drm/i915: Mark the context and address space as closed
[linux/fpc-iii.git] / drivers / cpufreq / cpufreq_governor.c
blobbe498d56dd6971d10d4e46b23c814c6f10a5de72
1 /*
2 * drivers/cpufreq/cpufreq_governor.c
4 * CPUFREQ governors common code
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
24 #include "cpufreq_governor.h"
26 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
28 static DEFINE_MUTEX(gov_dbs_data_mutex);
30 /* Common sysfs tunables */
31 /**
32 * store_sampling_rate - update sampling rate effective immediately if needed.
34 * If new rate is smaller than the old, simply updating
35 * dbs.sampling_rate might not be appropriate. For example, if the
36 * original sampling_rate was 1 second and the requested new sampling rate is 10
37 * ms because the user needs immediate reaction from ondemand governor, but not
38 * sure if higher frequency will be required or not, then, the governor may
39 * change the sampling rate too late; up to 1 second later. Thus, if we are
40 * reducing the sampling rate, we need to make the new value effective
41 * immediately.
43 * This must be called with dbs_data->mutex held, otherwise traversing
44 * policy_dbs_list isn't safe.
46 ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
47 size_t count)
49 struct dbs_data *dbs_data = to_dbs_data(attr_set);
50 struct policy_dbs_info *policy_dbs;
51 unsigned int rate;
52 int ret;
53 ret = sscanf(buf, "%u", &rate);
54 if (ret != 1)
55 return -EINVAL;
57 dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate);
60 * We are operating under dbs_data->mutex and so the list and its
61 * entries can't be freed concurrently.
63 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
64 mutex_lock(&policy_dbs->timer_mutex);
66 * On 32-bit architectures this may race with the
67 * sample_delay_ns read in dbs_update_util_handler(), but that
68 * really doesn't matter. If the read returns a value that's
69 * too big, the sample will be skipped, but the next invocation
70 * of dbs_update_util_handler() (when the update has been
71 * completed) will take a sample.
73 * If this runs in parallel with dbs_work_handler(), we may end
74 * up overwriting the sample_delay_ns value that it has just
75 * written, but it will be corrected next time a sample is
76 * taken, so it shouldn't be significant.
78 gov_update_sample_delay(policy_dbs, 0);
79 mutex_unlock(&policy_dbs->timer_mutex);
82 return count;
84 EXPORT_SYMBOL_GPL(store_sampling_rate);
86 /**
87 * gov_update_cpu_data - Update CPU load data.
88 * @dbs_data: Top-level governor data pointer.
90 * Update CPU load data for all CPUs in the domain governed by @dbs_data
91 * (that may be a single policy or a bunch of them if governor tunables are
92 * system-wide).
94 * Call under the @dbs_data mutex.
96 void gov_update_cpu_data(struct dbs_data *dbs_data)
98 struct policy_dbs_info *policy_dbs;
100 list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
101 unsigned int j;
103 for_each_cpu(j, policy_dbs->policy->cpus) {
104 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
106 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
107 dbs_data->io_is_busy);
108 if (dbs_data->ignore_nice_load)
109 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
113 EXPORT_SYMBOL_GPL(gov_update_cpu_data);
115 unsigned int dbs_update(struct cpufreq_policy *policy)
117 struct policy_dbs_info *policy_dbs = policy->governor_data;
118 struct dbs_data *dbs_data = policy_dbs->dbs_data;
119 unsigned int ignore_nice = dbs_data->ignore_nice_load;
120 unsigned int max_load = 0;
121 unsigned int sampling_rate, io_busy, j;
124 * Sometimes governors may use an additional multiplier to increase
125 * sample delays temporarily. Apply that multiplier to sampling_rate
126 * so as to keep the wake-up-from-idle detection logic a bit
127 * conservative.
129 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
131 * For the purpose of ondemand, waiting for disk IO is an indication
132 * that you're performance critical, and not that the system is actually
133 * idle, so do not add the iowait time to the CPU idle time then.
