2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
55 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
61 #include "coalesced_mmio.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns
= KVM_HALT_POLL_NS_DEFAULT
;
76 module_param(halt_poll_ns
, uint
, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns
);
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow
= 2;
81 module_param(halt_poll_ns_grow
, uint
, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow
);
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink
;
86 module_param(halt_poll_ns_shrink
, uint
, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink
);
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
95 DEFINE_SPINLOCK(kvm_lock
);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock
);
99 static cpumask_var_t cpus_hardware_enabled
;
100 static int kvm_usage_count
;
101 static atomic_t hardware_enable_failed
;
103 struct kmem_cache
*kvm_vcpu_cache
;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
106 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
108 struct dentry
*kvm_debugfs_dir
;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir
);
111 static int kvm_debugfs_num_entries
;
112 static const struct file_operations
*stat_fops_per_vm
[];
114 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
119 #define KVM_COMPAT(c) .compat_ioctl = (c)
121 static long kvm_no_compat_ioctl(struct file
*file
, unsigned int ioctl
,
122 unsigned long arg
) { return -EINVAL
; }
123 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
128 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
, gfn_t gfn
);
132 __visible
bool kvm_rebooting
;
133 EXPORT_SYMBOL_GPL(kvm_rebooting
);
135 static bool largepages_enabled
= true;
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type
, struct kvm
*kvm
);
140 static unsigned long long kvm_createvm_count
;
141 static unsigned long long kvm_active_vms
;
143 __weak
void kvm_arch_mmu_notifier_invalidate_range(struct kvm
*kvm
,
144 unsigned long start
, unsigned long end
)
148 bool kvm_is_reserved_pfn(kvm_pfn_t pfn
)
151 return PageReserved(pfn_to_page(pfn
));
157 * Switches to specified vcpu, until a matching vcpu_put()
159 void vcpu_load(struct kvm_vcpu
*vcpu
)
162 preempt_notifier_register(&vcpu
->preempt_notifier
);
163 kvm_arch_vcpu_load(vcpu
, cpu
);
166 EXPORT_SYMBOL_GPL(vcpu_load
);
168 void vcpu_put(struct kvm_vcpu
*vcpu
)
171 kvm_arch_vcpu_put(vcpu
);
172 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
175 EXPORT_SYMBOL_GPL(vcpu_put
);
177 /* TODO: merge with kvm_arch_vcpu_should_kick */
178 static bool kvm_request_needs_ipi(struct kvm_vcpu
*vcpu
, unsigned req
)
180 int mode
= kvm_vcpu_exiting_guest_mode(vcpu
);
183 * We need to wait for the VCPU to reenable interrupts and get out of
184 * READING_SHADOW_PAGE_TABLES mode.
186 if (req
& KVM_REQUEST_WAIT
)
187 return mode
!= OUTSIDE_GUEST_MODE
;
190 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 return mode
== IN_GUEST_MODE
;
195 static void ack_flush(void *_completed
)
199 static inline bool kvm_kick_many_cpus(const struct cpumask
*cpus
, bool wait
)
202 cpus
= cpu_online_mask
;
204 if (cpumask_empty(cpus
))
207 smp_call_function_many(cpus
, ack_flush
, NULL
, wait
);
211 bool kvm_make_vcpus_request_mask(struct kvm
*kvm
, unsigned int req
,
212 unsigned long *vcpu_bitmap
, cpumask_var_t tmp
)
215 struct kvm_vcpu
*vcpu
;
220 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
221 if (!test_bit(i
, vcpu_bitmap
))
224 kvm_make_request(req
, vcpu
);
227 if (!(req
& KVM_REQUEST_NO_WAKEUP
) && kvm_vcpu_wake_up(vcpu
))
230 if (tmp
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
231 kvm_request_needs_ipi(vcpu
, req
))
232 __cpumask_set_cpu(cpu
, tmp
);
235 called
= kvm_kick_many_cpus(tmp
, !!(req
& KVM_REQUEST_WAIT
));
241 bool kvm_make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
245 static unsigned long vcpu_bitmap
[BITS_TO_LONGS(KVM_MAX_VCPUS
)]
246 = {[0 ... BITS_TO_LONGS(KVM_MAX_VCPUS
)-1] = ULONG_MAX
};
248 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
250 called
= kvm_make_vcpus_request_mask(kvm
, req
, vcpu_bitmap
, cpus
);
252 free_cpumask_var(cpus
);
256 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
257 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
260 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
261 * kvm_make_all_cpus_request.
263 long dirty_count
= smp_load_acquire(&kvm
->tlbs_dirty
);
266 * We want to publish modifications to the page tables before reading
267 * mode. Pairs with a memory barrier in arch-specific code.
268 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
269 * and smp_mb in walk_shadow_page_lockless_begin/end.
270 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
272 * There is already an smp_mb__after_atomic() before
273 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
276 if (kvm_make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
277 ++kvm
->stat
.remote_tlb_flush
;
278 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs
);
283 void kvm_reload_remote_mmus(struct kvm
*kvm
)
285 kvm_make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
288 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
293 mutex_init(&vcpu
->mutex
);
298 init_swait_queue_head(&vcpu
->wq
);
299 kvm_async_pf_vcpu_init(vcpu
);
302 INIT_LIST_HEAD(&vcpu
->blocked_vcpu_list
);
304 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
309 vcpu
->run
= page_address(page
);
311 kvm_vcpu_set_in_spin_loop(vcpu
, false);
312 kvm_vcpu_set_dy_eligible(vcpu
, false);
313 vcpu
->preempted
= false;
315 r
= kvm_arch_vcpu_init(vcpu
);
321 free_page((unsigned long)vcpu
->run
);
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
327 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
330 * no need for rcu_read_lock as VCPU_RUN is the only place that
331 * will change the vcpu->pid pointer and on uninit all file
332 * descriptors are already gone.
334 put_pid(rcu_dereference_protected(vcpu
->pid
, 1));
335 kvm_arch_vcpu_uninit(vcpu
);
336 free_page((unsigned long)vcpu
->run
);
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
343 return container_of(mn
, struct kvm
, mmu_notifier
);
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
347 struct mm_struct
*mm
,
348 unsigned long address
,
351 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
354 idx
= srcu_read_lock(&kvm
->srcu
);
355 spin_lock(&kvm
->mmu_lock
);
356 kvm
->mmu_notifier_seq
++;
357 kvm_set_spte_hva(kvm
, address
, pte
);
358 spin_unlock(&kvm
->mmu_lock
);
359 srcu_read_unlock(&kvm
->srcu
, idx
);
362 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
363 struct mm_struct
*mm
,
367 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
368 int need_tlb_flush
= 0, idx
;
370 idx
= srcu_read_lock(&kvm
->srcu
);
371 spin_lock(&kvm
->mmu_lock
);
373 * The count increase must become visible at unlock time as no
374 * spte can be established without taking the mmu_lock and
375 * count is also read inside the mmu_lock critical section.
377 kvm
->mmu_notifier_count
++;
378 need_tlb_flush
= kvm_unmap_hva_range(kvm
, start
, end
);
379 need_tlb_flush
|= kvm
->tlbs_dirty
;
380 /* we've to flush the tlb before the pages can be freed */
382 kvm_flush_remote_tlbs(kvm
);
384 spin_unlock(&kvm
->mmu_lock
);
386 kvm_arch_mmu_notifier_invalidate_range(kvm
, start
, end
);
388 srcu_read_unlock(&kvm
->srcu
, idx
);
391 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
392 struct mm_struct
*mm
,
396 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
398 spin_lock(&kvm
->mmu_lock
);
400 * This sequence increase will notify the kvm page fault that
401 * the page that is going to be mapped in the spte could have
404 kvm
->mmu_notifier_seq
++;
407 * The above sequence increase must be visible before the
408 * below count decrease, which is ensured by the smp_wmb above
409 * in conjunction with the smp_rmb in mmu_notifier_retry().
411 kvm
->mmu_notifier_count
--;
412 spin_unlock(&kvm
->mmu_lock
);
414 BUG_ON(kvm
->mmu_notifier_count
< 0);
417 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
418 struct mm_struct
*mm
,
422 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
425 idx
= srcu_read_lock(&kvm
->srcu
);
426 spin_lock(&kvm
->mmu_lock
);
428 young
= kvm_age_hva(kvm
, start
, end
);
430 kvm_flush_remote_tlbs(kvm
);
432 spin_unlock(&kvm
->mmu_lock
);
433 srcu_read_unlock(&kvm
->srcu
, idx
);
438 static int kvm_mmu_notifier_clear_young(struct mmu_notifier
*mn
,
439 struct mm_struct
*mm
,
443 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
446 idx
= srcu_read_lock(&kvm
->srcu
);
447 spin_lock(&kvm
->mmu_lock
);
449 * Even though we do not flush TLB, this will still adversely
450 * affect performance on pre-Haswell Intel EPT, where there is
451 * no EPT Access Bit to clear so that we have to tear down EPT
452 * tables instead. If we find this unacceptable, we can always
453 * add a parameter to kvm_age_hva so that it effectively doesn't
454 * do anything on clear_young.
456 * Also note that currently we never issue secondary TLB flushes
457 * from clear_young, leaving this job up to the regular system
458 * cadence. If we find this inaccurate, we might come up with a
459 * more sophisticated heuristic later.
461 young
= kvm_age_hva(kvm
, start
, end
);
462 spin_unlock(&kvm
->mmu_lock
);
463 srcu_read_unlock(&kvm
->srcu
, idx
);
468 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
469 struct mm_struct
*mm
,
470 unsigned long address
)
472 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
475 idx
= srcu_read_lock(&kvm
->srcu
);
476 spin_lock(&kvm
->mmu_lock
);
477 young
= kvm_test_age_hva(kvm
, address
);
478 spin_unlock(&kvm
->mmu_lock
);
479 srcu_read_unlock(&kvm
->srcu
, idx
);
484 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
485 struct mm_struct
*mm
)
487 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
490 idx
= srcu_read_lock(&kvm
->srcu
);
491 kvm_arch_flush_shadow_all(kvm
);
492 srcu_read_unlock(&kvm
->srcu
, idx
);
495 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
496 .flags
= MMU_INVALIDATE_DOES_NOT_BLOCK
,
497 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
498 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
499 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
500 .clear_young
= kvm_mmu_notifier_clear_young
,
501 .test_young
= kvm_mmu_notifier_test_young
,
502 .change_pte
= kvm_mmu_notifier_change_pte
,
503 .release
= kvm_mmu_notifier_release
,
506 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
508 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
509 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
512 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
514 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
519 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
521 static struct kvm_memslots
*kvm_alloc_memslots(void)
524 struct kvm_memslots
*slots
;
526 slots
= kvzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
530 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
531 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
536 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
538 if (!memslot
->dirty_bitmap
)
541 kvfree(memslot
->dirty_bitmap
);
542 memslot
->dirty_bitmap
= NULL
;
546 * Free any memory in @free but not in @dont.
