kvm: x86: Use fast CR3 switch for nested VMX
[linux/fpc-iii.git] / virt / kvm / kvm_main.c
blob8f461e0ed38219a5e953c4dc9412f877dbafd5f6
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
90 * Ordering of locks:
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #define KVM_COMPAT(c) .compat_ioctl = (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
135 static bool largepages_enabled = true;
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
143 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144 unsigned long start, unsigned long end)
148 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
150 if (pfn_valid(pfn))
151 return PageReserved(pfn_to_page(pfn));
153 return true;
157 * Switches to specified vcpu, until a matching vcpu_put()
159 void vcpu_load(struct kvm_vcpu *vcpu)
161 int cpu = get_cpu();
162 preempt_notifier_register(&vcpu->preempt_notifier);
163 kvm_arch_vcpu_load(vcpu, cpu);
164 put_cpu();
166 EXPORT_SYMBOL_GPL(vcpu_load);
168 void vcpu_put(struct kvm_vcpu *vcpu)
170 preempt_disable();
171 kvm_arch_vcpu_put(vcpu);
172 preempt_notifier_unregister(&vcpu->preempt_notifier);
173 preempt_enable();
175 EXPORT_SYMBOL_GPL(vcpu_put);
177 /* TODO: merge with kvm_arch_vcpu_should_kick */
178 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
183 * We need to wait for the VCPU to reenable interrupts and get out of
184 * READING_SHADOW_PAGE_TABLES mode.
186 if (req & KVM_REQUEST_WAIT)
187 return mode != OUTSIDE_GUEST_MODE;
190 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 return mode == IN_GUEST_MODE;
195 static void ack_flush(void *_completed)
199 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 if (unlikely(!cpus))
202 cpus = cpu_online_mask;
204 if (cpumask_empty(cpus))
205 return false;
207 smp_call_function_many(cpus, ack_flush, NULL, wait);
208 return true;
211 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
212 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
214 int i, cpu, me;
215 struct kvm_vcpu *vcpu;
216 bool called;
218 me = get_cpu();
220 kvm_for_each_vcpu(i, vcpu, kvm) {
221 if (!test_bit(i, vcpu_bitmap))
222 continue;
224 kvm_make_request(req, vcpu);
225 cpu = vcpu->cpu;
227 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
228 continue;
230 if (tmp != NULL && cpu != -1 && cpu != me &&
231 kvm_request_needs_ipi(vcpu, req))
232 __cpumask_set_cpu(cpu, tmp);
235 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
236 put_cpu();
238 return called;
241 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243 cpumask_var_t cpus;
244 bool called;
245 static unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)]
246 = {[0 ... BITS_TO_LONGS(KVM_MAX_VCPUS)-1] = ULONG_MAX};
248 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
250 called = kvm_make_vcpus_request_mask(kvm, req, vcpu_bitmap, cpus);
252 free_cpumask_var(cpus);
253 return called;
256 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
257 void kvm_flush_remote_tlbs(struct kvm *kvm)
260 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
261 * kvm_make_all_cpus_request.
263 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
266 * We want to publish modifications to the page tables before reading
267 * mode. Pairs with a memory barrier in arch-specific code.
268 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
269 * and smp_mb in walk_shadow_page_lockless_begin/end.
270 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
272 * There is already an smp_mb__after_atomic() before
273 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
274 * barrier here.
276 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277 ++kvm->stat.remote_tlb_flush;
278 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
281 #endif
283 void kvm_reload_remote_mmus(struct kvm *kvm)
285 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
290 struct page *page;
291 int r;
293 mutex_init(&vcpu->mutex);
294 vcpu->cpu = -1;
295 vcpu->kvm = kvm;
296 vcpu->vcpu_id = id;
297 vcpu->pid = NULL;
298 init_swait_queue_head(&vcpu->wq);
299 kvm_async_pf_vcpu_init(vcpu);
301 vcpu->pre_pcpu = -1;
302 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
304 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305 if (!page) {
306 r = -ENOMEM;
307 goto fail;
309 vcpu->run = page_address(page);
311 kvm_vcpu_set_in_spin_loop(vcpu, false);
312 kvm_vcpu_set_dy_eligible(vcpu, false);
313 vcpu->preempted = false;
315 r = kvm_arch_vcpu_init(vcpu);
316 if (r < 0)
317 goto fail_free_run;
318 return 0;
320 fail_free_run:
321 free_page((unsigned long)vcpu->run);
322 fail:
323 return r;
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
330 * no need for rcu_read_lock as VCPU_RUN is the only place that
331 * will change the vcpu->pid pointer and on uninit all file
332 * descriptors are already gone.
334 put_pid(rcu_dereference_protected(vcpu->pid, 1));
335 kvm_arch_vcpu_uninit(vcpu);
336 free_page((unsigned long)vcpu->run);
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
343 return container_of(mn, struct kvm, mmu_notifier);
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long address,
349 pte_t pte)
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 int idx;
354 idx = srcu_read_lock(&kvm->srcu);
355 spin_lock(&kvm->mmu_lock);
356 kvm->mmu_notifier_seq++;
357 kvm_set_spte_hva(kvm, address, pte);
358 spin_unlock(&kvm->mmu_lock);
359 srcu_read_unlock(&kvm->srcu, idx);
362 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
363 struct mm_struct *mm,
364 unsigned long start,
365 unsigned long end)
367 struct kvm *kvm = mmu_notifier_to_kvm(mn);
368 int need_tlb_flush = 0, idx;
370 idx = srcu_read_lock(&kvm->srcu);
371 spin_lock(&kvm->mmu_lock);
373 * The count increase must become visible at unlock time as no
374 * spte can be established without taking the mmu_lock and
375 * count is also read inside the mmu_lock critical section.
377 kvm->mmu_notifier_count++;
378 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
379 need_tlb_flush |= kvm->tlbs_dirty;
380 /* we've to flush the tlb before the pages can be freed */
381 if (need_tlb_flush)
382 kvm_flush_remote_tlbs(kvm);
384 spin_unlock(&kvm->mmu_lock);
386 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
388 srcu_read_unlock(&kvm->srcu, idx);
391 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long start,
394 unsigned long end)
396 struct kvm *kvm = mmu_notifier_to_kvm(mn);
398 spin_lock(&kvm->mmu_lock);
400 * This sequence increase will notify the kvm page fault that
401 * the page that is going to be mapped in the spte could have
402 * been freed.
404 kvm->mmu_notifier_seq++;
405 smp_wmb();
407 * The above sequence increase must be visible before the
408 * below count decrease, which is ensured by the smp_wmb above
409 * in conjunction with the smp_rmb in mmu_notifier_retry().
411 kvm->mmu_notifier_count--;
412 spin_unlock(&kvm->mmu_lock);
414 BUG_ON(kvm->mmu_notifier_count < 0);
417 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
418 struct mm_struct *mm,
419 unsigned long start,
420 unsigned long end)
422 struct kvm *kvm = mmu_notifier_to_kvm(mn);
423 int young, idx;
425 idx = srcu_read_lock(&kvm->srcu);
426 spin_lock(&kvm->mmu_lock);
428 young = kvm_age_hva(kvm, start, end);
429 if (young)
430 kvm_flush_remote_tlbs(kvm);
432 spin_unlock(&kvm->mmu_lock);
433 srcu_read_unlock(&kvm->srcu, idx);
435 return young;
438 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
439 struct mm_struct *mm,
440 unsigned long start,
441 unsigned long end)
443 struct kvm *kvm = mmu_notifier_to_kvm(mn);
444 int young, idx;
446 idx = srcu_read_lock(&kvm->srcu);
447 spin_lock(&kvm->mmu_lock);
449 * Even though we do not flush TLB, this will still adversely
450 * affect performance on pre-Haswell Intel EPT, where there is
451 * no EPT Access Bit to clear so that we have to tear down EPT
452 * tables instead. If we find this unacceptable, we can always
453 * add a parameter to kvm_age_hva so that it effectively doesn't
454 * do anything on clear_young.
456 * Also note that currently we never issue secondary TLB flushes
457 * from clear_young, leaving this job up to the regular system
458 * cadence. If we find this inaccurate, we might come up with a
459 * more sophisticated heuristic later.
461 young = kvm_age_hva(kvm, start, end);
462 spin_unlock(&kvm->mmu_lock);
463 srcu_read_unlock(&kvm->srcu, idx);
465 return young;
468 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
469 struct mm_struct *mm,
470 unsigned long address)
472 struct kvm *kvm = mmu_notifier_to_kvm(mn);
473 int young, idx;
475 idx = srcu_read_lock(&kvm->srcu);
476 spin_lock(&kvm->mmu_lock);
477 young = kvm_test_age_hva(kvm, address);
478 spin_unlock(&kvm->mmu_lock);
479 srcu_read_unlock(&kvm->srcu, idx);
481 return young;
484 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
485 struct mm_struct *mm)
487 struct kvm *kvm = mmu_notifier_to_kvm(mn);
488 int idx;
490 idx = srcu_read_lock(&kvm->srcu);
491 kvm_arch_flush_shadow_all(kvm);
492 srcu_read_unlock(&kvm->srcu, idx);
495 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
496 .flags = MMU_INVALIDATE_DOES_NOT_BLOCK,
497 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
498 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
499 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
500 .clear_young = kvm_mmu_notifier_clear_young,
501 .test_young = kvm_mmu_notifier_test_young,
502 .change_pte = kvm_mmu_notifier_change_pte,
503 .release = kvm_mmu_notifier_release,
506 static int kvm_init_mmu_notifier(struct kvm *kvm)
508 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
509 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
512 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
514 static int kvm_init_mmu_notifier(struct kvm *kvm)
516 return 0;
519 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
521 static struct kvm_memslots *kvm_alloc_memslots(void)
523 int i;
524 struct kvm_memslots *slots;
526 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
527 if (!slots)
528 return NULL;
530 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
531 slots->id_to_index[i] = slots->memslots[i].id = i;
533 return slots;
536 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
538 if (!memslot->dirty_bitmap)
539 return;
541 kvfree(memslot->dirty_bitmap);
542 memslot->dirty_bitmap = NULL;
546 * Free any memory in @free but not in @dont.
548 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
549 struct kvm_memory_slot *dont)
551 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
552 kvm_destroy_dirty_bitmap(free);
554 kvm_arch_free_memslot(kvm, free, dont);
556 free->npages = 0;
559 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
561 struct kvm_memory_slot *memslot;
563 if (!slots)
564 return;
566 kvm_for_each_memslot(memslot, slots)
567 kvm_free_memslot(kvm, memslot, NULL);
569 kvfree(slots);
572 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
574 int i;
576 if (!kvm->debugfs_dentry)
577 return;
579 debugfs_remove_recursive(kvm->debugfs_dentry);
581 if (kvm->debugfs_stat_data) {
582 for (i = 0; i < kvm_debugfs_num_entries; i++)
583 kfree(kvm->debugfs_stat_data[i]);
584 kfree(kvm->debugfs_stat_data);
588 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
590 char dir_name[ITOA_MAX_LEN * 2];
591 struct kvm_stat_data *stat_data;
592 struct kvm_stats_debugfs_item *p;
594 if (!debugfs_initialized())
595 return 0;
597 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
598 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
600 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
601 sizeof(*kvm->debugfs_stat_data),
602 GFP_KERNEL);
603 if (!kvm->debugfs_stat_data)
604 return -ENOMEM;
606 for (p = debugfs_entries; p->name; p++) {
607 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
608 if (!stat_data)
609 return -ENOMEM;
611 stat_data->kvm = kvm;
612 stat_data->offset = p->offset;
613 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
614 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
615 stat_data, stat_fops_per_vm[p->kind]);
617 return 0;
620 static struct kvm *kvm_create_vm(unsigned long type)
622 int r, i;
623 struct kvm *kvm = kvm_arch_alloc_vm();
625 if (!kvm)
626 return ERR_PTR(-ENOMEM);
628 spin_lock_init(&kvm->mmu_lock);
629 mmgrab(current->mm);
630 kvm->mm = current->mm;
631 kvm_eventfd_init(kvm);
632 mutex_init(&kvm->lock);
633 mutex_init(&kvm->irq_lock);
634 mutex_init(&kvm->slots_lock);
635 refcount_set(&kvm->users_count, 1);
636 INIT_LIST_HEAD(&kvm->devices);
638 r = kvm_arch_init_vm(kvm, type);
639 if (r)
640 goto out_err_no_disable;
642 r = hardware_enable_all();
643 if (r)
644 goto out_err_no_disable;
646 #ifdef CONFIG_HAVE_KVM_IRQFD
647 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
648 #endif
650 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
652 r = -ENOMEM;
653 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
654 struct kvm_memslots *slots = kvm_alloc_memslots();
655 if (!slots)
656 goto out_err_no_srcu;
658 * Generations must be different for each address space.
