2 * intel_pstate.c: Native P state management for Intel processors
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
34 #include <asm/div64.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
39 #define ATOM_RATIOS 0x66a
40 #define ATOM_VIDS 0x66b
41 #define ATOM_TURBO_RATIOS 0x66c
42 #define ATOM_TURBO_VIDS 0x66d
45 #include <acpi/processor.h>
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
53 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 static inline int32_t mul_fp(int32_t x
, int32_t y
)
57 return ((int64_t)x
* (int64_t)y
) >> FRAC_BITS
;
60 static inline int32_t div_fp(s64 x
, s64 y
)
62 return div64_s64((int64_t)x
<< FRAC_BITS
, y
);
65 static inline int ceiling_fp(int32_t x
)
70 mask
= (1 << FRAC_BITS
) - 1;
76 static inline u64
mul_ext_fp(u64 x
, u64 y
)
78 return (x
* y
) >> EXT_FRAC_BITS
;
81 static inline u64
div_ext_fp(u64 x
, u64 y
)
83 return div64_u64(x
<< EXT_FRAC_BITS
, y
);
87 * struct sample - Store performance sample
88 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
89 * performance during last sample period
90 * @busy_scaled: Scaled busy value which is used to calculate next
91 * P state. This can be different than core_avg_perf
92 * to account for cpu idle period
93 * @aperf: Difference of actual performance frequency clock count
94 * read from APERF MSR between last and current sample
95 * @mperf: Difference of maximum performance frequency clock count
96 * read from MPERF MSR between last and current sample
97 * @tsc: Difference of time stamp counter between last and
99 * @freq: Effective frequency calculated from APERF/MPERF
100 * @time: Current time from scheduler
102 * This structure is used in the cpudata structure to store performance sample
103 * data for choosing next P State.
106 int32_t core_avg_perf
;
116 * struct pstate_data - Store P state data
117 * @current_pstate: Current requested P state
118 * @min_pstate: Min P state possible for this platform
119 * @max_pstate: Max P state possible for this platform
120 * @max_pstate_physical:This is physical Max P state for a processor
121 * This can be higher than the max_pstate which can
122 * be limited by platform thermal design power limits
123 * @scaling: Scaling factor to convert frequency to cpufreq
125 * @turbo_pstate: Max Turbo P state possible for this platform
127 * Stores the per cpu model P state limits and current P state.
133 int max_pstate_physical
;
139 * struct vid_data - Stores voltage information data
140 * @min: VID data for this platform corresponding to
142 * @max: VID data corresponding to the highest P State.
143 * @turbo: VID data for turbo P state
144 * @ratio: Ratio of (vid max - vid min) /
145 * (max P state - Min P State)
147 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
148 * This data is used in Atom platforms, where in addition to target P state,
149 * the voltage data needs to be specified to select next P State.
159 * struct _pid - Stores PID data
160 * @setpoint: Target set point for busyness or performance
161 * @integral: Storage for accumulated error values
162 * @p_gain: PID proportional gain
163 * @i_gain: PID integral gain
164 * @d_gain: PID derivative gain
165 * @deadband: PID deadband
166 * @last_err: Last error storage for integral part of PID calculation
168 * Stores PID coefficients and last error for PID controller.
181 * struct cpudata - Per CPU instance data storage
182 * @cpu: CPU number for this instance data
183 * @update_util: CPUFreq utility callback information
184 * @update_util_set: CPUFreq utility callback is set
185 * @pstate: Stores P state limits for this CPU
186 * @vid: Stores VID limits for this CPU
187 * @pid: Stores PID parameters for this CPU
188 * @last_sample_time: Last Sample time
189 * @prev_aperf: Last APERF value read from APERF MSR
190 * @prev_mperf: Last MPERF value read from MPERF MSR
191 * @prev_tsc: Last timestamp counter (TSC) value
192 * @prev_cummulative_iowait: IO Wait time difference from last and
194 * @sample: Storage for storing last Sample data
195 * @acpi_perf_data: Stores ACPI perf information read from _PSS
196 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
198 * This structure stores per CPU instance data for all CPUs.
203 struct update_util_data update_util
;
204 bool update_util_set
;
206 struct pstate_data pstate
;
210 u64 last_sample_time
;
214 u64 prev_cummulative_iowait
;
215 struct sample sample
;
217 struct acpi_processor_performance acpi_perf_data
;
218 bool valid_pss_table
;
222 static struct cpudata
**all_cpu_data
;
225 * struct pid_adjust_policy - Stores static PID configuration data
226 * @sample_rate_ms: PID calculation sample rate in ms
227 * @sample_rate_ns: Sample rate calculation in ns
228 * @deadband: PID deadband
229 * @setpoint: PID Setpoint
230 * @p_gain_pct: PID proportional gain
231 * @i_gain_pct: PID integral gain
232 * @d_gain_pct: PID derivative gain
234 * Stores per CPU model static PID configuration data.
236 struct pstate_adjust_policy
{
247 * struct pstate_funcs - Per CPU model specific callbacks
248 * @get_max: Callback to get maximum non turbo effective P state
249 * @get_max_physical: Callback to get maximum non turbo physical P state
250 * @get_min: Callback to get minimum P state
251 * @get_turbo: Callback to get turbo P state
252 * @get_scaling: Callback to get frequency scaling factor
253 * @get_val: Callback to convert P state to actual MSR write value
254 * @get_vid: Callback to get VID data for Atom platforms
255 * @get_target_pstate: Callback to a function to calculate next P state to use
257 * Core and Atom CPU models have different way to get P State limits. This
258 * structure is used to store those callbacks.
260 struct pstate_funcs
{
261 int (*get_max
)(void);
262 int (*get_max_physical
)(void);
263 int (*get_min
)(void);
264 int (*get_turbo
)(void);
265 int (*get_scaling
)(void);
266 u64 (*get_val
)(struct cpudata
*, int pstate
);
267 void (*get_vid
)(struct cpudata
*);
268 int32_t (*get_target_pstate
)(struct cpudata
*);
272 * struct cpu_defaults- Per CPU model default config data
273 * @pid_policy: PID config data
274 * @funcs: Callback function data
276 struct cpu_defaults
{
277 struct pstate_adjust_policy pid_policy
;
278 struct pstate_funcs funcs
;
281 static inline int32_t get_target_pstate_use_performance(struct cpudata
*cpu
);
282 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata
*cpu
);
284 static struct pstate_adjust_policy pid_params
;
285 static struct pstate_funcs pstate_funcs
;
286 static int hwp_active
;
289 static bool acpi_ppc
;
293 * struct perf_limits - Store user and policy limits
294 * @no_turbo: User requested turbo state from intel_pstate sysfs
295 * @turbo_disabled: Platform turbo status either from msr
296 * MSR_IA32_MISC_ENABLE or when maximum available pstate
297 * matches the maximum turbo pstate
298 * @max_perf_pct: Effective maximum performance limit in percentage, this
299 * is minimum of either limits enforced by cpufreq policy
300 * or limits from user set limits via intel_pstate sysfs
301 * @min_perf_pct: Effective minimum performance limit in percentage, this
302 * is maximum of either limits enforced by cpufreq policy
303 * or limits from user set limits via intel_pstate sysfs
304 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
305 * This value is used to limit max pstate
306 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
307 * This value is used to limit min pstate
308 * @max_policy_pct: The maximum performance in percentage enforced by
309 * cpufreq setpolicy interface
310 * @max_sysfs_pct: The maximum performance in percentage enforced by
311 * intel pstate sysfs interface
312 * @min_policy_pct: The minimum performance in percentage enforced by
313 * cpufreq setpolicy interface
314 * @min_sysfs_pct: The minimum performance in percentage enforced by
315 * intel pstate sysfs interface
317 * Storage for user and policy defined limits.
