /* If we have no suspend mode configration don't set anything;
819 * only warn if the driver implements set_suspend_voltage or
820 * set_suspend_mode callback.
822 if (rstate
->enabled
!= ENABLE_IN_SUSPEND
&&
823 rstate
->enabled
!= DISABLE_IN_SUSPEND
) {
824 if (rdev
->desc
->ops
->set_suspend_voltage
||
825 rdev
->desc
->ops
->set_suspend_mode
)
826 rdev_warn(rdev
, "No configuration\n");
830 if (rstate
->enabled
== ENABLE_IN_SUSPEND
&&
831 rdev
->desc
->ops
->set_suspend_enable
)
832 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
833 else if (rstate
->enabled
== DISABLE_IN_SUSPEND
&&
834 rdev
->desc
->ops
->set_suspend_disable
)
835 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
836 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
840 rdev_err(rdev
, "failed to enabled/disable\n");
844 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
845 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
847 rdev_err(rdev
, "failed to set voltage\n");
852 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
853 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
855 rdev_err(rdev
, "failed to set mode\n");
863 static void print_constraints(struct regulator_dev
*rdev
)
865 struct regulation_constraints
*constraints
= rdev
->constraints
;
867 size_t len
= sizeof(buf
) - 1;
871 if (constraints
->min_uV
&& constraints
->max_uV
) {
872 if (constraints
->min_uV
== constraints
->max_uV
)
873 count
+= scnprintf(buf
+ count
, len
- count
, "%d mV ",
874 constraints
->min_uV
/ 1000);
876 count
+= scnprintf(buf
+ count
, len
- count
,
878 constraints
->min_uV
/ 1000,
879 constraints
->max_uV
/ 1000);
882 if (!constraints
->min_uV
||
883 constraints
->min_uV
!= constraints
->max_uV
) {
884 ret
= _regulator_get_voltage(rdev
);
886 count
+= scnprintf(buf
+ count
, len
- count
,
887 "at %d mV ", ret
/ 1000);
890 if (constraints
->uV_offset
)
891 count
+= scnprintf(buf
+ count
, len
- count
, "%dmV offset ",
892 constraints
->uV_offset
/ 1000);
894 if (constraints
->min_uA
&& constraints
->max_uA
) {
895 if (constraints
->min_uA
== constraints
->max_uA
)
896 count
+= scnprintf(buf
+ count
, len
- count
, "%d mA ",
897 constraints
->min_uA
/ 1000);
899 count
+= scnprintf(buf
+ count
, len
- count
,
901 constraints
->min_uA
/ 1000,
902 constraints
->max_uA
/ 1000);
905 if (!constraints
->min_uA
||
906 constraints
->min_uA
!= constraints
->max_uA
) {
907 ret
= _regulator_get_current_limit(rdev
);
909 count
+= scnprintf(buf
+ count
, len
- count
,
910 "at %d mA ", ret
/ 1000);
913 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
914 count
+= scnprintf(buf
+ count
, len
- count
, "fast ");
915 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
916 count
+= scnprintf(buf
+ count
, len
- count
, "normal ");
917 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
918 count
+= scnprintf(buf
+ count
, len
- count
, "idle ");
919 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
920 count
+= scnprintf(buf
+ count
, len
- count
, "standby");
923 scnprintf(buf
, len
, "no parameters");
925 rdev_dbg(rdev
, "%s\n", buf
);
927 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
928 !regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
))
930 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
933 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
934 struct regulation_constraints
*constraints
)
936 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
939 /* do we need to apply the constraint voltage */
940 if (rdev
->constraints
->apply_uV
&&
941 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
) {
942 int target_min
, target_max
;
943 int current_uV
= _regulator_get_voltage(rdev
);
945 if (current_uV
== -ENOTRECOVERABLE
) {
946 /* This regulator can't be read and must be initted */
947 rdev_info(rdev
, "Setting %d-%duV\n",
948 rdev
->constraints
->min_uV
,
949 rdev
->constraints
->max_uV
);
950 _regulator_do_set_voltage(rdev
,
951 rdev
->constraints
->min_uV
,
952 rdev
->constraints
->max_uV
);
953 current_uV
= _regulator_get_voltage(rdev
);
956 if (current_uV
< 0) {
958 "failed to get the current voltage(%d)\n",
964 * If we're below the minimum voltage move up to the
965 * minimum voltage, if we're above the maximum voltage
966 * then move down to the maximum.
968 target_min
= current_uV
;
969 target_max
= current_uV
;
971 if (current_uV
< rdev
->constraints
->min_uV
) {
972 target_min
= rdev
->constraints
->min_uV
;
973 target_max
= rdev
->constraints
->min_uV
;
976 if (current_uV
> rdev
->constraints
->max_uV
) {
977 target_min
= rdev
->constraints
->max_uV
;
978 target_max
= rdev
->constraints
->max_uV
;
981 if (target_min
!= current_uV
|| target_max
!= current_uV
) {
982 rdev_info(rdev
, "Bringing %duV into %d-%duV\n",
983 current_uV
, target_min
, target_max
);
984 ret
= _regulator_do_set_voltage(
985 rdev
, target_min
, target_max
);
988 "failed to apply %d-%duV constraint(%d)\n",
989 target_min
, target_max
, ret
);
995 /* constrain machine-level voltage specs to fit
996 * the actual range supported by this regulator.
998 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
999 int count
= rdev
->desc
->n_voltages
;
1001 int min_uV
= INT_MAX
;
1002 int max_uV
= INT_MIN
;
1003 int cmin
= constraints
->min_uV
;
1004 int cmax
= constraints
->max_uV
;
1006 /* it's safe to autoconfigure fixed-voltage supplies
1007 and the constraints are used by list_voltage. */
1008 if (count
== 1 && !cmin
) {
1011 constraints
->min_uV
= cmin
;
1012 constraints
->max_uV
= cmax
;
1015 /* voltage constraints are optional */
1016 if ((cmin
== 0) && (cmax
== 0))
1019 /* else require explicit machine-level constraints */
1020 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
1021 rdev_err(rdev
, "invalid voltage constraints\n");
1025 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1026 for (i
= 0; i
< count
; i
++) {
1029 value
= ops
->list_voltage(rdev
, i
);
1033 /* maybe adjust [min_uV..max_uV] */
1034 if (value
>= cmin
&& value
< min_uV
)
1036 if (value
<= cmax
&& value
> max_uV
)
1040 /* final: [min_uV..max_uV] valid iff constraints valid */
1041 if (max_uV
< min_uV
) {
1043 "unsupportable voltage constraints %u-%uuV\n",
1048 /* use regulator's subset of machine constraints */
1049 if (constraints
->min_uV
< min_uV
) {
1050 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
1051 constraints
->min_uV
, min_uV
);
1052 constraints
->min_uV
= min_uV
;
1054 if (constraints
->max_uV
> max_uV
) {
1055 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
1056 constraints
->max_uV
, max_uV
);
1057 constraints
->max_uV
= max_uV
;
1064 static int machine_constraints_current(struct regulator_dev
*rdev
,
1065 struct regulation_constraints
*constraints
)
1067 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1070 if (!constraints
->min_uA
&& !constraints
->max_uA
)
1073 if (constraints
->min_uA
> constraints
->max_uA
) {
1074 rdev_err(rdev
, "Invalid current constraints\n");
1078 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
1079 rdev_warn(rdev
, "Operation of current configuration missing\n");
1083 /* Set regulator current in constraints range */
1084 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
1085 constraints
->max_uA
);
1087 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
1094 static int _regulator_do_enable(struct regulator_dev
*rdev
);
1097 * set_machine_constraints - sets regulator constraints
1098 * @rdev: regulator source
1099 * @constraints: constraints to apply
1101 * Allows platform initialisation code to define and constrain
1102 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1103 * Constraints *must* be set by platform code in order for some
1104 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1107 static int set_machine_constraints(struct regulator_dev
*rdev
,
1108 const struct regulation_constraints
*constraints
)
1111 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1114 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
1117 rdev
->constraints
= kzalloc(sizeof(*constraints
),
1119 if (!rdev
->constraints
)
1122 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
1126 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
1130 if (rdev
->constraints
->ilim_uA
&& ops
->set_input_current_limit
) {
1131 ret
= ops
->set_input_current_limit(rdev
,
1132 rdev
->constraints
->ilim_uA
);
1134 rdev_err(rdev
, "failed to set input limit\n");
1139 /* do we need to setup our suspend state */
1140 if (rdev
->constraints
->initial_state
) {
1141 ret
= suspend_set_state(rdev
, rdev
->constraints
->initial_state
);
1143 rdev_err(rdev
, "failed to set suspend state\n");
1148 if (rdev
->constraints
->initial_mode
) {
1149 if (!ops
->set_mode
) {
1150 rdev_err(rdev
, "no set_mode operation\n");
1154 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1156 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
1161 /* If the constraints say the regulator should be on at this point
1162 * and we have control then make sure it is enabled.
1164 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
1165 ret
= _regulator_do_enable(rdev
);
1166 if (ret
< 0 && ret
!= -EINVAL
) {
1167 rdev_err(rdev
, "failed to enable\n");
1172 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1173 && ops
->set_ramp_delay
) {
1174 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1176 rdev_err(rdev
, "failed to set ramp_delay\n");
1181 if (rdev
->constraints
->pull_down
&& ops
->set_pull_down
) {
1182 ret
= ops
->set_pull_down(rdev
);
1184 rdev_err(rdev
, "failed to set pull down\n");
1189 if (rdev
->constraints
->soft_start
&& ops
->set_soft_start
) {
1190 ret
= ops
->set_soft_start(rdev
);
1192 rdev_err(rdev
, "failed to set soft start\n");
1197 if (rdev
->constraints
->over_current_protection
1198 && ops
->set_over_current_protection
) {
1199 ret
= ops
->set_over_current_protection(rdev
);
1201 rdev_err(rdev
, "failed to set over current protection\n");
1206 if (rdev
->constraints
->active_discharge
&& ops
->set_active_discharge
) {
1207 bool ad_state
= (rdev
->constraints
->active_discharge
==
1208 REGULATOR_ACTIVE_DISCHARGE_ENABLE
) ? true : false;
1210 ret
= ops
->set_active_discharge(rdev
, ad_state
);
1212 rdev_err(rdev
, "failed to set active discharge\n");
1217 print_constraints(rdev
);
1222 * set_supply - set regulator supply regulator
1223 * @rdev: regulator name
1224 * @supply_rdev: supply regulator name
1226 * Called by platform initialisation code to set the supply regulator for this
1227 * regulator. This ensures that a regulators supply will also be enabled by the
1228 * core if it's child is enabled.
1230 static int set_supply(struct regulator_dev
*rdev
,
1231 struct regulator_dev
*supply_rdev
)
1235 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1237 if (!try_module_get(supply_rdev
->owner
))
1240 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1241 if (rdev
->supply
== NULL
) {
1245 supply_rdev
->open_count
++;
1251 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1252 * @rdev: regulator source
1253 * @consumer_dev_name: dev_name() string for device supply applies to
1254 * @supply: symbolic name for supply
1256 * Allows platform initialisation code to map physical regulator
1257 * sources to symbolic names for supplies for use by devices. Devices
1258 * should use these symbolic names to request regulators, avoiding the
1259 * need to provide board-specific regulator names as platform data.