659 * Init kvm generation close to the maximum to easily test the
660 * code of handling generation number wrap-around.
662 slots->generation = i * 2 - 150;
663 rcu_assign_pointer(kvm->memslots[i], slots);
666 if (init_srcu_struct(&kvm->srcu))
667 goto out_err_no_srcu;
668 if (init_srcu_struct(&kvm->irq_srcu))
669 goto out_err_no_irq_srcu;
670 for (i = 0; i < KVM_NR_BUSES; i++) {
671 rcu_assign_pointer(kvm->buses[i],
672 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
673 if (!kvm->buses[i])
674 goto out_err;
677 r = kvm_init_mmu_notifier(kvm);
678 if (r)
679 goto out_err;
681 spin_lock(&kvm_lock);
682 list_add(&kvm->vm_list, &vm_list);
683 spin_unlock(&kvm_lock);
685 preempt_notifier_inc();
687 return kvm;
689 out_err:
690 cleanup_srcu_struct(&kvm->irq_srcu);
691 out_err_no_irq_srcu:
692 cleanup_srcu_struct(&kvm->srcu);
693 out_err_no_srcu:
694 hardware_disable_all();
695 out_err_no_disable:
696 refcount_set(&kvm->users_count, 0);
697 for (i = 0; i < KVM_NR_BUSES; i++)
698 kfree(kvm_get_bus(kvm, i));
699 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
700 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
701 kvm_arch_free_vm(kvm);
702 mmdrop(current->mm);
703 return ERR_PTR(r);
706 static void kvm_destroy_devices(struct kvm *kvm)
708 struct kvm_device *dev, *tmp;
711 * We do not need to take the kvm->lock here, because nobody else
712 * has a reference to the struct kvm at this point and therefore
713 * cannot access the devices list anyhow.
715 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
716 list_del(&dev->vm_node);
717 dev->ops->destroy(dev);
721 static void kvm_destroy_vm(struct kvm *kvm)
723 int i;
724 struct mm_struct *mm = kvm->mm;
726 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
727 kvm_destroy_vm_debugfs(kvm);
728 kvm_arch_sync_events(kvm);
729 spin_lock(&kvm_lock);
730 list_del(&kvm->vm_list);
731 spin_unlock(&kvm_lock);
732 kvm_free_irq_routing(kvm);
733 for (i = 0; i < KVM_NR_BUSES; i++) {
734 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
736 if (bus)
737 kvm_io_bus_destroy(bus);
738 kvm->buses[i] = NULL;
740 kvm_coalesced_mmio_free(kvm);
741 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
742 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
743 #else
744 kvm_arch_flush_shadow_all(kvm);
745 #endif
746 kvm_arch_destroy_vm(kvm);
747 kvm_destroy_devices(kvm);
748 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
749 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
750 cleanup_srcu_struct(&kvm->irq_srcu);
751 cleanup_srcu_struct(&kvm->srcu);
752 kvm_arch_free_vm(kvm);
753 preempt_notifier_dec();
754 hardware_disable_all();
755 mmdrop(mm);
758 void kvm_get_kvm(struct kvm *kvm)
760 refcount_inc(&kvm->users_count);
762 EXPORT_SYMBOL_GPL(kvm_get_kvm);
764 void kvm_put_kvm(struct kvm *kvm)
766 if (refcount_dec_and_test(&kvm->users_count))
767 kvm_destroy_vm(kvm);
769 EXPORT_SYMBOL_GPL(kvm_put_kvm);
772 static int kvm_vm_release(struct inode *inode, struct file *filp)
774 struct kvm *kvm = filp->private_data;
776 kvm_irqfd_release(kvm);
778 kvm_put_kvm(kvm);
779 return 0;
783 * Allocation size is twice as large as the actual dirty bitmap size.
784 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
786 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
788 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
790 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
791 if (!memslot->dirty_bitmap)
792 return -ENOMEM;
794 return 0;
798 * Insert memslot and re-sort memslots based on their GFN,
799 * so binary search could be used to lookup GFN.
800 * Sorting algorithm takes advantage of having initially
801 * sorted array and known changed memslot position.
803 static void update_memslots(struct kvm_memslots *slots,
804 struct kvm_memory_slot *new)
806 int id = new->id;
807 int i = slots->id_to_index[id];
808 struct kvm_memory_slot *mslots = slots->memslots;
810 WARN_ON(mslots[i].id != id);
811 if (!new->npages) {
812 WARN_ON(!mslots[i].npages);
813 if (mslots[i].npages)
814 slots->used_slots--;
815 } else {
816 if (!mslots[i].npages)
817 slots->used_slots++;
820 while (i < KVM_MEM_SLOTS_NUM - 1 &&
821 new->base_gfn <= mslots[i + 1].base_gfn) {
822 if (!mslots[i + 1].npages)
823 break;
824 mslots[i] = mslots[i + 1];
825 slots->id_to_index[mslots[i].id] = i;
826 i++;
830 * The ">=" is needed when creating a slot with base_gfn == 0,
831 * so that it moves before all those with base_gfn == npages == 0.
833 * On the other hand, if new->npages is zero, the above loop has
834 * already left i pointing to the beginning of the empty part of
835 * mslots, and the ">=" would move the hole backwards in this
836 * case---which is wrong. So skip the loop when deleting a slot.
838 if (new->npages) {
839 while (i > 0 &&
840 new->base_gfn >= mslots[i - 1].base_gfn) {
841 mslots[i] = mslots[i - 1];
842 slots->id_to_index[mslots[i].id] = i;
843 i--;
845 } else
846 WARN_ON_ONCE(i != slots->used_slots);
848 mslots[i] = *new;
849 slots->id_to_index[mslots[i].id] = i;
852 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
854 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
856 #ifdef __KVM_HAVE_READONLY_MEM
857 valid_flags |= KVM_MEM_READONLY;
858 #endif
860 if (mem->flags & ~valid_flags)
861 return -EINVAL;
863 return 0;
866 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
867 int as_id, struct kvm_memslots *slots)
869 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
872 * Set the low bit in the generation, which disables SPTE caching
873 * until the end of synchronize_srcu_expedited.
875 WARN_ON(old_memslots->generation & 1);
876 slots->generation = old_memslots->generation + 1;
878 rcu_assign_pointer(kvm->memslots[as_id], slots);
879 synchronize_srcu_expedited(&kvm->srcu);
882 * Increment the new memslot generation a second time. This prevents
883 * vm exits that race with memslot updates from caching a memslot
884 * generation that will (potentially) be valid forever.
886 * Generations must be unique even across address spaces. We do not need
887 * a global counter for that, instead the generation space is evenly split
888 * across address spaces. For example, with two address spaces, address
889 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
890 * use generations 2, 6, 10, 14, ...
892 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
894 kvm_arch_memslots_updated(kvm, slots);
896 return old_memslots;
900 * Allocate some memory and give it an address in the guest physical address
901 * space.
903 * Discontiguous memory is allowed, mostly for framebuffers.
905 * Must be called holding kvm->slots_lock for write.
907 int __kvm_set_memory_region(struct kvm *kvm,
908 const struct kvm_userspace_memory_region *mem)
910 int r;
911 gfn_t base_gfn;
912 unsigned long npages;
913 struct kvm_memory_slot *slot;
914 struct kvm_memory_slot old, new;
915 struct kvm_memslots *slots = NULL, *old_memslots;
916 int as_id, id;
917 enum kvm_mr_change change;
919 r = check_memory_region_flags(mem);
920 if (r)
921 goto out;
923 r = -EINVAL;
924 as_id = mem->slot >> 16;
925 id = (u16)mem->slot;
927 /* General sanity checks */
928 if (mem->memory_size & (PAGE_SIZE - 1))
929 goto out;
930 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
931 goto out;
932 /* We can read the guest memory with __xxx_user() later on. */
933 if ((id < KVM_USER_MEM_SLOTS) &&
934 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
935 !access_ok(VERIFY_WRITE,
936 (void __user *)(unsigned long)mem->userspace_addr,
937 mem->memory_size)))
938 goto out;
939 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
940 goto out;
941 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
942 goto out;
944 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
945 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
946 npages = mem->memory_size >> PAGE_SHIFT;
948 if (npages > KVM_MEM_MAX_NR_PAGES)
949 goto out;
951 new = old = *slot;
953 new.id = id;
954 new.base_gfn = base_gfn;
955 new.npages = npages;
956 new.flags = mem->flags;
958 if (npages) {
959 if (!old.npages)
960 change = KVM_MR_CREATE;
961 else { /* Modify an existing slot. */
962 if ((mem->userspace_addr != old.userspace_addr) ||
963 (npages != old.npages) ||
964 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
965 goto out;
967 if (base_gfn != old.base_gfn)
968 change = KVM_MR_MOVE;
969 else if (new.flags != old.flags)
970 change = KVM_MR_FLAGS_ONLY;
971 else { /* Nothing to change. */
972 r = 0;
973 goto out;
976 } else {
977 if (!old.npages)
978 goto out;
980 change = KVM_MR_DELETE;
981 new.base_gfn = 0;
982 new.flags = 0;
985 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
986 /* Check for overlaps */
987 r = -EEXIST;
988 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
989 if (slot->id == id)
990 continue;
991 if (!((base_gfn + npages <= slot->base_gfn) ||
992 (base_gfn >= slot->base_gfn + slot->npages)))
993 goto out;
997 /* Free page dirty bitmap if unneeded */
998 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
999 new.dirty_bitmap = NULL;
1001 r = -ENOMEM;
1002 if (change == KVM_MR_CREATE) {
1003 new.userspace_addr = mem->userspace_addr;
1005 if (kvm_arch_create_memslot(kvm, &new, npages))
1006 goto out_free;
1009 /* Allocate page dirty bitmap if needed */
1010 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1011 if (kvm_create_dirty_bitmap(&new) < 0)
1012 goto out_free;
1015 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1016 if (!slots)
1017 goto out_free;
1018 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1020 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1021 slot = id_to_memslot(slots, id);
1022 slot->flags |= KVM_MEMSLOT_INVALID;
1024 old_memslots = install_new_memslots(kvm, as_id, slots);
1026 /* From this point no new shadow pages pointing to a deleted,
1027 * or moved, memslot will be created.
1029 * validation of sp->gfn happens in:
1030 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1031 * - kvm_is_visible_gfn (mmu_check_roots)
1033 kvm_arch_flush_shadow_memslot(kvm, slot);
1036 * We can re-use the old_memslots from above, the only difference
1037 * from the currently installed memslots is the invalid flag. This
1038 * will get overwritten by update_memslots anyway.