135 io_busy = dbs_data->io_is_busy;
137 /* Get Absolute Load */
138 for_each_cpu(j, policy->cpus) {
139 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
140 u64 update_time, cur_idle_time;
141 unsigned int idle_time, time_elapsed;
142 unsigned int load;
144 cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
146 time_elapsed = update_time - j_cdbs->prev_update_time;
147 j_cdbs->prev_update_time = update_time;
149 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
150 j_cdbs->prev_cpu_idle = cur_idle_time;
152 if (ignore_nice) {
153 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
155 idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice);
156 j_cdbs->prev_cpu_nice = cur_nice;
159 if (unlikely(!time_elapsed)) {
161 * That can only happen when this function is called
162 * twice in a row with a very short interval between the
163 * calls, so the previous load value can be used then.
165 load = j_cdbs->prev_load;
166 } else if (unlikely(time_elapsed > 2 * sampling_rate &&
167 j_cdbs->prev_load)) {
169 * If the CPU had gone completely idle and a task has
170 * just woken up on this CPU now, it would be unfair to
171 * calculate 'load' the usual way for this elapsed
172 * time-window, because it would show near-zero load,
173 * irrespective of how CPU intensive that task actually
174 * was. This is undesirable for latency-sensitive bursty
175 * workloads.
177 * To avoid this, reuse the 'load' from the previous
178 * time-window and give this task a chance to start with
179 * a reasonably high CPU frequency. However, that
180 * shouldn't be over-done, lest we get stuck at a high
181 * load (high frequency) for too long, even when the
182 * current system load has actually dropped down, so
183 * clear prev_load to guarantee that the load will be
184 * computed again next time.
186 * Detecting this situation is easy: the governor's
187 * utilization update handler would not have run during
188 * CPU-idle periods. Hence, an unusually large
189 * 'time_elapsed' (as compared to the sampling rate)
190 * indicates this scenario.
192 load = j_cdbs->prev_load;
193 j_cdbs->prev_load = 0;
194 } else {
195 if (time_elapsed >= idle_time) {
196 load = 100 * (time_elapsed - idle_time) / time_elapsed;
197 } else {
199 * That can happen if idle_time is returned by
200 * get_cpu_idle_time_jiffy(). In that case
201 * idle_time is roughly equal to the difference
202 * between time_elapsed and "busy time" obtained
203 * from CPU statistics. Then, the "busy time"
204 * can end up being greater than time_elapsed
205 * (for example, if jiffies_64 and the CPU
206 * statistics are updated by different CPUs),
207 * so idle_time may in fact be negative. That
208 * means, though, that the CPU was busy all
209 * the time (on the rough average) during the
210 * last sampling interval and 100 can be
211 * returned as the load.
213 load = (int)idle_time < 0 ? 100 : 0;
215 j_cdbs->prev_load = load;
218 if (load > max_load)
219 max_load = load;
221 return max_load;
223 EXPORT_SYMBOL_GPL(dbs_update);
225 static void dbs_work_handler(struct work_struct *work)
227 struct policy_dbs_info *policy_dbs;
228 struct cpufreq_policy *policy;
229 struct dbs_governor *gov;
231 policy_dbs = container_of(work, struct policy_dbs_info, work);
232 policy = policy_dbs->policy;
233 gov = dbs_governor_of(policy);
236 * Make sure cpufreq_governor_limits() isn't evaluating load or the
237 * ondemand governor isn't updating the sampling rate in parallel.
239 mutex_lock(&policy_dbs->timer_mutex);
240 gov_update_sample_delay(policy_dbs, gov->gov_dbs_timer(policy));
241 mutex_unlock(&policy_dbs->timer_mutex);
243 /* Allow the utilization update handler to queue up more work. */
244 atomic_set(&policy_dbs->work_count, 0);
246 * If the update below is reordered with respect to the sample delay
247 * modification, the utilization update handler may end up using a stale
248 * sample delay value.
250 smp_wmb();
251 policy_dbs->work_in_progress = false;
254 static void dbs_irq_work(struct irq_work *irq_work)
256 struct policy_dbs_info *policy_dbs;
258 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
259 schedule_work_on(smp_processor_id(), &policy_dbs->work);
262 static void dbs_update_util_handler(struct update_util_data *data, u64 time,
263 unsigned long util, unsigned long max)
265 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
266 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
267 u64 delta_ns, lst;
270 * The work may not be allowed to be queued up right now.
271 * Possible reasons:
272 * - Work has already been queued up or is in progress.
273 * - It is too early (too little time from the previous sample).
275 if (policy_dbs->work_in_progress)
276 return;
279 * If the reads below are reordered before the check above, the value
280 * of sample_delay_ns used in the computation may be stale.