548 static void kvm_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
549 struct kvm_memory_slot
*dont
)
551 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
552 kvm_destroy_dirty_bitmap(free
);
554 kvm_arch_free_memslot(kvm
, free
, dont
);
559 static void kvm_free_memslots(struct kvm
*kvm
, struct kvm_memslots
*slots
)
561 struct kvm_memory_slot
*memslot
;
566 kvm_for_each_memslot(memslot
, slots
)
567 kvm_free_memslot(kvm
, memslot
, NULL
);
572 static void kvm_destroy_vm_debugfs(struct kvm
*kvm
)
576 if (!kvm
->debugfs_dentry
)
579 debugfs_remove_recursive(kvm
->debugfs_dentry
);
581 if (kvm
->debugfs_stat_data
) {
582 for (i
= 0; i
< kvm_debugfs_num_entries
; i
++)
583 kfree(kvm
->debugfs_stat_data
[i
]);
584 kfree(kvm
->debugfs_stat_data
);
588 static int kvm_create_vm_debugfs(struct kvm
*kvm
, int fd
)
590 char dir_name
[ITOA_MAX_LEN
* 2];
591 struct kvm_stat_data
*stat_data
;
592 struct kvm_stats_debugfs_item
*p
;
594 if (!debugfs_initialized())
597 snprintf(dir_name
, sizeof(dir_name
), "%d-%d", task_pid_nr(current
), fd
);
598 kvm
->debugfs_dentry
= debugfs_create_dir(dir_name
, kvm_debugfs_dir
);
600 kvm
->debugfs_stat_data
= kcalloc(kvm_debugfs_num_entries
,
601 sizeof(*kvm
->debugfs_stat_data
),
603 if (!kvm
->debugfs_stat_data
)
606 for (p
= debugfs_entries
; p
->name
; p
++) {
607 stat_data
= kzalloc(sizeof(*stat_data
), GFP_KERNEL
);
611 stat_data
->kvm
= kvm
;
612 stat_data
->offset
= p
->offset
;
613 kvm
->debugfs_stat_data
[p
- debugfs_entries
] = stat_data
;
614 debugfs_create_file(p
->name
, 0644, kvm
->debugfs_dentry
,
615 stat_data
, stat_fops_per_vm
[p
->kind
]);
620 static struct kvm
*kvm_create_vm(unsigned long type
)
623 struct kvm
*kvm
= kvm_arch_alloc_vm();
626 return ERR_PTR(-ENOMEM
);
628 spin_lock_init(&kvm
->mmu_lock
);
630 kvm
->mm
= current
->mm
;
631 kvm_eventfd_init(kvm
);
632 mutex_init(&kvm
->lock
);
633 mutex_init(&kvm
->irq_lock
);
634 mutex_init(&kvm
->slots_lock
);
635 refcount_set(&kvm
->users_count
, 1);
636 INIT_LIST_HEAD(&kvm
->devices
);
638 r
= kvm_arch_init_vm(kvm
, type
);
640 goto out_err_no_disable
;
642 r
= hardware_enable_all();
644 goto out_err_no_disable
;
646 #ifdef CONFIG_HAVE_KVM_IRQFD
647 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
650 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM
> SHRT_MAX
);
653 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
654 struct kvm_memslots
*slots
= kvm_alloc_memslots();
656 goto out_err_no_srcu
;
658 * Generations must be different for each address space.
659 * Init kvm generation close to the maximum to easily test the
660 * code of handling generation number wrap-around.
662 slots
->generation
= i
* 2 - 150;
663 rcu_assign_pointer(kvm
->memslots
[i
], slots
);
666 if (init_srcu_struct(&kvm
->srcu
))
667 goto out_err_no_srcu
;
668 if (init_srcu_struct(&kvm
->irq_srcu
))
669 goto out_err_no_irq_srcu
;
670 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
671 rcu_assign_pointer(kvm
->buses
[i
],
672 kzalloc(sizeof(struct kvm_io_bus
), GFP_KERNEL
));
677 r
= kvm_init_mmu_notifier(kvm
);
681 spin_lock(&kvm_lock
);
682 list_add(&kvm
->vm_list
, &vm_list
);
683 spin_unlock(&kvm_lock
);
685 preempt_notifier_inc();
690 cleanup_srcu_struct(&kvm
->irq_srcu
);
692 cleanup_srcu_struct(&kvm
->srcu
);
694 hardware_disable_all();
696 refcount_set(&kvm
->users_count
, 0);
697 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
698 kfree(kvm_get_bus(kvm
, i
));
699 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
700 kvm_free_memslots(kvm
, __kvm_memslots(kvm
, i
));
701 kvm_arch_free_vm(kvm
);
706 static void kvm_destroy_devices(struct kvm
*kvm
)
708 struct kvm_device
*dev
, *tmp
;
711 * We do not need to take the kvm->lock here, because nobody else
712 * has a reference to the struct kvm at this point and therefore
713 * cannot access the devices list anyhow.
715 list_for_each_entry_safe(dev
, tmp
, &kvm
->devices
, vm_node
) {
716 list_del(&dev
->vm_node
);
717 dev
->ops
->destroy(dev
);
721 static void kvm_destroy_vm(struct kvm
*kvm
)
724 struct mm_struct
*mm
= kvm
->mm
;
726 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM
, kvm
);
727 kvm_destroy_vm_debugfs(kvm
);
728 kvm_arch_sync_events(kvm
);
729 spin_lock(&kvm_lock
);
730 list_del(&kvm
->vm_list
);
731 spin_unlock(&kvm_lock
);
732 kvm_free_irq_routing(kvm
);
733 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
734 struct kvm_io_bus
*bus
= kvm_get_bus(kvm
, i
);
737 kvm_io_bus_destroy(bus
);
738 kvm
->buses
[i
] = NULL
;
740 kvm_coalesced_mmio_free(kvm
);
741 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
742 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
744 kvm_arch_flush_shadow_all(kvm
);
746 kvm_arch_destroy_vm(kvm
);
747 kvm_destroy_devices(kvm
);
748 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
749 kvm_free_memslots(kvm
, __kvm_memslots(kvm
, i
));
750 cleanup_srcu_struct(&kvm
->irq_srcu
);
751 cleanup_srcu_struct(&kvm
->srcu
);
752 kvm_arch_free_vm(kvm
);
753 preempt_notifier_dec();
754 hardware_disable_all();
758 void kvm_get_kvm(struct kvm
*kvm
)
760 refcount_inc(&kvm
->users_count
);
762 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
764 void kvm_put_kvm(struct kvm
*kvm
)
766 if (refcount_dec_and_test(&kvm
->users_count
))
769 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
772 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
774 struct kvm
*kvm
= filp
->private_data
;
776 kvm_irqfd_release(kvm
);
783 * Allocation size is twice as large as the actual dirty bitmap size.
784 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
786 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
788 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
790 memslot
->dirty_bitmap
= kvzalloc(dirty_bytes
, GFP_KERNEL
);
791 if (!memslot
->dirty_bitmap
)
798 * Insert memslot and re-sort memslots based on their GFN,
799 * so binary search could be used to lookup GFN.
800 * Sorting algorithm takes advantage of having initially
801 * sorted array and known changed memslot position.
803 static void update_memslots(struct kvm_memslots
*slots
,
804 struct kvm_memory_slot
*new)
807 int i
= slots
->id_to_index
[id
];
808 struct kvm_memory_slot
*mslots
= slots
->memslots
;
810 WARN_ON(mslots
[i
].id
!= id
);
812 WARN_ON(!mslots
[i
].npages
);
813 if (mslots
[i
].npages
)
816 if (!mslots
[i
].npages
)
820 while (i
< KVM_MEM_SLOTS_NUM
- 1 &&
821 new->base_gfn
<= mslots
[i
+ 1].base_gfn
) {
822 if (!mslots
[i
+ 1].npages
)
824 mslots
[i
] = mslots
[i
+ 1];
825 slots
->id_to_index
[mslots
[i
].id
] = i
;
830 * The ">=" is needed when creating a slot with base_gfn == 0,
831 * so that it moves before all those with base_gfn == npages == 0.
833 * On the other hand, if new->npages is zero, the above loop has
834 * already left i pointing to the beginning of the empty part of
835 * mslots, and the ">=" would move the hole backwards in this
836 * case---which is wrong. So skip the loop when deleting a slot.
840 new->base_gfn
>= mslots
[i
- 1].base_gfn
) {
841 mslots
[i
] = mslots
[i
- 1];
842 slots
->id_to_index
[mslots
[i
].id
] = i
;
846 WARN_ON_ONCE(i
!= slots
->used_slots
);
849 slots
->id_to_index
[mslots
[i
].id
] = i
;
852 static int check_memory_region_flags(const struct kvm_userspace_memory_region
*mem
)
854 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
856 #ifdef __KVM_HAVE_READONLY_MEM
857 valid_flags
|= KVM_MEM_READONLY
;
860 if (mem
->flags
& ~valid_flags
)
866 static struct kvm_memslots
*install_new_memslots(struct kvm
*kvm
,
867 int as_id
, struct kvm_memslots
*slots
)
869 struct kvm_memslots
*old_memslots
= __kvm_memslots(kvm
, as_id
);
872 * Set the low bit in the generation, which disables SPTE caching
873 * until the end of synchronize_srcu_expedited.
875 WARN_ON(old_memslots
->generation
& 1);
876 slots
->generation
= old_memslots
->generation
+ 1;
878 rcu_assign_pointer(kvm
->memslots
[as_id
], slots
);
879 synchronize_srcu_expedited(&kvm
->srcu
);
882 * Increment the new memslot generation a second time. This prevents
883 * vm exits that race with memslot updates from caching a memslot
884 * generation that will (potentially) be valid forever.
886 * Generations must be unique even across address spaces. We do not need
887 * a global counter for that, instead the generation space is evenly split
888 * across address spaces. For example, with two address spaces, address
889 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
890 * use generations 2, 6, 10, 14, ...
892 slots
->generation
+= KVM_ADDRESS_SPACE_NUM
* 2 - 1;
894 kvm_arch_memslots_updated(kvm
, slots
);
900 * Allocate some memory and give it an address in the guest physical address
903 * Discontiguous memory is allowed, mostly for framebuffers.
905 * Must be called holding kvm->slots_lock for write.