1040 slots = old_memslots;
1043 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1044 if (r)
1045 goto out_slots;
1047 /* actual memory is freed via old in kvm_free_memslot below */
1048 if (change == KVM_MR_DELETE) {
1049 new.dirty_bitmap = NULL;
1050 memset(&new.arch, 0, sizeof(new.arch));
1053 update_memslots(slots, &new);
1054 old_memslots = install_new_memslots(kvm, as_id, slots);
1056 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1058 kvm_free_memslot(kvm, &old, &new);
1059 kvfree(old_memslots);
1060 return 0;
1062 out_slots:
1063 kvfree(slots);
1064 out_free:
1065 kvm_free_memslot(kvm, &new, &old);
1066 out:
1067 return r;
1069 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1071 int kvm_set_memory_region(struct kvm *kvm,
1072 const struct kvm_userspace_memory_region *mem)
1074 int r;
1076 mutex_lock(&kvm->slots_lock);
1077 r = __kvm_set_memory_region(kvm, mem);
1078 mutex_unlock(&kvm->slots_lock);
1079 return r;
1081 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1083 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1084 struct kvm_userspace_memory_region *mem)
1086 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1087 return -EINVAL;
1089 return kvm_set_memory_region(kvm, mem);
1092 int kvm_get_dirty_log(struct kvm *kvm,
1093 struct kvm_dirty_log *log, int *is_dirty)
1095 struct kvm_memslots *slots;
1096 struct kvm_memory_slot *memslot;
1097 int i, as_id, id;
1098 unsigned long n;
1099 unsigned long any = 0;
1101 as_id = log->slot >> 16;
1102 id = (u16)log->slot;
1103 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1104 return -EINVAL;
1106 slots = __kvm_memslots(kvm, as_id);
1107 memslot = id_to_memslot(slots, id);
1108 if (!memslot->dirty_bitmap)
1109 return -ENOENT;
1111 n = kvm_dirty_bitmap_bytes(memslot);
1113 for (i = 0; !any && i < n/sizeof(long); ++i)
1114 any = memslot->dirty_bitmap[i];
1116 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1117 return -EFAULT;
1119 if (any)
1120 *is_dirty = 1;
1121 return 0;
1123 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1125 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1127 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1128 * are dirty write protect them for next write.
1129 * @kvm: pointer to kvm instance
1130 * @log: slot id and address to which we copy the log
1131 * @is_dirty: flag set if any page is dirty
1133 * We need to keep it in mind that VCPU threads can write to the bitmap
1134 * concurrently. So, to avoid losing track of dirty pages we keep the
1135 * following order:
1137 * 1. Take a snapshot of the bit and clear it if needed.
1138 * 2. Write protect the corresponding page.
1139 * 3. Copy the snapshot to the userspace.
1140 * 4. Upon return caller flushes TLB's if needed.
1142 * Between 2 and 4, the guest may write to the page using the remaining TLB
1143 * entry. This is not a problem because the page is reported dirty using
1144 * the snapshot taken before and step 4 ensures that writes done after
1145 * exiting to userspace will be logged for the next call.
1148 int kvm_get_dirty_log_protect(struct kvm *kvm,
1149 struct kvm_dirty_log *log, bool *is_dirty)
1151 struct kvm_memslots *slots;
1152 struct kvm_memory_slot *memslot;
1153 int i, as_id, id;
1154 unsigned long n;
1155 unsigned long *dirty_bitmap;
1156 unsigned long *dirty_bitmap_buffer;
1158 as_id = log->slot >> 16;
1159 id = (u16)log->slot;
1160 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1161 return -EINVAL;
1163 slots = __kvm_memslots(kvm, as_id);
1164 memslot = id_to_memslot(slots, id);
1166 dirty_bitmap = memslot->dirty_bitmap;
1167 if (!dirty_bitmap)
1168 return -ENOENT;
1170 n = kvm_dirty_bitmap_bytes(memslot);
1172 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1173 memset(dirty_bitmap_buffer, 0, n);
1175 spin_lock(&kvm->mmu_lock);
1176 *is_dirty = false;
1177 for (i = 0; i < n / sizeof(long); i++) {
1178 unsigned long mask;
1179 gfn_t offset;
1181 if (!dirty_bitmap[i])
1182 continue;
1184 *is_dirty = true;
1186 mask = xchg(&dirty_bitmap[i], 0);
1187 dirty_bitmap_buffer[i] = mask;
1189 if (mask) {
1190 offset = i * BITS_PER_LONG;
1191 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1192 offset, mask);
1196 spin_unlock(&kvm->mmu_lock);
1197 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1198 return -EFAULT;
1199 return 0;
1201 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1202 #endif
1204 bool kvm_largepages_enabled(void)
1206 return largepages_enabled;
1209 void kvm_disable_largepages(void)
1211 largepages_enabled = false;
1213 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1215 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1217 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1219 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1221 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1223 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1226 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1228 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1230 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1231 memslot->flags & KVM_MEMSLOT_INVALID)
1232 return false;
1234 return true;
1236 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1238 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1240 struct vm_area_struct *vma;
1241 unsigned long addr, size;
1243 size = PAGE_SIZE;
1245 addr = gfn_to_hva(kvm, gfn);
1246 if (kvm_is_error_hva(addr))
1247 return PAGE_SIZE;
1249 down_read(&current->mm->mmap_sem);
1250 vma = find_vma(current->mm, addr);
1251 if (!vma)
1252 goto out;
1254 size = vma_kernel_pagesize(vma);
1256 out:
1257 up_read(&current->mm->mmap_sem);
1259 return size;
1262 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1264 return slot->flags & KVM_MEM_READONLY;
1267 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1268 gfn_t *nr_pages, bool write)
1270 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1271 return KVM_HVA_ERR_BAD;
1273 if (memslot_is_readonly(slot) && write)
1274 return KVM_HVA_ERR_RO_BAD;
1276 if (nr_pages)
1277 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1279 return __gfn_to_hva_memslot(slot, gfn);
1282 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1283 gfn_t *nr_pages)
1285 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1288 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1289 gfn_t gfn)
1291 return gfn_to_hva_many(slot, gfn, NULL);
1293 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1295 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1297 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1299 EXPORT_SYMBOL_GPL(gfn_to_hva);
1301 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1303 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1305 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1308 * If writable is set to false, the hva returned by this function is only
1309 * allowed to be read.
1311 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1312 gfn_t gfn, bool *writable)
1314 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1316 if (!kvm_is_error_hva(hva) && writable)
1317 *writable = !memslot_is_readonly(slot);
1319 return hva;
1322 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1324 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1326 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1329 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1331 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1333 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1336 static inline int check_user_page_hwpoison(unsigned long addr)
1338 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1340 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1341 return rc == -EHWPOISON;
1345 * The atomic path to get the writable pfn which will be stored in @pfn,
1346 * true indicates success, otherwise false is returned.
1348 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1349 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1351 struct page *page[1];
1352 int npages;
1354 if (!(async || atomic))
1355 return false;
1358 * Fast pin a writable pfn only if it is a write fault request
1359 * or the caller allows to map a writable pfn for a read fault
1360 * request.
1362 if (!(write_fault || writable))
1363 return false;
1365 npages = __get_user_pages_fast(addr, 1, 1, page);
1366 if (npages == 1) {
1367 *pfn = page_to_pfn(page[0]);
1369 if (writable)
1370 *writable = true;
1371 return true;
1374 return false;
1378 * The slow path to get the pfn of the specified host virtual address,
1379 * 1 indicates success, -errno is returned if error is detected.
1381 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1382 bool *writable, kvm_pfn_t *pfn)
1384 unsigned int flags = FOLL_HWPOISON;
1385 struct page *page;
1386 int npages = 0;
1388 might_sleep();
1390 if (writable)
1391 *writable = write_fault;
1393 if (write_fault)
1394 flags |= FOLL_WRITE;
1395 if (async)
1396 flags |= FOLL_NOWAIT;
1398 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1399 if (npages != 1)
1400 return npages;
1402 /* map read fault as writable if possible */
1403 if (unlikely(!write_fault) && writable) {
1404 struct page *wpage;
1406 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1407 *writable = true;
1408 put_page(page);
1409 page = wpage;
1412 *pfn = page_to_pfn(page);
1413 return npages;
1416 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1418 if (unlikely(!(vma->vm_flags & VM_READ)))
1419 return false;
1421 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1422 return false;
1424 return true;
1427 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1428 unsigned long addr, bool *async,
1429 bool write_fault, bool *writable,
1430 kvm_pfn_t *p_pfn)
1432 unsigned long pfn;
1433 int r;
1435 r = follow_pfn(vma, addr, &pfn);
1436 if (r) {
1438 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1439 * not call the fault handler, so do it here.
1441 bool unlocked = false;
1442 r = fixup_user_fault(current, current->mm, addr,
1443 (write_fault ? FAULT_FLAG_WRITE : 0),
1444 &unlocked);
1445 if (unlocked)
1446 return -EAGAIN;
1447 if (r)
1448 return r;
1450 r = follow_pfn(vma, addr, &pfn);
1451 if (r)
1452 return r;
1456 if (writable)
1457 *writable = true;
1460 * Get a reference here because callers of *hva_to_pfn* and
1461 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1462 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1463 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1464 * simply do nothing for reserved pfns.
1466 * Whoever called remap_pfn_range is also going to call e.g.
1467 * unmap_mapping_range before the underlying pages are freed,
1468 * causing a call to our MMU notifier.
1470 kvm_get_pfn(pfn);
1472 *p_pfn = pfn;
1473 return 0;
1477 * Pin guest page in memory and return its pfn.
1478 * @addr: host virtual address which maps memory to the guest
1479 * @atomic: whether this function can sleep
1480 * @async: whether this function need to wait IO complete if the
1481 * host page is not in the memory
1482 * @write_fault: whether we should get a writable host page
1483 * @writable: whether it allows to map a writable host page for !@write_fault
1485 * The function will map a writable host page for these two cases:
1486 * 1): @write_fault = true
1487 * 2): @write_fault = false && @writable, @writable will tell the caller
1488 * whether the mapping is writable.
