Merge tag 'for-linus-5.4-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / mm / vmscan.c
blobe5d52d6a24aff1c7fccd292bb8a2455e1eec1d52
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
61 #include "internal.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
66 struct scan_control {
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
74 nodemask_t *nodemask;
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
80 struct mem_cgroup *target_mem_cgroup;
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage:1;
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
92 * Cgroups are not reclaimed below their configured memory.low,
93 * unless we threaten to OOM. If any cgroups are skipped due to
94 * memory.low and nothing was reclaimed, go back for memory.low.
96 unsigned int memcg_low_reclaim:1;
97 unsigned int memcg_low_skipped:1;
99 unsigned int hibernation_mode:1;
101 /* One of the zones is ready for compaction */
102 unsigned int compaction_ready:1;
104 /* Allocation order */
105 s8 order;
107 /* Scan (total_size >> priority) pages at once */
108 s8 priority;
110 /* The highest zone to isolate pages for reclaim from */
111 s8 reclaim_idx;
113 /* This context's GFP mask */
114 gfp_t gfp_mask;
116 /* Incremented by the number of inactive pages that were scanned */
117 unsigned long nr_scanned;
119 /* Number of pages freed so far during a call to shrink_zones() */
120 unsigned long nr_reclaimed;
122 struct {
123 unsigned int dirty;
124 unsigned int unqueued_dirty;
125 unsigned int congested;
126 unsigned int writeback;
127 unsigned int immediate;
128 unsigned int file_taken;
129 unsigned int taken;
130 } nr;
132 /* for recording the reclaimed slab by now */
133 struct reclaim_state reclaim_state;
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field) \
138 do { \
139 if ((_page)->lru.prev != _base) { \
140 struct page *prev; \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
145 } while (0)
146 #else
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field) \
152 do { \
153 if ((_page)->lru.prev != _base) { \
154 struct page *prev; \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
159 } while (0)
160 #else
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162 #endif
165 * From 0 .. 100. Higher means more swappy.
167 int vm_swappiness = 60;
169 * The total number of pages which are beyond the high watermark within all
170 * zones.
172 unsigned long vm_total_pages;
174 static void set_task_reclaim_state(struct task_struct *task,
175 struct reclaim_state *rs)
177 /* Check for an overwrite */
178 WARN_ON_ONCE(rs && task->reclaim_state);
180 /* Check for the nulling of an already-nulled member */
181 WARN_ON_ONCE(!rs && !task->reclaim_state);
183 task->reclaim_state = rs;
186 static LIST_HEAD(shrinker_list);
187 static DECLARE_RWSEM(shrinker_rwsem);
189 #ifdef CONFIG_MEMCG
191 * We allow subsystems to populate their shrinker-related
192 * LRU lists before register_shrinker_prepared() is called
193 * for the shrinker, since we don't want to impose
194 * restrictions on their internal registration order.
195 * In this case shrink_slab_memcg() may find corresponding
196 * bit is set in the shrinkers map.
198 * This value is used by the function to detect registering
199 * shrinkers and to skip do_shrink_slab() calls for them.
201 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
203 static DEFINE_IDR(shrinker_idr);
204 static int shrinker_nr_max;
206 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
208 int id, ret = -ENOMEM;
210 down_write(&shrinker_rwsem);
211 /* This may call shrinker, so it must use down_read_trylock() */
212 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
213 if (id < 0)
214 goto unlock;
216 if (id >= shrinker_nr_max) {
217 if (memcg_expand_shrinker_maps(id)) {
218 idr_remove(&shrinker_idr, id);
219 goto unlock;
222 shrinker_nr_max = id + 1;
224 shrinker->id = id;
225 ret = 0;
226 unlock:
227 up_write(&shrinker_rwsem);
228 return ret;
231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
233 int id = shrinker->id;
235 BUG_ON(id < 0);
237 down_write(&shrinker_rwsem);
238 idr_remove(&shrinker_idr, id);
239 up_write(&shrinker_rwsem);
242 static bool global_reclaim(struct scan_control *sc)
244 return !sc->target_mem_cgroup;
248 * sane_reclaim - is the usual dirty throttling mechanism operational?
249 * @sc: scan_control in question
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
260 static bool sane_reclaim(struct scan_control *sc)
262 struct mem_cgroup *memcg = sc->target_mem_cgroup;
264 if (!memcg)
265 return true;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 return true;
269 #endif
270 return false;
273 static void set_memcg_congestion(pg_data_t *pgdat,
274 struct mem_cgroup *memcg,
275 bool congested)
277 struct mem_cgroup_per_node *mn;
279 if (!memcg)
280 return;
282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 WRITE_ONCE(mn->congested, congested);
286 static bool memcg_congested(pg_data_t *pgdat,
287 struct mem_cgroup *memcg)
289 struct mem_cgroup_per_node *mn;
291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 return READ_ONCE(mn->congested);
295 #else
296 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
298 return 0;
301 static void unregister_memcg_shrinker(struct shrinker *shrinker)
305 static bool global_reclaim(struct scan_control *sc)
307 return true;
310 static bool sane_reclaim(struct scan_control *sc)
312 return true;
315 static inline void set_memcg_congestion(struct pglist_data *pgdat,
316 struct mem_cgroup *memcg, bool congested)
320 static inline bool memcg_congested(struct pglist_data *pgdat,
321 struct mem_cgroup *memcg)
323 return false;
326 #endif
329 * This misses isolated pages which are not accounted for to save counters.
330 * As the data only determines if reclaim or compaction continues, it is
331 * not expected that isolated pages will be a dominating factor.
333 unsigned long zone_reclaimable_pages(struct zone *zone)
335 unsigned long nr;
337 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
338 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
339 if (get_nr_swap_pages() > 0)
340 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
341 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
343 return nr;
347 * lruvec_lru_size - Returns the number of pages on the given LRU list.
348 * @lruvec: lru vector
349 * @lru: lru to use
350 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
352 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
354 unsigned long lru_size;
355 int zid;
357 if (!mem_cgroup_disabled())
358 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
359 else
360 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
362 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
363 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
364 unsigned long size;
366 if (!managed_zone(zone))
367 continue;
369 if (!mem_cgroup_disabled())
370 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
371 else
372 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
373 NR_ZONE_LRU_BASE + lru);
374 lru_size -= min(size, lru_size);
377 return lru_size;
382 * Add a shrinker callback to be called from the vm.
384 int prealloc_shrinker(struct shrinker *shrinker)
386 unsigned int size = sizeof(*shrinker->nr_deferred);
388 if (shrinker->flags & SHRINKER_NUMA_AWARE)
389 size *= nr_node_ids;
391 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
392 if (!shrinker->nr_deferred)
393 return -ENOMEM;
395 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
396 if (prealloc_memcg_shrinker(shrinker))
397 goto free_deferred;
400 return 0;
402 free_deferred:
403 kfree(shrinker->nr_deferred);
404 shrinker->nr_deferred = NULL;
405 return -ENOMEM;
408 void free_prealloced_shrinker(struct shrinker *shrinker)
410 if (!shrinker->nr_deferred)
411 return;
413 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
414 unregister_memcg_shrinker(shrinker);
416 kfree(shrinker->nr_deferred);
417 shrinker->nr_deferred = NULL;
420 void register_shrinker_prepared(struct shrinker *shrinker)
422 down_write(&shrinker_rwsem);
423 list_add_tail(&shrinker->list, &shrinker_list);
424 #ifdef CONFIG_MEMCG_KMEM
425 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
426 idr_replace(&shrinker_idr, shrinker, shrinker->id);
427 #endif
428 up_write(&shrinker_rwsem);
431 int register_shrinker(struct shrinker *shrinker)
433 int err = prealloc_shrinker(shrinker);
435 if (err)
436 return err;
437 register_shrinker_prepared(shrinker);
438 return 0;
440 EXPORT_SYMBOL(register_shrinker);
443 * Remove one
445 void unregister_shrinker(struct shrinker *shrinker)
447 if (!shrinker->nr_deferred)
448 return;
449 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
450 unregister_memcg_shrinker(shrinker);
451 down_write(&shrinker_rwsem);
452 list_del(&shrinker->list);
453 up_write(&shrinker_rwsem);
454 kfree(shrinker->nr_deferred);
455 shrinker->nr_deferred = NULL;
457 EXPORT_SYMBOL(unregister_shrinker);
459 #define SHRINK_BATCH 128
461 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
462 struct shrinker *shrinker, int priority)
464 unsigned long freed = 0;
465 unsigned long long delta;
466 long total_scan;
467 long freeable;
468 long nr;
469 long new_nr;
470 int nid = shrinkctl->nid;
471 long batch_size = shrinker->batch ? shrinker->batch
472 : SHRINK_BATCH;
473 long scanned = 0, next_deferred;
475 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
476 nid = 0;
478 freeable = shrinker->count_objects(shrinker, shrinkctl);
479 if (freeable == 0 || freeable == SHRINK_EMPTY)
480 return freeable;
483 * copy the current shrinker scan count into a local variable
484 * and zero it so that other concurrent shrinker invocations
485 * don't also do this scanning work.
487 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
489 total_scan = nr;
490 if (shrinker->seeks) {
491 delta = freeable >> priority;
492 delta *= 4;
493 do_div(delta, shrinker->seeks);
494 } else {
496 * These objects don't require any IO to create. Trim
497 * them aggressively under memory pressure to keep
498 * them from causing refetches in the IO caches.
500 delta = freeable / 2;
503 total_scan += delta;
504 if (total_scan < 0) {
505 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
506 shrinker->scan_objects, total_scan);
507 total_scan = freeable;
508 next_deferred = nr;
509 } else
510 next_deferred = total_scan;
513 * We need to avoid excessive windup on filesystem shrinkers
514 * due to large numbers of GFP_NOFS allocations causing the
515 * shrinkers to return -1 all the time. This results in a large
516 * nr being built up so when a shrink that can do some work
517 * comes along it empties the entire cache due to nr >>>
518 * freeable. This is bad for sustaining a working set in
519 * memory.
521 * Hence only allow the shrinker to scan the entire cache when
522 * a large delta change is calculated directly.
524 if (delta < freeable / 4)
525 total_scan = min(total_scan, freeable / 2);
528 * Avoid risking looping forever due to too large nr value:
529 * never try to free more than twice the estimate number of
530 * freeable entries.
532 if (total_scan > freeable * 2)
533 total_scan = freeable * 2;
535 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
536 freeable, delta, total_scan, priority);
539 * Normally, we should not scan less than batch_size objects in one
540 * pass to avoid too frequent shrinker calls, but if the slab has less
541 * than batch_size objects in total and we are really tight on memory,
542 * we will try to reclaim all available objects, otherwise we can end
543 * up failing allocations although there are plenty of reclaimable
544 * objects spread over several slabs with usage less than the
545 * batch_size.
547 * We detect the "tight on memory" situations by looking at the total
548 * number of objects we want to scan (total_scan). If it is greater
549 * than the total number of objects on slab (freeable), we must be
550 * scanning at high prio and therefore should try to reclaim as much as
551 * possible.
553 while (total_scan >= batch_size ||
554 total_scan >= freeable) {
555 unsigned long ret;
556 unsigned long nr_to_scan = min(batch_size, total_scan);
558 shrinkctl->nr_to_scan = nr_to_scan;
559 shrinkctl->nr_scanned = nr_to_scan;
560 ret = shrinker->scan_objects(shrinker, shrinkctl);
561 if (ret == SHRINK_STOP)
562 break;
563 freed += ret;
565 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
566 total_scan -= shrinkctl->nr_scanned;
567 scanned += shrinkctl->nr_scanned;
569 cond_resched();
572 if (next_deferred >= scanned)
573 next_deferred -= scanned;
574 else
575 next_deferred = 0;
577 * move the unused scan count back into the shrinker in a
578 * manner that handles concurrent updates. If we exhausted the
579 * scan, there is no need to do an update.
581 if (next_deferred > 0)
582 new_nr = atomic_long_add_return(next_deferred,
583 &shrinker->nr_deferred[nid]);
584 else
585 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
587 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
588 return freed;
591 #ifdef CONFIG_MEMCG
592 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
593 struct mem_cgroup *memcg, int priority)
595 struct memcg_shrinker_map *map;
596 unsigned long ret, freed = 0;
597 int i;
599 if (!mem_cgroup_online(memcg))
600 return 0;
602 if (!down_read_trylock(&shrinker_rwsem))
603 return 0;
605 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
606 true);
607 if (unlikely(!map))
608 goto unlock;
610 for_each_set_bit(i, map->map, shrinker_nr_max) {
611 struct shrink_control sc = {
612 .gfp_mask = gfp_mask,
613 .nid = nid,
614 .memcg = memcg,
616 struct shrinker *shrinker;
618 shrinker = idr_find(&shrinker_idr, i);
619 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
620 if (!shrinker)
621 clear_bit(i, map->map);
622 continue;
625 /* Call non-slab shrinkers even though kmem is disabled */
626 if (!memcg_kmem_enabled() &&
627 !(shrinker->flags & SHRINKER_NONSLAB))
628 continue;
630 ret = do_shrink_slab(&sc, shrinker, priority);
631 if (ret == SHRINK_EMPTY) {
632 clear_bit(i, map->map);
634 * After the shrinker reported that it had no objects to
635 * free, but before we cleared the corresponding bit in
636 * the memcg shrinker map, a new object might have been
637 * added. To make sure, we have the bit set in this
638 * case, we invoke the shrinker one more time and reset
639 * the bit if it reports that it is not empty anymore.
640 * The memory barrier here pairs with the barrier in
641 * memcg_set_shrinker_bit():
643 * list_lru_add() shrink_slab_memcg()
644 * list_add_tail() clear_bit()
645 * <MB> <MB>
646 * set_bit() do_shrink_slab()
648 smp_mb__after_atomic();
649 ret = do_shrink_slab(&sc, shrinker, priority);
650 if (ret == SHRINK_EMPTY)
651 ret = 0;
652 else
653 memcg_set_shrinker_bit(memcg, nid, i);
655 freed += ret;
657 if (rwsem_is_contended(&shrinker_rwsem)) {
658 freed = freed ? : 1;
659 break;
662 unlock:
663 up_read(&shrinker_rwsem);
664 return freed;
666 #else /* CONFIG_MEMCG */
667 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
668 struct mem_cgroup *memcg, int priority)
670 return 0;
672 #endif /* CONFIG_MEMCG */
675 * shrink_slab - shrink slab caches
676 * @gfp_mask: allocation context
677 * @nid: node whose slab caches to target
678 * @memcg: memory cgroup whose slab caches to target
679 * @priority: the reclaim priority
681 * Call the shrink functions to age shrinkable caches.
