1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim
;
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
80 struct mem_cgroup
*target_mem_cgroup
;
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage
:1;
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap
:1;
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap
:1;
92 * Cgroups are not reclaimed below their configured memory.low,
93 * unless we threaten to OOM. If any cgroups are skipped due to
94 * memory.low and nothing was reclaimed, go back for memory.low.
96 unsigned int memcg_low_reclaim
:1;
97 unsigned int memcg_low_skipped
:1;
99 unsigned int hibernation_mode
:1;
101 /* One of the zones is ready for compaction */
102 unsigned int compaction_ready
:1;
104 /* Allocation order */
107 /* Scan (total_size >> priority) pages at once */
110 /* The highest zone to isolate pages for reclaim from */
113 /* This context's GFP mask */
116 /* Incremented by the number of inactive pages that were scanned */
117 unsigned long nr_scanned
;
119 /* Number of pages freed so far during a call to shrink_zones() */
120 unsigned long nr_reclaimed
;
124 unsigned int unqueued_dirty
;
125 unsigned int congested
;
126 unsigned int writeback
;
127 unsigned int immediate
;
128 unsigned int file_taken
;
132 /* for recording the reclaimed slab by now */
133 struct reclaim_state reclaim_state
;
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field) \
139 if ((_page)->lru.prev != _base) { \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field) \
153 if ((_page)->lru.prev != _base) { \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 * From 0 .. 100. Higher means more swappy.
167 int vm_swappiness
= 60;
169 * The total number of pages which are beyond the high watermark within all
172 unsigned long vm_total_pages
;
174 static void set_task_reclaim_state(struct task_struct
*task
,
175 struct reclaim_state
*rs
)
177 /* Check for an overwrite */
178 WARN_ON_ONCE(rs
&& task
->reclaim_state
);
180 /* Check for the nulling of an already-nulled member */
181 WARN_ON_ONCE(!rs
&& !task
->reclaim_state
);
183 task
->reclaim_state
= rs
;
186 static LIST_HEAD(shrinker_list
);
187 static DECLARE_RWSEM(shrinker_rwsem
);
191 * We allow subsystems to populate their shrinker-related
192 * LRU lists before register_shrinker_prepared() is called
193 * for the shrinker, since we don't want to impose
194 * restrictions on their internal registration order.
195 * In this case shrink_slab_memcg() may find corresponding
196 * bit is set in the shrinkers map.
198 * This value is used by the function to detect registering
199 * shrinkers and to skip do_shrink_slab() calls for them.
201 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
203 static DEFINE_IDR(shrinker_idr
);
204 static int shrinker_nr_max
;
206 static int prealloc_memcg_shrinker(struct shrinker
*shrinker
)
208 int id
, ret
= -ENOMEM
;
210 down_write(&shrinker_rwsem
);
211 /* This may call shrinker, so it must use down_read_trylock() */
212 id
= idr_alloc(&shrinker_idr
, SHRINKER_REGISTERING
, 0, 0, GFP_KERNEL
);
216 if (id
>= shrinker_nr_max
) {
217 if (memcg_expand_shrinker_maps(id
)) {
218 idr_remove(&shrinker_idr
, id
);
222 shrinker_nr_max
= id
+ 1;
227 up_write(&shrinker_rwsem
);
231 static void unregister_memcg_shrinker(struct shrinker
*shrinker
)
233 int id
= shrinker
->id
;
237 down_write(&shrinker_rwsem
);
238 idr_remove(&shrinker_idr
, id
);
239 up_write(&shrinker_rwsem
);
242 static bool global_reclaim(struct scan_control
*sc
)
244 return !sc
->target_mem_cgroup
;
248 * sane_reclaim - is the usual dirty throttling mechanism operational?
249 * @sc: scan_control in question
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
260 static bool sane_reclaim(struct scan_control
*sc
)
262 struct mem_cgroup
*memcg
= sc
->target_mem_cgroup
;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
273 static void set_memcg_congestion(pg_data_t
*pgdat
,
274 struct mem_cgroup
*memcg
,
277 struct mem_cgroup_per_node
*mn
;
282 mn
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
283 WRITE_ONCE(mn
->congested
, congested
);
286 static bool memcg_congested(pg_data_t
*pgdat
,
287 struct mem_cgroup
*memcg
)
289 struct mem_cgroup_per_node
*mn
;
291 mn
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
292 return READ_ONCE(mn
->congested
);
296 static int prealloc_memcg_shrinker(struct shrinker
*shrinker
)
301 static void unregister_memcg_shrinker(struct shrinker
*shrinker
)
305 static bool global_reclaim(struct scan_control
*sc
)
310 static bool sane_reclaim(struct scan_control
*sc
)
315 static inline void set_memcg_congestion(struct pglist_data
*pgdat
,
316 struct mem_cgroup
*memcg
, bool congested
)
320 static inline bool memcg_congested(struct pglist_data
*pgdat
,
321 struct mem_cgroup
*memcg
)
329 * This misses isolated pages which are not accounted for to save counters.
330 * As the data only determines if reclaim or compaction continues, it is
331 * not expected that isolated pages will be a dominating factor.
333 unsigned long zone_reclaimable_pages(struct zone
*zone
)
337 nr
= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_FILE
) +
338 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_FILE
);
339 if (get_nr_swap_pages() > 0)
340 nr
+= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_ANON
) +
341 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_ANON
);
347 * lruvec_lru_size - Returns the number of pages on the given LRU list.
348 * @lruvec: lru vector
350 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
352 unsigned long lruvec_lru_size(struct lruvec
*lruvec
, enum lru_list lru
, int zone_idx
)
354 unsigned long lru_size
;
357 if (!mem_cgroup_disabled())
358 lru_size
= lruvec_page_state_local(lruvec
, NR_LRU_BASE
+ lru
);
360 lru_size
= node_page_state(lruvec_pgdat(lruvec
), NR_LRU_BASE
+ lru
);
362 for (zid
= zone_idx
+ 1; zid
< MAX_NR_ZONES
; zid
++) {
363 struct zone
*zone
= &lruvec_pgdat(lruvec
)->node_zones
[zid
];
366 if (!managed_zone(zone
))
369 if (!mem_cgroup_disabled())
370 size
= mem_cgroup_get_zone_lru_size(lruvec
, lru
, zid
);
372 size
= zone_page_state(&lruvec_pgdat(lruvec
)->node_zones
[zid
],
373 NR_ZONE_LRU_BASE
+ lru
);
374 lru_size
-= min(size
, lru_size
);
382 * Add a shrinker callback to be called from the vm.
384 int prealloc_shrinker(struct shrinker
*shrinker
)
386 unsigned int size
= sizeof(*shrinker
->nr_deferred
);
388 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
391 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
392 if (!shrinker
->nr_deferred
)
395 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
) {
396 if (prealloc_memcg_shrinker(shrinker
))
403 kfree(shrinker
->nr_deferred
);
404 shrinker
->nr_deferred
= NULL
;
408 void free_prealloced_shrinker(struct shrinker
*shrinker
)
410 if (!shrinker
->nr_deferred
)
413 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
414 unregister_memcg_shrinker(shrinker
);
416 kfree(shrinker
->nr_deferred
);
417 shrinker
->nr_deferred
= NULL
;
420 void register_shrinker_prepared(struct shrinker
*shrinker
)
422 down_write(&shrinker_rwsem
);
423 list_add_tail(&shrinker
->list
, &shrinker_list
);
424 #ifdef CONFIG_MEMCG_KMEM
425 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
426 idr_replace(&shrinker_idr
, shrinker
, shrinker
->id
);
428 up_write(&shrinker_rwsem
);
431 int register_shrinker(struct shrinker
*shrinker
)
433 int err
= prealloc_shrinker(shrinker
);
437 register_shrinker_prepared(shrinker
);
440 EXPORT_SYMBOL(register_shrinker
);
445 void unregister_shrinker(struct shrinker
*shrinker
)
447 if (!shrinker
->nr_deferred
)
449 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
450 unregister_memcg_shrinker(shrinker
);
451 down_write(&shrinker_rwsem
);
452 list_del(&shrinker
->list
);
453 up_write(&shrinker_rwsem
);
454 kfree(shrinker
->nr_deferred
);
455 shrinker
->nr_deferred
= NULL
;
457 EXPORT_SYMBOL(unregister_shrinker
);
459 #define SHRINK_BATCH 128
461 static unsigned long do_shrink_slab(struct shrink_control
*shrinkctl
,
462 struct shrinker
*shrinker
, int priority
)
464 unsigned long freed
= 0;
465 unsigned long long delta
;
470 int nid
= shrinkctl
->nid
;
471 long batch_size
= shrinker
->batch
? shrinker
->batch
473 long scanned
= 0, next_deferred
;
475 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
478 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
479 if (freeable
== 0 || freeable
== SHRINK_EMPTY
)
483 * copy the current shrinker scan count into a local variable
484 * and zero it so that other concurrent shrinker invocations
485 * don't also do this scanning work.
487 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
490 if (shrinker
->seeks
) {
491 delta
= freeable
>> priority
;
493 do_div(delta
, shrinker
->seeks
);
496 * These objects don't require any IO to create. Trim
497 * them aggressively under memory pressure to keep
498 * them from causing refetches in the IO caches.
500 delta
= freeable
/ 2;
504 if (total_scan
< 0) {
505 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
506 shrinker
->scan_objects
, total_scan
);
507 total_scan
= freeable
;
510 next_deferred
= total_scan
;
513 * We need to avoid excessive windup on filesystem shrinkers
514 * due to large numbers of GFP_NOFS allocations causing the
515 * shrinkers to return -1 all the time. This results in a large
516 * nr being built up so when a shrink that can do some work
517 * comes along it empties the entire cache due to nr >>>
518 * freeable. This is bad for sustaining a working set in
521 * Hence only allow the shrinker to scan the entire cache when
522 * a large delta change is calculated directly.
524 if (delta
< freeable
/ 4)
525 total_scan
= min(total_scan
, freeable
/ 2);
528 * Avoid risking looping forever due to too large nr value:
529 * never try to free more than twice the estimate number of
532 if (total_scan
> freeable
* 2)
533 total_scan
= freeable
* 2;
535 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
536 freeable
, delta
, total_scan
, priority
);
539 * Normally, we should not scan less than batch_size objects in one
540 * pass to avoid too frequent shrinker calls, but if the slab has less
541 * than batch_size objects in total and we are really tight on memory,
542 * we will try to reclaim all available objects, otherwise we can end
543 * up failing allocations although there are plenty of reclaimable
544 * objects spread over several slabs with usage less than the
547 * We detect the "tight on memory" situations by looking at the total
548 * number of objects we want to scan (total_scan). If it is greater
549 * than the total number of objects on slab (freeable), we must be
550 * scanning at high prio and therefore should try to reclaim as much as
553 while (total_scan
>= batch_size
||
554 total_scan
>= freeable
) {
556 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
558 shrinkctl
->nr_to_scan
= nr_to_scan
;
559 shrinkctl
->nr_scanned
= nr_to_scan
;
560 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
561 if (ret
== SHRINK_STOP
)
565 count_vm_events(SLABS_SCANNED
, shrinkctl
->nr_scanned
);
566 total_scan
-= shrinkctl
->nr_scanned
;
567 scanned
+= shrinkctl
->nr_scanned
;
572 if (next_deferred
>= scanned
)
573 next_deferred
-= scanned
;
577 * move the unused scan count back into the shrinker in a
578 * manner that handles concurrent updates. If we exhausted the
579 * scan, there is no need to do an update.
581 if (next_deferred
> 0)
582 new_nr
= atomic_long_add_return(next_deferred
,
583 &shrinker
->nr_deferred
[nid
]);
585 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
587 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
592 static unsigned long shrink_slab_memcg(gfp_t gfp_mask
, int nid
,
593 struct mem_cgroup
*memcg
, int priority
)
595 struct memcg_shrinker_map
*map
;
596 unsigned long ret
, freed
= 0;
599 if (!mem_cgroup_online(memcg
))
602 if (!down_read_trylock(&shrinker_rwsem
))
605 map
= rcu_dereference_protected(memcg
->nodeinfo
[nid
]->shrinker_map
,
610 for_each_set_bit(i
, map
->map
, shrinker_nr_max
) {
611 struct shrink_control sc
= {
612 .gfp_mask
= gfp_mask
,
616 struct shrinker
*shrinker
;
618 shrinker
= idr_find(&shrinker_idr
, i
);
619 if (unlikely(!shrinker
|| shrinker
== SHRINKER_REGISTERING
)) {
621 clear_bit(i
, map
->map
);
625 /* Call non-slab shrinkers even though kmem is disabled */
626 if (!memcg_kmem_enabled() &&
627 !(shrinker
->flags
& SHRINKER_NONSLAB
))
630 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
631 if (ret
== SHRINK_EMPTY
) {
632 clear_bit(i
, map
->map
);
634 * After the shrinker reported that it had no objects to
635 * free, but before we cleared the corresponding bit in
636 * the memcg shrinker map, a new object might have been
637 * added. To make sure, we have the bit set in this
638 * case, we invoke the shrinker one more time and reset
639 * the bit if it reports that it is not empty anymore.
640 * The memory barrier here pairs with the barrier in
641 * memcg_set_shrinker_bit():
643 * list_lru_add() shrink_slab_memcg()
644 * list_add_tail() clear_bit()
646 * set_bit() do_shrink_slab()
648 smp_mb__after_atomic();
649 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
650 if (ret
== SHRINK_EMPTY
)
653 memcg_set_shrinker_bit(memcg
, nid
, i
);
657 if (rwsem_is_contended(&shrinker_rwsem
)) {
663 up_read(&shrinker_rwsem
);
666 #else /* CONFIG_MEMCG */
667 static unsigned long shrink_slab_memcg(gfp_t gfp_mask
, int nid
,
668 struct mem_cgroup
*memcg
, int priority
)
672 #endif /* CONFIG_MEMCG */
675 * shrink_slab - shrink slab caches
676 * @gfp_mask: allocation context
677 * @nid: node whose slab caches to target
678 * @memcg: memory cgroup whose slab caches to target
679 * @priority: the reclaim priority
681 * Call the shrink functions to age shrinkable caches.
683 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
684 * unaware shrinkers will receive a node id of 0 instead.
686 * @memcg specifies the memory cgroup to target. Unaware shrinkers
687 * are called only if it is the root cgroup.
689 * @priority is sc->priority, we take the number of objects and >> by priority
690 * in order to get the scan target.
692 * Returns the number of reclaimed slab objects.
