drm/i915: Mark the context and address space as closed
[linux/fpc-iii.git] / drivers / cpufreq / mt8173-cpufreq.c
blob643f43179df16c1a56efc2930d61f31c7d7a79db
1 /*
2 * Copyright (c) 2015 Linaro Ltd.
3 * Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include <linux/clk.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_cooling.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/slab.h>
26 #include <linux/thermal.h>
28 #define MIN_VOLT_SHIFT (100000)
29 #define MAX_VOLT_SHIFT (200000)
30 #define MAX_VOLT_LIMIT (1150000)
31 #define VOLT_TOL (10000)
34 * The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
35 * on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
36 * Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
37 * voltage inputs need to be controlled under a hardware limitation:
38 * 100mV < Vsram - Vproc < 200mV
40 * When scaling the clock frequency of a CPU clock domain, the clock source
41 * needs to be switched to another stable PLL clock temporarily until
42 * the original PLL becomes stable at target frequency.
44 struct mtk_cpu_dvfs_info {
45 struct cpumask cpus;
46 struct device *cpu_dev;
47 struct regulator *proc_reg;
48 struct regulator *sram_reg;
49 struct clk *cpu_clk;
50 struct clk *inter_clk;
51 struct thermal_cooling_device *cdev;
52 struct list_head list_head;
53 int intermediate_voltage;
54 bool need_voltage_tracking;
57 static LIST_HEAD(dvfs_info_list);
59 static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
61 struct mtk_cpu_dvfs_info *info;
63 list_for_each_entry(info, &dvfs_info_list, list_head) {
64 if (cpumask_test_cpu(cpu, &info->cpus))
65 return info;
68 return NULL;
71 static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
72 int new_vproc)
74 struct regulator *proc_reg = info->proc_reg;
75 struct regulator *sram_reg = info->sram_reg;
76 int old_vproc, old_vsram, new_vsram, vsram, vproc, ret;
78 old_vproc = regulator_get_voltage(proc_reg);
79 if (old_vproc < 0) {
80 pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
81 return old_vproc;
83 /* Vsram should not exceed the maximum allowed voltage of SoC. */
84 new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT);
86 if (old_vproc < new_vproc) {
88 * When scaling up voltages, Vsram and Vproc scale up step
89 * by step. At each step, set Vsram to (Vproc + 200mV) first,
90 * then set Vproc to (Vsram - 100mV).
91 * Keep doing it until Vsram and Vproc hit target voltages.
93 do {
94 old_vsram = regulator_get_voltage(sram_reg);
95 if (old_vsram < 0) {
96 pr_err("%s: invalid Vsram value: %d\n",
97 __func__, old_vsram);
98 return old_vsram;
100 old_vproc = regulator_get_voltage(proc_reg);
101 if (old_vproc < 0) {
102 pr_err("%s: invalid Vproc value: %d\n",
103 __func__, old_vproc);
104 return old_vproc;
107 vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT);
109 if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
110 vsram = MAX_VOLT_LIMIT;
113 * If the target Vsram hits the maximum voltage,
114 * try to set the exact voltage value first.
116 ret = regulator_set_voltage(sram_reg, vsram,
117 vsram);
118 if (ret)
119 ret = regulator_set_voltage(sram_reg,
120 vsram - VOLT_TOL,
121 vsram);
123 vproc = new_vproc;
124 } else {
125 ret = regulator_set_voltage(sram_reg, vsram,
126 vsram + VOLT_TOL);
128 vproc = vsram - MIN_VOLT_SHIFT;
130 if (ret)
131 return ret;
133 ret = regulator_set_voltage(proc_reg, vproc,
134 vproc + VOLT_TOL);
135 if (ret) {
136 regulator_set_voltage(sram_reg, old_vsram,
137 old_vsram);
138 return ret;
140 } while (vproc < new_vproc || vsram < new_vsram);
141 } else if (old_vproc > new_vproc) {
143 * When scaling down voltages, Vsram and Vproc scale down step
144 * by step. At each step, set Vproc to (Vsram - 200mV) first,
145 * then set Vproc to (Vproc + 100mV).
146 * Keep doing it until Vsram and Vproc hit target voltages.