1490 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1491 bool write_fault, bool *writable)
1493 struct vm_area_struct *vma;
1494 kvm_pfn_t pfn = 0;
1495 int npages, r;
1497 /* we can do it either atomically or asynchronously, not both */
1498 BUG_ON(atomic && async);
1500 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1501 return pfn;
1503 if (atomic)
1504 return KVM_PFN_ERR_FAULT;
1506 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1507 if (npages == 1)
1508 return pfn;
1510 down_read(&current->mm->mmap_sem);
1511 if (npages == -EHWPOISON ||
1512 (!async && check_user_page_hwpoison(addr))) {
1513 pfn = KVM_PFN_ERR_HWPOISON;
1514 goto exit;
1517 retry:
1518 vma = find_vma_intersection(current->mm, addr, addr + 1);
1520 if (vma == NULL)
1521 pfn = KVM_PFN_ERR_FAULT;
1522 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1523 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1524 if (r == -EAGAIN)
1525 goto retry;
1526 if (r < 0)
1527 pfn = KVM_PFN_ERR_FAULT;
1528 } else {
1529 if (async && vma_is_valid(vma, write_fault))
1530 *async = true;
1531 pfn = KVM_PFN_ERR_FAULT;
1533 exit:
1534 up_read(&current->mm->mmap_sem);
1535 return pfn;
1538 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1539 bool atomic, bool *async, bool write_fault,
1540 bool *writable)
1542 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1544 if (addr == KVM_HVA_ERR_RO_BAD) {
1545 if (writable)
1546 *writable = false;
1547 return KVM_PFN_ERR_RO_FAULT;
1550 if (kvm_is_error_hva(addr)) {
1551 if (writable)
1552 *writable = false;
1553 return KVM_PFN_NOSLOT;
1556 /* Do not map writable pfn in the readonly memslot. */
1557 if (writable && memslot_is_readonly(slot)) {
1558 *writable = false;
1559 writable = NULL;
1562 return hva_to_pfn(addr, atomic, async, write_fault,
1563 writable);
1565 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1567 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1568 bool *writable)
1570 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1571 write_fault, writable);
1573 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1575 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1577 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1579 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1581 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1583 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1585 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1587 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1589 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1591 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1593 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1595 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1597 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1599 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1601 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1603 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1605 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1607 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1609 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1611 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1612 struct page **pages, int nr_pages)
1614 unsigned long addr;
1615 gfn_t entry = 0;
1617 addr = gfn_to_hva_many(slot, gfn, &entry);
1618 if (kvm_is_error_hva(addr))
1619 return -1;
1621 if (entry < nr_pages)
1622 return 0;
1624 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1626 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1628 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1630 if (is_error_noslot_pfn(pfn))
1631 return KVM_ERR_PTR_BAD_PAGE;
1633 if (kvm_is_reserved_pfn(pfn)) {
1634 WARN_ON(1);
1635 return KVM_ERR_PTR_BAD_PAGE;
1638 return pfn_to_page(pfn);
1641 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1643 kvm_pfn_t pfn;
1645 pfn = gfn_to_pfn(kvm, gfn);
1647 return kvm_pfn_to_page(pfn);
1649 EXPORT_SYMBOL_GPL(gfn_to_page);
1651 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1653 kvm_pfn_t pfn;
1655 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1657 return kvm_pfn_to_page(pfn);
1659 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1661 void kvm_release_page_clean(struct page *page)
1663 WARN_ON(is_error_page(page));
1665 kvm_release_pfn_clean(page_to_pfn(page));
1667 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1669 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1671 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1672 put_page(pfn_to_page(pfn));
1674 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1676 void kvm_release_page_dirty(struct page *page)
1678 WARN_ON(is_error_page(page));
1680 kvm_release_pfn_dirty(page_to_pfn(page));
1682 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1684 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1686 kvm_set_pfn_dirty(pfn);
1687 kvm_release_pfn_clean(pfn);
1689 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1691 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1693 if (!kvm_is_reserved_pfn(pfn)) {
1694 struct page *page = pfn_to_page(pfn);
1696 if (!PageReserved(page))
1697 SetPageDirty(page);
1700 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1702 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1704 if (!kvm_is_reserved_pfn(pfn))
1705 mark_page_accessed(pfn_to_page(pfn));
1707 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1709 void kvm_get_pfn(kvm_pfn_t pfn)
1711 if (!kvm_is_reserved_pfn(pfn))
1712 get_page(pfn_to_page(pfn));
1714 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1716 static int next_segment(unsigned long len, int offset)
1718 if (len > PAGE_SIZE - offset)
1719 return PAGE_SIZE - offset;
1720 else
1721 return len;
1724 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1725 void *data, int offset, int len)
1727 int r;
1728 unsigned long addr;
1730 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1731 if (kvm_is_error_hva(addr))
1732 return -EFAULT;
1733 r = __copy_from_user(data, (void __user *)addr + offset, len);
1734 if (r)
1735 return -EFAULT;
1736 return 0;
1739 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1740 int len)
1742 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1744 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1746 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1748 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1749 int offset, int len)
1751 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1753 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1755 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1757 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1759 gfn_t gfn = gpa >> PAGE_SHIFT;
1760 int seg;
1761 int offset = offset_in_page(gpa);
1762 int ret;
1764 while ((seg = next_segment(len, offset)) != 0) {
1765 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1766 if (ret < 0)
1767 return ret;
1768 offset = 0;
1769 len -= seg;
1770 data += seg;
1771 ++gfn;
1773 return 0;
1775 EXPORT_SYMBOL_GPL(kvm_read_guest);
1777 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1779 gfn_t gfn = gpa >> PAGE_SHIFT;
1780 int seg;
1781 int offset = offset_in_page(gpa);
1782 int ret;
1784 while ((seg = next_segment(len, offset)) != 0) {
1785 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1786 if (ret < 0)
1787 return ret;
1788 offset = 0;
1789 len -= seg;
1790 data += seg;
1791 ++gfn;
1793 return 0;
1795 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1797 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1798 void *data, int offset, unsigned long len)
1800 int r;
1801 unsigned long addr;
1803 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1804 if (kvm_is_error_hva(addr))
1805 return -EFAULT;
1806 pagefault_disable();
1807 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1808 pagefault_enable();
1809 if (r)
1810 return -EFAULT;
1811 return 0;
1814 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1815 unsigned long len)
1817 gfn_t gfn = gpa >> PAGE_SHIFT;
1818 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1819 int offset = offset_in_page(gpa);
1821 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1823 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1825 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1826 void *data, unsigned long len)
1828 gfn_t gfn = gpa >> PAGE_SHIFT;
1829 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1830 int offset = offset_in_page(gpa);
1832 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1834 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1836 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1837 const void *data, int offset, int len)
1839 int r;
1840 unsigned long addr;
1842 addr = gfn_to_hva_memslot(memslot, gfn);
1843 if (kvm_is_error_hva(addr))
1844 return -EFAULT;
1845 r = __copy_to_user((void __user *)addr + offset, data, len);
1846 if (r)
1847 return -EFAULT;
1848 mark_page_dirty_in_slot(memslot, gfn);
1849 return 0;
1852 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1853 const void *data, int offset, int len)
1855 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1857 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1859 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1861 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1862 const void *data, int offset, int len)
1864 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1866 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1868 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1870 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1871 unsigned long len)
1873 gfn_t gfn = gpa >> PAGE_SHIFT;
1874 int seg;
1875 int offset = offset_in_page(gpa);
1876 int ret;
1878 while ((seg = next_segment(len, offset)) != 0) {
1879 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1880 if (ret < 0)
1881 return ret;
1882 offset = 0;
1883 len -= seg;
1884 data += seg;
1885 ++gfn;
1887 return 0;
1889 EXPORT_SYMBOL_GPL(kvm_write_guest);
1891 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1892 unsigned long len)
1894 gfn_t gfn = gpa >> PAGE_SHIFT;
1895 int seg;
1896 int offset = offset_in_page(gpa);
1897 int ret;
1899 while ((seg = next_segment(len, offset)) != 0) {
1900 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1901 if (ret < 0)
1902 return ret;
1903 offset = 0;
1904 len -= seg;
1905 data += seg;
1906 ++gfn;
1908 return 0;
1910 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1912 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1913 struct gfn_to_hva_cache *ghc,
1914 gpa_t gpa, unsigned long len)
1916 int offset = offset_in_page(gpa);
1917 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1918 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1919 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1920 gfn_t nr_pages_avail;
1922 ghc->gpa = gpa;
1923 ghc->generation = slots->generation;
1924 ghc->len = len;
1925 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1926 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1927 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1928 ghc->hva += offset;
1929 } else {
1931 * If the requested region crosses two memslots, we still
1932 * verify that the entire region is valid here.
1934 while (start_gfn <= end_gfn) {
1935 nr_pages_avail = 0;
1936 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1937 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1938 &nr_pages_avail);
1939 if (kvm_is_error_hva(ghc->hva))
1940 return -EFAULT;
1941 start_gfn += nr_pages_avail;
1943 /* Use the slow path for cross page reads and writes. */
1944 ghc->memslot = NULL;
1946 return 0;
1949 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1950 gpa_t gpa, unsigned long len)
1952 struct kvm_memslots *slots = kvm_memslots(kvm);
1953 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1955 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1957 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1958 void *data, int offset, unsigned long len)
1960 struct kvm_memslots *slots = kvm_memslots(kvm);
1961 int r;
1962 gpa_t gpa = ghc->gpa + offset;
1964 BUG_ON(len + offset > ghc->len);
1966 if (slots->generation != ghc->generation)
1967 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1969 if (unlikely(!ghc->memslot))
1970 return kvm_write_guest(kvm, gpa, data, len);
1972 if (kvm_is_error_hva(ghc->hva))
1973 return -EFAULT;
1975 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1976 if (r)
1977 return -EFAULT;
1978 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1980 return 0;
1982 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1984 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1985 void *data, unsigned long len)
1987 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1989 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1991 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1992 void *data, unsigned long len)
1994 struct kvm_memslots *slots = kvm_memslots(kvm);
1995 int r;
1997 BUG_ON(len > ghc->len);
1999 if (slots->generation != ghc->generation)
2000 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2002 if (unlikely(!ghc->memslot))
2003 return kvm_read_guest(kvm, ghc->gpa, data, len);
2005 if (kvm_is_error_hva(ghc->hva))
2006 return -EFAULT;
2008 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2009 if (r)
2010 return -EFAULT;
2012 return 0;
2014 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2016 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2018 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2020 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2022 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2024 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2026 gfn_t gfn = gpa >> PAGE_SHIFT;
2027 int seg;
2028 int offset = offset_in_page(gpa);
2029 int ret;
2031 while ((seg = next_segment(len, offset)) != 0) {
2032 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2033 if (ret < 0)
2034 return ret;
2035 offset = 0;
2036 len -= seg;
2037 ++gfn;
2039 return 0;
2041 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2043 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2044 gfn_t gfn)
2046 if (memslot && memslot->dirty_bitmap) {
2047 unsigned long rel_gfn = gfn - memslot->base_gfn;
2049 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2053 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2055 struct kvm_memory_slot *memslot;
2057 memslot = gfn_to_memslot(kvm, gfn);
2058 mark_page_dirty_in_slot(memslot, gfn);
2060 EXPORT_SYMBOL_GPL(mark_page_dirty);
2062 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2064 struct kvm_memory_slot *memslot;
2066 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2067 mark_page_dirty_in_slot(memslot, gfn);
2069 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2071 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2073 if (!vcpu->sigset_active)
2074 return;
2077 * This does a lockless modification of ->real_blocked, which is fine
2078 * because, only current can change ->real_blocked and all readers of
2079 * ->real_blocked don't care as long ->real_blocked is always a subset
2080 * of ->blocked.
2082 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2085 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2087 if (!vcpu->sigset_active)
2088 return;
2090 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2091 sigemptyset(&current->real_blocked);
2094 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2096 unsigned int old, val, grow;
2098 old = val = vcpu->halt_poll_ns;
2099 grow = READ_ONCE(halt_poll_ns_grow);
2100 /* 10us base */
2101 if (val == 0 && grow)
2102 val = 10000;
2103 else
2104 val *= grow;
2106 if (val > halt_poll_ns)
2107 val = halt_poll_ns;
2109 vcpu->halt_poll_ns = val;
2110 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2113 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2115 unsigned int old, val, shrink;
2117 old = val = vcpu->halt_poll_ns;
2118 shrink = READ_ONCE(halt_poll_ns_shrink);
2119 if (shrink == 0)
2120 val = 0;
2121 else
2122 val /= shrink;
2124 vcpu->halt_poll_ns = val;
2125 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2128 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2130 int ret = -EINTR;
2131 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2133 if (kvm_arch_vcpu_runnable(vcpu)) {
2134 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2135 goto out;
2137 if (kvm_cpu_has_pending_timer(vcpu))
2138 goto out;
2139 if (signal_pending(current))
2140 goto out;
2142 ret = 0;
2143 out:
2144 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2145 return ret;
2149 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2151 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2153 ktime_t start, cur;
2154 DECLARE_SWAITQUEUE(wait);
2155 bool waited = false;
2156 u64 block_ns;
2158 start = cur = ktime_get();
2159 if (vcpu->halt_poll_ns) {
2160 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2162 ++vcpu->stat.halt_attempted_poll;
2163 do {
2165 * This sets KVM_REQ_UNHALT if an interrupt
2166 * arrives.