694 static unsigned long shrink_slab(gfp_t gfp_mask
, int nid
,
695 struct mem_cgroup
*memcg
,
698 unsigned long ret
, freed
= 0;
699 struct shrinker
*shrinker
;
702 * The root memcg might be allocated even though memcg is disabled
703 * via "cgroup_disable=memory" boot parameter. This could make
704 * mem_cgroup_is_root() return false, then just run memcg slab
705 * shrink, but skip global shrink. This may result in premature
708 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg
))
709 return shrink_slab_memcg(gfp_mask
, nid
, memcg
, priority
);
711 if (!down_read_trylock(&shrinker_rwsem
))
714 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
715 struct shrink_control sc
= {
716 .gfp_mask
= gfp_mask
,
721 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
722 if (ret
== SHRINK_EMPTY
)
726 * Bail out if someone want to register a new shrinker to
727 * prevent the regsitration from being stalled for long periods
728 * by parallel ongoing shrinking.
730 if (rwsem_is_contended(&shrinker_rwsem
)) {
736 up_read(&shrinker_rwsem
);
742 void drop_slab_node(int nid
)
747 struct mem_cgroup
*memcg
= NULL
;
750 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
752 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
, 0);
753 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
754 } while (freed
> 10);
761 for_each_online_node(nid
)
765 static inline int is_page_cache_freeable(struct page
*page
)
768 * A freeable page cache page is referenced only by the caller
769 * that isolated the page, the page cache and optional buffer
770 * heads at page->private.
772 int page_cache_pins
= PageTransHuge(page
) && PageSwapCache(page
) ?
774 return page_count(page
) - page_has_private(page
) == 1 + page_cache_pins
;
777 static int may_write_to_inode(struct inode
*inode
, struct scan_control
*sc
)
779 if (current
->flags
& PF_SWAPWRITE
)
781 if (!inode_write_congested(inode
))
783 if (inode_to_bdi(inode
) == current
->backing_dev_info
)
789 * We detected a synchronous write error writing a page out. Probably
790 * -ENOSPC. We need to propagate that into the address_space for a subsequent
791 * fsync(), msync() or close().
793 * The tricky part is that after writepage we cannot touch the mapping: nothing
794 * prevents it from being freed up. But we have a ref on the page and once
795 * that page is locked, the mapping is pinned.
797 * We're allowed to run sleeping lock_page() here because we know the caller has
800 static void handle_write_error(struct address_space
*mapping
,
801 struct page
*page
, int error
)
804 if (page_mapping(page
) == mapping
)
805 mapping_set_error(mapping
, error
);
809 /* possible outcome of pageout() */
811 /* failed to write page out, page is locked */
813 /* move page to the active list, page is locked */
815 /* page has been sent to the disk successfully, page is unlocked */
817 /* page is clean and locked */
822 * pageout is called by shrink_page_list() for each dirty page.
823 * Calls ->writepage().
825 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
826 struct scan_control
*sc
)
829 * If the page is dirty, only perform writeback if that write
830 * will be non-blocking. To prevent this allocation from being
831 * stalled by pagecache activity. But note that there may be
832 * stalls if we need to run get_block(). We could test
833 * PagePrivate for that.
835 * If this process is currently in __generic_file_write_iter() against
836 * this page's queue, we can perform writeback even if that
839 * If the page is swapcache, write it back even if that would
840 * block, for some throttling. This happens by accident, because
841 * swap_backing_dev_info is bust: it doesn't reflect the
842 * congestion state of the swapdevs. Easy to fix, if needed.
844 if (!is_page_cache_freeable(page
))
848 * Some data journaling orphaned pages can have
849 * page->mapping == NULL while being dirty with clean buffers.
851 if (page_has_private(page
)) {
852 if (try_to_free_buffers(page
)) {
853 ClearPageDirty(page
);
854 pr_info("%s: orphaned page\n", __func__
);
860 if (mapping
->a_ops
->writepage
== NULL
)
861 return PAGE_ACTIVATE
;
862 if (!may_write_to_inode(mapping
->host
, sc
))
865 if (clear_page_dirty_for_io(page
)) {
867 struct writeback_control wbc
= {
868 .sync_mode
= WB_SYNC_NONE
,
869 .nr_to_write
= SWAP_CLUSTER_MAX
,
871 .range_end
= LLONG_MAX
,
875 SetPageReclaim(page
);
876 res
= mapping
->a_ops
->writepage(page
, &wbc
);
878 handle_write_error(mapping
, page
, res
);
879 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
880 ClearPageReclaim(page
);
881 return PAGE_ACTIVATE
;
884 if (!PageWriteback(page
)) {
885 /* synchronous write or broken a_ops? */
886 ClearPageReclaim(page
);
888 trace_mm_vmscan_writepage(page
);
889 inc_node_page_state(page
, NR_VMSCAN_WRITE
);
897 * Same as remove_mapping, but if the page is removed from the mapping, it
898 * gets returned with a refcount of 0.
900 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
906 BUG_ON(!PageLocked(page
));
907 BUG_ON(mapping
!= page_mapping(page
));
909 xa_lock_irqsave(&mapping
->i_pages
, flags
);
911 * The non racy check for a busy page.
913 * Must be careful with the order of the tests. When someone has
914 * a ref to the page, it may be possible that they dirty it then
915 * drop the reference. So if PageDirty is tested before page_count
916 * here, then the following race may occur:
918 * get_user_pages(&page);
919 * [user mapping goes away]
921 * !PageDirty(page) [good]
922 * SetPageDirty(page);
924 * !page_count(page) [good, discard it]
926 * [oops, our write_to data is lost]
928 * Reversing the order of the tests ensures such a situation cannot
929 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
930 * load is not satisfied before that of page->_refcount.
932 * Note that if SetPageDirty is always performed via set_page_dirty,
933 * and thus under the i_pages lock, then this ordering is not required.
935 if (unlikely(PageTransHuge(page
)) && PageSwapCache(page
))
936 refcount
= 1 + HPAGE_PMD_NR
;
939 if (!page_ref_freeze(page
, refcount
))
941 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
942 if (unlikely(PageDirty(page
))) {
943 page_ref_unfreeze(page
, refcount
);
947 if (PageSwapCache(page
)) {
948 swp_entry_t swap
= { .val
= page_private(page
) };
949 mem_cgroup_swapout(page
, swap
);
950 __delete_from_swap_cache(page
, swap
);
951 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
952 put_swap_page(page
, swap
);
954 void (*freepage
)(struct page
*);
957 freepage
= mapping
->a_ops
->freepage
;
959 * Remember a shadow entry for reclaimed file cache in
960 * order to detect refaults, thus thrashing, later on.
962 * But don't store shadows in an address space that is
963 * already exiting. This is not just an optizimation,
964 * inode reclaim needs to empty out the radix tree or
965 * the nodes are lost. Don't plant shadows behind its
968 * We also don't store shadows for DAX mappings because the
969 * only page cache pages found in these are zero pages
970 * covering holes, and because we don't want to mix DAX
971 * exceptional entries and shadow exceptional entries in the
972 * same address_space.
974 if (reclaimed
&& page_is_file_cache(page
) &&
975 !mapping_exiting(mapping
) && !dax_mapping(mapping
))
976 shadow
= workingset_eviction(page
);
977 __delete_from_page_cache(page
, shadow
);
978 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
980 if (freepage
!= NULL
)
987 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
992 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
993 * someone else has a ref on the page, abort and return 0. If it was
994 * successfully detached, return 1. Assumes the caller has a single ref on
997 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
999 if (__remove_mapping(mapping
, page
, false)) {
1001 * Unfreezing the refcount with 1 rather than 2 effectively
1002 * drops the pagecache ref for us without requiring another
1005 page_ref_unfreeze(page
, 1);
1012 * putback_lru_page - put previously isolated page onto appropriate LRU list
1013 * @page: page to be put back to appropriate lru list
1015 * Add previously isolated @page to appropriate LRU list.
1016 * Page may still be unevictable for other reasons.
1018 * lru_lock must not be held, interrupts must be enabled.
1020 void putback_lru_page(struct page
*page
)
1022 lru_cache_add(page
);
1023 put_page(page
); /* drop ref from isolate */
1026 enum page_references
{
1028 PAGEREF_RECLAIM_CLEAN
,
1033 static enum page_references
page_check_references(struct page
*page
,
1034 struct scan_control
*sc
)
1036 int referenced_ptes
, referenced_page
;
1037 unsigned long vm_flags
;
1039 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
1041 referenced_page
= TestClearPageReferenced(page
);
1044 * Mlock lost the isolation race with us. Let try_to_unmap()
1045 * move the page to the unevictable list.
1047 if (vm_flags
& VM_LOCKED
)
1048 return PAGEREF_RECLAIM
;
1050 if (referenced_ptes
) {
1051 if (PageSwapBacked(page
))
1052 return PAGEREF_ACTIVATE
;
1054 * All mapped pages start out with page table
1055 * references from the instantiating fault, so we need
1056 * to look twice if a mapped file page is used more
1059 * Mark it and spare it for another trip around the
1060 * inactive list. Another page table reference will
1061 * lead to its activation.
1063 * Note: the mark is set for activated pages as well
1064 * so that recently deactivated but used pages are
1065 * quickly recovered.
1067 SetPageReferenced(page
);
1069 if (referenced_page
|| referenced_ptes
> 1)
1070 return PAGEREF_ACTIVATE
;
1073 * Activate file-backed executable pages after first usage.
1075 if (vm_flags
& VM_EXEC
)
1076 return PAGEREF_ACTIVATE
;
1078 return PAGEREF_KEEP
;
1081 /* Reclaim if clean, defer dirty pages to writeback */
1082 if (referenced_page
&& !PageSwapBacked(page
))
1083 return PAGEREF_RECLAIM_CLEAN
;
1085 return PAGEREF_RECLAIM
;
1088 /* Check if a page is dirty or under writeback */
1089 static void page_check_dirty_writeback(struct page
*page
,
1090 bool *dirty
, bool *writeback
)
1092 struct address_space
*mapping
;
1095 * Anonymous pages are not handled by flushers and must be written
1096 * from reclaim context. Do not stall reclaim based on them
1098 if (!page_is_file_cache(page
) ||
1099 (PageAnon(page
) && !PageSwapBacked(page
))) {
1105 /* By default assume that the page flags are accurate */
1106 *dirty
= PageDirty(page
);
1107 *writeback
= PageWriteback(page
);
1109 /* Verify dirty/writeback state if the filesystem supports it */
1110 if (!page_has_private(page
))
1113 mapping
= page_mapping(page
);
1114 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
1115 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
1119 * shrink_page_list() returns the number of reclaimed pages
1121 static unsigned long shrink_page_list(struct list_head
*page_list
,
1122 struct pglist_data
*pgdat
,
1123 struct scan_control
*sc
,
1124 enum ttu_flags ttu_flags
,
1125 struct reclaim_stat
*stat
,
1126 bool ignore_references
)
1128 LIST_HEAD(ret_pages
);
1129 LIST_HEAD(free_pages
);
1130 unsigned nr_reclaimed
= 0;
1131 unsigned pgactivate
= 0;
1133 memset(stat
, 0, sizeof(*stat
));
1136 while (!list_empty(page_list
)) {
1137 struct address_space
*mapping
;
1140 enum page_references references
= PAGEREF_RECLAIM
;
1141 bool dirty
, writeback
;
1142 unsigned int nr_pages
;
1146 page
= lru_to_page(page_list
);
1147 list_del(&page
->lru
);
1149 if (!trylock_page(page
))
1152 VM_BUG_ON_PAGE(PageActive(page
), page
);
1154 nr_pages
= compound_nr(page
);
1156 /* Account the number of base pages even though THP */
1157 sc
->nr_scanned
+= nr_pages
;
1159 if (unlikely(!page_evictable(page
)))
1160 goto activate_locked
;
1162 if (!sc
->may_unmap
&& page_mapped(page
))
1165 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
1166 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
1169 * The number of dirty pages determines if a node is marked
1170 * reclaim_congested which affects wait_iff_congested. kswapd
1171 * will stall and start writing pages if the tail of the LRU
1172 * is all dirty unqueued pages.
1174 page_check_dirty_writeback(page
, &dirty
, &writeback
);
1175 if (dirty
|| writeback
)
1178 if (dirty
&& !writeback
)
1179 stat
->nr_unqueued_dirty
++;
1182 * Treat this page as congested if the underlying BDI is or if
1183 * pages are cycling through the LRU so quickly that the
1184 * pages marked for immediate reclaim are making it to the
1185 * end of the LRU a second time.
1187 mapping
= page_mapping(page
);
1188 if (((dirty
|| writeback
) && mapping
&&
1189 inode_write_congested(mapping
->host
)) ||
1190 (writeback
&& PageReclaim(page
)))
1191 stat
->nr_congested
++;
1194 * If a page at the tail of the LRU is under writeback, there
1195 * are three cases to consider.
1197 * 1) If reclaim is encountering an excessive number of pages
1198 * under writeback and this page is both under writeback and
1199 * PageReclaim then it indicates that pages are being queued
1200 * for IO but are being recycled through the LRU before the
1201 * IO can complete. Waiting on the page itself risks an
1202 * indefinite stall if it is impossible to writeback the
1203 * page due to IO error or disconnected storage so instead
1204 * note that the LRU is being scanned too quickly and the
1205 * caller can stall after page list has been processed.
1207 * 2) Global or new memcg reclaim encounters a page that is
1208 * not marked for immediate reclaim, or the caller does not
1209 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1210 * not to fs). In this case mark the page for immediate
1211 * reclaim and continue scanning.
1213 * Require may_enter_fs because we would wait on fs, which
1214 * may not have submitted IO yet. And the loop driver might
1215 * enter reclaim, and deadlock if it waits on a page for
1216 * which it is needed to do the write (loop masks off
1217 * __GFP_IO|__GFP_FS for this reason); but more thought
1218 * would probably show more reasons.
1220 * 3) Legacy memcg encounters a page that is already marked
1221 * PageReclaim. memcg does not have any dirty pages
1222 * throttling so we could easily OOM just because too many
1223 * pages are in writeback and there is nothing else to
1224 * reclaim. Wait for the writeback to complete.
1226 * In cases 1) and 2) we activate the pages to get them out of
1227 * the way while we continue scanning for clean pages on the
1228 * inactive list and refilling from the active list. The
1229 * observation here is that waiting for disk writes is more
1230 * expensive than potentially causing reloads down the line.
1231 * Since they're marked for immediate reclaim, they won't put
1232 * memory pressure on the cache working set any longer than it
1233 * takes to write them to disk.
1235 if (PageWriteback(page
)) {
1237 if (current_is_kswapd() &&
1238 PageReclaim(page
) &&
1239 test_bit(PGDAT_WRITEBACK
, &pgdat
->flags
)) {
1240 stat
->nr_immediate
++;
1241 goto activate_locked
;
1244 } else if (sane_reclaim(sc
) ||
1245 !PageReclaim(page
) || !may_enter_fs
) {
1247 * This is slightly racy - end_page_writeback()
1248 * might have just cleared PageReclaim, then
1249 * setting PageReclaim here end up interpreted
1250 * as PageReadahead - but that does not matter
1251 * enough to care. What we do want is for this
1252 * page to have PageReclaim set next time memcg
1253 * reclaim reaches the tests above, so it will
1254 * then wait_on_page_writeback() to avoid OOM;
1255 * and it's also appropriate in global reclaim.