148 do {
149 old_vproc = regulator_get_voltage(proc_reg);
150 if (old_vproc < 0) {
151 pr_err("%s: invalid Vproc value: %d\n",
152 __func__, old_vproc);
153 return old_vproc;
155 old_vsram = regulator_get_voltage(sram_reg);
156 if (old_vsram < 0) {
157 pr_err("%s: invalid Vsram value: %d\n",
158 __func__, old_vsram);
159 return old_vsram;
162 vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT);
163 ret = regulator_set_voltage(proc_reg, vproc,
164 vproc + VOLT_TOL);
165 if (ret)
166 return ret;
168 if (vproc == new_vproc)
169 vsram = new_vsram;
170 else
171 vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT);
173 if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
174 vsram = MAX_VOLT_LIMIT;
177 * If the target Vsram hits the maximum voltage,
178 * try to set the exact voltage value first.
180 ret = regulator_set_voltage(sram_reg, vsram,
181 vsram);
182 if (ret)
183 ret = regulator_set_voltage(sram_reg,
184 vsram - VOLT_TOL,
185 vsram);
186 } else {
187 ret = regulator_set_voltage(sram_reg, vsram,
188 vsram + VOLT_TOL);
191 if (ret) {
192 regulator_set_voltage(proc_reg, old_vproc,
193 old_vproc);
194 return ret;
196 } while (vproc > new_vproc + VOLT_TOL ||
197 vsram > new_vsram + VOLT_TOL);
200 return 0;
203 static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
205 if (info->need_voltage_tracking)
206 return mtk_cpufreq_voltage_tracking(info, vproc);
207 else
208 return regulator_set_voltage(info->proc_reg, vproc,
209 vproc + VOLT_TOL);
212 static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
213 unsigned int index)
215 struct cpufreq_frequency_table *freq_table = policy->freq_table;
216 struct clk *cpu_clk = policy->clk;
217 struct clk *armpll = clk_get_parent(cpu_clk);
218 struct mtk_cpu_dvfs_info *info = policy->driver_data;
219 struct device *cpu_dev = info->cpu_dev;
220 struct dev_pm_opp *opp;
221 long freq_hz, old_freq_hz;
222 int vproc, old_vproc, inter_vproc, target_vproc, ret;
224 inter_vproc = info->intermediate_voltage;
226 old_freq_hz = clk_get_rate(cpu_clk);
227 old_vproc = regulator_get_voltage(info->proc_reg);
228 if (old_vproc < 0) {
229 pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
230 return old_vproc;
233 freq_hz = freq_table[index].frequency * 1000;
235 rcu_read_lock();
236 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
237 if (IS_ERR(opp)) {
238 rcu_read_unlock();
239 pr_err("cpu%d: failed to find OPP for %ld\n",
240 policy->cpu, freq_hz);
241 return PTR_ERR(opp);
243 vproc = dev_pm_opp_get_voltage(opp);
244 rcu_read_unlock();
247 * If the new voltage or the intermediate voltage is higher than the
248 * current voltage, scale up voltage first.
250 target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc;
251 if (old_vproc < target_vproc) {
252 ret = mtk_cpufreq_set_voltage(info, target_vproc);
253 if (ret) {
254 pr_err("cpu%d: failed to scale up voltage!\n",
255 policy->cpu);
256 mtk_cpufreq_set_voltage(info, old_vproc);
257 return ret;
261 /* Reparent the CPU clock to intermediate clock. */
262 ret = clk_set_parent(cpu_clk, info->inter_clk);
263 if (ret) {
264 pr_err("cpu%d: failed to re-parent cpu clock!\n",
265 policy->cpu);
266 mtk_cpufreq_set_voltage(info, old_vproc);
267 WARN_ON(1);
268 return ret;
271 /* Set the original PLL to target rate. */
272 ret = clk_set_rate(armpll, freq_hz);
273 if (ret) {
274 pr_err("cpu%d: failed to scale cpu clock rate!\n",
275 policy->cpu);
276 clk_set_parent(cpu_clk, armpll);
277 mtk_cpufreq_set_voltage(info, old_vproc);
278 return ret;
281 /* Set parent of CPU clock back to the original PLL. */
282 ret = clk_set_parent(cpu_clk, armpll);
283 if (ret) {
284 pr_err("cpu%d: failed to re-parent cpu clock!\n",
285 policy->cpu);
286 mtk_cpufreq_set_voltage(info, inter_vproc);
287 WARN_ON(1);
288 return ret;
292 * If the new voltage is lower than the intermediate voltage or the
293 * original voltage, scale down to the new voltage.