1261 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1262 const char *consumer_dev_name
,
1265 struct regulator_map
*node
;
1271 if (consumer_dev_name
!= NULL
)
1276 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1277 if (node
->dev_name
&& consumer_dev_name
) {
1278 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1280 } else if (node
->dev_name
|| consumer_dev_name
) {
1284 if (strcmp(node
->supply
, supply
) != 0)
1287 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1289 dev_name(&node
->regulator
->dev
),
1290 node
->regulator
->desc
->name
,
1292 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1296 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1300 node
->regulator
= rdev
;
1301 node
->supply
= supply
;
1304 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1305 if (node
->dev_name
== NULL
) {
1311 list_add(&node
->list
, ®ulator_map_list
);
1315 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1317 struct regulator_map
*node
, *n
;
1319 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1320 if (rdev
== node
->regulator
) {
1321 list_del(&node
->list
);
1322 kfree(node
->dev_name
);
1328 #ifdef CONFIG_DEBUG_FS
1329 static ssize_t
constraint_flags_read_file(struct file
*file
,
1330 char __user
*user_buf
,
1331 size_t count
, loff_t
*ppos
)
1333 const struct regulator
*regulator
= file
->private_data
;
1334 const struct regulation_constraints
*c
= regulator
->rdev
->constraints
;
1341 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1345 ret
= snprintf(buf
, PAGE_SIZE
,
1349 "ramp_disable: %u\n"
1352 "over_current_protection: %u\n",
1359 c
->over_current_protection
);
1361 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
1369 static const struct file_operations constraint_flags_fops
= {
1370 #ifdef CONFIG_DEBUG_FS
1371 .open
= simple_open
,
1372 .read
= constraint_flags_read_file
,
1373 .llseek
= default_llseek
,
1377 #define REG_STR_SIZE 64
1379 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1381 const char *supply_name
)
1383 struct regulator
*regulator
;
1384 char buf
[REG_STR_SIZE
];
1387 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1388 if (regulator
== NULL
)
1391 regulator_lock(rdev
);
1392 regulator
->rdev
= rdev
;
1393 list_add(®ulator
->list
, &rdev
->consumer_list
);
1396 regulator
->dev
= dev
;
1398 /* Add a link to the device sysfs entry */
1399 size
= snprintf(buf
, REG_STR_SIZE
, "%s-%s",
1400 dev
->kobj
.name
, supply_name
);
1401 if (size
>= REG_STR_SIZE
)
1404 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1405 if (regulator
->supply_name
== NULL
)
1408 err
= sysfs_create_link_nowarn(&rdev
->dev
.kobj
, &dev
->kobj
,
1411 rdev_dbg(rdev
, "could not add device link %s err %d\n",
1412 dev
->kobj
.name
, err
);
1416 regulator
->supply_name
= kstrdup_const(supply_name
, GFP_KERNEL
);
1417 if (regulator
->supply_name
== NULL
)
1421 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1423 if (!regulator
->debugfs
) {
1424 rdev_dbg(rdev
, "Failed to create debugfs directory\n");
1426 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1427 ®ulator
->uA_load
);
1428 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1429 ®ulator
->voltage
[PM_SUSPEND_ON
].min_uV
);
1430 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1431 ®ulator
->voltage
[PM_SUSPEND_ON
].max_uV
);
1432 debugfs_create_file("constraint_flags", 0444,
1433 regulator
->debugfs
, regulator
,
1434 &constraint_flags_fops
);
1438 * Check now if the regulator is an always on regulator - if
1439 * it is then we don't need to do nearly so much work for
1440 * enable/disable calls.
1442 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
) &&
1443 _regulator_is_enabled(rdev
))
1444 regulator
->always_on
= true;
1446 regulator_unlock(rdev
);
1449 list_del(®ulator
->list
);
1451 regulator_unlock(rdev
);
1455 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1457 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1458 return rdev
->constraints
->enable_time
;
1459 if (!rdev
->desc
->ops
->enable_time
)
1460 return rdev
->desc
->enable_time
;
1461 return rdev
->desc
->ops
->enable_time(rdev
);
1464 static struct regulator_supply_alias
*regulator_find_supply_alias(
1465 struct device
*dev
, const char *supply
)
1467 struct regulator_supply_alias
*map
;
1469 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1470 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1476 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1478 struct regulator_supply_alias
*map
;
1480 map
= regulator_find_supply_alias(*dev
, *supply
);
1482 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1483 *supply
, map
->alias_supply
,
1484 dev_name(map
->alias_dev
));
1485 *dev
= map
->alias_dev
;
1486 *supply
= map
->alias_supply
;
1490 static int regulator_match(struct device
*dev
, const void *data
)
1492 struct regulator_dev
*r
= dev_to_rdev(dev
);
1494 return strcmp(rdev_get_name(r
), data
) == 0;
1497 static struct regulator_dev
*regulator_lookup_by_name(const char *name
)
1501 dev
= class_find_device(®ulator_class
, NULL
, name
, regulator_match
);
1503 return dev
? dev_to_rdev(dev
) : NULL
;
1507 * regulator_dev_lookup - lookup a regulator device.
1508 * @dev: device for regulator "consumer".
1509 * @supply: Supply name or regulator ID.
1511 * If successful, returns a struct regulator_dev that corresponds to the name
1512 * @supply and with the embedded struct device refcount incremented by one.
1513 * The refcount must be dropped by calling put_device().
1514 * On failure one of the following ERR-PTR-encoded values is returned:
1515 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1518 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1521 struct regulator_dev
*r
= NULL
;
1522 struct device_node
*node
;
1523 struct regulator_map
*map
;
1524 const char *devname
= NULL
;
1526 regulator_supply_alias(&dev
, &supply
);
1528 /* first do a dt based lookup */
1529 if (dev
&& dev
->of_node
) {
1530 node
= of_get_regulator(dev
, supply
);
1532 r
= of_find_regulator_by_node(node
);
1537 * We have a node, but there is no device.
1538 * assume it has not registered yet.
1540 return ERR_PTR(-EPROBE_DEFER
);
1544 /* if not found, try doing it non-dt way */
1546 devname
= dev_name(dev
);
1548 mutex_lock(®ulator_list_mutex
);
1549 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1550 /* If the mapping has a device set up it must match */
1551 if (map
->dev_name
&&
1552 (!devname
|| strcmp(map
->dev_name
, devname
)))
1555 if (strcmp(map
->supply
, supply
) == 0 &&
1556 get_device(&map
->regulator
->dev
)) {
1561 mutex_unlock(®ulator_list_mutex
);
1566 r
= regulator_lookup_by_name(supply
);
1570 return ERR_PTR(-ENODEV
);
1573 static int regulator_resolve_supply(struct regulator_dev
*rdev
)
1575 struct regulator_dev
*r
;
1576 struct device
*dev
= rdev
->dev
.parent
;
1579 /* No supply to resovle? */
1580 if (!rdev
->supply_name
)
1583 /* Supply already resolved? */
1587 r
= regulator_dev_lookup(dev
, rdev
->supply_name
);
1591 /* Did the lookup explicitly defer for us? */
1592 if (ret
== -EPROBE_DEFER
)
1595 if (have_full_constraints()) {
1596 r
= dummy_regulator_rdev
;
1597 get_device(&r
->dev
);
1599 dev_err(dev
, "Failed to resolve %s-supply for %s\n",
1600 rdev
->supply_name
, rdev
->desc
->name
);
1601 return -EPROBE_DEFER
;
1606 * If the supply's parent device is not the same as the
1607 * regulator's parent device, then ensure the parent device
1608 * is bound before we resolve the supply, in case the parent
1609 * device get probe deferred and unregisters the supply.
1611 if (r
->dev
.parent
&& r
->dev
.parent
!= rdev
->dev
.parent
) {
1612 if (!device_is_bound(r
->dev
.parent
)) {
1613 put_device(&r
->dev
);
1614 return -EPROBE_DEFER
;
1618 /* Recursively resolve the supply of the supply */
1619 ret
= regulator_resolve_supply(r
);
1621 put_device(&r
->dev
);
1625 ret
= set_supply(rdev
, r
);
1627 put_device(&r
->dev
);
1631 /* Cascade always-on state to supply */
1632 if (_regulator_is_enabled(rdev
)) {
1633 ret
= regulator_enable(rdev
->supply
);
1635 _regulator_put(rdev
->supply
);
1636 rdev
->supply
= NULL
;
1644 /* Internal regulator request function */
1645 struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1646 enum regulator_get_type get_type
)
1648 struct regulator_dev
*rdev
;
1649 struct regulator
*regulator
;
1650 const char *devname
= dev
? dev_name(dev
) : "deviceless";
1653 if (get_type
>= MAX_GET_TYPE
) {
1654 dev_err(dev
, "invalid type %d in %s\n", get_type
, __func__
);
1655 return ERR_PTR(-EINVAL
);
1659 pr_err("get() with no identifier\n");
1660 return ERR_PTR(-EINVAL
);
1663 rdev
= regulator_dev_lookup(dev
, id
);
1665 ret
= PTR_ERR(rdev
);
1668 * If regulator_dev_lookup() fails with error other
1669 * than -ENODEV our job here is done, we simply return it.
1672 return ERR_PTR(ret
);
1674 if (!have_full_constraints()) {
1676 "incomplete constraints, dummy supplies not allowed\n");
1677 return ERR_PTR(-ENODEV
);
1683 * Assume that a regulator is physically present and
1684 * enabled, even if it isn't hooked up, and just
1688 "%s supply %s not found, using dummy regulator\n",
1690 rdev
= dummy_regulator_rdev
;
1691 get_device(&rdev
->dev
);
1696 "dummy supplies not allowed for exclusive requests\n");
1700 return ERR_PTR(-ENODEV
);
1704 if (rdev
->exclusive
) {
1705 regulator
= ERR_PTR(-EPERM
);
1706 put_device(&rdev
->dev
);
1710 if (get_type
== EXCLUSIVE_GET
&& rdev
->open_count
) {
1711 regulator
= ERR_PTR(-EBUSY
);
1712 put_device(&rdev
->dev
);
1716 ret
= regulator_resolve_supply(rdev
);
1718 regulator
= ERR_PTR(ret
);
1719 put_device(&rdev
->dev
);
1723 if (!try_module_get(rdev
->owner
)) {
1724 regulator
= ERR_PTR(-EPROBE_DEFER
);
1725 put_device(&rdev
->dev
);
1729 regulator
= create_regulator(rdev
, dev
, id
);
1730 if (regulator
== NULL
) {
1731 regulator
= ERR_PTR(-ENOMEM
);
1732 put_device(&rdev
->dev
);
1733 module_put(rdev
->owner
);
1738 if (get_type
== EXCLUSIVE_GET
) {
1739 rdev
->exclusive
= 1;
1741 ret
= _regulator_is_enabled(rdev
);
1743 rdev
->use_count
= 1;
1745 rdev
->use_count
= 0;
1748 device_link_add(dev
, &rdev
->dev
, DL_FLAG_STATELESS
);
1754 * regulator_get - lookup and obtain a reference to a regulator.
1755 * @dev: device for regulator "consumer"
1756 * @id: Supply name or regulator ID.
1758 * Returns a struct regulator corresponding to the regulator producer,
1759 * or IS_ERR() condition containing errno.
1761 * Use of supply names configured via regulator_set_device_supply() is
1762 * strongly encouraged. It is recommended that the supply name used
1763 * should match the name used for the supply and/or the relevant
1764 * device pins in the datasheet.
1766 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1768 return _regulator_get(dev
, id
, NORMAL_GET
);
1770 EXPORT_SYMBOL_GPL(regulator_get
);
1773 * regulator_get_exclusive - obtain exclusive access to a regulator.
1774 * @dev: device for regulator "consumer"
1775 * @id: Supply name or regulator ID.
1777 * Returns a struct regulator corresponding to the regulator producer,
1778 * or IS_ERR() condition containing errno. Other consumers will be
1779 * unable to obtain this regulator while this reference is held and the
1780 * use count for the regulator will be initialised to reflect the current
1781 * state of the regulator.
1783 * This is intended for use by consumers which cannot tolerate shared
1784 * use of the regulator such as those which need to force the
1785 * regulator off for correct operation of the hardware they are
1788 * Use of supply names configured via regulator_set_device_supply() is
1789 * strongly encouraged. It is recommended that the supply name used
1790 * should match the name used for the supply and/or the relevant
1791 * device pins in the datasheet.
1793 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1795 return _regulator_get(dev
, id
, EXCLUSIVE_GET
);
1797 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1800 * regulator_get_optional - obtain optional access to a regulator.
1801 * @dev: device for regulator "consumer"
1802 * @id: Supply name or regulator ID.
1804 * Returns a struct regulator corresponding to the regulator producer,
1805 * or IS_ERR() condition containing errno.
1807 * This is intended for use by consumers for devices which can have
1808 * some supplies unconnected in normal use, such as some MMC devices.
1809 * It can allow the regulator core to provide stub supplies for other
1810 * supplies requested using normal regulator_get() calls without
1811 * disrupting the operation of drivers that can handle absent
1814 * Use of supply names configured via regulator_set_device_supply() is
1815 * strongly encouraged. It is recommended that the supply name used
1816 * should match the name used for the supply and/or the relevant
1817 * device pins in the datasheet.
1819 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
1821 return _regulator_get(dev
, id
, OPTIONAL_GET
);
1823 EXPORT_SYMBOL_GPL(regulator_get_optional
);
1825 /* regulator_list_mutex lock held by regulator_put() */
1826 static void _regulator_put(struct regulator
*regulator
)
1828 struct regulator_dev
*rdev
;
1830 if (IS_ERR_OR_NULL(regulator
))
1833 lockdep_assert_held_once(®ulator_list_mutex
);
1835 rdev
= regulator
->rdev
;
1837 debugfs_remove_recursive(regulator
->debugfs
);
1839 if (regulator
->dev
) {
1841 struct regulator
*r
;
1843 list_for_each_entry(r
, &rdev
->consumer_list
, list
)
1844 if (r
->dev
== regulator
->dev
)
1848 device_link_remove(regulator
->dev
, &rdev
->dev
);
1850 /* remove any sysfs entries */
1851 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1854 regulator_lock(rdev
);
1855 list_del(®ulator
->list
);
1858 rdev
->exclusive
= 0;
1859 put_device(&rdev
->dev
);
1860 regulator_unlock(rdev
);
1862 kfree_const(regulator
->supply_name
);
1865 module_put(rdev
->owner
);
1869 * regulator_put - "free" the regulator source
1870 * @regulator: regulator source
1872 * Note: drivers must ensure that all regulator_enable calls made on this
1873 * regulator source are balanced by regulator_disable calls prior to calling
1876 void regulator_put(struct regulator
*regulator
)
1878 mutex_lock(®ulator_list_mutex
);
1879 _regulator_put(regulator
);
1880 mutex_unlock(®ulator_list_mutex
);
1882 EXPORT_SYMBOL_GPL(regulator_put
);
1885 * regulator_register_supply_alias - Provide device alias for supply lookup
1887 * @dev: device that will be given as the regulator "consumer"
1888 * @id: Supply name or regulator ID
1889 * @alias_dev: device that should be used to lookup the supply
1890 * @alias_id: Supply name or regulator ID that should be used to lookup the
1893 * All lookups for id on dev will instead be conducted for alias_id on
1896 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
1897 struct device
*alias_dev
,
1898 const char *alias_id
)
1900 struct regulator_supply_alias
*map
;
1902 map
= regulator_find_supply_alias(dev
, id
);
1906 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
1911 map
->src_supply
= id
;
1912 map
->alias_dev
= alias_dev
;
1913 map
->alias_supply
= alias_id
;
1915 list_add(&map
->list
, ®ulator_supply_alias_list
);
1917 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1918 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
1922 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
1925 * regulator_unregister_supply_alias - Remove device alias
1927 * @dev: device that will be given as the regulator "consumer"
1928 * @id: Supply name or regulator ID
1930 * Remove a lookup alias if one exists for id on dev.
