drm/i915: Mark the context and address space as closed
[linux/fpc-iii.git] / drivers / dma / amba-pl08x.c
blob81db1c4811ceef4f71e8c0c1e5adada3aec07de1
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * The full GNU General Public License is in this distribution in the file
19 * called COPYING.
21 * Documentation: ARM DDI 0196G == PL080
22 * Documentation: ARM DDI 0218E == PL081
23 * Documentation: S3C6410 User's Manual == PL080S
25 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
26 * channel.
28 * The PL080 has 8 channels available for simultaneous use, and the PL081
29 * has only two channels. So on these DMA controllers the number of channels
30 * and the number of incoming DMA signals are two totally different things.
31 * It is usually not possible to theoretically handle all physical signals,
32 * so a multiplexing scheme with possible denial of use is necessary.
34 * The PL080 has a dual bus master, PL081 has a single master.
36 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
37 * It differs in following aspects:
38 * - CH_CONFIG register at different offset,
39 * - separate CH_CONTROL2 register for transfer size,
40 * - bigger maximum transfer size,
41 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
42 * - no support for peripheral flow control.
44 * Memory to peripheral transfer may be visualized as
45 * Get data from memory to DMAC
46 * Until no data left
47 * On burst request from peripheral
48 * Destination burst from DMAC to peripheral
49 * Clear burst request
50 * Raise terminal count interrupt
52 * For peripherals with a FIFO:
53 * Source burst size == half the depth of the peripheral FIFO
54 * Destination burst size == the depth of the peripheral FIFO
56 * (Bursts are irrelevant for mem to mem transfers - there are no burst
57 * signals, the DMA controller will simply facilitate its AHB master.)
59 * ASSUMES default (little) endianness for DMA transfers
61 * The PL08x has two flow control settings:
62 * - DMAC flow control: the transfer size defines the number of transfers
63 * which occur for the current LLI entry, and the DMAC raises TC at the
64 * end of every LLI entry. Observed behaviour shows the DMAC listening
65 * to both the BREQ and SREQ signals (contrary to documented),
66 * transferring data if either is active. The LBREQ and LSREQ signals
67 * are ignored.
69 * - Peripheral flow control: the transfer size is ignored (and should be
70 * zero). The data is transferred from the current LLI entry, until
71 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
72 * will then move to the next LLI entry. Unsupported by PL080S.
74 #include <linux/amba/bus.h>
75 #include <linux/amba/pl08x.h>
76 #include <linux/debugfs.h>
77 #include <linux/delay.h>
78 #include <linux/device.h>
79 #include <linux/dmaengine.h>
80 #include <linux/dmapool.h>
81 #include <linux/dma-mapping.h>
82 #include <linux/export.h>
83 #include <linux/init.h>
84 #include <linux/interrupt.h>
85 #include <linux/module.h>
86 #include <linux/of.h>
87 #include <linux/of_dma.h>
88 #include <linux/pm_runtime.h>
89 #include <linux/seq_file.h>
90 #include <linux/slab.h>
91 #include <linux/amba/pl080.h>
93 #include "dmaengine.h"
94 #include "virt-dma.h"
96 #define DRIVER_NAME "pl08xdmac"
98 #define PL80X_DMA_BUSWIDTHS \
99 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
100 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
101 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
102 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
104 static struct amba_driver pl08x_amba_driver;
105 struct pl08x_driver_data;
108 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
109 * @channels: the number of channels available in this variant
110 * @signals: the number of request signals available from the hardware
111 * @dualmaster: whether this version supports dual AHB masters or not.
112 * @nomadik: whether the channels have Nomadik security extension bits
113 * that need to be checked for permission before use and some registers are
114 * missing
115 * @pl080s: whether this version is a PL080S, which has separate register and
116 * LLI word for transfer size.
117 * @max_transfer_size: the maximum single element transfer size for this
118 * PL08x variant.
120 struct vendor_data {
121 u8 config_offset;
122 u8 channels;
123 u8 signals;
124 bool dualmaster;
125 bool nomadik;
126 bool pl080s;
127 u32 max_transfer_size;
131 * struct pl08x_bus_data - information of source or destination
132 * busses for a transfer
133 * @addr: current address
134 * @maxwidth: the maximum width of a transfer on this bus
135 * @buswidth: the width of this bus in bytes: 1, 2 or 4
137 struct pl08x_bus_data {
138 dma_addr_t addr;
139 u8 maxwidth;
140 u8 buswidth;
143 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
146 * struct pl08x_phy_chan - holder for the physical channels
147 * @id: physical index to this channel
148 * @lock: a lock to use when altering an instance of this struct
149 * @serving: the virtual channel currently being served by this physical
150 * channel
151 * @locked: channel unavailable for the system, e.g. dedicated to secure
152 * world
154 struct pl08x_phy_chan {
155 unsigned int id;
156 void __iomem *base;
157 void __iomem *reg_config;
158 spinlock_t lock;
159 struct pl08x_dma_chan *serving;
160 bool locked;
164 * struct pl08x_sg - structure containing data per sg
165 * @src_addr: src address of sg
166 * @dst_addr: dst address of sg
167 * @len: transfer len in bytes
168 * @node: node for txd's dsg_list
170 struct pl08x_sg {
171 dma_addr_t src_addr;
172 dma_addr_t dst_addr;
173 size_t len;
174 struct list_head node;
178 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
179 * @vd: virtual DMA descriptor
180 * @dsg_list: list of children sg's
181 * @llis_bus: DMA memory address (physical) start for the LLIs
182 * @llis_va: virtual memory address start for the LLIs
183 * @cctl: control reg values for current txd
184 * @ccfg: config reg values for current txd
185 * @done: this marks completed descriptors, which should not have their
186 * mux released.
187 * @cyclic: indicate cyclic transfers
189 struct pl08x_txd {
190 struct virt_dma_desc vd;
191 struct list_head dsg_list;
192 dma_addr_t llis_bus;
193 u32 *llis_va;
194 /* Default cctl value for LLIs */
195 u32 cctl;
197 * Settings to be put into the physical channel when we
198 * trigger this txd. Other registers are in llis_va[0].