907 int __kvm_set_memory_region(struct kvm
*kvm
,
908 const struct kvm_userspace_memory_region
*mem
)
912 unsigned long npages
;
913 struct kvm_memory_slot
*slot
;
914 struct kvm_memory_slot old
, new;
915 struct kvm_memslots
*slots
= NULL
, *old_memslots
;
917 enum kvm_mr_change change
;
919 r
= check_memory_region_flags(mem
);
924 as_id
= mem
->slot
>> 16;
927 /* General sanity checks */
928 if (mem
->memory_size
& (PAGE_SIZE
- 1))
930 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
932 /* We can read the guest memory with __xxx_user() later on. */
933 if ((id
< KVM_USER_MEM_SLOTS
) &&
934 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
935 !access_ok(VERIFY_WRITE
,
936 (void __user
*)(unsigned long)mem
->userspace_addr
,
939 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_MEM_SLOTS_NUM
)
941 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
944 slot
= id_to_memslot(__kvm_memslots(kvm
, as_id
), id
);
945 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
946 npages
= mem
->memory_size
>> PAGE_SHIFT
;
948 if (npages
> KVM_MEM_MAX_NR_PAGES
)
954 new.base_gfn
= base_gfn
;
956 new.flags
= mem
->flags
;
960 change
= KVM_MR_CREATE
;
961 else { /* Modify an existing slot. */
962 if ((mem
->userspace_addr
!= old
.userspace_addr
) ||
963 (npages
!= old
.npages
) ||
964 ((new.flags
^ old
.flags
) & KVM_MEM_READONLY
))
967 if (base_gfn
!= old
.base_gfn
)
968 change
= KVM_MR_MOVE
;
969 else if (new.flags
!= old
.flags
)
970 change
= KVM_MR_FLAGS_ONLY
;
971 else { /* Nothing to change. */
980 change
= KVM_MR_DELETE
;
985 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
986 /* Check for overlaps */
988 kvm_for_each_memslot(slot
, __kvm_memslots(kvm
, as_id
)) {
991 if (!((base_gfn
+ npages
<= slot
->base_gfn
) ||
992 (base_gfn
>= slot
->base_gfn
+ slot
->npages
)))
997 /* Free page dirty bitmap if unneeded */
998 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
999 new.dirty_bitmap
= NULL
;
1002 if (change
== KVM_MR_CREATE
) {
1003 new.userspace_addr
= mem
->userspace_addr
;
1005 if (kvm_arch_create_memslot(kvm
, &new, npages
))
1009 /* Allocate page dirty bitmap if needed */
1010 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
1011 if (kvm_create_dirty_bitmap(&new) < 0)
1015 slots
= kvzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
1018 memcpy(slots
, __kvm_memslots(kvm
, as_id
), sizeof(struct kvm_memslots
));
1020 if ((change
== KVM_MR_DELETE
) || (change
== KVM_MR_MOVE
)) {
1021 slot
= id_to_memslot(slots
, id
);
1022 slot
->flags
|= KVM_MEMSLOT_INVALID
;
1024 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
1026 /* From this point no new shadow pages pointing to a deleted,
1027 * or moved, memslot will be created.
1029 * validation of sp->gfn happens in:
1030 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1031 * - kvm_is_visible_gfn (mmu_check_roots)
1033 kvm_arch_flush_shadow_memslot(kvm
, slot
);
1036 * We can re-use the old_memslots from above, the only difference
1037 * from the currently installed memslots is the invalid flag. This
1038 * will get overwritten by update_memslots anyway.
1040 slots
= old_memslots
;
1043 r
= kvm_arch_prepare_memory_region(kvm
, &new, mem
, change
);
1047 /* actual memory is freed via old in kvm_free_memslot below */
1048 if (change
== KVM_MR_DELETE
) {
1049 new.dirty_bitmap
= NULL
;
1050 memset(&new.arch
, 0, sizeof(new.arch
));
1053 update_memslots(slots
, &new);
1054 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
1056 kvm_arch_commit_memory_region(kvm
, mem
, &old
, &new, change
);
1058 kvm_free_memslot(kvm
, &old
, &new);
1059 kvfree(old_memslots
);
1065 kvm_free_memslot(kvm
, &new, &old
);
1069 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
1071 int kvm_set_memory_region(struct kvm
*kvm
,
1072 const struct kvm_userspace_memory_region
*mem
)
1076 mutex_lock(&kvm
->slots_lock
);
1077 r
= __kvm_set_memory_region(kvm
, mem
);
1078 mutex_unlock(&kvm
->slots_lock
);
1081 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
1083 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
1084 struct kvm_userspace_memory_region
*mem
)
1086 if ((u16
)mem
->slot
>= KVM_USER_MEM_SLOTS
)
1089 return kvm_set_memory_region(kvm
, mem
);
1092 int kvm_get_dirty_log(struct kvm
*kvm
,
1093 struct kvm_dirty_log
*log
, int *is_dirty
)
1095 struct kvm_memslots
*slots
;
1096 struct kvm_memory_slot
*memslot
;
1099 unsigned long any
= 0;
1101 as_id
= log
->slot
>> 16;
1102 id
= (u16
)log
->slot
;
1103 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1106 slots
= __kvm_memslots(kvm
, as_id
);
1107 memslot
= id_to_memslot(slots
, id
);
1108 if (!memslot
->dirty_bitmap
)
1111 n
= kvm_dirty_bitmap_bytes(memslot
);
1113 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
1114 any
= memslot
->dirty_bitmap
[i
];
1116 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
1123 EXPORT_SYMBOL_GPL(kvm_get_dirty_log
);
1125 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1127 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1128 * are dirty write protect them for next write.
1129 * @kvm: pointer to kvm instance
1130 * @log: slot id and address to which we copy the log
1131 * @is_dirty: flag set if any page is dirty
1133 * We need to keep it in mind that VCPU threads can write to the bitmap
1134 * concurrently. So, to avoid losing track of dirty pages we keep the
1137 * 1. Take a snapshot of the bit and clear it if needed.
1138 * 2. Write protect the corresponding page.
1139 * 3. Copy the snapshot to the userspace.
1140 * 4. Upon return caller flushes TLB's if needed.
1142 * Between 2 and 4, the guest may write to the page using the remaining TLB
1143 * entry. This is not a problem because the page is reported dirty using
1144 * the snapshot taken before and step 4 ensures that writes done after
1145 * exiting to userspace will be logged for the next call.
1148 int kvm_get_dirty_log_protect(struct kvm
*kvm
,
1149 struct kvm_dirty_log
*log
, bool *is_dirty
)
1151 struct kvm_memslots
*slots
;
1152 struct kvm_memory_slot
*memslot
;
1155 unsigned long *dirty_bitmap
;
1156 unsigned long *dirty_bitmap_buffer
;
1158 as_id
= log
->slot
>> 16;
1159 id
= (u16
)log
->slot
;
1160 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1163 slots
= __kvm_memslots(kvm
, as_id
);
1164 memslot
= id_to_memslot(slots
, id
);
1166 dirty_bitmap
= memslot
->dirty_bitmap
;
1170 n
= kvm_dirty_bitmap_bytes(memslot
);
1172 dirty_bitmap_buffer
= kvm_second_dirty_bitmap(memslot
);
1173 memset(dirty_bitmap_buffer
, 0, n
);
1175 spin_lock(&kvm
->mmu_lock
);
1177 for (i
= 0; i
< n
/ sizeof(long); i
++) {
1181 if (!dirty_bitmap
[i
])
1186 mask
= xchg(&dirty_bitmap
[i
], 0);
1187 dirty_bitmap_buffer
[i
] = mask
;
1190 offset
= i
* BITS_PER_LONG
;
1191 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm
, memslot
,
1196 spin_unlock(&kvm
->mmu_lock
);
1197 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
1201 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect
);
1204 bool kvm_largepages_enabled(void)
1206 return largepages_enabled
;
1209 void kvm_disable_largepages(void)
1211 largepages_enabled
= false;
1213 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
1215 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
1217 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1219 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
1221 struct kvm_memory_slot
*kvm_vcpu_gfn_to_memslot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1223 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu
), gfn
);
1226 bool kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
1228 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1230 if (!memslot
|| memslot
->id
>= KVM_USER_MEM_SLOTS
||
1231 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1236 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1238 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1240 struct vm_area_struct
*vma
;
1241 unsigned long addr
, size
;
1245 addr
= gfn_to_hva(kvm
, gfn
);
1246 if (kvm_is_error_hva(addr
))
1249 down_read(¤t
->mm
->mmap_sem
);
1250 vma
= find_vma(current
->mm
, addr
);
1254 size
= vma_kernel_pagesize(vma
);
1257 up_read(¤t
->mm
->mmap_sem
);
1262 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
1264 return slot
->flags
& KVM_MEM_READONLY
;
1267 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1268 gfn_t
*nr_pages
, bool write
)
1270 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1271 return KVM_HVA_ERR_BAD
;
1273 if (memslot_is_readonly(slot
) && write
)
1274 return KVM_HVA_ERR_RO_BAD
;
1277 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1279 return __gfn_to_hva_memslot(slot
, gfn
);
1282 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1285 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1288 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1291 return gfn_to_hva_many(slot
, gfn
, NULL
);
1293 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1295 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1297 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1299 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1301 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1303 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
, NULL
);
1305 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva
);
1308 * If writable is set to false, the hva returned by this function is only
1309 * allowed to be read.
1311 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot
*slot
,
1312 gfn_t gfn
, bool *writable
)
1314 unsigned long hva
= __gfn_to_hva_many(slot
, gfn
, NULL
, false);
1316 if (!kvm_is_error_hva(hva
) && writable
)
1317 *writable
= !memslot_is_readonly(slot
);
1322 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
)
1324 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1326 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1329 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool *writable
)
1331 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1333 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1336 static inline int check_user_page_hwpoison(unsigned long addr
)
1338 int rc
, flags
= FOLL_HWPOISON
| FOLL_WRITE
;
1340 rc
= get_user_pages(addr
, 1, flags
, NULL
, NULL
);
1341 return rc
== -EHWPOISON
;
1345 * The atomic path to get the writable pfn which will be stored in @pfn,
1346 * true indicates success, otherwise false is returned.
1348 static bool hva_to_pfn_fast(unsigned long addr
, bool atomic
, bool *async
,
1349 bool write_fault
, bool *writable
, kvm_pfn_t
*pfn
)
1351 struct page
*page
[1];
1354 if (!(async
|| atomic
))
1358 * Fast pin a writable pfn only if it is a write fault request
1359 * or the caller allows to map a writable pfn for a read fault
1362 if (!(write_fault
|| writable
))
1365 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1367 *pfn
= page_to_pfn(page
[0]);
1378 * The slow path to get the pfn of the specified host virtual address,
1379 * 1 indicates success, -errno is returned if error is detected.
1381 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1382 bool *writable
, kvm_pfn_t
*pfn
)
1384 unsigned int flags
= FOLL_HWPOISON
;
1391 *writable
= write_fault
;
1394 flags
|= FOLL_WRITE
;
1396 flags
|= FOLL_NOWAIT
;
1398 npages
= get_user_pages_unlocked(addr
, 1, &page
, flags
);
1402 /* map read fault as writable if possible */
1403 if (unlikely(!write_fault
) && writable
) {
1406 if (__get_user_pages_fast(addr
, 1, 1, &wpage
) == 1) {
1412 *pfn
= page_to_pfn(page
);
1416 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1418 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1421 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1427 static int hva_to_pfn_remapped(struct vm_area_struct
*vma
,
1428 unsigned long addr
, bool *async
,
1429 bool write_fault
, bool *writable
,
1435 r
= follow_pfn(vma
, addr
, &pfn
);
1438 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1439 * not call the fault handler, so do it here.
1441 bool unlocked
= false;
1442 r
= fixup_user_fault(current
, current
->mm
, addr
,
1443 (write_fault
? FAULT_FLAG_WRITE
: 0),
1450 r
= follow_pfn(vma
, addr
, &pfn
);
1460 * Get a reference here because callers of *hva_to_pfn* and
1461 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1462 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1463 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1464 * simply do nothing for reserved pfns.
1466 * Whoever called remap_pfn_range is also going to call e.g.
1467 * unmap_mapping_range before the underlying pages are freed,
1468 * causing a call to our MMU notifier.
1477 * Pin guest page in memory and return its pfn.
1478 * @addr: host virtual address which maps memory to the guest
1479 * @atomic: whether this function can sleep
1480 * @async: whether this function need to wait IO complete if the
1481 * host page is not in the memory
1482 * @write_fault: whether we should get a writable host page
1483 * @writable: whether it allows to map a writable host page for !@write_fault
1485 * The function will map a writable host page for these two cases:
1486 * 1): @write_fault = true
1487 * 2): @write_fault = false && @writable, @writable will tell the caller
1488 * whether the mapping is writable.