332 static struct perf_limits performance_limits
= {
336 .max_perf
= int_tofp(1),
338 .min_perf
= int_tofp(1),
339 .max_policy_pct
= 100,
340 .max_sysfs_pct
= 100,
345 static struct perf_limits powersave_limits
= {
349 .max_perf
= int_tofp(1),
352 .max_policy_pct
= 100,
353 .max_sysfs_pct
= 100,
358 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
359 static struct perf_limits
*limits
= &performance_limits
;
361 static struct perf_limits
*limits
= &powersave_limits
;
366 static bool intel_pstate_get_ppc_enable_status(void)
368 if (acpi_gbl_FADT
.preferred_profile
== PM_ENTERPRISE_SERVER
||
369 acpi_gbl_FADT
.preferred_profile
== PM_PERFORMANCE_SERVER
)
376 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
377 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
378 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
379 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
380 * target ratio 0x17. The _PSS control value stores in a format which can be
381 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
382 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
383 * This function converts the _PSS control value to intel pstate driver format
384 * for comparison and assignment.
386 static int convert_to_native_pstate_format(struct cpudata
*cpu
, int index
)
388 return cpu
->acpi_perf_data
.states
[index
].control
>> 8;
391 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
401 if (!intel_pstate_get_ppc_enable_status())
404 cpu
= all_cpu_data
[policy
->cpu
];
406 ret
= acpi_processor_register_performance(&cpu
->acpi_perf_data
,
412 * Check if the control value in _PSS is for PERF_CTL MSR, which should
413 * guarantee that the states returned by it map to the states in our
416 if (cpu
->acpi_perf_data
.control_register
.space_id
!=
417 ACPI_ADR_SPACE_FIXED_HARDWARE
)
421 * If there is only one entry _PSS, simply ignore _PSS and continue as
422 * usual without taking _PSS into account
424 if (cpu
->acpi_perf_data
.state_count
< 2)
427 pr_debug("CPU%u - ACPI _PSS perf data\n", policy
->cpu
);
428 for (i
= 0; i
< cpu
->acpi_perf_data
.state_count
; i
++) {
429 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
430 (i
== cpu
->acpi_perf_data
.state
? '*' : ' '), i
,
431 (u32
) cpu
->acpi_perf_data
.states
[i
].core_frequency
,
432 (u32
) cpu
->acpi_perf_data
.states
[i
].power
,
433 (u32
) cpu
->acpi_perf_data
.states
[i
].control
);
437 * The _PSS table doesn't contain whole turbo frequency range.
438 * This just contains +1 MHZ above the max non turbo frequency,
439 * with control value corresponding to max turbo ratio. But
440 * when cpufreq set policy is called, it will call with this
441 * max frequency, which will cause a reduced performance as
442 * this driver uses real max turbo frequency as the max
443 * frequency. So correct this frequency in _PSS table to
444 * correct max turbo frequency based on the turbo ratio.
445 * Also need to convert to MHz as _PSS freq is in MHz.
447 turbo_pss_ctl
= convert_to_native_pstate_format(cpu
, 0);
448 if (turbo_pss_ctl
> cpu
->pstate
.max_pstate
)
449 cpu
->acpi_perf_data
.states
[0].core_frequency
=
450 policy
->cpuinfo
.max_freq
/ 1000;
451 cpu
->valid_pss_table
= true;
452 pr_debug("_PPC limits will be enforced\n");
457 cpu
->valid_pss_table
= false;
458 acpi_processor_unregister_performance(policy
->cpu
);
461 static void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
465 cpu
= all_cpu_data
[policy
->cpu
];
466 if (!cpu
->valid_pss_table
)
469 acpi_processor_unregister_performance(policy
->cpu
);
473 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
477 static void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
482 static inline void pid_reset(struct _pid
*pid
, int setpoint
, int busy
,
483 int deadband
, int integral
) {
484 pid
->setpoint
= int_tofp(setpoint
);
485 pid
->deadband
= int_tofp(deadband
);
486 pid
->integral
= int_tofp(integral
);
487 pid
->last_err
= int_tofp(setpoint
) - int_tofp(busy
);
490 static inline void pid_p_gain_set(struct _pid
*pid
, int percent
)
492 pid
->p_gain
= div_fp(percent
, 100);
495 static inline void pid_i_gain_set(struct _pid
*pid
, int percent
)
497 pid
->i_gain
= div_fp(percent
, 100);
500 static inline void pid_d_gain_set(struct _pid
*pid
, int percent
)
502 pid
->d_gain
= div_fp(percent
, 100);
505 static signed int pid_calc(struct _pid
*pid
, int32_t busy
)
508 int32_t pterm
, dterm
, fp_error
;
509 int32_t integral_limit
;
511 fp_error
= pid
->setpoint
- busy
;
513 if (abs(fp_error
) <= pid
->deadband
)
516 pterm
= mul_fp(pid
->p_gain
, fp_error
);
518 pid
->integral
+= fp_error
;
521 * We limit the integral here so that it will never
522 * get higher than 30. This prevents it from becoming
523 * too large an input over long periods of time and allows
524 * it to get factored out sooner.
526 * The value of 30 was chosen through experimentation.