295 if (vproc < inter_vproc || vproc < old_vproc) {
296 ret = mtk_cpufreq_set_voltage(info, vproc);
297 if (ret) {
298 pr_err("cpu%d: failed to scale down voltage!\n",
299 policy->cpu);
300 clk_set_parent(cpu_clk, info->inter_clk);
301 clk_set_rate(armpll, old_freq_hz);
302 clk_set_parent(cpu_clk, armpll);
303 return ret;
307 return 0;
310 #define DYNAMIC_POWER "dynamic-power-coefficient"
312 static void mtk_cpufreq_ready(struct cpufreq_policy *policy)
314 struct mtk_cpu_dvfs_info *info = policy->driver_data;
315 struct device_node *np = of_node_get(info->cpu_dev->of_node);
316 u32 capacitance = 0;
318 if (WARN_ON(!np))
319 return;
321 if (of_find_property(np, "#cooling-cells", NULL)) {
322 of_property_read_u32(np, DYNAMIC_POWER, &capacitance);
324 info->cdev = of_cpufreq_power_cooling_register(np,
325 policy->related_cpus,
326 capacitance,
327 NULL);
329 if (IS_ERR(info->cdev)) {
330 dev_err(info->cpu_dev,
331 "running cpufreq without cooling device: %ld\n",
332 PTR_ERR(info->cdev));
334 info->cdev = NULL;
338 of_node_put(np);
341 static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
343 struct device *cpu_dev;
344 struct regulator *proc_reg = ERR_PTR(-ENODEV);
345 struct regulator *sram_reg = ERR_PTR(-ENODEV);
346 struct clk *cpu_clk = ERR_PTR(-ENODEV);
347 struct clk *inter_clk = ERR_PTR(-ENODEV);
348 struct dev_pm_opp *opp;
349 unsigned long rate;
350 int ret;
352 cpu_dev = get_cpu_device(cpu);
353 if (!cpu_dev) {
354 pr_err("failed to get cpu%d device\n", cpu);
355 return -ENODEV;
358 cpu_clk = clk_get(cpu_dev, "cpu");
359 if (IS_ERR(cpu_clk)) {
360 if (PTR_ERR(cpu_clk) == -EPROBE_DEFER)
361 pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu);
362 else
363 pr_err("failed to get cpu clk for cpu%d\n", cpu);
365 ret = PTR_ERR(cpu_clk);
366 return ret;
369 inter_clk = clk_get(cpu_dev, "intermediate");
370 if (IS_ERR(inter_clk)) {
371 if (PTR_ERR(inter_clk) == -EPROBE_DEFER)
372 pr_warn("intermediate clk for cpu%d not ready, retry.\n",
373 cpu);
374 else
375 pr_err("failed to get intermediate clk for cpu%d\n",
376 cpu);
378 ret = PTR_ERR(inter_clk);
379 goto out_free_resources;
382 proc_reg = regulator_get_exclusive(cpu_dev, "proc");
383 if (IS_ERR(proc_reg)) {
384 if (PTR_ERR(proc_reg) == -EPROBE_DEFER)
385 pr_warn("proc regulator for cpu%d not ready, retry.\n",
386 cpu);
387 else
388 pr_err("failed to get proc regulator for cpu%d\n",
389 cpu);
391 ret = PTR_ERR(proc_reg);
392 goto out_free_resources;
395 /* Both presence and absence of sram regulator are valid cases. */
396 sram_reg = regulator_get_exclusive(cpu_dev, "sram");
398 /* Get OPP-sharing information from "operating-points-v2" bindings */
399 ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus);
400 if (ret) {
401 pr_err("failed to get OPP-sharing information for cpu%d\n",
402 cpu);
403 goto out_free_resources;
406 ret = dev_pm_opp_of_cpumask_add_table(&info->cpus);
407 if (ret) {
408 pr_warn("no OPP table for cpu%d\n", cpu);
409 goto out_free_resources;
412 /* Search a safe voltage for intermediate frequency. */
413 rate = clk_get_rate(inter_clk);
414 rcu_read_lock();
415 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
416 if (IS_ERR(opp)) {
417 rcu_read_unlock();
418 pr_err("failed to get intermediate opp for cpu%d\n", cpu);
419 ret = PTR_ERR(opp);
420 goto out_free_opp_table;
422 info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
423 rcu_read_unlock();
425 info->cpu_dev = cpu_dev;
426 info->proc_reg = proc_reg;
427 info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg;
428 info->cpu_clk = cpu_clk;
429 info->inter_clk = inter_clk;
432 * If SRAM regulator is present, software "voltage tracking" is needed
433 * for this CPU power domain.