1490 static kvm_pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1491 bool write_fault
, bool *writable
)
1493 struct vm_area_struct
*vma
;
1497 /* we can do it either atomically or asynchronously, not both */
1498 BUG_ON(atomic
&& async
);
1500 if (hva_to_pfn_fast(addr
, atomic
, async
, write_fault
, writable
, &pfn
))
1504 return KVM_PFN_ERR_FAULT
;
1506 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1510 down_read(¤t
->mm
->mmap_sem
);
1511 if (npages
== -EHWPOISON
||
1512 (!async
&& check_user_page_hwpoison(addr
))) {
1513 pfn
= KVM_PFN_ERR_HWPOISON
;
1518 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1521 pfn
= KVM_PFN_ERR_FAULT
;
1522 else if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) {
1523 r
= hva_to_pfn_remapped(vma
, addr
, async
, write_fault
, writable
, &pfn
);
1527 pfn
= KVM_PFN_ERR_FAULT
;
1529 if (async
&& vma_is_valid(vma
, write_fault
))
1531 pfn
= KVM_PFN_ERR_FAULT
;
1534 up_read(¤t
->mm
->mmap_sem
);
1538 kvm_pfn_t
__gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1539 bool atomic
, bool *async
, bool write_fault
,
1542 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1544 if (addr
== KVM_HVA_ERR_RO_BAD
) {
1547 return KVM_PFN_ERR_RO_FAULT
;
1550 if (kvm_is_error_hva(addr
)) {
1553 return KVM_PFN_NOSLOT
;
1556 /* Do not map writable pfn in the readonly memslot. */
1557 if (writable
&& memslot_is_readonly(slot
)) {
1562 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1565 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot
);
1567 kvm_pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1570 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
, false, NULL
,
1571 write_fault
, writable
);
1573 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1575 kvm_pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1577 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1579 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot
);
1581 kvm_pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1583 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1585 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1587 kvm_pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1589 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm
, gfn
), gfn
);
1591 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1593 kvm_pfn_t
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1595 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1597 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic
);
1599 kvm_pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1601 return gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
);
1603 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1605 kvm_pfn_t
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1607 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1609 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn
);
1611 int gfn_to_page_many_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1612 struct page
**pages
, int nr_pages
)
1617 addr
= gfn_to_hva_many(slot
, gfn
, &entry
);
1618 if (kvm_is_error_hva(addr
))
1621 if (entry
< nr_pages
)
1624 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1626 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1628 static struct page
*kvm_pfn_to_page(kvm_pfn_t pfn
)
1630 if (is_error_noslot_pfn(pfn
))
1631 return KVM_ERR_PTR_BAD_PAGE
;
1633 if (kvm_is_reserved_pfn(pfn
)) {
1635 return KVM_ERR_PTR_BAD_PAGE
;
1638 return pfn_to_page(pfn
);
1641 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1645 pfn
= gfn_to_pfn(kvm
, gfn
);
1647 return kvm_pfn_to_page(pfn
);
1649 EXPORT_SYMBOL_GPL(gfn_to_page
);
1651 struct page
*kvm_vcpu_gfn_to_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1655 pfn
= kvm_vcpu_gfn_to_pfn(vcpu
, gfn
);
1657 return kvm_pfn_to_page(pfn
);
1659 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page
);
1661 void kvm_release_page_clean(struct page
*page
)
1663 WARN_ON(is_error_page(page
));
1665 kvm_release_pfn_clean(page_to_pfn(page
));
1667 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1669 void kvm_release_pfn_clean(kvm_pfn_t pfn
)
1671 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
))
1672 put_page(pfn_to_page(pfn
));
1674 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1676 void kvm_release_page_dirty(struct page
*page
)
1678 WARN_ON(is_error_page(page
));
1680 kvm_release_pfn_dirty(page_to_pfn(page
));
1682 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1684 void kvm_release_pfn_dirty(kvm_pfn_t pfn
)
1686 kvm_set_pfn_dirty(pfn
);
1687 kvm_release_pfn_clean(pfn
);
1689 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty
);
1691 void kvm_set_pfn_dirty(kvm_pfn_t pfn
)
1693 if (!kvm_is_reserved_pfn(pfn
)) {
1694 struct page
*page
= pfn_to_page(pfn
);
1696 if (!PageReserved(page
))
1700 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1702 void kvm_set_pfn_accessed(kvm_pfn_t pfn
)
1704 if (!kvm_is_reserved_pfn(pfn
))
1705 mark_page_accessed(pfn_to_page(pfn
));
1707 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1709 void kvm_get_pfn(kvm_pfn_t pfn
)
1711 if (!kvm_is_reserved_pfn(pfn
))
1712 get_page(pfn_to_page(pfn
));
1714 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1716 static int next_segment(unsigned long len
, int offset
)
1718 if (len
> PAGE_SIZE
- offset
)
1719 return PAGE_SIZE
- offset
;
1724 static int __kvm_read_guest_page(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1725 void *data
, int offset
, int len
)
1730 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1731 if (kvm_is_error_hva(addr
))
1733 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1739 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1742 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1744 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1746 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1748 int kvm_vcpu_read_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, void *data
,
1749 int offset
, int len
)
1751 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1753 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1755 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page
);
1757 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1759 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1761 int offset
= offset_in_page(gpa
);
1764 while ((seg
= next_segment(len
, offset
)) != 0) {
1765 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1775 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1777 int kvm_vcpu_read_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, void *data
, unsigned long len
)
1779 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1781 int offset
= offset_in_page(gpa
);
1784 while ((seg
= next_segment(len
, offset
)) != 0) {
1785 ret
= kvm_vcpu_read_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1795 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest
);
1797 static int __kvm_read_guest_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1798 void *data
, int offset
, unsigned long len
)
1803 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1804 if (kvm_is_error_hva(addr
))
1806 pagefault_disable();
1807 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1814 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1817 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1818 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1819 int offset
= offset_in_page(gpa
);
1821 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1823 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic
);
1825 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1826 void *data
, unsigned long len
)
1828 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1829 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1830 int offset
= offset_in_page(gpa
);
1832 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1834 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic
);
1836 static int __kvm_write_guest_page(struct kvm_memory_slot
*memslot
, gfn_t gfn
,
1837 const void *data
, int offset
, int len
)
1842 addr
= gfn_to_hva_memslot(memslot
, gfn
);
1843 if (kvm_is_error_hva(addr
))
1845 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1848 mark_page_dirty_in_slot(memslot
, gfn
);
1852 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
,
1853 const void *data
, int offset
, int len
)
1855 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1857 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1859 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1861 int kvm_vcpu_write_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
1862 const void *data
, int offset
, int len
)
1864 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1866 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1868 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page
);
1870 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1873 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1875 int offset
= offset_in_page(gpa
);
1878 while ((seg
= next_segment(len
, offset
)) != 0) {
1879 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1889 EXPORT_SYMBOL_GPL(kvm_write_guest
);
1891 int kvm_vcpu_write_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, const void *data
,
1894 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1896 int offset
= offset_in_page(gpa
);
1899 while ((seg
= next_segment(len
, offset
)) != 0) {
1900 ret
= kvm_vcpu_write_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1910 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest
);
1912 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots
*slots
,
1913 struct gfn_to_hva_cache
*ghc
,
1914 gpa_t gpa
, unsigned long len
)
1916 int offset
= offset_in_page(gpa
);
1917 gfn_t start_gfn
= gpa
>> PAGE_SHIFT
;
1918 gfn_t end_gfn
= (gpa
+ len
- 1) >> PAGE_SHIFT
;
1919 gfn_t nr_pages_needed
= end_gfn
- start_gfn
+ 1;
1920 gfn_t nr_pages_avail
;
1923 ghc
->generation
= slots
->generation
;
1925 ghc
->memslot
= __gfn_to_memslot(slots
, start_gfn
);
1926 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
, NULL
);
1927 if (!kvm_is_error_hva(ghc
->hva
) && nr_pages_needed
<= 1) {
1931 * If the requested region crosses two memslots, we still
1932 * verify that the entire region is valid here.