528 integral_limit
= int_tofp(30);
529 if (pid
->integral
> integral_limit
)
530 pid
->integral
= integral_limit
;
531 if (pid
->integral
< -integral_limit
)
532 pid
->integral
= -integral_limit
;
534 dterm
= mul_fp(pid
->d_gain
, fp_error
- pid
->last_err
);
535 pid
->last_err
= fp_error
;
537 result
= pterm
+ mul_fp(pid
->integral
, pid
->i_gain
) + dterm
;
538 result
= result
+ (1 << (FRAC_BITS
-1));
539 return (signed int)fp_toint(result
);
542 static inline void intel_pstate_busy_pid_reset(struct cpudata
*cpu
)
544 pid_p_gain_set(&cpu
->pid
, pid_params
.p_gain_pct
);
545 pid_d_gain_set(&cpu
->pid
, pid_params
.d_gain_pct
);
546 pid_i_gain_set(&cpu
->pid
, pid_params
.i_gain_pct
);
548 pid_reset(&cpu
->pid
, pid_params
.setpoint
, 100, pid_params
.deadband
, 0);
551 static inline void intel_pstate_reset_all_pid(void)
555 for_each_online_cpu(cpu
) {
556 if (all_cpu_data
[cpu
])
557 intel_pstate_busy_pid_reset(all_cpu_data
[cpu
]);
561 static inline void update_turbo_state(void)
566 cpu
= all_cpu_data
[0];
567 rdmsrl(MSR_IA32_MISC_ENABLE
, misc_en
);
568 limits
->turbo_disabled
=
569 (misc_en
& MSR_IA32_MISC_ENABLE_TURBO_DISABLE
||
570 cpu
->pstate
.max_pstate
== cpu
->pstate
.turbo_pstate
);
573 static void intel_pstate_hwp_set(const struct cpumask
*cpumask
)
575 int min
, hw_min
, max
, hw_max
, cpu
, range
, adj_range
;
578 rdmsrl(MSR_HWP_CAPABILITIES
, cap
);
579 hw_min
= HWP_LOWEST_PERF(cap
);
580 hw_max
= HWP_HIGHEST_PERF(cap
);
581 range
= hw_max
- hw_min
;
583 for_each_cpu(cpu
, cpumask
) {
584 rdmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, &value
);
585 adj_range
= limits
->min_perf_pct
* range
/ 100;
586 min
= hw_min
+ adj_range
;
587 value
&= ~HWP_MIN_PERF(~0L);
588 value
|= HWP_MIN_PERF(min
);
590 adj_range
= limits
->max_perf_pct
* range
/ 100;
591 max
= hw_min
+ adj_range
;
592 if (limits
->no_turbo
) {
593 hw_max
= HWP_GUARANTEED_PERF(cap
);
598 value
&= ~HWP_MAX_PERF(~0L);
599 value
|= HWP_MAX_PERF(max
);
600 wrmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, value
);
604 static int intel_pstate_hwp_set_policy(struct cpufreq_policy
*policy
)
607 intel_pstate_hwp_set(policy
->cpus
);
612 static void intel_pstate_hwp_set_online_cpus(void)
615 intel_pstate_hwp_set(cpu_online_mask
);
619 /************************** debugfs begin ************************/
620 static int pid_param_set(void *data
, u64 val
)
623 intel_pstate_reset_all_pid();
627 static int pid_param_get(void *data
, u64
*val
)
632 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param
, pid_param_get
, pid_param_set
, "%llu\n");
639 static struct pid_param pid_files
[] = {
640 {"sample_rate_ms", &pid_params
.sample_rate_ms
},
641 {"d_gain_pct", &pid_params
.d_gain_pct
},
642 {"i_gain_pct", &pid_params
.i_gain_pct
},
643 {"deadband", &pid_params
.deadband
},
644 {"setpoint", &pid_params
.setpoint
},
645 {"p_gain_pct", &pid_params
.p_gain_pct
},
649 static void __init
intel_pstate_debug_expose_params(void)
651 struct dentry
*debugfs_parent
;
656 debugfs_parent
= debugfs_create_dir("pstate_snb", NULL
);
657 if (IS_ERR_OR_NULL(debugfs_parent
))
659 while (pid_files
[i
].name
) {
660 debugfs_create_file(pid_files
[i
].name
, 0660,
661 debugfs_parent
, pid_files
[i
].value
,
667 /************************** debugfs end ************************/
669 /************************** sysfs begin ************************/
670 #define show_one(file_name, object) \
671 static ssize_t show_##file_name \
672 (struct kobject *kobj, struct attribute *attr, char *buf) \
674 return sprintf(buf, "%u\n", limits->object); \
677 static ssize_t
show_turbo_pct(struct kobject
*kobj
,
678 struct attribute
*attr
, char *buf
)
681 int total
, no_turbo
, turbo_pct
;
684 cpu
= all_cpu_data
[0];
686 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
687 no_turbo
= cpu
->pstate
.max_pstate
- cpu
->pstate
.min_pstate
+ 1;
688 turbo_fp
= div_fp(no_turbo
, total
);
689 turbo_pct
= 100 - fp_toint(mul_fp(turbo_fp
, int_tofp(100)));
690 return sprintf(buf
, "%u\n", turbo_pct
);
693 static ssize_t
show_num_pstates(struct kobject
*kobj
,
694 struct attribute
*attr
, char *buf
)
699 cpu
= all_cpu_data
[0];
700 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
701 return sprintf(buf
, "%u\n", total
);
704 static ssize_t
show_no_turbo(struct kobject
*kobj
,
705 struct attribute
*attr
, char *buf
)
709 update_turbo_state();
710 if (limits
->turbo_disabled
)
711 ret
= sprintf(buf
, "%u\n", limits
->turbo_disabled
);
713 ret
= sprintf(buf
, "%u\n", limits
->no_turbo
);
718 static ssize_t
store_no_turbo(struct kobject
*a
, struct attribute
*b
,
719 const char *buf
, size_t count
)
724 ret
= sscanf(buf
, "%u", &input
);
728 update_turbo_state();
729 if (limits
->turbo_disabled
) {
730 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
734 limits
->no_turbo
= clamp_t(int, input
, 0, 1);
737 intel_pstate_hwp_set_online_cpus();
742 static ssize_t
store_max_perf_pct(struct kobject
*a
, struct attribute
*b
,
743 const char *buf
, size_t count
)
748 ret
= sscanf(buf
, "%u", &input
);
752 limits
->max_sysfs_pct
= clamp_t(int, input
, 0 , 100);
753 limits
->max_perf_pct
= min(limits
->max_policy_pct
,
754 limits
->max_sysfs_pct
);
755 limits
->max_perf_pct
= max(limits
->min_policy_pct
,
756 limits
->max_perf_pct
);
757 limits