1257 SetPageReclaim(page
);
1258 stat
->nr_writeback
++;
1259 goto activate_locked
;
1264 wait_on_page_writeback(page
);
1265 /* then go back and try same page again */
1266 list_add_tail(&page
->lru
, page_list
);
1271 if (!ignore_references
)
1272 references
= page_check_references(page
, sc
);
1274 switch (references
) {
1275 case PAGEREF_ACTIVATE
:
1276 goto activate_locked
;
1278 stat
->nr_ref_keep
+= nr_pages
;
1280 case PAGEREF_RECLAIM
:
1281 case PAGEREF_RECLAIM_CLEAN
:
1282 ; /* try to reclaim the page below */
1286 * Anonymous process memory has backing store?
1287 * Try to allocate it some swap space here.
1288 * Lazyfree page could be freed directly
1290 if (PageAnon(page
) && PageSwapBacked(page
)) {
1291 if (!PageSwapCache(page
)) {
1292 if (!(sc
->gfp_mask
& __GFP_IO
))
1294 if (PageTransHuge(page
)) {
1295 /* cannot split THP, skip it */
1296 if (!can_split_huge_page(page
, NULL
))
1297 goto activate_locked
;
1299 * Split pages without a PMD map right
1300 * away. Chances are some or all of the
1301 * tail pages can be freed without IO.
1303 if (!compound_mapcount(page
) &&
1304 split_huge_page_to_list(page
,
1306 goto activate_locked
;
1308 if (!add_to_swap(page
)) {
1309 if (!PageTransHuge(page
))
1310 goto activate_locked_split
;
1311 /* Fallback to swap normal pages */
1312 if (split_huge_page_to_list(page
,
1314 goto activate_locked
;
1315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1316 count_vm_event(THP_SWPOUT_FALLBACK
);
1318 if (!add_to_swap(page
))
1319 goto activate_locked_split
;
1324 /* Adding to swap updated mapping */
1325 mapping
= page_mapping(page
);
1327 } else if (unlikely(PageTransHuge(page
))) {
1328 /* Split file THP */
1329 if (split_huge_page_to_list(page
, page_list
))
1334 * THP may get split above, need minus tail pages and update
1335 * nr_pages to avoid accounting tail pages twice.
1337 * The tail pages that are added into swap cache successfully
1340 if ((nr_pages
> 1) && !PageTransHuge(page
)) {
1341 sc
->nr_scanned
-= (nr_pages
- 1);
1346 * The page is mapped into the page tables of one or more
1347 * processes. Try to unmap it here.
1349 if (page_mapped(page
)) {
1350 enum ttu_flags flags
= ttu_flags
| TTU_BATCH_FLUSH
;
1352 if (unlikely(PageTransHuge(page
)))
1353 flags
|= TTU_SPLIT_HUGE_PMD
;
1354 if (!try_to_unmap(page
, flags
)) {
1355 stat
->nr_unmap_fail
+= nr_pages
;
1356 goto activate_locked
;
1360 if (PageDirty(page
)) {
1362 * Only kswapd can writeback filesystem pages
1363 * to avoid risk of stack overflow. But avoid
1364 * injecting inefficient single-page IO into
1365 * flusher writeback as much as possible: only
1366 * write pages when we've encountered many
1367 * dirty pages, and when we've already scanned
1368 * the rest of the LRU for clean pages and see
1369 * the same dirty pages again (PageReclaim).
1371 if (page_is_file_cache(page
) &&
1372 (!current_is_kswapd() || !PageReclaim(page
) ||
1373 !test_bit(PGDAT_DIRTY
, &pgdat
->flags
))) {
1375 * Immediately reclaim when written back.
1376 * Similar in principal to deactivate_page()
1377 * except we already have the page isolated
1378 * and know it's dirty
1380 inc_node_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1381 SetPageReclaim(page
);
1383 goto activate_locked
;
1386 if (references
== PAGEREF_RECLAIM_CLEAN
)
1390 if (!sc
->may_writepage
)
1394 * Page is dirty. Flush the TLB if a writable entry
1395 * potentially exists to avoid CPU writes after IO
1396 * starts and then write it out here.
1398 try_to_unmap_flush_dirty();
1399 switch (pageout(page
, mapping
, sc
)) {
1403 goto activate_locked
;
1405 if (PageWriteback(page
))
1407 if (PageDirty(page
))
1411 * A synchronous write - probably a ramdisk. Go
1412 * ahead and try to reclaim the page.
1414 if (!trylock_page(page
))
1416 if (PageDirty(page
) || PageWriteback(page
))
1418 mapping
= page_mapping(page
);
1420 ; /* try to free the page below */
1425 * If the page has buffers, try to free the buffer mappings
1426 * associated with this page. If we succeed we try to free
1429 * We do this even if the page is PageDirty().
1430 * try_to_release_page() does not perform I/O, but it is
1431 * possible for a page to have PageDirty set, but it is actually
1432 * clean (all its buffers are clean). This happens if the
1433 * buffers were written out directly, with submit_bh(). ext3
1434 * will do this, as well as the blockdev mapping.
1435 * try_to_release_page() will discover that cleanness and will
1436 * drop the buffers and mark the page clean - it can be freed.
1438 * Rarely, pages can have buffers and no ->mapping. These are
1439 * the pages which were not successfully invalidated in
1440 * truncate_complete_page(). We try to drop those buffers here
1441 * and if that worked, and the page is no longer mapped into
1442 * process address space (page_count == 1) it can be freed.
1443 * Otherwise, leave the page on the LRU so it is swappable.
1445 if (page_has_private(page
)) {
1446 if (!try_to_release_page(page
, sc
->gfp_mask
))
1447 goto activate_locked
;
1448 if (!mapping
&& page_count(page
) == 1) {
1450 if (put_page_testzero(page
))
1454 * rare race with speculative reference.
1455 * the speculative reference will free
1456 * this page shortly, so we may
1457 * increment nr_reclaimed here (and
1458 * leave it off the LRU).
1466 if (PageAnon(page
) && !PageSwapBacked(page
)) {
1467 /* follow __remove_mapping for reference */
1468 if (!page_ref_freeze(page
, 1))
1470 if (PageDirty(page
)) {
1471 page_ref_unfreeze(page
, 1);
1475 count_vm_event(PGLAZYFREED
);
1476 count_memcg_page_event(page
, PGLAZYFREED
);
1477 } else if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1483 * THP may get swapped out in a whole, need account
1486 nr_reclaimed
+= nr_pages
;
1489 * Is there need to periodically free_page_list? It would
1490 * appear not as the counts should be low
1492 if (unlikely(PageTransHuge(page
)))
1493 (*get_compound_page_dtor(page
))(page
);
1495 list_add(&page
->lru
, &free_pages
);
1498 activate_locked_split
:
1500 * The tail pages that are failed to add into swap cache
1501 * reach here. Fixup nr_scanned and nr_pages.
1504 sc
->nr_scanned
-= (nr_pages
- 1);
1508 /* Not a candidate for swapping, so reclaim swap space. */
1509 if (PageSwapCache(page
) && (mem_cgroup_swap_full(page
) ||
1511 try_to_free_swap(page
);
1512 VM_BUG_ON_PAGE(PageActive(page
), page
);
1513 if (!PageMlocked(page
)) {
1514 int type
= page_is_file_cache(page
);
1515 SetPageActive(page
);
1516 stat
->nr_activate
[type
] += nr_pages
;
1517 count_memcg_page_event(page
, PGACTIVATE
);
1522 list_add(&page
->lru
, &ret_pages
);
1523 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1526 pgactivate
= stat
->nr_activate
[0] + stat
->nr_activate
[1];
1528 mem_cgroup_uncharge_list(&free_pages
);
1529 try_to_unmap_flush();
1530 free_unref_page_list(&free_pages
);
1532 list_splice(&ret_pages
, page_list
);
1533 count_vm_events(PGACTIVATE
, pgactivate
);
1535 return nr_reclaimed
;
1538 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1539 struct list_head
*page_list
)
1541 struct scan_control sc
= {
1542 .gfp_mask
= GFP_KERNEL
,
1543 .priority
= DEF_PRIORITY
,
1546 struct reclaim_stat dummy_stat
;
1548 struct page
*page
, *next
;
1549 LIST_HEAD(clean_pages
);
1551 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1552 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1553 !__PageMovable(page
) && !PageUnevictable(page
)) {
1554 ClearPageActive(page
);
1555 list_move(&page
->lru
, &clean_pages
);
1559 ret
= shrink_page_list(&clean_pages
, zone
->zone_pgdat
, &sc
,
1560 TTU_IGNORE_ACCESS
, &dummy_stat
, true);
1561 list_splice(&clean_pages
, page_list
);
1562 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
, -ret
);
1567 * Attempt to remove the specified page from its LRU. Only take this page
1568 * if it is of the appropriate PageActive status. Pages which are being
1569 * freed elsewhere are also ignored.
1571 * page: page to consider
1572 * mode: one of the LRU isolation modes defined above
1574 * returns 0 on success, -ve errno on failure.
1576 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1580 /* Only take pages on the LRU. */
1584 /* Compaction should not handle unevictable pages but CMA can do so */
1585 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1591 * To minimise LRU disruption, the caller can indicate that it only
1592 * wants to isolate pages it will be able to operate on without
1593 * blocking - clean pages for the most part.
1595 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1596 * that it is possible to migrate without blocking
1598 if (mode
& ISOLATE_ASYNC_MIGRATE
) {
1599 /* All the caller can do on PageWriteback is block */
1600 if (PageWriteback(page
))
1603 if (PageDirty(page
)) {
1604 struct address_space
*mapping
;
1608 * Only pages without mappings or that have a
1609 * ->migratepage callback are possible to migrate
1610 * without blocking. However, we can be racing with
1611 * truncation so it's necessary to lock the page
1612 * to stabilise the mapping as truncation holds
1613 * the page lock until after the page is removed
1614 * from the page cache.
1616 if (!trylock_page(page
))
1619 mapping
= page_mapping(page
);
1620 migrate_dirty
= !mapping
|| mapping
->a_ops
->migratepage
;
1627 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1630 if (likely(get_page_unless_zero(page
))) {
1632 * Be careful not to clear PageLRU until after we're
1633 * sure the page is not being freed elsewhere -- the
1634 * page release code relies on it.
1645 * Update LRU sizes after isolating pages. The LRU size updates must
1646 * be complete before mem_cgroup_update_lru_size due to a santity check.
1648 static __always_inline
void update_lru_sizes(struct lruvec
*lruvec
,
1649 enum lru_list lru
, unsigned long *nr_zone_taken
)
1653 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1654 if (!nr_zone_taken
[zid
])
1657 __update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1659 mem_cgroup_update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1666 * pgdat->lru_lock is heavily contended. Some of the functions that
1667 * shrink the lists perform better by taking out a batch of pages
1668 * and working on them outside the LRU lock.
1670 * For pagecache intensive workloads, this function is the hottest
1671 * spot in the kernel (apart from copy_*_user functions).
1673 * Appropriate locks must be held before calling this function.
1675 * @nr_to_scan: The number of eligible pages to look through on the list.
1676 * @lruvec: The LRU vector to pull pages from.
1677 * @dst: The temp list to put pages on to.
1678 * @nr_scanned: The number of pages that were scanned.
1679 * @sc: The scan_control struct for this reclaim session
1680 * @mode: One of the LRU isolation modes
1681 * @lru: LRU list id for isolating
1683 * returns how many pages were moved onto *@dst.
1685 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1686 struct lruvec
*lruvec
, struct list_head
*dst
,
1687 unsigned long *nr_scanned
, struct scan_control
*sc
,
1690 struct list_head
*src
= &lruvec
->lists
[lru
];
1691 unsigned long nr_taken
= 0;
1692 unsigned long nr_zone_taken
[MAX_NR_ZONES
] = { 0 };
1693 unsigned long nr_skipped
[MAX_NR_ZONES
] = { 0, };
1694 unsigned long skipped
= 0;
1695 unsigned long scan
, total_scan
, nr_pages
;
1696 LIST_HEAD(pages_skipped
);
1697 isolate_mode_t mode
= (sc
->may_unmap
? 0 : ISOLATE_UNMAPPED
);
1701 while (scan
< nr_to_scan
&& !list_empty(src
)) {
1704 page
= lru_to_page(src
);
1705 prefetchw_prev_lru_page(page
, src
, flags
);
1707 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1709 nr_pages
= compound_nr(page
);
1710 total_scan
+= nr_pages
;
1712 if (page_zonenum(page
) > sc
->reclaim_idx
) {
1713 list_move(&page
->lru
, &pages_skipped
);
1714 nr_skipped
[page_zonenum(page
)] += nr_pages
;
1719 * Do not count skipped pages because that makes the function
1720 * return with no isolated pages if the LRU mostly contains
1721 * ineligible pages. This causes the VM to not reclaim any
1722 * pages, triggering a premature OOM.
1724 * Account all tail pages of THP. This would not cause
1725 * premature OOM since __isolate_lru_page() returns -EBUSY
1726 * only when the page is being freed somewhere else.
1729 switch (__isolate_lru_page(page
, mode
)) {
1731 nr_taken
+= nr_pages
;
1732 nr_zone_taken
[page_zonenum(page
)] += nr_pages
;
1733 list_move(&page
->lru
, dst
);
1737 /* else it is being freed elsewhere */
1738 list_move(&page
->lru
, src
);
1747 * Splice any skipped pages to the start of the LRU list. Note that
1748 * this disrupts the LRU order when reclaiming for lower zones but
1749 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1750 * scanning would soon rescan the same pages to skip and put the
1751 * system at risk of premature OOM.
1753 if (!list_empty(&pages_skipped
)) {
1756 list_splice(&pages_skipped
, src
);
1757 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1758 if (!nr_skipped
[zid
])
1761 __count_zid_vm_events(PGSCAN_SKIP
, zid
, nr_skipped
[zid
]);
1762 skipped
+= nr_skipped
[zid
];
1765 *nr_scanned
= total_scan
;
1766 trace_mm_vmscan_lru_isolate(sc
->reclaim_idx
, sc
->order
, nr_to_scan
,
1767 total_scan
, skipped
, nr_taken
, mode
, lru
);
1768 update_lru_sizes(lruvec
, lru
, nr_zone_taken
);
1773 * isolate_lru_page - tries to isolate a page from its LRU list
1774 * @page: page to isolate from its LRU list
1776 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1777 * vmstat statistic corresponding to whatever LRU list the page was on.