683 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
684 * unaware shrinkers will receive a node id of 0 instead.
686 * @memcg specifies the memory cgroup to target. Unaware shrinkers
687 * are called only if it is the root cgroup.
689 * @priority is sc->priority, we take the number of objects and >> by priority
690 * in order to get the scan target.
692 * Returns the number of reclaimed slab objects.
694 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
695 struct mem_cgroup *memcg,
696 int priority)
698 unsigned long ret, freed = 0;
699 struct shrinker *shrinker;
702 * The root memcg might be allocated even though memcg is disabled
703 * via "cgroup_disable=memory" boot parameter. This could make
704 * mem_cgroup_is_root() return false, then just run memcg slab
705 * shrink, but skip global shrink. This may result in premature
706 * oom.
708 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
709 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
711 if (!down_read_trylock(&shrinker_rwsem))
712 goto out;
714 list_for_each_entry(shrinker, &shrinker_list, list) {
715 struct shrink_control sc = {
716 .gfp_mask = gfp_mask,
717 .nid = nid,
718 .memcg = memcg,
721 ret = do_shrink_slab(&sc, shrinker, priority);
722 if (ret == SHRINK_EMPTY)
723 ret = 0;
724 freed += ret;
726 * Bail out if someone want to register a new shrinker to
727 * prevent the regsitration from being stalled for long periods
728 * by parallel ongoing shrinking.
730 if (rwsem_is_contended(&shrinker_rwsem)) {
731 freed = freed ? : 1;
732 break;
736 up_read(&shrinker_rwsem);
737 out:
738 cond_resched();
739 return freed;
742 void drop_slab_node(int nid)
744 unsigned long freed;
746 do {
747 struct mem_cgroup *memcg = NULL;
749 freed = 0;
750 memcg = mem_cgroup_iter(NULL, NULL, NULL);
751 do {
752 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
753 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
754 } while (freed > 10);
757 void drop_slab(void)
759 int nid;
761 for_each_online_node(nid)
762 drop_slab_node(nid);
765 static inline int is_page_cache_freeable(struct page *page)
768 * A freeable page cache page is referenced only by the caller
769 * that isolated the page, the page cache and optional buffer
770 * heads at page->private.
772 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
773 HPAGE_PMD_NR : 1;
774 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
777 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
779 if (current->flags & PF_SWAPWRITE)
780 return 1;
781 if (!inode_write_congested(inode))
782 return 1;
783 if (inode_to_bdi(inode) == current->backing_dev_info)
784 return 1;
785 return 0;
789 * We detected a synchronous write error writing a page out. Probably
790 * -ENOSPC. We need to propagate that into the address_space for a subsequent
791 * fsync(), msync() or close().
793 * The tricky part is that after writepage we cannot touch the mapping: nothing
794 * prevents it from being freed up. But we have a ref on the page and once
795 * that page is locked, the mapping is pinned.
797 * We're allowed to run sleeping lock_page() here because we know the caller has
798 * __GFP_FS.
800 static void handle_write_error(struct address_space *mapping,
801 struct page *page, int error)
803 lock_page(page);
804 if (page_mapping(page) == mapping)
805 mapping_set_error(mapping, error);
806 unlock_page(page);
809 /* possible outcome of pageout() */
810 typedef enum {
811 /* failed to write page out, page is locked */
812 PAGE_KEEP,
813 /* move page to the active list, page is locked */
814 PAGE_ACTIVATE,
815 /* page has been sent to the disk successfully, page is unlocked */
816 PAGE_SUCCESS,
817 /* page is clean and locked */
818 PAGE_CLEAN,
819 } pageout_t;
822 * pageout is called by shrink_page_list() for each dirty page.
823 * Calls ->writepage().
825 static pageout_t pageout(struct page *page, struct address_space *mapping,
826 struct scan_control *sc)
829 * If the page is dirty, only perform writeback if that write
830 * will be non-blocking. To prevent this allocation from being
831 * stalled by pagecache activity. But note that there may be
832 * stalls if we need to run get_block(). We could test
833 * PagePrivate for that.
835 * If this process is currently in __generic_file_write_iter() against
836 * this page's queue, we can perform writeback even if that
837 * will block.
839 * If the page is swapcache, write it back even if that would
840 * block, for some throttling. This happens by accident, because
841 * swap_backing_dev_info is bust: it doesn't reflect the
842 * congestion state of the swapdevs. Easy to fix, if needed.
844 if (!is_page_cache_freeable(page))
845 return PAGE_KEEP;
846 if (!mapping) {
848 * Some data journaling orphaned pages can have
849 * page->mapping == NULL while being dirty with clean buffers.
851 if (page_has_private(page)) {
852 if (try_to_free_buffers(page)) {
853 ClearPageDirty(page);
854 pr_info("%s: orphaned page\n", __func__);
855 return PAGE_CLEAN;
858 return PAGE_KEEP;
860 if (mapping->a_ops->writepage == NULL)
861 return PAGE_ACTIVATE;
862 if (!may_write_to_inode(mapping->host, sc))
863 return PAGE_KEEP;
865 if (clear_page_dirty_for_io(page)) {
866 int res;
867 struct writeback_control wbc = {
868 .sync_mode = WB_SYNC_NONE,
869 .nr_to_write = SWAP_CLUSTER_MAX,
870 .range_start = 0,
871 .range_end = LLONG_MAX,
872 .for_reclaim = 1,
875 SetPageReclaim(page);
876 res = mapping->a_ops->writepage(page, &wbc);
877 if (res < 0)
878 handle_write_error(mapping, page, res);
879 if (res == AOP_WRITEPAGE_ACTIVATE) {
880 ClearPageReclaim(page);
881 return PAGE_ACTIVATE;
884 if (!PageWriteback(page)) {
885 /* synchronous write or broken a_ops? */
886 ClearPageReclaim(page);
888 trace_mm_vmscan_writepage(page);
889 inc_node_page_state(page, NR_VMSCAN_WRITE);
890 return PAGE_SUCCESS;
893 return PAGE_CLEAN;
897 * Same as remove_mapping, but if the page is removed from the mapping, it
898 * gets returned with a refcount of 0.
900 static int __remove_mapping(struct address_space *mapping, struct page *page,
901 bool reclaimed)
903 unsigned long flags;
904 int refcount;
906 BUG_ON(!PageLocked(page));
907 BUG_ON(mapping != page_mapping(page));
909 xa_lock_irqsave(&mapping->i_pages, flags);
911 * The non racy check for a busy page.
913 * Must be careful with the order of the tests. When someone has
914 * a ref to the page, it may be possible that they dirty it then
915 * drop the reference. So if PageDirty is tested before page_count
916 * here, then the following race may occur:
918 * get_user_pages(&page);
919 * [user mapping goes away]
920 * write_to(page);
921 * !PageDirty(page) [good]
922 * SetPageDirty(page);
923 * put_page(page);
924 * !page_count(page) [good, discard it]
926 * [oops, our write_to data is lost]
928 * Reversing the order of the tests ensures such a situation cannot
929 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
930 * load is not satisfied before that of page->_refcount.
932 * Note that if SetPageDirty is always performed via set_page_dirty,
933 * and thus under the i_pages lock, then this ordering is not required.
935 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
936 refcount = 1 + HPAGE_PMD_NR;
937 else
938 refcount = 2;
939 if (!page_ref_freeze(page, refcount))
940 goto cannot_free;
941 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
942 if (unlikely(PageDirty(page))) {
943 page_ref_unfreeze(page, refcount);
944 goto cannot_free;
947 if (PageSwapCache(page)) {
948 swp_entry_t swap = { .val = page_private(page) };
949 mem_cgroup_swapout(page, swap);
950 __delete_from_swap_cache(page, swap);
951 xa_unlock_irqrestore(&mapping->i_pages, flags);
952 put_swap_page(page, swap);
953 } else {
954 void (*freepage)(struct page *);
955 void *shadow = NULL;
957 freepage = mapping->a_ops->freepage;
959 * Remember a shadow entry for reclaimed file cache in
960 * order to detect refaults, thus thrashing, later on.
962 * But don't store shadows in an address space that is
963 * already exiting. This is not just an optizimation,
964 * inode reclaim needs to empty out the radix tree or
965 * the nodes are lost. Don't plant shadows behind its
966 * back.
968 * We also don't store shadows for DAX mappings because the
969 * only page cache pages found in these are zero pages
970 * covering holes, and because we don't want to mix DAX
971 * exceptional entries and shadow exceptional entries in the
972 * same address_space.
974 if (reclaimed && page_is_file_cache(page) &&
975 !mapping_exiting(mapping) && !dax_mapping(mapping))
976 shadow = workingset_eviction(page);
977 __delete_from_page_cache(page, shadow);
978 xa_unlock_irqrestore(&mapping->i_pages, flags);
980 if (freepage != NULL)
981 freepage(page);
984 return 1;
986 cannot_free:
987 xa_unlock_irqrestore(&mapping->i_pages, flags);
988 return 0;
992 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
993 * someone else has a ref on the page, abort and return 0. If it was
994 * successfully detached, return 1. Assumes the caller has a single ref on
995 * this page.
997 int remove_mapping(struct address_space *mapping, struct page *page)
999 if (__remove_mapping(mapping, page, false)) {
1001 * Unfreezing the refcount with 1 rather than 2 effectively
1002 * drops the pagecache ref for us without requiring another
1003 * atomic operation.
1005 page_ref_unfreeze(page, 1);
1006 return 1;
1008 return 0;
1012 * putback_lru_page - put previously isolated page onto appropriate LRU list
1013 * @page: page to be put back to appropriate lru list
1015 * Add previously isolated @page to appropriate LRU list.
1016 * Page may still be unevictable for other reasons.
1018 * lru_lock must not be held, interrupts must be enabled.
1020 void putback_lru_page(struct page *page)
1022 lru_cache_add(page);
1023 put_page(page); /* drop ref from isolate */
1026 enum page_references {
1027 PAGEREF_RECLAIM,
1028 PAGEREF_RECLAIM_CLEAN,
1029 PAGEREF_KEEP,
1030 PAGEREF_ACTIVATE,
1033 static enum page_references page_check_references(struct page *page,
1034 struct scan_control *sc)
1036 int referenced_ptes, referenced_page;
1037 unsigned long vm_flags;
1039 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1040 &vm_flags);
1041 referenced_page = TestClearPageReferenced(page);
1044 * Mlock lost the isolation race with us. Let try_to_unmap()
1045 * move the page to the unevictable list.
1047 if (vm_flags & VM_LOCKED)
1048 return PAGEREF_RECLAIM;
1050 if (referenced_ptes) {
1051 if (PageSwapBacked(page))
1052 return PAGEREF_ACTIVATE;
1054 * All mapped pages start out with page table
1055 * references from the instantiating fault, so we need
1056 * to look twice if a mapped file page is used more
1057 * than once.
1059 * Mark it and spare it for another trip around the
1060 * inactive list. Another page table reference will
1061 * lead to its activation.
1063 * Note: the mark is set for activated pages as well
1064 * so that recently deactivated but used pages are
1065 * quickly recovered.
1067 SetPageReferenced(page);
1069 if (referenced_page || referenced_ptes > 1)
1070 return PAGEREF_ACTIVATE;
1073 * Activate file-backed executable pages after first usage.
1075 if (vm_flags & VM_EXEC)
1076 return PAGEREF_ACTIVATE;
1078 return PAGEREF_KEEP;
1081 /* Reclaim if clean, defer dirty pages to writeback */
1082 if (referenced_page && !PageSwapBacked(page))
1083 return PAGEREF_RECLAIM_CLEAN;
1085 return PAGEREF_RECLAIM;
1088 /* Check if a page is dirty or under writeback */
1089 static void page_check_dirty_writeback(struct page *page,
1090 bool *dirty, bool *writeback)
1092 struct address_space *mapping;
1095 * Anonymous pages are not handled by flushers and must be written
1096 * from reclaim context. Do not stall reclaim based on them
1098 if (!page_is_file_cache(page) ||
1099 (PageAnon(page) && !PageSwapBacked(page))) {
1100 *dirty = false;
1101 *writeback = false;
1102 return;
1105 /* By default assume that the page flags are accurate */
1106 *dirty = PageDirty(page);
1107 *writeback = PageWriteback(page);
1109 /* Verify dirty/writeback state if the filesystem supports it */
1110 if (!page_has_private(page))
1111 return;
1113 mapping = page_mapping(page);
1114 if (mapping && mapping->a_ops->is_dirty_writeback)
1115 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1119 * shrink_page_list() returns the number of reclaimed pages
1121 static unsigned long shrink_page_list(struct list_head *page_list,
1122 struct pglist_data *pgdat,
1123 struct scan_control *sc,
1124 enum ttu_flags ttu_flags,
1125 struct reclaim_stat *stat,
1126 bool ignore_references)
1128 LIST_HEAD(ret_pages);
1129 LIST_HEAD(free_pages);
1130 unsigned nr_reclaimed = 0;
1131 unsigned pgactivate = 0;
1133 memset(stat, 0, sizeof(*stat));
1134 cond_resched();
1136 while (!list_empty(page_list)) {
1137 struct address_space *mapping;
1138 struct page *page;
1139 int may_enter_fs;
1140 enum page_references references = PAGEREF_RECLAIM;
1141 bool dirty, writeback;
1142 unsigned int nr_pages;
1144 cond_resched();
1146 page = lru_to_page(page_list);
1147 list_del(&page->lru);
1149 if (!trylock_page(page))
1150 goto keep;
1152 VM_BUG_ON_PAGE(PageActive(page), page);
1154 nr_pages = compound_nr(page);
1156 /* Account the number of base pages even though THP */
1157 sc->nr_scanned += nr_pages;
1159 if (unlikely(!page_evictable(page)))
1160 goto activate_locked;
1162 if (!sc->may_unmap && page_mapped(page))
1163 goto keep_locked;
1165 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1166 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1169 * The number of dirty pages determines if a node is marked
1170 * reclaim_congested which affects wait_iff_congested. kswapd
1171 * will stall and start writing pages if the tail of the LRU
1172 * is all dirty unqueued pages.
1174 page_check_dirty_writeback(page, &dirty, &writeback);
1175 if (dirty || writeback)
1176 stat->nr_dirty++;
1178 if (dirty && !writeback)
1179 stat->nr_unqueued_dirty++;
1182 * Treat this page as congested if the underlying BDI is or if
1183 * pages are cycling through the LRU so quickly that the
1184 * pages marked for immediate reclaim are making it to the
1185 * end of the LRU a second time.