->max_perf_pct
= max(limits
->min_perf_pct
,
758 limits
->max_perf_pct
);
759 limits
->max_perf
= div_fp(limits
->max_perf_pct
, 100);
762 intel_pstate_hwp_set_online_cpus();
766 static ssize_t
store_min_perf_pct(struct kobject
*a
, struct attribute
*b
,
767 const char *buf
, size_t count
)
772 ret
= sscanf(buf
, "%u", &input
);
776 limits
->min_sysfs_pct
= clamp_t(int, input
, 0 , 100);
777 limits
->min_perf_pct
= max(limits
->min_policy_pct
,
778 limits
->min_sysfs_pct
);
779 limits
->min_perf_pct
= min(limits
->max_policy_pct
,
780 limits
->min_perf_pct
);
781 limits
->min_perf_pct
= min(limits
->max_perf_pct
,
782 limits
->min_perf_pct
);
783 limits
->min_perf
= div_fp(limits
->min_perf_pct
, 100);
786 intel_pstate_hwp_set_online_cpus();
790 show_one(max_perf_pct
, max_perf_pct
);
791 show_one(min_perf_pct
, min_perf_pct
);
793 define_one_global_rw(no_turbo
);
794 define_one_global_rw(max_perf_pct
);
795 define_one_global_rw(min_perf_pct
);
796 define_one_global_ro(turbo_pct
);
797 define_one_global_ro(num_pstates
);
799 static struct attribute
*intel_pstate_attributes
[] = {
808 static struct attribute_group intel_pstate_attr_group
= {
809 .attrs
= intel_pstate_attributes
,
812 static void __init
intel_pstate_sysfs_expose_params(void)
814 struct kobject
*intel_pstate_kobject
;
817 intel_pstate_kobject
= kobject_create_and_add("intel_pstate",
818 &cpu_subsys
.dev_root
->kobj
);
819 BUG_ON(!intel_pstate_kobject
);
820 rc
= sysfs_create_group(intel_pstate_kobject
, &intel_pstate_attr_group
);
823 /************************** sysfs end ************************/
825 static void intel_pstate_hwp_enable(struct cpudata
*cpudata
)
827 /* First disable HWP notification interrupt as we don't process them */
828 wrmsrl_on_cpu(cpudata
->cpu
, MSR_HWP_INTERRUPT
, 0x00);
830 wrmsrl_on_cpu(cpudata
->cpu
, MSR_PM_ENABLE
, 0x1);
833 static int atom_get_min_pstate(void)
837 rdmsrl(ATOM_RATIOS
, value
);
838 return (value
>> 8) & 0x7F;
841 static int atom_get_max_pstate(void)
845 rdmsrl(ATOM_RATIOS
, value
);
846 return (value
>> 16) & 0x7F;
849 static int atom_get_turbo_pstate(void)
853 rdmsrl(ATOM_TURBO_RATIOS
, value
);
857 static u64
atom_get_val(struct cpudata
*cpudata
, int pstate
)
863 val
= (u64
)pstate
<< 8;
864 if (limits
->no_turbo
&& !limits
->turbo_disabled
)
867 vid_fp
= cpudata
->vid
.min
+ mul_fp(
868 int_tofp(pstate
- cpudata
->pstate
.min_pstate
),
871 vid_fp
= clamp_t(int32_t, vid_fp
, cpudata
->vid
.min
, cpudata
->vid
.max
);
872 vid
= ceiling_fp(vid_fp
);
874 if (pstate
> cpudata
->pstate
.max_pstate
)
875 vid
= cpudata
->vid
.turbo
;
880 static int silvermont_get_scaling(void)
884 /* Defined in Table 35-6 from SDM (Sept 2015) */
885 static int silvermont_freq_table
[] = {
886 83300, 100000, 133300, 116700, 80000};
888 rdmsrl(MSR_FSB_FREQ
, value
);
892 return silvermont_freq_table
[i
];
895 static int airmont_get_scaling(void)
899 /* Defined in Table 35-10 from SDM (Sept 2015) */
900 static int airmont_freq_table
[] = {
901 83300, 100000, 133300, 116700, 80000,
902 93300, 90000, 88900, 87500};
904 rdmsrl(MSR_FSB_FREQ
, value
);
908 return airmont_freq_table
[i
];
911 static void atom_get_vid(struct cpudata
*cpudata
)
915 rdmsrl(ATOM_VIDS
, value
);
916 cpudata
->vid
.min
= int_tofp((value
>> 8) & 0x7f);
917 cpudata
->vid
.max
= int_tofp((value
>> 16) & 0x7f);
918 cpudata
->vid
.ratio
= div_fp(
919 cpudata
->vid
.max
- cpudata
->vid
.min
,
920 int_tofp(cpudata
->pstate
.max_pstate
-
921 cpudata
->pstate
.min_pstate
));
923 rdmsrl(ATOM_TURBO_VIDS
, value
);
924 cpudata
->vid
.turbo
= value
& 0x7f;
927 static int core_get_min_pstate(void)
931 rdmsrl(MSR_PLATFORM_INFO
, value
);
932 return (value
>> 40) & 0xFF;
935 static int core_get_max_pstate_physical(void)
939 rdmsrl(MSR_PLATFORM_INFO
, value
);
940 return (value
>> 8) & 0xFF;
943 static int core_get_max_pstate(void)
950 rdmsrl(MSR_PLATFORM_INFO
, plat_info
);
951 max_pstate
= (plat_info
>> 8) & 0xFF;
953 err
= rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO
, &tar
);
955 /* Do some sanity checking for safety */
956 if (plat_info
& 0x600000000) {
961 err
= rdmsrl_safe(MSR_CONFIG_TDP_CONTROL
, &tdp_ctrl
);
965 tdp_msr
= MSR_CONFIG_TDP_NOMINAL
+ tdp_ctrl
;
966 err
= rdmsrl_safe(tdp_msr
, &tdp_ratio
);
970 /* For level 1 and 2, bits[23:16] contain the ratio */
974 tdp_ratio
&= 0xff; /* ratios are only 8 bits long */
975 if (tdp_ratio
- 1 == tar
) {
977 pr_debug("max_pstate=TAC %x\n", max_pstate
);
988 static int core_get_turbo_pstate(void)
993 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT
, value
);
994 nont
= core_get_max_pstate();
1001 static inline int core_get_scaling(void)
1006 static u64
core_get_val(struct cpudata
*cpudata
, int pstate
)
1010 val
= (u64
)pstate
<< 8;
1011 if (limits
->no_turbo
&& !limits
->turbo_disabled
)
1012 val
|= (u64
)1 << 32;
1017 static int knl_get_turbo_pstate(void)
1022 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT
, value
);
1023 nont
= core_get_max_pstate();
1024 ret
= (((value
) >> 8) & 0xFF);
1030 static struct cpu_defaults core_params
= {
1032 .sample_rate_ms
= 10,
1040 .get_max
= core_get_max_pstate
,
1041 .get_max_physical
= core_get_max_pstate_physical
,
1042 .get_min
= core_get_min_pstate
,
1043 .get_turbo
= core_get_turbo_pstate
,
1044 .get_scaling
= core_get_scaling
