drm/i915: Mark the context and address space as closed
[linux/fpc-iii.git] / drivers / cpufreq / qoriq-cpufreq.c
blob53d8c3fb16f67bfc5a4cba5065c32a5503be4328
1 /*
2 * Copyright 2013 Freescale Semiconductor, Inc.
4 * CPU Frequency Scaling driver for Freescale QorIQ SoCs.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/clk.h>
14 #include <linux/cpufreq.h>
15 #include <linux/cpu_cooling.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/of.h>
22 #include <linux/slab.h>
23 #include <linux/smp.h>
25 #if !defined(CONFIG_ARM)
26 #include <asm/smp.h> /* for get_hard_smp_processor_id() in UP configs */
27 #endif
29 /**
30 * struct cpu_data
31 * @pclk: the parent clock of cpu
32 * @table: frequency table
34 struct cpu_data {
35 struct clk **pclk;
36 struct cpufreq_frequency_table *table;
37 struct thermal_cooling_device *cdev;
40 /**
41 * struct soc_data - SoC specific data
42 * @freq_mask: mask the disallowed frequencies
43 * @flag: unique flags
45 struct soc_data {
46 u32 freq_mask[4];
47 u32 flag;
50 #define FREQ_MASK 1
51 /* see hardware specification for the allowed frqeuencies */
52 static const struct soc_data sdata[] = {
53 { /* used by p2041 and p3041 */
54 .freq_mask = {0x8, 0x8, 0x2, 0x2},
55 .flag = FREQ_MASK,
57 { /* used by p5020 */
58 .freq_mask = {0x8, 0x2},
59 .flag = FREQ_MASK,
61 { /* used by p4080, p5040 */
62 .freq_mask = {0},
63 .flag = 0,
68 * the minimum allowed core frequency, in Hz
69 * for chassis v1.0, >= platform frequency
70 * for chassis v2.0, >= platform frequency / 2
72 static u32 min_cpufreq;
73 static const u32 *fmask;
75 #if defined(CONFIG_ARM)
76 static int get_cpu_physical_id(int cpu)
78 return topology_core_id(cpu);
80 #else
81 static int get_cpu_physical_id(int cpu)
83 return get_hard_smp_processor_id(cpu);
85 #endif
87 static u32 get_bus_freq(void)
89 struct device_node *soc;
90 u32 sysfreq;
92 soc = of_find_node_by_type(NULL, "soc");
93 if (!soc)
94 return 0;
96 if (of_property_read_u32(soc, "bus-frequency", &sysfreq))
97 sysfreq = 0;
99 of_node_put(soc);
101 return sysfreq;
104 static struct device_node *cpu_to_clk_node(int cpu)
106 struct device_node *np, *clk_np;
108 if (!cpu_present(cpu))
109 return NULL;
111 np = of_get_cpu_node(cpu, NULL);
112 if (!np)
113 return NULL;
115 clk_np = of_parse_phandle(np, "clocks", 0);
116 if (!clk_np)
117 return NULL;
119 of_node_put(np);
121 return clk_np;
124 /* traverse cpu nodes to get cpu mask of sharing clock wire */
125 static void set_affected_cpus(struct cpufreq_policy *policy)
127 struct device_node *np, *clk_np;
128 struct cpumask *dstp = policy->cpus;
129 int i;
131 np = cpu_to_clk_node(policy->cpu);
132 if (!np)
133 return;
135 for_each_present_cpu(i) {
136 clk_np = cpu_to_clk_node(i);
137 if (!clk_np)
138 continue;
140 if (clk_np == np)