2168 if (kvm_vcpu_check_block(vcpu) < 0) {
2169 ++vcpu->stat.halt_successful_poll;
2170 if (!vcpu_valid_wakeup(vcpu))
2171 ++vcpu->stat.halt_poll_invalid;
2172 goto out;
2174 cur = ktime_get();
2175 } while (single_task_running() && ktime_before(cur, stop));
2178 kvm_arch_vcpu_blocking(vcpu);
2180 for (;;) {
2181 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2183 if (kvm_vcpu_check_block(vcpu) < 0)
2184 break;
2186 waited = true;
2187 schedule();
2190 finish_swait(&vcpu->wq, &wait);
2191 cur = ktime_get();
2193 kvm_arch_vcpu_unblocking(vcpu);
2194 out:
2195 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2197 if (!vcpu_valid_wakeup(vcpu))
2198 shrink_halt_poll_ns(vcpu);
2199 else if (halt_poll_ns) {
2200 if (block_ns <= vcpu->halt_poll_ns)
2202 /* we had a long block, shrink polling */
2203 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2204 shrink_halt_poll_ns(vcpu);
2205 /* we had a short halt and our poll time is too small */
2206 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2207 block_ns < halt_poll_ns)
2208 grow_halt_poll_ns(vcpu);
2209 } else
2210 vcpu->halt_poll_ns = 0;
2212 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2213 kvm_arch_vcpu_block_finish(vcpu);
2215 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2217 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2219 struct swait_queue_head *wqp;
2221 wqp = kvm_arch_vcpu_wq(vcpu);
2222 if (swq_has_sleeper(wqp)) {
2223 swake_up(wqp);
2224 ++vcpu->stat.halt_wakeup;
2225 return true;
2228 return false;
2230 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2232 #ifndef CONFIG_S390
2234 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2236 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2238 int me;
2239 int cpu = vcpu->cpu;
2241 if (kvm_vcpu_wake_up(vcpu))
2242 return;
2244 me = get_cpu();
2245 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2246 if (kvm_arch_vcpu_should_kick(vcpu))
2247 smp_send_reschedule(cpu);
2248 put_cpu();
2250 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2251 #endif /* !CONFIG_S390 */
2253 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2255 struct pid *pid;
2256 struct task_struct *task = NULL;
2257 int ret = 0;
2259 rcu_read_lock();
2260 pid = rcu_dereference(target->pid);
2261 if (pid)
2262 task = get_pid_task(pid, PIDTYPE_PID);
2263 rcu_read_unlock();
2264 if (!task)
2265 return ret;
2266 ret = yield_to(task, 1);
2267 put_task_struct(task);
2269 return ret;
2271 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2274 * Helper that checks whether a VCPU is eligible for directed yield.
2275 * Most eligible candidate to yield is decided by following heuristics:
2277 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2278 * (preempted lock holder), indicated by @in_spin_loop.
2279 * Set at the beiginning and cleared at the end of interception/PLE handler.
2281 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2282 * chance last time (mostly it has become eligible now since we have probably
2283 * yielded to lockholder in last iteration. This is done by toggling
2284 * @dy_eligible each time a VCPU checked for eligibility.)
2286 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2287 * to preempted lock-holder could result in wrong VCPU selection and CPU
2288 * burning. Giving priority for a potential lock-holder increases lock
2289 * progress.
2291 * Since algorithm is based on heuristics, accessing another VCPU data without
2292 * locking does not harm. It may result in trying to yield to same VCPU, fail
2293 * and continue with next VCPU and so on.
2295 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2297 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2298 bool eligible;
2300 eligible = !vcpu->spin_loop.in_spin_loop ||
2301 vcpu->spin_loop.dy_eligible;
2303 if (vcpu->spin_loop.in_spin_loop)
2304 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2306 return eligible;
2307 #else
2308 return true;
2309 #endif
2312 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2314 struct kvm *kvm = me->kvm;
2315 struct kvm_vcpu *vcpu;
2316 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2317 int yielded = 0;
2318 int try = 3;
2319 int pass;
2320 int i;
2322 kvm_vcpu_set_in_spin_loop(me, true);
2324 * We boost the priority of a VCPU that is runnable but not
2325 * currently running, because it got preempted by something
2326 * else and called schedule in __vcpu_run. Hopefully that
2327 * VCPU is holding the lock that we need and will release it.
2328 * We approximate round-robin by starting at the last boosted VCPU.
2330 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2331 kvm_for_each_vcpu(i, vcpu, kvm) {
2332 if (!pass && i <= last_boosted_vcpu) {
2333 i = last_boosted_vcpu;
2334 continue;
2335 } else if (pass && i > last_boosted_vcpu)
2336 break;
2337 if (!READ_ONCE(vcpu->preempted))
2338 continue;
2339 if (vcpu == me)
2340 continue;
2341 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2342 continue;
2343 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2344 continue;
2345 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2346 continue;
2348 yielded = kvm_vcpu_yield_to(vcpu);
2349 if (yielded > 0) {
2350 kvm->last_boosted_vcpu = i;
2351 break;
2352 } else if (yielded < 0) {
2353 try--;
2354 if (!try)
2355 break;
2359 kvm_vcpu_set_in_spin_loop(me, false);
2361 /* Ensure vcpu is not eligible during next spinloop */
2362 kvm_vcpu_set_dy_eligible(me, false);
2364 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2366 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2368 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2369 struct page *page;
2371 if (vmf->pgoff == 0)
2372 page = virt_to_page(vcpu->run);
2373 #ifdef CONFIG_X86
2374 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2375 page = virt_to_page(vcpu->arch.pio_data);
2376 #endif
2377 #ifdef CONFIG_KVM_MMIO
2378 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2379 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2380 #endif
2381 else
2382 return kvm_arch_vcpu_fault(vcpu, vmf);
2383 get_page(page);
2384 vmf->page = page;
2385 return 0;
2388 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2389 .fault = kvm_vcpu_fault,
2392 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2394 vma->vm_ops = &kvm_vcpu_vm_ops;
2395 return 0;
2398 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2400 struct kvm_vcpu *vcpu = filp->private_data;
2402 debugfs_remove_recursive(vcpu->debugfs_dentry);
2403 kvm_put_kvm(vcpu->kvm);
2404 return 0;
2407 static struct file_operations kvm_vcpu_fops = {
2408 .release = kvm_vcpu_release,
2409 .unlocked_ioctl = kvm_vcpu_ioctl,
2410 .mmap = kvm_vcpu_mmap,
2411 .llseek = noop_llseek,
2412 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2416 * Allocates an inode for the vcpu.
2418 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2420 char name[8 + 1 + ITOA_MAX_LEN + 1];
2422 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2423 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2426 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2428 char dir_name[ITOA_MAX_LEN * 2];
2429 int ret;
2431 if (!kvm_arch_has_vcpu_debugfs())
2432 return 0;
2434 if (!debugfs_initialized())
2435 return 0;
2437 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2438 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2439 vcpu->kvm->debugfs_dentry);
2440 if (!vcpu->debugfs_dentry)
2441 return -ENOMEM;
2443 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2444 if (ret < 0) {
2445 debugfs_remove_recursive(vcpu->debugfs_dentry);
2446 return ret;
2449 return 0;
2453 * Creates some virtual cpus. Good luck creating more than one.
2455 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2457 int r;
2458 struct kvm_vcpu *vcpu;
2460 if (id >= KVM_MAX_VCPU_ID)
2461 return -EINVAL;
2463 mutex_lock(&kvm->lock);
2464 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2465 mutex_unlock(&kvm->lock);
2466 return -EINVAL;
2469 kvm->created_vcpus++;
2470 mutex_unlock(&kvm->lock);
2472 vcpu = kvm_arch_vcpu_create(kvm, id);
2473 if (IS_ERR(vcpu)) {
2474 r = PTR_ERR(vcpu);
2475 goto vcpu_decrement;
2478 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2480 r = kvm_arch_vcpu_setup(vcpu);
2481 if (r)
2482 goto vcpu_destroy;
2484 r = kvm_create_vcpu_debugfs(vcpu);
2485 if (r)
2486 goto vcpu_destroy;
2488 mutex_lock(&kvm->lock);
2489 if (kvm_get_vcpu_by_id(kvm, id)) {
2490 r = -EEXIST;
2491 goto unlock_vcpu_destroy;
2494 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2496 /* Now it's all set up, let userspace reach it */
2497 kvm_get_kvm(kvm);
2498 r = create_vcpu_fd(vcpu);
2499 if (r < 0) {
2500 kvm_put_kvm(kvm);
2501 goto unlock_vcpu_destroy;
2504 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2507 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2508 * before kvm->online_vcpu's incremented value.
2510 smp_wmb();
2511 atomic_inc(&kvm->online_vcpus);
2513 mutex_unlock(&kvm->lock);
2514 kvm_arch_vcpu_postcreate(vcpu);
2515 return r;
2517 unlock_vcpu_destroy:
2518 mutex_unlock(&kvm->lock);
2519 debugfs_remove_recursive(vcpu->debugfs_dentry);
2520 vcpu_destroy:
2521 kvm_arch_vcpu_destroy(vcpu);
2522 vcpu_decrement:
2523 mutex_lock(&kvm->lock);
2524 kvm->created_vcpus--;
2525 mutex_unlock(&kvm->lock);
2526 return r;
2529 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2531 if (sigset) {
2532 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2533 vcpu->sigset_active = 1;
2534 vcpu->sigset = *sigset;
2535 } else
2536 vcpu->sigset_active = 0;
2537 return 0;
2540 static long kvm_vcpu_ioctl(struct file *filp,
2541 unsigned int ioctl, unsigned long arg)
2543 struct kvm_vcpu *vcpu = filp->private_data;
2544 void __user *argp = (void __user *)arg;
2545 int r;
2546 struct kvm_fpu *fpu = NULL;
2547 struct kvm_sregs *kvm_sregs = NULL;
2549 if (vcpu->kvm->mm != current->mm)
2550 return -EIO;
2552 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2553 return -EINVAL;
2556 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2557 * execution; mutex_lock() would break them.