1932 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
1934 struct regulator_supply_alias
*map
;
1936 map
= regulator_find_supply_alias(dev
, id
);
1938 list_del(&map
->list
);
1942 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
1945 * regulator_bulk_register_supply_alias - register multiple aliases
1947 * @dev: device that will be given as the regulator "consumer"
1948 * @id: List of supply names or regulator IDs
1949 * @alias_dev: device that should be used to lookup the supply
1950 * @alias_id: List of supply names or regulator IDs that should be used to
1952 * @num_id: Number of aliases to register
1954 * @return 0 on success, an errno on failure.
1956 * This helper function allows drivers to register several supply
1957 * aliases in one operation. If any of the aliases cannot be
1958 * registered any aliases that were registered will be removed
1959 * before returning to the caller.
1961 int regulator_bulk_register_supply_alias(struct device
*dev
,
1962 const char *const *id
,
1963 struct device
*alias_dev
,
1964 const char *const *alias_id
,
1970 for (i
= 0; i
< num_id
; ++i
) {
1971 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
1981 "Failed to create supply alias %s,%s -> %s,%s\n",
1982 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
1985 regulator_unregister_supply_alias(dev
, id
[i
]);
1989 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
1992 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1994 * @dev: device that will be given as the regulator "consumer"
1995 * @id: List of supply names or regulator IDs
1996 * @num_id: Number of aliases to unregister
1998 * This helper function allows drivers to unregister several supply
1999 * aliases in one operation.
2001 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
2002 const char *const *id
,
2007 for (i
= 0; i
< num_id
; ++i
)
2008 regulator_unregister_supply_alias(dev
, id
[i
]);
2010 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
2013 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2014 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
2015 const struct regulator_config
*config
)
2017 struct regulator_enable_gpio
*pin
;
2018 struct gpio_desc
*gpiod
;
2021 if (config
->ena_gpiod
)
2022 gpiod
= config
->ena_gpiod
;
2024 gpiod
= gpio_to_desc(config
->ena_gpio
);
2026 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
2027 if (pin
->gpiod
== gpiod
) {
2028 rdev_dbg(rdev
, "GPIO %d is already used\n",
2030 goto update_ena_gpio_to_rdev
;
2034 if (!config
->ena_gpiod
) {
2035 ret
= gpio_request_one(config
->ena_gpio
,
2036 GPIOF_DIR_OUT
| config
->ena_gpio_flags
,
2037 rdev_get_name(rdev
));
2042 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
2044 if (!config
->ena_gpiod
)
2045 gpio_free(config
->ena_gpio
);
2050 pin
->ena_gpio_invert
= config
->ena_gpio_invert
;
2051 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
2053 update_ena_gpio_to_rdev
:
2054 pin
->request_count
++;
2055 rdev
->ena_pin
= pin
;
2059 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
2061 struct regulator_enable_gpio
*pin
, *n
;
2066 /* Free the GPIO only in case of no use */
2067 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
2068 if (pin
->gpiod
== rdev
->ena_pin
->gpiod
) {
2069 if (pin
->request_count
<= 1) {
2070 pin
->request_count
= 0;
2071 gpiod_put(pin
->gpiod
);
2072 list_del(&pin
->list
);
2074 rdev
->ena_pin
= NULL
;
2077 pin
->request_count
--;
2084 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2085 * @rdev: regulator_dev structure
2086 * @enable: enable GPIO at initial use?
2088 * GPIO is enabled in case of initial use. (enable_count is 0)
2089 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2091 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
2093 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
2099 /* Enable GPIO at initial use */
2100 if (pin
->enable_count
== 0)
2101 gpiod_set_value_cansleep(pin
->gpiod
,
2102 !pin
->ena_gpio_invert
);
2104 pin
->enable_count
++;
2106 if (pin
->enable_count
> 1) {
2107 pin
->enable_count
--;
2111 /* Disable GPIO if not used */
2112 if (pin
->enable_count
<= 1) {
2113 gpiod_set_value_cansleep(pin
->gpiod
,
2114 pin
->ena_gpio_invert
);
2115 pin
->enable_count
= 0;
2123 * _regulator_enable_delay - a delay helper function
2124 * @delay: time to delay in microseconds
2126 * Delay for the requested amount of time as per the guidelines in:
2128 * Documentation/timers/timers-howto.txt
2130 * The assumption here is that regulators will never be enabled in
2131 * atomic context and therefore sleeping functions can be used.
2133 static void _regulator_enable_delay(unsigned int delay
)
2135 unsigned int ms
= delay
/ 1000;
2136 unsigned int us
= delay
% 1000;
2140 * For small enough values, handle super-millisecond
2141 * delays in the usleep_range() call below.
2150 * Give the scheduler some room to coalesce with any other
2151 * wakeup sources. For delays shorter than 10 us, don't even
2152 * bother setting up high-resolution timers and just busy-
2156 usleep_range(us
, us
+ 100);
2161 static int _regulator_do_enable(struct regulator_dev
*rdev
)
2165 /* Query before enabling in case configuration dependent. */
2166 ret
= _regulator_get_enable_time(rdev
);
2170 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
2174 trace_regulator_enable(rdev_get_name(rdev
));
2176 if (rdev
->desc
->off_on_delay
) {
2177 /* if needed, keep a distance of off_on_delay from last time
2178 * this regulator was disabled.
2180 unsigned long start_jiffy
= jiffies
;
2181 unsigned long intended
, max_delay
, remaining
;
2183 max_delay
= usecs_to_jiffies(rdev
->desc
->off_on_delay
);
2184 intended
= rdev
->last_off_jiffy
+ max_delay
;
2186 if (time_before(start_jiffy
, intended
)) {
2187 /* calc remaining jiffies to deal with one-time
2189 * in case of multiple timer wrapping, either it can be
2190 * detected by out-of-range remaining, or it cannot be
2191 * detected and we gets a panelty of
2192 * _regulator_enable_delay().
2194 remaining
= intended
- start_jiffy
;
2195 if (remaining
<= max_delay
)
2196 _regulator_enable_delay(
2197 jiffies_to_usecs(remaining
));
2201 if (rdev
->ena_pin
) {
2202 if (!rdev
->ena_gpio_state
) {
2203 ret
= regulator_ena_gpio_ctrl(rdev
, true);
2206 rdev
->ena_gpio_state
= 1;
2208 } else if (rdev
->desc
->ops
->enable
) {
2209 ret
= rdev
->desc
->ops
->enable(rdev
);
2216 /* Allow the regulator to ramp; it would be useful to extend
2217 * this for bulk operations so that the regulators can ramp
2219 trace_regulator_enable_delay(rdev_get_name(rdev
));
2221 _regulator_enable_delay(delay
);
2223 trace_regulator_enable_complete(rdev_get_name(rdev
));
2228 /* locks held by regulator_enable() */
2229 static int _regulator_enable(struct regulator_dev
*rdev
)
2233 lockdep_assert_held_once(&rdev
->mutex
);
2235 /* check voltage and requested load before enabling */
2236 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
))
2237 drms_uA_update(rdev
);
2239 if (rdev
->use_count
== 0) {
2240 /* The regulator may on if it's not switchable or left on */
2241 ret
= _regulator_is_enabled(rdev
);
2242 if (ret
== -EINVAL
|| ret
== 0) {
2243 if (!regulator_ops_is_valid(rdev
,
2244 REGULATOR_CHANGE_STATUS
))
2247 ret
= _regulator_do_enable(rdev
);
2251 _notifier_call_chain(rdev
, REGULATOR_EVENT_ENABLE
,
2253 } else if (ret
< 0) {
2254 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
2257 /* Fallthrough on positive return values - already enabled */
2266 * regulator_enable - enable regulator output
2267 * @regulator: regulator source
2269 * Request that the regulator be enabled with the regulator output at
2270 * the predefined voltage or current value. Calls to regulator_enable()
2271 * must be balanced with calls to regulator_disable().
2273 * NOTE: the output value can be set by other drivers, boot loader or may be
2274 * hardwired in the regulator.
2276 int regulator_enable(struct regulator
*regulator
)
2278 struct regulator_dev
*rdev
= regulator
->rdev
;
2281 if (regulator
->always_on
)
2285 ret
= regulator_enable(rdev
->supply
);
2290 mutex_lock(&rdev
->mutex
);
2291 ret
= _regulator_enable(rdev
);
2292 mutex_unlock(&rdev
->mutex
);
2294 if (ret
!= 0 && rdev
->supply
)
2295 regulator_disable(rdev
->supply
);
2299 EXPORT_SYMBOL_GPL(regulator_enable
);
2301 static int _regulator_do_disable(struct regulator_dev
*rdev
)
2305 trace_regulator_disable(rdev_get_name(rdev
));
2307 if (rdev
->ena_pin
) {
2308 if (rdev
->ena_gpio_state
) {
2309 ret
= regulator_ena_gpio_ctrl(rdev
, false);
2312 rdev
->ena_gpio_state
= 0;
2315 } else if (rdev
->desc
->ops
->disable
) {
2316 ret
= rdev
->desc
->ops
->disable(rdev
);
2321 /* cares about last_off_jiffy only if off_on_delay is required by
2324 if (rdev
->desc
->off_on_delay
)
2325 rdev
->last_off_jiffy
= jiffies
;
2327 trace_regulator_disable_complete(rdev_get_name(rdev
));
2332 /* locks held by regulator_disable() */
2333 static int _regulator_disable(struct regulator_dev
*rdev
)
2337 lockdep_assert_held_once(&rdev
->mutex
);
2339 if (WARN(rdev
->use_count
<= 0,
2340 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
2343 /* are we the last user and permitted to disable ? */
2344 if (rdev
->use_count
== 1 &&
2345 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
2347 /* we are last user */
2348 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
)) {
2349 ret
= _notifier_call_chain(rdev
,
2350 REGULATOR_EVENT_PRE_DISABLE
,
2352 if (ret
& NOTIFY_STOP_MASK
)
2355 ret
= _regulator_do_disable(rdev
);
2357 rdev_err(rdev
, "failed to disable\n");
2358 _notifier_call_chain(rdev
,
2359 REGULATOR_EVENT_ABORT_DISABLE
,
2363 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
2367 rdev
->use_count
= 0;
2368 } else if (rdev
->use_count
> 1) {
2369 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
))
2370 drms_uA_update(rdev
);
2379 * regulator_disable - disable regulator output
2380 * @regulator: regulator source
2382 * Disable the regulator output voltage or current. Calls to
2383 * regulator_enable() must be balanced with calls to
2384 * regulator_disable().
2386 * NOTE: this will only disable the regulator output if no other consumer
2387 * devices have it enabled, the regulator device supports disabling and
2388 * machine constraints permit this operation.
2390 int regulator_disable(struct regulator
*regulator
)
2392 struct regulator_dev
*rdev
= regulator
->rdev
;
2395 if (regulator
->always_on
)
2398 mutex_lock(&rdev
->mutex
);
2399 ret
= _regulator_disable(rdev
);
2400 mutex_unlock(&rdev
->mutex
);
2402 if (ret
== 0 && rdev
->supply
)
2403 regulator_disable(rdev
->supply
);
2407 EXPORT_SYMBOL_GPL(regulator_disable
);
2409 /* locks held by regulator_force_disable() */
2410 static int _regulator_force_disable(struct regulator_dev
*rdev
)
2414 lockdep_assert_held_once(&rdev
->mutex
);
2416 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2417 REGULATOR_EVENT_PRE_DISABLE
, NULL
);
2418 if (ret
& NOTIFY_STOP_MASK
)
2421 ret
= _regulator_do_disable(rdev
);
2423 rdev_err(rdev
, "failed to force disable\n");
2424 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2425 REGULATOR_EVENT_ABORT_DISABLE
, NULL
);
2429 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2430 REGULATOR_EVENT_DISABLE
, NULL
);
2436 * regulator_force_disable - force disable regulator output
2437 * @regulator: regulator source
2439 * Forcibly disable the regulator output voltage or current.