200 u32 ccfg;
201 bool done;
202 bool cyclic;
206 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
207 * states
208 * @PL08X_CHAN_IDLE: the channel is idle
209 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
210 * channel and is running a transfer on it
211 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
212 * channel, but the transfer is currently paused
213 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
214 * channel to become available (only pertains to memcpy channels)
216 enum pl08x_dma_chan_state {
217 PL08X_CHAN_IDLE,
218 PL08X_CHAN_RUNNING,
219 PL08X_CHAN_PAUSED,
220 PL08X_CHAN_WAITING,
224 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
225 * @vc: wrappped virtual channel
226 * @phychan: the physical channel utilized by this channel, if there is one
227 * @name: name of channel
228 * @cd: channel platform data
229 * @runtime_addr: address for RX/TX according to the runtime config
230 * @at: active transaction on this channel
231 * @lock: a lock for this channel data
232 * @host: a pointer to the host (internal use)
233 * @state: whether the channel is idle, paused, running etc
234 * @slave: whether this channel is a device (slave) or for memcpy
235 * @signal: the physical DMA request signal which this channel is using
236 * @mux_use: count of descriptors using this DMA request signal setting
238 struct pl08x_dma_chan {
239 struct virt_dma_chan vc;
240 struct pl08x_phy_chan *phychan;
241 const char *name;
242 struct pl08x_channel_data *cd;
243 struct dma_slave_config cfg;
244 struct pl08x_txd *at;
245 struct pl08x_driver_data *host;
246 enum pl08x_dma_chan_state state;
247 bool slave;
248 int signal;
249 unsigned mux_use;
253 * struct pl08x_driver_data - the local state holder for the PL08x
254 * @slave: slave engine for this instance
255 * @memcpy: memcpy engine for this instance
256 * @base: virtual memory base (remapped) for the PL08x
257 * @adev: the corresponding AMBA (PrimeCell) bus entry
258 * @vd: vendor data for this PL08x variant
259 * @pd: platform data passed in from the platform/machine
260 * @phy_chans: array of data for the physical channels
261 * @pool: a pool for the LLI descriptors
262 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
263 * fetches
264 * @mem_buses: set to indicate memory transfers on AHB2.
265 * @lock: a spinlock for this struct
267 struct pl08x_driver_data {
268 struct dma_device slave;
269 struct dma_device memcpy;
270 void __iomem *base;
271 struct amba_device *adev;
272 const struct vendor_data *vd;
273 struct pl08x_platform_data *pd;
274 struct pl08x_phy_chan *phy_chans;
275 struct dma_pool *pool;
276 u8 lli_buses;
277 u8 mem_buses;
278 u8 lli_words;
282 * PL08X specific defines
285 /* The order of words in an LLI. */
286 #define PL080_LLI_SRC 0
287 #define PL080_LLI_DST 1
288 #define PL080_LLI_LLI 2
289 #define PL080_LLI_CCTL 3
290 #define PL080S_LLI_CCTL2 4
292 /* Total words in an LLI. */
293 #define PL080_LLI_WORDS 4
294 #define PL080S_LLI_WORDS 8
297 * Number of LLIs in each LLI buffer allocated for one transfer
298 * (maximum times we call dma_pool_alloc on this pool without freeing)
300 #define MAX_NUM_TSFR_LLIS 512
301 #define PL08X_ALIGN 8
303 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
305 return container_of(chan, struct pl08x_dma_chan, vc.chan);
308 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
310 return container_of(tx, struct pl08x_txd, vd.tx);
314 * Mux handling.
316 * This gives us the DMA request input to the PL08x primecell which the
317 * peripheral described by the channel data will be routed to, possibly
318 * via a board/SoC specific external MUX. One important point to note
319 * here is that this does not depend on the physical channel.
321 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
323 const struct pl08x_platform_data *pd = plchan->host->pd;
324 int ret;
326 if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
327 ret = pd->get_xfer_signal(plchan->cd);
328 if (ret < 0) {
329 plchan->mux_use = 0;
330 return ret;
333 plchan->signal = ret;
335 return 0;
338 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
340 const struct pl08x_platform_data *pd = plchan->host->pd;
342 if (plchan->signal >= 0) {
343 WARN_ON(plchan->mux_use == 0);
345 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
346 pd->put_xfer_signal(plchan->cd, plchan->signal);
347 plchan->signal = -1;
353 * Physical channel handling
356 /* Whether a certain channel is busy or not */
357 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
359 unsigned int val;
361 val = readl(ch->reg_config);
362 return val & PL080_CONFIG_ACTIVE;
365 static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
366 struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
368 if (pl08x->vd->pl080s)
369 dev_vdbg(&pl08x->adev->dev,
370 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
371 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
372 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
373 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
374 lli[PL080S_LLI_CCTL2], ccfg);
375 else
376 dev_vdbg(&pl08x->adev->dev,
377 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
378 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
379 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
380 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
382 writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
383 writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
384 writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
385 writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
387 if (pl08x->vd->pl080s)
388 writel_relaxed(lli[PL080S_LLI_CCTL2],
389 phychan->base + PL080S_CH_CONTROL2);
391 writel(ccfg, phychan->reg_config);
395 * Set the initial DMA register values i.e. those for the first LLI
396 * The next LLI pointer and the configuration interrupt bit have
397 * been set when the LLIs were constructed. Poke them into the hardware
398 * and start the transfer.
400 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
402 struct pl08x_driver_data *pl08x = plchan->host;
403 struct pl08x_phy_chan *phychan = plchan->phychan;
404 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
405 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
406 u32 val;
408 list_del(&txd->vd.node);
410 plchan->at = txd;
412 /* Wait for channel inactive */
413 while (pl08x_phy_channel_busy(phychan))
414 cpu_relax();
416 pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
418 /* Enable the DMA channel */
419 /* Do not access config register until channel shows as disabled */
420 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
421 cpu_relax();
423 /* Do not access config register until channel shows as inactive */
424 val = readl(phychan->reg_config);
425 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
426 val = readl(phychan->reg_config);
428 writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
432 * Pause the channel by setting the HALT bit.
434 * For M->P transfers, pause the DMAC first and then stop the peripheral -
435 * the FIFO can only drain if the peripheral is still requesting data.
436 * (note: this can still timeout if the DMAC FIFO never drains of data.)
438 * For P->M transfers, disable the peripheral first to stop it filling
439 * the DMAC FIFO, and then pause the DMAC.