282 smp_rmb();
283 lst = READ_ONCE(policy_dbs->last_sample_time);
284 delta_ns = time - lst;
285 if ((s64)delta_ns < policy_dbs->sample_delay_ns)
286 return;
289 * If the policy is not shared, the irq_work may be queued up right away
290 * at this point. Otherwise, we need to ensure that only one of the
291 * CPUs sharing the policy will do that.
293 if (policy_dbs->is_shared) {
294 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
295 return;
298 * If another CPU updated last_sample_time in the meantime, we
299 * shouldn't be here, so clear the work counter and bail out.
301 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
302 atomic_set(&policy_dbs->work_count, 0);
303 return;
307 policy_dbs->last_sample_time = time;
308 policy_dbs->work_in_progress = true;
309 irq_work_queue(&policy_dbs->irq_work);
312 static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
313 unsigned int delay_us)
315 struct cpufreq_policy *policy = policy_dbs->policy;
316 int cpu;
318 gov_update_sample_delay(policy_dbs, delay_us);
319 policy_dbs->last_sample_time = 0;
321 for_each_cpu(cpu, policy->cpus) {
322 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
324 cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
325 dbs_update_util_handler);
329 static inline void gov_clear_update_util(struct cpufreq_policy *policy)
331 int i;
333 for_each_cpu(i, policy->cpus)
334 cpufreq_remove_update_util_hook(i);
336 synchronize_sched();
339 static void gov_cancel_work(struct cpufreq_policy *policy)
341 struct policy_dbs_info *policy_dbs = policy->governor_data;
343 gov_clear_update_util(policy_dbs->policy);
344 irq_work_sync(&policy_dbs->irq_work);
345 cancel_work_sync(&policy_dbs->work);
346 atomic_set(&policy_dbs->work_count, 0);
347 policy_dbs->work_in_progress = false;
350 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
351 struct dbs_governor *gov)
353 struct policy_dbs_info *policy_dbs;
354 int j;
356 /* Allocate memory for per-policy governor data. */
357 policy_dbs = gov->alloc();
358 if (!policy_dbs)
359 return NULL;
361 policy_dbs->policy = policy;
362 mutex_init(&policy_dbs->timer_mutex);
363 atomic_set(&policy_dbs->work_count, 0);
364 init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
365 INIT_WORK(&policy_dbs->work, dbs_work_handler);
367 /* Set policy_dbs for all CPUs, online+offline */
368 for_each_cpu(j, policy->related_cpus) {
369 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
371 j_cdbs->policy_dbs = policy_dbs;
373 return policy_dbs;
376 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
377 struct dbs_governor *gov)
379 int j;
381 mutex_destroy(&policy_dbs->timer_mutex);
383 for_each_cpu(j, policy_dbs->policy->related_cpus) {
384 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
386 j_cdbs->policy_dbs = NULL;
387 j_cdbs->update_util.func = NULL;
389 gov->free(policy_dbs);
392 static int cpufreq_governor_init(struct cpufreq_policy *policy)
394 struct dbs_governor *gov = dbs_governor_of(policy);
395 struct dbs_data *dbs_data;
396 struct policy_dbs_info *policy_dbs;
397 unsigned int latency;
398 int ret = 0;
400 /* State should be equivalent to EXIT */
401 if (policy->governor_data)
402 return -EBUSY;
404 policy_dbs = alloc_policy_dbs_info(policy, gov);
405 if (!policy_dbs)
406 return -ENOMEM;
408 /* Protect gov->gdbs_data against concurrent updates. */
409 mutex_lock(&gov_dbs_data_mutex);
411 dbs_data = gov->gdbs_data;
412 if (dbs_data) {
413 if (WARN_ON(have_governor_per_policy())) {
414 ret = -EINVAL;
415 goto free_policy_dbs_info;
417 policy_dbs->dbs_data = dbs_data;
418 policy->governor_data = policy_dbs;
420 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
421 goto out;
424 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
425 if (!dbs_data) {
426 ret = -ENOMEM;
427 goto free_policy_dbs_info;
430 gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
432 ret = gov->init(dbs_data, !policy->governor->initialized);
433 if (ret)
434 goto free_policy_dbs_info;
436 /* policy latency is in ns. Convert it to us first */