1187 mapping = page_mapping(page);
1188 if (((dirty || writeback) && mapping &&
1189 inode_write_congested(mapping->host)) ||
1190 (writeback && PageReclaim(page)))
1191 stat->nr_congested++;
1194 * If a page at the tail of the LRU is under writeback, there
1195 * are three cases to consider.
1197 * 1) If reclaim is encountering an excessive number of pages
1198 * under writeback and this page is both under writeback and
1199 * PageReclaim then it indicates that pages are being queued
1200 * for IO but are being recycled through the LRU before the
1201 * IO can complete. Waiting on the page itself risks an
1202 * indefinite stall if it is impossible to writeback the
1203 * page due to IO error or disconnected storage so instead
1204 * note that the LRU is being scanned too quickly and the
1205 * caller can stall after page list has been processed.
1207 * 2) Global or new memcg reclaim encounters a page that is
1208 * not marked for immediate reclaim, or the caller does not
1209 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1210 * not to fs). In this case mark the page for immediate
1211 * reclaim and continue scanning.
1213 * Require may_enter_fs because we would wait on fs, which
1214 * may not have submitted IO yet. And the loop driver might
1215 * enter reclaim, and deadlock if it waits on a page for
1216 * which it is needed to do the write (loop masks off
1217 * __GFP_IO|__GFP_FS for this reason); but more thought
1218 * would probably show more reasons.
1220 * 3) Legacy memcg encounters a page that is already marked
1221 * PageReclaim. memcg does not have any dirty pages
1222 * throttling so we could easily OOM just because too many
1223 * pages are in writeback and there is nothing else to
1224 * reclaim. Wait for the writeback to complete.
1226 * In cases 1) and 2) we activate the pages to get them out of
1227 * the way while we continue scanning for clean pages on the
1228 * inactive list and refilling from the active list. The
1229 * observation here is that waiting for disk writes is more
1230 * expensive than potentially causing reloads down the line.
1231 * Since they're marked for immediate reclaim, they won't put
1232 * memory pressure on the cache working set any longer than it
1233 * takes to write them to disk.
1235 if (PageWriteback(page)) {
1236 /* Case 1 above */
1237 if (current_is_kswapd() &&
1238 PageReclaim(page) &&
1239 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1240 stat->nr_immediate++;
1241 goto activate_locked;
1243 /* Case 2 above */
1244 } else if (sane_reclaim(sc) ||
1245 !PageReclaim(page) || !may_enter_fs) {
1247 * This is slightly racy - end_page_writeback()
1248 * might have just cleared PageReclaim, then
1249 * setting PageReclaim here end up interpreted
1250 * as PageReadahead - but that does not matter
1251 * enough to care. What we do want is for this
1252 * page to have PageReclaim set next time memcg
1253 * reclaim reaches the tests above, so it will
1254 * then wait_on_page_writeback() to avoid OOM;
1255 * and it's also appropriate in global reclaim.
1257 SetPageReclaim(page);
1258 stat->nr_writeback++;
1259 goto activate_locked;
1261 /* Case 3 above */
1262 } else {
1263 unlock_page(page);
1264 wait_on_page_writeback(page);
1265 /* then go back and try same page again */
1266 list_add_tail(&page->lru, page_list);
1267 continue;
1271 if (!ignore_references)
1272 references = page_check_references(page, sc);
1274 switch (references) {
1275 case PAGEREF_ACTIVATE:
1276 goto activate_locked;
1277 case PAGEREF_KEEP:
1278 stat->nr_ref_keep += nr_pages;
1279 goto keep_locked;
1280 case PAGEREF_RECLAIM:
1281 case PAGEREF_RECLAIM_CLEAN:
1282 ; /* try to reclaim the page below */
1286 * Anonymous process memory has backing store?
1287 * Try to allocate it some swap space here.
1288 * Lazyfree page could be freed directly
1290 if (PageAnon(page) && PageSwapBacked(page)) {
1291 if (!PageSwapCache(page)) {
1292 if (!(sc->gfp_mask & __GFP_IO))
1293 goto keep_locked;
1294 if (PageTransHuge(page)) {
1295 /* cannot split THP, skip it */
1296 if (!can_split_huge_page(page, NULL))
1297 goto activate_locked;
1299 * Split pages without a PMD map right
1300 * away. Chances are some or all of the
1301 * tail pages can be freed without IO.
1303 if (!compound_mapcount(page) &&
1304 split_huge_page_to_list(page,
1305 page_list))
1306 goto activate_locked;
1308 if (!add_to_swap(page)) {
1309 if (!PageTransHuge(page))
1310 goto activate_locked_split;
1311 /* Fallback to swap normal pages */
1312 if (split_huge_page_to_list(page,
1313 page_list))
1314 goto activate_locked;
1315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1316 count_vm_event(THP_SWPOUT_FALLBACK);
1317 #endif
1318 if (!add_to_swap(page))
1319 goto activate_locked_split;
1322 may_enter_fs = 1;
1324 /* Adding to swap updated mapping */
1325 mapping = page_mapping(page);
1327 } else if (unlikely(PageTransHuge(page))) {
1328 /* Split file THP */
1329 if (split_huge_page_to_list(page, page_list))
1330 goto keep_locked;
1334 * THP may get split above, need minus tail pages and update
1335 * nr_pages to avoid accounting tail pages twice.
1337 * The tail pages that are added into swap cache successfully
1338 * reach here.
1340 if ((nr_pages > 1) && !PageTransHuge(page)) {
1341 sc->nr_scanned -= (nr_pages - 1);
1342 nr_pages = 1;
1346 * The page is mapped into the page tables of one or more
1347 * processes. Try to unmap it here.
1349 if (page_mapped(page)) {
1350 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1352 if (unlikely(PageTransHuge(page)))
1353 flags |= TTU_SPLIT_HUGE_PMD;
1354 if (!try_to_unmap(page, flags)) {
1355 stat->nr_unmap_fail += nr_pages;
1356 goto activate_locked;
1360 if (PageDirty(page)) {
1362 * Only kswapd can writeback filesystem pages
1363 * to avoid risk of stack overflow. But avoid
1364 * injecting inefficient single-page IO into
1365 * flusher writeback as much as possible: only
1366 * write pages when we've encountered many
1367 * dirty pages, and when we've already scanned
1368 * the rest of the LRU for clean pages and see
1369 * the same dirty pages again (PageReclaim).
1371 if (page_is_file_cache(page) &&
1372 (!current_is_kswapd() || !PageReclaim(page) ||
1373 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1375 * Immediately reclaim when written back.
1376 * Similar in principal to deactivate_page()
1377 * except we already have the page isolated
1378 * and know it's dirty
1380 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1381 SetPageReclaim(page);
1383 goto activate_locked;
1386 if (references == PAGEREF_RECLAIM_CLEAN)
1387 goto keep_locked;
1388 if (!may_enter_fs)
1389 goto keep_locked;
1390 if (!sc->may_writepage)
1391 goto keep_locked;
1394 * Page is dirty. Flush the TLB if a writable entry
1395 * potentially exists to avoid CPU writes after IO
1396 * starts and then write it out here.
1398 try_to_unmap_flush_dirty();
1399 switch (pageout(page, mapping, sc)) {
1400 case PAGE_KEEP:
1401 goto keep_locked;
1402 case PAGE_ACTIVATE:
1403 goto activate_locked;
1404 case PAGE_SUCCESS:
1405 if (PageWriteback(page))
1406 goto keep;
1407 if (PageDirty(page))
1408 goto keep;
1411 * A synchronous write - probably a ramdisk. Go
1412 * ahead and try to reclaim the page.
1414 if (!trylock_page(page))
1415 goto keep;
1416 if (PageDirty(page) || PageWriteback(page))
1417 goto keep_locked;
1418 mapping = page_mapping(page);
1419 case PAGE_CLEAN:
1420 ; /* try to free the page below */
1425 * If the page has buffers, try to free the buffer mappings
1426 * associated with this page. If we succeed we try to free
1427 * the page as well.
1429 * We do this even if the page is PageDirty().
1430 * try_to_release_page() does not perform I/O, but it is
1431 * possible for a page to have PageDirty set, but it is actually
1432 * clean (all its buffers are clean). This happens if the
1433 * buffers were written out directly, with submit_bh(). ext3
1434 * will do this, as well as the blockdev mapping.
1435 * try_to_release_page() will discover that cleanness and will
1436 * drop the buffers and mark the page clean - it can be freed.
1438 * Rarely, pages can have buffers and no ->mapping. These are
1439 * the pages which were not successfully invalidated in
1440 * truncate_complete_page(). We try to drop those buffers here
1441 * and if that worked, and the page is no longer mapped into
1442 * process address space (page_count == 1) it can be freed.
1443 * Otherwise, leave the page on the LRU so it is swappable.
1445 if (page_has_private(page)) {
1446 if (!try_to_release_page(page, sc->gfp_mask))
1447 goto activate_locked;
1448 if (!mapping && page_count(page) == 1) {
1449 unlock_page(page);
1450 if (put_page_testzero(page))
1451 goto free_it;
1452 else {
1454 * rare race with speculative reference.
1455 * the speculative reference will free
1456 * this page shortly, so we may
1457 * increment nr_reclaimed here (and
1458 * leave it off the LRU).
1460 nr_reclaimed++;
1461 continue;
1466 if (PageAnon(page) && !PageSwapBacked(page)) {
1467 /* follow __remove_mapping for reference */
1468 if (!page_ref_freeze(page, 1))
1469 goto keep_locked;
1470 if (PageDirty(page)) {
1471 page_ref_unfreeze(page, 1);
1472 goto keep_locked;
1475 count_vm_event(PGLAZYFREED);
1476 count_memcg_page_event(page, PGLAZYFREED);
1477 } else if (!mapping || !__remove_mapping(mapping, page, true))
1478 goto keep_locked;
1480 unlock_page(page);
1481 free_it:
1483 * THP may get swapped out in a whole, need account
1484 * all base pages.
1486 nr_reclaimed += nr_pages;
1489 * Is there need to periodically free_page_list? It would
1490 * appear not as the counts should be low
1492 if (unlikely(PageTransHuge(page)))
1493 (*get_compound_page_dtor(page))(page);
1494 else
1495 list_add(&page->lru, &free_pages);
1496 continue;
1498 activate_locked_split:
1500 * The tail pages that are failed to add into swap cache
1501 * reach here. Fixup nr_scanned and nr_pages.
1503 if (nr_pages > 1) {
1504 sc->nr_scanned -= (nr_pages - 1);
1505 nr_pages = 1;
1507 activate_locked:
1508 /* Not a candidate for swapping, so reclaim swap space. */
1509 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1510 PageMlocked(page)))
1511 try_to_free_swap(page);
1512 VM_BUG_ON_PAGE(PageActive(page), page);
1513 if (!PageMlocked(page)) {
1514 int type = page_is_file_cache(page);
1515 SetPageActive(page);
1516 stat->nr_activate[type] += nr_pages;
1517 count_memcg_page_event(page, PGACTIVATE);
1519 keep_locked:
1520 unlock_page(page);
1521 keep:
1522 list_add(&page->lru, &ret_pages);
1523 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1526 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1528 mem_cgroup_uncharge_list(&free_pages);
1529 try_to_unmap_flush();
1530 free_unref_page_list(&free_pages);
1532 list_splice(&ret_pages, page_list);
1533 count_vm_events(PGACTIVATE, pgactivate);
1535 return nr_reclaimed;
1538 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1539 struct list_head *page_list)
1541 struct scan_control sc = {
1542 .gfp_mask = GFP_KERNEL,
1543 .priority = DEF_PRIORITY,
1544 .may_unmap = 1,
1546 struct reclaim_stat dummy_stat;
1547 unsigned long ret;
1548 struct page *page, *next;
1549 LIST_HEAD(clean_pages);
1551 list_for_each_entry_safe(page, next, page_list, lru) {
1552 if (page_is_file_cache(page) && !PageDirty(page) &&
1553 !__PageMovable(page) && !PageUnevictable(page)) {
1554 ClearPageActive(page);
1555 list_move(&page->lru, &clean_pages);
1559 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1560 TTU_IGNORE_ACCESS, &dummy_stat, true);
1561 list_splice(&clean_pages, page_list);
1562 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1563 return ret;
1567 * Attempt to remove the specified page from its LRU. Only take this page
1568 * if it is of the appropriate PageActive status. Pages which are being
1569 * freed elsewhere are also ignored.
1571 * page: page to consider
1572 * mode: one of the LRU isolation modes defined above
1574 * returns 0 on success, -ve errno on failure.
1576 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1578 int ret = -EINVAL;
1580 /* Only take pages on the LRU. */
1581 if (!PageLRU(page))
1582 return ret;
1584 /* Compaction should not handle unevictable pages but CMA can do so */
1585 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1586 return ret;
1588 ret = -EBUSY;
1591 * To minimise LRU disruption, the caller can indicate that it only
1592 * wants to isolate pages it will be able to operate on without
1593 * blocking - clean pages for the most part.
1595 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1596 * that it is possible to migrate without blocking
1598 if (mode & ISOLATE_ASYNC_MIGRATE) {
1599 /* All the caller can do on PageWriteback is block */
1600 if (PageWriteback(page))
1601 return ret;
1603 if (PageDirty(page)) {
1604 struct address_space *mapping;
1605 bool migrate_dirty;
1608 * Only pages without mappings or that have a
1609 * ->migratepage callback are possible to migrate
1610 * without blocking. However, we can be racing with
1611 * truncation so it's necessary to lock the page
1612 * to stabilise the mapping as truncation holds
1613 * the page lock until after the page is removed
1614 * from the page cache.
1616 if (!trylock_page(page))
1617 return ret;
1619 mapping = page_mapping(page);
1620 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1621 unlock_page(page);
1622 if (!migrate_dirty)
1623 return ret;
1627 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1628 return ret;
1630 if (likely(get_page_unless_zero(page))) {
1632 * Be careful not to clear PageLRU until after we're
1633 * sure the page is not being freed elsewhere -- the
1634 * page release code relies on it.
1636 ClearPageLRU(page);
1637 ret = 0;
1640 return ret;
1645 * Update LRU sizes after isolating pages. The LRU size updates must
1646 * be complete before mem_cgroup_update_lru_size due to a santity check.
1648 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1649 enum lru_list lru, unsigned long *nr_zone_taken)
1651 int zid;
1653 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1654 if (!nr_zone_taken[zid])
1655 continue;
1657 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1658 #ifdef CONFIG_MEMCG
1659 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1660 #endif
1666 * pgdat->lru_lock is heavily contended. Some of the functions that
1667 * shrink the lists perform better by taking out a batch of pages
1668 * and working on them outside the LRU lock.
1670 * For pagecache intensive workloads, this function is the hottest
1671 * spot in the kernel (apart from copy_*_user functions).