1779 * Returns 0 if the page was removed from an LRU list.
1780 * Returns -EBUSY if the page was not on an LRU list.
1782 * The returned page will have PageLRU() cleared. If it was found on
1783 * the active list, it will have PageActive set. If it was found on
1784 * the unevictable list, it will have the PageUnevictable bit set. That flag
1785 * may need to be cleared by the caller before letting the page go.
1787 * The vmstat statistic corresponding to the list on which the page was
1788 * found will be decremented.
1792 * (1) Must be called with an elevated refcount on the page. This is a
1793 * fundamentnal difference from isolate_lru_pages (which is called
1794 * without a stable reference).
1795 * (2) the lru_lock must not be held.
1796 * (3) interrupts must be enabled.
1798 int isolate_lru_page(struct page
*page
)
1802 VM_BUG_ON_PAGE(!page_count(page
), page
);
1803 WARN_RATELIMIT(PageTail(page
), "trying to isolate tail page");
1805 if (PageLRU(page
)) {
1806 pg_data_t
*pgdat
= page_pgdat(page
);
1807 struct lruvec
*lruvec
;
1809 spin_lock_irq(&pgdat
->lru_lock
);
1810 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1811 if (PageLRU(page
)) {
1812 int lru
= page_lru(page
);
1815 del_page_from_lru_list(page
, lruvec
, lru
);
1818 spin_unlock_irq(&pgdat
->lru_lock
);
1824 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1825 * then get resheduled. When there are massive number of tasks doing page
1826 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1827 * the LRU list will go small and be scanned faster than necessary, leading to
1828 * unnecessary swapping, thrashing and OOM.
1830 static int too_many_isolated(struct pglist_data
*pgdat
, int file
,
1831 struct scan_control
*sc
)
1833 unsigned long inactive
, isolated
;
1835 if (current_is_kswapd())
1838 if (!sane_reclaim(sc
))
1842 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
1843 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
);
1845 inactive
= node_page_state(pgdat
, NR_INACTIVE_ANON
);
1846 isolated
= node_page_state(pgdat
, NR_ISOLATED_ANON
);
1850 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1851 * won't get blocked by normal direct-reclaimers, forming a circular
1854 if ((sc
->gfp_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
1857 return isolated
> inactive
;
1861 * This moves pages from @list to corresponding LRU list.
1863 * We move them the other way if the page is referenced by one or more
1864 * processes, from rmap.
1866 * If the pages are mostly unmapped, the processing is fast and it is
1867 * appropriate to hold zone_lru_lock across the whole operation. But if
1868 * the pages are mapped, the processing is slow (page_referenced()) so we
1869 * should drop zone_lru_lock around each page. It's impossible to balance
1870 * this, so instead we remove the pages from the LRU while processing them.
1871 * It is safe to rely on PG_active against the non-LRU pages in here because
1872 * nobody will play with that bit on a non-LRU page.
1874 * The downside is that we have to touch page->_refcount against each page.
1875 * But we had to alter page->flags anyway.
1877 * Returns the number of pages moved to the given lruvec.
1880 static unsigned noinline_for_stack
move_pages_to_lru(struct lruvec
*lruvec
,
1881 struct list_head
*list
)
1883 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1884 int nr_pages
, nr_moved
= 0;
1885 LIST_HEAD(pages_to_free
);
1889 while (!list_empty(list
)) {
1890 page
= lru_to_page(list
);
1891 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1892 if (unlikely(!page_evictable(page
))) {
1893 list_del(&page
->lru
);
1894 spin_unlock_irq(&pgdat
->lru_lock
);
1895 putback_lru_page(page
);
1896 spin_lock_irq(&pgdat
->lru_lock
);
1899 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1902 lru
= page_lru(page
);
1904 nr_pages
= hpage_nr_pages(page
);
1905 update_lru_size(lruvec
, lru
, page_zonenum(page
), nr_pages
);
1906 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
1908 if (put_page_testzero(page
)) {
1909 __ClearPageLRU(page
);
1910 __ClearPageActive(page
);
1911 del_page_from_lru_list(page
, lruvec
, lru
);
1913 if (unlikely(PageCompound(page
))) {
1914 spin_unlock_irq(&pgdat
->lru_lock
);
1915 (*get_compound_page_dtor(page
))(page
);
1916 spin_lock_irq(&pgdat
->lru_lock
);
1918 list_add(&page
->lru
, &pages_to_free
);
1920 nr_moved
+= nr_pages
;
1925 * To save our caller's stack, now use input list for pages to free.
1927 list_splice(&pages_to_free
, list
);
1933 * If a kernel thread (such as nfsd for loop-back mounts) services
1934 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1935 * In that case we should only throttle if the backing device it is
1936 * writing to is congested. In other cases it is safe to throttle.
1938 static int current_may_throttle(void)
1940 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1941 current
->backing_dev_info
== NULL
||
1942 bdi_write_congested(current
->backing_dev_info
);
1946 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1947 * of reclaimed pages
1949 static noinline_for_stack
unsigned long
1950 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1951 struct scan_control
*sc
, enum lru_list lru
)
1953 LIST_HEAD(page_list
);
1954 unsigned long nr_scanned
;
1955 unsigned long nr_reclaimed
= 0;
1956 unsigned long nr_taken
;
1957 struct reclaim_stat stat
;
1958 int file
= is_file_lru(lru
);
1959 enum vm_event_item item
;
1960 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1961 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1962 bool stalled
= false;
1964 while (unlikely(too_many_isolated(pgdat
, file
, sc
))) {
1968 /* wait a bit for the reclaimer. */
1972 /* We are about to die and free our memory. Return now. */
1973 if (fatal_signal_pending(current
))
1974 return SWAP_CLUSTER_MAX
;
1979 spin_lock_irq(&pgdat
->lru_lock
);
1981 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1982 &nr_scanned
, sc
, lru
);
1984 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1985 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1987 item
= current_is_kswapd() ? PGSCAN_KSWAPD
: PGSCAN_DIRECT
;
1988 if (global_reclaim(sc
))
1989 __count_vm_events(item
, nr_scanned
);
1990 __count_memcg_events(lruvec_memcg(lruvec
), item
, nr_scanned
);
1991 spin_unlock_irq(&pgdat
->lru_lock
);
1996 nr_reclaimed
= shrink_page_list(&page_list
, pgdat
, sc
, 0,
1999 spin_lock_irq(&pgdat
->lru_lock
);
2001 item
= current_is_kswapd() ? PGSTEAL_KSWAPD
: PGSTEAL_DIRECT
;
2002 if (global_reclaim(sc
))
2003 __count_vm_events(item
, nr_reclaimed
);
2004 __count_memcg_events(lruvec_memcg(lruvec
), item
, nr_reclaimed
);
2005 reclaim_stat
->recent_rotated
[0] += stat
.nr_activate
[0];
2006 reclaim_stat
->recent_rotated
[1] += stat
.nr_activate
[1];
2008 move_pages_to_lru(lruvec
, &page_list
);
2010 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
2012 spin_unlock_irq(&pgdat
->lru_lock
);
2014 mem_cgroup_uncharge_list(&page_list
);
2015 free_unref_page_list(&page_list
);
2018 * If dirty pages are scanned that are not queued for IO, it
2019 * implies that flushers are not doing their job. This can
2020 * happen when memory pressure pushes dirty pages to the end of
2021 * the LRU before the dirty limits are breached and the dirty
2022 * data has expired. It can also happen when the proportion of
2023 * dirty pages grows not through writes but through memory
2024 * pressure reclaiming all the clean cache. And in some cases,
2025 * the flushers simply cannot keep up with the allocation
2026 * rate. Nudge the flusher threads in case they are asleep.
2028 if (stat
.nr_unqueued_dirty
== nr_taken
)
2029 wakeup_flusher_threads(WB_REASON_VMSCAN
);
2031 sc
->nr
.dirty
+= stat
.nr_dirty
;
2032 sc
->nr
.congested
+= stat
.nr_congested
;
2033 sc
->nr
.unqueued_dirty
+= stat
.nr_unqueued_dirty
;
2034 sc
->nr
.writeback
+= stat
.nr_writeback
;
2035 sc
->nr
.immediate
+= stat
.nr_immediate
;
2036 sc
->nr
.taken
+= nr_taken
;
2038 sc
->nr
.file_taken
+= nr_taken
;
2040 trace_mm_vmscan_lru_shrink_inactive(pgdat
->node_id
,
2041 nr_scanned
, nr_reclaimed
, &stat
, sc
->priority
, file
);
2042 return nr_reclaimed
;
2045 static void shrink_active_list(unsigned long nr_to_scan
,
2046 struct lruvec
*lruvec
,
2047 struct scan_control
*sc
,
2050 unsigned long nr_taken
;
2051 unsigned long nr_scanned
;
2052 unsigned long vm_flags
;
2053 LIST_HEAD(l_hold
); /* The pages which were snipped off */
2054 LIST_HEAD(l_active
);
2055 LIST_HEAD(l_inactive
);
2057 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2058 unsigned nr_deactivate
, nr_activate
;
2059 unsigned nr_rotated
= 0;
2060 int file
= is_file_lru(lru
);
2061 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2065 spin_lock_irq(&pgdat
->lru_lock
);
2067 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
2068 &nr_scanned
, sc
, lru
);
2070 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
2071 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
2073 __count_vm_events(PGREFILL
, nr_scanned
);
2074 __count_memcg_events(lruvec_memcg(lruvec
), PGREFILL
, nr_scanned
);
2076 spin_unlock_irq(&pgdat
->lru_lock
);
2078 while (!list_empty(&l_hold
)) {
2080 page
= lru_to_page(&l_hold
);
2081 list_del(&page
->lru
);
2083 if (unlikely(!page_evictable(page
))) {
2084 putback_lru_page(page
);
2088 if (unlikely(buffer_heads_over_limit
)) {
2089 if (page_has_private(page
) && trylock_page(page
)) {
2090 if (page_has_private(page
))
2091 try_to_release_page(page
, 0);
2096 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
2098 nr_rotated
+= hpage_nr_pages(page
);
2100 * Identify referenced, file-backed active pages and
2101 * give them one more trip around the active list. So
2102 * that executable code get better chances to stay in
2103 * memory under moderate memory pressure. Anon pages
2104 * are not likely to be evicted by use-once streaming
2105 * IO, plus JVM can create lots of anon VM_EXEC pages,
2106 * so we ignore them here.
2108 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
2109 list_add(&page
->lru
, &l_active
);
2114 ClearPageActive(page
); /* we are de-activating */
2115 SetPageWorkingset(page
);
2116 list_add(&page
->lru
, &l_inactive
);
2120 * Move pages back to the lru list.
2122 spin_lock_irq(&pgdat
->lru_lock
);
2124 * Count referenced pages from currently used mappings as rotated,
2125 * even though only some of them are actually re-activated. This
2126 * helps balance scan pressure between file and anonymous pages in
2129 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
2131 nr_activate
= move_pages_to_lru(lruvec
, &l_active
);
2132 nr_deactivate
= move_pages_to_lru(lruvec
, &l_inactive
);
2133 /* Keep all free pages in l_active list */
2134 list_splice(&l_inactive
, &l_active
);
2136 __count_vm_events(PGDEACTIVATE
, nr_deactivate
);
2137 __count_memcg_events(lruvec_memcg(lruvec
), PGDEACTIVATE
, nr_deactivate
);
2139 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
2140 spin_unlock_irq(&pgdat
->lru_lock
);
2142 mem_cgroup_uncharge_list(&l_active
);
2143 free_unref_page_list(&l_active
);
2144 trace_mm_vmscan_lru_shrink_active(pgdat
->node_id
, nr_taken
, nr_activate
,
2145 nr_deactivate
, nr_rotated
, sc
->priority
, file
);
2148 unsigned long reclaim_pages(struct list_head
*page_list
)
2151 unsigned long nr_reclaimed
= 0;
2152 LIST_HEAD(node_page_list
);
2153 struct reclaim_stat dummy_stat
;
2155 struct scan_control sc
= {
2156 .gfp_mask
= GFP_KERNEL
,
2157 .priority
= DEF_PRIORITY
,
2163 while (!list_empty(page_list
)) {
2164 page
= lru_to_page(page_list
);
2166 nid
= page_to_nid(page
);
2167 INIT_LIST_HEAD(&node_page_list
);
2170 if (nid
== page_to_nid(page
)) {
2171 ClearPageActive(page
);
2172 list_move(&page
->lru
, &node_page_list
);
2176 nr_reclaimed
+= shrink_page_list(&node_page_list
,
2179 &dummy_stat
, false);
2180 while (!list_empty(&node_page_list
)) {
2181 page
= lru_to_page(&node_page_list
);
2182 list_del(&page
->lru
);
2183 putback_lru_page(page
);
2189 if (!list_empty(&node_page_list
)) {
2190 nr_reclaimed
+= shrink_page_list(&node_page_list
,
2193 &dummy_stat
, false);
2194 while (!list_empty(&node_page_list
)) {
2195 page
= lru_to_page(&node_page_list
);
2196 list_del(&page
->lru
);
2197 putback_lru_page(page
);
2201 return nr_reclaimed
;
2205 * The inactive anon list should be small enough that the VM never has
2206 * to do too much work.
2208 * The inactive file list should be small enough to leave most memory
2209 * to the established workingset on the scan-resistant active list,
2210 * but large enough to avoid thrashing the aggregate readahead window.
2212 * Both inactive lists should also be large enough that each inactive
2213 * page has a chance to be referenced again before it is reclaimed.
2215 * If that fails and refaulting is observed, the inactive list grows.
2217 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2218 * on this LRU, maintained by the pageout code. An inactive_ratio
2219 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2222 * memory ratio inactive
2223 * -------------------------------------
2232 static bool inactive_list_is_low(struct lruvec
*lruvec
, bool file
,
2233 struct scan_control
*sc
, bool trace
)
2235 enum lru_list active_lru
= file
* LRU_FILE
+ LRU_ACTIVE
;
2236 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2237 enum lru_list inactive_lru
= file
* LRU_FILE
;
2238 unsigned long inactive
, active
;
2239 unsigned long inactive_ratio
;
2240 unsigned long refaults
;
2244 * If we don't have swap space, anonymous page deactivation
2247 if (!file
&& !total_swap_pages
)
2250 inactive
= lruvec_lru_size(lruvec
, inactive_lru
, sc
->reclaim_idx
);
2251 active
= lruvec_lru_size(lruvec
, active_lru
, sc
->reclaim_idx
);
2254 * When refaults are being observed, it means a new workingset
2255 * is being established. Disable active list protection to get
2256 * rid of the stale workingset quickly.