2440 * NOTE: this *will* disable the regulator output even if other consumer
2441 * devices have it enabled. This should be used for situations when device
2442 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2444 int regulator_force_disable(struct regulator
*regulator
)
2446 struct regulator_dev
*rdev
= regulator
->rdev
;
2449 mutex_lock(&rdev
->mutex
);
2450 regulator
->uA_load
= 0;
2451 ret
= _regulator_force_disable(regulator
->rdev
);
2452 mutex_unlock(&rdev
->mutex
);
2455 while (rdev
->open_count
--)
2456 regulator_disable(rdev
->supply
);
2460 EXPORT_SYMBOL_GPL(regulator_force_disable
);
2462 static void regulator_disable_work(struct work_struct
*work
)
2464 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
2468 regulator_lock(rdev
);
2470 BUG_ON(!rdev
->deferred_disables
);
2472 count
= rdev
->deferred_disables
;
2473 rdev
->deferred_disables
= 0;
2476 * Workqueue functions queue the new work instance while the previous
2477 * work instance is being processed. Cancel the queued work instance
2478 * as the work instance under processing does the job of the queued
2481 cancel_delayed_work(&rdev
->disable_work
);
2483 for (i
= 0; i
< count
; i
++) {
2484 ret
= _regulator_disable(rdev
);
2486 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
2489 regulator_unlock(rdev
);
2492 for (i
= 0; i
< count
; i
++) {
2493 ret
= regulator_disable(rdev
->supply
);
2496 "Supply disable failed: %d\n", ret
);
2503 * regulator_disable_deferred - disable regulator output with delay
2504 * @regulator: regulator source
2505 * @ms: miliseconds until the regulator is disabled
2507 * Execute regulator_disable() on the regulator after a delay. This
2508 * is intended for use with devices that require some time to quiesce.
2510 * NOTE: this will only disable the regulator output if no other consumer
2511 * devices have it enabled, the regulator device supports disabling and
2512 * machine constraints permit this operation.
2514 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
2516 struct regulator_dev
*rdev
= regulator
->rdev
;
2518 if (regulator
->always_on
)
2522 return regulator_disable(regulator
);
2524 regulator_lock(rdev
);
2525 rdev
->deferred_disables
++;
2526 mod_delayed_work(system_power_efficient_wq
, &rdev
->disable_work
,
2527 msecs_to_jiffies(ms
));
2528 regulator_unlock(rdev
);
2532 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2534 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2536 /* A GPIO control always takes precedence */
2538 return rdev
->ena_gpio_state
;
2540 /* If we don't know then assume that the regulator is always on */
2541 if (!rdev
->desc
->ops
->is_enabled
)
2544 return rdev
->desc
->ops
->is_enabled(rdev
);
2547 static int _regulator_list_voltage(struct regulator_dev
*rdev
,
2548 unsigned selector
, int lock
)
2550 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2553 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
2554 return rdev
->desc
->fixed_uV
;
2556 if (ops
->list_voltage
) {
2557 if (selector
>= rdev
->desc
->n_voltages
)
2560 regulator_lock(rdev
);
2561 ret
= ops
->list_voltage(rdev
, selector
);
2563 regulator_unlock(rdev
);
2564 } else if (rdev
->is_switch
&& rdev
->supply
) {
2565 ret
= _regulator_list_voltage(rdev
->supply
->rdev
,
2572 if (ret
< rdev
->constraints
->min_uV
)
2574 else if (ret
> rdev
->constraints
->max_uV
)
2582 * regulator_is_enabled - is the regulator output enabled
2583 * @regulator: regulator source
2585 * Returns positive if the regulator driver backing the source/client
2586 * has requested that the device be enabled, zero if it hasn't, else a
2587 * negative errno code.
2589 * Note that the device backing this regulator handle can have multiple
2590 * users, so it might be enabled even if regulator_enable() was never
2591 * called for this particular source.
2593 int regulator_is_enabled(struct regulator
*regulator
)
2597 if (regulator
->always_on
)
2600 mutex_lock(®ulator
->rdev
->mutex
);
2601 ret
= _regulator_is_enabled(regulator
->rdev
);
2602 mutex_unlock(®ulator
->rdev
->mutex
);
2606 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2609 * regulator_count_voltages - count regulator_list_voltage() selectors
2610 * @regulator: regulator source
2612 * Returns number of selectors, or negative errno. Selectors are
2613 * numbered starting at zero, and typically correspond to bitfields
2614 * in hardware registers.
2616 int regulator_count_voltages(struct regulator
*regulator
)
2618 struct regulator_dev
*rdev
= regulator
->rdev
;
2620 if (rdev
->desc
->n_voltages
)
2621 return rdev
->desc
->n_voltages
;
2623 if (!rdev
->is_switch
|| !rdev
->supply
)
2626 return regulator_count_voltages(rdev
->supply
);
2628 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2631 * regulator_list_voltage - enumerate supported voltages
2632 * @regulator: regulator source
2633 * @selector: identify voltage to list
2634 * Context: can sleep
2636 * Returns a voltage that can be passed to @regulator_set_voltage(),
2637 * zero if this selector code can't be used on this system, or a
2640 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2642 return _regulator_list_voltage(regulator
->rdev
, selector
, 1);
2644 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2647 * regulator_get_regmap - get the regulator's register map
2648 * @regulator: regulator source
2650 * Returns the register map for the given regulator, or an ERR_PTR value
2651 * if the regulator doesn't use regmap.
2653 struct regmap
*regulator_get_regmap(struct regulator
*regulator
)
2655 struct regmap
*map
= regulator
->rdev
->regmap
;
2657 return map
? map
: ERR_PTR(-EOPNOTSUPP
);
2661 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2662 * @regulator: regulator source
2663 * @vsel_reg: voltage selector register, output parameter
2664 * @vsel_mask: mask for voltage selector bitfield, output parameter
2666 * Returns the hardware register offset and bitmask used for setting the
2667 * regulator voltage. This might be useful when configuring voltage-scaling
2668 * hardware or firmware that can make I2C requests behind the kernel's back,
2671 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2672 * and 0 is returned, otherwise a negative errno is returned.
2674 int regulator_get_hardware_vsel_register(struct regulator
*regulator
,
2676 unsigned *vsel_mask
)
2678 struct regulator_dev
*rdev
= regulator
->rdev
;
2679 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2681 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2684 *vsel_reg
= rdev
->desc
->vsel_reg
;
2685 *vsel_mask
= rdev
->desc
->vsel_mask
;
2689 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register
);
2692 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2693 * @regulator: regulator source
2694 * @selector: identify voltage to list
2696 * Converts the selector to a hardware-specific voltage selector that can be
2697 * directly written to the regulator registers. The address of the voltage
2698 * register can be determined by calling @regulator_get_hardware_vsel_register.
2700 * On error a negative errno is returned.
2702 int regulator_list_hardware_vsel(struct regulator
*regulator
,
2705 struct regulator_dev
*rdev
= regulator
->rdev
;
2706 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2708 if (selector
>= rdev
->desc
->n_voltages
)
2710 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2715 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel
);
2718 * regulator_get_linear_step - return the voltage step size between VSEL values
2719 * @regulator: regulator source
2721 * Returns the voltage step size between VSEL values for linear
2722 * regulators, or return 0 if the regulator isn't a linear regulator.
2724 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2726 struct regulator_dev
*rdev
= regulator
->rdev
;
2728 return rdev
->desc
->uV_step
;
2730 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
2733 * regulator_is_supported_voltage - check if a voltage range can be supported
2735 * @regulator: Regulator to check.
2736 * @min_uV: Minimum required voltage in uV.
2737 * @max_uV: Maximum required voltage in uV.
2739 * Returns a boolean or a negative error code.
2741 int regulator_is_supported_voltage(struct regulator
*regulator
,
2742 int min_uV
, int max_uV
)
2744 struct regulator_dev
*rdev
= regulator
->rdev
;
2745 int i
, voltages
, ret
;
2747 /* If we can't change voltage check the current voltage */
2748 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
2749 ret
= regulator_get_voltage(regulator
);
2751 return min_uV
<= ret
&& ret
<= max_uV
;
2756 /* Any voltage within constrains range is fine? */
2757 if (rdev
->desc
->continuous_voltage_range
)
2758 return min_uV
>= rdev
->constraints
->min_uV
&&
2759 max_uV
<= rdev
->constraints
->max_uV
;
2761 ret
= regulator_count_voltages(regulator
);
2766 for (i
= 0; i
< voltages
; i
++) {
2767 ret
= regulator_list_voltage(regulator
, i
);
2769 if (ret
>= min_uV
&& ret
<= max_uV
)
2775 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
2777 static int regulator_map_voltage(struct regulator_dev
*rdev
, int min_uV
,
2780 const struct regulator_desc
*desc
= rdev
->desc
;
2782 if (desc
->ops
->map_voltage
)
2783 return desc
->ops
->map_voltage(rdev
, min_uV
, max_uV
);
2785 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear
)
2786 return regulator_map_voltage_linear(rdev
, min_uV
, max_uV
);
2788 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear_range
)
2789 return regulator_map_voltage_linear_range(rdev
, min_uV
, max_uV
);
2791 if (desc
->ops
->list_voltage
==
2792 regulator_list_voltage_pickable_linear_range
)
2793 return regulator_map_voltage_pickable_linear_range(rdev
,
2796 return regulator_map_voltage_iterate(rdev
, min_uV
, max_uV
);
2799 static int _regulator_call_set_voltage(struct regulator_dev
*rdev
,
2800 int min_uV
, int max_uV
,
2803 struct pre_voltage_change_data data
;
2806 data
.old_uV
= _regulator_get_voltage(rdev
);
2807 data
.min_uV
= min_uV
;
2808 data
.max_uV
= max_uV
;
2809 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
2811 if (ret
& NOTIFY_STOP_MASK
)
2814 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
, selector
);
2818 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
2819 (void *)data
.old_uV
);
2824 static int _regulator_call_set_voltage_sel(struct regulator_dev
*rdev
,
2825 int uV
, unsigned selector
)
2827 struct pre_voltage_change_data data
;
2830 data
.old_uV
= _regulator_get_voltage(rdev
);
2833 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
2835 if (ret
& NOTIFY_STOP_MASK
)
2838 ret
= rdev
->desc
->ops
->set_voltage_sel(rdev
, selector
);
2842 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
2843 (void *)data
.old_uV
);
2848 static int _regulator_set_voltage_time(struct regulator_dev
*rdev
,
2849 int old_uV
, int new_uV
)
2851 unsigned int ramp_delay
= 0;
2853 if (rdev
->constraints
->ramp_delay
)
2854 ramp_delay
= rdev
->constraints
->ramp_delay
;
2855 else if (rdev
->desc
->ramp_delay
)
2856 ramp_delay
= rdev
->desc
->ramp_delay
;
2857 else if (rdev
->constraints
->settling_time
)
2858 return rdev
->constraints
->settling_time
;
2859 else if (rdev
->constraints
->settling_time_up
&&
2861 return rdev
->constraints
->settling_time_up
;
2862 else if (rdev
->constraints
->settling_time_down
&&
2864 return rdev
->constraints
->settling_time_down
;
2866 if (ramp_delay
== 0) {
2867 rdev_dbg(rdev
, "ramp_delay not set\n");
2871 return DIV_ROUND_UP(abs(new_uV
- old_uV
), ramp_delay
);
2874 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
2875 int min_uV
, int max_uV
)
2880 unsigned int selector
;
2881 int old_selector
= -1;
2882 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2883 int old_uV
= _regulator_get_voltage(rdev
);
2885 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
2887 min_uV
+= rdev
->constraints
->uV_offset
;
2888 max_uV
+= rdev
->constraints
->uV_offset
;
2891 * If we can't obtain the old selector there is not enough
2892 * info to call set_voltage_time_sel().