1673 * Appropriate locks must be held before calling this function.
1675 * @nr_to_scan: The number of eligible pages to look through on the list.
1676 * @lruvec: The LRU vector to pull pages from.
1677 * @dst: The temp list to put pages on to.
1678 * @nr_scanned: The number of pages that were scanned.
1679 * @sc: The scan_control struct for this reclaim session
1680 * @mode: One of the LRU isolation modes
1681 * @lru: LRU list id for isolating
1683 * returns how many pages were moved onto *@dst.
1685 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1686 struct lruvec *lruvec, struct list_head *dst,
1687 unsigned long *nr_scanned, struct scan_control *sc,
1688 enum lru_list lru)
1690 struct list_head *src = &lruvec->lists[lru];
1691 unsigned long nr_taken = 0;
1692 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1693 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1694 unsigned long skipped = 0;
1695 unsigned long scan, total_scan, nr_pages;
1696 LIST_HEAD(pages_skipped);
1697 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1699 total_scan = 0;
1700 scan = 0;
1701 while (scan < nr_to_scan && !list_empty(src)) {
1702 struct page *page;
1704 page = lru_to_page(src);
1705 prefetchw_prev_lru_page(page, src, flags);
1707 VM_BUG_ON_PAGE(!PageLRU(page), page);
1709 nr_pages = compound_nr(page);
1710 total_scan += nr_pages;
1712 if (page_zonenum(page) > sc->reclaim_idx) {
1713 list_move(&page->lru, &pages_skipped);
1714 nr_skipped[page_zonenum(page)] += nr_pages;
1715 continue;
1719 * Do not count skipped pages because that makes the function
1720 * return with no isolated pages if the LRU mostly contains
1721 * ineligible pages. This causes the VM to not reclaim any
1722 * pages, triggering a premature OOM.
1724 * Account all tail pages of THP. This would not cause
1725 * premature OOM since __isolate_lru_page() returns -EBUSY
1726 * only when the page is being freed somewhere else.
1728 scan += nr_pages;
1729 switch (__isolate_lru_page(page, mode)) {
1730 case 0:
1731 nr_taken += nr_pages;
1732 nr_zone_taken[page_zonenum(page)] += nr_pages;
1733 list_move(&page->lru, dst);
1734 break;
1736 case -EBUSY:
1737 /* else it is being freed elsewhere */
1738 list_move(&page->lru, src);
1739 continue;
1741 default:
1742 BUG();
1747 * Splice any skipped pages to the start of the LRU list. Note that
1748 * this disrupts the LRU order when reclaiming for lower zones but
1749 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1750 * scanning would soon rescan the same pages to skip and put the
1751 * system at risk of premature OOM.
1753 if (!list_empty(&pages_skipped)) {
1754 int zid;
1756 list_splice(&pages_skipped, src);
1757 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1758 if (!nr_skipped[zid])
1759 continue;
1761 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1762 skipped += nr_skipped[zid];
1765 *nr_scanned = total_scan;
1766 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1767 total_scan, skipped, nr_taken, mode, lru);
1768 update_lru_sizes(lruvec, lru, nr_zone_taken);
1769 return nr_taken;
1773 * isolate_lru_page - tries to isolate a page from its LRU list
1774 * @page: page to isolate from its LRU list
1776 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1777 * vmstat statistic corresponding to whatever LRU list the page was on.
1779 * Returns 0 if the page was removed from an LRU list.
1780 * Returns -EBUSY if the page was not on an LRU list.
1782 * The returned page will have PageLRU() cleared. If it was found on
1783 * the active list, it will have PageActive set. If it was found on
1784 * the unevictable list, it will have the PageUnevictable bit set. That flag
1785 * may need to be cleared by the caller before letting the page go.
1787 * The vmstat statistic corresponding to the list on which the page was
1788 * found will be decremented.
1790 * Restrictions:
1792 * (1) Must be called with an elevated refcount on the page. This is a
1793 * fundamentnal difference from isolate_lru_pages (which is called
1794 * without a stable reference).
1795 * (2) the lru_lock must not be held.
1796 * (3) interrupts must be enabled.
1798 int isolate_lru_page(struct page *page)
1800 int ret = -EBUSY;
1802 VM_BUG_ON_PAGE(!page_count(page), page);
1803 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1805 if (PageLRU(page)) {
1806 pg_data_t *pgdat = page_pgdat(page);
1807 struct lruvec *lruvec;
1809 spin_lock_irq(&pgdat->lru_lock);
1810 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1811 if (PageLRU(page)) {
1812 int lru = page_lru(page);
1813 get_page(page);
1814 ClearPageLRU(page);
1815 del_page_from_lru_list(page, lruvec, lru);
1816 ret = 0;
1818 spin_unlock_irq(&pgdat->lru_lock);
1820 return ret;
1824 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1825 * then get resheduled. When there are massive number of tasks doing page
1826 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1827 * the LRU list will go small and be scanned faster than necessary, leading to
1828 * unnecessary swapping, thrashing and OOM.
1830 static int too_many_isolated(struct pglist_data *pgdat, int file,
1831 struct scan_control *sc)
1833 unsigned long inactive, isolated;
1835 if (current_is_kswapd())
1836 return 0;
1838 if (!sane_reclaim(sc))
1839 return 0;
1841 if (file) {
1842 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1843 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1844 } else {
1845 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1846 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1850 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1851 * won't get blocked by normal direct-reclaimers, forming a circular
1852 * deadlock.
1854 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1855 inactive >>= 3;
1857 return isolated > inactive;
1861 * This moves pages from @list to corresponding LRU list.
1863 * We move them the other way if the page is referenced by one or more
1864 * processes, from rmap.
1866 * If the pages are mostly unmapped, the processing is fast and it is
1867 * appropriate to hold zone_lru_lock across the whole operation. But if
1868 * the pages are mapped, the processing is slow (page_referenced()) so we
1869 * should drop zone_lru_lock around each page. It's impossible to balance
1870 * this, so instead we remove the pages from the LRU while processing them.
1871 * It is safe to rely on PG_active against the non-LRU pages in here because
1872 * nobody will play with that bit on a non-LRU page.
1874 * The downside is that we have to touch page->_refcount against each page.
1875 * But we had to alter page->flags anyway.
1877 * Returns the number of pages moved to the given lruvec.
1880 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1881 struct list_head *list)
1883 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1884 int nr_pages, nr_moved = 0;
1885 LIST_HEAD(pages_to_free);
1886 struct page *page;
1887 enum lru_list lru;
1889 while (!list_empty(list)) {
1890 page = lru_to_page(list);
1891 VM_BUG_ON_PAGE(PageLRU(page), page);
1892 if (unlikely(!page_evictable(page))) {
1893 list_del(&page->lru);
1894 spin_unlock_irq(&pgdat->lru_lock);
1895 putback_lru_page(page);
1896 spin_lock_irq(&pgdat->lru_lock);
1897 continue;
1899 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1901 SetPageLRU(page);
1902 lru = page_lru(page);
1904 nr_pages = hpage_nr_pages(page);
1905 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1906 list_move(&page->lru, &lruvec->lists[lru]);
1908 if (put_page_testzero(page)) {
1909 __ClearPageLRU(page);
1910 __ClearPageActive(page);
1911 del_page_from_lru_list(page, lruvec, lru);
1913 if (unlikely(PageCompound(page))) {
1914 spin_unlock_irq(&pgdat->lru_lock);
1915 (*get_compound_page_dtor(page))(page);
1916 spin_lock_irq(&pgdat->lru_lock);
1917 } else
1918 list_add(&page->lru, &pages_to_free);
1919 } else {
1920 nr_moved += nr_pages;
1925 * To save our caller's stack, now use input list for pages to free.
1927 list_splice(&pages_to_free, list);
1929 return nr_moved;
1933 * If a kernel thread (such as nfsd for loop-back mounts) services
1934 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1935 * In that case we should only throttle if the backing device it is
1936 * writing to is congested. In other cases it is safe to throttle.
1938 static int current_may_throttle(void)
1940 return !(current->flags & PF_LESS_THROTTLE) ||
1941 current->backing_dev_info == NULL ||
1942 bdi_write_congested(current->backing_dev_info);
1946 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1947 * of reclaimed pages
1949 static noinline_for_stack unsigned long
1950 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1951 struct scan_control *sc, enum lru_list lru)
1953 LIST_HEAD(page_list);
1954 unsigned long nr_scanned;
1955 unsigned long nr_reclaimed = 0;
1956 unsigned long nr_taken;
1957 struct reclaim_stat stat;
1958 int file = is_file_lru(lru);
1959 enum vm_event_item item;
1960 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1961 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1962 bool stalled = false;
1964 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1965 if (stalled)
1966 return 0;
1968 /* wait a bit for the reclaimer. */
1969 msleep(100);
1970 stalled = true;
1972 /* We are about to die and free our memory. Return now. */
1973 if (fatal_signal_pending(current))
1974 return SWAP_CLUSTER_MAX;
1977 lru_add_drain();
1979 spin_lock_irq(&pgdat->lru_lock);
1981 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1982 &nr_scanned, sc, lru);
1984 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1985 reclaim_stat->recent_scanned[file] += nr_taken;
1987 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1988 if (global_reclaim(sc))
1989 __count_vm_events(item, nr_scanned);
1990 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1991 spin_unlock_irq(&pgdat->lru_lock);
1993 if (nr_taken == 0)
1994 return 0;
1996 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1997 &stat, false);
1999 spin_lock_irq(&pgdat->lru_lock);
2001 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2002 if (global_reclaim(sc))
2003 __count_vm_events(item, nr_reclaimed);
2004 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2005 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2006 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
2008 move_pages_to_lru(lruvec, &page_list);
2010 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2012 spin_unlock_irq(&pgdat->lru_lock);
2014 mem_cgroup_uncharge_list(&page_list);
2015 free_unref_page_list(&page_list);
2018 * If dirty pages are scanned that are not queued for IO, it
2019 * implies that flushers are not doing their job. This can
2020 * happen when memory pressure pushes dirty pages to the end of
2021 * the LRU before the dirty limits are breached and the dirty
2022 * data has expired. It can also happen when the proportion of
2023 * dirty pages grows not through writes but through memory
2024 * pressure reclaiming all the clean cache. And in some cases,
2025 * the flushers simply cannot keep up with the allocation
2026 * rate. Nudge the flusher threads in case they are asleep.
2028 if (stat.nr_unqueued_dirty == nr_taken)
2029 wakeup_flusher_threads(WB_REASON_VMSCAN);
2031 sc->nr.dirty += stat.nr_dirty;
2032 sc->nr.congested += stat.nr_congested;
2033 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2034 sc->nr.writeback += stat.nr_writeback;
2035 sc->nr.immediate += stat.nr_immediate;
2036 sc->nr.taken += nr_taken;
2037 if (file)
2038 sc->nr.file_taken += nr_taken;
2040 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2041 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2042 return nr_reclaimed;
2045 static void shrink_active_list(unsigned long nr_to_scan,
2046 struct lruvec *lruvec,
2047 struct scan_control *sc,
2048 enum lru_list lru)
2050 unsigned long nr_taken;
2051 unsigned long nr_scanned;
2052 unsigned long vm_flags;
2053 LIST_HEAD(l_hold); /* The pages which were snipped off */
2054 LIST_HEAD(l_active);
2055 LIST_HEAD(l_inactive);
2056 struct page *page;
2057 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2058 unsigned nr_deactivate, nr_activate;
2059 unsigned nr_rotated = 0;
2060 int file = is_file_lru(lru);
2061 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2063 lru_add_drain();
2065 spin_lock_irq(&pgdat->lru_lock);
2067 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2068 &nr_scanned, sc, lru);
2070 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2071 reclaim_stat->recent_scanned[file] += nr_taken;
2073 __count_vm_events(PGREFILL, nr_scanned);
2074 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2076 spin_unlock_irq(&pgdat->lru_lock);
2078 while (!list_empty(&l_hold)) {
2079 cond_resched();
2080 page = lru_to_page(&l_hold);
2081 list_del(&page->lru);
2083 if (unlikely(!page_evictable(page))) {
2084 putback_lru_page(page);
2085 continue;
2088 if (unlikely(buffer_heads_over_limit)) {
2089 if (page_has_private(page) && trylock_page(page)) {
2090 if (page_has_private(page))
2091 try_to_release_page(page, 0);
2092 unlock_page(page);
2096 if (page_referenced(page, 0, sc->target_mem_cgroup,
2097 &vm_flags)) {
2098 nr_rotated += hpage_nr_pages(page);
2100 * Identify referenced, file-backed active pages and
2101 * give them one more trip around the active list. So
2102 * that executable code get better chances to stay in
2103 * memory under moderate memory pressure. Anon pages
2104 * are not likely to be evicted by use-once streaming
2105 * IO, plus JVM can create lots of anon VM_EXEC pages,
2106 * so we ignore them here.
2108 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2109 list_add(&page->lru, &l_active);
2110 continue;
2114 ClearPageActive(page); /* we are de-activating */
2115 SetPageWorkingset(page);
2116 list_add(&page->lru, &l_inactive);
2120 * Move pages back to the lru list.
2122 spin_lock_irq(&pgdat->lru_lock);
2124 * Count referenced pages from currently used mappings as rotated,
2125 * even though only some of them are actually re-activated. This
2126 * helps balance scan pressure between file and anonymous pages in
2127 * get_scan_count.
2129 reclaim_stat->recent_rotated[file] += nr_rotated;
2131 nr_activate = move_pages_to_lru(lruvec, &l_active);
2132 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2133 /* Keep all free pages in l_active list */
2134 list_splice(&l_inactive, &l_active);
2136 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2137 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2139 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2140 spin_unlock_irq(&pgdat->lru_lock);
2142 mem_cgroup_uncharge_list(&l_active);
2143 free_unref_page_list(&l_active);
2144 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2145 nr_deactivate, nr_rotated, sc->priority, file);
2148 unsigned long reclaim_pages(struct list_head *page_list)
2150 int nid = -1;
2151 unsigned long nr_reclaimed = 0;
2152 LIST_HEAD(node_page_list);
2153 struct reclaim_stat dummy_stat;
2154 struct page *page;
2155 struct scan_control sc = {
2156 .gfp_mask = GFP_KERNEL,
2157 .priority = DEF_PRIORITY,
2158 .may_writepage = 1,
2159 .may_unmap = 1,
2160 .may_swap = 1,
2163 while (!list_empty(page_list)) {
2164 page = lru_to_page(page_list);
2165 if (nid == -1) {
2166 nid = page_to_nid(page);
2167 INIT_LIST_HEAD(&node_page_list);
2170 if (nid == page_to_nid(page)) {
2171 ClearPageActive(page);
2172 list_move(&page->lru, &node_page_list);
2173 continue;
2176 nr_reclaimed += shrink_page_list(&node_page_list,
2177 NODE_DATA(nid),
2178 &sc, 0,
2179 &dummy_stat, false);
2180 while (!list_empty(&node_page_list)) {
2181 page = lru_to_page(&node_page_list);
2182 list_del(&page->lru);
2183 putback_lru_page(page);
2186 nid = -1;
2189 if (!list_empty(&node_page_list)) {
2190 nr_reclaimed += shrink_page_list(&node_page_list,
2191 NODE_DATA(nid),
2192 &sc, 0,
2193 &dummy_stat, false);
2194 while (!list_empty(&node_page_list)) {
2195 page = lru_to_page(&node_page_list);
2196 list_del(&page->lru);
2197 putback_lru_page(page);
2201 return nr_reclaimed;
2205 * The inactive anon list should be small enough that the VM never has
2206 * to do too much work.