141 cpumask_set_cpu(i, dstp);
143 of_node_put(clk_np);
145 of_node_put(np);
148 /* reduce the duplicated frequencies in frequency table */
149 static void freq_table_redup(struct cpufreq_frequency_table *freq_table,
150 int count)
152 int i, j;
154 for (i = 1; i < count; i++) {
155 for (j = 0; j < i; j++) {
156 if (freq_table[j].frequency == CPUFREQ_ENTRY_INVALID ||
157 freq_table[j].frequency !=
158 freq_table[i].frequency)
159 continue;
161 freq_table[i].frequency = CPUFREQ_ENTRY_INVALID;
162 break;
167 /* sort the frequencies in frequency table in descenting order */
168 static void freq_table_sort(struct cpufreq_frequency_table *freq_table,
169 int count)
171 int i, j, ind;
172 unsigned int freq, max_freq;
173 struct cpufreq_frequency_table table;
175 for (i = 0; i < count - 1; i++) {
176 max_freq = freq_table[i].frequency;
177 ind = i;
178 for (j = i + 1; j < count; j++) {
179 freq = freq_table[j].frequency;
180 if (freq == CPUFREQ_ENTRY_INVALID ||
181 freq <= max_freq)
182 continue;
183 ind = j;
184 max_freq = freq;
187 if (ind != i) {
188 /* exchange the frequencies */
189 table.driver_data = freq_table[i].driver_data;
190 table.frequency = freq_table[i].frequency;
191 freq_table[i].driver_data = freq_table[ind].driver_data;
192 freq_table[i].frequency = freq_table[ind].frequency;
193 freq_table[ind].driver_data = table.driver_data;
194 freq_table[ind].frequency = table.frequency;
199 static int qoriq_cpufreq_cpu_init(struct cpufreq_policy *policy)
201 struct device_node *np, *pnode;
202 int i, count, ret;
203 u32 freq, mask;
204 struct clk *clk;
205 struct cpufreq_frequency_table *table;
206 struct cpu_data *data;
207 unsigned int cpu = policy->cpu;
208 u64 u64temp;
210 np = of_get_cpu_node(cpu, NULL);
211 if (!np)
212 return -ENODEV;
214 data = kzalloc(sizeof(*data), GFP_KERNEL);
215 if (!data)
216 goto err_np;
218 policy->clk = of_clk_get(np, 0);
219 if (IS_ERR(policy->clk)) {
220 pr_err("%s: no clock information\n", __func__);
221 goto err_nomem2;
224 pnode = of_parse_phandle(np, "clocks", 0);
225 if (!pnode) {
226 pr_err("%s: could not get clock information\n", __func__);
227 goto err_nomem2;
230 count = of_property_count_strings(pnode, "clock-names");
231 data->pclk = kcalloc(count, sizeof(struct clk *), GFP_KERNEL);
232 if (!data->pclk) {
233 pr_err("%s: no memory\n", __func__);
234 goto err_node;
237 table = kcalloc(count + 1, sizeof(*table), GFP_KERNEL);
238 if (!table) {
239 pr_err("%s: no memory\n", __func__);
240 goto err_pclk;
243 if (fmask)
244 mask = fmask[get_cpu_physical_id(cpu)];
245 else
246 mask = 0x0;
248 for (i = 0; i < count; i++) {
249 clk = of_clk_get(pnode, i);
250 data->pclk[i] = clk;
251 freq = clk_get_rate(clk);
253 * the clock is valid if its frequency is not masked
254 * and large than minimum allowed frequency.