2894 if (_regulator_is_enabled(rdev
) &&
2895 ops
->set_voltage_time_sel
&& ops
->get_voltage_sel
) {
2896 old_selector
= ops
->get_voltage_sel(rdev
);
2897 if (old_selector
< 0)
2898 return old_selector
;
2901 if (ops
->set_voltage
) {
2902 ret
= _regulator_call_set_voltage(rdev
, min_uV
, max_uV
,
2906 if (ops
->list_voltage
)
2907 best_val
= ops
->list_voltage(rdev
,
2910 best_val
= _regulator_get_voltage(rdev
);
2913 } else if (ops
->set_voltage_sel
) {
2914 ret
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
2916 best_val
= ops
->list_voltage(rdev
, ret
);
2917 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
2919 if (old_selector
== selector
)
2922 ret
= _regulator_call_set_voltage_sel(
2923 rdev
, best_val
, selector
);
2935 if (ops
->set_voltage_time_sel
) {
2937 * Call set_voltage_time_sel if successfully obtained
2940 if (old_selector
>= 0 && old_selector
!= selector
)
2941 delay
= ops
->set_voltage_time_sel(rdev
, old_selector
,
2944 if (old_uV
!= best_val
) {
2945 if (ops
->set_voltage_time
)
2946 delay
= ops
->set_voltage_time(rdev
, old_uV
,
2949 delay
= _regulator_set_voltage_time(rdev
,
2956 rdev_warn(rdev
, "failed to get delay: %d\n", delay
);
2960 /* Insert any necessary delays */
2961 if (delay
>= 1000) {
2962 mdelay(delay
/ 1000);
2963 udelay(delay
% 1000);
2968 if (best_val
>= 0) {
2969 unsigned long data
= best_val
;
2971 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
2976 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
2981 static int _regulator_do_set_suspend_voltage(struct regulator_dev
*rdev
,
2982 int min_uV
, int max_uV
, suspend_state_t state
)
2984 struct regulator_state
*rstate
;
2987 rstate
= regulator_get_suspend_state(rdev
, state
);
2991 if (min_uV
< rstate
->min_uV
)
2992 min_uV
= rstate
->min_uV
;
2993 if (max_uV
> rstate
->max_uV
)
2994 max_uV
= rstate
->max_uV
;
2996 sel
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3000 uV
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
3001 if (uV
>= min_uV
&& uV
<= max_uV
)
3007 static int regulator_set_voltage_unlocked(struct regulator
*regulator
,
3008 int min_uV
, int max_uV
,
3009 suspend_state_t state
)
3011 struct regulator_dev
*rdev
= regulator
->rdev
;
3012 struct regulator_voltage
*voltage
= ®ulator
->voltage
[state
];
3014 int old_min_uV
, old_max_uV
;
3016 int best_supply_uV
= 0;
3017 int supply_change_uV
= 0;
3019 /* If we're setting the same range as last time the change
3020 * should be a noop (some cpufreq implementations use the same
3021 * voltage for multiple frequencies, for example).
3023 if (voltage
->min_uV
== min_uV
&& voltage
->max_uV
== max_uV
)
3026 /* If we're trying to set a range that overlaps the current voltage,
3027 * return successfully even though the regulator does not support
3028 * changing the voltage.
3030 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
3031 current_uV
= _regulator_get_voltage(rdev
);
3032 if (min_uV
<= current_uV
&& current_uV
<= max_uV
) {
3033 voltage
->min_uV
= min_uV
;
3034 voltage
->max_uV
= max_uV
;
3040 if (!rdev
->desc
->ops
->set_voltage
&&
3041 !rdev
->desc
->ops
->set_voltage_sel
) {
3046 /* constraints check */
3047 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3051 /* restore original values in case of error */
3052 old_min_uV
= voltage
->min_uV
;
3053 old_max_uV
= voltage
->max_uV
;
3054 voltage
->min_uV
= min_uV
;
3055 voltage
->max_uV
= max_uV
;
3057 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
, state
);
3062 regulator_ops_is_valid(rdev
->supply
->rdev
,
3063 REGULATOR_CHANGE_VOLTAGE
) &&
3064 (rdev
->desc
->min_dropout_uV
|| !(rdev
->desc
->ops
->get_voltage
||
3065 rdev
->desc
->ops
->get_voltage_sel
))) {
3066 int current_supply_uV
;
3069 selector
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3075 best_supply_uV
= _regulator_list_voltage(rdev
, selector
, 0);
3076 if (best_supply_uV
< 0) {
3077 ret
= best_supply_uV
;
3081 best_supply_uV
+= rdev
->desc
->min_dropout_uV
;
3083 current_supply_uV
= _regulator_get_voltage(rdev
->supply
->rdev
);
3084 if (current_supply_uV
< 0) {
3085 ret
= current_supply_uV
;
3089 supply_change_uV
= best_supply_uV
- current_supply_uV
;
3092 if (supply_change_uV
> 0) {
3093 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3094 best_supply_uV
, INT_MAX
, state
);
3096 dev_err(&rdev
->dev
, "Failed to increase supply voltage: %d\n",
3102 if (state
== PM_SUSPEND_ON
)
3103 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3105 ret
= _regulator_do_set_suspend_voltage(rdev
, min_uV
,
3110 if (supply_change_uV
< 0) {
3111 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3112 best_supply_uV
, INT_MAX
, state
);
3114 dev_warn(&rdev
->dev
, "Failed to decrease supply voltage: %d\n",
3116 /* No need to fail here */
3123 voltage
->min_uV
= old_min_uV
;
3124 voltage
->max_uV
= old_max_uV
;
3130 * regulator_set_voltage - set regulator output voltage
3131 * @regulator: regulator source
3132 * @min_uV: Minimum required voltage in uV
3133 * @max_uV: Maximum acceptable voltage in uV
3135 * Sets a voltage regulator to the desired output voltage. This can be set
3136 * during any regulator state. IOW, regulator can be disabled or enabled.
3138 * If the regulator is enabled then the voltage will change to the new value
3139 * immediately otherwise if the regulator is disabled the regulator will
3140 * output at the new voltage when enabled.
3142 * NOTE: If the regulator is shared between several devices then the lowest
3143 * request voltage that meets the system constraints will be used.
3144 * Regulator system constraints must be set for this regulator before
3145 * calling this function otherwise this call will fail.
3147 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
3151 regulator_lock_supply(regulator
->rdev
);
3153 ret
= regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
,
3156 regulator_unlock_supply(regulator
->rdev
);
3160 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
3162 static inline int regulator_suspend_toggle(struct regulator_dev
*rdev
,
3163 suspend_state_t state
, bool en
)
3165 struct regulator_state
*rstate
;
3167 rstate
= regulator_get_suspend_state(rdev
, state
);
3171 if (!rstate
->changeable
)
3174 rstate
->enabled
= (en
) ? ENABLE_IN_SUSPEND
: DISABLE_IN_SUSPEND
;
3179 int regulator_suspend_enable(struct regulator_dev
*rdev
,
3180 suspend_state_t state
)
3182 return regulator_suspend_toggle(rdev
, state
, true);
3184 EXPORT_SYMBOL_GPL(regulator_suspend_enable
);
3186 int regulator_suspend_disable(struct regulator_dev
*rdev
,
3187 suspend_state_t state
)
3189 struct regulator
*regulator
;
3190 struct regulator_voltage
*voltage
;
3193 * if any consumer wants this regulator device keeping on in
3194 * suspend states, don't set it as disabled.
3196 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
3197 voltage
= ®ulator
->voltage
[state
];
3198 if (voltage
->min_uV
|| voltage
->max_uV
)
3202 return regulator_suspend_toggle(rdev
, state
, false);
3204 EXPORT_SYMBOL_GPL(regulator_suspend_disable
);
3206 static int _regulator_set_suspend_voltage(struct regulator
*regulator
,
3207 int min_uV
, int max_uV
,
3208 suspend_state_t state
)
3210 struct regulator_dev
*rdev
= regulator
->rdev
;
3211 struct regulator_state
*rstate
;
3213 rstate
= regulator_get_suspend_state(rdev
, state
);
3217 if (rstate
->min_uV
== rstate
->max_uV
) {
3218 rdev_err(rdev
, "The suspend voltage can't be changed!\n");
3222 return regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
, state
);
3225 int regulator_set_suspend_voltage(struct regulator
*regulator
, int min_uV
,
3226 int max_uV
, suspend_state_t state
)
3230 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3231 if (regulator_check_states(state
) || state
== PM_SUSPEND_ON
)
3234 regulator_lock_supply(regulator
->rdev
);
3236 ret
= _regulator_set_suspend_voltage(regulator
, min_uV
,
3239 regulator_unlock_supply(regulator
->rdev
);
3243 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage
);
3246 * regulator_set_voltage_time - get raise/fall time
3247 * @regulator: regulator source
3248 * @old_uV: starting voltage in microvolts
3249 * @new_uV: target voltage in microvolts
3251 * Provided with the starting and ending voltage, this function attempts to
3252 * calculate the time in microseconds required to rise or fall to this new
3255 int regulator_set_voltage_time(struct regulator
*regulator
,
3256 int old_uV
, int new_uV
)
3258 struct regulator_dev
*rdev
= regulator
->rdev
;
3259 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3265 if (ops
->set_voltage_time
)
3266 return ops
->set_voltage_time(rdev
, old_uV
, new_uV
);
3267 else if (!ops
->set_voltage_time_sel
)
3268 return _regulator_set_voltage_time(rdev
, old_uV
, new_uV
);
3270 /* Currently requires operations to do this */
3271 if (!ops
->list_voltage
|| !rdev
->desc
->n_voltages
)
3274 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
3275 /* We only look for exact voltage matches here */
3276 voltage
= regulator_list_voltage(regulator
, i
);
3281 if (voltage
== old_uV
)
3283 if (voltage
== new_uV
)
3287 if (old_sel
< 0 || new_sel
< 0)
3290 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
3292 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
3295 * regulator_set_voltage_time_sel - get raise/fall time
3296 * @rdev: regulator source device
3297 * @old_selector: selector for starting voltage
3298 * @new_selector: selector for target voltage
3300 * Provided with the starting and target voltage selectors, this function
3301 * returns time in microseconds required to rise or fall to this new voltage
3303 * Drivers providing ramp_delay in regulation_constraints can use this as their
3304 * set_voltage_time_sel() operation.
3306 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
3307 unsigned int old_selector
,
3308 unsigned int new_selector
)
3310 int old_volt
, new_volt
;
3313 if (!rdev
->desc
->ops
->list_voltage
)
3316 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
3317 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
3319 if (rdev
->desc
->ops
->set_voltage_time
)
3320 return rdev
->desc
->ops
->set_voltage_time(rdev
, old_volt
,
3323 return _regulator_set_voltage_time(rdev
, old_volt
, new_volt
);
3325 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
3328 * regulator_sync_voltage - re-apply last regulator output voltage
3329 * @regulator: regulator source
3331 * Re-apply the last configured voltage. This is intended to be used
3332 * where some external control source the consumer is cooperating with
3333 * has caused the configured voltage to change.
3335 int regulator_sync_voltage(struct regulator
*regulator
)
3337 struct regulator_dev
*rdev
= regulator
->rdev
;
3338 struct regulator_voltage
*voltage
= ®ulator
->voltage
[PM_SUSPEND_ON
];
3339 int ret
, min_uV
, max_uV
;
3341 regulator_lock(rdev
);
3343 if (!rdev
->desc
->ops
->set_voltage
&&
3344 !rdev
->desc
->ops
->set_voltage_sel
) {
3349 /* This is only going to work if we've had a voltage configured. */
3350 if (!voltage
->min_uV
&& !voltage
->max_uV
) {
3355 min_uV
= voltage
->min_uV
;
3356 max_uV
= voltage
->max_uV
;
3358 /* This should be a paranoia check... */
3359 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3363 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
, 0);
3367 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3370 regulator_unlock(rdev
);
3373 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
3375 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
3380 if (rdev
->desc
->ops
->get_bypass
) {
3381 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypassed
);
3385 /* if bypassed the regulator must have a supply */
3386 if (!rdev
->supply
) {
3388 "bypassed regulator has no supply!\n");
3389 return -EPROBE_DEFER
;
3392 return _regulator_get_voltage(rdev
->supply
->rdev
);
3396 if (rdev
->desc
->ops
->get_voltage_sel
) {
3397 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
3400 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
3401 } else if (rdev
->desc
->ops
->get_voltage
) {
3402 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
3403 } else if (rdev
->desc
->ops
->list_voltage
) {
3404 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
3405 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
3406 ret
= rdev
->desc
->fixed_uV
;
3407 } else if (rdev
->supply
) {
3408 ret
= _regulator_get_voltage(rdev
->supply
->rdev
);
3415 return ret
- rdev
->constraints
->uV_offset
;
3419 * regulator_get_voltage - get regulator output voltage
3420 * @regulator: regulator source
3422 * This returns the current regulator voltage in uV.
3424 * NOTE: If the regulator is disabled it will return the voltage value. This
3425 * function should not be used to determine regulator state.
3427 int regulator_get_voltage(struct regulator
*regulator
)
3431 regulator_lock_supply(regulator
->rdev
);
3433 ret
= _regulator_get_voltage(regulator
->rdev
);
3435 regulator_unlock_supply(regulator
->rdev
);
3439 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
3442 * regulator_set_current_limit - set regulator output current limit
3443 * @regulator: regulator source
3444 * @min_uA: Minimum supported current in uA
3445 * @max_uA: Maximum supported current in uA
3447 * Sets current sink to the desired output current. This can be set during
3448 * any regulator state. IOW, regulator can be disabled or enabled.
3450 * If the regulator is enabled then the current will change to the new value
3451 * immediately otherwise if the regulator is disabled the regulator will
3452 * output at the new current when enabled.
3454 * NOTE: Regulator system constraints must be set for this regulator before
3455 * calling this function otherwise this call will fail.