2559 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2560 if (r != -ENOIOCTLCMD)
2561 return r;
2563 if (mutex_lock_killable(&vcpu->mutex))
2564 return -EINTR;
2565 switch (ioctl) {
2566 case KVM_RUN: {
2567 struct pid *oldpid;
2568 r = -EINVAL;
2569 if (arg)
2570 goto out;
2571 oldpid = rcu_access_pointer(vcpu->pid);
2572 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2573 /* The thread running this VCPU changed. */
2574 struct pid *newpid;
2576 r = kvm_arch_vcpu_run_pid_change(vcpu);
2577 if (r)
2578 break;
2580 newpid = get_task_pid(current, PIDTYPE_PID);
2581 rcu_assign_pointer(vcpu->pid, newpid);
2582 if (oldpid)
2583 synchronize_rcu();
2584 put_pid(oldpid);
2586 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2587 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2588 break;
2590 case KVM_GET_REGS: {
2591 struct kvm_regs *kvm_regs;
2593 r = -ENOMEM;
2594 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2595 if (!kvm_regs)
2596 goto out;
2597 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2598 if (r)
2599 goto out_free1;
2600 r = -EFAULT;
2601 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2602 goto out_free1;
2603 r = 0;
2604 out_free1:
2605 kfree(kvm_regs);
2606 break;
2608 case KVM_SET_REGS: {
2609 struct kvm_regs *kvm_regs;
2611 r = -ENOMEM;
2612 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2613 if (IS_ERR(kvm_regs)) {
2614 r = PTR_ERR(kvm_regs);
2615 goto out;
2617 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2618 kfree(kvm_regs);
2619 break;
2621 case KVM_GET_SREGS: {
2622 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2623 r = -ENOMEM;
2624 if (!kvm_sregs)
2625 goto out;
2626 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2627 if (r)
2628 goto out;
2629 r = -EFAULT;
2630 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2631 goto out;
2632 r = 0;
2633 break;
2635 case KVM_SET_SREGS: {
2636 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2637 if (IS_ERR(kvm_sregs)) {
2638 r = PTR_ERR(kvm_sregs);
2639 kvm_sregs = NULL;
2640 goto out;
2642 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2643 break;
2645 case KVM_GET_MP_STATE: {
2646 struct kvm_mp_state mp_state;
2648 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2649 if (r)
2650 goto out;
2651 r = -EFAULT;
2652 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2653 goto out;
2654 r = 0;
2655 break;
2657 case KVM_SET_MP_STATE: {
2658 struct kvm_mp_state mp_state;
2660 r = -EFAULT;
2661 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2662 goto out;
2663 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2664 break;
2666 case KVM_TRANSLATE: {
2667 struct kvm_translation tr;
2669 r = -EFAULT;
2670 if (copy_from_user(&tr, argp, sizeof(tr)))
2671 goto out;
2672 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2673 if (r)
2674 goto out;
2675 r = -EFAULT;
2676 if (copy_to_user(argp, &tr, sizeof(tr)))
2677 goto out;
2678 r = 0;
2679 break;
2681 case KVM_SET_GUEST_DEBUG: {
2682 struct kvm_guest_debug dbg;
2684 r = -EFAULT;
2685 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2686 goto out;
2687 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2688 break;
2690 case KVM_SET_SIGNAL_MASK: {
2691 struct kvm_signal_mask __user *sigmask_arg = argp;
2692 struct kvm_signal_mask kvm_sigmask;
2693 sigset_t sigset, *p;
2695 p = NULL;
2696 if (argp) {
2697 r = -EFAULT;
2698 if (copy_from_user(&kvm_sigmask, argp,
2699 sizeof(kvm_sigmask)))
2700 goto out;
2701 r = -EINVAL;
2702 if (kvm_sigmask.len != sizeof(sigset))
2703 goto out;
2704 r = -EFAULT;
2705 if (copy_from_user(&sigset, sigmask_arg->sigset,
2706 sizeof(sigset)))
2707 goto out;
2708 p = &sigset;
2710 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2711 break;
2713 case KVM_GET_FPU: {
2714 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2715 r = -ENOMEM;
2716 if (!fpu)
2717 goto out;
2718 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2719 if (r)
2720 goto out;
2721 r = -EFAULT;
2722 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2723 goto out;
2724 r = 0;
2725 break;
2727 case KVM_SET_FPU: {
2728 fpu = memdup_user(argp, sizeof(*fpu));
2729 if (IS_ERR(fpu)) {
2730 r = PTR_ERR(fpu);
2731 fpu = NULL;
2732 goto out;
2734 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2735 break;
2737 default:
2738 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2740 out:
2741 mutex_unlock(&vcpu->mutex);
2742 kfree(fpu);
2743 kfree(kvm_sregs);
2744 return r;
2747 #ifdef CONFIG_KVM_COMPAT
2748 static long kvm_vcpu_compat_ioctl(struct file *filp,
2749 unsigned int ioctl, unsigned long arg)
2751 struct kvm_vcpu *vcpu = filp->private_data;
2752 void __user *argp = compat_ptr(arg);
2753 int r;
2755 if (vcpu->kvm->mm != current->mm)
2756 return -EIO;
2758 switch (ioctl) {
2759 case KVM_SET_SIGNAL_MASK: {
2760 struct kvm_signal_mask __user *sigmask_arg = argp;
2761 struct kvm_signal_mask kvm_sigmask;
2762 sigset_t sigset;
2764 if (argp) {
2765 r = -EFAULT;
2766 if (copy_from_user(&kvm_sigmask, argp,
2767 sizeof(kvm_sigmask)))
2768 goto out;
2769 r = -EINVAL;
2770 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2771 goto out;
2772 r = -EFAULT;
2773 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2774 goto out;
2775 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2776 } else
2777 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2778 break;
2780 default:
2781 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2784 out:
2785 return r;
2787 #endif
2789 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2790 int (*accessor)(struct kvm_device *dev,
2791 struct kvm_device_attr *attr),
2792 unsigned long arg)
2794 struct kvm_device_attr attr;
2796 if (!accessor)
2797 return -EPERM;
2799 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2800 return -EFAULT;
2802 return accessor(dev, &attr);
2805 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2806 unsigned long arg)
2808 struct kvm_device *dev = filp->private_data;
2810 switch (ioctl) {
2811 case KVM_SET_DEVICE_ATTR:
2812 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2813 case KVM_GET_DEVICE_ATTR:
2814 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2815 case KVM_HAS_DEVICE_ATTR:
2816 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2817 default:
2818 if (dev->ops->ioctl)
2819 return dev->ops->ioctl(dev, ioctl, arg);
2821 return -ENOTTY;
2825 static int kvm_device_release(struct inode *inode, struct file *filp)
2827 struct kvm_device *dev = filp->private_data;
2828 struct kvm *kvm = dev->kvm;
2830 kvm_put_kvm(kvm);
2831 return 0;
2834 static const struct file_operations kvm_device_fops = {
2835 .unlocked_ioctl = kvm_device_ioctl,
2836 .release = kvm_device_release,
2837 KVM_COMPAT(kvm_device_ioctl),
2840 struct kvm_device *kvm_device_from_filp(struct file *filp)
2842 if (filp->f_op != &kvm_device_fops)
2843 return NULL;
2845 return filp->private_data;
2848 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2849 #ifdef CONFIG_KVM_MPIC
2850 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2851 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2852 #endif
2855 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2857 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2858 return -ENOSPC;
2860 if (kvm_device_ops_table[type] != NULL)
2861 return -EEXIST;
2863 kvm_device_ops_table[type] = ops;
2864 return 0;
2867 void kvm_unregister_device_ops(u32 type)
2869 if (kvm_device_ops_table[type] != NULL)
2870 kvm_device_ops_table[type] = NULL;
2873 static int kvm_ioctl_create_device(struct kvm *kvm,
2874 struct kvm_create_device *cd)
2876 struct kvm_device_ops *ops = NULL;
2877 struct kvm_device *dev;
2878 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2879 int ret;
2881 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2882 return -ENODEV;
2884 ops = kvm_device_ops_table[cd->type];
2885 if (ops == NULL)
2886 return -ENODEV;
2888 if (test)
2889 return 0;
2891 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2892 if (!dev)
2893 return -ENOMEM;
2895 dev->ops = ops;
2896 dev->kvm = kvm;
2898 mutex_lock(&kvm->lock);
2899 ret = ops->create(dev, cd->type);
2900 if (ret < 0) {
2901 mutex_unlock(&kvm->lock);
2902 kfree(dev);
2903 return ret;
2905 list_add(&dev->vm_node, &kvm->devices);
2906 mutex_unlock(&kvm->lock);
2908 if (ops->init)
2909 ops->init(dev);
2911 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2912 if (ret < 0) {
2913 mutex_lock(&kvm->lock);
2914 list_del(&dev->vm_node);
2915 mutex_unlock(&kvm->lock);
2916 ops->destroy(dev);
2917 return ret;
2920 kvm_get_kvm(kvm);
2921 cd->fd = ret;
2922 return 0;
2925 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2927 switch (arg) {
2928 case KVM_CAP_USER_MEMORY:
2929 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2930 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2931 case KVM_CAP_INTERNAL_ERROR_DATA:
2932 #ifdef CONFIG_HAVE_KVM_MSI
2933 case KVM_CAP_SIGNAL_MSI:
2934 #endif
2935 #ifdef CONFIG_HAVE_KVM_IRQFD
2936 case KVM_CAP_IRQFD:
2937 case KVM_CAP_IRQFD_RESAMPLE:
2938 #endif
2939 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2940 case KVM_CAP_CHECK_EXTENSION_VM:
2941 return 1;
2942 #ifdef CONFIG_KVM_MMIO
2943 case KVM_CAP_COALESCED_MMIO:
2944 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2945 #endif
2946 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2947 case KVM_CAP_IRQ_ROUTING:
2948 return KVM_MAX_IRQ_ROUTES;
2949 #endif
2950 #if KVM_ADDRESS_SPACE_NUM > 1
2951 case KVM_CAP_MULTI_ADDRESS_SPACE:
2952 return KVM_ADDRESS_SPACE_NUM;
2953 #endif
2954 case KVM_CAP_MAX_VCPU_ID:
2955 return KVM_MAX_VCPU_ID;
2956 default:
2957 break;
2959 return kvm_vm_ioctl_check_extension(kvm, arg);
2962 static long kvm_vm_ioctl(struct file *filp,
2963 unsigned int ioctl, unsigned long arg)
2965 struct kvm *kvm = filp->private_data;
2966 void __user *argp = (void __user *)arg;
2967 int r;
2969 if (kvm->mm != current->mm)
2970 return -EIO;
2971 switch (ioctl) {
2972 case KVM_CREATE_VCPU:
2973 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2974 break;
2975 case KVM_SET_USER_MEMORY_REGION: {
2976 struct kvm_userspace_memory_region kvm_userspace_mem;
2978 r = -EFAULT;
2979 if (copy_from_user(&kvm_userspace_mem, argp,
2980 sizeof(kvm_userspace_mem)))
2981 goto out;
2983 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2984 break;
2986 case KVM_GET_DIRTY_LOG: {
2987 struct kvm_dirty_log log;
2989 r = -EFAULT;
2990 if (copy_from_user(&log, argp, sizeof(log)))
2991 goto out;
2992 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2993 break;
2995 #ifdef CONFIG_KVM_MMIO
2996 case KVM_REGISTER_COALESCED_MMIO: {
2997 struct kvm_coalesced_mmio_zone zone;
2999 r = -EFAULT;
3000 if (copy_from_user(&zone, argp, sizeof(zone)))
3001 goto out;
3002 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3003 break;
3005 case KVM_UNREGISTER_COALESCED_MMIO: {
3006 struct kvm_coalesced_mmio_zone zone;
3008 r = -EFAULT;
3009 if (copy_from_user(&zone, argp, sizeof(zone)))
3010 goto out;
3011 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3012 break;
3014 #endif
3015 case KVM_IRQFD: {
3016 struct kvm_irqfd data;
3018 r = -EFAULT;
3019 if (copy_from_user(&data, argp, sizeof(data)))
3020 goto out;
3021 r = kvm_irqfd(kvm, &data);
3022 break;
3024 case KVM_IOEVENTFD: {
3025 struct kvm_ioeventfd data;
3027 r = -EFAULT;
3028 if (copy_from_user(&data, argp, sizeof(data)))
3029 goto out;
3030 r = kvm_ioeventfd(kvm, &data);
3031 break;
3033 #ifdef CONFIG_HAVE_KVM_MSI
3034 case KVM_SIGNAL_MSI: {
3035 struct kvm_msi msi;
3037 r = -EFAULT;
3038 if (copy_from_user(&msi, argp, sizeof(msi)))
3039 goto out;
3040 r = kvm_send_userspace_msi(kvm, &msi);
3041 break;
3043 #endif
3044 #ifdef __KVM_HAVE_IRQ_LINE
3045 case KVM_IRQ_LINE_STATUS:
3046 case KVM_IRQ_LINE: {
3047 struct kvm_irq_level irq_event;
3049 r = -EFAULT;
3050 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3051 goto out;
3053 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3054 ioctl == KVM_IRQ_LINE_STATUS);
3055 if (r)
3056 goto out;
3058 r = -EFAULT;
3059 if (ioctl == KVM_IRQ_LINE_STATUS) {
3060 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3061 goto out;
3064 r = 0;
3065 break;
3067 #endif
3068 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3069 case KVM_SET_GSI_ROUTING: {
3070 struct kvm_irq_routing routing;
3071 struct kvm_irq_routing __user *urouting;
3072 struct kvm_irq_routing_entry *entries = NULL;
3074 r = -EFAULT;
3075 if (copy_from_user(&routing, argp, sizeof(routing)))
3076 goto out;
3077 r = -EINVAL;
3078 if (!kvm_arch_can_set_irq_routing(kvm))
3079 goto out;
3080 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3081 goto out;
3082 if (routing.flags)
3083 goto out;
3084 if (routing.nr) {
3085 r = -ENOMEM;
3086 entries = vmalloc(array_size(sizeof(*entries),
3087 routing.nr));
3088 if (!entries)
3089 goto out;
3090 r = -EFAULT;
3091 urouting = argp;
3092 if (copy_from_user(entries, urouting->entries,
3093 routing.nr * sizeof(*entries)))
3094 goto out_free_irq_routing;
3096 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3097 routing.flags);
3098 out_free_irq_routing:
3099 vfree(entries);
3100 break;
3102 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3103 case KVM_CREATE_DEVICE: {
3104 struct kvm_create_device cd;
3106 r = -EFAULT;
3107 if (copy_from_user(&cd, argp, sizeof(cd)))
3108 goto out;
3110 r = kvm_ioctl_create_device(kvm, &cd);
3111 if (r)
3112 goto out;
3114 r = -EFAULT;
3115 if (copy_to_user(argp, &cd, sizeof(cd)))
3116 goto out;
3118 r = 0;
3119 break;
3121 case KVM_CHECK_EXTENSION:
3122 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3123 break;
3124 default:
3125 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3127 out:
3128 return r;
3131 #ifdef CONFIG_KVM_COMPAT
3132 struct compat_kvm_dirty_log {
3133 __u32 slot;
3134 __u32 padding1;
3135 union {
3136 compat_uptr_t dirty_bitmap; /* one bit per page */
3137 __u64 padding2;
3141 static long kvm_vm_compat_ioctl(struct file *filp,
3142 unsigned int ioctl, unsigned long arg)
3144 struct kvm *kvm = filp->private_data;
3145 int r;
3147 if (kvm->mm != current->mm)
3148 return -EIO;
3149 switch (ioctl) {
3150 case KVM_GET_DIRTY_LOG: {
3151 struct compat_kvm_dirty_log compat_log;
3152 struct kvm_dirty_log log;
3154 if (copy_from_user(&compat_log, (void __user *)arg,
3155 sizeof(compat_log)))
3156 return -EFAULT;
3157 log.slot = compat_log.slot;
3158 log.padding1 = compat_log.padding1;
3159 log.padding2 = compat_log.padding2;
3160 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3162 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3163 break;
3165 default:
3166 r = kvm_vm_ioctl(filp, ioctl, arg);
3168 return r;
3170 #endif
3172 static struct file_operations kvm_vm_fops = {
3173 .release = kvm_vm_release,
3174 .unlocked_ioctl = kvm_vm_ioctl,
3175 .llseek = noop_llseek,
3176 KVM_COMPAT(kvm_vm_compat_ioctl),
3179 static int kvm_dev_ioctl_create_vm(unsigned long type)
3181 int r;
3182 struct kvm *kvm;
3183 struct file *file;
3185 kvm = kvm_create_vm(type);
3186 if (IS_ERR(kvm))
3187 return PTR_ERR(kvm);
3188 #ifdef CONFIG_KVM_MMIO
3189 r = kvm_coalesced_mmio_init(kvm);
3190 if (r < 0)
3191 goto put_kvm;
3192 #endif
3193 r = get_unused_fd_flags(O_CLOEXEC);
3194 if (r < 0)
3195 goto put_kvm;
3197 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3198 if (IS_ERR(file)) {
3199 put_unused_fd(r);
3200 r = PTR_ERR(file);
3201 goto put_kvm;
3205 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3206 * already set, with ->release() being kvm_vm_release(). In error
3207 * cases it will be called by the final fput(file) and will take
3208 * care of doing kvm_put_kvm(kvm).