256 if (freq < min_cpufreq || (mask & (1 << i)))
257 table[i].frequency = CPUFREQ_ENTRY_INVALID;
258 else
259 table[i].frequency = freq / 1000;
260 table[i].driver_data = i;
262 freq_table_redup(table, count);
263 freq_table_sort(table, count);
264 table[i].frequency = CPUFREQ_TABLE_END;
266 /* set the min and max frequency properly */
267 ret = cpufreq_table_validate_and_show(policy, table);
268 if (ret) {
269 pr_err("invalid frequency table: %d\n", ret);
270 goto err_nomem1;
273 data->table = table;
275 /* update ->cpus if we have cluster, no harm if not */
276 set_affected_cpus(policy);
277 policy->driver_data = data;
279 /* Minimum transition latency is 12 platform clocks */
280 u64temp = 12ULL * NSEC_PER_SEC;
281 do_div(u64temp, get_bus_freq());
282 policy->cpuinfo.transition_latency = u64temp + 1;
284 of_node_put(np);
285 of_node_put(pnode);
287 return 0;
289 err_nomem1:
290 kfree(table);
291 err_pclk:
292 kfree(data->pclk);
293 err_node:
294 of_node_put(pnode);
295 err_nomem2:
296 policy->driver_data = NULL;
297 kfree(data);
298 err_np:
299 of_node_put(np);
301 return -ENODEV;
304 static int qoriq_cpufreq_cpu_exit(struct cpufreq_policy *policy)
306 struct cpu_data *data = policy->driver_data;
308 cpufreq_cooling_unregister(data->cdev);
309 kfree(data->pclk);
310 kfree(data->table);
311 kfree(data);
312 policy->driver_data = NULL;
314 return 0;
317 static int qoriq_cpufreq_target(struct cpufreq_policy *policy,
318 unsigned int index)
320 struct clk *parent;
321 struct cpu_data *data = policy->driver_data;
323 parent = data->pclk[data->table[index].driver_data];
324 return clk_set_parent(policy->clk, parent);
328 static void qoriq_cpufreq_ready(struct cpufreq_policy *policy)
330 struct cpu_data *cpud = policy->driver_data;
331 struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
333 if (of_find_property(np, "#cooling-cells", NULL)) {
334 cpud->cdev = of_cpufreq_cooling_register(np,
335 policy->related_cpus);
337 if (IS_ERR(cpud->cdev) && PTR_ERR(cpud->cdev) != -ENOSYS) {
338 pr_err("cpu%d is not running as cooling device: %ld\n",
339 policy->cpu, PTR_ERR(cpud->cdev));
341 cpud->cdev = NULL;
345 of_node_put(np);
348 static struct cpufreq_driver qoriq_cpufreq_driver = {
349 .name = "qoriq_cpufreq",
350 .flags = CPUFREQ_CONST_LOOPS,
351 .init = qoriq_cpufreq_cpu_init,
352 .exit = qoriq_cpufreq_cpu_exit,
353 .verify = cpufreq_generic_frequency_table_verify,
354 .target_index = qoriq_cpufreq_target,
355 .get = cpufreq_generic_get,
356 .ready = qoriq_cpufreq_ready,
357 .attr = cpufreq_generic_attr,
360 static const struct of_device_id node_matches[] __initconst = {
361 { .compatible = "fsl,p2041-clockgen", .data = &sdata[0], },
362 { .compatible = "fsl,p3041-clockgen", .data = &sdata[0], },
363 { .compatible = "fsl,p5020-clockgen", .data = &sdata[1], },
364 { .compatible = "fsl,p4080-clockgen", .data = &sdata[2], },
365 { .compatible = "fsl,p5040-clockgen", .data = &sdata[2], },
366 { .compatible = "fsl,qoriq-clockgen-2.0", },
370 static int __init qoriq_cpufreq_init(void)
372 int ret;
373 struct device_node *np;
374 const struct of_device_id *match;
375 const struct soc_data *data;
377 np = of_find_matching_node(NULL, node_matches);
378 if (!np)
379 return -ENODEV;
381 match = of_match_node(node_matches, np);
382 data = match->data;
383 if (data) {
384 if (data->flag)
385 fmask = data->freq_mask;
386 min_cpufreq = get_bus_freq();
387 } else {
388 min_cpufreq = get_bus_freq() / 2;
391 of_node_put(np);
393 ret = cpufreq_register_driver(&qoriq_cpufreq_driver);
394 if (!ret)
395 pr_info("Freescale QorIQ CPU frequency scaling driver\n");
397 return ret;
399 module_init(qoriq_cpufreq_init);
401 static void __exit qoriq_cpufreq_exit(void)
403 cpufreq_unregister_driver(&qoriq_cpufreq_driver);
405 module_exit(qoriq_cpufreq_exit);
407 MODULE_LICENSE("GPL");
408 MODULE_AUTHOR("Tang Yuantian <Yuantian.Tang@freescale.com>");
409 MODULE_DESCRIPTION("cpufreq driver for Freescale QorIQ series SoCs");