,
1045 .get_val
= core_get_val
,
1046 .get_target_pstate
= get_target_pstate_use_performance
,
1050 static struct cpu_defaults silvermont_params
= {
1052 .sample_rate_ms
= 10,
1060 .get_max
= atom_get_max_pstate
,
1061 .get_max_physical
= atom_get_max_pstate
,
1062 .get_min
= atom_get_min_pstate
,
1063 .get_turbo
= atom_get_turbo_pstate
,
1064 .get_val
= atom_get_val
,
1065 .get_scaling
= silvermont_get_scaling
,
1066 .get_vid
= atom_get_vid
,
1067 .get_target_pstate
= get_target_pstate_use_cpu_load
,
1071 static struct cpu_defaults airmont_params
= {
1073 .sample_rate_ms
= 10,
1081 .get_max
= atom_get_max_pstate
,
1082 .get_max_physical
= atom_get_max_pstate
,
1083 .get_min
= atom_get_min_pstate
,
1084 .get_turbo
= atom_get_turbo_pstate
,
1085 .get_val
= atom_get_val
,
1086 .get_scaling
= airmont_get_scaling
,
1087 .get_vid
= atom_get_vid
,
1088 .get_target_pstate
= get_target_pstate_use_cpu_load
,
1092 static struct cpu_defaults knl_params
= {
1094 .sample_rate_ms
= 10,
1102 .get_max
= core_get_max_pstate
,
1103 .get_max_physical
= core_get_max_pstate_physical
,
1104 .get_min
= core_get_min_pstate
,
1105 .get_turbo
= knl_get_turbo_pstate
,
1106 .get_scaling
= core_get_scaling
,
1107 .get_val
= core_get_val
,
1108 .get_target_pstate
= get_target_pstate_use_performance
,
1112 static void intel_pstate_get_min_max(struct cpudata
*cpu
, int *min
, int *max
)
1114 int max_perf
= cpu
->pstate
.turbo_pstate
;
1118 if (limits
->no_turbo
|| limits
->turbo_disabled
)
1119 max_perf
= cpu
->pstate
.max_pstate
;
1122 * performance can be limited by user through sysfs, by cpufreq
1123 * policy, or by cpu specific default values determined through
1126 max_perf_adj
= fp_toint(max_perf
* limits
->max_perf
);
1127 *max
= clamp_t(int, max_perf_adj
,
1128 cpu
->pstate
.min_pstate
, cpu
->pstate
.turbo_pstate
);
1130 min_perf
= fp_toint(max_perf
* limits
->min_perf
);
1131 *min
= clamp_t(int, min_perf
, cpu
->pstate
.min_pstate
, max_perf
);
1134 static inline void intel_pstate_record_pstate(struct cpudata
*cpu
, int pstate
)
1136 trace_cpu_frequency(pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
1137 cpu
->pstate
.current_pstate
= pstate
;
1140 static void intel_pstate_set_min_pstate(struct cpudata
*cpu
)
1142 int pstate
= cpu
->pstate
.min_pstate
;
1144 intel_pstate_record_pstate(cpu
, pstate
);
1146 * Generally, there is no guarantee that this code will always run on
1147 * the CPU being updated, so force the register update to run on the
1150 wrmsrl_on_cpu(cpu
->cpu
, MSR_IA32_PERF_CTL
,
1151 pstate_funcs
.get_val(cpu
, pstate
));
1154 static void intel_pstate_get_cpu_pstates(struct cpudata
*cpu
)
1156 cpu
->pstate
.min_pstate
= pstate_funcs
.get_min();
1157 cpu
->pstate
.max_pstate
= pstate_funcs
.get_max();
1158 cpu
->pstate
.max_pstate_physical
= pstate_funcs
.get_max_physical();
1159 cpu
->pstate
.turbo_pstate
= pstate_funcs
.get_turbo();
1160 cpu
->pstate
.scaling
= pstate_funcs
.get_scaling();
1162 if (pstate_funcs
.get_vid
)
1163 pstate_funcs
.get_vid(cpu
);
1165 intel_pstate_set_min_pstate(cpu
);
1168 static inline void intel_pstate_calc_avg_perf(struct cpudata
*cpu
)
1170 struct sample
*sample
= &cpu
->sample
;
1172 sample
->core_avg_perf
= div_ext_fp(sample
->aperf
, sample
->mperf
);
1175 static inline bool intel_pstate_sample(struct cpudata
*cpu
, u64 time
)
1178 unsigned long flags
;
1181 local_irq_save(flags
);
1182 rdmsrl(MSR_IA32_APERF
, aperf
);
1183 rdmsrl(MSR_IA32_MPERF
, mperf
);
1185 if (cpu
->prev_mperf
== mperf
|| cpu
->prev_tsc
== tsc
) {
1186 local_irq_restore(flags
);
1189 local_irq_restore(flags
);
1191 cpu
->last_sample_time
= cpu
->sample
.time
;
1192 cpu
->sample
.time
= time
;
1193 cpu
->sample
.aperf
= aperf
;
1194 cpu
->sample
.mperf
= mperf
;
1195 cpu
->sample
.tsc
= tsc
;
1196 cpu
->sample
.aperf
-= cpu
->prev_aperf
;
1197 cpu
->sample
.mperf
-= cpu
->prev_mperf
;
1198 cpu
->sample
.tsc
-= cpu
->prev_tsc
;
1200 cpu
->prev_aperf
= aperf
;
1201 cpu
->prev_mperf
= mperf
;
1202 cpu
->prev_tsc
= tsc
;
1204 * First time this function is invoked in a given cycle, all of the
1205 * previous sample data fields are equal to zero or stale and they must
1206 * be populated with meaningful numbers for things to work, so assume
1207 * that sample.time will always be reset before setting the utilization
1208 * update hook and make the caller skip the sample then.
1210 return !!cpu
->last_sample_time
;
1213 static inline int32_t get_avg_frequency(struct cpudata
*cpu
)
1215 return mul_ext_fp(cpu
->sample
.core_avg_perf
,
1216 cpu
->pstate
.max_pstate_physical
* cpu
->pstate
.scaling
);
1219 static inline int32_t get_avg_pstate(struct cpudata
*cpu
)
1221 return mul_ext_fp(cpu
->pstate
.max_pstate_physical
,
1222 cpu
->sample
.core_avg_perf
);
1225 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata
*cpu
)
1227 struct sample
*sample
= &cpu
->sample
;
1228 u64 cummulative_iowait
, delta_iowait_us
;
1229 u64 delta_iowait_mperf
;
1233 cummulative_iowait
= get_cpu_iowait_time_us(cpu
->cpu
, &now
);
1236 * Convert iowait time into number of IO cycles spent at max_freq.
1237 * IO is considered as busy only for the cpu_load algorithm. For
1238 * performance this is not needed since we always try to reach the
1239 * maximum P-State, so we are already boosting the IOs.