1934 while (start_gfn
<= end_gfn
) {
1936 ghc
->memslot
= __gfn_to_memslot(slots
, start_gfn
);
1937 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
,
1939 if (kvm_is_error_hva(ghc
->hva
))
1941 start_gfn
+= nr_pages_avail
;
1943 /* Use the slow path for cross page reads and writes. */
1944 ghc
->memslot
= NULL
;
1949 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1950 gpa_t gpa
, unsigned long len
)
1952 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1953 return __kvm_gfn_to_hva_cache_init(slots
, ghc
, gpa
, len
);
1955 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1957 int kvm_write_guest_offset_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1958 void *data
, int offset
, unsigned long len
)
1960 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1962 gpa_t gpa
= ghc
->gpa
+ offset
;
1964 BUG_ON(len
+ offset
> ghc
->len
);
1966 if (slots
->generation
!= ghc
->generation
)
1967 __kvm_gfn_to_hva_cache_init(slots
, ghc
, ghc
->gpa
, ghc
->len
);
1969 if (unlikely(!ghc
->memslot
))
1970 return kvm_write_guest(kvm
, gpa
, data
, len
);
1972 if (kvm_is_error_hva(ghc
->hva
))
1975 r
= __copy_to_user((void __user
*)ghc
->hva
+ offset
, data
, len
);
1978 mark_page_dirty_in_slot(ghc
->memslot
, gpa
>> PAGE_SHIFT
);
1982 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached
);
1984 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1985 void *data
, unsigned long len
)
1987 return kvm_write_guest_offset_cached(kvm
, ghc
, data
, 0, len
);
1989 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1991 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1992 void *data
, unsigned long len
)
1994 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1997 BUG_ON(len
> ghc
->len
);
1999 if (slots
->generation
!= ghc
->generation
)
2000 __kvm_gfn_to_hva_cache_init(slots
, ghc
, ghc
->gpa
, ghc
->len
);
2002 if (unlikely(!ghc
->memslot
))
2003 return kvm_read_guest(kvm
, ghc
->gpa
, data
, len
);
2005 if (kvm_is_error_hva(ghc
->hva
))
2008 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
2014 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
2016 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
2018 const void *zero_page
= (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2020 return kvm_write_guest_page(kvm
, gfn
, zero_page
, offset
, len
);
2022 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
2024 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
2026 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2028 int offset
= offset_in_page(gpa
);
2031 while ((seg
= next_segment(len
, offset
)) != 0) {
2032 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
2041 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
2043 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
,
2046 if (memslot
&& memslot
->dirty_bitmap
) {
2047 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
2049 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
2053 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
2055 struct kvm_memory_slot
*memslot
;
2057 memslot
= gfn_to_memslot(kvm
, gfn
);
2058 mark_page_dirty_in_slot(memslot
, gfn
);
2060 EXPORT_SYMBOL_GPL(mark_page_dirty
);
2062 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2064 struct kvm_memory_slot
*memslot
;
2066 memslot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
2067 mark_page_dirty_in_slot(memslot
, gfn
);
2069 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty
);
2071 void kvm_sigset_activate(struct kvm_vcpu
*vcpu
)
2073 if (!vcpu
->sigset_active
)
2077 * This does a lockless modification of ->real_blocked, which is fine
2078 * because, only current can change ->real_blocked and all readers of
2079 * ->real_blocked don't care as long ->real_blocked is always a subset
2082 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, ¤t
->real_blocked
);
2085 void kvm_sigset_deactivate(struct kvm_vcpu
*vcpu
)
2087 if (!vcpu
->sigset_active
)
2090 sigprocmask(SIG_SETMASK
, ¤t
->real_blocked
, NULL
);
2091 sigemptyset(¤t
->real_blocked
);
2094 static void grow_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2096 unsigned int old
, val
, grow
;
2098 old
= val
= vcpu
->halt_poll_ns
;
2099 grow
= READ_ONCE(halt_poll_ns_grow
);
2101 if (val
== 0 && grow
)
2106 if (val
> halt_poll_ns
)
2109 vcpu
->halt_poll_ns
= val
;
2110 trace_kvm_halt_poll_ns_grow(vcpu
->vcpu_id
, val
, old
);
2113 static void shrink_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2115 unsigned int old
, val
, shrink
;
2117 old
= val
= vcpu
->halt_poll_ns
;
2118 shrink
= READ_ONCE(halt_poll_ns_shrink
);
2124 vcpu
->halt_poll_ns
= val
;
2125 trace_kvm_halt_poll_ns_shrink(vcpu
->vcpu_id
, val
, old
);
2128 static int kvm_vcpu_check_block(struct kvm_vcpu
*vcpu
)
2131 int idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2133 if (kvm_arch_vcpu_runnable(vcpu
)) {
2134 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
2137 if (kvm_cpu_has_pending_timer(vcpu
))
2139 if (signal_pending(current
))
2144 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2149 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2151 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
2154 DECLARE_SWAITQUEUE(wait
);
2155 bool waited
= false;
2158 start
= cur
= ktime_get();
2159 if (vcpu
->halt_poll_ns
) {
2160 ktime_t stop
= ktime_add_ns(ktime_get(), vcpu
->halt_poll_ns
);
2162 ++vcpu
->stat
.halt_attempted_poll
;
2165 * This sets KVM_REQ_UNHALT if an interrupt
2168 if (kvm_vcpu_check_block(vcpu
) < 0) {
2169 ++vcpu
->stat
.halt_successful_poll
;
2170 if (!vcpu_valid_wakeup(vcpu
))
2171 ++vcpu
->stat
.halt_poll_invalid
;
2175 } while (single_task_running() && ktime_before(cur
, stop
));
2178 kvm_arch_vcpu_blocking(vcpu
);
2181 prepare_to_swait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
2183 if (kvm_vcpu_check_block(vcpu
) < 0)
2190 finish_swait(&vcpu
->wq
, &wait
);
2193 kvm_arch_vcpu_unblocking(vcpu
);
2195 block_ns
= ktime_to_ns(cur
) - ktime_to_ns(start
);
2197 if (!vcpu_valid_wakeup(vcpu
))
2198 shrink_halt_poll_ns(vcpu
);
2199 else if (halt_poll_ns
) {
2200 if (block_ns
<= vcpu
->halt_poll_ns
)
2202 /* we had a long block, shrink polling */
2203 else if (vcpu
->halt_poll_ns
&& block_ns
> halt_poll_ns
)
2204 shrink_halt_poll_ns(vcpu
);
2205 /* we had a short halt and our poll time is too small */
2206 else if (vcpu
->halt_poll_ns
< halt_poll_ns
&&
2207 block_ns
< halt_poll_ns
)
2208 grow_halt_poll_ns(vcpu
);
2210 vcpu
->halt_poll_ns
= 0;
2212 trace_kvm_vcpu_wakeup(block_ns
, waited
, vcpu_valid_wakeup(vcpu
));
2213 kvm_arch_vcpu_block_finish(vcpu
);
2215 EXPORT_SYMBOL_GPL(kvm_vcpu_block
);
2217 bool kvm_vcpu_wake_up(struct kvm_vcpu
*vcpu
)
2219 struct swait_queue_head
*wqp
;
2221 wqp
= kvm_arch_vcpu_wq(vcpu
);
2222 if (swq_has_sleeper(wqp
)) {
2224 ++vcpu
->stat
.halt_wakeup
;
2230 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up
);
2234 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2236 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
2239 int cpu
= vcpu
->cpu
;
2241 if (kvm_vcpu_wake_up(vcpu
))
2245 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
2246 if (kvm_arch_vcpu_should_kick(vcpu
))
2247 smp_send_reschedule(cpu
);
2250 EXPORT_SYMBOL_GPL(kvm_vcpu_kick
);
2251 #endif /* !CONFIG_S390 */
2253 int kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
2256 struct task_struct
*task
= NULL
;
2260 pid
= rcu_dereference(target
->pid
);
2262 task
= get_pid_task(pid
, PIDTYPE_PID
);
2266 ret
= yield_to(task
, 1);
2267 put_task_struct(task
);
2271 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
2274 * Helper that checks whether a VCPU is eligible for directed yield.
2275 * Most eligible candidate to yield is decided by following heuristics:
2277 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2278 * (preempted lock holder), indicated by @in_spin_loop.
2279 * Set at the beiginning and cleared at the end of interception/PLE handler.
2281 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2282 * chance last time (mostly it has become eligible now since we have probably
2283 * yielded to lockholder in last iteration. This is done by toggling
2284 * @dy_eligible each time a VCPU checked for eligibility.)
2286 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2287 * to preempted lock-holder could result in wrong VCPU selection and CPU
2288 * burning. Giving priority for a potential lock-holder increases lock
2291 * Since algorithm is based on heuristics, accessing another VCPU data without
2292 * locking does not harm. It may result in trying to yield to same VCPU, fail
2293 * and continue with next VCPU and so on.
2295 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
2297 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2300 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
2301 vcpu
->spin_loop
.dy_eligible
;
2303 if (vcpu
->spin_loop
.in_spin_loop
)
2304 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
2312 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
, bool yield_to_kernel_mode
)
2314 struct kvm
*kvm
= me
->kvm
;
2315 struct kvm_vcpu
*vcpu
;
2316 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
2322 kvm_vcpu_set_in_spin_loop(me
, true);
2324 * We boost the priority of a VCPU that is runnable but not
2325 * currently running, because it got preempted by something
2326 * else and called schedule in __vcpu_run. Hopefully that
2327 * VCPU is holding the lock that we need and will release it.
2328 * We approximate round-robin by starting at the last boosted VCPU.
2330 for (pass
= 0; pass
< 2 && !yielded
&& try; pass
++) {
2331 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2332 if (!pass
&& i
<= last_boosted_vcpu
) {
2333 i
= last_boosted_vcpu
;
2335 } else if (pass
&& i
> last_boosted_vcpu
)
2337 if (!READ_ONCE(vcpu
->preempted
))
2341 if (swait_active(&vcpu
->wq
) && !kvm_arch_vcpu_runnable(vcpu
))
2343 if (yield_to_kernel_mode
&& !kvm_arch_vcpu_in_kernel(vcpu
))
2345 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
2348 yielded
= kvm_vcpu_yield_to(vcpu
);
2350 kvm
->last_boosted_vcpu
= i
;
2352 } else if (yielded
< 0) {
2359 kvm_vcpu_set_in_spin_loop(me
, false);
2361 /* Ensure vcpu is not eligible during next spinloop */
2362 kvm_vcpu_set_dy_eligible(me
, false);
2364 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
2366 static vm_fault_t
kvm_vcpu_fault(struct vm_fault
*vmf
)
2368 struct kvm_vcpu
*vcpu
= vmf
->vma
->vm_file
->private_data
;
2371 if (vmf
->pgoff
== 0)
2372 page
= virt_to_page(vcpu
->run
);
2374 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
2375 page
= virt_to_page(vcpu
->arch
.pio_data
);
2377 #ifdef CONFIG_KVM_MMIO
2378 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
2379 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
2382 return kvm_arch_vcpu_fault(vcpu
, vmf
);
2388 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
2389 .fault
= kvm_vcpu_fault
,
2392 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2394 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
2398 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
2400 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2402 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2403 kvm_put_kvm(vcpu
->kvm
);
2407 static struct file_operations kvm_vcpu_fops
= {
2408 .release
= kvm_vcpu_release
,
2409 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2410 .mmap
= kvm_vcpu_mmap
,
2411 .llseek
= noop_llseek
,
2412 KVM_COMPAT(kvm_vcpu_compat_ioctl
),
2416 * Allocates an inode for the vcpu.
2418 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2420 char name
[8 + 1 + ITOA_MAX_LEN
+ 1];
2422 snprintf(name
, sizeof(name
), "kvm-vcpu:%d", vcpu
->vcpu_id
);
2423 return anon_inode_getfd(name
, &kvm_vcpu_fops
, vcpu
, O_RDWR
| O_CLOEXEC
);
2426 static int kvm_create_vcpu_debugfs(struct kvm_vcpu
*vcpu
)
2428 char dir_name
[ITOA_MAX_LEN
* 2];
2431 if (!kvm_arch_has_vcpu_debugfs())
2434 if (!debugfs_initialized())
2437 snprintf(dir_name
, sizeof(dir_name
), "vcpu%d", vcpu
->vcpu_id
);
2438 vcpu
->debugfs_dentry
= debugfs_create_dir(dir_name
,
2439 vcpu
->kvm
->debugfs_dentry
);
2440 if (!vcpu
->debugfs_dentry
)
2443 ret
= kvm_arch_create_vcpu_debugfs(vcpu
);
2445 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2453 * Creates some virtual cpus. Good luck creating more than one.
2455 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
2458 struct kvm_vcpu
*vcpu
;
2460 if (id
>= KVM_MAX_VCPU_ID
)
2463 mutex_lock(&kvm
->lock
);
2464 if (kvm
->created_vcpus
== KVM_MAX_VCPUS
) {
2465 mutex_unlock(&kvm
->lock
);
2469 kvm
->created_vcpus
++;
2470 mutex_unlock(&kvm
->lock
);
2472 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
2475 goto vcpu_decrement
;
2478 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
2480 r
= kvm_arch_vcpu_setup(vcpu
);
2484 r
= kvm_create_vcpu_debugfs(vcpu
);
2488 mutex_lock(&kvm
->lock
);
2489 if (kvm_get_vcpu_by_id(kvm
, id
)) {
2491 goto unlock_vcpu_destroy
;
2494 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
2496 /* Now it's all set up, let userspace reach it */
2498 r
= create_vcpu_fd(vcpu
);
2501 goto unlock_vcpu_destroy
;
2504 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
2507 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2508 * before kvm->online_vcpu's incremented value.
2511 atomic_inc(&kvm
->online_vcpus
);
2513 mutex_unlock(&kvm
->lock
);
2514 kvm_arch_vcpu_postcreate(vcpu
);
2517 unlock_vcpu_destroy
:
2518 mutex_unlock(&kvm
->lock
);
2519 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2521 kvm_arch_vcpu_destroy(vcpu
);
2523 mutex_lock(&kvm
->lock
);
2524 kvm
->created_vcpus
--;
2525 mutex_unlock(&kvm
->lock
);
2529 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2532 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2533 vcpu
->sigset_active
= 1;
2534 vcpu
->sigset
= *sigset
;
2536 vcpu
->sigset_active
= 0;
2540 static long kvm_vcpu_ioctl(struct file
*filp
,
2541 unsigned int ioctl
, unsigned long arg
)
2543 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2544 void __user
*argp
= (void __user
*)arg
;
2546 struct kvm_fpu
*fpu
= NULL
;
2547 struct kvm_sregs
*kvm_sregs
= NULL
;
2549 if (vcpu
->kvm
->mm
!= current
->mm
)
2552 if (unlikely(_IOC_TYPE(ioctl
) != KVMIO
))
2556 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2557 * execution; mutex_lock() would break them.