3210 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3211 put_unused_fd(r);
3212 fput(file);
3213 return -ENOMEM;
3215 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3217 fd_install(r, file);
3218 return r;
3220 put_kvm:
3221 kvm_put_kvm(kvm);
3222 return r;
3225 static long kvm_dev_ioctl(struct file *filp,
3226 unsigned int ioctl, unsigned long arg)
3228 long r = -EINVAL;
3230 switch (ioctl) {
3231 case KVM_GET_API_VERSION:
3232 if (arg)
3233 goto out;
3234 r = KVM_API_VERSION;
3235 break;
3236 case KVM_CREATE_VM:
3237 r = kvm_dev_ioctl_create_vm(arg);
3238 break;
3239 case KVM_CHECK_EXTENSION:
3240 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3241 break;
3242 case KVM_GET_VCPU_MMAP_SIZE:
3243 if (arg)
3244 goto out;
3245 r = PAGE_SIZE; /* struct kvm_run */
3246 #ifdef CONFIG_X86
3247 r += PAGE_SIZE; /* pio data page */
3248 #endif
3249 #ifdef CONFIG_KVM_MMIO
3250 r += PAGE_SIZE; /* coalesced mmio ring page */
3251 #endif
3252 break;
3253 case KVM_TRACE_ENABLE:
3254 case KVM_TRACE_PAUSE:
3255 case KVM_TRACE_DISABLE:
3256 r = -EOPNOTSUPP;
3257 break;
3258 default:
3259 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3261 out:
3262 return r;
3265 static struct file_operations kvm_chardev_ops = {
3266 .unlocked_ioctl = kvm_dev_ioctl,
3267 .llseek = noop_llseek,
3268 KVM_COMPAT(kvm_dev_ioctl),
3271 static struct miscdevice kvm_dev = {
3272 KVM_MINOR,
3273 "kvm",
3274 &kvm_chardev_ops,
3277 static void hardware_enable_nolock(void *junk)
3279 int cpu = raw_smp_processor_id();
3280 int r;
3282 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3283 return;
3285 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3287 r = kvm_arch_hardware_enable();
3289 if (r) {
3290 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3291 atomic_inc(&hardware_enable_failed);
3292 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3296 static int kvm_starting_cpu(unsigned int cpu)
3298 raw_spin_lock(&kvm_count_lock);
3299 if (kvm_usage_count)
3300 hardware_enable_nolock(NULL);
3301 raw_spin_unlock(&kvm_count_lock);
3302 return 0;
3305 static void hardware_disable_nolock(void *junk)
3307 int cpu = raw_smp_processor_id();
3309 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3310 return;
3311 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3312 kvm_arch_hardware_disable();
3315 static int kvm_dying_cpu(unsigned int cpu)
3317 raw_spin_lock(&kvm_count_lock);
3318 if (kvm_usage_count)
3319 hardware_disable_nolock(NULL);
3320 raw_spin_unlock(&kvm_count_lock);
3321 return 0;
3324 static void hardware_disable_all_nolock(void)
3326 BUG_ON(!kvm_usage_count);
3328 kvm_usage_count--;
3329 if (!kvm_usage_count)
3330 on_each_cpu(hardware_disable_nolock, NULL, 1);
3333 static void hardware_disable_all(void)
3335 raw_spin_lock(&kvm_count_lock);
3336 hardware_disable_all_nolock();
3337 raw_spin_unlock(&kvm_count_lock);
3340 static int hardware_enable_all(void)
3342 int r = 0;
3344 raw_spin_lock(&kvm_count_lock);
3346 kvm_usage_count++;
3347 if (kvm_usage_count == 1) {
3348 atomic_set(&hardware_enable_failed, 0);
3349 on_each_cpu(hardware_enable_nolock, NULL, 1);
3351 if (atomic_read(&hardware_enable_failed)) {
3352 hardware_disable_all_nolock();
3353 r = -EBUSY;
3357 raw_spin_unlock(&kvm_count_lock);
3359 return r;
3362 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3363 void *v)
3366 * Some (well, at least mine) BIOSes hang on reboot if
3367 * in vmx root mode.
3369 * And Intel TXT required VMX off for all cpu when system shutdown.
3371 pr_info("kvm: exiting hardware virtualization\n");
3372 kvm_rebooting = true;
3373 on_each_cpu(hardware_disable_nolock, NULL, 1);
3374 return NOTIFY_OK;
3377 static struct notifier_block kvm_reboot_notifier = {
3378 .notifier_call = kvm_reboot,
3379 .priority = 0,
3382 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3384 int i;
3386 for (i = 0; i < bus->dev_count; i++) {
3387 struct kvm_io_device *pos = bus->range[i].dev;
3389 kvm_iodevice_destructor(pos);
3391 kfree(bus);
3394 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3395 const struct kvm_io_range *r2)
3397 gpa_t addr1 = r1->addr;
3398 gpa_t addr2 = r2->addr;
3400 if (addr1 < addr2)
3401 return -1;
3403 /* If r2->len == 0, match the exact address. If r2->len != 0,
3404 * accept any overlapping write. Any order is acceptable for
3405 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3406 * we process all of them.
3408 if (r2->len) {
3409 addr1 += r1->len;
3410 addr2 += r2->len;
3413 if (addr1 > addr2)
3414 return 1;
3416 return 0;
3419 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3421 return kvm_io_bus_cmp(p1, p2);
3424 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3425 gpa_t addr, int len)
3427 struct kvm_io_range *range, key;
3428 int off;
3430 key = (struct kvm_io_range) {
3431 .addr = addr,
3432 .len = len,
3435 range = bsearch(&key, bus->range, bus->dev_count,
3436 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3437 if (range == NULL)
3438 return -ENOENT;
3440 off = range - bus->range;
3442 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3443 off--;
3445 return off;
3448 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3449 struct kvm_io_range *range, const void *val)
3451 int idx;
3453 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3454 if (idx < 0)
3455 return -EOPNOTSUPP;
3457 while (idx < bus->dev_count &&
3458 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3459 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3460 range->len, val))
3461 return idx;
3462 idx++;
3465 return -EOPNOTSUPP;
3468 /* kvm_io_bus_write - called under kvm->slots_lock */
3469 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3470 int len, const void *val)
3472 struct kvm_io_bus *bus;
3473 struct kvm_io_range range;
3474 int r;
3476 range = (struct kvm_io_range) {
3477 .addr = addr,
3478 .len = len,
3481 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3482 if (!bus)
3483 return -ENOMEM;
3484 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3485 return r < 0 ? r : 0;
3488 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3489 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3490 gpa_t addr, int len, const void *val, long cookie)
3492 struct kvm_io_bus *bus;
3493 struct kvm_io_range range;
3495 range = (struct kvm_io_range) {
3496 .addr = addr,
3497 .len = len,
3500 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3501 if (!bus)
3502 return -ENOMEM;
3504 /* First try the device referenced by cookie. */
3505 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3506 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3507 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3508 val))
3509 return cookie;
3512 * cookie contained garbage; fall back to search and return the
3513 * correct cookie value.
3515 return __kvm_io_bus_write(vcpu, bus, &range, val);
3518 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3519 struct kvm_io_range *range, void *val)
3521 int idx;
3523 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3524 if (idx < 0)
3525 return -EOPNOTSUPP;
3527 while (idx < bus->dev_count &&
3528 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3529 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3530 range->len, val))
3531 return idx;
3532 idx++;
3535 return -EOPNOTSUPP;
3537 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3539 /* kvm_io_bus_read - called under kvm->slots_lock */
3540 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3541 int len, void *val)
3543 struct kvm_io_bus *bus;
3544 struct kvm_io_range range;
3545 int r;
3547 range = (struct kvm_io_range) {
3548 .addr = addr,
3549 .len = len,
3552 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3553 if (!bus)
3554 return -ENOMEM;
3555 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3556 return r < 0 ? r : 0;
3560 /* Caller must hold slots_lock. */
3561 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3562 int len, struct kvm_io_device *dev)
3564 int i;
3565 struct kvm_io_bus *new_bus, *bus;
3566 struct kvm_io_range range;
3568 bus = kvm_get_bus(kvm, bus_idx);
3569 if (!bus)
3570 return -ENOMEM;
3572 /* exclude ioeventfd which is limited by maximum fd */
3573 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3574 return -ENOSPC;
3576 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3577 sizeof(struct kvm_io_range)), GFP_KERNEL);
3578 if (!new_bus)
3579 return -ENOMEM;
3581 range = (struct kvm_io_range) {
3582 .addr = addr,
3583 .len = len,
3584 .dev = dev,
3587 for (i = 0; i < bus->dev_count; i++)
3588 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3589 break;
3591 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3592 new_bus->dev_count++;
3593 new_bus->range[i] = range;
3594 memcpy(new_bus->range + i + 1, bus->range + i,
3595 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3596 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3597 synchronize_srcu_expedited(&kvm->srcu);
3598 kfree(bus);
3600 return 0;
3603 /* Caller must hold slots_lock. */
3604 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3605 struct kvm_io_device *dev)
3607 int i;
3608 struct kvm_io_bus *new_bus, *bus;
3610 bus = kvm_get_bus(kvm, bus_idx);
3611 if (!bus)
3612 return;
3614 for (i = 0; i < bus->dev_count; i++)
3615 if (bus->range[i].dev == dev) {
3616 break;
3619 if (i == bus->dev_count)
3620 return;
3622 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3623 sizeof(struct kvm_io_range)), GFP_KERNEL);
3624 if (!new_bus) {
3625 pr_err("kvm: failed to shrink bus, removing it completely\n");
3626 goto broken;
3629 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3630 new_bus->dev_count--;
3631 memcpy(new_bus->range + i, bus->range + i + 1,
3632 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3634 broken:
3635 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3636 synchronize_srcu_expedited(&kvm->srcu);
3637 kfree(bus);
3638 return;
3641 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3642 gpa_t addr)
3644 struct kvm_io_bus *bus;
3645 int dev_idx, srcu_idx;
3646 struct kvm_io_device *iodev = NULL;
3648 srcu_idx = srcu_read_lock(&kvm->srcu);
3650 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3651 if (!bus)
3652 goto out_unlock;
3654 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3655 if (dev_idx < 0)
3656 goto out_unlock;
3658 iodev = bus->range[dev_idx].dev;
3660 out_unlock:
3661 srcu_read_unlock(&kvm->srcu, srcu_idx);
3663 return iodev;
3665 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3667 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3668 int (*get)(void *, u64 *), int (*set)(void *, u64),
3669 const char *fmt)
3671 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3672 inode->i_private;
3674 /* The debugfs files are a reference to the kvm struct which
3675 * is still valid when kvm_destroy_vm is called.