2258 refaults
= lruvec_page_state_local(lruvec
, WORKINGSET_ACTIVATE
);
2259 if (file
&& lruvec
->refaults
!= refaults
) {
2262 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
2264 inactive_ratio
= int_sqrt(10 * gb
);
2270 trace_mm_vmscan_inactive_list_is_low(pgdat
->node_id
, sc
->reclaim_idx
,
2271 lruvec_lru_size(lruvec
, inactive_lru
, MAX_NR_ZONES
), inactive
,
2272 lruvec_lru_size(lruvec
, active_lru
, MAX_NR_ZONES
), active
,
2273 inactive_ratio
, file
);
2275 return inactive
* inactive_ratio
< active
;
2278 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
2279 struct lruvec
*lruvec
, struct scan_control
*sc
)
2281 if (is_active_lru(lru
)) {
2282 if (inactive_list_is_low(lruvec
, is_file_lru(lru
), sc
, true))
2283 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
2287 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
2298 * Determine how aggressively the anon and file LRU lists should be
2299 * scanned. The relative value of each set of LRU lists is determined
2300 * by looking at the fraction of the pages scanned we did rotate back
2301 * onto the active list instead of evict.
2303 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2304 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2306 static void get_scan_count(struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2307 struct scan_control
*sc
, unsigned long *nr
,
2308 unsigned long *lru_pages
)
2310 int swappiness
= mem_cgroup_swappiness(memcg
);
2311 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2313 u64 denominator
= 0; /* gcc */
2314 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2315 unsigned long anon_prio
, file_prio
;
2316 enum scan_balance scan_balance
;
2317 unsigned long anon
, file
;
2318 unsigned long ap
, fp
;
2321 /* If we have no swap space, do not bother scanning anon pages. */
2322 if (!sc
->may_swap
|| mem_cgroup_get_nr_swap_pages(memcg
) <= 0) {
2323 scan_balance
= SCAN_FILE
;
2328 * Global reclaim will swap to prevent OOM even with no
2329 * swappiness, but memcg users want to use this knob to
2330 * disable swapping for individual groups completely when
2331 * using the memory controller's swap limit feature would be
2334 if (!global_reclaim(sc
) && !swappiness
) {
2335 scan_balance
= SCAN_FILE
;
2340 * Do not apply any pressure balancing cleverness when the
2341 * system is close to OOM, scan both anon and file equally
2342 * (unless the swappiness setting disagrees with swapping).
2344 if (!sc
->priority
&& swappiness
) {
2345 scan_balance
= SCAN_EQUAL
;
2350 * Prevent the reclaimer from falling into the cache trap: as
2351 * cache pages start out inactive, every cache fault will tip
2352 * the scan balance towards the file LRU. And as the file LRU
2353 * shrinks, so does the window for rotation from references.
2354 * This means we have a runaway feedback loop where a tiny
2355 * thrashing file LRU becomes infinitely more attractive than
2356 * anon pages. Try to detect this based on file LRU size.
2358 if (global_reclaim(sc
)) {
2359 unsigned long pgdatfile
;
2360 unsigned long pgdatfree
;
2362 unsigned long total_high_wmark
= 0;
2364 pgdatfree
= sum_zone_node_page_state(pgdat
->node_id
, NR_FREE_PAGES
);
2365 pgdatfile
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
2366 node_page_state(pgdat
, NR_INACTIVE_FILE
);
2368 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
2369 struct zone
*zone
= &pgdat
->node_zones
[z
];
2370 if (!managed_zone(zone
))
2373 total_high_wmark
+= high_wmark_pages(zone
);
2376 if (unlikely(pgdatfile
+ pgdatfree
<= total_high_wmark
)) {
2378 * Force SCAN_ANON if there are enough inactive
2379 * anonymous pages on the LRU in eligible zones.
2380 * Otherwise, the small LRU gets thrashed.
2382 if (!inactive_list_is_low(lruvec
, false, sc
, false) &&
2383 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, sc
->reclaim_idx
)
2385 scan_balance
= SCAN_ANON
;
2392 * If there is enough inactive page cache, i.e. if the size of the
2393 * inactive list is greater than that of the active list *and* the
2394 * inactive list actually has some pages to scan on this priority, we
2395 * do not reclaim anything from the anonymous working set right now.
2396 * Without the second condition we could end up never scanning an
2397 * lruvec even if it has plenty of old anonymous pages unless the
2398 * system is under heavy pressure.
2400 if (!inactive_list_is_low(lruvec
, true, sc
, false) &&
2401 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, sc
->reclaim_idx
) >> sc
->priority
) {
2402 scan_balance
= SCAN_FILE
;
2406 scan_balance
= SCAN_FRACT
;
2409 * With swappiness at 100, anonymous and file have the same priority.
2410 * This scanning priority is essentially the inverse of IO cost.
2412 anon_prio
= swappiness
;
2413 file_prio
= 200 - anon_prio
;
2416 * OK, so we have swap space and a fair amount of page cache
2417 * pages. We use the recently rotated / recently scanned
2418 * ratios to determine how valuable each cache is.
2420 * Because workloads change over time (and to avoid overflow)
2421 * we keep these statistics as a floating average, which ends
2422 * up weighing recent references more than old ones.
2424 * anon in [0], file in [1]
2427 anon
= lruvec_lru_size(lruvec
, LRU_ACTIVE_ANON
, MAX_NR_ZONES
) +
2428 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, MAX_NR_ZONES
);
2429 file
= lruvec_lru_size(lruvec
, LRU_ACTIVE_FILE
, MAX_NR_ZONES
) +
2430 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, MAX_NR_ZONES
);
2432 spin_lock_irq(&pgdat
->lru_lock
);
2433 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
2434 reclaim_stat
->recent_scanned
[0] /= 2;
2435 reclaim_stat
->recent_rotated
[0] /= 2;
2438 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2439 reclaim_stat
->recent_scanned
[1] /= 2;
2440 reclaim_stat
->recent_rotated
[1] /= 2;
2444 * The amount of pressure on anon vs file pages is inversely
2445 * proportional to the fraction of recently scanned pages on
2446 * each list that were recently referenced and in active use.
2448 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2449 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2451 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2452 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2453 spin_unlock_irq(&pgdat
->lru_lock
);
2457 denominator
= ap
+ fp
+ 1;
2460 for_each_evictable_lru(lru
) {
2461 int file
= is_file_lru(lru
);
2465 size
= lruvec_lru_size(lruvec
, lru
, sc
->reclaim_idx
);
2466 scan
= size
>> sc
->priority
;
2468 * If the cgroup's already been deleted, make sure to
2469 * scrape out the remaining cache.
2471 if (!scan
&& !mem_cgroup_online(memcg
))
2472 scan
= min(size
, SWAP_CLUSTER_MAX
);
2474 switch (scan_balance
) {
2476 /* Scan lists relative to size */
2480 * Scan types proportional to swappiness and
2481 * their relative recent reclaim efficiency.
2482 * Make sure we don't miss the last page
2483 * because of a round-off error.
2485 scan
= DIV64_U64_ROUND_UP(scan
* fraction
[file
],
2490 /* Scan one type exclusively */
2491 if ((scan_balance
== SCAN_FILE
) != file
) {
2497 /* Look ma, no brain */
2507 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2509 static void shrink_node_memcg(struct pglist_data
*pgdat
, struct mem_cgroup
*memcg
,
2510 struct scan_control
*sc
, unsigned long *lru_pages
)
2512 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2513 unsigned long nr
[NR_LRU_LISTS
];
2514 unsigned long targets
[NR_LRU_LISTS
];
2515 unsigned long nr_to_scan
;
2517 unsigned long nr_reclaimed
= 0;
2518 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2519 struct blk_plug plug
;
2522 get_scan_count(lruvec
, memcg
, sc
, nr
, lru_pages
);
2524 /* Record the original scan target for proportional adjustments later */
2525 memcpy(targets
, nr
, sizeof(nr
));
2528 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2529 * event that can occur when there is little memory pressure e.g.
2530 * multiple streaming readers/writers. Hence, we do not abort scanning
2531 * when the requested number of pages are reclaimed when scanning at
2532 * DEF_PRIORITY on the assumption that the fact we are direct
2533 * reclaiming implies that kswapd is not keeping up and it is best to
2534 * do a batch of work at once. For memcg reclaim one check is made to
2535 * abort proportional reclaim if either the file or anon lru has already
2536 * dropped to zero at the first pass.
2538 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2539 sc
->priority
== DEF_PRIORITY
);
2541 blk_start_plug(&plug
);
2542 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2543 nr
[LRU_INACTIVE_FILE
]) {
2544 unsigned long nr_anon
, nr_file
, percentage
;
2545 unsigned long nr_scanned
;
2547 for_each_evictable_lru(lru
) {
2549 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2550 nr
[lru
] -= nr_to_scan
;
2552 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2559 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2563 * For kswapd and memcg, reclaim at least the number of pages
2564 * requested. Ensure that the anon and file LRUs are scanned
2565 * proportionally what was requested by get_scan_count(). We
2566 * stop reclaiming one LRU and reduce the amount scanning
2567 * proportional to the original scan target.
2569 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2570 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2573 * It's just vindictive to attack the larger once the smaller
2574 * has gone to zero. And given the way we stop scanning the
2575 * smaller below, this makes sure that we only make one nudge
2576 * towards proportionality once we've got nr_to_reclaim.
2578 if (!nr_file
|| !nr_anon
)
2581 if (nr_file
> nr_anon
) {
2582 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2583 targets
[LRU_ACTIVE_ANON
] + 1;
2585 percentage
= nr_anon
* 100 / scan_target
;
2587 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2588 targets
[LRU_ACTIVE_FILE
] + 1;
2590 percentage
= nr_file
* 100 / scan_target
;
2593 /* Stop scanning the smaller of the LRU */
2595 nr
[lru
+ LRU_ACTIVE
] = 0;
2598 * Recalculate the other LRU scan count based on its original
2599 * scan target and the percentage scanning already complete
2601 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2602 nr_scanned
= targets
[lru
] - nr
[lru
];
2603 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2604 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2607 nr_scanned
= targets
[lru
] - nr
[lru
];
2608 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2609 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2611 scan_adjusted
= true;
2613 blk_finish_plug(&plug
);
2614 sc
->nr_reclaimed
+= nr_reclaimed
;
2617 * Even if we did not try to evict anon pages at all, we want to
2618 * rebalance the anon lru active/inactive ratio.
2620 if (inactive_list_is_low(lruvec
, false, sc
, true))
2621 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2622 sc
, LRU_ACTIVE_ANON
);
2625 /* Use reclaim/compaction for costly allocs or under memory pressure */
2626 static bool in_reclaim_compaction(struct scan_control
*sc
)
2628 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2629 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2630 sc
->priority
< DEF_PRIORITY
- 2))
2637 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2638 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2639 * true if more pages should be reclaimed such that when the page allocator
2640 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2641 * It will give up earlier than that if there is difficulty reclaiming pages.
2643 static inline bool should_continue_reclaim(struct pglist_data
*pgdat
,
2644 unsigned long nr_reclaimed
,
2645 struct scan_control
*sc
)
2647 unsigned long pages_for_compaction
;
2648 unsigned long inactive_lru_pages
;
2651 /* If not in reclaim/compaction mode, stop */
2652 if (!in_reclaim_compaction(sc
))
2656 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2657 * number of pages that were scanned. This will return to the caller
2658 * with the risk reclaim/compaction and the resulting allocation attempt
2659 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2660 * allocations through requiring that the full LRU list has been scanned
2661 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2662 * scan, but that approximation was wrong, and there were corner cases
2663 * where always a non-zero amount of pages were scanned.
2668 /* If compaction would go ahead or the allocation would succeed, stop */
2669 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
2670 struct zone
*zone
= &pgdat
->node_zones
[z
];
2671 if (!managed_zone(zone
))
2674 switch (compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
)) {
2675 case COMPACT_SUCCESS
:
2676 case COMPACT_CONTINUE
:
2679 /* check next zone */
2685 * If we have not reclaimed enough pages for compaction and the
2686 * inactive lists are large enough, continue reclaiming
2688 pages_for_compaction
= compact_gap(sc
->order
);
2689 inactive_lru_pages
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
2690 if (get_nr_swap_pages() > 0)
2691 inactive_lru_pages
+= node_page_state(pgdat
, NR_INACTIVE_ANON
);
2693 return inactive_lru_pages
> pages_for_compaction
;
2696 static bool pgdat_memcg_congested(pg_data_t
*pgdat
, struct mem_cgroup
*memcg
)
2698 return test_bit(PGDAT_CONGESTED
, &pgdat
->flags
) ||
2699 (memcg
&& memcg_congested(pgdat
, memcg
));
2702 static bool shrink_node(pg_data_t
*pgdat
, struct scan_control
*sc
)
2704 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2705 unsigned long nr_reclaimed
, nr_scanned
;
2706 bool reclaimable
= false;
2709 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2710 unsigned long node_lru_pages
= 0;
2711 struct mem_cgroup
*memcg
;
2713 memset(&sc
->nr
, 0, sizeof(sc
->nr
));
2715 nr_reclaimed
= sc
->nr_reclaimed
;
2716 nr_scanned
= sc
->nr_scanned
;
2718 memcg
= mem_cgroup_iter(root
, NULL
, NULL
);
2720 unsigned long lru_pages
;
2721 unsigned long reclaimed
;
2722 unsigned long scanned
;
2724 switch (mem_cgroup_protected(root
, memcg
)) {
2725 case MEMCG_PROT_MIN
:
2728 * If there is no reclaimable memory, OOM.
2731 case MEMCG_PROT_LOW
:
2734 * Respect the protection only as long as
2735 * there is an unprotected supply
2736 * of reclaimable memory from other cgroups.
2738 if (!sc
->memcg_low_reclaim
) {
2739 sc
->memcg_low_skipped
= 1;
2742 memcg_memory_event(memcg
, MEMCG_LOW
);
2744 case MEMCG_PROT_NONE
:
2748 reclaimed
= sc
->nr_reclaimed
;
2749 scanned
= sc
->nr_scanned
;
2750 shrink_node_memcg(pgdat
, memcg
, sc
, &lru_pages
);
2751 node_lru_pages
+= lru_pages
;
2753 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
, memcg
,
2756 /* Record the group's reclaim efficiency */
2757 vmpressure(sc
->gfp_mask
, memcg
, false,
2758 sc
->nr_scanned
- scanned
,
2759 sc
->nr_reclaimed
- reclaimed
);
2761 } while ((memcg
= mem_cgroup_iter(root
, memcg
, NULL
)));
2763 if (reclaim_state
) {
2764 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2765 reclaim_state
->reclaimed_slab
= 0;
2768 /* Record the subtree's reclaim efficiency */
2769 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
, true,
2770 sc
->nr_scanned
- nr_scanned
,
2771 sc
->nr_reclaimed
- nr_reclaimed
);
2773 if (sc
->nr_reclaimed
- nr_reclaimed
)
2776 if (current_is_kswapd()) {
2778 * If reclaim is isolating dirty pages under writeback,
2779 * it implies that the long-lived page allocation rate
2780 * is exceeding the page laundering rate. Either the
2781 * global limits are not being effective at throttling
2782 * processes due to the page distribution throughout
2783 * zones or there is heavy usage of a slow backing
2784 * device. The only option is to throttle from reclaim
2785 * context which is not ideal as there is no guarantee
2786 * the dirtying process is throttled in the same way
2787 * balance_dirty_pages() manages.