2559 r
= kvm_arch_vcpu_async_ioctl(filp
, ioctl
, arg
);
2560 if (r
!= -ENOIOCTLCMD
)
2563 if (mutex_lock_killable(&vcpu
->mutex
))
2571 oldpid
= rcu_access_pointer(vcpu
->pid
);
2572 if (unlikely(oldpid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
2573 /* The thread running this VCPU changed. */
2576 r
= kvm_arch_vcpu_run_pid_change(vcpu
);
2580 newpid
= get_task_pid(current
, PIDTYPE_PID
);
2581 rcu_assign_pointer(vcpu
->pid
, newpid
);
2586 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2587 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
2590 case KVM_GET_REGS
: {
2591 struct kvm_regs
*kvm_regs
;
2594 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
2597 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
2601 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
2608 case KVM_SET_REGS
: {
2609 struct kvm_regs
*kvm_regs
;
2612 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
2613 if (IS_ERR(kvm_regs
)) {
2614 r
= PTR_ERR(kvm_regs
);
2617 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
2621 case KVM_GET_SREGS
: {
2622 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
2626 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
2630 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
2635 case KVM_SET_SREGS
: {
2636 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
2637 if (IS_ERR(kvm_sregs
)) {
2638 r
= PTR_ERR(kvm_sregs
);
2642 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
2645 case KVM_GET_MP_STATE
: {
2646 struct kvm_mp_state mp_state
;
2648 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
2652 if (copy_to_user(argp
, &mp_state
, sizeof(mp_state
)))
2657 case KVM_SET_MP_STATE
: {
2658 struct kvm_mp_state mp_state
;
2661 if (copy_from_user(&mp_state
, argp
, sizeof(mp_state
)))
2663 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
2666 case KVM_TRANSLATE
: {
2667 struct kvm_translation tr
;
2670 if (copy_from_user(&tr
, argp
, sizeof(tr
)))
2672 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
2676 if (copy_to_user(argp
, &tr
, sizeof(tr
)))
2681 case KVM_SET_GUEST_DEBUG
: {
2682 struct kvm_guest_debug dbg
;
2685 if (copy_from_user(&dbg
, argp
, sizeof(dbg
)))
2687 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
2690 case KVM_SET_SIGNAL_MASK
: {
2691 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2692 struct kvm_signal_mask kvm_sigmask
;
2693 sigset_t sigset
, *p
;
2698 if (copy_from_user(&kvm_sigmask
, argp
,
2699 sizeof(kvm_sigmask
)))
2702 if (kvm_sigmask
.len
!= sizeof(sigset
))
2705 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2710 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
2714 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
2718 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
2722 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
2728 fpu
= memdup_user(argp
, sizeof(*fpu
));
2734 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
2738 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2741 mutex_unlock(&vcpu
->mutex
);
2747 #ifdef CONFIG_KVM_COMPAT
2748 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
2749 unsigned int ioctl
, unsigned long arg
)
2751 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2752 void __user
*argp
= compat_ptr(arg
);
2755 if (vcpu
->kvm
->mm
!= current
->mm
)
2759 case KVM_SET_SIGNAL_MASK
: {
2760 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2761 struct kvm_signal_mask kvm_sigmask
;
2766 if (copy_from_user(&kvm_sigmask
, argp
,
2767 sizeof(kvm_sigmask
)))
2770 if (kvm_sigmask
.len
!= sizeof(compat_sigset_t
))
2773 if (get_compat_sigset(&sigset
, (void *)sigmask_arg
->sigset
))
2775 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2777 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
2781 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2789 static int kvm_device_ioctl_attr(struct kvm_device
*dev
,
2790 int (*accessor
)(struct kvm_device
*dev
,
2791 struct kvm_device_attr
*attr
),
2794 struct kvm_device_attr attr
;
2799 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
2802 return accessor(dev
, &attr
);
2805 static long kvm_device_ioctl(struct file
*filp
, unsigned int ioctl
,
2808 struct kvm_device
*dev
= filp
->private_data
;
2811 case KVM_SET_DEVICE_ATTR
:
2812 return kvm_device_ioctl_attr(dev
, dev
->ops
->set_attr
, arg
);
2813 case KVM_GET_DEVICE_ATTR
:
2814 return kvm_device_ioctl_attr(dev
, dev
->ops
->get_attr
, arg
);
2815 case KVM_HAS_DEVICE_ATTR
:
2816 return kvm_device_ioctl_attr(dev
, dev
->ops
->has_attr
, arg
);
2818 if (dev
->ops
->ioctl
)
2819 return dev
->ops
->ioctl(dev
, ioctl
, arg
);
2825 static int kvm_device_release(struct inode
*inode
, struct file
*filp
)
2827 struct kvm_device
*dev
= filp
->private_data
;
2828 struct kvm
*kvm
= dev
->kvm
;
2834 static const struct file_operations kvm_device_fops
= {
2835 .unlocked_ioctl
= kvm_device_ioctl
,
2836 .release
= kvm_device_release
,
2837 KVM_COMPAT(kvm_device_ioctl
),
2840 struct kvm_device
*kvm_device_from_filp(struct file
*filp
)
2842 if (filp
->f_op
!= &kvm_device_fops
)
2845 return filp
->private_data
;
2848 static struct kvm_device_ops
*kvm_device_ops_table
[KVM_DEV_TYPE_MAX
] = {
2849 #ifdef CONFIG_KVM_MPIC
2850 [KVM_DEV_TYPE_FSL_MPIC_20
] = &kvm_mpic_ops
,
2851 [KVM_DEV_TYPE_FSL_MPIC_42
] = &kvm_mpic_ops
,
2855 int kvm_register_device_ops(struct kvm_device_ops
*ops
, u32 type
)
2857 if (type
>= ARRAY_SIZE(kvm_device_ops_table
))
2860 if (kvm_device_ops_table
[type
] != NULL
)
2863 kvm_device_ops_table
[type
] = ops
;
2867 void kvm_unregister_device_ops(u32 type
)
2869 if (kvm_device_ops_table
[type
] != NULL
)
2870 kvm_device_ops_table
[type
] = NULL
;
2873 static int kvm_ioctl_create_device(struct kvm
*kvm
,
2874 struct kvm_create_device
*cd
)
2876 struct kvm_device_ops
*ops
= NULL
;
2877 struct kvm_device
*dev
;
2878 bool test
= cd
->flags
& KVM_CREATE_DEVICE_TEST
;
2881 if (cd
->type
>= ARRAY_SIZE(kvm_device_ops_table
))
2884 ops
= kvm_device_ops_table
[cd
->type
];
2891 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2898 mutex_lock(&kvm
->lock
);
2899 ret
= ops
->create(dev
, cd
->type
);
2901 mutex_unlock(&kvm
->lock
);
2905 list_add(&dev
->vm_node
, &kvm
->devices
);
2906 mutex_unlock(&kvm
->lock
);
2911 ret
= anon_inode_getfd(ops
->name
, &kvm_device_fops
, dev
, O_RDWR
| O_CLOEXEC
);
2913 mutex_lock(&kvm
->lock
);
2914 list_del(&dev
->vm_node
);
2915 mutex_unlock(&kvm
->lock
);
2925 static long kvm_vm_ioctl_check_extension_generic(struct kvm
*kvm
, long arg
)
2928 case KVM_CAP_USER_MEMORY
:
2929 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2930 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2931 case KVM_CAP_INTERNAL_ERROR_DATA
:
2932 #ifdef CONFIG_HAVE_KVM_MSI
2933 case KVM_CAP_SIGNAL_MSI
:
2935 #ifdef CONFIG_HAVE_KVM_IRQFD
2937 case KVM_CAP_IRQFD_RESAMPLE
:
2939 case KVM_CAP_IOEVENTFD_ANY_LENGTH
:
2940 case KVM_CAP_CHECK_EXTENSION_VM
:
2942 #ifdef CONFIG_KVM_MMIO
2943 case KVM_CAP_COALESCED_MMIO
:
2944 return KVM_COALESCED_MMIO_PAGE_OFFSET
;
2946 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2947 case KVM_CAP_IRQ_ROUTING
:
2948 return KVM_MAX_IRQ_ROUTES
;
2950 #if KVM_ADDRESS_SPACE_NUM > 1
2951 case KVM_CAP_MULTI_ADDRESS_SPACE
:
2952 return KVM_ADDRESS_SPACE_NUM
;
2954 case KVM_CAP_MAX_VCPU_ID
:
2955 return KVM_MAX_VCPU_ID
;
2959 return kvm_vm_ioctl_check_extension(kvm
, arg
);
2962 static long kvm_vm_ioctl(struct file
*filp
,
2963 unsigned int ioctl
, unsigned long arg
)
2965 struct kvm
*kvm
= filp
->private_data
;
2966 void __user
*argp
= (void __user
*)arg
;
2969 if (kvm
->mm
!= current
->mm
)
2972 case KVM_CREATE_VCPU
:
2973 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2975 case KVM_SET_USER_MEMORY_REGION
: {
2976 struct kvm_userspace_memory_region kvm_userspace_mem
;
2979 if (copy_from_user(&kvm_userspace_mem
, argp
,
2980 sizeof(kvm_userspace_mem
)))
2983 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
);
2986 case KVM_GET_DIRTY_LOG
: {
2987 struct kvm_dirty_log log
;
2990 if (copy_from_user(&log
, argp
, sizeof(log
)))
2992 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2995 #ifdef CONFIG_KVM_MMIO
2996 case KVM_REGISTER_COALESCED_MMIO
: {
2997 struct kvm_coalesced_mmio_zone zone
;
3000 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
3002 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
3005 case KVM_UNREGISTER_COALESCED_MMIO
: {
3006 struct kvm_coalesced_mmio_zone zone
;
3009 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
3011 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
3016 struct kvm_irqfd data
;
3019 if (copy_from_user(&data
, argp
, sizeof(data
)))
3021 r
= kvm_irqfd(kvm
, &data
);
3024 case KVM_IOEVENTFD
: {
3025 struct kvm_ioeventfd data
;
3028 if (copy_from_user(&data
, argp
, sizeof(data
)))
3030 r
= kvm_ioeventfd(kvm
, &data
);
3033 #ifdef CONFIG_HAVE_KVM_MSI
3034 case KVM_SIGNAL_MSI
: {
3038 if (copy_from_user(&msi
, argp
, sizeof(msi
)))
3040 r
= kvm_send_userspace_msi(kvm
, &msi
);
3044 #ifdef __KVM_HAVE_IRQ_LINE
3045 case KVM_IRQ_LINE_STATUS
:
3046 case KVM_IRQ_LINE
: {
3047 struct kvm_irq_level irq_event
;
3050 if (copy_from_user(&irq_event
, argp
, sizeof(irq_event
)))
3053 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
,
3054 ioctl
== KVM_IRQ_LINE_STATUS
);
3059 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
3060 if (copy_to_user(argp
, &irq_event
, sizeof(irq_event
)))
3068 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3069 case KVM_SET_GSI_ROUTING
: {
3070 struct kvm_irq_routing routing
;
3071 struct kvm_irq_routing __user
*urouting
;
3072 struct kvm_irq_routing_entry
*entries
= NULL
;
3075 if (copy_from_user(&routing
, argp
, sizeof(routing
)))
3078 if (!kvm_arch_can_set_irq_routing(kvm
))
3080 if (routing
.nr
> KVM_MAX_IRQ_ROUTES
)
3086 entries
= vmalloc(array_size(sizeof(*entries
),
3092 if (copy_from_user(entries
, urouting
->entries
,
3093 routing
.nr
* sizeof(*entries
)))
3094 goto out_free_irq_routing
;
3096 r
= kvm_set_irq_routing(kvm
, entries
, routing
.nr
,
3098 out_free_irq_routing
:
3102 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3103 case KVM_CREATE_DEVICE
: {
3104 struct kvm_create_device cd
;
3107 if (copy_from_user(&cd
, argp
, sizeof(cd
)))
3110 r
= kvm_ioctl_create_device(kvm
, &cd
);
3115 if (copy_to_user(argp
, &cd
, sizeof(cd
)))
3121 case KVM_CHECK_EXTENSION
:
3122 r
= kvm_vm_ioctl_check_extension_generic(kvm
, arg
);
3125 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
3131 #ifdef CONFIG_KVM_COMPAT
3132 struct compat_kvm_dirty_log
{
3136 compat_uptr_t dirty_bitmap
; /* one bit per page */
3141 static long kvm_vm_compat_ioctl(struct file
*filp
,
3142 unsigned int ioctl
, unsigned long arg
)
3144 struct kvm
*kvm
= filp
->private_data
;
3147 if (kvm
->mm
!= current
->mm
)
3150 case KVM_GET_DIRTY_LOG
: {
3151 struct compat_kvm_dirty_log compat_log
;
3152 struct kvm_dirty_log log
;
3154 if (copy_from_user(&compat_log
, (void __user
*)arg
,
3155 sizeof(compat_log
)))
3157 log
.slot
= compat_log
.slot
;
3158 log
.padding1
= compat_log
.padding1
;
3159 log
.padding2
= compat_log
.padding2
;
3160 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
3162 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
3166 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
3172 static struct file_operations kvm_vm_fops
= {
3173 .release
= kvm_vm_release
,
3174 .unlocked_ioctl
= kvm_vm_ioctl
,
3175 .llseek
= noop_llseek
,
3176 KVM_COMPAT(kvm_vm_compat_ioctl
),
3179 static int kvm_dev_ioctl_create_vm(unsigned long type
)
3185 kvm
= kvm_create_vm(type
);
3187 return PTR_ERR(kvm
);
3188 #ifdef CONFIG_KVM_MMIO
3189 r
= kvm_coalesced_mmio_init(kvm
);
3193 r
= get_unused_fd_flags(O_CLOEXEC
);
3197 file
= anon_inode_getfile("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
);
3205 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3206 * already set, with ->release() being kvm_vm_release(). In error
3207 * cases it will be called by the final fput(file) and will take
3208 * care of doing kvm_put_kvm(kvm).