2208 * The inactive file list should be small enough to leave most memory
2209 * to the established workingset on the scan-resistant active list,
2210 * but large enough to avoid thrashing the aggregate readahead window.
2212 * Both inactive lists should also be large enough that each inactive
2213 * page has a chance to be referenced again before it is reclaimed.
2215 * If that fails and refaulting is observed, the inactive list grows.
2217 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2218 * on this LRU, maintained by the pageout code. An inactive_ratio
2219 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2221 * total target max
2222 * memory ratio inactive
2223 * -------------------------------------
2224 * 10MB 1 5MB
2225 * 100MB 1 50MB
2226 * 1GB 3 250MB
2227 * 10GB 10 0.9GB
2228 * 100GB 31 3GB
2229 * 1TB 101 10GB
2230 * 10TB 320 32GB
2232 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2233 struct scan_control *sc, bool trace)
2235 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2236 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2237 enum lru_list inactive_lru = file * LRU_FILE;
2238 unsigned long inactive, active;
2239 unsigned long inactive_ratio;
2240 unsigned long refaults;
2241 unsigned long gb;
2244 * If we don't have swap space, anonymous page deactivation
2245 * is pointless.
2247 if (!file && !total_swap_pages)
2248 return false;
2250 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2251 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2254 * When refaults are being observed, it means a new workingset
2255 * is being established. Disable active list protection to get
2256 * rid of the stale workingset quickly.
2258 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2259 if (file && lruvec->refaults != refaults) {
2260 inactive_ratio = 0;
2261 } else {
2262 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2263 if (gb)
2264 inactive_ratio = int_sqrt(10 * gb);
2265 else
2266 inactive_ratio = 1;
2269 if (trace)
2270 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2271 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2272 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2273 inactive_ratio, file);
2275 return inactive * inactive_ratio < active;
2278 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2279 struct lruvec *lruvec, struct scan_control *sc)
2281 if (is_active_lru(lru)) {
2282 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2283 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2284 return 0;
2287 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2290 enum scan_balance {
2291 SCAN_EQUAL,
2292 SCAN_FRACT,
2293 SCAN_ANON,
2294 SCAN_FILE,
2298 * Determine how aggressively the anon and file LRU lists should be
2299 * scanned. The relative value of each set of LRU lists is determined
2300 * by looking at the fraction of the pages scanned we did rotate back
2301 * onto the active list instead of evict.
2303 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2304 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2306 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2307 struct scan_control *sc, unsigned long *nr,
2308 unsigned long *lru_pages)
2310 int swappiness = mem_cgroup_swappiness(memcg);
2311 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2312 u64 fraction[2];
2313 u64 denominator = 0; /* gcc */
2314 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2315 unsigned long anon_prio, file_prio;
2316 enum scan_balance scan_balance;
2317 unsigned long anon, file;
2318 unsigned long ap, fp;
2319 enum lru_list lru;
2321 /* If we have no swap space, do not bother scanning anon pages. */
2322 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2323 scan_balance = SCAN_FILE;
2324 goto out;
2328 * Global reclaim will swap to prevent OOM even with no
2329 * swappiness, but memcg users want to use this knob to
2330 * disable swapping for individual groups completely when
2331 * using the memory controller's swap limit feature would be
2332 * too expensive.
2334 if (!global_reclaim(sc) && !swappiness) {
2335 scan_balance = SCAN_FILE;
2336 goto out;
2340 * Do not apply any pressure balancing cleverness when the
2341 * system is close to OOM, scan both anon and file equally
2342 * (unless the swappiness setting disagrees with swapping).
2344 if (!sc->priority && swappiness) {
2345 scan_balance = SCAN_EQUAL;
2346 goto out;
2350 * Prevent the reclaimer from falling into the cache trap: as
2351 * cache pages start out inactive, every cache fault will tip
2352 * the scan balance towards the file LRU. And as the file LRU
2353 * shrinks, so does the window for rotation from references.
2354 * This means we have a runaway feedback loop where a tiny
2355 * thrashing file LRU becomes infinitely more attractive than
2356 * anon pages. Try to detect this based on file LRU size.
2358 if (global_reclaim(sc)) {
2359 unsigned long pgdatfile;
2360 unsigned long pgdatfree;
2361 int z;
2362 unsigned long total_high_wmark = 0;
2364 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2365 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2366 node_page_state(pgdat, NR_INACTIVE_FILE);
2368 for (z = 0; z < MAX_NR_ZONES; z++) {
2369 struct zone *zone = &pgdat->node_zones[z];
2370 if (!managed_zone(zone))
2371 continue;
2373 total_high_wmark += high_wmark_pages(zone);
2376 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2378 * Force SCAN_ANON if there are enough inactive
2379 * anonymous pages on the LRU in eligible zones.
2380 * Otherwise, the small LRU gets thrashed.
2382 if (!inactive_list_is_low(lruvec, false, sc, false) &&
2383 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2384 >> sc->priority) {
2385 scan_balance = SCAN_ANON;
2386 goto out;
2392 * If there is enough inactive page cache, i.e. if the size of the
2393 * inactive list is greater than that of the active list *and* the
2394 * inactive list actually has some pages to scan on this priority, we
2395 * do not reclaim anything from the anonymous working set right now.
2396 * Without the second condition we could end up never scanning an
2397 * lruvec even if it has plenty of old anonymous pages unless the
2398 * system is under heavy pressure.
2400 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2401 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2402 scan_balance = SCAN_FILE;
2403 goto out;
2406 scan_balance = SCAN_FRACT;
2409 * With swappiness at 100, anonymous and file have the same priority.
2410 * This scanning priority is essentially the inverse of IO cost.
2412 anon_prio = swappiness;
2413 file_prio = 200 - anon_prio;
2416 * OK, so we have swap space and a fair amount of page cache
2417 * pages. We use the recently rotated / recently scanned
2418 * ratios to determine how valuable each cache is.
2420 * Because workloads change over time (and to avoid overflow)
2421 * we keep these statistics as a floating average, which ends
2422 * up weighing recent references more than old ones.
2424 * anon in [0], file in [1]
2427 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2428 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2429 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2430 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2432 spin_lock_irq(&pgdat->lru_lock);
2433 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2434 reclaim_stat->recent_scanned[0] /= 2;
2435 reclaim_stat->recent_rotated[0] /= 2;
2438 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2439 reclaim_stat->recent_scanned[1] /= 2;
2440 reclaim_stat->recent_rotated[1] /= 2;
2444 * The amount of pressure on anon vs file pages is inversely
2445 * proportional to the fraction of recently scanned pages on
2446 * each list that were recently referenced and in active use.
2448 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2449 ap /= reclaim_stat->recent_rotated[0] + 1;
2451 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2452 fp /= reclaim_stat->recent_rotated[1] + 1;
2453 spin_unlock_irq(&pgdat->lru_lock);
2455 fraction[0] = ap;
2456 fraction[1] = fp;
2457 denominator = ap + fp + 1;
2458 out:
2459 *lru_pages = 0;
2460 for_each_evictable_lru(lru) {
2461 int file = is_file_lru(lru);
2462 unsigned long size;
2463 unsigned long scan;
2465 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2466 scan = size >> sc->priority;
2468 * If the cgroup's already been deleted, make sure to
2469 * scrape out the remaining cache.
2471 if (!scan && !mem_cgroup_online(memcg))
2472 scan = min(size, SWAP_CLUSTER_MAX);
2474 switch (scan_balance) {
2475 case SCAN_EQUAL:
2476 /* Scan lists relative to size */
2477 break;
2478 case SCAN_FRACT:
2480 * Scan types proportional to swappiness and
2481 * their relative recent reclaim efficiency.
2482 * Make sure we don't miss the last page
2483 * because of a round-off error.
2485 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2486 denominator);
2487 break;
2488 case SCAN_FILE:
2489 case SCAN_ANON:
2490 /* Scan one type exclusively */
2491 if ((scan_balance == SCAN_FILE) != file) {
2492 size = 0;
2493 scan = 0;
2495 break;
2496 default:
2497 /* Look ma, no brain */
2498 BUG();
2501 *lru_pages += size;
2502 nr[lru] = scan;
2507 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2509 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2510 struct scan_control *sc, unsigned long *lru_pages)
2512 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2513 unsigned long nr[NR_LRU_LISTS];
2514 unsigned long targets[NR_LRU_LISTS];
2515 unsigned long nr_to_scan;
2516 enum lru_list lru;
2517 unsigned long nr_reclaimed = 0;
2518 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2519 struct blk_plug plug;
2520 bool scan_adjusted;
2522 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2524 /* Record the original scan target for proportional adjustments later */
2525 memcpy(targets, nr, sizeof(nr));
2528 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2529 * event that can occur when there is little memory pressure e.g.
2530 * multiple streaming readers/writers. Hence, we do not abort scanning
2531 * when the requested number of pages are reclaimed when scanning at
2532 * DEF_PRIORITY on the assumption that the fact we are direct
2533 * reclaiming implies that kswapd is not keeping up and it is best to
2534 * do a batch of work at once. For memcg reclaim one check is made to
2535 * abort proportional reclaim if either the file or anon lru has already
2536 * dropped to zero at the first pass.
2538 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2539 sc->priority == DEF_PRIORITY);
2541 blk_start_plug(&plug);
2542 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2543 nr[LRU_INACTIVE_FILE]) {
2544 unsigned long nr_anon, nr_file, percentage;
2545 unsigned long nr_scanned;
2547 for_each_evictable_lru(lru) {
2548 if (nr[lru]) {
2549 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2550 nr[lru] -= nr_to_scan;
2552 nr_reclaimed += shrink_list(lru, nr_to_scan,
2553 lruvec, sc);
2557 cond_resched();
2559 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2560 continue;
2563 * For kswapd and memcg, reclaim at least the number of pages
2564 * requested. Ensure that the anon and file LRUs are scanned
2565 * proportionally what was requested by get_scan_count(). We
2566 * stop reclaiming one LRU and reduce the amount scanning
2567 * proportional to the original scan target.
2569 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2570 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2573 * It's just vindictive to attack the larger once the smaller
2574 * has gone to zero. And given the way we stop scanning the
2575 * smaller below, this makes sure that we only make one nudge
2576 * towards proportionality once we've got nr_to_reclaim.
2578 if (!nr_file || !nr_anon)
2579 break;
2581 if (nr_file > nr_anon) {
2582 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2583 targets[LRU_ACTIVE_ANON] + 1;
2584 lru = LRU_BASE;
2585 percentage = nr_anon * 100 / scan_target;
2586 } else {
2587 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2588 targets[LRU_ACTIVE_FILE] + 1;
2589 lru = LRU_FILE;
2590 percentage = nr_file * 100 / scan_target;
2593 /* Stop scanning the smaller of the LRU */
2594 nr[lru] = 0;
2595 nr[lru + LRU_ACTIVE] = 0;
2598 * Recalculate the other LRU scan count based on its original
2599 * scan target and the percentage scanning already complete
2601 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2602 nr_scanned = targets[lru] - nr[lru];
2603 nr[lru] = targets[lru] * (100 - percentage) / 100;
2604 nr[lru] -= min(nr[lru], nr_scanned);
2606 lru += LRU_ACTIVE;
2607 nr_scanned = targets[lru] - nr[lru];
2608 nr[lru] = targets[lru] * (100 - percentage) / 100;
2609 nr[lru] -= min(nr[lru], nr_scanned);
2611 scan_adjusted = true;
2613 blk_finish_plug(&plug);
2614 sc->nr_reclaimed += nr_reclaimed;
2617 * Even if we did not try to evict anon pages at all, we want to
2618 * rebalance the anon lru active/inactive ratio.
2620 if (inactive_list_is_low(lruvec, false, sc, true))
2621 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2622 sc, LRU_ACTIVE_ANON);
2625 /* Use reclaim/compaction for costly allocs or under memory pressure */
2626 static bool in_reclaim_compaction(struct scan_control *sc)
2628 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2629 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2630 sc->priority < DEF_PRIORITY - 2))
2631 return true;
2633 return false;
2637 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2638 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2639 * true if more pages should be reclaimed such that when the page allocator
2640 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2641 * It will give up earlier than that if there is difficulty reclaiming pages.
2643 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2644 unsigned long nr_reclaimed,
2645 struct scan_control *sc)
2647 unsigned long pages_for_compaction;
2648 unsigned long inactive_lru_pages;
2649 int z;
2651 /* If not in reclaim/compaction mode, stop */
2652 if (!in_reclaim_compaction(sc))
2653 return false;
2656 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2657 * number of pages that were scanned. This will return to the caller
2658 * with the risk reclaim/compaction and the resulting allocation attempt
2659 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2660 * allocations through requiring that the full LRU list has been scanned
2661 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2662 * scan, but that approximation was wrong, and there were corner cases
2663 * where always a non-zero amount of pages were scanned.
2665 if (!nr_reclaimed)
2666 return false;
2668 /* If compaction would go ahead or the allocation would succeed, stop */
2669 for (z = 0; z <= sc->reclaim_idx; z++) {
2670 struct zone *zone = &pgdat->node_zones[z];
2671 if (!managed_zone(zone))
2672 continue;
2674 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2675 case COMPACT_SUCCESS:
2676 case COMPACT_CONTINUE:
2677 return false;
2678 default:
2679 /* check next zone */
2685 * If we have not reclaimed enough pages for compaction and the
2686 * inactive lists are large enough, continue reclaiming
2688 pages_for_compaction = compact_gap(sc->order);
2689 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2690 if (get_nr_swap_pages() > 0)
2691 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2693 return inactive_lru_pages > pages_for_compaction;
2696 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2698 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2699 (memcg && memcg_congested(pgdat, memcg));
2702 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2704 struct reclaim_state *reclaim_state = current->reclaim_state;
2705 unsigned long nr_reclaimed, nr_scanned;
2706 bool reclaimable = false;
2708 do {
2709 struct mem_cgroup *root = sc->target_mem_cgroup;
2710 unsigned long node_lru_pages = 0;
2711 struct mem_cgroup *memcg;
2713 memset(&sc->nr, 0, sizeof(sc->nr));
2715 nr_reclaimed = sc->nr_reclaimed;
2716 nr_scanned = sc->nr_scanned;
2718 memcg = mem_cgroup_iter(root, NULL, NULL);
2719 do {
2720 unsigned long lru_pages;
2721 unsigned long reclaimed;
2722 unsigned long scanned;
2724 switch (mem_cgroup_protected(root, memcg)) {
2725 case MEMCG_PROT_MIN:
2727 * Hard protection.