437 latency = policy->cpuinfo.transition_latency / 1000;
438 if (latency == 0)
439 latency = 1;
441 /* Bring kernel and HW constraints together */
442 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
443 MIN_LATENCY_MULTIPLIER * latency);
444 dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
445 LATENCY_MULTIPLIER * latency);
447 if (!have_governor_per_policy())
448 gov->gdbs_data = dbs_data;
450 policy_dbs->dbs_data = dbs_data;
451 policy->governor_data = policy_dbs;
453 gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
454 ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
455 get_governor_parent_kobj(policy),
456 "%s", gov->gov.name);
457 if (!ret)
458 goto out;
460 /* Failure, so roll back. */
461 pr_err("cpufreq: Governor initialization failed (dbs_data kobject init error %d)\n", ret);
463 policy->governor_data = NULL;
465 if (!have_governor_per_policy())
466 gov->gdbs_data = NULL;
467 gov->exit(dbs_data, !policy->governor->initialized);
468 kfree(dbs_data);
470 free_policy_dbs_info:
471 free_policy_dbs_info(policy_dbs, gov);
473 out:
474 mutex_unlock(&gov_dbs_data_mutex);
475 return ret;
478 static int cpufreq_governor_exit(struct cpufreq_policy *policy)
480 struct dbs_governor *gov = dbs_governor_of(policy);
481 struct policy_dbs_info *policy_dbs = policy->governor_data;
482 struct dbs_data *dbs_data = policy_dbs->dbs_data;
483 unsigned int count;
485 /* Protect gov->gdbs_data against concurrent updates. */
486 mutex_lock(&gov_dbs_data_mutex);
488 count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
490 policy->governor_data = NULL;
492 if (!count) {
493 if (!have_governor_per_policy())
494 gov->gdbs_data = NULL;
496 gov->exit(dbs_data, policy->governor->initialized == 1);
497 kfree(dbs_data);
500 free_policy_dbs_info(policy_dbs, gov);
502 mutex_unlock(&gov_dbs_data_mutex);
503 return 0;
506 static int cpufreq_governor_start(struct cpufreq_policy *policy)
508 struct dbs_governor *gov = dbs_governor_of(policy);
509 struct policy_dbs_info *policy_dbs = policy->governor_data;
510 struct dbs_data *dbs_data = policy_dbs->dbs_data;
511 unsigned int sampling_rate, ignore_nice, j;
512 unsigned int io_busy;
514 if (!policy->cur)
515 return -EINVAL;
517 policy_dbs->is_shared = policy_is_shared(policy);
518 policy_dbs->rate_mult = 1;
520 sampling_rate = dbs_data->sampling_rate;
521 ignore_nice = dbs_data->ignore_nice_load;
522 io_busy = dbs_data->io_is_busy;
524 for_each_cpu(j, policy->cpus) {
525 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
527 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
529 * Make the first invocation of dbs_update() compute the load.
531 j_cdbs->prev_load = 0;
533 if (ignore_nice)
534 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
537 gov->start(policy);
539 gov_set_update_util(policy_dbs, sampling_rate);
540 return 0;
543 static int cpufreq_governor_stop(struct cpufreq_policy *policy)
545 gov_cancel_work(policy);
546 return 0;
549 static int cpufreq_governor_limits(struct cpufreq_policy *policy)
551 struct policy_dbs_info *policy_dbs = policy->governor_data;
553 mutex_lock(&policy_dbs->timer_mutex);
555 if (policy->max < policy->cur)
556 __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H);
557 else if (policy->min > policy->cur)
558 __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L);
560 gov_update_sample_delay(policy_dbs, 0);
562 mutex_unlock(&policy_dbs->timer_mutex);
564 return 0;
567 int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
569 if (event == CPUFREQ_GOV_POLICY_INIT) {
570 return cpufreq_governor_init(policy);
571 } else if (policy->governor_data) {
572 switch (event) {
573 case CPUFREQ_GOV_POLICY_EXIT:
574 return cpufreq_governor_exit(policy);
575 case CPUFREQ_GOV_START:
576 return cpufreq_governor_start(policy);
577 case CPUFREQ_GOV_STOP:
578 return cpufreq_governor_stop(policy);
579 case CPUFREQ_GOV_LIMITS:
580 return cpufreq_governor_limits(policy);
583 return -EINVAL;
585 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);