2789 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2790 * count the number of pages under pages flagged for
2791 * immediate reclaim and stall if any are encountered
2792 * in the nr_immediate check below.
2794 if (sc
->nr
.writeback
&& sc
->nr
.writeback
== sc
->nr
.taken
)
2795 set_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
2798 * Tag a node as congested if all the dirty pages
2799 * scanned were backed by a congested BDI and
2800 * wait_iff_congested will stall.
2802 if (sc
->nr
.dirty
&& sc
->nr
.dirty
== sc
->nr
.congested
)
2803 set_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
2805 /* Allow kswapd to start writing pages during reclaim.*/
2806 if (sc
->nr
.unqueued_dirty
== sc
->nr
.file_taken
)
2807 set_bit(PGDAT_DIRTY
, &pgdat
->flags
);
2810 * If kswapd scans pages marked marked for immediate
2811 * reclaim and under writeback (nr_immediate), it
2812 * implies that pages are cycling through the LRU
2813 * faster than they are written so also forcibly stall.
2815 if (sc
->nr
.immediate
)
2816 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2820 * Legacy memcg will stall in page writeback so avoid forcibly
2821 * stalling in wait_iff_congested().
2823 if (!global_reclaim(sc
) && sane_reclaim(sc
) &&
2824 sc
->nr
.dirty
&& sc
->nr
.dirty
== sc
->nr
.congested
)
2825 set_memcg_congestion(pgdat
, root
, true);
2828 * Stall direct reclaim for IO completions if underlying BDIs
2829 * and node is congested. Allow kswapd to continue until it
2830 * starts encountering unqueued dirty pages or cycling through
2831 * the LRU too quickly.
2833 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
2834 current_may_throttle() && pgdat_memcg_congested(pgdat
, root
))
2835 wait_iff_congested(BLK_RW_ASYNC
, HZ
/10);
2837 } while (should_continue_reclaim(pgdat
, sc
->nr_reclaimed
- nr_reclaimed
,
2841 * Kswapd gives up on balancing particular nodes after too
2842 * many failures to reclaim anything from them and goes to
2843 * sleep. On reclaim progress, reset the failure counter. A
2844 * successful direct reclaim run will revive a dormant kswapd.
2847 pgdat
->kswapd_failures
= 0;
2853 * Returns true if compaction should go ahead for a costly-order request, or
2854 * the allocation would already succeed without compaction. Return false if we
2855 * should reclaim first.
2857 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
2859 unsigned long watermark
;
2860 enum compact_result suitable
;
2862 suitable
= compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
);
2863 if (suitable
== COMPACT_SUCCESS
)
2864 /* Allocation should succeed already. Don't reclaim. */
2866 if (suitable
== COMPACT_SKIPPED
)
2867 /* Compaction cannot yet proceed. Do reclaim. */
2871 * Compaction is already possible, but it takes time to run and there
2872 * are potentially other callers using the pages just freed. So proceed
2873 * with reclaim to make a buffer of free pages available to give
2874 * compaction a reasonable chance of completing and allocating the page.
2875 * Note that we won't actually reclaim the whole buffer in one attempt
2876 * as the target watermark in should_continue_reclaim() is lower. But if
2877 * we are already above the high+gap watermark, don't reclaim at all.
2879 watermark
= high_wmark_pages(zone
) + compact_gap(sc
->order
);
2881 return zone_watermark_ok_safe(zone
, 0, watermark
, sc
->reclaim_idx
);
2885 * This is the direct reclaim path, for page-allocating processes. We only
2886 * try to reclaim pages from zones which will satisfy the caller's allocation
2889 * If a zone is deemed to be full of pinned pages then just give it a light
2890 * scan then give up on it.
2892 static void shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2896 unsigned long nr_soft_reclaimed
;
2897 unsigned long nr_soft_scanned
;
2899 pg_data_t
*last_pgdat
= NULL
;
2902 * If the number of buffer_heads in the machine exceeds the maximum
2903 * allowed level, force direct reclaim to scan the highmem zone as
2904 * highmem pages could be pinning lowmem pages storing buffer_heads
2906 orig_mask
= sc
->gfp_mask
;
2907 if (buffer_heads_over_limit
) {
2908 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2909 sc
->reclaim_idx
= gfp_zone(sc
->gfp_mask
);
2912 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2913 sc
->reclaim_idx
, sc
->nodemask
) {
2915 * Take care memory controller reclaiming has small influence
2918 if (global_reclaim(sc
)) {
2919 if (!cpuset_zone_allowed(zone
,
2920 GFP_KERNEL
| __GFP_HARDWALL
))
2924 * If we already have plenty of memory free for
2925 * compaction in this zone, don't free any more.
2926 * Even though compaction is invoked for any
2927 * non-zero order, only frequent costly order
2928 * reclamation is disruptive enough to become a
2929 * noticeable problem, like transparent huge
2932 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2933 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2934 compaction_ready(zone
, sc
)) {
2935 sc
->compaction_ready
= true;
2940 * Shrink each node in the zonelist once. If the
2941 * zonelist is ordered by zone (not the default) then a
2942 * node may be shrunk multiple times but in that case
2943 * the user prefers lower zones being preserved.
2945 if (zone
->zone_pgdat
== last_pgdat
)
2949 * This steals pages from memory cgroups over softlimit
2950 * and returns the number of reclaimed pages and
2951 * scanned pages. This works for global memory pressure
2952 * and balancing, not for a memcg's limit.
2954 nr_soft_scanned
= 0;
2955 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
->zone_pgdat
,
2956 sc
->order
, sc
->gfp_mask
,
2958 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2959 sc
->nr_scanned
+= nr_soft_scanned
;
2960 /* need some check for avoid more shrink_zone() */
2963 /* See comment about same check for global reclaim above */
2964 if (zone
->zone_pgdat
== last_pgdat
)
2966 last_pgdat
= zone
->zone_pgdat
;
2967 shrink_node(zone
->zone_pgdat
, sc
);
2971 * Restore to original mask to avoid the impact on the caller if we
2972 * promoted it to __GFP_HIGHMEM.
2974 sc
->gfp_mask
= orig_mask
;
2977 static void snapshot_refaults(struct mem_cgroup
*root_memcg
, pg_data_t
*pgdat
)
2979 struct mem_cgroup
*memcg
;
2981 memcg
= mem_cgroup_iter(root_memcg
, NULL
, NULL
);
2983 unsigned long refaults
;
2984 struct lruvec
*lruvec
;
2986 lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2987 refaults
= lruvec_page_state_local(lruvec
, WORKINGSET_ACTIVATE
);
2988 lruvec
->refaults
= refaults
;
2989 } while ((memcg
= mem_cgroup_iter(root_memcg
, memcg
, NULL
)));
2993 * This is the main entry point to direct page reclaim.
2995 * If a full scan of the inactive list fails to free enough memory then we
2996 * are "out of memory" and something needs to be killed.
2998 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2999 * high - the zone may be full of dirty or under-writeback pages, which this
3000 * caller can't do much about. We kick the writeback threads and take explicit
3001 * naps in the hope that some of these pages can be written. But if the
3002 * allocating task holds filesystem locks which prevent writeout this might not
3003 * work, and the allocation attempt will fail.
3005 * returns: 0, if no pages reclaimed
3006 * else, the number of pages reclaimed
3008 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
3009 struct scan_control
*sc
)
3011 int initial_priority
= sc
->priority
;
3012 pg_data_t
*last_pgdat
;
3016 delayacct_freepages_start();
3018 if (global_reclaim(sc
))
3019 __count_zid_vm_events(ALLOCSTALL
, sc
->reclaim_idx
, 1);
3022 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
3025 shrink_zones(zonelist
, sc
);
3027 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
3030 if (sc
->compaction_ready
)
3034 * If we're getting trouble reclaiming, start doing
3035 * writepage even in laptop mode.
3037 if (sc
->priority
< DEF_PRIORITY
- 2)
3038 sc
->may_writepage
= 1;
3039 } while (--sc
->priority
>= 0);
3042 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, sc
->reclaim_idx
,
3044 if (zone
->zone_pgdat
== last_pgdat
)
3046 last_pgdat
= zone
->zone_pgdat
;
3047 snapshot_refaults(sc
->target_mem_cgroup
, zone
->zone_pgdat
);
3048 set_memcg_congestion(last_pgdat
, sc
->target_mem_cgroup
, false);
3051 delayacct_freepages_end();
3053 if (sc
->nr_reclaimed
)
3054 return sc
->nr_reclaimed
;
3056 /* Aborted reclaim to try compaction? don't OOM, then */
3057 if (sc
->compaction_ready
)
3060 /* Untapped cgroup reserves? Don't OOM, retry. */
3061 if (sc
->memcg_low_skipped
) {
3062 sc
->priority
= initial_priority
;
3063 sc
->memcg_low_reclaim
= 1;
3064 sc
->memcg_low_skipped
= 0;
3071 static bool allow_direct_reclaim(pg_data_t
*pgdat
)
3074 unsigned long pfmemalloc_reserve
= 0;
3075 unsigned long free_pages
= 0;
3079 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3082 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
3083 zone
= &pgdat
->node_zones
[i
];
3084 if (!managed_zone(zone
))
3087 if (!zone_reclaimable_pages(zone
))
3090 pfmemalloc_reserve
+= min_wmark_pages(zone
);
3091 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
3094 /* If there are no reserves (unexpected config) then do not throttle */
3095 if (!pfmemalloc_reserve
)
3098 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
3100 /* kswapd must be awake if processes are being throttled */
3101 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
3102 pgdat
->kswapd_classzone_idx
= min(pgdat
->kswapd_classzone_idx
,
3103 (enum zone_type
)ZONE_NORMAL
);
3104 wake_up_interruptible(&pgdat
->kswapd_wait
);
3111 * Throttle direct reclaimers if backing storage is backed by the network
3112 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3113 * depleted. kswapd will continue to make progress and wake the processes
3114 * when the low watermark is reached.
3116 * Returns true if a fatal signal was delivered during throttling. If this
3117 * happens, the page allocator should not consider triggering the OOM killer.
3119 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
3120 nodemask_t
*nodemask
)
3124 pg_data_t
*pgdat
= NULL
;
3127 * Kernel threads should not be throttled as they may be indirectly
3128 * responsible for cleaning pages necessary for reclaim to make forward
3129 * progress. kjournald for example may enter direct reclaim while
3130 * committing a transaction where throttling it could forcing other
3131 * processes to block on log_wait_commit().
3133 if (current
->flags
& PF_KTHREAD
)
3137 * If a fatal signal is pending, this process should not throttle.
3138 * It should return quickly so it can exit and free its memory
3140 if (fatal_signal_pending(current
))
3144 * Check if the pfmemalloc reserves are ok by finding the first node
3145 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3146 * GFP_KERNEL will be required for allocating network buffers when
3147 * swapping over the network so ZONE_HIGHMEM is unusable.
3149 * Throttling is based on the first usable node and throttled processes
3150 * wait on a queue until kswapd makes progress and wakes them. There
3151 * is an affinity then between processes waking up and where reclaim
3152 * progress has been made assuming the process wakes on the same node.
3153 * More importantly, processes running on remote nodes will not compete
3154 * for remote pfmemalloc reserves and processes on different nodes
3155 * should make reasonable progress.
3157 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
3158 gfp_zone(gfp_mask
), nodemask
) {
3159 if (zone_idx(zone
) > ZONE_NORMAL
)
3162 /* Throttle based on the first usable node */
3163 pgdat
= zone
->zone_pgdat
;
3164 if (allow_direct_reclaim(pgdat
))
3169 /* If no zone was usable by the allocation flags then do not throttle */
3173 /* Account for the throttling */
3174 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
3177 * If the caller cannot enter the filesystem, it's possible that it
3178 * is due to the caller holding an FS lock or performing a journal
3179 * transaction in the case of a filesystem like ext[3|4]. In this case,
3180 * it is not safe to block on pfmemalloc_wait as kswapd could be
3181 * blocked waiting on the same lock. Instead, throttle for up to a
3182 * second before continuing.
3184 if (!(gfp_mask
& __GFP_FS
)) {
3185 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
3186 allow_direct_reclaim(pgdat
), HZ
);
3191 /* Throttle until kswapd wakes the process */
3192 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
3193 allow_direct_reclaim(pgdat
));
3196 if (fatal_signal_pending(current
))
3203 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
3204 gfp_t gfp_mask
, nodemask_t
*nodemask
)
3206 unsigned long nr_reclaimed
;
3207 struct scan_control sc
= {
3208 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3209 .gfp_mask
= current_gfp_context(gfp_mask
),
3210 .reclaim_idx
= gfp_zone(gfp_mask
),
3212 .nodemask
= nodemask
,
3213 .priority
= DEF_PRIORITY
,
3214 .may_writepage
= !laptop_mode
,
3220 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3221 * Confirm they are large enough for max values.
3223 BUILD_BUG_ON(MAX_ORDER
> S8_MAX
);
3224 BUILD_BUG_ON(DEF_PRIORITY
> S8_MAX
);
3225 BUILD_BUG_ON(MAX_NR_ZONES
> S8_MAX
);
3228 * Do not enter reclaim if fatal signal was delivered while throttled.
3229 * 1 is returned so that the page allocator does not OOM kill at this
3232 if (throttle_direct_reclaim(sc
.gfp_mask
, zonelist
, nodemask
))
3235 set_task_reclaim_state(current
, &sc
.reclaim_state
);
3236 trace_mm_vmscan_direct_reclaim_begin(order
, sc
.gfp_mask
);
3238 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3240 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
3241 set_task_reclaim_state(current
, NULL
);
3243 return nr_reclaimed
;
3248 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3249 unsigned long mem_cgroup_shrink_node(struct mem_cgroup
*memcg
,
3250 gfp_t gfp_mask
, bool noswap
,
3252 unsigned long *nr_scanned
)
3254 struct scan_control sc
= {
3255 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3256 .target_mem_cgroup
= memcg
,
3257 .may_writepage
= !laptop_mode
,
3259 .reclaim_idx
= MAX_NR_ZONES
- 1,
3260 .may_swap
= !noswap
,
3262 unsigned long lru_pages
;
3264 WARN_ON_ONCE(!current
->reclaim_state
);
3266 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
3267 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
3269 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
3273 * NOTE: Although we can get the priority field, using it
3274 * here is not a good idea, since it limits the pages we can scan.