2728 * If there is no reclaimable memory, OOM.
2730 continue;
2731 case MEMCG_PROT_LOW:
2733 * Soft protection.
2734 * Respect the protection only as long as
2735 * there is an unprotected supply
2736 * of reclaimable memory from other cgroups.
2738 if (!sc->memcg_low_reclaim) {
2739 sc->memcg_low_skipped = 1;
2740 continue;
2742 memcg_memory_event(memcg, MEMCG_LOW);
2743 break;
2744 case MEMCG_PROT_NONE:
2745 break;
2748 reclaimed = sc->nr_reclaimed;
2749 scanned = sc->nr_scanned;
2750 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2751 node_lru_pages += lru_pages;
2753 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2754 sc->priority);
2756 /* Record the group's reclaim efficiency */
2757 vmpressure(sc->gfp_mask, memcg, false,
2758 sc->nr_scanned - scanned,
2759 sc->nr_reclaimed - reclaimed);
2761 } while ((memcg = mem_cgroup_iter(root, memcg, NULL)));
2763 if (reclaim_state) {
2764 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2765 reclaim_state->reclaimed_slab = 0;
2768 /* Record the subtree's reclaim efficiency */
2769 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2770 sc->nr_scanned - nr_scanned,
2771 sc->nr_reclaimed - nr_reclaimed);
2773 if (sc->nr_reclaimed - nr_reclaimed)
2774 reclaimable = true;
2776 if (current_is_kswapd()) {
2778 * If reclaim is isolating dirty pages under writeback,
2779 * it implies that the long-lived page allocation rate
2780 * is exceeding the page laundering rate. Either the
2781 * global limits are not being effective at throttling
2782 * processes due to the page distribution throughout
2783 * zones or there is heavy usage of a slow backing
2784 * device. The only option is to throttle from reclaim
2785 * context which is not ideal as there is no guarantee
2786 * the dirtying process is throttled in the same way
2787 * balance_dirty_pages() manages.
2789 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2790 * count the number of pages under pages flagged for
2791 * immediate reclaim and stall if any are encountered
2792 * in the nr_immediate check below.
2794 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2795 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2798 * Tag a node as congested if all the dirty pages
2799 * scanned were backed by a congested BDI and
2800 * wait_iff_congested will stall.
2802 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2803 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2805 /* Allow kswapd to start writing pages during reclaim.*/
2806 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2807 set_bit(PGDAT_DIRTY, &pgdat->flags);
2810 * If kswapd scans pages marked marked for immediate
2811 * reclaim and under writeback (nr_immediate), it
2812 * implies that pages are cycling through the LRU
2813 * faster than they are written so also forcibly stall.
2815 if (sc->nr.immediate)
2816 congestion_wait(BLK_RW_ASYNC, HZ/10);
2820 * Legacy memcg will stall in page writeback so avoid forcibly
2821 * stalling in wait_iff_congested().
2823 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2824 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2825 set_memcg_congestion(pgdat, root, true);
2828 * Stall direct reclaim for IO completions if underlying BDIs
2829 * and node is congested. Allow kswapd to continue until it
2830 * starts encountering unqueued dirty pages or cycling through
2831 * the LRU too quickly.
2833 if (!sc->hibernation_mode && !current_is_kswapd() &&
2834 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2835 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2837 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2838 sc));
2841 * Kswapd gives up on balancing particular nodes after too
2842 * many failures to reclaim anything from them and goes to
2843 * sleep. On reclaim progress, reset the failure counter. A
2844 * successful direct reclaim run will revive a dormant kswapd.
2846 if (reclaimable)
2847 pgdat->kswapd_failures = 0;
2849 return reclaimable;
2853 * Returns true if compaction should go ahead for a costly-order request, or
2854 * the allocation would already succeed without compaction. Return false if we
2855 * should reclaim first.
2857 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2859 unsigned long watermark;
2860 enum compact_result suitable;
2862 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2863 if (suitable == COMPACT_SUCCESS)
2864 /* Allocation should succeed already. Don't reclaim. */
2865 return true;
2866 if (suitable == COMPACT_SKIPPED)
2867 /* Compaction cannot yet proceed. Do reclaim. */
2868 return false;
2871 * Compaction is already possible, but it takes time to run and there
2872 * are potentially other callers using the pages just freed. So proceed
2873 * with reclaim to make a buffer of free pages available to give
2874 * compaction a reasonable chance of completing and allocating the page.
2875 * Note that we won't actually reclaim the whole buffer in one attempt
2876 * as the target watermark in should_continue_reclaim() is lower. But if
2877 * we are already above the high+gap watermark, don't reclaim at all.
2879 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2881 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2885 * This is the direct reclaim path, for page-allocating processes. We only
2886 * try to reclaim pages from zones which will satisfy the caller's allocation
2887 * request.
2889 * If a zone is deemed to be full of pinned pages then just give it a light
2890 * scan then give up on it.
2892 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2894 struct zoneref *z;
2895 struct zone *zone;
2896 unsigned long nr_soft_reclaimed;
2897 unsigned long nr_soft_scanned;
2898 gfp_t orig_mask;
2899 pg_data_t *last_pgdat = NULL;
2902 * If the number of buffer_heads in the machine exceeds the maximum
2903 * allowed level, force direct reclaim to scan the highmem zone as
2904 * highmem pages could be pinning lowmem pages storing buffer_heads
2906 orig_mask = sc->gfp_mask;
2907 if (buffer_heads_over_limit) {
2908 sc->gfp_mask |= __GFP_HIGHMEM;
2909 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2912 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2913 sc->reclaim_idx, sc->nodemask) {
2915 * Take care memory controller reclaiming has small influence
2916 * to global LRU.
2918 if (global_reclaim(sc)) {
2919 if (!cpuset_zone_allowed(zone,
2920 GFP_KERNEL | __GFP_HARDWALL))
2921 continue;
2924 * If we already have plenty of memory free for
2925 * compaction in this zone, don't free any more.
2926 * Even though compaction is invoked for any
2927 * non-zero order, only frequent costly order
2928 * reclamation is disruptive enough to become a
2929 * noticeable problem, like transparent huge
2930 * page allocations.
2932 if (IS_ENABLED(CONFIG_COMPACTION) &&
2933 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2934 compaction_ready(zone, sc)) {
2935 sc->compaction_ready = true;
2936 continue;
2940 * Shrink each node in the zonelist once. If the
2941 * zonelist is ordered by zone (not the default) then a
2942 * node may be shrunk multiple times but in that case
2943 * the user prefers lower zones being preserved.
2945 if (zone->zone_pgdat == last_pgdat)
2946 continue;
2949 * This steals pages from memory cgroups over softlimit
2950 * and returns the number of reclaimed pages and
2951 * scanned pages. This works for global memory pressure
2952 * and balancing, not for a memcg's limit.
2954 nr_soft_scanned = 0;
2955 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2956 sc->order, sc->gfp_mask,
2957 &nr_soft_scanned);
2958 sc->nr_reclaimed += nr_soft_reclaimed;
2959 sc->nr_scanned += nr_soft_scanned;
2960 /* need some check for avoid more shrink_zone() */
2963 /* See comment about same check for global reclaim above */
2964 if (zone->zone_pgdat == last_pgdat)
2965 continue;
2966 last_pgdat = zone->zone_pgdat;
2967 shrink_node(zone->zone_pgdat, sc);
2971 * Restore to original mask to avoid the impact on the caller if we
2972 * promoted it to __GFP_HIGHMEM.
2974 sc->gfp_mask = orig_mask;
2977 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2979 struct mem_cgroup *memcg;
2981 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2982 do {
2983 unsigned long refaults;
2984 struct lruvec *lruvec;
2986 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2987 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2988 lruvec->refaults = refaults;
2989 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2993 * This is the main entry point to direct page reclaim.
2995 * If a full scan of the inactive list fails to free enough memory then we
2996 * are "out of memory" and something needs to be killed.
2998 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2999 * high - the zone may be full of dirty or under-writeback pages, which this
3000 * caller can't do much about. We kick the writeback threads and take explicit
3001 * naps in the hope that some of these pages can be written. But if the
3002 * allocating task holds filesystem locks which prevent writeout this might not
3003 * work, and the allocation attempt will fail.
3005 * returns: 0, if no pages reclaimed
3006 * else, the number of pages reclaimed
3008 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3009 struct scan_control *sc)
3011 int initial_priority = sc->priority;
3012 pg_data_t *last_pgdat;
3013 struct zoneref *z;
3014 struct zone *zone;
3015 retry:
3016 delayacct_freepages_start();
3018 if (global_reclaim(sc))
3019 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3021 do {
3022 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3023 sc->priority);
3024 sc->nr_scanned = 0;
3025 shrink_zones(zonelist, sc);
3027 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3028 break;
3030 if (sc->compaction_ready)
3031 break;
3034 * If we're getting trouble reclaiming, start doing
3035 * writepage even in laptop mode.
3037 if (sc->priority < DEF_PRIORITY - 2)
3038 sc->may_writepage = 1;
3039 } while (--sc->priority >= 0);
3041 last_pgdat = NULL;
3042 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3043 sc->nodemask) {
3044 if (zone->zone_pgdat == last_pgdat)
3045 continue;
3046 last_pgdat = zone->zone_pgdat;
3047 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3048 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3051 delayacct_freepages_end();
3053 if (sc->nr_reclaimed)
3054 return sc->nr_reclaimed;
3056 /* Aborted reclaim to try compaction? don't OOM, then */
3057 if (sc->compaction_ready)
3058 return 1;
3060 /* Untapped cgroup reserves? Don't OOM, retry. */
3061 if (sc->memcg_low_skipped) {
3062 sc->priority = initial_priority;
3063 sc->memcg_low_reclaim = 1;
3064 sc->memcg_low_skipped = 0;
3065 goto retry;
3068 return 0;
3071 static bool allow_direct_reclaim(pg_data_t *pgdat)
3073 struct zone *zone;
3074 unsigned long pfmemalloc_reserve = 0;
3075 unsigned long free_pages = 0;
3076 int i;
3077 bool wmark_ok;
3079 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3080 return true;
3082 for (i = 0; i <= ZONE_NORMAL; i++) {
3083 zone = &pgdat->node_zones[i];
3084 if (!managed_zone(zone))
3085 continue;
3087 if (!zone_reclaimable_pages(zone))
3088 continue;
3090 pfmemalloc_reserve += min_wmark_pages(zone);
3091 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3094 /* If there are no reserves (unexpected config) then do not throttle */
3095 if (!pfmemalloc_reserve)
3096 return true;
3098 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3100 /* kswapd must be awake if processes are being throttled */
3101 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3102 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3103 (enum zone_type)ZONE_NORMAL);
3104 wake_up_interruptible(&pgdat->kswapd_wait);
3107 return wmark_ok;
3111 * Throttle direct reclaimers if backing storage is backed by the network
3112 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3113 * depleted. kswapd will continue to make progress and wake the processes
3114 * when the low watermark is reached.
3116 * Returns true if a fatal signal was delivered during throttling. If this
3117 * happens, the page allocator should not consider triggering the OOM killer.
3119 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3120 nodemask_t *nodemask)
3122 struct zoneref *z;
3123 struct zone *zone;
3124 pg_data_t *pgdat = NULL;
3127 * Kernel threads should not be throttled as they may be indirectly
3128 * responsible for cleaning pages necessary for reclaim to make forward
3129 * progress. kjournald for example may enter direct reclaim while
3130 * committing a transaction where throttling it could forcing other
3131 * processes to block on log_wait_commit().
3133 if (current->flags & PF_KTHREAD)
3134 goto out;
3137 * If a fatal signal is pending, this process should not throttle.
3138 * It should return quickly so it can exit and free its memory
3140 if (fatal_signal_pending(current))
3141 goto out;
3144 * Check if the pfmemalloc reserves are ok by finding the first node
3145 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3146 * GFP_KERNEL will be required for allocating network buffers when
3147 * swapping over the network so ZONE_HIGHMEM is unusable.
3149 * Throttling is based on the first usable node and throttled processes
3150 * wait on a queue until kswapd makes progress and wakes them. There
3151 * is an affinity then between processes waking up and where reclaim
3152 * progress has been made assuming the process wakes on the same node.
3153 * More importantly, processes running on remote nodes will not compete
3154 * for remote pfmemalloc reserves and processes on different nodes
3155 * should make reasonable progress.
3157 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3158 gfp_zone(gfp_mask), nodemask) {
3159 if (zone_idx(zone) > ZONE_NORMAL)
3160 continue;
3162 /* Throttle based on the first usable node */
3163 pgdat = zone->zone_pgdat;
3164 if (allow_direct_reclaim(pgdat))
3165 goto out;
3166 break;
3169 /* If no zone was usable by the allocation flags then do not throttle */
3170 if (!pgdat)
3171 goto out;
3173 /* Account for the throttling */
3174 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3177 * If the caller cannot enter the filesystem, it's possible that it
3178 * is due to the caller holding an FS lock or performing a journal
3179 * transaction in the case of a filesystem like ext[3|4]. In this case,
3180 * it is not safe to block on pfmemalloc_wait as kswapd could be
3181 * blocked waiting on the same lock. Instead, throttle for up to a
3182 * second before continuing.
3184 if (!(gfp_mask & __GFP_FS)) {
3185 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3186 allow_direct_reclaim(pgdat), HZ);
3188 goto check_pending;
3191 /* Throttle until kswapd wakes the process */
3192 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3193 allow_direct_reclaim(pgdat));
3195 check_pending:
3196 if (fatal_signal_pending(current))
3197 return true;
3199 out:
3200 return false;
3203 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3204 gfp_t gfp_mask, nodemask_t *nodemask)
3206 unsigned long nr_reclaimed;
3207 struct scan_control sc = {
3208 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3209 .gfp_mask = current_gfp_context(gfp_mask),
3210 .reclaim_idx = gfp_zone(gfp_mask),
3211 .order = order,
3212 .nodemask = nodemask,
3213 .priority = DEF_PRIORITY,
3214 .may_writepage = !laptop_mode,
3215 .may_unmap = 1,
3216 .may_swap = 1,
3220 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3221 * Confirm they are large enough for max values.