3457 int regulator_set_current_limit(struct regulator
*regulator
,
3458 int min_uA
, int max_uA
)
3460 struct regulator_dev
*rdev
= regulator
->rdev
;
3463 regulator_lock(rdev
);
3466 if (!rdev
->desc
->ops
->set_current_limit
) {
3471 /* constraints check */
3472 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
3476 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
3478 regulator_unlock(rdev
);
3481 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
3483 static int _regulator_get_current_limit_unlocked(struct regulator_dev
*rdev
)
3486 if (!rdev
->desc
->ops
->get_current_limit
)
3489 return rdev
->desc
->ops
->get_current_limit(rdev
);
3492 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
3496 regulator_lock(rdev
);
3497 ret
= _regulator_get_current_limit_unlocked(rdev
);
3498 regulator_unlock(rdev
);
3504 * regulator_get_current_limit - get regulator output current
3505 * @regulator: regulator source
3507 * This returns the current supplied by the specified current sink in uA.
3509 * NOTE: If the regulator is disabled it will return the current value. This
3510 * function should not be used to determine regulator state.
3512 int regulator_get_current_limit(struct regulator
*regulator
)
3514 return _regulator_get_current_limit(regulator
->rdev
);
3516 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
3519 * regulator_set_mode - set regulator operating mode
3520 * @regulator: regulator source
3521 * @mode: operating mode - one of the REGULATOR_MODE constants
3523 * Set regulator operating mode to increase regulator efficiency or improve
3524 * regulation performance.
3526 * NOTE: Regulator system constraints must be set for this regulator before
3527 * calling this function otherwise this call will fail.
3529 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
3531 struct regulator_dev
*rdev
= regulator
->rdev
;
3533 int regulator_curr_mode
;
3535 regulator_lock(rdev
);
3538 if (!rdev
->desc
->ops
->set_mode
) {
3543 /* return if the same mode is requested */
3544 if (rdev
->desc
->ops
->get_mode
) {
3545 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
3546 if (regulator_curr_mode
== mode
) {
3552 /* constraints check */
3553 ret
= regulator_mode_constrain(rdev
, &mode
);
3557 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
3559 regulator_unlock(rdev
);
3562 EXPORT_SYMBOL_GPL(regulator_set_mode
);
3564 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev
*rdev
)
3567 if (!rdev
->desc
->ops
->get_mode
)
3570 return rdev
->desc
->ops
->get_mode(rdev
);
3573 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
3577 regulator_lock(rdev
);
3578 ret
= _regulator_get_mode_unlocked(rdev
);
3579 regulator_unlock(rdev
);
3585 * regulator_get_mode - get regulator operating mode
3586 * @regulator: regulator source
3588 * Get the current regulator operating mode.
3590 unsigned int regulator_get_mode(struct regulator
*regulator
)
3592 return _regulator_get_mode(regulator
->rdev
);
3594 EXPORT_SYMBOL_GPL(regulator_get_mode
);
3596 static int _regulator_get_error_flags(struct regulator_dev
*rdev
,
3597 unsigned int *flags
)
3601 regulator_lock(rdev
);
3604 if (!rdev
->desc
->ops
->get_error_flags
) {
3609 ret
= rdev
->desc
->ops
->get_error_flags(rdev
, flags
);
3611 regulator_unlock(rdev
);
3616 * regulator_get_error_flags - get regulator error information
3617 * @regulator: regulator source
3618 * @flags: pointer to store error flags
3620 * Get the current regulator error information.
3622 int regulator_get_error_flags(struct regulator
*regulator
,
3623 unsigned int *flags
)
3625 return _regulator_get_error_flags(regulator
->rdev
, flags
);
3627 EXPORT_SYMBOL_GPL(regulator_get_error_flags
);
3630 * regulator_set_load - set regulator load
3631 * @regulator: regulator source
3632 * @uA_load: load current
3634 * Notifies the regulator core of a new device load. This is then used by
3635 * DRMS (if enabled by constraints) to set the most efficient regulator
3636 * operating mode for the new regulator loading.
3638 * Consumer devices notify their supply regulator of the maximum power
3639 * they will require (can be taken from device datasheet in the power
3640 * consumption tables) when they change operational status and hence power
3641 * state. Examples of operational state changes that can affect power
3642 * consumption are :-
3644 * o Device is opened / closed.
3645 * o Device I/O is about to begin or has just finished.
3646 * o Device is idling in between work.
3648 * This information is also exported via sysfs to userspace.
3650 * DRMS will sum the total requested load on the regulator and change
3651 * to the most efficient operating mode if platform constraints allow.
3653 * On error a negative errno is returned.
3655 int regulator_set_load(struct regulator
*regulator
, int uA_load
)
3657 struct regulator_dev
*rdev
= regulator
->rdev
;
3660 regulator_lock(rdev
);
3661 regulator
->uA_load
= uA_load
;
3662 ret
= drms_uA_update(rdev
);
3663 regulator_unlock(rdev
);
3667 EXPORT_SYMBOL_GPL(regulator_set_load
);
3670 * regulator_allow_bypass - allow the regulator to go into bypass mode
3672 * @regulator: Regulator to configure
3673 * @enable: enable or disable bypass mode
3675 * Allow the regulator to go into bypass mode if all other consumers
3676 * for the regulator also enable bypass mode and the machine
3677 * constraints allow this. Bypass mode means that the regulator is
3678 * simply passing the input directly to the output with no regulation.
3680 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
3682 struct regulator_dev
*rdev
= regulator
->rdev
;
3685 if (!rdev
->desc
->ops
->set_bypass
)
3688 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_BYPASS
))
3691 regulator_lock(rdev
);
3693 if (enable
&& !regulator
->bypass
) {
3694 rdev
->bypass_count
++;
3696 if (rdev
->bypass_count
== rdev
->open_count
) {
3697 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
3699 rdev
->bypass_count
--;
3702 } else if (!enable
&& regulator
->bypass
) {
3703 rdev
->bypass_count
--;
3705 if (rdev
->bypass_count
!= rdev
->open_count
) {
3706 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
3708 rdev
->bypass_count
++;
3713 regulator
->bypass
= enable
;
3715 regulator_unlock(rdev
);
3719 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
3722 * regulator_register_notifier - register regulator event notifier
3723 * @regulator: regulator source
3724 * @nb: notifier block
3726 * Register notifier block to receive regulator events.
3728 int regulator_register_notifier(struct regulator
*regulator
,
3729 struct notifier_block
*nb
)
3731 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
3734 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
3737 * regulator_unregister_notifier - unregister regulator event notifier
3738 * @regulator: regulator source
3739 * @nb: notifier block
3741 * Unregister regulator event notifier block.
3743 int regulator_unregister_notifier(struct regulator
*regulator
,
3744 struct notifier_block
*nb
)
3746 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
3749 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
3751 /* notify regulator consumers and downstream regulator consumers.
3752 * Note mutex must be held by caller.
3754 static int _notifier_call_chain(struct regulator_dev
*rdev
,
3755 unsigned long event
, void *data
)
3757 /* call rdev chain first */
3758 return blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
3762 * regulator_bulk_get - get multiple regulator consumers
3764 * @dev: Device to supply
3765 * @num_consumers: Number of consumers to register
3766 * @consumers: Configuration of consumers; clients are stored here.
3768 * @return 0 on success, an errno on failure.
3770 * This helper function allows drivers to get several regulator
3771 * consumers in one operation. If any of the regulators cannot be
3772 * acquired then any regulators that were allocated will be freed
3773 * before returning to the caller.
3775 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
3776 struct regulator_bulk_data
*consumers
)
3781 for (i
= 0; i
< num_consumers
; i
++)
3782 consumers
[i
].consumer
= NULL
;
3784 for (i
= 0; i
< num_consumers
; i
++) {
3785 consumers
[i
].consumer
= regulator_get(dev
,
3786 consumers
[i
].supply
);
3787 if (IS_ERR(consumers
[i
].consumer
)) {
3788 ret
= PTR_ERR(consumers
[i
].consumer
);
3789 dev_err(dev
, "Failed to get supply '%s': %d\n",
3790 consumers
[i
].supply
, ret
);
3791 consumers
[i
].consumer
= NULL
;
3800 regulator_put(consumers
[i
].consumer
);
3804 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
3806 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
3808 struct regulator_bulk_data
*bulk
= data
;
3810 bulk
->ret
= regulator_enable(bulk
->consumer
);
3814 * regulator_bulk_enable - enable multiple regulator consumers
3816 * @num_consumers: Number of consumers
3817 * @consumers: Consumer data; clients are stored here.
3818 * @return 0 on success, an errno on failure
3820 * This convenience API allows consumers to enable multiple regulator
3821 * clients in a single API call. If any consumers cannot be enabled
3822 * then any others that were enabled will be disabled again prior to
3825 int regulator_bulk_enable(int num_consumers
,
3826 struct regulator_bulk_data
*consumers
)
3828 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
3832 for (i
= 0; i
< num_consumers
; i
++) {
3833 if (consumers
[i
].consumer
->always_on
)
3834 consumers
[i
].ret
= 0;
3836 async_schedule_domain(regulator_bulk_enable_async
,
3837 &consumers
[i
], &async_domain
);
3840 async_synchronize_full_domain(&async_domain
);
3842 /* If any consumer failed we need to unwind any that succeeded */
3843 for (i
= 0; i
< num_consumers
; i
++) {
3844 if (consumers
[i
].ret
!= 0) {
3845 ret
= consumers
[i
].ret
;
3853 for (i
= 0; i
< num_consumers
; i
++) {
3854 if (consumers
[i
].ret
< 0)
3855 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
3858 regulator_disable(consumers
[i
].consumer
);
3863 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
3866 * regulator_bulk_disable - disable multiple regulator consumers
3868 * @num_consumers: Number of consumers
3869 * @consumers: Consumer data; clients are stored here.
3870 * @return 0 on success, an errno on failure
3872 * This convenience API allows consumers to disable multiple regulator
3873 * clients in a single API call. If any consumers cannot be disabled
3874 * then any others that were disabled will be enabled again prior to
3877 int regulator_bulk_disable(int num_consumers
,
3878 struct regulator_bulk_data
*consumers
)
3883 for (i
= num_consumers
- 1; i
>= 0; --i
) {
3884 ret
= regulator_disable(consumers
[i
].consumer
);
3892 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
3893 for (++i
; i
< num_consumers
; ++i
) {
3894 r
= regulator_enable(consumers
[i
].consumer
);
3896 pr_err("Failed to re-enable %s: %d\n",
3897 consumers
[i
].supply
, r
);
3902 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
3905 * regulator_bulk_force_disable - force disable multiple regulator consumers
3907 * @num_consumers: Number of consumers
3908 * @consumers: Consumer data; clients are stored here.
3909 * @return 0 on success, an errno on failure
3911 * This convenience API allows consumers to forcibly disable multiple regulator
3912 * clients in a single API call.
3913 * NOTE: This should be used for situations when device damage will
3914 * likely occur if the regulators are not disabled (e.g. over temp).
3915 * Although regulator_force_disable function call for some consumers can
3916 * return error numbers, the function is called for all consumers.
3918 int regulator_bulk_force_disable(int num_consumers
,
3919 struct regulator_bulk_data
*consumers
)
3924 for (i
= 0; i
< num_consumers
; i
++) {
3926 regulator_force_disable(consumers
[i
].consumer
);
3928 /* Store first error for reporting */
3929 if (consumers
[i
].ret
&& !ret
)
3930 ret
= consumers
[i
].ret
;
3935 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
3938 * regulator_bulk_free - free multiple regulator consumers
3940 * @num_consumers: Number of consumers
3941 * @consumers: Consumer data; clients are stored here.
3943 * This convenience API allows consumers to free multiple regulator
3944 * clients in a single API call.
3946 void regulator_bulk_free(int num_consumers
,
3947 struct regulator_bulk_data
*consumers
)
3951 for (i
= 0; i
< num_consumers
; i
++) {
3952 regulator_put(consumers
[i
].consumer
);
3953 consumers
[i
].consumer
= NULL
;
3956 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
3959 * regulator_notifier_call_chain - call regulator event notifier
3960 * @rdev: regulator source
3961 * @event: notifier block
3962 * @data: callback-specific data.
3964 * Called by regulator drivers to notify clients a regulator event has
3965 * occurred. We also notify regulator clients downstream.
3966 * Note lock must be held by caller.
3968 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
3969 unsigned long event
, void *data
)
3971 lockdep_assert_held_once(&rdev
->mutex
);
3973 _notifier_call_chain(rdev
, event
, data
);
3977 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
3980 * regulator_mode_to_status - convert a regulator mode into a status
3982 * @mode: Mode to convert
3984 * Convert a regulator mode into a status.