3275 * if we don't reclaim here, the shrink_node from balance_pgdat
3276 * will pick up pages from other mem cgroup's as well. We hack
3277 * the priority and make it zero.
3279 shrink_node_memcg(pgdat
, memcg
, &sc
, &lru_pages
);
3281 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
3283 *nr_scanned
= sc
.nr_scanned
;
3285 return sc
.nr_reclaimed
;
3288 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
3289 unsigned long nr_pages
,
3293 struct zonelist
*zonelist
;
3294 unsigned long nr_reclaimed
;
3295 unsigned long pflags
;
3297 unsigned int noreclaim_flag
;
3298 struct scan_control sc
= {
3299 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3300 .gfp_mask
= (current_gfp_context(gfp_mask
) & GFP_RECLAIM_MASK
) |
3301 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
3302 .reclaim_idx
= MAX_NR_ZONES
- 1,
3303 .target_mem_cgroup
= memcg
,
3304 .priority
= DEF_PRIORITY
,
3305 .may_writepage
= !laptop_mode
,
3307 .may_swap
= may_swap
,
3310 set_task_reclaim_state(current
, &sc
.reclaim_state
);
3312 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3313 * take care of from where we get pages. So the node where we start the
3314 * scan does not need to be the current node.
3316 nid
= mem_cgroup_select_victim_node(memcg
);
3318 zonelist
= &NODE_DATA(nid
)->node_zonelists
[ZONELIST_FALLBACK
];
3320 trace_mm_vmscan_memcg_reclaim_begin(0, sc
.gfp_mask
);
3322 psi_memstall_enter(&pflags
);
3323 noreclaim_flag
= memalloc_noreclaim_save();
3325 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3327 memalloc_noreclaim_restore(noreclaim_flag
);
3328 psi_memstall_leave(&pflags
);
3330 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
3331 set_task_reclaim_state(current
, NULL
);
3333 return nr_reclaimed
;
3337 static void age_active_anon(struct pglist_data
*pgdat
,
3338 struct scan_control
*sc
)
3340 struct mem_cgroup
*memcg
;
3342 if (!total_swap_pages
)
3345 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
3347 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
3349 if (inactive_list_is_low(lruvec
, false, sc
, true))
3350 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
3351 sc
, LRU_ACTIVE_ANON
);
3353 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
3357 static bool pgdat_watermark_boosted(pg_data_t
*pgdat
, int classzone_idx
)
3363 * Check for watermark boosts top-down as the higher zones
3364 * are more likely to be boosted. Both watermarks and boosts
3365 * should not be checked at the time time as reclaim would
3366 * start prematurely when there is no boosting and a lower
3369 for (i
= classzone_idx
; i
>= 0; i
--) {
3370 zone
= pgdat
->node_zones
+ i
;
3371 if (!managed_zone(zone
))
3374 if (zone
->watermark_boost
)
3382 * Returns true if there is an eligible zone balanced for the request order
3385 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3388 unsigned long mark
= -1;
3392 * Check watermarks bottom-up as lower zones are more likely to
3395 for (i
= 0; i
<= classzone_idx
; i
++) {
3396 zone
= pgdat
->node_zones
+ i
;
3398 if (!managed_zone(zone
))
3401 mark
= high_wmark_pages(zone
);
3402 if (zone_watermark_ok_safe(zone
, order
, mark
, classzone_idx
))
3407 * If a node has no populated zone within classzone_idx, it does not
3408 * need balancing by definition. This can happen if a zone-restricted
3409 * allocation tries to wake a remote kswapd.
3417 /* Clear pgdat state for congested, dirty or under writeback. */
3418 static void clear_pgdat_congested(pg_data_t
*pgdat
)
3420 clear_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
3421 clear_bit(PGDAT_DIRTY
, &pgdat
->flags
);
3422 clear_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
3426 * Prepare kswapd for sleeping. This verifies that there are no processes
3427 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3429 * Returns true if kswapd is ready to sleep
3431 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3434 * The throttled processes are normally woken up in balance_pgdat() as
3435 * soon as allow_direct_reclaim() is true. But there is a potential
3436 * race between when kswapd checks the watermarks and a process gets
3437 * throttled. There is also a potential race if processes get
3438 * throttled, kswapd wakes, a large process exits thereby balancing the
3439 * zones, which causes kswapd to exit balance_pgdat() before reaching
3440 * the wake up checks. If kswapd is going to sleep, no process should
3441 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3442 * the wake up is premature, processes will wake kswapd and get
3443 * throttled again. The difference from wake ups in balance_pgdat() is
3444 * that here we are under prepare_to_wait().
3446 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
3447 wake_up_all(&pgdat
->pfmemalloc_wait
);
3449 /* Hopeless node, leave it to direct reclaim */
3450 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3453 if (pgdat_balanced(pgdat
, order
, classzone_idx
)) {
3454 clear_pgdat_congested(pgdat
);
3462 * kswapd shrinks a node of pages that are at or below the highest usable
3463 * zone that is currently unbalanced.
3465 * Returns true if kswapd scanned at least the requested number of pages to
3466 * reclaim or if the lack of progress was due to pages under writeback.
3467 * This is used to determine if the scanning priority needs to be raised.
3469 static bool kswapd_shrink_node(pg_data_t
*pgdat
,
3470 struct scan_control
*sc
)
3475 /* Reclaim a number of pages proportional to the number of zones */
3476 sc
->nr_to_reclaim
= 0;
3477 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
3478 zone
= pgdat
->node_zones
+ z
;
3479 if (!managed_zone(zone
))
3482 sc
->nr_to_reclaim
+= max(high_wmark_pages(zone
), SWAP_CLUSTER_MAX
);
3486 * Historically care was taken to put equal pressure on all zones but
3487 * now pressure is applied based on node LRU order.
3489 shrink_node(pgdat
, sc
);
3492 * Fragmentation may mean that the system cannot be rebalanced for
3493 * high-order allocations. If twice the allocation size has been
3494 * reclaimed then recheck watermarks only at order-0 to prevent
3495 * excessive reclaim. Assume that a process requested a high-order
3496 * can direct reclaim/compact.
3498 if (sc
->order
&& sc
->nr_reclaimed
>= compact_gap(sc
->order
))
3501 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3505 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3506 * that are eligible for use by the caller until at least one zone is
3509 * Returns the order kswapd finished reclaiming at.
3511 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3512 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3513 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3514 * or lower is eligible for reclaim until at least one usable zone is
3517 static int balance_pgdat(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3520 unsigned long nr_soft_reclaimed
;
3521 unsigned long nr_soft_scanned
;
3522 unsigned long pflags
;
3523 unsigned long nr_boost_reclaim
;
3524 unsigned long zone_boosts
[MAX_NR_ZONES
] = { 0, };
3527 struct scan_control sc
= {
3528 .gfp_mask
= GFP_KERNEL
,
3533 set_task_reclaim_state(current
, &sc
.reclaim_state
);
3534 psi_memstall_enter(&pflags
);
3535 __fs_reclaim_acquire();
3537 count_vm_event(PAGEOUTRUN
);
3540 * Account for the reclaim boost. Note that the zone boost is left in
3541 * place so that parallel allocations that are near the watermark will
3542 * stall or direct reclaim until kswapd is finished.
3544 nr_boost_reclaim
= 0;
3545 for (i
= 0; i
<= classzone_idx
; i
++) {
3546 zone
= pgdat
->node_zones
+ i
;
3547 if (!managed_zone(zone
))
3550 nr_boost_reclaim
+= zone
->watermark_boost
;
3551 zone_boosts
[i
] = zone
->watermark_boost
;
3553 boosted
= nr_boost_reclaim
;
3556 sc
.priority
= DEF_PRIORITY
;
3558 unsigned long nr_reclaimed
= sc
.nr_reclaimed
;
3559 bool raise_priority
= true;
3563 sc
.reclaim_idx
= classzone_idx
;
3566 * If the number of buffer_heads exceeds the maximum allowed
3567 * then consider reclaiming from all zones. This has a dual
3568 * purpose -- on 64-bit systems it is expected that
3569 * buffer_heads are stripped during active rotation. On 32-bit
3570 * systems, highmem pages can pin lowmem memory and shrinking
3571 * buffers can relieve lowmem pressure. Reclaim may still not
3572 * go ahead if all eligible zones for the original allocation
3573 * request are balanced to avoid excessive reclaim from kswapd.
3575 if (buffer_heads_over_limit
) {
3576 for (i
= MAX_NR_ZONES
- 1; i
>= 0; i
--) {
3577 zone
= pgdat
->node_zones
+ i
;
3578 if (!managed_zone(zone
))
3587 * If the pgdat is imbalanced then ignore boosting and preserve
3588 * the watermarks for a later time and restart. Note that the
3589 * zone watermarks will be still reset at the end of balancing
3590 * on the grounds that the normal reclaim should be enough to
3591 * re-evaluate if boosting is required when kswapd next wakes.
3593 balanced
= pgdat_balanced(pgdat
, sc
.order
, classzone_idx
);
3594 if (!balanced
&& nr_boost_reclaim
) {
3595 nr_boost_reclaim
= 0;
3600 * If boosting is not active then only reclaim if there are no
3601 * eligible zones. Note that sc.reclaim_idx is not used as
3602 * buffer_heads_over_limit may have adjusted it.
3604 if (!nr_boost_reclaim
&& balanced
)
3607 /* Limit the priority of boosting to avoid reclaim writeback */
3608 if (nr_boost_reclaim
&& sc
.priority
== DEF_PRIORITY
- 2)
3609 raise_priority
= false;
3612 * Do not writeback or swap pages for boosted reclaim. The
3613 * intent is to relieve pressure not issue sub-optimal IO
3614 * from reclaim context. If no pages are reclaimed, the
3615 * reclaim will be aborted.
3617 sc
.may_writepage
= !laptop_mode
&& !nr_boost_reclaim
;
3618 sc
.may_swap
= !nr_boost_reclaim
;
3621 * Do some background aging of the anon list, to give
3622 * pages a chance to be referenced before reclaiming. All
3623 * pages are rotated regardless of classzone as this is
3624 * about consistent aging.
3626 age_active_anon(pgdat
, &sc
);
3629 * If we're getting trouble reclaiming, start doing writepage
3630 * even in laptop mode.
3632 if (sc
.priority
< DEF_PRIORITY
- 2)
3633 sc
.may_writepage
= 1;
3635 /* Call soft limit reclaim before calling shrink_node. */
3637 nr_soft_scanned
= 0;
3638 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(pgdat
, sc
.order
,
3639 sc
.gfp_mask
, &nr_soft_scanned
);
3640 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3643 * There should be no need to raise the scanning priority if
3644 * enough pages are already being scanned that that high
3645 * watermark would be met at 100% efficiency.
3647 if (kswapd_shrink_node(pgdat
, &sc
))
3648 raise_priority
= false;
3651 * If the low watermark is met there is no need for processes
3652 * to be throttled on pfmemalloc_wait as they should not be
3653 * able to safely make forward progress. Wake them
3655 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3656 allow_direct_reclaim(pgdat
))
3657 wake_up_all(&pgdat
->pfmemalloc_wait
);
3659 /* Check if kswapd should be suspending */
3660 __fs_reclaim_release();
3661 ret
= try_to_freeze();
3662 __fs_reclaim_acquire();
3663 if (ret
|| kthread_should_stop())
3667 * Raise priority if scanning rate is too low or there was no
3668 * progress in reclaiming pages
3670 nr_reclaimed
= sc
.nr_reclaimed
- nr_reclaimed
;
3671 nr_boost_reclaim
-= min(nr_boost_reclaim
, nr_reclaimed
);
3674 * If reclaim made no progress for a boost, stop reclaim as
3675 * IO cannot be queued and it could be an infinite loop in
3676 * extreme circumstances.
3678 if (nr_boost_reclaim
&& !nr_reclaimed
)
3681 if (raise_priority
|| !nr_reclaimed
)
3683 } while (sc
.priority
>= 1);
3685 if (!sc
.nr_reclaimed
)
3686 pgdat
->kswapd_failures
++;
3689 /* If reclaim was boosted, account for the reclaim done in this pass */
3691 unsigned long flags
;
3693 for (i
= 0; i
<= classzone_idx
; i
++) {
3694 if (!zone_boosts
[i
])
3697 /* Increments are under the zone lock */
3698 zone
= pgdat
->node_zones
+ i
;
3699 spin_lock_irqsave(&zone
->lock
, flags
);
3700 zone
->watermark_boost
-= min(zone
->watermark_boost
, zone_boosts
[i
]);
3701 spin_unlock_irqrestore(&zone
->lock
, flags
);
3705 * As there is now likely space, wakeup kcompact to defragment
3708 wakeup_kcompactd(pgdat
, pageblock_order
, classzone_idx
);
3711 snapshot_refaults(NULL
, pgdat
);
3712 __fs_reclaim_release();
3713 psi_memstall_leave(&pflags
);
3714 set_task_reclaim_state(current
, NULL
);
3717 * Return the order kswapd stopped reclaiming at as
3718 * prepare_kswapd_sleep() takes it into account. If another caller
3719 * entered the allocator slow path while kswapd was awake, order will
3720 * remain at the higher level.
3726 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3727 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3728 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3729 * after previous reclaim attempt (node is still unbalanced). In that case
3730 * return the zone index of the previous kswapd reclaim cycle.
3732 static enum zone_type
kswapd_classzone_idx(pg_data_t
*pgdat
,
3733 enum zone_type prev_classzone_idx
)
3735 if (pgdat
->kswapd_classzone_idx
== MAX_NR_ZONES
)
3736 return prev_classzone_idx
;
3737 return pgdat
->kswapd_classzone_idx
;
3740 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int alloc_order
, int reclaim_order
,
3741 unsigned int classzone_idx
)
3746 if (freezing(current
) || kthread_should_stop())
3749 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3752 * Try to sleep for a short interval. Note that kcompactd will only be
3753 * woken if it is possible to sleep for a short interval. This is
3754 * deliberate on the assumption that if reclaim cannot keep an
3755 * eligible zone balanced that it's also unlikely that compaction will
3758 if (prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3760 * Compaction records what page blocks it recently failed to
3761 * isolate pages from and skips them in the future scanning.
3762 * When kswapd is going to sleep, it is reasonable to assume
3763 * that pages and compaction may succeed so reset the cache.
3765 reset_isolation_suitable(pgdat
);
3768 * We have freed the memory, now we should compact it to make
3769 * allocation of the requested order possible.
3771 wakeup_kcompactd(pgdat
, alloc_order
, classzone_idx
);
3773 remaining
= schedule_timeout(HZ
/10);
3776 * If woken prematurely then reset kswapd_classzone_idx and
3777 * order. The values will either be from a wakeup request or
3778 * the previous request that slept prematurely.