441 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
443 u32 val;
444 int timeout;
446 /* Set the HALT bit and wait for the FIFO to drain */
447 val = readl(ch->reg_config);
448 val |= PL080_CONFIG_HALT;
449 writel(val, ch->reg_config);
451 /* Wait for channel inactive */
452 for (timeout = 1000; timeout; timeout--) {
453 if (!pl08x_phy_channel_busy(ch))
454 break;
455 udelay(1);
457 if (pl08x_phy_channel_busy(ch))
458 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
461 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
463 u32 val;
465 /* Clear the HALT bit */
466 val = readl(ch->reg_config);
467 val &= ~PL080_CONFIG_HALT;
468 writel(val, ch->reg_config);
472 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
473 * clears any pending interrupt status. This should not be used for
474 * an on-going transfer, but as a method of shutting down a channel
475 * (eg, when it's no longer used) or terminating a transfer.
477 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
478 struct pl08x_phy_chan *ch)
480 u32 val = readl(ch->reg_config);
482 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
483 PL080_CONFIG_TC_IRQ_MASK);
485 writel(val, ch->reg_config);
487 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
488 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
491 static inline u32 get_bytes_in_cctl(u32 cctl)
493 /* The source width defines the number of bytes */
494 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
496 cctl &= PL080_CONTROL_SWIDTH_MASK;
498 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
499 case PL080_WIDTH_8BIT:
500 break;
501 case PL080_WIDTH_16BIT:
502 bytes *= 2;
503 break;
504 case PL080_WIDTH_32BIT:
505 bytes *= 4;
506 break;
508 return bytes;
511 static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
513 /* The source width defines the number of bytes */
514 u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
516 cctl &= PL080_CONTROL_SWIDTH_MASK;
518 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
519 case PL080_WIDTH_8BIT:
520 break;
521 case PL080_WIDTH_16BIT:
522 bytes *= 2;
523 break;
524 case PL080_WIDTH_32BIT:
525 bytes *= 4;
526 break;
528 return bytes;
531 /* The channel should be paused when calling this */
532 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
534 struct pl08x_driver_data *pl08x = plchan->host;
535 const u32 *llis_va, *llis_va_limit;
536 struct pl08x_phy_chan *ch;
537 dma_addr_t llis_bus;
538 struct pl08x_txd *txd;
539 u32 llis_max_words;
540 size_t bytes;
541 u32 clli;
543 ch = plchan->phychan;
544 txd = plchan->at;
546 if (!ch || !txd)
547 return 0;
550 * Follow the LLIs to get the number of remaining
551 * bytes in the currently active transaction.
553 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
555 /* First get the remaining bytes in the active transfer */
556 if (pl08x->vd->pl080s)
557 bytes = get_bytes_in_cctl_pl080s(
558 readl(ch->base + PL080_CH_CONTROL),
559 readl(ch->base + PL080S_CH_CONTROL2));
560 else
561 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
563 if (!clli)
564 return bytes;
566 llis_va = txd->llis_va;
567 llis_bus = txd->llis_bus;
569 llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
570 BUG_ON(clli < llis_bus || clli >= llis_bus +
571 sizeof(u32) * llis_max_words);
574 * Locate the next LLI - as this is an array,
575 * it's simple maths to find.
577 llis_va += (clli - llis_bus) / sizeof(u32);
579 llis_va_limit = llis_va + llis_max_words;
581 for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
582 if (pl08x->vd->pl080s)
583 bytes += get_bytes_in_cctl_pl080s(
584 llis_va[PL080_LLI_CCTL],
585 llis_va[PL080S_LLI_CCTL2]);
586 else
587 bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
590 * A LLI pointer going backward terminates the LLI list
592 if (llis_va[PL080_LLI_LLI] <= clli)
593 break;
596 return bytes;
600 * Allocate a physical channel for a virtual channel
602 * Try to locate a physical channel to be used for this transfer. If all
603 * are taken return NULL and the requester will have to cope by using
604 * some fallback PIO mode or retrying later.
606 static struct pl08x_phy_chan *
607 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
608 struct pl08x_dma_chan *virt_chan)
610 struct pl08x_phy_chan *ch = NULL;
611 unsigned long flags;
612 int i;
614 for (i = 0; i < pl08x->vd->channels; i++) {
615 ch = &pl08x->phy_chans[i];
617 spin_lock_irqsave(&ch->lock, flags);
619 if (!ch->locked && !ch->serving) {
620 ch->serving = virt_chan;
621 spin_unlock_irqrestore(&ch->lock, flags);
622 break;
625 spin_unlock_irqrestore(&ch->lock, flags);
628 if (i == pl08x->vd->channels) {
629 /* No physical channel available, cope with it */
630 return NULL;
633 return ch;
636 /* Mark the physical channel as free. Note, this write is atomic. */
637 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
638 struct pl08x_phy_chan *ch)
640 ch->serving = NULL;
644 * Try to allocate a physical channel. When successful, assign it to
645 * this virtual channel, and initiate the next descriptor. The
646 * virtual channel lock must be held at this point.
648 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
650 struct pl08x_driver_data *pl08x = plchan->host;
651 struct pl08x_phy_chan *ch;
653 ch = pl08x_get_phy_channel(pl08x, plchan);
654 if (!ch) {
655 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
656 plchan->state = PL08X_CHAN_WAITING;
657 return;
660 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
661 ch->id, plchan->name);
663 plchan->phychan = ch;
664 plchan->state = PL08X_CHAN_RUNNING;
665 pl08x_start_next_txd(plchan);
668 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
669 struct pl08x_dma_chan *plchan)
671 struct pl08x_driver_data *pl08x = plchan->host;
673 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
674 ch->id, plchan->name);
677 * We do this without taking the lock; we're really only concerned
678 * about whether this pointer is NULL or not, and we're guaranteed
679 * that this will only be called when it _already_ is non-NULL.
681 ch->serving = plchan;
682 plchan->phychan = ch;
683 plchan->state = PL08X_CHAN_RUNNING;
684 pl08x_start_next_txd(plchan);
688 * Free a physical DMA channel, potentially reallocating it to another
689 * virtual channel if we have any pending.
691 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
693 struct pl08x_driver_data *pl08x = plchan->host;
694 struct pl08x_dma_chan *p, *next;
696 retry:
697 next = NULL;
699 /* Find a waiting virtual channel for the next transfer. */
700 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
701 if (p->state == PL08X_CHAN_WAITING) {
702 next = p;
703 break;
706 if (!next) {
707 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
708 if (p->state == PL08X_CHAN_WAITING) {
709 next = p;
710 break;
714 /* Ensure that the physical channel is stopped */
715 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
717 if (next) {
718 bool success;
721 * Eww. We know this isn't going to deadlock
722 * but lockdep probably doesn't.