3676 * To avoid the race between open and the removal of the debugfs
3677 * directory we test against the users count.
3679 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3680 return -ENOENT;
3682 if (simple_attr_open(inode, file, get, set, fmt)) {
3683 kvm_put_kvm(stat_data->kvm);
3684 return -ENOMEM;
3687 return 0;
3690 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3692 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3693 inode->i_private;
3695 simple_attr_release(inode, file);
3696 kvm_put_kvm(stat_data->kvm);
3698 return 0;
3701 static int vm_stat_get_per_vm(void *data, u64 *val)
3703 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3705 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3707 return 0;
3710 static int vm_stat_clear_per_vm(void *data, u64 val)
3712 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3714 if (val)
3715 return -EINVAL;
3717 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3719 return 0;
3722 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3724 __simple_attr_check_format("%llu\n", 0ull);
3725 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3726 vm_stat_clear_per_vm, "%llu\n");
3729 static const struct file_operations vm_stat_get_per_vm_fops = {
3730 .owner = THIS_MODULE,
3731 .open = vm_stat_get_per_vm_open,
3732 .release = kvm_debugfs_release,
3733 .read = simple_attr_read,
3734 .write = simple_attr_write,
3735 .llseek = no_llseek,
3738 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3740 int i;
3741 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3742 struct kvm_vcpu *vcpu;
3744 *val = 0;
3746 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3747 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3749 return 0;
3752 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3754 int i;
3755 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3756 struct kvm_vcpu *vcpu;
3758 if (val)
3759 return -EINVAL;
3761 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3762 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3764 return 0;
3767 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3769 __simple_attr_check_format("%llu\n", 0ull);
3770 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3771 vcpu_stat_clear_per_vm, "%llu\n");
3774 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3775 .owner = THIS_MODULE,
3776 .open = vcpu_stat_get_per_vm_open,
3777 .release = kvm_debugfs_release,
3778 .read = simple_attr_read,
3779 .write = simple_attr_write,
3780 .llseek = no_llseek,
3783 static const struct file_operations *stat_fops_per_vm[] = {
3784 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3785 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3788 static int vm_stat_get(void *_offset, u64 *val)
3790 unsigned offset = (long)_offset;
3791 struct kvm *kvm;
3792 struct kvm_stat_data stat_tmp = {.offset = offset};
3793 u64 tmp_val;
3795 *val = 0;
3796 spin_lock(&kvm_lock);
3797 list_for_each_entry(kvm, &vm_list, vm_list) {
3798 stat_tmp.kvm = kvm;
3799 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3800 *val += tmp_val;
3802 spin_unlock(&kvm_lock);
3803 return 0;
3806 static int vm_stat_clear(void *_offset, u64 val)
3808 unsigned offset = (long)_offset;
3809 struct kvm *kvm;
3810 struct kvm_stat_data stat_tmp = {.offset = offset};
3812 if (val)
3813 return -EINVAL;
3815 spin_lock(&kvm_lock);
3816 list_for_each_entry(kvm, &vm_list, vm_list) {
3817 stat_tmp.kvm = kvm;
3818 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3820 spin_unlock(&kvm_lock);
3822 return 0;
3825 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3827 static int vcpu_stat_get(void *_offset, u64 *val)
3829 unsigned offset = (long)_offset;
3830 struct kvm *kvm;
3831 struct kvm_stat_data stat_tmp = {.offset = offset};
3832 u64 tmp_val;
3834 *val = 0;
3835 spin_lock(&kvm_lock);
3836 list_for_each_entry(kvm, &vm_list, vm_list) {
3837 stat_tmp.kvm = kvm;
3838 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3839 *val += tmp_val;
3841 spin_unlock(&kvm_lock);
3842 return 0;
3845 static int vcpu_stat_clear(void *_offset, u64 val)
3847 unsigned offset = (long)_offset;
3848 struct kvm *kvm;
3849 struct kvm_stat_data stat_tmp = {.offset = offset};
3851 if (val)
3852 return -EINVAL;
3854 spin_lock(&kvm_lock);
3855 list_for_each_entry(kvm, &vm_list, vm_list) {
3856 stat_tmp.kvm = kvm;
3857 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3859 spin_unlock(&kvm_lock);
3861 return 0;
3864 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3865 "%llu\n");
3867 static const struct file_operations *stat_fops[] = {
3868 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3869 [KVM_STAT_VM] = &vm_stat_fops,
3872 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3874 struct kobj_uevent_env *env;
3875 unsigned long long created, active;
3877 if (!kvm_dev.this_device || !kvm)
3878 return;
3880 spin_lock(&kvm_lock);
3881 if (type == KVM_EVENT_CREATE_VM) {
3882 kvm_createvm_count++;
3883 kvm_active_vms++;
3884 } else if (type == KVM_EVENT_DESTROY_VM) {
3885 kvm_active_vms--;
3887 created = kvm_createvm_count;
3888 active = kvm_active_vms;
3889 spin_unlock(&kvm_lock);
3891 env = kzalloc(sizeof(*env), GFP_KERNEL);
3892 if (!env)
3893 return;
3895 add_uevent_var(env, "CREATED=%llu", created);
3896 add_uevent_var(env, "COUNT=%llu", active);
3898 if (type == KVM_EVENT_CREATE_VM) {
3899 add_uevent_var(env, "EVENT=create");
3900 kvm->userspace_pid = task_pid_nr(current);
3901 } else if (type == KVM_EVENT_DESTROY_VM) {
3902 add_uevent_var(env, "EVENT=destroy");
3904 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3906 if (kvm->debugfs_dentry) {
3907 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3909 if (p) {
3910 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3911 if (!IS_ERR(tmp))
3912 add_uevent_var(env, "STATS_PATH=%s", tmp);
3913 kfree(p);
3916 /* no need for checks, since we are adding at most only 5 keys */
3917 env->envp[env->envp_idx++] = NULL;
3918 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3919 kfree(env);
3922 static void kvm_init_debug(void)
3924 struct kvm_stats_debugfs_item *p;
3926 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3928 kvm_debugfs_num_entries = 0;
3929 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3930 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3931 (void *)(long)p->offset,
3932 stat_fops[p->kind]);
3936 static int kvm_suspend(void)
3938 if (kvm_usage_count)
3939 hardware_disable_nolock(NULL);
3940 return 0;
3943 static void kvm_resume(void)
3945 if (kvm_usage_count) {
3946 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3947 hardware_enable_nolock(NULL);
3951 static struct syscore_ops kvm_syscore_ops = {
3952 .suspend = kvm_suspend,
3953 .resume = kvm_resume,
3956 static inline
3957 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3959 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3962 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3964 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3966 if (vcpu->preempted)
3967 vcpu->preempted = false;
3969 kvm_arch_sched_in(vcpu, cpu);
3971 kvm_arch_vcpu_load(vcpu, cpu);
3974 static void kvm_sched_out(struct preempt_notifier *pn,
3975 struct task_struct *next)
3977 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3979 if (current->state == TASK_RUNNING)
3980 vcpu->preempted = true;
3981 kvm_arch_vcpu_put(vcpu);
3984 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3985 struct module *module)
3987 int r;
3988 int cpu;
3990 r = kvm_arch_init(opaque);
3991 if (r)
3992 goto out_fail;
3995 * kvm_arch_init makes sure there's at most one caller
3996 * for architectures that support multiple implementations,
3997 * like intel and amd on x86.
3998 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3999 * conflicts in case kvm is already setup for another implementation.
4001 r = kvm_irqfd_init();
4002 if (r)
4003 goto out_irqfd;
4005 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4006 r = -ENOMEM;
4007 goto out_free_0;
4010 r = kvm_arch_hardware_setup();
4011 if (r < 0)
4012 goto out_free_0a;
4014 for_each_online_cpu(cpu) {
4015 smp_call_function_single(cpu,
4016 kvm_arch_check_processor_compat,
4017 &r, 1);
4018 if (r < 0)
4019 goto out_free_1;
4022 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4023 kvm_starting_cpu, kvm_dying_cpu);
4024 if (r)
4025 goto out_free_2;
4026 register_reboot_notifier(&kvm_reboot_notifier);
4028 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4029 if (!vcpu_align)
4030 vcpu_align = __alignof__(struct kvm_vcpu);
4031 kvm_vcpu_cache =
4032 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4033 SLAB_ACCOUNT,
4034 offsetof(struct kvm_vcpu, arch),
4035 sizeof_field(struct kvm_vcpu, arch),
4036 NULL);
4037 if (!kvm_vcpu_cache) {
4038 r = -ENOMEM;
4039 goto out_free_3;
4042 r = kvm_async_pf_init();
4043 if (r)
4044 goto out_free;
4046 kvm_chardev_ops.owner = module;
4047 kvm_vm_fops.owner = module;
4048 kvm_vcpu_fops.owner = module;
4050 r = misc_register(&kvm_dev);
4051 if (r) {
4052 pr_err("kvm: misc device register failed\n");
4053 goto out_unreg;
4056 register_syscore_ops(&kvm_syscore_ops);
4058 kvm_preempt_ops.sched_in = kvm_sched_in;
4059 kvm_preempt_ops.sched_out = kvm_sched_out;
4061 kvm_init_debug();
4063 r = kvm_vfio_ops_init();
4064 WARN_ON(r);
4066 return 0;
4068 out_unreg:
4069 kvm_async_pf_deinit();
4070 out_free:
4071 kmem_cache_destroy(kvm_vcpu_cache);
4072 out_free_3:
4073 unregister_reboot_notifier(&kvm_reboot_notifier);
4074 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4075 out_free_2:
4076 out_free_1:
4077 kvm_arch_hardware_unsetup();
4078 out_free_0a:
4079 free_cpumask_var(cpus_hardware_enabled);
4080 out_free_0:
4081 kvm_irqfd_exit();
4082 out_irqfd:
4083 kvm_arch_exit();
4084 out_fail:
4085 return r;
4087 EXPORT_SYMBOL_GPL(kvm_init);
4089 void kvm_exit(void)
4091 debugfs_remove_recursive(kvm_debugfs_dir);
4092 misc_deregister(&kvm_dev);
4093 kmem_cache_destroy(kvm_vcpu_cache);
4094 kvm_async_pf_deinit();
4095 unregister_syscore_ops(&kvm_syscore_ops);
4096 unregister_reboot_notifier(&kvm_reboot_notifier);
4097 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4098 on_each_cpu(hardware_disable_nolock, NULL, 1);
4099 kvm_arch_hardware_unsetup();
4100 kvm_arch_exit();
4101 kvm_irqfd_exit();
4102 free_cpumask_var(cpus_hardware_enabled);
4103 kvm_vfio_ops_exit();
4105 EXPORT_SYMBOL_GPL(kvm_exit);