3223 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3224 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3225 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3228 * Do not enter reclaim if fatal signal was delivered while throttled.
3229 * 1 is returned so that the page allocator does not OOM kill at this
3230 * point.
3232 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3233 return 1;
3235 set_task_reclaim_state(current, &sc.reclaim_state);
3236 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3238 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3240 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3241 set_task_reclaim_state(current, NULL);
3243 return nr_reclaimed;
3246 #ifdef CONFIG_MEMCG
3248 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3249 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3250 gfp_t gfp_mask, bool noswap,
3251 pg_data_t *pgdat,
3252 unsigned long *nr_scanned)
3254 struct scan_control sc = {
3255 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3256 .target_mem_cgroup = memcg,
3257 .may_writepage = !laptop_mode,
3258 .may_unmap = 1,
3259 .reclaim_idx = MAX_NR_ZONES - 1,
3260 .may_swap = !noswap,
3262 unsigned long lru_pages;
3264 WARN_ON_ONCE(!current->reclaim_state);
3266 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3267 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3269 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3270 sc.gfp_mask);
3273 * NOTE: Although we can get the priority field, using it
3274 * here is not a good idea, since it limits the pages we can scan.
3275 * if we don't reclaim here, the shrink_node from balance_pgdat
3276 * will pick up pages from other mem cgroup's as well. We hack
3277 * the priority and make it zero.
3279 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3281 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3283 *nr_scanned = sc.nr_scanned;
3285 return sc.nr_reclaimed;
3288 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3289 unsigned long nr_pages,
3290 gfp_t gfp_mask,
3291 bool may_swap)
3293 struct zonelist *zonelist;
3294 unsigned long nr_reclaimed;
3295 unsigned long pflags;
3296 int nid;
3297 unsigned int noreclaim_flag;
3298 struct scan_control sc = {
3299 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3300 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3301 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3302 .reclaim_idx = MAX_NR_ZONES - 1,
3303 .target_mem_cgroup = memcg,
3304 .priority = DEF_PRIORITY,
3305 .may_writepage = !laptop_mode,
3306 .may_unmap = 1,
3307 .may_swap = may_swap,
3310 set_task_reclaim_state(current, &sc.reclaim_state);
3312 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3313 * take care of from where we get pages. So the node where we start the
3314 * scan does not need to be the current node.
3316 nid = mem_cgroup_select_victim_node(memcg);
3318 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3320 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3322 psi_memstall_enter(&pflags);
3323 noreclaim_flag = memalloc_noreclaim_save();
3325 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3327 memalloc_noreclaim_restore(noreclaim_flag);
3328 psi_memstall_leave(&pflags);
3330 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3331 set_task_reclaim_state(current, NULL);
3333 return nr_reclaimed;
3335 #endif
3337 static void age_active_anon(struct pglist_data *pgdat,
3338 struct scan_control *sc)
3340 struct mem_cgroup *memcg;
3342 if (!total_swap_pages)
3343 return;
3345 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3346 do {
3347 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3349 if (inactive_list_is_low(lruvec, false, sc, true))
3350 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3351 sc, LRU_ACTIVE_ANON);
3353 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3354 } while (memcg);
3357 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3359 int i;
3360 struct zone *zone;
3363 * Check for watermark boosts top-down as the higher zones
3364 * are more likely to be boosted. Both watermarks and boosts
3365 * should not be checked at the time time as reclaim would
3366 * start prematurely when there is no boosting and a lower
3367 * zone is balanced.
3369 for (i = classzone_idx; i >= 0; i--) {
3370 zone = pgdat->node_zones + i;
3371 if (!managed_zone(zone))
3372 continue;
3374 if (zone->watermark_boost)
3375 return true;
3378 return false;
3382 * Returns true if there is an eligible zone balanced for the request order
3383 * and classzone_idx
3385 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3387 int i;
3388 unsigned long mark = -1;
3389 struct zone *zone;
3392 * Check watermarks bottom-up as lower zones are more likely to
3393 * meet watermarks.
3395 for (i = 0; i <= classzone_idx; i++) {
3396 zone = pgdat->node_zones + i;
3398 if (!managed_zone(zone))
3399 continue;
3401 mark = high_wmark_pages(zone);
3402 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3403 return true;
3407 * If a node has no populated zone within classzone_idx, it does not
3408 * need balancing by definition. This can happen if a zone-restricted
3409 * allocation tries to wake a remote kswapd.
3411 if (mark == -1)
3412 return true;
3414 return false;
3417 /* Clear pgdat state for congested, dirty or under writeback. */
3418 static void clear_pgdat_congested(pg_data_t *pgdat)
3420 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3421 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3422 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3426 * Prepare kswapd for sleeping. This verifies that there are no processes
3427 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3429 * Returns true if kswapd is ready to sleep
3431 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3434 * The throttled processes are normally woken up in balance_pgdat() as
3435 * soon as allow_direct_reclaim() is true. But there is a potential
3436 * race between when kswapd checks the watermarks and a process gets
3437 * throttled. There is also a potential race if processes get
3438 * throttled, kswapd wakes, a large process exits thereby balancing the
3439 * zones, which causes kswapd to exit balance_pgdat() before reaching
3440 * the wake up checks. If kswapd is going to sleep, no process should
3441 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3442 * the wake up is premature, processes will wake kswapd and get
3443 * throttled again. The difference from wake ups in balance_pgdat() is
3444 * that here we are under prepare_to_wait().
3446 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3447 wake_up_all(&pgdat->pfmemalloc_wait);
3449 /* Hopeless node, leave it to direct reclaim */
3450 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3451 return true;
3453 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3454 clear_pgdat_congested(pgdat);
3455 return true;
3458 return false;
3462 * kswapd shrinks a node of pages that are at or below the highest usable
3463 * zone that is currently unbalanced.
3465 * Returns true if kswapd scanned at least the requested number of pages to
3466 * reclaim or if the lack of progress was due to pages under writeback.
3467 * This is used to determine if the scanning priority needs to be raised.
3469 static bool kswapd_shrink_node(pg_data_t *pgdat,
3470 struct scan_control *sc)
3472 struct zone *zone;
3473 int z;
3475 /* Reclaim a number of pages proportional to the number of zones */
3476 sc->nr_to_reclaim = 0;
3477 for (z = 0; z <= sc->reclaim_idx; z++) {
3478 zone = pgdat->node_zones + z;
3479 if (!managed_zone(zone))
3480 continue;
3482 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3486 * Historically care was taken to put equal pressure on all zones but
3487 * now pressure is applied based on node LRU order.
3489 shrink_node(pgdat, sc);
3492 * Fragmentation may mean that the system cannot be rebalanced for
3493 * high-order allocations. If twice the allocation size has been
3494 * reclaimed then recheck watermarks only at order-0 to prevent
3495 * excessive reclaim. Assume that a process requested a high-order
3496 * can direct reclaim/compact.
3498 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3499 sc->order = 0;
3501 return sc->nr_scanned >= sc->nr_to_reclaim;
3505 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3506 * that are eligible for use by the caller until at least one zone is
3507 * balanced.
3509 * Returns the order kswapd finished reclaiming at.
3511 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3512 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3513 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3514 * or lower is eligible for reclaim until at least one usable zone is
3515 * balanced.
3517 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3519 int i;
3520 unsigned long nr_soft_reclaimed;
3521 unsigned long nr_soft_scanned;
3522 unsigned long pflags;
3523 unsigned long nr_boost_reclaim;
3524 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3525 bool boosted;
3526 struct zone *zone;
3527 struct scan_control sc = {
3528 .gfp_mask = GFP_KERNEL,
3529 .order = order,
3530 .may_unmap = 1,
3533 set_task_reclaim_state(current, &sc.reclaim_state);
3534 psi_memstall_enter(&pflags);
3535 __fs_reclaim_acquire();
3537 count_vm_event(PAGEOUTRUN);
3540 * Account for the reclaim boost. Note that the zone boost is left in
3541 * place so that parallel allocations that are near the watermark will
3542 * stall or direct reclaim until kswapd is finished.
3544 nr_boost_reclaim = 0;
3545 for (i = 0; i <= classzone_idx; i++) {
3546 zone = pgdat->node_zones + i;
3547 if (!managed_zone(zone))
3548 continue;
3550 nr_boost_reclaim += zone->watermark_boost;
3551 zone_boosts[i] = zone->watermark_boost;
3553 boosted = nr_boost_reclaim;
3555 restart:
3556 sc.priority = DEF_PRIORITY;
3557 do {
3558 unsigned long nr_reclaimed = sc.nr_reclaimed;
3559 bool raise_priority = true;
3560 bool balanced;
3561 bool ret;
3563 sc.reclaim_idx = classzone_idx;
3566 * If the number of buffer_heads exceeds the maximum allowed
3567 * then consider reclaiming from all zones. This has a dual
3568 * purpose -- on 64-bit systems it is expected that
3569 * buffer_heads are stripped during active rotation. On 32-bit
3570 * systems, highmem pages can pin lowmem memory and shrinking
3571 * buffers can relieve lowmem pressure. Reclaim may still not
3572 * go ahead if all eligible zones for the original allocation
3573 * request are balanced to avoid excessive reclaim from kswapd.
3575 if (buffer_heads_over_limit) {
3576 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3577 zone = pgdat->node_zones + i;
3578 if (!managed_zone(zone))
3579 continue;
3581 sc.reclaim_idx = i;
3582 break;
3587 * If the pgdat is imbalanced then ignore boosting and preserve
3588 * the watermarks for a later time and restart. Note that the
3589 * zone watermarks will be still reset at the end of balancing
3590 * on the grounds that the normal reclaim should be enough to
3591 * re-evaluate if boosting is required when kswapd next wakes.
3593 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3594 if (!balanced && nr_boost_reclaim) {
3595 nr_boost_reclaim = 0;
3596 goto restart;
3600 * If boosting is not active then only reclaim if there are no
3601 * eligible zones. Note that sc.reclaim_idx is not used as
3602 * buffer_heads_over_limit may have adjusted it.
3604 if (!nr_boost_reclaim && balanced)
3605 goto out;
3607 /* Limit the priority of boosting to avoid reclaim writeback */
3608 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3609 raise_priority = false;
3612 * Do not writeback or swap pages for boosted reclaim. The
3613 * intent is to relieve pressure not issue sub-optimal IO
3614 * from reclaim context. If no pages are reclaimed, the
3615 * reclaim will be aborted.
3617 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3618 sc.may_swap = !nr_boost_reclaim;
3621 * Do some background aging of the anon list, to give
3622 * pages a chance to be referenced before reclaiming. All
3623 * pages are rotated regardless of classzone as this is
3624 * about consistent aging.
3626 age_active_anon(pgdat, &sc);
3629 * If we're getting trouble reclaiming, start doing writepage
3630 * even in laptop mode.
3632 if (sc.priority < DEF_PRIORITY - 2)
3633 sc.may_writepage = 1;
3635 /* Call soft limit reclaim before calling shrink_node. */
3636 sc.nr_scanned = 0;
3637 nr_soft_scanned = 0;
3638 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3639 sc.gfp_mask, &nr_soft_scanned);
3640 sc.nr_reclaimed += nr_soft_reclaimed;
3643 * There should be no need to raise the scanning priority if
3644 * enough pages are already being scanned that that high
3645 * watermark would be met at 100% efficiency.
3647 if (kswapd_shrink_node(pgdat, &sc))
3648 raise_priority = false;
3651 * If the low watermark is met there is no need for processes
3652 * to be throttled on pfmemalloc_wait as they should not be
3653 * able to safely make forward progress. Wake them
3655 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3656 allow_direct_reclaim(pgdat))
3657 wake_up_all(&pgdat->pfmemalloc_wait);
3659 /* Check if kswapd should be suspending */
3660 __fs_reclaim_release();
3661 ret = try_to_freeze();
3662 __fs_reclaim_acquire();
3663 if (ret || kthread_should_stop())
3664 break;
3667 * Raise priority if scanning rate is too low or there was no
3668 * progress in reclaiming pages
3670 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3671 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3674 * If reclaim made no progress for a boost, stop reclaim as
3675 * IO cannot be queued and it could be an infinite loop in
3676 * extreme circumstances.
3678 if (nr_boost_reclaim && !nr_reclaimed)
3679 break;
3681 if (raise_priority || !nr_reclaimed)
3682 sc.priority--;
3683 } while (sc.priority >= 1);
3685 if (!sc.nr_reclaimed)
3686 pgdat->kswapd_failures++;
3688 out:
3689 /* If reclaim was boosted, account for the reclaim done in this pass */
3690 if (boosted) {
3691 unsigned long flags;
3693 for (i = 0; i <= classzone_idx; i++) {
3694 if (!zone_boosts[i])
3695 continue;
3697 /* Increments are under the zone lock */
3698 zone = pgdat->node_zones + i;
3699 spin_lock_irqsave(&zone->lock, flags);
3700 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3701 spin_unlock_irqrestore(&zone->lock, flags);
3705 * As there is now likely space, wakeup kcompact to defragment
3706 * pageblocks.
3708 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3711 snapshot_refaults(NULL, pgdat);
3712 __fs_reclaim_release();
3713 psi_memstall_leave(&pflags);
3714 set_task_reclaim_state(current, NULL);
3717 * Return the order kswapd stopped reclaiming at as
3718 * prepare_kswapd_sleep() takes it into account. If another caller
3719 * entered the allocator slow path while kswapd was awake, order will
3720 * remain at the higher level.
3722 return sc.order;
3726 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3727 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3728 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3729 * after previous reclaim attempt (node is still unbalanced). In that case
3730 * return the zone index of the previous kswapd reclaim cycle.
3732 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3733 enum zone_type prev_classzone_idx)
3735 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3736 return prev_classzone_idx;
3737 return pgdat->kswapd_classzone_idx;
3740 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3741 unsigned int classzone_idx)
3743 long remaining = 0;
3744 DEFINE_WAIT(wait);
3746 if (freezing(current) || kthread_should_stop())
3747 return;
3749 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3752 * Try to sleep for a short interval. Note that kcompactd will only be
3753 * woken if it is possible to sleep for a short interval. This is
3754 * deliberate on the assumption that if reclaim cannot keep an
3755 * eligible zone balanced that it's also unlikely that compaction will
3756 * succeed.
3758 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3760 * Compaction records what page blocks it recently failed to
3761 * isolate pages from and skips them in the future scanning.