724 spin_lock(&next->vc.lock);
725 /* Re-check the state now that we have the lock */
726 success = next->state == PL08X_CHAN_WAITING;
727 if (success)
728 pl08x_phy_reassign_start(plchan->phychan, next);
729 spin_unlock(&next->vc.lock);
731 /* If the state changed, try to find another channel */
732 if (!success)
733 goto retry;
734 } else {
735 /* No more jobs, so free up the physical channel */
736 pl08x_put_phy_channel(pl08x, plchan->phychan);
739 plchan->phychan = NULL;
740 plchan->state = PL08X_CHAN_IDLE;
744 * LLI handling
747 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
749 switch (coded) {
750 case PL080_WIDTH_8BIT:
751 return 1;
752 case PL080_WIDTH_16BIT:
753 return 2;
754 case PL080_WIDTH_32BIT:
755 return 4;
756 default:
757 break;
759 BUG();
760 return 0;
763 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
764 size_t tsize)
766 u32 retbits = cctl;
768 /* Remove all src, dst and transfer size bits */
769 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
770 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
771 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
773 /* Then set the bits according to the parameters */
774 switch (srcwidth) {
775 case 1:
776 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
777 break;
778 case 2:
779 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
780 break;
781 case 4:
782 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
783 break;
784 default:
785 BUG();
786 break;
789 switch (dstwidth) {
790 case 1:
791 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
792 break;
793 case 2:
794 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
795 break;
796 case 4:
797 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
798 break;
799 default:
800 BUG();
801 break;
804 tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
805 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
806 return retbits;
809 struct pl08x_lli_build_data {
810 struct pl08x_txd *txd;
811 struct pl08x_bus_data srcbus;
812 struct pl08x_bus_data dstbus;
813 size_t remainder;
814 u32 lli_bus;
818 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
819 * victim in case src & dest are not similarly aligned. i.e. If after aligning
820 * masters address with width requirements of transfer (by sending few byte by
821 * byte data), slave is still not aligned, then its width will be reduced to
822 * BYTE.
823 * - prefers the destination bus if both available
824 * - prefers bus with fixed address (i.e. peripheral)
826 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
827 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
829 if (!(cctl & PL080_CONTROL_DST_INCR)) {
830 *mbus = &bd->dstbus;
831 *sbus = &bd->srcbus;
832 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
833 *mbus = &bd->srcbus;
834 *sbus = &bd->dstbus;
835 } else {
836 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
837 *mbus = &bd->dstbus;
838 *sbus = &bd->srcbus;
839 } else {
840 *mbus = &bd->srcbus;
841 *sbus = &bd->dstbus;
847 * Fills in one LLI for a certain transfer descriptor and advance the counter
849 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
850 struct pl08x_lli_build_data *bd,
851 int num_llis, int len, u32 cctl, u32 cctl2)
853 u32 offset = num_llis * pl08x->lli_words;
854 u32 *llis_va = bd->txd->llis_va + offset;
855 dma_addr_t llis_bus = bd->txd->llis_bus;
857 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
859 /* Advance the offset to next LLI. */
860 offset += pl08x->lli_words;
862 llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
863 llis_va[PL080_LLI_DST] = bd->dstbus.addr;
864 llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
865 llis_va[PL080_LLI_LLI] |= bd->lli_bus;
866 llis_va[PL080_LLI_CCTL] = cctl;
867 if (pl08x->vd->pl080s)
868 llis_va[PL080S_LLI_CCTL2] = cctl2;
870 if (cctl & PL080_CONTROL_SRC_INCR)
871 bd->srcbus.addr += len;
872 if (cctl & PL080_CONTROL_DST_INCR)
873 bd->dstbus.addr += len;
875 BUG_ON(bd->remainder < len);
877 bd->remainder -= len;
880 static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
881 struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
882 int num_llis, size_t *total_bytes)
884 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
885 pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
886 (*total_bytes) += len;
889 #ifdef VERBOSE_DEBUG
890 static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
891 const u32 *llis_va, int num_llis)
893 int i;
895 if (pl08x->vd->pl080s) {
896 dev_vdbg(&pl08x->adev->dev,
897 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
898 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
899 for (i = 0; i < num_llis; i++) {
900 dev_vdbg(&pl08x->adev->dev,
901 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
902 i, llis_va, llis_va[PL080_LLI_SRC],
903 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
904 llis_va[PL080_LLI_CCTL],
905 llis_va[PL080S_LLI_CCTL2]);
906 llis_va += pl08x->lli_words;
908 } else {
909 dev_vdbg(&pl08x->adev->dev,
910 "%-3s %-9s %-10s %-10s %-10s %s\n",
911 "lli", "", "csrc", "cdst", "clli", "cctl");
912 for (i = 0; i < num_llis; i++) {
913 dev_vdbg(&pl08x->adev->dev,
914 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
915 i, llis_va, llis_va[PL080_LLI_SRC],
916 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
917 llis_va[PL080_LLI_CCTL]);
918 llis_va += pl08x->lli_words;
922 #else
923 static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
924 const u32 *llis_va, int num_llis) {}
925 #endif
928 * This fills in the table of LLIs for the transfer descriptor
929 * Note that we assume we never have to change the burst sizes
930 * Return 0 for error
932 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
933 struct pl08x_txd *txd)
935 struct pl08x_bus_data *mbus, *sbus;
936 struct pl08x_lli_build_data bd;
937 int num_llis = 0;
938 u32 cctl, early_bytes = 0;
939 size_t max_bytes_per_lli, total_bytes;
940 u32 *llis_va, *last_lli;
941 struct pl08x_sg *dsg;
943 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
944 if (!txd->llis_va) {
945 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
946 return 0;
949 bd.txd = txd;
950 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
951 cctl = txd->cctl;
953 /* Find maximum width of the source bus */
954 bd.srcbus.maxwidth =
955 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
956 PL080_CONTROL_SWIDTH_SHIFT);
958 /* Find maximum width of the destination bus */
959 bd.dstbus.maxwidth =
960 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
961 PL080_CONTROL_DWIDTH_SHIFT);
963 list_for_each_entry(dsg, &txd->dsg_list, node) {
964 total_bytes = 0;
965 cctl = txd->cctl;
967 bd.srcbus.addr = dsg->src_addr;
968 bd.dstbus.addr = dsg->dst_addr;
969 bd.remainder = dsg->len;
970 bd.srcbus.buswidth = bd.srcbus.maxwidth;
971 bd.dstbus.buswidth = bd.dstbus.maxwidth;
973 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
975 dev_vdbg(&pl08x->adev->dev,
976 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
977 (u64)bd.srcbus.addr,
978 cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
979 bd.srcbus.buswidth,
980 (u64)bd.dstbus.addr,
981 cctl & PL080_CONTROL_DST_INCR ? "+" : "",
982 bd.dstbus.buswidth,
983 bd.remainder);
984 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
985 mbus == &bd.srcbus ? "src" : "dst",
986 sbus == &bd.srcbus ? "src" : "dst");
989 * Zero length is only allowed if all these requirements are
990 * met:
991 * - flow controller is peripheral.