1241 delta_iowait_us
= cummulative_iowait
- cpu
->prev_cummulative_iowait
;
1242 delta_iowait_mperf
= div64_u64(delta_iowait_us
* cpu
->pstate
.scaling
*
1243 cpu
->pstate
.max_pstate
, MSEC_PER_SEC
);
1245 mperf
= cpu
->sample
.mperf
+ delta_iowait_mperf
;
1246 cpu
->prev_cummulative_iowait
= cummulative_iowait
;
1249 * The load can be estimated as the ratio of the mperf counter
1250 * running at a constant frequency during active periods
1251 * (C0) and the time stamp counter running at the same frequency
1252 * also during C-states.
1254 cpu_load
= div64_u64(int_tofp(100) * mperf
, sample
->tsc
);
1255 cpu
->sample
.busy_scaled
= cpu_load
;
1257 return get_avg_pstate(cpu
) - pid_calc(&cpu
->pid
, cpu_load
);
1260 static inline int32_t get_target_pstate_use_performance(struct cpudata
*cpu
)
1262 int32_t perf_scaled
, max_pstate
, current_pstate
, sample_ratio
;
1266 * perf_scaled is the average performance during the last sampling
1267 * period scaled by the ratio of the maximum P-state to the P-state
1268 * requested last time (in percent). That measures the system's
1269 * response to the previous P-state selection.
1271 max_pstate
= cpu
->pstate
.max_pstate_physical
;
1272 current_pstate
= cpu
->pstate
.current_pstate
;
1273 perf_scaled
= mul_ext_fp(cpu
->sample
.core_avg_perf
,
1274 div_fp(100 * max_pstate
, current_pstate
));
1277 * Since our utilization update callback will not run unless we are
1278 * in C0, check if the actual elapsed time is significantly greater (3x)
1279 * than our sample interval. If it is, then we were idle for a long
1280 * enough period of time to adjust our performance metric.
1282 duration_ns
= cpu
->sample
.time
- cpu
->last_sample_time
;
1283 if ((s64
)duration_ns
> pid_params
.sample_rate_ns
* 3) {
1284 sample_ratio
= div_fp(pid_params
.sample_rate_ns
, duration_ns
);
1285 perf_scaled
= mul_fp(perf_scaled
, sample_ratio
);
1287 sample_ratio
= div_fp(100 * cpu
->sample
.mperf
, cpu
->sample
.tsc
);
1288 if (sample_ratio
< int_tofp(1))
1292 cpu
->sample
.busy_scaled
= perf_scaled
;
1293 return cpu
->pstate
.current_pstate
- pid_calc(&cpu
->pid
, perf_scaled
);
1296 static inline void intel_pstate_update_pstate(struct cpudata
*cpu
, int pstate
)
1298 int max_perf
, min_perf
;
1300 update_turbo_state();
1302 intel_pstate_get_min_max(cpu
, &min_perf
, &max_perf
);
1303 pstate
= clamp_t(int, pstate
, min_perf
, max_perf
);
1304 if (pstate
== cpu
->pstate
.current_pstate
)
1307 intel_pstate_record_pstate(cpu
, pstate
);
1308 wrmsrl(MSR_IA32_PERF_CTL
, pstate_funcs
.get_val(cpu
, pstate
));
1311 static inline void intel_pstate_adjust_busy_pstate(struct cpudata
*cpu
)
1313 int from
, target_pstate
;
1314 struct sample
*sample
;
1316 from
= cpu
->pstate
.current_pstate
;
1318 target_pstate
= pstate_funcs
.get_target_pstate(cpu
);
1320 intel_pstate_update_pstate(cpu
, target_pstate
);
1322 sample
= &cpu
->sample
;
1323 trace_pstate_sample(mul_ext_fp(100, sample
->core_avg_perf
),
1324 fp_toint(sample
->busy_scaled
),
1326 cpu
->pstate
.current_pstate
,
1330 get_avg_frequency(cpu
));
1333 static void intel_pstate_update_util(struct update_util_data
*data
, u64 time
,
1334 unsigned long util
, unsigned long max
)
1336 struct cpudata
*cpu
= container_of(data
, struct cpudata
, update_util
);
1337 u64 delta_ns
= time
- cpu
->sample
.time
;
1339 if ((s64
)delta_ns
>= pid_params
.sample_rate_ns
) {
1340 bool sample_taken
= intel_pstate_sample(cpu
, time
);
1343 intel_pstate_calc_avg_perf(cpu
);
1345 intel_pstate_adjust_busy_pstate(cpu
);
1350 #define ICPU(model, policy) \
1351 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1352 (unsigned long)&policy }
1354 static const struct x86_cpu_id intel_pstate_cpu_ids
[] = {
1355 ICPU(0x2a, core_params
),
1356 ICPU(0x2d, core_params
),
1357 ICPU(0x37, silvermont_params
),
1358 ICPU(0x3a, core_params
),
1359 ICPU(0x3c, core_params
),
1360 ICPU(0x3d, core_params
),
1361 ICPU(0x3e, core_params
),
1362 ICPU(0x3f, core_params
),
1363 ICPU(0x45, core_params
),
1364 ICPU(0x46, core_params
),
1365 ICPU(0x47, core_params
),
1366 ICPU(0x4c, airmont_params
),
1367 ICPU(0x4e, core_params
),
1368 ICPU(0x4f, core_params
),
1369 ICPU(0x5e, core_params
),
1370 ICPU(0x56, core_params
),
1371 ICPU(0x57, knl_params
),
1374 MODULE_DEVICE_TABLE(x86cpu
, intel_pstate_cpu_ids
);
1376 static const struct x86_cpu_id intel_pstate_cpu_oob_ids
[] = {
1377 ICPU(0x56, core_params
),
1381 static int intel_pstate_init_cpu(unsigned int cpunum
)
1383 struct cpudata
*cpu
;
1385 if (!all_cpu_data
[cpunum
])
1386 all_cpu_data
[cpunum
] = kzalloc(sizeof(struct cpudata
),
1388 if (!all_cpu_data
[cpunum
])
1391 cpu
= all_cpu_data
[cpunum
];
1396 intel_pstate_hwp_enable(cpu
);
1397 pid_params
.sample_rate_ms
= 50;
1398 pid_params
.sample_rate_ns
= 50 * NSEC_PER_MSEC
;
1401 intel_pstate_get_cpu_pstates(cpu
);
1403 intel_pstate_busy_pid_reset(cpu
);
1405 pr_debug("controlling: cpu %d\n", cpunum
);
1410 static unsigned int intel_pstate_get(unsigned int cpu_num
)
1412 struct cpudata
*cpu
= all_cpu_data
[cpu_num
];
1414 return cpu
? get_avg_frequency(cpu
) : 0;
1417 static void intel_pstate_set_update_util_hook(unsigned int cpu_num
)