3986 int regulator_mode_to_status(unsigned int mode
)
3989 case REGULATOR_MODE_FAST
:
3990 return REGULATOR_STATUS_FAST
;
3991 case REGULATOR_MODE_NORMAL
:
3992 return REGULATOR_STATUS_NORMAL
;
3993 case REGULATOR_MODE_IDLE
:
3994 return REGULATOR_STATUS_IDLE
;
3995 case REGULATOR_MODE_STANDBY
:
3996 return REGULATOR_STATUS_STANDBY
;
3998 return REGULATOR_STATUS_UNDEFINED
;
4001 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
4003 static struct attribute
*regulator_dev_attrs
[] = {
4004 &dev_attr_name
.attr
,
4005 &dev_attr_num_users
.attr
,
4006 &dev_attr_type
.attr
,
4007 &dev_attr_microvolts
.attr
,
4008 &dev_attr_microamps
.attr
,
4009 &dev_attr_opmode
.attr
,
4010 &dev_attr_state
.attr
,
4011 &dev_attr_status
.attr
,
4012 &dev_attr_bypass
.attr
,
4013 &dev_attr_requested_microamps
.attr
,
4014 &dev_attr_min_microvolts
.attr
,
4015 &dev_attr_max_microvolts
.attr
,
4016 &dev_attr_min_microamps
.attr
,
4017 &dev_attr_max_microamps
.attr
,
4018 &dev_attr_suspend_standby_state
.attr
,
4019 &dev_attr_suspend_mem_state
.attr
,
4020 &dev_attr_suspend_disk_state
.attr
,
4021 &dev_attr_suspend_standby_microvolts
.attr
,
4022 &dev_attr_suspend_mem_microvolts
.attr
,
4023 &dev_attr_suspend_disk_microvolts
.attr
,
4024 &dev_attr_suspend_standby_mode
.attr
,
4025 &dev_attr_suspend_mem_mode
.attr
,
4026 &dev_attr_suspend_disk_mode
.attr
,
4031 * To avoid cluttering sysfs (and memory) with useless state, only
4032 * create attributes that can be meaningfully displayed.
4034 static umode_t
regulator_attr_is_visible(struct kobject
*kobj
,
4035 struct attribute
*attr
, int idx
)
4037 struct device
*dev
= kobj_to_dev(kobj
);
4038 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4039 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
4040 umode_t mode
= attr
->mode
;
4042 /* these three are always present */
4043 if (attr
== &dev_attr_name
.attr
||
4044 attr
== &dev_attr_num_users
.attr
||
4045 attr
== &dev_attr_type
.attr
)
4048 /* some attributes need specific methods to be displayed */
4049 if (attr
== &dev_attr_microvolts
.attr
) {
4050 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
4051 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
4052 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
4053 (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1))
4058 if (attr
== &dev_attr_microamps
.attr
)
4059 return ops
->get_current_limit
? mode
: 0;
4061 if (attr
== &dev_attr_opmode
.attr
)
4062 return ops
->get_mode
? mode
: 0;
4064 if (attr
== &dev_attr_state
.attr
)
4065 return (rdev
->ena_pin
|| ops
->is_enabled
) ? mode
: 0;
4067 if (attr
== &dev_attr_status
.attr
)
4068 return ops
->get_status
? mode
: 0;
4070 if (attr
== &dev_attr_bypass
.attr
)
4071 return ops
->get_bypass
? mode
: 0;
4073 /* some attributes are type-specific */
4074 if (attr
== &dev_attr_requested_microamps
.attr
)
4075 return rdev
->desc
->type
== REGULATOR_CURRENT
? mode
: 0;
4077 /* constraints need specific supporting methods */
4078 if (attr
== &dev_attr_min_microvolts
.attr
||
4079 attr
== &dev_attr_max_microvolts
.attr
)
4080 return (ops
->set_voltage
|| ops
->set_voltage_sel
) ? mode
: 0;
4082 if (attr
== &dev_attr_min_microamps
.attr
||
4083 attr
== &dev_attr_max_microamps
.attr
)
4084 return ops
->set_current_limit
? mode
: 0;
4086 if (attr
== &dev_attr_suspend_standby_state
.attr
||
4087 attr
== &dev_attr_suspend_mem_state
.attr
||
4088 attr
== &dev_attr_suspend_disk_state
.attr
)
4091 if (attr
== &dev_attr_suspend_standby_microvolts
.attr
||
4092 attr
== &dev_attr_suspend_mem_microvolts
.attr
||
4093 attr
== &dev_attr_suspend_disk_microvolts
.attr
)
4094 return ops
->set_suspend_voltage
? mode
: 0;
4096 if (attr
== &dev_attr_suspend_standby_mode
.attr
||
4097 attr
== &dev_attr_suspend_mem_mode
.attr
||
4098 attr
== &dev_attr_suspend_disk_mode
.attr
)
4099 return ops
->set_suspend_mode
? mode
: 0;
4104 static const struct attribute_group regulator_dev_group
= {
4105 .attrs
= regulator_dev_attrs
,
4106 .is_visible
= regulator_attr_is_visible
,
4109 static const struct attribute_group
*regulator_dev_groups
[] = {
4110 ®ulator_dev_group
,
4114 static void regulator_dev_release(struct device
*dev
)
4116 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
4118 kfree(rdev
->constraints
);
4119 of_node_put(rdev
->dev
.of_node
);
4123 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
4125 struct device
*parent
= rdev
->dev
.parent
;
4126 const char *rname
= rdev_get_name(rdev
);
4127 char name
[NAME_MAX
];
4129 /* Avoid duplicate debugfs directory names */
4130 if (parent
&& rname
== rdev
->desc
->name
) {
4131 snprintf(name
, sizeof(name
), "%s-%s", dev_name(parent
),
4136 rdev
->debugfs
= debugfs_create_dir(rname
, debugfs_root
);
4137 if (!rdev
->debugfs
) {
4138 rdev_warn(rdev
, "Failed to create debugfs directory\n");
4142 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
4144 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
4146 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
4147 &rdev
->bypass_count
);
4150 static int regulator_register_resolve_supply(struct device
*dev
, void *data
)
4152 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4154 if (regulator_resolve_supply(rdev
))
4155 rdev_dbg(rdev
, "unable to resolve supply\n");
4160 static int regulator_fill_coupling_array(struct regulator_dev
*rdev
)
4162 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
4163 int n_coupled
= c_desc
->n_coupled
;
4164 struct regulator_dev
*c_rdev
;
4167 for (i
= 1; i
< n_coupled
; i
++) {
4168 /* already resolved */
4169 if (c_desc
->coupled_rdevs
[i
])
4172 c_rdev
= of_parse_coupled_regulator(rdev
, i
- 1);
4175 c_desc
->coupled_rdevs
[i
] = c_rdev
;
4176 c_desc
->n_resolved
++;
4180 if (rdev
->coupling_desc
.n_resolved
< n_coupled
)
4186 static int regulator_register_fill_coupling_array(struct device
*dev
,
4189 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4191 if (!IS_ENABLED(CONFIG_OF
))
4194 if (regulator_fill_coupling_array(rdev
))
4195 rdev_dbg(rdev
, "unable to resolve coupling\n");
4200 static int regulator_resolve_coupling(struct regulator_dev
*rdev
)
4204 if (!IS_ENABLED(CONFIG_OF
))
4207 n_phandles
= of_get_n_coupled(rdev
);
4209 if (n_phandles
+ 1 > MAX_COUPLED
) {
4210 rdev_err(rdev
, "too many regulators coupled\n");
4215 * Every regulator should always have coupling descriptor filled with
4216 * at least pointer to itself.
4218 rdev
->coupling_desc
.coupled_rdevs
[0] = rdev
;
4219 rdev
->coupling_desc
.n_coupled
= n_phandles
+ 1;
4220 rdev
->coupling_desc
.n_resolved
++;
4222 /* regulator isn't coupled */
4223 if (n_phandles
== 0)
4226 /* regulator, which can't change its voltage, can't be coupled */
4227 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
4228 rdev_err(rdev
, "voltage operation not allowed\n");
4232 if (rdev
->constraints
->max_spread
<= 0) {
4233 rdev_err(rdev
, "wrong max_spread value\n");
4237 if (!of_check_coupling_data(rdev
))
4241 * After everything has been checked, try to fill rdevs array
4242 * with pointers to regulators parsed from device tree. If some
4243 * regulators are not registered yet, retry in late init call
4245 regulator_fill_coupling_array(rdev
);
4251 * regulator_register - register regulator
4252 * @regulator_desc: regulator to register
4253 * @cfg: runtime configuration for regulator
4255 * Called by regulator drivers to register a regulator.
4256 * Returns a valid pointer to struct regulator_dev on success
4257 * or an ERR_PTR() on error.
4259 struct regulator_dev
*
4260 regulator_register(const struct regulator_desc
*regulator_desc
,
4261 const struct regulator_config
*cfg
)
4263 const struct regulation_constraints
*constraints
= NULL
;
4264 const struct regulator_init_data
*init_data
;
4265 struct regulator_config
*config
= NULL
;
4266 static atomic_t regulator_no
= ATOMIC_INIT(-1);
4267 struct regulator_dev
*rdev
;
4271 if (regulator_desc
== NULL
|| cfg
== NULL
)
4272 return ERR_PTR(-EINVAL
);
4277 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
4278 return ERR_PTR(-EINVAL
);
4280 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
4281 regulator_desc
->type
!= REGULATOR_CURRENT
)
4282 return ERR_PTR(-EINVAL
);
4284 /* Only one of each should be implemented */
4285 WARN_ON(regulator_desc
->ops
->get_voltage
&&
4286 regulator_desc
->ops
->get_voltage_sel
);
4287 WARN_ON(regulator_desc
->ops
->set_voltage
&&
4288 regulator_desc
->ops
->set_voltage_sel
);
4290 /* If we're using selectors we must implement list_voltage. */
4291 if (regulator_desc
->ops
->get_voltage_sel
&&
4292 !regulator_desc
->ops
->list_voltage
) {
4293 return ERR_PTR(-EINVAL
);
4295 if (regulator_desc
->ops
->set_voltage_sel
&&
4296 !regulator_desc
->ops
->list_voltage
) {
4297 return ERR_PTR(-EINVAL
);
4300 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
4302 return ERR_PTR(-ENOMEM
);
4305 * Duplicate the config so the driver could override it after
4306 * parsing init data.
4308 config
= kmemdup(cfg
, sizeof(*cfg
), GFP_KERNEL
);
4309 if (config
== NULL
) {
4311 return ERR_PTR(-ENOMEM
);
4314 init_data
= regulator_of_get_init_data(dev
, regulator_desc
, config
,
4315 &rdev
->dev
.of_node
);
4317 init_data
= config
->init_data
;
4318 rdev
->dev
.of_node
= of_node_get(config
->of_node
);
4321 mutex_init(&rdev
->mutex
);
4322 rdev
->reg_data
= config
->driver_data
;
4323 rdev
->owner
= regulator_desc
->owner
;
4324 rdev
->desc
= regulator_desc
;
4326 rdev
->regmap
= config
->regmap
;
4327 else if (dev_get_regmap(dev
, NULL
))
4328 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
4329 else if (dev
->parent
)
4330 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
4331 INIT_LIST_HEAD(&rdev
->consumer_list
);
4332 INIT_LIST_HEAD(&rdev
->list
);
4333 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
4334 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
4336 /* preform any regulator specific init */
4337 if (init_data
&& init_data
->regulator_init
) {
4338 ret
= init_data
->regulator_init(rdev
->reg_data
);
4343 if (config
->ena_gpiod
||
4344 ((config
->ena_gpio
|| config
->ena_gpio_initialized
) &&
4345 gpio_is_valid(config
->ena_gpio
))) {
4346 mutex_lock(®ulator_list_mutex
);
4347 ret
= regulator_ena_gpio_request(rdev
, config
);
4348 mutex_unlock(®ulator_list_mutex
);
4350 rdev_err(rdev
, "Failed to request enable GPIO%d: %d\n",
4351 config
->ena_gpio
, ret
);
4356 /* register with sysfs */
4357 rdev
->dev
.class = ®ulator_class
;
4358 rdev
->dev
.parent
= dev
;
4359 dev_set_name(&rdev
->dev
, "regulator.%lu",
4360 (unsigned long) atomic_inc_return(®ulator_no
));
4362 /* set regulator constraints */
4364 constraints
= &init_data
->constraints
;
4366 if (init_data
&& init_data
->supply_regulator
)
4367 rdev
->supply_name
= init_data
->supply_regulator
;
4368 else if (regulator_desc
->supply_name
)
4369 rdev
->supply_name
= regulator_desc
->supply_name
;
4372 * Attempt to resolve the regulator supply, if specified,
4373 * but don't return an error if we fail because we will try
4374 * to resolve it again later as more regulators are added.