992 * - src.addr is aligned to src.width
993 * - dst.addr is aligned to dst.width
995 * sg_len == 1 should be true, as there can be two cases here:
997 * - Memory addresses are contiguous and are not scattered.
998 * Here, Only one sg will be passed by user driver, with
999 * memory address and zero length. We pass this to controller
1000 * and after the transfer it will receive the last burst
1001 * request from peripheral and so transfer finishes.
1003 * - Memory addresses are scattered and are not contiguous.
1004 * Here, Obviously as DMA controller doesn't know when a lli's
1005 * transfer gets over, it can't load next lli. So in this
1006 * case, there has to be an assumption that only one lli is
1007 * supported. Thus, we can't have scattered addresses.
1009 if (!bd.remainder) {
1010 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1011 PL080_CONFIG_FLOW_CONTROL_SHIFT;
1012 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1013 (fc <= PL080_FLOW_SRC2DST_SRC))) {
1014 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1015 __func__);
1016 return 0;
1019 if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1020 !IS_BUS_ALIGNED(&bd.dstbus)) {
1021 dev_err(&pl08x->adev->dev,
1022 "%s src & dst address must be aligned to src"
1023 " & dst width if peripheral is flow controller",
1024 __func__);
1025 return 0;
1028 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1029 bd.dstbus.buswidth, 0);
1030 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1031 0, cctl, 0);
1032 break;
1036 * Send byte by byte for following cases
1037 * - Less than a bus width available
1038 * - until master bus is aligned
1040 if (bd.remainder < mbus->buswidth)
1041 early_bytes = bd.remainder;
1042 else if (!IS_BUS_ALIGNED(mbus)) {
1043 early_bytes = mbus->buswidth -
1044 (mbus->addr & (mbus->buswidth - 1));
1045 if ((bd.remainder - early_bytes) < mbus->buswidth)
1046 early_bytes = bd.remainder;
1049 if (early_bytes) {
1050 dev_vdbg(&pl08x->adev->dev,
1051 "%s byte width LLIs (remain 0x%08zx)\n",
1052 __func__, bd.remainder);
1053 prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1054 num_llis++, &total_bytes);
1057 if (bd.remainder) {
1059 * Master now aligned
1060 * - if slave is not then we must set its width down
1062 if (!IS_BUS_ALIGNED(sbus)) {
1063 dev_dbg(&pl08x->adev->dev,
1064 "%s set down bus width to one byte\n",
1065 __func__);
1067 sbus->buswidth = 1;
1071 * Bytes transferred = tsize * src width, not
1072 * MIN(buswidths)
1074 max_bytes_per_lli = bd.srcbus.buswidth *
1075 pl08x->vd->max_transfer_size;
1076 dev_vdbg(&pl08x->adev->dev,
1077 "%s max bytes per lli = %zu\n",
1078 __func__, max_bytes_per_lli);
1081 * Make largest possible LLIs until less than one bus
1082 * width left
1084 while (bd.remainder > (mbus->buswidth - 1)) {
1085 size_t lli_len, tsize, width;
1088 * If enough left try to send max possible,
1089 * otherwise try to send the remainder
1091 lli_len = min(bd.remainder, max_bytes_per_lli);
1094 * Check against maximum bus alignment:
1095 * Calculate actual transfer size in relation to
1096 * bus width an get a maximum remainder of the
1097 * highest bus width - 1
1099 width = max(mbus->buswidth, sbus->buswidth);
1100 lli_len = (lli_len / width) * width;
1101 tsize = lli_len / bd.srcbus.buswidth;
1103 dev_vdbg(&pl08x->adev->dev,
1104 "%s fill lli with single lli chunk of "
1105 "size 0x%08zx (remainder 0x%08zx)\n",
1106 __func__, lli_len, bd.remainder);
1108 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1109 bd.dstbus.buswidth, tsize);
1110 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1111 lli_len, cctl, tsize);
1112 total_bytes += lli_len;
1116 * Send any odd bytes
1118 if (bd.remainder) {
1119 dev_vdbg(&pl08x->adev->dev,
1120 "%s align with boundary, send odd bytes (remain %zu)\n",
1121 __func__, bd.remainder);
1122 prep_byte_width_lli(pl08x, &bd, &cctl,
1123 bd.remainder, num_llis++, &total_bytes);
1127 if (total_bytes != dsg->len) {
1128 dev_err(&pl08x->adev->dev,
1129 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1130 __func__, total_bytes, dsg->len);
1131 return 0;
1134 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1135 dev_err(&pl08x->adev->dev,
1136 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1137 __func__, MAX_NUM_TSFR_LLIS);
1138 return 0;
1142 llis_va = txd->llis_va;
1143 last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1145 if (txd->cyclic) {
1146 /* Link back to the first LLI. */
1147 last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1148 } else {
1149 /* The final LLI terminates the LLI. */
1150 last_lli[PL080_LLI_LLI] = 0;
1151 /* The final LLI element shall also fire an interrupt. */
1152 last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1155 pl08x_dump_lli(pl08x, llis_va, num_llis);
1157 return num_llis;
1160 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1161 struct pl08x_txd *txd)
1163 struct pl08x_sg *dsg, *_dsg;
1165 if (txd->llis_va)
1166 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1168 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1169 list_del(&dsg->node);
1170 kfree(dsg);
1173 kfree(txd);
1176 static void pl08x_desc_free(struct virt_dma_desc *vd)
1178 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1179 struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1181 dma_descriptor_unmap(&vd->tx);
1182 if (!txd->done)
1183 pl08x_release_mux(plchan);
1185 pl08x_free_txd(plchan->host, txd);
1188 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1189 struct pl08x_dma_chan *plchan)
1191 LIST_HEAD(head);
1193 vchan_get_all_descriptors(&plchan->vc, &head);
1194 vchan_dma_desc_free_list(&plchan->vc, &head);
1198 * The DMA ENGINE API
1200 static void pl08x_free_chan_resources(struct dma_chan *chan)
1202 /* Ensure all queued descriptors are freed */
1203 vchan_free_chan_resources(to_virt_chan(chan));
1206 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1207 struct dma_chan *chan, unsigned long flags)
1209 struct dma_async_tx_descriptor *retval = NULL;
1211 return retval;
1215 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1216 * If slaves are relying on interrupts to signal completion this function
1217 * must not be called with interrupts disabled.