3210 if (kvm_create_vm_debugfs(kvm
, r
) < 0) {
3215 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM
, kvm
);
3217 fd_install(r
, file
);
3225 static long kvm_dev_ioctl(struct file
*filp
,
3226 unsigned int ioctl
, unsigned long arg
)
3231 case KVM_GET_API_VERSION
:
3234 r
= KVM_API_VERSION
;
3237 r
= kvm_dev_ioctl_create_vm(arg
);
3239 case KVM_CHECK_EXTENSION
:
3240 r
= kvm_vm_ioctl_check_extension_generic(NULL
, arg
);
3242 case KVM_GET_VCPU_MMAP_SIZE
:
3245 r
= PAGE_SIZE
; /* struct kvm_run */
3247 r
+= PAGE_SIZE
; /* pio data page */
3249 #ifdef CONFIG_KVM_MMIO
3250 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
3253 case KVM_TRACE_ENABLE
:
3254 case KVM_TRACE_PAUSE
:
3255 case KVM_TRACE_DISABLE
:
3259 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
3265 static struct file_operations kvm_chardev_ops
= {
3266 .unlocked_ioctl
= kvm_dev_ioctl
,
3267 .llseek
= noop_llseek
,
3268 KVM_COMPAT(kvm_dev_ioctl
),
3271 static struct miscdevice kvm_dev
= {
3277 static void hardware_enable_nolock(void *junk
)
3279 int cpu
= raw_smp_processor_id();
3282 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3285 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
3287 r
= kvm_arch_hardware_enable();
3290 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3291 atomic_inc(&hardware_enable_failed
);
3292 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu
);
3296 static int kvm_starting_cpu(unsigned int cpu
)
3298 raw_spin_lock(&kvm_count_lock
);
3299 if (kvm_usage_count
)
3300 hardware_enable_nolock(NULL
);
3301 raw_spin_unlock(&kvm_count_lock
);
3305 static void hardware_disable_nolock(void *junk
)
3307 int cpu
= raw_smp_processor_id();
3309 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3311 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3312 kvm_arch_hardware_disable();
3315 static int kvm_dying_cpu(unsigned int cpu
)
3317 raw_spin_lock(&kvm_count_lock
);
3318 if (kvm_usage_count
)
3319 hardware_disable_nolock(NULL
);
3320 raw_spin_unlock(&kvm_count_lock
);
3324 static void hardware_disable_all_nolock(void)
3326 BUG_ON(!kvm_usage_count
);
3329 if (!kvm_usage_count
)
3330 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3333 static void hardware_disable_all(void)
3335 raw_spin_lock(&kvm_count_lock
);
3336 hardware_disable_all_nolock();
3337 raw_spin_unlock(&kvm_count_lock
);
3340 static int hardware_enable_all(void)
3344 raw_spin_lock(&kvm_count_lock
);
3347 if (kvm_usage_count
== 1) {
3348 atomic_set(&hardware_enable_failed
, 0);
3349 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
3351 if (atomic_read(&hardware_enable_failed
)) {
3352 hardware_disable_all_nolock();
3357 raw_spin_unlock(&kvm_count_lock
);
3362 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
3366 * Some (well, at least mine) BIOSes hang on reboot if
3369 * And Intel TXT required VMX off for all cpu when system shutdown.
3371 pr_info("kvm: exiting hardware virtualization\n");
3372 kvm_rebooting
= true;
3373 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3377 static struct notifier_block kvm_reboot_notifier
= {
3378 .notifier_call
= kvm_reboot
,
3382 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
3386 for (i
= 0; i
< bus
->dev_count
; i
++) {
3387 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
3389 kvm_iodevice_destructor(pos
);
3394 static inline int kvm_io_bus_cmp(const struct kvm_io_range
*r1
,
3395 const struct kvm_io_range
*r2
)
3397 gpa_t addr1
= r1
->addr
;
3398 gpa_t addr2
= r2
->addr
;
3403 /* If r2->len == 0, match the exact address. If r2->len != 0,
3404 * accept any overlapping write. Any order is acceptable for
3405 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3406 * we process all of them.
3419 static int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
3421 return kvm_io_bus_cmp(p1
, p2
);
3424 static int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
3425 gpa_t addr
, int len
)
3427 struct kvm_io_range
*range
, key
;
3430 key
= (struct kvm_io_range
) {
3435 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
3436 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
3440 off
= range
- bus
->range
;
3442 while (off
> 0 && kvm_io_bus_cmp(&key
, &bus
->range
[off
-1]) == 0)
3448 static int __kvm_io_bus_write(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3449 struct kvm_io_range
*range
, const void *val
)
3453 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3457 while (idx
< bus
->dev_count
&&
3458 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3459 if (!kvm_iodevice_write(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3468 /* kvm_io_bus_write - called under kvm->slots_lock */
3469 int kvm_io_bus_write(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3470 int len
, const void *val
)
3472 struct kvm_io_bus
*bus
;
3473 struct kvm_io_range range
;
3476 range
= (struct kvm_io_range
) {
3481 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3484 r
= __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3485 return r
< 0 ? r
: 0;
3488 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3489 int kvm_io_bus_write_cookie(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
,
3490 gpa_t addr
, int len
, const void *val
, long cookie
)
3492 struct kvm_io_bus
*bus
;
3493 struct kvm_io_range range
;
3495 range
= (struct kvm_io_range
) {
3500 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3504 /* First try the device referenced by cookie. */
3505 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
3506 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
3507 if (!kvm_iodevice_write(vcpu
, bus
->range
[cookie
].dev
, addr
, len
,
3512 * cookie contained garbage; fall back to search and return the
3513 * correct cookie value.
3515 return __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3518 static int __kvm_io_bus_read(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3519 struct kvm_io_range
*range
, void *val
)
3523 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3527 while (idx
< bus
->dev_count
&&
3528 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3529 if (!kvm_iodevice_read(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3537 EXPORT_SYMBOL_GPL(kvm_io_bus_write
);
3539 /* kvm_io_bus_read - called under kvm->slots_lock */
3540 int kvm_io_bus_read(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3543 struct kvm_io_bus
*bus
;
3544 struct kvm_io_range range
;
3547 range
= (struct kvm_io_range
) {
3552 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3555 r
= __kvm_io_bus_read(vcpu
, bus
, &range
, val
);
3556 return r
< 0 ? r
: 0;
3560 /* Caller must hold slots_lock. */
3561 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
3562 int len
, struct kvm_io_device
*dev
)
3565 struct kvm_io_bus
*new_bus
, *bus
;
3566 struct kvm_io_range range
;
3568 bus
= kvm_get_bus(kvm
, bus_idx
);
3572 /* exclude ioeventfd which is limited by maximum fd */
3573 if (bus
->dev_count
- bus
->ioeventfd_count
> NR_IOBUS_DEVS
- 1)
3576 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
+ 1) *
3577 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3581 range
= (struct kvm_io_range
) {
3587 for (i
= 0; i
< bus
->dev_count
; i
++)
3588 if (kvm_io_bus_cmp(&bus
->range
[i
], &range
) > 0)
3591 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3592 new_bus
->dev_count
++;
3593 new_bus
->range
[i
] = range
;
3594 memcpy(new_bus
->range
+ i
+ 1, bus
->range
+ i
,
3595 (bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3596 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3597 synchronize_srcu_expedited(&kvm
->srcu
);
3603 /* Caller must hold slots_lock. */
3604 void kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3605 struct kvm_io_device
*dev
)
3608 struct kvm_io_bus
*new_bus
, *bus
;
3610 bus
= kvm_get_bus(kvm
, bus_idx
);
3614 for (i
= 0; i
< bus
->dev_count
; i
++)
3615 if (bus
->range
[i
].dev
== dev
) {
3619 if (i
== bus
->dev_count
)
3622 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
- 1) *
3623 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3625 pr_err("kvm: failed to shrink bus, removing it completely\n");
3629 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3630 new_bus
->dev_count
--;
3631 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
3632 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3635 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3636 synchronize_srcu_expedited(&kvm
->srcu
);
3641 struct kvm_io_device
*kvm_io_bus_get_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3644 struct kvm_io_bus
*bus
;
3645 int dev_idx
, srcu_idx
;
3646 struct kvm_io_device
*iodev
= NULL
;
3648 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
3650 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
3654 dev_idx
= kvm_io_bus_get_first_dev(bus
, addr
, 1);
3658 iodev
= bus
->range
[dev_idx
].dev
;
3661 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
3665 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev
);
3667 static int kvm_debugfs_open(struct inode
*inode
, struct file
*file
,
3668 int (*get
)(void *, u64
*), int (*set
)(void *, u64
),
3671 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
3674 /* The debugfs files are a reference to the kvm struct which
3675 * is still valid when kvm_destroy_vm is called.