4376 if (regulator_resolve_supply(rdev
))
4377 rdev_dbg(rdev
, "unable to resolve supply\n");
4379 ret
= set_machine_constraints(rdev
, constraints
);
4383 mutex_lock(®ulator_list_mutex
);
4384 ret
= regulator_resolve_coupling(rdev
);
4385 mutex_unlock(®ulator_list_mutex
);
4390 /* add consumers devices */
4392 mutex_lock(®ulator_list_mutex
);
4393 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
4394 ret
= set_consumer_device_supply(rdev
,
4395 init_data
->consumer_supplies
[i
].dev_name
,
4396 init_data
->consumer_supplies
[i
].supply
);
4398 mutex_unlock(®ulator_list_mutex
);
4399 dev_err(dev
, "Failed to set supply %s\n",
4400 init_data
->consumer_supplies
[i
].supply
);
4401 goto unset_supplies
;
4404 mutex_unlock(®ulator_list_mutex
);
4407 if (!rdev
->desc
->ops
->get_voltage
&&
4408 !rdev
->desc
->ops
->list_voltage
&&
4409 !rdev
->desc
->fixed_uV
)
4410 rdev
->is_switch
= true;
4412 dev_set_drvdata(&rdev
->dev
, rdev
);
4413 ret
= device_register(&rdev
->dev
);
4415 put_device(&rdev
->dev
);
4416 goto unset_supplies
;
4419 rdev_init_debugfs(rdev
);
4421 /* try to resolve regulators supply since a new one was registered */
4422 class_for_each_device(®ulator_class
, NULL
, NULL
,
4423 regulator_register_resolve_supply
);
4428 mutex_lock(®ulator_list_mutex
);
4429 unset_regulator_supplies(rdev
);
4430 mutex_unlock(®ulator_list_mutex
);
4432 kfree(rdev
->constraints
);
4433 mutex_lock(®ulator_list_mutex
);
4434 regulator_ena_gpio_free(rdev
);
4435 mutex_unlock(®ulator_list_mutex
);
4439 return ERR_PTR(ret
);
4441 EXPORT_SYMBOL_GPL(regulator_register
);
4444 * regulator_unregister - unregister regulator
4445 * @rdev: regulator to unregister
4447 * Called by regulator drivers to unregister a regulator.
4449 void regulator_unregister(struct regulator_dev
*rdev
)
4455 while (rdev
->use_count
--)
4456 regulator_disable(rdev
->supply
);
4457 regulator_put(rdev
->supply
);
4459 mutex_lock(®ulator_list_mutex
);
4460 debugfs_remove_recursive(rdev
->debugfs
);
4461 flush_work(&rdev
->disable_work
.work
);
4462 WARN_ON(rdev
->open_count
);
4463 unset_regulator_supplies(rdev
);
4464 list_del(&rdev
->list
);
4465 regulator_ena_gpio_free(rdev
);
4466 mutex_unlock(®ulator_list_mutex
);
4467 device_unregister(&rdev
->dev
);
4469 EXPORT_SYMBOL_GPL(regulator_unregister
);
4471 #ifdef CONFIG_SUSPEND
4473 * regulator_suspend - prepare regulators for system wide suspend
4474 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
4476 * Configure each regulator with it's suspend operating parameters for state.
4478 static int regulator_suspend(struct device
*dev
)
4480 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4481 suspend_state_t state
= pm_suspend_target_state
;
4484 regulator_lock(rdev
);
4485 ret
= suspend_set_state(rdev
, state
);
4486 regulator_unlock(rdev
);
4491 static int regulator_resume(struct device
*dev
)
4493 suspend_state_t state
= pm_suspend_target_state
;
4494 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4495 struct regulator_state
*rstate
;
4498 rstate
= regulator_get_suspend_state(rdev
, state
);
4502 regulator_lock(rdev
);
4504 if (rdev
->desc
->ops
->resume
&&
4505 (rstate
->enabled
== ENABLE_IN_SUSPEND
||
4506 rstate
->enabled
== DISABLE_IN_SUSPEND
))
4507 ret
= rdev
->desc
->ops
->resume(rdev
);
4509 regulator_unlock(rdev
);
4513 #else /* !CONFIG_SUSPEND */
4515 #define regulator_suspend NULL
4516 #define regulator_resume NULL
4518 #endif /* !CONFIG_SUSPEND */
4521 static const struct dev_pm_ops __maybe_unused regulator_pm_ops
= {
4522 .suspend
= regulator_suspend
,
4523 .resume
= regulator_resume
,
4527 struct class regulator_class
= {
4528 .name
= "regulator",
4529 .dev_release
= regulator_dev_release
,
4530 .dev_groups
= regulator_dev_groups
,
4532 .pm
= ®ulator_pm_ops
,
4536 * regulator_has_full_constraints - the system has fully specified constraints
4538 * Calling this function will cause the regulator API to disable all
4539 * regulators which have a zero use count and don't have an always_on
4540 * constraint in a late_initcall.
4542 * The intention is that this will become the default behaviour in a
4543 * future kernel release so users are encouraged to use this facility
4546 void regulator_has_full_constraints(void)
4548 has_full_constraints
= 1;
4550 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
4553 * rdev_get_drvdata - get rdev regulator driver data
4556 * Get rdev regulator driver private data. This call can be used in the
4557 * regulator driver context.
4559 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
4561 return rdev
->reg_data
;
4563 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
4566 * regulator_get_drvdata - get regulator driver data
4567 * @regulator: regulator
4569 * Get regulator driver private data. This call can be used in the consumer
4570 * driver context when non API regulator specific functions need to be called.
4572 void *regulator_get_drvdata(struct regulator
*regulator
)
4574 return regulator
->rdev
->reg_data
;
4576 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
4579 * regulator_set_drvdata - set regulator driver data
4580 * @regulator: regulator
4583 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
4585 regulator
->rdev
->reg_data
= data
;
4587 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
4590 * regulator_get_id - get regulator ID
4593 int rdev_get_id(struct regulator_dev
*rdev
)
4595 return rdev
->desc
->id
;
4597 EXPORT_SYMBOL_GPL(rdev_get_id
);
4599 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
4603 EXPORT_SYMBOL_GPL(rdev_get_dev
);
4605 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
4607 return reg_init_data
->driver_data
;
4609 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
4611 #ifdef CONFIG_DEBUG_FS
4612 static int supply_map_show(struct seq_file
*sf
, void *data
)
4614 struct regulator_map
*map
;
4616 list_for_each_entry(map
, ®ulator_map_list
, list
) {
4617 seq_printf(sf
, "%s -> %s.%s\n",
4618 rdev_get_name(map
->regulator
), map
->dev_name
,
4625 static int supply_map_open(struct inode
*inode
, struct file
*file
)
4627 return single_open(file
, supply_map_show
, inode
->i_private
);
4631 static const struct file_operations supply_map_fops
= {
4632 #ifdef CONFIG_DEBUG_FS
4633 .open
= supply_map_open
,
4635 .llseek
= seq_lseek
,
4636 .release
= single_release
,
4640 #ifdef CONFIG_DEBUG_FS
4641 struct summary_data
{
4643 struct regulator_dev
*parent
;
4647 static void regulator_summary_show_subtree(struct seq_file
*s
,
4648 struct regulator_dev
*rdev
,
4651 static int regulator_summary_show_children(struct device
*dev
, void *data
)
4653 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4654 struct summary_data
*summary_data
= data
;
4656 if (rdev
->supply
&& rdev
->supply
->rdev
== summary_data
->parent
)
4657 regulator_summary_show_subtree(summary_data
->s
, rdev
,
4658 summary_data
->level
+ 1);
4663 static void regulator_summary_show_subtree(struct seq_file
*s
,
4664 struct regulator_dev
*rdev
,
4667 struct regulation_constraints
*c
;
4668 struct regulator
*consumer
;
4669 struct summary_data summary_data
;
4670 unsigned int opmode
;
4675 regulator_lock_nested(rdev
, level
);
4677 opmode
= _regulator_get_mode_unlocked(rdev
);
4678 seq_printf(s
, "%*s%-*s %3d %4d %6d %7s ",
4680 30 - level
* 3, rdev_get_name(rdev
),
4681 rdev
->use_count
, rdev
->open_count
, rdev
->bypass_count
,
4682 regulator_opmode_to_str(opmode
));
4684 seq_printf(s
, "%5dmV ", _regulator_get_voltage(rdev
) / 1000);
4685 seq_printf(s
, "%5dmA ",
4686 _regulator_get_current_limit_unlocked(rdev
) / 1000);
4688 c
= rdev
->constraints
;
4690 switch (rdev
->desc
->type
) {
4691 case REGULATOR_VOLTAGE
:
4692 seq_printf(s
, "%5dmV %5dmV ",
4693 c
->min_uV
/ 1000, c
->max_uV
/ 1000);
4695 case REGULATOR_CURRENT
:
4696 seq_printf(s
, "%5dmA %5dmA ",
4697 c
->min_uA
/ 1000, c
->max_uA
/ 1000);
4704 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
) {
4705 if (consumer
->dev
&& consumer
->dev
->class == ®ulator_class
)
4708 seq_printf(s
, "%*s%-*s ",
4709 (level
+ 1) * 3 + 1, "",
4710 30 - (level
+ 1) * 3,
4711 consumer
->dev
? dev_name(consumer
->dev
) : "deviceless");
4713 switch (rdev
->desc
->type
) {
4714 case REGULATOR_VOLTAGE
:
4715 seq_printf(s
, "%37dmA %5dmV %5dmV",
4716 consumer
->uA_load
/ 1000,
4717 consumer
->voltage
[PM_SUSPEND_ON
].min_uV
/ 1000,
4718 consumer
->voltage
[PM_SUSPEND_ON
].max_uV
/ 1000);
4720 case REGULATOR_CURRENT
:
4728 summary_data
.level
= level
;
4729 summary_data
.parent
= rdev
;
4731 class_for_each_device(®ulator_class
, NULL
, &summary_data
,
4732 regulator_summary_show_children
);
4734 regulator_unlock(rdev
);
4737 static int regulator_summary_show_roots(struct device
*dev
, void *data
)
4739 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4740 struct seq_file
*s
= data
;
4743 regulator_summary_show_subtree(s
, rdev
, 0);
4748 static int regulator_summary_show(struct seq_file
*s
, void *data
)
4750 seq_puts(s
, " regulator use open bypass opmode voltage current min max\n");
4751 seq_puts(s
, "---------------------------------------------------------------------------------------\n");
4753 class_for_each_device(®ulator_class
, NULL
, s
,
4754 regulator_summary_show_roots
);
4759 static int regulator_summary_open(struct inode
*inode
, struct file
*file
)
4761 return single_open(file
, regulator_summary_show
, inode
->i_private
);
4765 static const struct file_operations regulator_summary_fops
= {
4766 #ifdef CONFIG_DEBUG_FS
4767 .open
= regulator_summary_open
,
4769 .llseek
= seq_lseek
,
4770 .release
= single_release
,
4774 static int __init
regulator_init(void)
4778 ret
= class_register(®ulator_class
);
4780 debugfs_root
= debugfs_create_dir("regulator", NULL
);
4782 pr_warn("regulator: Failed to create debugfs directory\n");
4784 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
4787 debugfs_create_file("regulator_summary", 0444, debugfs_root
,
4788 NULL
, ®ulator_summary_fops
);
4790 regulator_dummy_init();
4795 /* init early to allow our consumers to complete system booting */
4796 core_initcall(regulator_init
);
4798 static int __init
regulator_late_cleanup(struct device
*dev
, void *data
)
4800 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4801 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
4802 struct regulation_constraints
*c
= rdev
->constraints
;
4805 if (c
&& c
->always_on
)
4808 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
))
4811 regulator_lock(rdev
);
4813 if (rdev
->use_count
)
4816 /* If we can't read the status assume it's on. */
4817 if (ops
->is_enabled
)
4818 enabled
= ops
->is_enabled(rdev
);
4825 if (have_full_constraints()) {
4826 /* We log since this may kill the system if it goes
4828 rdev_info(rdev
, "disabling\n");
4829 ret
= _regulator_do_disable(rdev
);
4831 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
4833 /* The intention is that in future we will
4834 * assume that full constraints are provided
4835 * so warn even if we aren't going to do
4838 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
4842 regulator_unlock(rdev
);
4847 static int __init
regulator_init_complete(void)
4850 * Since DT doesn't provide an idiomatic mechanism for
4851 * enabling full constraints and since it's much more natural
4852 * with DT to provide them just assume that a DT enabled
4853 * system has full constraints.
4855 if (of_have_populated_dt())
4856 has_full_constraints
= true;
4859 * Regulators may had failed to resolve their input supplies
4860 * when were registered, either because the input supply was
4861 * not registered yet or because its parent device was not
4862 * bound yet. So attempt to resolve the input supplies for
4863 * pending regulators before trying to disable unused ones.
4865 class_for_each_device(®ulator_class
, NULL
, NULL
,
4866 regulator_register_resolve_supply
);
4868 /* If we have a full configuration then disable any regulators
4869 * we have permission to change the status for and which are
4870 * not in use or always_on. This is effectively the default
4871 * for DT and ACPI as they have full constraints.
4873 class_for_each_device(®ulator_class
, NULL
, NULL
,
4874 regulator_late_cleanup
);
4876 class_for_each_device(®ulator_class
, NULL
, NULL
,
4877 regulator_register_fill_coupling_array
);
4881 late_initcall_sync(regulator_init_complete
);