1419 struct cpudata
*cpu
= all_cpu_data
[cpu_num
];
1421 /* Prevent intel_pstate_update_util() from using stale data. */
1422 cpu
->sample
.time
= 0;
1423 cpufreq_add_update_util_hook(cpu_num
, &cpu
->update_util
,
1424 intel_pstate_update_util
);
1425 cpu
->update_util_set
= true;
1428 static void intel_pstate_clear_update_util_hook(unsigned int cpu
)
1430 struct cpudata
*cpu_data
= all_cpu_data
[cpu
];
1432 if (!cpu_data
->update_util_set
)
1435 cpufreq_remove_update_util_hook(cpu
);
1436 cpu_data
->update_util_set
= false;
1437 synchronize_sched();
1440 static void intel_pstate_set_performance_limits(struct perf_limits
*limits
)
1442 limits
->no_turbo
= 0;
1443 limits
->turbo_disabled
= 0;
1444 limits
->max_perf_pct
= 100;
1445 limits
->max_perf
= int_tofp(1);
1446 limits
->min_perf_pct
= 100;
1447 limits
->min_perf
= int_tofp(1);
1448 limits
->max_policy_pct
= 100;
1449 limits
->max_sysfs_pct
= 100;
1450 limits
->min_policy_pct
= 0;
1451 limits
->min_sysfs_pct
= 0;
1454 static int intel_pstate_set_policy(struct cpufreq_policy
*policy
)
1456 struct cpudata
*cpu
;
1458 if (!policy
->cpuinfo
.max_freq
)
1461 intel_pstate_clear_update_util_hook(policy
->cpu
);
1463 cpu
= all_cpu_data
[0];
1464 if (cpu
->pstate
.max_pstate_physical
> cpu
->pstate
.max_pstate
&&
1465 policy
->max
< policy
->cpuinfo
.max_freq
&&
1466 policy
->max
> cpu
->pstate
.max_pstate
* cpu
->pstate
.scaling
) {
1467 pr_debug("policy->max > max non turbo frequency\n");
1468 policy
->max
= policy
->cpuinfo
.max_freq
;
1471 if (policy
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
1472 limits
= &performance_limits
;
1473 if (policy
->max
>= policy
->cpuinfo
.max_freq
) {
1474 pr_debug("set performance\n");
1475 intel_pstate_set_performance_limits(limits
);
1479 pr_debug("set powersave\n");
1480 limits
= &powersave_limits
;
1483 limits
->min_policy_pct
= (policy
->min
* 100) / policy
->cpuinfo
.max_freq
;
1484 limits
->min_policy_pct
= clamp_t(int, limits
->min_policy_pct
, 0 , 100);
1485 limits
->max_policy_pct
= DIV_ROUND_UP(policy
->max
* 100,
1486 policy
->cpuinfo
.max_freq
);
1487 limits
->max_policy_pct
= clamp_t(int, limits
->max_policy_pct
, 0 , 100);
1489 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1490 limits
->min_perf_pct
= max(limits
->min_policy_pct
,
1491 limits
->min_sysfs_pct
);
1492 limits
->min_perf_pct
= min(limits
->max_policy_pct
,
1493 limits
->min_perf_pct
);
1494 limits
->max_perf_pct
= min(limits
->max_policy_pct
,
1495 limits
->max_sysfs_pct
);
1496 limits
->max_perf_pct
= max(limits
->min_policy_pct
,
1497 limits
->max_perf_pct
);
1498 limits
->max_perf
= round_up(limits
->max_perf
, FRAC_BITS
);
1500 /* Make sure min_perf_pct <= max_perf_pct */
1501 limits
->min_perf_pct
= min(limits
->max_perf_pct
, limits
->min_perf_pct
);
1503 limits
->min_perf
= div_fp(limits
->min_perf_pct
, 100);
1504 limits
->max_perf
= div_fp(limits
->max_perf_pct
, 100);
1507 intel_pstate_set_update_util_hook(policy
->cpu
);
1509 intel_pstate_hwp_set_policy(policy
);
1514 static int intel_pstate_verify_policy(struct cpufreq_policy
*policy
)
1516 cpufreq_verify_within_cpu_limits(policy
);
1518 if (policy
->policy
!= CPUFREQ_POLICY_POWERSAVE
&&
1519 policy
->policy
!= CPUFREQ_POLICY_PERFORMANCE
)
1525 static void intel_pstate_stop_cpu(struct cpufreq_policy
*policy
)
1527 int cpu_num
= policy
->cpu
;
1528 struct cpudata
*cpu
= all_cpu_data
[cpu_num
];
1530 pr_debug("CPU %d exiting\n", cpu_num
);
1532 intel_pstate_clear_update_util_hook(cpu_num
);
1537 intel_pstate_set_min_pstate(cpu
);
1540 static int intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
1542 struct cpudata
*cpu
;
1545 rc
= intel_pstate_init_cpu(policy
->cpu
);
1549 cpu
= all_cpu_data
[policy
->cpu
];
1551 if (limits
->min_perf_pct
== 100 && limits
->max_perf_pct
== 100)
1552 policy
->policy
= CPUFREQ_POLICY_PERFORMANCE
;
1554 policy
->policy
= CPUFREQ_POLICY_POWERSAVE
;
1556 policy
->min
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
1557 policy
->max
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
1559 /* cpuinfo and default policy values */
1560 policy
->cpuinfo
.min_freq
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
1561 policy
->cpuinfo
.max_freq
=
1562 cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
1563 intel_pstate_init_acpi_perf_limits(policy
);
1564 policy
->cpuinfo
.transition_latency
= CPUFREQ_ETERNAL
;
1565 cpumask_set_cpu(policy
->cpu
, policy
->cpus
);
1570 static int intel_pstate_cpu_exit(struct cpufreq_policy
*policy
)
1572 intel_pstate_exit_perf_limits(policy
);
1577 static struct cpufreq_driver intel_pstate_driver
= {
1578 .flags
= CPUFREQ_CONST_LOOPS
,
1579 .verify
= intel_pstate_verify_policy
,
1580 .setpolicy
= intel_pstate_set_policy
,
1581 .resume
= intel_pstate_hwp_set_policy
,
1582 .get
= intel_pstate_get
,
1583 .init
= intel_pstate_cpu_init
,
1584 .exit
= intel_pstate_cpu_exit
,
1585 .stop_cpu
= intel_pstate_stop_cpu
,
1586 .name
= "intel_pstate",
1589 static int __initdata no_load
;
1590 static int __initdata no_hwp
;
1591 static int __initdata hwp_only
;
1592 static unsigned int force_load
;
1594 static int intel_pstate_msrs_not_valid(void)
1596 if (!pstate_funcs