3676 * To avoid the race between open and the removal of the debugfs
3677 * directory we test against the users count.
3679 if (!refcount_inc_not_zero(&stat_data
->kvm
->users_count
))
3682 if (simple_attr_open(inode
, file
, get
, set
, fmt
)) {
3683 kvm_put_kvm(stat_data
->kvm
);
3690 static int kvm_debugfs_release(struct inode
*inode
, struct file
*file
)
3692 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
3695 simple_attr_release(inode
, file
);
3696 kvm_put_kvm(stat_data
->kvm
);
3701 static int vm_stat_get_per_vm(void *data
, u64
*val
)
3703 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3705 *val
= *(ulong
*)((void *)stat_data
->kvm
+ stat_data
->offset
);
3710 static int vm_stat_clear_per_vm(void *data
, u64 val
)
3712 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3717 *(ulong
*)((void *)stat_data
->kvm
+ stat_data
->offset
) = 0;
3722 static int vm_stat_get_per_vm_open(struct inode
*inode
, struct file
*file
)
3724 __simple_attr_check_format("%llu\n", 0ull);
3725 return kvm_debugfs_open(inode
, file
, vm_stat_get_per_vm
,
3726 vm_stat_clear_per_vm
, "%llu\n");
3729 static const struct file_operations vm_stat_get_per_vm_fops
= {
3730 .owner
= THIS_MODULE
,
3731 .open
= vm_stat_get_per_vm_open
,
3732 .release
= kvm_debugfs_release
,
3733 .read
= simple_attr_read
,
3734 .write
= simple_attr_write
,
3735 .llseek
= no_llseek
,
3738 static int vcpu_stat_get_per_vm(void *data
, u64
*val
)
3741 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3742 struct kvm_vcpu
*vcpu
;
3746 kvm_for_each_vcpu(i
, vcpu
, stat_data
->kvm
)
3747 *val
+= *(u64
*)((void *)vcpu
+ stat_data
->offset
);
3752 static int vcpu_stat_clear_per_vm(void *data
, u64 val
)
3755 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3756 struct kvm_vcpu
*vcpu
;
3761 kvm_for_each_vcpu(i
, vcpu
, stat_data
->kvm
)
3762 *(u64
*)((void *)vcpu
+ stat_data
->offset
) = 0;
3767 static int vcpu_stat_get_per_vm_open(struct inode
*inode
, struct file
*file
)
3769 __simple_attr_check_format("%llu\n", 0ull);
3770 return kvm_debugfs_open(inode
, file
, vcpu_stat_get_per_vm
,
3771 vcpu_stat_clear_per_vm
, "%llu\n");
3774 static const struct file_operations vcpu_stat_get_per_vm_fops
= {
3775 .owner
= THIS_MODULE
,
3776 .open
= vcpu_stat_get_per_vm_open
,
3777 .release
= kvm_debugfs_release
,
3778 .read
= simple_attr_read
,
3779 .write
= simple_attr_write
,
3780 .llseek
= no_llseek
,
3783 static const struct file_operations
*stat_fops_per_vm
[] = {
3784 [KVM_STAT_VCPU
] = &vcpu_stat_get_per_vm_fops
,
3785 [KVM_STAT_VM
] = &vm_stat_get_per_vm_fops
,
3788 static int vm_stat_get(void *_offset
, u64
*val
)
3790 unsigned offset
= (long)_offset
;
3792 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3796 spin_lock(&kvm_lock
);
3797 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3799 vm_stat_get_per_vm((void *)&stat_tmp
, &tmp_val
);
3802 spin_unlock(&kvm_lock
);
3806 static int vm_stat_clear(void *_offset
, u64 val
)
3808 unsigned offset
= (long)_offset
;
3810 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3815 spin_lock(&kvm_lock
);
3816 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3818 vm_stat_clear_per_vm((void *)&stat_tmp
, 0);
3820 spin_unlock(&kvm_lock
);
3825 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, vm_stat_clear
, "%llu\n");
3827 static int vcpu_stat_get(void *_offset
, u64
*val
)
3829 unsigned offset
= (long)_offset
;
3831 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3835 spin_lock(&kvm_lock
);
3836 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3838 vcpu_stat_get_per_vm((void *)&stat_tmp
, &tmp_val
);
3841 spin_unlock(&kvm_lock
);
3845 static int vcpu_stat_clear(void *_offset
, u64 val
)
3847 unsigned offset
= (long)_offset
;
3849 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3854 spin_lock(&kvm_lock
);
3855 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3857 vcpu_stat_clear_per_vm((void *)&stat_tmp
, 0);
3859 spin_unlock(&kvm_lock
);
3864 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, vcpu_stat_clear
,
3867 static const struct file_operations
*stat_fops
[] = {
3868 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
3869 [KVM_STAT_VM
] = &vm_stat_fops
,
3872 static void kvm_uevent_notify_change(unsigned int type
, struct kvm
*kvm
)
3874 struct kobj_uevent_env
*env
;
3875 unsigned long long created
, active
;
3877 if (!kvm_dev
.this_device
|| !kvm
)
3880 spin_lock(&kvm_lock
);
3881 if (type
== KVM_EVENT_CREATE_VM
) {
3882 kvm_createvm_count
++;
3884 } else if (type
== KVM_EVENT_DESTROY_VM
) {
3887 created
= kvm_createvm_count
;
3888 active
= kvm_active_vms
;
3889 spin_unlock(&kvm_lock
);
3891 env
= kzalloc(sizeof(*env
), GFP_KERNEL
);
3895 add_uevent_var(env
, "CREATED=%llu", created
);
3896 add_uevent_var(env
, "COUNT=%llu", active
);
3898 if (type
== KVM_EVENT_CREATE_VM
) {
3899 add_uevent_var(env
, "EVENT=create");
3900 kvm
->userspace_pid
= task_pid_nr(current
);
3901 } else if (type
== KVM_EVENT_DESTROY_VM
) {
3902 add_uevent_var(env
, "EVENT=destroy");
3904 add_uevent_var(env
, "PID=%d", kvm
->userspace_pid
);
3906 if (kvm
->debugfs_dentry
) {
3907 char *tmp
, *p
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3910 tmp
= dentry_path_raw(kvm
->debugfs_dentry
, p
, PATH_MAX
);
3912 add_uevent_var(env
, "STATS_PATH=%s", tmp
);
3916 /* no need for checks, since we are adding at most only 5 keys */
3917 env
->envp
[env
->envp_idx
++] = NULL
;
3918 kobject_uevent_env(&kvm_dev
.this_device
->kobj
, KOBJ_CHANGE
, env
->envp
);
3922 static void kvm_init_debug(void)
3924 struct kvm_stats_debugfs_item
*p
;
3926 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3928 kvm_debugfs_num_entries
= 0;
3929 for (p
= debugfs_entries
; p
->name
; ++p
, kvm_debugfs_num_entries
++) {
3930 debugfs_create_file(p
->name
, 0644, kvm_debugfs_dir
,
3931 (void *)(long)p
->offset
,
3932 stat_fops
[p
->kind
]);
3936 static int kvm_suspend(void)
3938 if (kvm_usage_count
)
3939 hardware_disable_nolock(NULL
);
3943 static void kvm_resume(void)
3945 if (kvm_usage_count
) {
3946 WARN_ON(raw_spin_is_locked(&kvm_count_lock
));
3947 hardware_enable_nolock(NULL
);
3951 static struct syscore_ops kvm_syscore_ops
= {
3952 .suspend
= kvm_suspend
,
3953 .resume
= kvm_resume
,
3957 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
3959 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
3962 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
3964 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3966 if (vcpu
->preempted
)
3967 vcpu
->preempted
= false;
3969 kvm_arch_sched_in(vcpu
, cpu
);
3971 kvm_arch_vcpu_load(vcpu
, cpu
);
3974 static void kvm_sched_out(struct preempt_notifier
*pn
,
3975 struct task_struct
*next
)
3977 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3979 if (current
->state
== TASK_RUNNING
)
3980 vcpu
->preempted
= true;
3981 kvm_arch_vcpu_put(vcpu
);
3984 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
3985 struct module
*module
)
3990 r
= kvm_arch_init(opaque
);
3995 * kvm_arch_init makes sure there's at most one caller
3996 * for architectures that support multiple implementations,
3997 * like intel and amd on x86.
3998 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3999 * conflicts in case kvm is already setup for another implementation.
4001 r
= kvm_irqfd_init();
4005 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
4010 r
= kvm_arch_hardware_setup();
4014 for_each_online_cpu(cpu
) {
4015 smp_call_function_single(cpu
,
4016 kvm_arch_check_processor_compat
,
4022 r
= cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING
, "kvm/cpu:starting",
4023 kvm_starting_cpu
, kvm_dying_cpu
);
4026 register_reboot_notifier(&kvm_reboot_notifier
);
4028 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4030 vcpu_align
= __alignof__(struct kvm_vcpu
);
4032 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size
, vcpu_align
,
4034 offsetof(struct kvm_vcpu
, arch
),
4035 sizeof_field(struct kvm_vcpu
, arch
),
4037 if (!kvm_vcpu_cache
) {
4042 r
= kvm_async_pf_init();
4046 kvm_chardev_ops
.owner
= module
;
4047 kvm_vm_fops
.owner
= module
;
4048 kvm_vcpu_fops
.owner
= module
;
4050 r
= misc_register(&kvm_dev
);
4052 pr_err("kvm: misc device register failed\n");
4056 register_syscore_ops(&kvm_syscore_ops
);
4058 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
4059 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
4063 r
= kvm_vfio_ops_init();
4069 kvm_async_pf_deinit();
4071 kmem_cache_destroy(kvm_vcpu_cache
);
4073 unregister_reboot_notifier(&kvm_reboot_notifier
);
4074 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING
);
4077 kvm_arch_hardware_unsetup();
4079 free_cpumask_var(cpus_hardware_enabled
);
4087 EXPORT_SYMBOL_GPL(kvm_init
);
4091 debugfs_remove_recursive(kvm_debugfs_dir
);
4092 misc_deregister(&kvm_dev
);
4093 kmem_cache_destroy(kvm_vcpu_cache
);
4094 kvm_async_pf_deinit();
4095 unregister_syscore_ops(&kvm_syscore_ops
);
4096 unregister_reboot_notifier(&kvm_reboot_notifier
);
4097 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING
);
4098 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
4099 kvm_arch_hardware_unsetup();
4102 free_cpumask_var(cpus_hardware_enabled
);
4103 kvm_vfio_ops_exit();
4105 EXPORT_SYMBOL_GPL(kvm_exit
);