435 info->need_voltage_tracking = !IS_ERR(sram_reg);
437 return 0;
439 out_free_opp_table:
440 dev_pm_opp_of_cpumask_remove_table(&info->cpus);
442 out_free_resources:
443 if (!IS_ERR(proc_reg))
444 regulator_put(proc_reg);
445 if (!IS_ERR(sram_reg))
446 regulator_put(sram_reg);
447 if (!IS_ERR(cpu_clk))
448 clk_put(cpu_clk);
449 if (!IS_ERR(inter_clk))
450 clk_put(inter_clk);
452 return ret;
455 static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
457 if (!IS_ERR(info->proc_reg))
458 regulator_put(info->proc_reg);
459 if (!IS_ERR(info->sram_reg))
460 regulator_put(info->sram_reg);
461 if (!IS_ERR(info->cpu_clk))
462 clk_put(info->cpu_clk);
463 if (!IS_ERR(info->inter_clk))
464 clk_put(info->inter_clk);
466 dev_pm_opp_of_cpumask_remove_table(&info->cpus);
469 static int mtk_cpufreq_init(struct cpufreq_policy *policy)
471 struct mtk_cpu_dvfs_info *info;
472 struct cpufreq_frequency_table *freq_table;
473 int ret;
475 info = mtk_cpu_dvfs_info_lookup(policy->cpu);
476 if (!info) {
477 pr_err("dvfs info for cpu%d is not initialized.\n",
478 policy->cpu);
479 return -EINVAL;
482 ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
483 if (ret) {
484 pr_err("failed to init cpufreq table for cpu%d: %d\n",
485 policy->cpu, ret);
486 return ret;
489 ret = cpufreq_table_validate_and_show(policy, freq_table);
490 if (ret) {
491 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
492 goto out_free_cpufreq_table;
495 cpumask_copy(policy->cpus, &info->cpus);
496 policy->driver_data = info;
497 policy->clk = info->cpu_clk;
499 return 0;
501 out_free_cpufreq_table:
502 dev_pm_opp_free_cpufreq_table(info->cpu_dev, &freq_table);
503 return ret;
506 static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
508 struct mtk_cpu_dvfs_info *info = policy->driver_data;
510 cpufreq_cooling_unregister(info->cdev);
511 dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
513 return 0;
516 static struct cpufreq_driver mt8173_cpufreq_driver = {
517 .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
518 CPUFREQ_HAVE_GOVERNOR_PER_POLICY,
519 .verify = cpufreq_generic_frequency_table_verify,
520 .target_index = mtk_cpufreq_set_target,
521 .get = cpufreq_generic_get,
522 .init = mtk_cpufreq_init,
523 .exit = mtk_cpufreq_exit,
524 .ready = mtk_cpufreq_ready,
525 .name = "mtk-cpufreq",
526 .attr = cpufreq_generic_attr,
529 static int mt8173_cpufreq_probe(struct platform_device *pdev)
531 struct mtk_cpu_dvfs_info *info, *tmp;
532 int cpu, ret;
534 for_each_possible_cpu(cpu) {
535 info = mtk_cpu_dvfs_info_lookup(cpu);
536 if (info)
537 continue;
539 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
540 if (!info) {
541 ret = -ENOMEM;
542 goto release_dvfs_info_list;
545 ret = mtk_cpu_dvfs_info_init(info, cpu);
546 if (ret) {
547 dev_err(&pdev->dev,
548 "failed to initialize dvfs info for cpu%d\n",
549 cpu);
550 goto release_dvfs_info_list;
553 list_add(&info->list_head, &dvfs_info_list);
556 ret = cpufreq_register_driver(&mt8173_cpufreq_driver);
557 if (ret) {
558 dev_err(&pdev->dev, "failed to register mtk cpufreq driver\n");
559 goto release_dvfs_info_list;
562 return 0;
564 release_dvfs_info_list:
565 list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) {
566 mtk_cpu_dvfs_info_release(info);
567 list_del(&info->list_head);
570 return ret;
573 static struct platform_driver mt8173_cpufreq_platdrv = {
574 .driver = {
575 .name = "mt8173-cpufreq",
577 .probe = mt8173_cpufreq_probe,
580 static int mt8173_cpufreq_driver_init(void)
582 struct platform_device *pdev;
583 int err;
585 if (!of_machine_is_compatible("mediatek,mt8173"))
586 return -ENODEV;
588 err = platform_driver_register(&mt8173_cpufreq_platdrv);
589 if (err)
590 return err;
593 * Since there's no place to hold device registration code and no
594 * device tree based way to match cpufreq driver yet, both the driver
595 * and the device registration codes are put here to handle defer
596 * probing.
598 pdev = platform_device_register_simple("mt8173-cpufreq", -1, NULL, 0);
599 if (IS_ERR(pdev)) {
600 pr_err("failed to register mtk-cpufreq platform device\n");
601 return PTR_ERR(pdev);
604 return 0;
606 device_initcall(mt8173_cpufreq_driver_init);