1219 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1220 dma_cookie_t cookie, struct dma_tx_state *txstate)
1222 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1223 struct virt_dma_desc *vd;
1224 unsigned long flags;
1225 enum dma_status ret;
1226 size_t bytes = 0;
1228 ret = dma_cookie_status(chan, cookie, txstate);
1229 if (ret == DMA_COMPLETE)
1230 return ret;
1233 * There's no point calculating the residue if there's
1234 * no txstate to store the value.
1236 if (!txstate) {
1237 if (plchan->state == PL08X_CHAN_PAUSED)
1238 ret = DMA_PAUSED;
1239 return ret;
1242 spin_lock_irqsave(&plchan->vc.lock, flags);
1243 ret = dma_cookie_status(chan, cookie, txstate);
1244 if (ret != DMA_COMPLETE) {
1245 vd = vchan_find_desc(&plchan->vc, cookie);
1246 if (vd) {
1247 /* On the issued list, so hasn't been processed yet */
1248 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1249 struct pl08x_sg *dsg;
1251 list_for_each_entry(dsg, &txd->dsg_list, node)
1252 bytes += dsg->len;
1253 } else {
1254 bytes = pl08x_getbytes_chan(plchan);
1257 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1260 * This cookie not complete yet
1261 * Get number of bytes left in the active transactions and queue
1263 dma_set_residue(txstate, bytes);
1265 if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1266 ret = DMA_PAUSED;
1268 /* Whether waiting or running, we're in progress */
1269 return ret;
1272 /* PrimeCell DMA extension */
1273 struct burst_table {
1274 u32 burstwords;
1275 u32 reg;
1278 static const struct burst_table burst_sizes[] = {
1280 .burstwords = 256,
1281 .reg = PL080_BSIZE_256,
1284 .burstwords = 128,
1285 .reg = PL080_BSIZE_128,
1288 .burstwords = 64,
1289 .reg = PL080_BSIZE_64,
1292 .burstwords = 32,
1293 .reg = PL080_BSIZE_32,
1296 .burstwords = 16,
1297 .reg = PL080_BSIZE_16,
1300 .burstwords = 8,
1301 .reg = PL080_BSIZE_8,
1304 .burstwords = 4,
1305 .reg = PL080_BSIZE_4,
1308 .burstwords = 0,
1309 .reg = PL080_BSIZE_1,
1314 * Given the source and destination available bus masks, select which
1315 * will be routed to each port. We try to have source and destination
1316 * on separate ports, but always respect the allowable settings.
1318 static u32 pl08x_select_bus(u8 src, u8 dst)
1320 u32 cctl = 0;
1322 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1323 cctl |= PL080_CONTROL_DST_AHB2;
1324 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1325 cctl |= PL080_CONTROL_SRC_AHB2;
1327 return cctl;
1330 static u32 pl08x_cctl(u32 cctl)
1332 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1333 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1334 PL080_CONTROL_PROT_MASK);
1336 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1337 return cctl | PL080_CONTROL_PROT_SYS;
1340 static u32 pl08x_width(enum dma_slave_buswidth width)
1342 switch (width) {
1343 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1344 return PL080_WIDTH_8BIT;
1345 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1346 return PL080_WIDTH_16BIT;
1347 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1348 return PL080_WIDTH_32BIT;
1349 default:
1350 return ~0;
1354 static u32 pl08x_burst(u32 maxburst)
1356 int i;
1358 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1359 if (burst_sizes[i].burstwords <= maxburst)
1360 break;
1362 return burst_sizes[i].reg;
1365 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1366 enum dma_slave_buswidth addr_width, u32 maxburst)
1368 u32 width, burst, cctl = 0;
1370 width = pl08x_width(addr_width);
1371 if (width == ~0)
1372 return ~0;
1374 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1375 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1378 * If this channel will only request single transfers, set this
1379 * down to ONE element. Also select one element if no maxburst
1380 * is specified.
1382 if (plchan->cd->single)
1383 maxburst = 1;
1385 burst = pl08x_burst(maxburst);
1386 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1387 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1389 return pl08x_cctl(cctl);
1393 * Slave transactions callback to the slave device to allow
1394 * synchronization of slave DMA signals with the DMAC enable
1396 static void pl08x_issue_pending(struct dma_chan *chan)
1398 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1399 unsigned long flags;
1401 spin_lock_irqsave(&plchan->vc.lock, flags);
1402 if (vchan_issue_pending(&plchan->vc)) {
1403 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1404 pl08x_phy_alloc_and_start(plchan);
1406 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1409 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1411 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1413 if (txd) {
1414 INIT_LIST_HEAD(&txd->dsg_list);
1416 /* Always enable error and terminal interrupts */
1417 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1418 PL080_CONFIG_TC_IRQ_MASK;
1420 return txd;
1424 * Initialize a descriptor to be used by memcpy submit
1426 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1427 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1428 size_t len, unsigned long flags)
1430 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1431 struct pl08x_driver_data *pl08x = plchan->host;
1432 struct pl08x_txd *txd;
1433 struct pl08x_sg *dsg;
1434 int ret;
1436 txd = pl08x_get_txd(plchan);
1437 if (!txd) {
1438 dev_err(&pl08x->adev->dev,
1439 "%s no memory for descriptor\n", __func__);
1440 return NULL;
1443 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1444 if (!dsg) {
1445 pl08x_free_txd(pl08x, txd);
1446 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1447 __func__);
1448 return NULL;
1450 list_add_tail(&dsg->node, &txd->dsg_list);
1452 dsg->src_addr = src;
1453 dsg->dst_addr = dest;
1454 dsg->len = len;
1456 /* Set platform data for m2m */
1457 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1458 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1459 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1461 /* Both to be incremented or the code will break */
1462 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1464 if (pl08x->vd->dualmaster)
1465 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1466 pl08x->mem_buses);
1468 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1469 if (!ret) {
1470 pl08x_free_txd(pl08x, txd);
1471 return NULL;
1474 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1477 static struct pl08x_txd *pl08x_init_txd(
1478 struct dma_chan *chan,
1479 enum dma_transfer_direction direction,
1480 dma_addr_t *slave_addr)
1482 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1483 struct pl08x_driver_data *pl08x = plchan->host;
1484 struct pl08x_txd *txd;
1485 enum dma_slave_buswidth addr_width;
1486 int ret, tmp;
1487 u8 src_buses, dst_buses;
1488 u32 maxburst, cctl;
1490 txd = pl08x_get_txd(plchan);
1491 if (!txd) {
1492 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1493 return NULL;
1497 * Set up addresses, the PrimeCell configured address
1498 * will take precedence since this may configure the
1499 * channel target address dynamically at runtime.