.get_max() ||
1597 !pstate_funcs
.get_min() ||
1598 !pstate_funcs
.get_turbo())
1604 static void copy_pid_params(struct pstate_adjust_policy
*policy
)
1606 pid_params
.sample_rate_ms
= policy
->sample_rate_ms
;
1607 pid_params
.sample_rate_ns
= pid_params
.sample_rate_ms
* NSEC_PER_MSEC
;
1608 pid_params
.p_gain_pct
= policy
->p_gain_pct
;
1609 pid_params
.i_gain_pct
= policy
->i_gain_pct
;
1610 pid_params
.d_gain_pct
= policy
->d_gain_pct
;
1611 pid_params
.deadband
= policy
->deadband
;
1612 pid_params
.setpoint
= policy
->setpoint
;
1615 static void copy_cpu_funcs(struct pstate_funcs
*funcs
)
1617 pstate_funcs
.get_max
= funcs
->get_max
;
1618 pstate_funcs
.get_max_physical
= funcs
->get_max_physical
;
1619 pstate_funcs
.get_min
= funcs
->get_min
;
1620 pstate_funcs
.get_turbo
= funcs
->get_turbo
;
1621 pstate_funcs
.get_scaling
= funcs
->get_scaling
;
1622 pstate_funcs
.get_val
= funcs
->get_val
;
1623 pstate_funcs
.get_vid
= funcs
->get_vid
;
1624 pstate_funcs
.get_target_pstate
= funcs
->get_target_pstate
;
1630 static bool intel_pstate_no_acpi_pss(void)
1634 for_each_possible_cpu(i
) {
1636 union acpi_object
*pss
;
1637 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
1638 struct acpi_processor
*pr
= per_cpu(processors
, i
);
1643 status
= acpi_evaluate_object(pr
->handle
, "_PSS", NULL
, &buffer
);
1644 if (ACPI_FAILURE(status
))
1647 pss
= buffer
.pointer
;
1648 if (pss
&& pss
->type
== ACPI_TYPE_PACKAGE
) {
1659 static bool intel_pstate_has_acpi_ppc(void)
1663 for_each_possible_cpu(i
) {
1664 struct acpi_processor
*pr
= per_cpu(processors
, i
);
1668 if (acpi_has_method(pr
->handle
, "_PPC"))
1679 struct hw_vendor_info
{
1681 char oem_id
[ACPI_OEM_ID_SIZE
];
1682 char oem_table_id
[ACPI_OEM_TABLE_ID_SIZE
];
1686 /* Hardware vendor-specific info that has its own power management modes */
1687 static struct hw_vendor_info vendor_info
[] = {
1688 {1, "HP ", "ProLiant", PSS
},
1689 {1, "ORACLE", "X4-2 ", PPC
},
1690 {1, "ORACLE", "X4-2L ", PPC
},
1691 {1, "ORACLE", "X4-2B ", PPC
},
1692 {1, "ORACLE", "X3-2 ", PPC
},
1693 {1, "ORACLE", "X3-2L ", PPC
},
1694 {1, "ORACLE", "X3-2B ", PPC
},
1695 {1, "ORACLE", "X4470M2 ", PPC
},
1696 {1, "ORACLE", "X4270M3 ", PPC
},
1697 {1, "ORACLE", "X4270M2 ", PPC
},
1698 {1, "ORACLE", "X4170M2 ", PPC
},
1699 {1, "ORACLE", "X4170 M3", PPC
},
1700 {1, "ORACLE", "X4275 M3", PPC
},
1701 {1, "ORACLE", "X6-2 ", PPC
},
1702 {1, "ORACLE", "Sudbury ", PPC
},
1706 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1708 struct acpi_table_header hdr
;
1709 struct hw_vendor_info
*v_info
;
1710 const struct x86_cpu_id
*id
;
1713 id
= x86_match_cpu(intel_pstate_cpu_oob_ids
);
1715 rdmsrl(MSR_MISC_PWR_MGMT
, misc_pwr
);
1716 if ( misc_pwr
& (1 << 8))
1720 if (acpi_disabled
||
1721 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT
, 0, &hdr
)))
1724 for (v_info
= vendor_info
; v_info
->valid
; v_info
++) {
1725 if (!strncmp(hdr
.oem_id
, v_info
->oem_id
, ACPI_OEM_ID_SIZE
) &&
1726 !strncmp(hdr
.oem_table_id
, v_info
->oem_table_id
,
1727 ACPI_OEM_TABLE_ID_SIZE
))
1728 switch (v_info
->oem_pwr_table
) {
1730 return intel_pstate_no_acpi_pss();
1732 return intel_pstate_has_acpi_ppc() &&
1739 #else /* CONFIG_ACPI not enabled */
1740 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1741 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1742 #endif /* CONFIG_ACPI */
1744 static const struct x86_cpu_id hwp_support_ids
[] __initconst
= {
1745 { X86_VENDOR_INTEL
, 6, X86_MODEL_ANY
, X86_FEATURE_HWP
},
1749 static int __init
intel_pstate_init(void)
1752 const struct x86_cpu_id
*id
;
1753 struct cpu_defaults
*cpu_def
;
1758 if (x86_match_cpu(hwp_support_ids
) && !no_hwp
) {
1759 copy_cpu_funcs(&core_params
.funcs
);
1761 goto hwp_cpu_matched
;
1764 id
= x86_match_cpu(intel_pstate_cpu_ids
);
1768 cpu_def
= (struct cpu_defaults
*)id
->driver_data
;
1770 copy_pid_params(&cpu_def
->pid_policy
);
1771 copy_cpu_funcs(&cpu_def
->funcs
);
1773 if (intel_pstate_msrs_not_valid())
1778 * The Intel pstate driver will be ignored if the platform
1779 * firmware has its own power management modes.
1781 if (intel_pstate_platform_pwr_mgmt_exists())
1784 pr_info("Intel P-state driver initializing\n");
1786 all_cpu_data
= vzalloc(sizeof(void *) * num_possible_cpus());
1790 if (!hwp_active
&& hwp_only
)
1793 rc
= cpufreq_register_driver(&intel_pstate_driver
);
1797 intel_pstate_debug_expose_params();
1798 intel_pstate_sysfs_expose_params();
1801 pr_info("HWP enabled\n");
1806 for_each_online_cpu(cpu
) {
1807 if (all_cpu_data
[cpu
]) {
1808 intel_pstate_clear_update_util_hook(cpu
);
1809 kfree(all_cpu_data
[cpu
]);
1814 vfree(all_cpu_data
);
1817 device_initcall(intel_pstate_init
);
1819 static int __init
intel_pstate_setup(char *str
)
1824 if (!strcmp(str
, "disable"))
1826 if (!strcmp(str
, "no_hwp")) {
1827 pr_info("HWP disabled\n");
1830 if (!strcmp(str
, "force"))
1832 if (!strcmp(str
, "hwp_only"))
1836 if (!strcmp(str
, "support_acpi_ppc"))
1842 early_param("intel_pstate", intel_pstate_setup
);
1844 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1845 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1846 MODULE_LICENSE("GPL");