3781 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3782 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, reclaim_order
);
3785 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3786 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3790 * After a short sleep, check if it was a premature sleep. If not, then
3791 * go fully to sleep until explicitly woken up.
3794 prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3795 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3798 * vmstat counters are not perfectly accurate and the estimated
3799 * value for counters such as NR_FREE_PAGES can deviate from the
3800 * true value by nr_online_cpus * threshold. To avoid the zone
3801 * watermarks being breached while under pressure, we reduce the
3802 * per-cpu vmstat threshold while kswapd is awake and restore
3803 * them before going back to sleep.
3805 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3807 if (!kthread_should_stop())
3810 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3813 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3815 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3817 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3821 * The background pageout daemon, started as a kernel thread
3822 * from the init process.
3824 * This basically trickles out pages so that we have _some_
3825 * free memory available even if there is no other activity
3826 * that frees anything up. This is needed for things like routing
3827 * etc, where we otherwise might have all activity going on in
3828 * asynchronous contexts that cannot page things out.
3830 * If there are applications that are active memory-allocators
3831 * (most normal use), this basically shouldn't matter.
3833 static int kswapd(void *p
)
3835 unsigned int alloc_order
, reclaim_order
;
3836 unsigned int classzone_idx
= MAX_NR_ZONES
- 1;
3837 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3838 struct task_struct
*tsk
= current
;
3839 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3841 if (!cpumask_empty(cpumask
))
3842 set_cpus_allowed_ptr(tsk
, cpumask
);
3845 * Tell the memory management that we're a "memory allocator",
3846 * and that if we need more memory we should get access to it
3847 * regardless (see "__alloc_pages()"). "kswapd" should
3848 * never get caught in the normal page freeing logic.
3850 * (Kswapd normally doesn't need memory anyway, but sometimes
3851 * you need a small amount of memory in order to be able to
3852 * page out something else, and this flag essentially protects
3853 * us from recursively trying to free more memory as we're
3854 * trying to free the first piece of memory in the first place).
3856 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3859 pgdat
->kswapd_order
= 0;
3860 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3864 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3865 classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3868 kswapd_try_to_sleep(pgdat
, alloc_order
, reclaim_order
,
3871 /* Read the new order and classzone_idx */
3872 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3873 classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3874 pgdat
->kswapd_order
= 0;
3875 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3877 ret
= try_to_freeze();
3878 if (kthread_should_stop())
3882 * We can speed up thawing tasks if we don't call balance_pgdat
3883 * after returning from the refrigerator
3889 * Reclaim begins at the requested order but if a high-order
3890 * reclaim fails then kswapd falls back to reclaiming for
3891 * order-0. If that happens, kswapd will consider sleeping
3892 * for the order it finished reclaiming at (reclaim_order)
3893 * but kcompactd is woken to compact for the original
3894 * request (alloc_order).
3896 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, classzone_idx
,
3898 reclaim_order
= balance_pgdat(pgdat
, alloc_order
, classzone_idx
);
3899 if (reclaim_order
< alloc_order
)
3900 goto kswapd_try_sleep
;
3903 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3909 * A zone is low on free memory or too fragmented for high-order memory. If
3910 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3911 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3912 * has failed or is not needed, still wake up kcompactd if only compaction is
3915 void wakeup_kswapd(struct zone
*zone
, gfp_t gfp_flags
, int order
,
3916 enum zone_type classzone_idx
)
3920 if (!managed_zone(zone
))
3923 if (!cpuset_zone_allowed(zone
, gfp_flags
))
3925 pgdat
= zone
->zone_pgdat
;
3927 if (pgdat
->kswapd_classzone_idx
== MAX_NR_ZONES
)
3928 pgdat
->kswapd_classzone_idx
= classzone_idx
;
3930 pgdat
->kswapd_classzone_idx
= max(pgdat
->kswapd_classzone_idx
,
3932 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, order
);
3933 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3936 /* Hopeless node, leave it to direct reclaim if possible */
3937 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
||
3938 (pgdat_balanced(pgdat
, order
, classzone_idx
) &&
3939 !pgdat_watermark_boosted(pgdat
, classzone_idx
))) {
3941 * There may be plenty of free memory available, but it's too
3942 * fragmented for high-order allocations. Wake up kcompactd
3943 * and rely on compaction_suitable() to determine if it's
3944 * needed. If it fails, it will defer subsequent attempts to
3945 * ratelimit its work.
3947 if (!(gfp_flags
& __GFP_DIRECT_RECLAIM
))
3948 wakeup_kcompactd(pgdat
, order
, classzone_idx
);
3952 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, classzone_idx
, order
,
3954 wake_up_interruptible(&pgdat
->kswapd_wait
);
3957 #ifdef CONFIG_HIBERNATION
3959 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3962 * Rather than trying to age LRUs the aim is to preserve the overall
3963 * LRU order by reclaiming preferentially
3964 * inactive > active > active referenced > active mapped
3966 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3968 struct scan_control sc
= {
3969 .nr_to_reclaim
= nr_to_reclaim
,
3970 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3971 .reclaim_idx
= MAX_NR_ZONES
- 1,
3972 .priority
= DEF_PRIORITY
,
3976 .hibernation_mode
= 1,
3978 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3979 unsigned long nr_reclaimed
;
3980 unsigned int noreclaim_flag
;
3982 fs_reclaim_acquire(sc
.gfp_mask
);
3983 noreclaim_flag
= memalloc_noreclaim_save();
3984 set_task_reclaim_state(current
, &sc
.reclaim_state
);
3986 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3988 set_task_reclaim_state(current
, NULL
);
3989 memalloc_noreclaim_restore(noreclaim_flag
);
3990 fs_reclaim_release(sc
.gfp_mask
);
3992 return nr_reclaimed
;
3994 #endif /* CONFIG_HIBERNATION */
3996 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3997 not required for correctness. So if the last cpu in a node goes
3998 away, we get changed to run anywhere: as the first one comes back,
3999 restore their cpu bindings. */
4000 static int kswapd_cpu_online(unsigned int cpu
)
4004 for_each_node_state(nid
, N_MEMORY
) {
4005 pg_data_t
*pgdat
= NODE_DATA(nid
);
4006 const struct cpumask
*mask
;
4008 mask
= cpumask_of_node(pgdat
->node_id
);
4010 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
4011 /* One of our CPUs online: restore mask */
4012 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
4018 * This kswapd start function will be called by init and node-hot-add.
4019 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4021 int kswapd_run(int nid
)
4023 pg_data_t
*pgdat
= NODE_DATA(nid
);
4029 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
4030 if (IS_ERR(pgdat
->kswapd
)) {
4031 /* failure at boot is fatal */
4032 BUG_ON(system_state
< SYSTEM_RUNNING
);
4033 pr_err("Failed to start kswapd on node %d\n", nid
);
4034 ret
= PTR_ERR(pgdat
->kswapd
);
4035 pgdat
->kswapd
= NULL
;
4041 * Called by memory hotplug when all memory in a node is offlined. Caller must
4042 * hold mem_hotplug_begin/end().
4044 void kswapd_stop(int nid
)
4046 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
4049 kthread_stop(kswapd
);
4050 NODE_DATA(nid
)->kswapd
= NULL
;
4054 static int __init
kswapd_init(void)
4059 for_each_node_state(nid
, N_MEMORY
)
4061 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
4062 "mm/vmscan:online", kswapd_cpu_online
,
4068 module_init(kswapd_init
)
4074 * If non-zero call node_reclaim when the number of free pages falls below
4077 int node_reclaim_mode __read_mostly
;
4079 #define RECLAIM_OFF 0
4080 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4081 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4082 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4085 * Priority for NODE_RECLAIM. This determines the fraction of pages
4086 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4089 #define NODE_RECLAIM_PRIORITY 4
4092 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4095 int sysctl_min_unmapped_ratio
= 1;
4098 * If the number of slab pages in a zone grows beyond this percentage then
4099 * slab reclaim needs to occur.
4101 int sysctl_min_slab_ratio
= 5;
4103 static inline unsigned long node_unmapped_file_pages(struct pglist_data
*pgdat
)
4105 unsigned long file_mapped
= node_page_state(pgdat
, NR_FILE_MAPPED
);
4106 unsigned long file_lru
= node_page_state(pgdat
, NR_INACTIVE_FILE
) +
4107 node_page_state(pgdat
, NR_ACTIVE_FILE
);
4110 * It's possible for there to be more file mapped pages than
4111 * accounted for by the pages on the file LRU lists because
4112 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4114 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
4117 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4118 static unsigned long node_pagecache_reclaimable(struct pglist_data
*pgdat
)
4120 unsigned long nr_pagecache_reclaimable
;
4121 unsigned long delta
= 0;
4124 * If RECLAIM_UNMAP is set, then all file pages are considered
4125 * potentially reclaimable. Otherwise, we have to worry about
4126 * pages like swapcache and node_unmapped_file_pages() provides
4129 if (node_reclaim_mode
& RECLAIM_UNMAP
)
4130 nr_pagecache_reclaimable
= node_page_state(pgdat
, NR_FILE_PAGES
);
4132 nr_pagecache_reclaimable
= node_unmapped_file_pages(pgdat
);
4134 /* If we can't clean pages, remove dirty pages from consideration */
4135 if (!(node_reclaim_mode
& RECLAIM_WRITE
))
4136 delta
+= node_page_state(pgdat
, NR_FILE_DIRTY
);
4138 /* Watch for any possible underflows due to delta */
4139 if (unlikely(delta
> nr_pagecache_reclaimable
))
4140 delta
= nr_pagecache_reclaimable
;
4142 return nr_pagecache_reclaimable
- delta
;
4146 * Try to free up some pages from this node through reclaim.
4148 static int __node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
4150 /* Minimum pages needed in order to stay on node */
4151 const unsigned long nr_pages
= 1 << order
;
4152 struct task_struct
*p
= current
;
4153 unsigned int noreclaim_flag
;
4154 struct scan_control sc
= {
4155 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
4156 .gfp_mask
= current_gfp_context(gfp_mask
),
4158 .priority
= NODE_RECLAIM_PRIORITY
,
4159 .may_writepage
= !!(node_reclaim_mode
& RECLAIM_WRITE
),
4160 .may_unmap
= !!(node_reclaim_mode
& RECLAIM_UNMAP
),
4162 .reclaim_idx
= gfp_zone(gfp_mask
),
4165 trace_mm_vmscan_node_reclaim_begin(pgdat
->node_id
, order
,
4169 fs_reclaim_acquire(sc
.gfp_mask
);
4171 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4172 * and we also need to be able to write out pages for RECLAIM_WRITE
4173 * and RECLAIM_UNMAP.
4175 noreclaim_flag
= memalloc_noreclaim_save();
4176 p
->flags
|= PF_SWAPWRITE
;
4177 set_task_reclaim_state(p
, &sc
.reclaim_state
);
4179 if (node_pagecache_reclaimable(pgdat
) > pgdat
->min_unmapped_pages
) {
4181 * Free memory by calling shrink node with increasing
4182 * priorities until we have enough memory freed.
4185 shrink_node(pgdat
, &sc
);
4186 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
4189 set_task_reclaim_state(p
, NULL
);
4190 current
->flags
&= ~PF_SWAPWRITE
;
4191 memalloc_noreclaim_restore(noreclaim_flag
);
4192 fs_reclaim_release(sc
.gfp_mask
);
4194 trace_mm_vmscan_node_reclaim_end(sc
.nr_reclaimed
);
4196 return sc
.nr_reclaimed
>= nr_pages
;
4199 int node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
4204 * Node reclaim reclaims unmapped file backed pages and
4205 * slab pages if we are over the defined limits.
4207 * A small portion of unmapped file backed pages is needed for
4208 * file I/O otherwise pages read by file I/O will be immediately
4209 * thrown out if the node is overallocated. So we do not reclaim
4210 * if less than a specified percentage of the node is used by
4211 * unmapped file backed pages.
4213 if (node_pagecache_reclaimable(pgdat
) <= pgdat
->min_unmapped_pages
&&
4214 node_page_state(pgdat
, NR_SLAB_RECLAIMABLE
) <= pgdat
->min_slab_pages
)
4215 return NODE_RECLAIM_FULL
;
4218 * Do not scan if the allocation should not be delayed.
4220 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
4221 return NODE_RECLAIM_NOSCAN
;
4224 * Only run node reclaim on the local node or on nodes that do not
4225 * have associated processors. This will favor the local processor
4226 * over remote processors and spread off node memory allocations
4227 * as wide as possible.
4229 if (node_state(pgdat
->node_id
, N_CPU
) && pgdat
->node_id
!= numa_node_id())
4230 return NODE_RECLAIM_NOSCAN
;
4232 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
))
4233 return NODE_RECLAIM_NOSCAN
;
4235 ret
= __node_reclaim(pgdat
, gfp_mask
, order
);
4236 clear_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
);
4239 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
4246 * page_evictable - test whether a page is evictable
4247 * @page: the page to test
4249 * Test whether page is evictable--i.e., should be placed on active/inactive
4250 * lists vs unevictable list.
4252 * Reasons page might not be evictable:
4253 * (1) page's mapping marked unevictable
4254 * (2) page is part of an mlocked VMA
4257 int page_evictable(struct page
*page
)
4261 /* Prevent address_space of inode and swap cache from being freed */
4263 ret
= !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
4269 * check_move_unevictable_pages - check pages for evictability and move to
4270 * appropriate zone lru list
4271 * @pvec: pagevec with lru pages to check
4273 * Checks pages for evictability, if an evictable page is in the unevictable
4274 * lru list, moves it to the appropriate evictable lru list. This function
4275 * should be only used for lru pages.
4277 void check_move_unevictable_pages(struct pagevec
*pvec
)
4279 struct lruvec
*lruvec
;
4280 struct pglist_data
*pgdat
= NULL
;
4285 for (i
= 0; i
< pvec
->nr
; i
++) {
4286 struct page
*page
= pvec
->pages
[i
];
4287 struct pglist_data
*pagepgdat
= page_pgdat(page
);
4290 if (pagepgdat
!= pgdat
) {
4292 spin_unlock_irq(&pgdat
->lru_lock
);
4294 spin_lock_irq(&pgdat
->lru_lock
);
4296 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
4298 if (!PageLRU(page
) || !PageUnevictable(page
))
4301 if (page_evictable(page
)) {
4302 enum lru_list lru
= page_lru_base_type(page
);
4304 VM_BUG_ON_PAGE(PageActive(page
), page
);
4305 ClearPageUnevictable(page
);
4306 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
4307 add_page_to_lru_list(page
, lruvec
, lru
);
4313 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
4314 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
4315 spin_unlock_irq(&pgdat
->lru_lock
);
4318 EXPORT_SYMBOL_GPL(check_move_unevictable_pages
);