3762 * When kswapd is going to sleep, it is reasonable to assume
3763 * that pages and compaction may succeed so reset the cache.
3765 reset_isolation_suitable(pgdat);
3768 * We have freed the memory, now we should compact it to make
3769 * allocation of the requested order possible.
3771 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3773 remaining = schedule_timeout(HZ/10);
3776 * If woken prematurely then reset kswapd_classzone_idx and
3777 * order. The values will either be from a wakeup request or
3778 * the previous request that slept prematurely.
3780 if (remaining) {
3781 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3782 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3785 finish_wait(&pgdat->kswapd_wait, &wait);
3786 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3790 * After a short sleep, check if it was a premature sleep. If not, then
3791 * go fully to sleep until explicitly woken up.
3793 if (!remaining &&
3794 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3795 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3798 * vmstat counters are not perfectly accurate and the estimated
3799 * value for counters such as NR_FREE_PAGES can deviate from the
3800 * true value by nr_online_cpus * threshold. To avoid the zone
3801 * watermarks being breached while under pressure, we reduce the
3802 * per-cpu vmstat threshold while kswapd is awake and restore
3803 * them before going back to sleep.
3805 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3807 if (!kthread_should_stop())
3808 schedule();
3810 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3811 } else {
3812 if (remaining)
3813 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3814 else
3815 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3817 finish_wait(&pgdat->kswapd_wait, &wait);
3821 * The background pageout daemon, started as a kernel thread
3822 * from the init process.
3824 * This basically trickles out pages so that we have _some_
3825 * free memory available even if there is no other activity
3826 * that frees anything up. This is needed for things like routing
3827 * etc, where we otherwise might have all activity going on in
3828 * asynchronous contexts that cannot page things out.
3830 * If there are applications that are active memory-allocators
3831 * (most normal use), this basically shouldn't matter.
3833 static int kswapd(void *p)
3835 unsigned int alloc_order, reclaim_order;
3836 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3837 pg_data_t *pgdat = (pg_data_t*)p;
3838 struct task_struct *tsk = current;
3839 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3841 if (!cpumask_empty(cpumask))
3842 set_cpus_allowed_ptr(tsk, cpumask);
3845 * Tell the memory management that we're a "memory allocator",
3846 * and that if we need more memory we should get access to it
3847 * regardless (see "__alloc_pages()"). "kswapd" should
3848 * never get caught in the normal page freeing logic.
3850 * (Kswapd normally doesn't need memory anyway, but sometimes
3851 * you need a small amount of memory in order to be able to
3852 * page out something else, and this flag essentially protects
3853 * us from recursively trying to free more memory as we're
3854 * trying to free the first piece of memory in the first place).
3856 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3857 set_freezable();
3859 pgdat->kswapd_order = 0;
3860 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3861 for ( ; ; ) {
3862 bool ret;
3864 alloc_order = reclaim_order = pgdat->kswapd_order;
3865 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3867 kswapd_try_sleep:
3868 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3869 classzone_idx);
3871 /* Read the new order and classzone_idx */
3872 alloc_order = reclaim_order = pgdat->kswapd_order;
3873 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3874 pgdat->kswapd_order = 0;
3875 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3877 ret = try_to_freeze();
3878 if (kthread_should_stop())
3879 break;
3882 * We can speed up thawing tasks if we don't call balance_pgdat
3883 * after returning from the refrigerator
3885 if (ret)
3886 continue;
3889 * Reclaim begins at the requested order but if a high-order
3890 * reclaim fails then kswapd falls back to reclaiming for
3891 * order-0. If that happens, kswapd will consider sleeping
3892 * for the order it finished reclaiming at (reclaim_order)
3893 * but kcompactd is woken to compact for the original
3894 * request (alloc_order).
3896 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3897 alloc_order);
3898 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3899 if (reclaim_order < alloc_order)
3900 goto kswapd_try_sleep;
3903 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3905 return 0;
3909 * A zone is low on free memory or too fragmented for high-order memory. If
3910 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3911 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3912 * has failed or is not needed, still wake up kcompactd if only compaction is
3913 * needed.
3915 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3916 enum zone_type classzone_idx)
3918 pg_data_t *pgdat;
3920 if (!managed_zone(zone))
3921 return;
3923 if (!cpuset_zone_allowed(zone, gfp_flags))
3924 return;
3925 pgdat = zone->zone_pgdat;
3927 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3928 pgdat->kswapd_classzone_idx = classzone_idx;
3929 else
3930 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3931 classzone_idx);
3932 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3933 if (!waitqueue_active(&pgdat->kswapd_wait))
3934 return;
3936 /* Hopeless node, leave it to direct reclaim if possible */
3937 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3938 (pgdat_balanced(pgdat, order, classzone_idx) &&
3939 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3941 * There may be plenty of free memory available, but it's too
3942 * fragmented for high-order allocations. Wake up kcompactd
3943 * and rely on compaction_suitable() to determine if it's
3944 * needed. If it fails, it will defer subsequent attempts to
3945 * ratelimit its work.
3947 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3948 wakeup_kcompactd(pgdat, order, classzone_idx);
3949 return;
3952 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3953 gfp_flags);
3954 wake_up_interruptible(&pgdat->kswapd_wait);
3957 #ifdef CONFIG_HIBERNATION
3959 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3960 * freed pages.
3962 * Rather than trying to age LRUs the aim is to preserve the overall
3963 * LRU order by reclaiming preferentially
3964 * inactive > active > active referenced > active mapped
3966 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3968 struct scan_control sc = {
3969 .nr_to_reclaim = nr_to_reclaim,
3970 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3971 .reclaim_idx = MAX_NR_ZONES - 1,
3972 .priority = DEF_PRIORITY,
3973 .may_writepage = 1,
3974 .may_unmap = 1,
3975 .may_swap = 1,
3976 .hibernation_mode = 1,
3978 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3979 unsigned long nr_reclaimed;
3980 unsigned int noreclaim_flag;
3982 fs_reclaim_acquire(sc.gfp_mask);
3983 noreclaim_flag = memalloc_noreclaim_save();
3984 set_task_reclaim_state(current, &sc.reclaim_state);
3986 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3988 set_task_reclaim_state(current, NULL);
3989 memalloc_noreclaim_restore(noreclaim_flag);
3990 fs_reclaim_release(sc.gfp_mask);
3992 return nr_reclaimed;
3994 #endif /* CONFIG_HIBERNATION */
3996 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3997 not required for correctness. So if the last cpu in a node goes
3998 away, we get changed to run anywhere: as the first one comes back,
3999 restore their cpu bindings. */
4000 static int kswapd_cpu_online(unsigned int cpu)
4002 int nid;
4004 for_each_node_state(nid, N_MEMORY) {
4005 pg_data_t *pgdat = NODE_DATA(nid);
4006 const struct cpumask *mask;
4008 mask = cpumask_of_node(pgdat->node_id);
4010 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4011 /* One of our CPUs online: restore mask */
4012 set_cpus_allowed_ptr(pgdat->kswapd, mask);
4014 return 0;
4018 * This kswapd start function will be called by init and node-hot-add.
4019 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4021 int kswapd_run(int nid)
4023 pg_data_t *pgdat = NODE_DATA(nid);
4024 int ret = 0;
4026 if (pgdat->kswapd)
4027 return 0;
4029 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4030 if (IS_ERR(pgdat->kswapd)) {
4031 /* failure at boot is fatal */
4032 BUG_ON(system_state < SYSTEM_RUNNING);
4033 pr_err("Failed to start kswapd on node %d\n", nid);
4034 ret = PTR_ERR(pgdat->kswapd);
4035 pgdat->kswapd = NULL;
4037 return ret;
4041 * Called by memory hotplug when all memory in a node is offlined. Caller must
4042 * hold mem_hotplug_begin/end().
4044 void kswapd_stop(int nid)
4046 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4048 if (kswapd) {
4049 kthread_stop(kswapd);
4050 NODE_DATA(nid)->kswapd = NULL;
4054 static int __init kswapd_init(void)
4056 int nid, ret;
4058 swap_setup();
4059 for_each_node_state(nid, N_MEMORY)
4060 kswapd_run(nid);
4061 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4062 "mm/vmscan:online", kswapd_cpu_online,
4063 NULL);
4064 WARN_ON(ret < 0);
4065 return 0;
4068 module_init(kswapd_init)
4070 #ifdef CONFIG_NUMA
4072 * Node reclaim mode
4074 * If non-zero call node_reclaim when the number of free pages falls below
4075 * the watermarks.
4077 int node_reclaim_mode __read_mostly;
4079 #define RECLAIM_OFF 0
4080 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4081 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4082 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4085 * Priority for NODE_RECLAIM. This determines the fraction of pages
4086 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4087 * a zone.
4089 #define NODE_RECLAIM_PRIORITY 4
4092 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4093 * occur.
4095 int sysctl_min_unmapped_ratio = 1;
4098 * If the number of slab pages in a zone grows beyond this percentage then
4099 * slab reclaim needs to occur.
4101 int sysctl_min_slab_ratio = 5;
4103 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4105 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4106 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4107 node_page_state(pgdat, NR_ACTIVE_FILE);
4110 * It's possible for there to be more file mapped pages than
4111 * accounted for by the pages on the file LRU lists because
4112 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4114 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4117 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4118 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4120 unsigned long nr_pagecache_reclaimable;
4121 unsigned long delta = 0;
4124 * If RECLAIM_UNMAP is set, then all file pages are considered
4125 * potentially reclaimable. Otherwise, we have to worry about
4126 * pages like swapcache and node_unmapped_file_pages() provides
4127 * a better estimate
4129 if (node_reclaim_mode & RECLAIM_UNMAP)
4130 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4131 else
4132 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4134 /* If we can't clean pages, remove dirty pages from consideration */
4135 if (!(node_reclaim_mode & RECLAIM_WRITE))
4136 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4138 /* Watch for any possible underflows due to delta */
4139 if (unlikely(delta > nr_pagecache_reclaimable))
4140 delta = nr_pagecache_reclaimable;
4142 return nr_pagecache_reclaimable - delta;
4146 * Try to free up some pages from this node through reclaim.
4148 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4150 /* Minimum pages needed in order to stay on node */
4151 const unsigned long nr_pages = 1 << order;
4152 struct task_struct *p = current;
4153 unsigned int noreclaim_flag;
4154 struct scan_control sc = {
4155 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4156 .gfp_mask = current_gfp_context(gfp_mask),
4157 .order = order,
4158 .priority = NODE_RECLAIM_PRIORITY,
4159 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4160 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4161 .may_swap = 1,
4162 .reclaim_idx = gfp_zone(gfp_mask),
4165 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4166 sc.gfp_mask);
4168 cond_resched();
4169 fs_reclaim_acquire(sc.gfp_mask);
4171 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4172 * and we also need to be able to write out pages for RECLAIM_WRITE
4173 * and RECLAIM_UNMAP.
4175 noreclaim_flag = memalloc_noreclaim_save();
4176 p->flags |= PF_SWAPWRITE;
4177 set_task_reclaim_state(p, &sc.reclaim_state);
4179 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4181 * Free memory by calling shrink node with increasing
4182 * priorities until we have enough memory freed.
4184 do {
4185 shrink_node(pgdat, &sc);
4186 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4189 set_task_reclaim_state(p, NULL);
4190 current->flags &= ~PF_SWAPWRITE;
4191 memalloc_noreclaim_restore(noreclaim_flag);
4192 fs_reclaim_release(sc.gfp_mask);
4194 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4196 return sc.nr_reclaimed >= nr_pages;
4199 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4201 int ret;
4204 * Node reclaim reclaims unmapped file backed pages and
4205 * slab pages if we are over the defined limits.
4207 * A small portion of unmapped file backed pages is needed for
4208 * file I/O otherwise pages read by file I/O will be immediately
4209 * thrown out if the node is overallocated. So we do not reclaim
4210 * if less than a specified percentage of the node is used by
4211 * unmapped file backed pages.
4213 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4214 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4215 return NODE_RECLAIM_FULL;
4218 * Do not scan if the allocation should not be delayed.
4220 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4221 return NODE_RECLAIM_NOSCAN;
4224 * Only run node reclaim on the local node or on nodes that do not
4225 * have associated processors. This will favor the local processor
4226 * over remote processors and spread off node memory allocations
4227 * as wide as possible.
4229 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4230 return NODE_RECLAIM_NOSCAN;
4232 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4233 return NODE_RECLAIM_NOSCAN;
4235 ret = __node_reclaim(pgdat, gfp_mask, order);
4236 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4238 if (!ret)
4239 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4241 return ret;
4243 #endif
4246 * page_evictable - test whether a page is evictable
4247 * @page: the page to test
4249 * Test whether page is evictable--i.e., should be placed on active/inactive
4250 * lists vs unevictable list.
4252 * Reasons page might not be evictable:
4253 * (1) page's mapping marked unevictable
4254 * (2) page is part of an mlocked VMA
4257 int page_evictable(struct page *page)
4259 int ret;
4261 /* Prevent address_space of inode and swap cache from being freed */
4262 rcu_read_lock();
4263 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4264 rcu_read_unlock();
4265 return ret;
4269 * check_move_unevictable_pages - check pages for evictability and move to
4270 * appropriate zone lru list
4271 * @pvec: pagevec with lru pages to check
4273 * Checks pages for evictability, if an evictable page is in the unevictable
4274 * lru list, moves it to the appropriate evictable lru list. This function
4275 * should be only used for lru pages.
4277 void check_move_unevictable_pages(struct pagevec *pvec)
4279 struct lruvec *lruvec;
4280 struct pglist_data *pgdat = NULL;
4281 int pgscanned = 0;
4282 int pgrescued = 0;
4283 int i;
4285 for (i = 0; i < pvec->nr; i++) {
4286 struct page *page = pvec->pages[i];
4287 struct pglist_data *pagepgdat = page_pgdat(page);
4289 pgscanned++;
4290 if (pagepgdat != pgdat) {
4291 if (pgdat)
4292 spin_unlock_irq(&pgdat->lru_lock);
4293 pgdat = pagepgdat;
4294 spin_lock_irq(&pgdat->lru_lock);
4296 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4298 if (!PageLRU(page) || !PageUnevictable(page))
4299 continue;
4301 if (page_evictable(page)) {
4302 enum lru_list lru = page_lru_base_type(page);
4304 VM_BUG_ON_PAGE(PageActive(page), page);
4305 ClearPageUnevictable(page);
4306 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4307 add_page_to_lru_list(page, lruvec, lru);
4308 pgrescued++;
4312 if (pgdat) {
4313 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4314 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4315 spin_unlock_irq(&pgdat->lru_lock);
4318 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);