1501 if (direction == DMA_MEM_TO_DEV) {
1502 cctl = PL080_CONTROL_SRC_INCR;
1503 *slave_addr = plchan->cfg.dst_addr;
1504 addr_width = plchan->cfg.dst_addr_width;
1505 maxburst = plchan->cfg.dst_maxburst;
1506 src_buses = pl08x->mem_buses;
1507 dst_buses = plchan->cd->periph_buses;
1508 } else if (direction == DMA_DEV_TO_MEM) {
1509 cctl = PL080_CONTROL_DST_INCR;
1510 *slave_addr = plchan->cfg.src_addr;
1511 addr_width = plchan->cfg.src_addr_width;
1512 maxburst = plchan->cfg.src_maxburst;
1513 src_buses = plchan->cd->periph_buses;
1514 dst_buses = pl08x->mem_buses;
1515 } else {
1516 pl08x_free_txd(pl08x, txd);
1517 dev_err(&pl08x->adev->dev,
1518 "%s direction unsupported\n", __func__);
1519 return NULL;
1522 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1523 if (cctl == ~0) {
1524 pl08x_free_txd(pl08x, txd);
1525 dev_err(&pl08x->adev->dev,
1526 "DMA slave configuration botched?\n");
1527 return NULL;
1530 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1532 if (plchan->cfg.device_fc)
1533 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1534 PL080_FLOW_PER2MEM_PER;
1535 else
1536 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1537 PL080_FLOW_PER2MEM;
1539 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1541 ret = pl08x_request_mux(plchan);
1542 if (ret < 0) {
1543 pl08x_free_txd(pl08x, txd);
1544 dev_dbg(&pl08x->adev->dev,
1545 "unable to mux for transfer on %s due to platform restrictions\n",
1546 plchan->name);
1547 return NULL;
1550 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1551 plchan->signal, plchan->name);
1553 /* Assign the flow control signal to this channel */
1554 if (direction == DMA_MEM_TO_DEV)
1555 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1556 else
1557 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1559 return txd;
1562 static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1563 enum dma_transfer_direction direction,
1564 dma_addr_t slave_addr,
1565 dma_addr_t buf_addr,
1566 unsigned int len)
1568 struct pl08x_sg *dsg;
1570 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1571 if (!dsg)
1572 return -ENOMEM;
1574 list_add_tail(&dsg->node, &txd->dsg_list);
1576 dsg->len = len;
1577 if (direction == DMA_MEM_TO_DEV) {
1578 dsg->src_addr = buf_addr;
1579 dsg->dst_addr = slave_addr;
1580 } else {
1581 dsg->src_addr = slave_addr;
1582 dsg->dst_addr = buf_addr;
1585 return 0;
1588 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1589 struct dma_chan *chan, struct scatterlist *sgl,
1590 unsigned int sg_len, enum dma_transfer_direction direction,
1591 unsigned long flags, void *context)
1593 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1594 struct pl08x_driver_data *pl08x = plchan->host;
1595 struct pl08x_txd *txd;
1596 struct scatterlist *sg;
1597 int ret, tmp;
1598 dma_addr_t slave_addr;
1600 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1601 __func__, sg_dma_len(sgl), plchan->name);
1603 txd = pl08x_init_txd(chan, direction, &slave_addr);
1604 if (!txd)
1605 return NULL;
1607 for_each_sg(sgl, sg, sg_len, tmp) {
1608 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1609 sg_dma_address(sg),
1610 sg_dma_len(sg));
1611 if (ret) {
1612 pl08x_release_mux(plchan);
1613 pl08x_free_txd(pl08x, txd);
1614 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1615 __func__);
1616 return NULL;
1620 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1621 if (!ret) {
1622 pl08x_release_mux(plchan);
1623 pl08x_free_txd(pl08x, txd);
1624 return NULL;
1627 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1630 static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1631 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1632 size_t period_len, enum dma_transfer_direction direction,
1633 unsigned long flags)
1635 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1636 struct pl08x_driver_data *pl08x = plchan->host;
1637 struct pl08x_txd *txd;
1638 int ret, tmp;
1639 dma_addr_t slave_addr;
1641 dev_dbg(&pl08x->adev->dev,
1642 "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
1643 __func__, period_len, buf_len,
1644 direction == DMA_MEM_TO_DEV ? "to" : "from",
1645 plchan->name);
1647 txd = pl08x_init_txd(chan, direction, &slave_addr);
1648 if (!txd)
1649 return NULL;
1651 txd->cyclic = true;
1652 txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1653 for (tmp = 0; tmp < buf_len; tmp += period_len) {
1654 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1655 buf_addr + tmp, period_len);
1656 if (ret) {
1657 pl08x_release_mux(plchan);
1658 pl08x_free_txd(pl08x, txd);
1659 return NULL;
1663 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1664 if (!ret) {
1665 pl08x_release_mux(plchan);
1666 pl08x_free_txd(pl08x, txd);
1667 return NULL;
1670 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1673 static int pl08x_config(struct dma_chan *chan,
1674 struct dma_slave_config *config)
1676 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1677 struct pl08x_driver_data *pl08x = plchan->host;
1679 if (!plchan->slave)
1680 return -EINVAL;
1682 /* Reject definitely invalid configurations */
1683 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1684 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1685 return -EINVAL;
1687 if (config->device_fc && pl08x->vd->pl080s) {
1688 dev_err(&pl08x->adev->dev,
1689 "%s: PL080S does not support peripheral flow control\n",
1690 __func__);
1691 return -EINVAL;
1694 plchan->cfg = *config;
1696 return 0;
1699 static int pl08x_terminate_all(struct dma_chan *chan)
1701 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1702 struct pl08x_driver_data *pl08x = plchan->host;
1703 unsigned long flags;
1705 spin_lock_irqsave(&plchan->vc.lock, flags);
1706 if (!plchan->phychan && !plchan->at) {
1707 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1708 return 0;
1711 plchan->state = PL08X_CHAN_IDLE;
1713 if (plchan->phychan) {
1715 * Mark physical channel as free and free any slave
1716 * signal
1718 pl08x_phy_free(plchan);
1720 /* Dequeue jobs and free LLIs */
1721 if (plchan->at) {
1722 pl08x_desc_free(&plchan->at->vd);
1723 plchan->at = NULL;
1725 /* Dequeue jobs not yet fired as well */
1726 pl08x_free_txd_list(pl08x, plchan);
1728 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1730 return 0;
1733 static int pl08x_pause(struct dma_chan *chan)
1735 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1736 unsigned long flags;
1739 * Anything succeeds on channels with no physical allocation and
1740 * no queued transfers.
1742 spin_lock_irqsave(&plchan->vc.lock, flags);
1743 if (!plchan->phychan && !plchan->at) {
1744 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1745 return 0;
1748 pl08x_pause_phy_chan(plchan->phychan);
1749 plchan->state = PL08X_CHAN_PAUSED;
1751 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1753 return 0;
1756 static int pl08x_resume(struct dma_chan *chan)
1758 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1759 unsigned long flags;
1762 * Anything succeeds on channels with no physical allocation and
1763 * no queued transfers.
1765 spin_lock_irqsave(&plchan->vc.lock, flags);
1766 if (!plchan->phychan && !plchan->at) {
1767 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1768 return 0;
1771 pl08x_resume_phy_chan(plchan->phychan);
1772 plchan->state = PL08X_CHAN_RUNNING;
1774 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1776 return 0;
1779 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1781 struct pl08x_dma_chan *plchan;
1782 char *name = chan_id;
1784 /* Reject channels for devices not bound to this driver */
1785 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1786 return false;
1788 plchan = to_pl08x_chan(chan);
1790 /* Check that the channel is not taken! */
1791 if (!strcmp(plchan->name, name))
1792 return true;
1794 return false;
1796 EXPORT_SYMBOL_GPL(pl08x_filter_id);
1799 * Just check that the device is there and active
1800 * TODO: turn this bit on/off depending on the number of physical channels
1801 * actually used, if it is zero... well shut it off. That will save some
1802 * power. Cut the clock at the same time.
1804 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1806 /* The Nomadik variant does not have the config register */
1807 if (pl08x->vd->nomadik)
1808 return;
1809 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1812 static irqreturn_t pl08x_irq(int irq, void *dev)
1814 struct pl08x_driver_data *pl08x = dev;
1815 u32 mask = 0, err, tc, i;
1817 /* check & clear - ERR & TC interrupts */
1818 err = readl(pl08x->base + PL080_ERR_STATUS);
1819 if (err) {
1820 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1821 __func__, err);
1822 writel(err, pl08x->base + PL080_ERR_CLEAR);
1824 tc = readl(pl08x->base + PL080_TC_STATUS);
1825 if (tc)
1826 writel(tc, pl08x->base + PL080_TC_CLEAR);
1828 if (!err && !tc)
1829 return IRQ_NONE;
1831 for (i = 0; i < pl08x->vd->channels; i++) {
1832 if (((1 << i) & err) || ((1 << i) & tc)) {
1833 /* Locate physical channel */
1834 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1835 struct pl08x_dma_chan *plchan = phychan->serving;
1836 struct pl08x_txd *tx;
1838 if (!plchan) {
1839 dev_err(&pl08x->adev->dev,
1840 "%s Error TC interrupt on unused channel: 0x%08x\n",
1841 __func__, i);
1842 continue;
1845 spin_lock(&plchan->vc.lock);
1846 tx = plchan->at;
1847 if (tx && tx->cyclic) {
1848 vchan_cyclic_callback(&tx->vd);
1849 } else if (tx) {
1850 plchan->at = NULL;
1852 * This descriptor is done, release its mux
1853 * reservation.
1855 pl08x_release_mux(plchan);
1856 tx->done = true;
1857 vchan_cookie_complete(&tx->vd);
1860 * And start the next descriptor (if any),
1861 * otherwise free this channel.
1863 if (vchan_next_desc(&plchan->vc))
1864 pl08x_start_next_txd(plchan);
1865 else
1866 pl08x_phy_free(plchan);
1868 spin_unlock(&plchan->vc.lock);
1870 mask |= (1 << i);
1874 return mask ? IRQ_HANDLED : IRQ_NONE;
1877 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1879 chan->slave = true;
1880 chan->name = chan->cd->bus_id;
1881 chan->cfg.src_addr = chan->cd->addr;
1882 chan->cfg.dst_addr = chan->cd->addr;
1886 * Initialise the DMAC memcpy/slave channels.
1887 * Make a local wrapper to hold required data
1889 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1890 struct dma_device *dmadev, unsigned int channels, bool slave)
1892 struct pl08x_dma_chan *chan;
1893 int i;
1895 INIT_LIST_HEAD(&dmadev->channels);
1898 * Register as many many memcpy as we have physical channels,
1899 * we won't always be able to use all but the code will have
1900 * to cope with that situation.
1902 for (i = 0; i < channels; i++) {
1903 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1904 if (!chan) {
1905 dev_err(&pl08x->adev->dev,
1906 "%s no memory for channel\n", __func__);
1907 return -ENOMEM;
1910 chan->host = pl08x;
1911 chan->state = PL08X_CHAN_IDLE;
1912 chan->signal = -1;
1914 if (slave) {
1915 chan->cd = &pl08x->pd->slave_channels[i];
1917 * Some implementations have muxed signals, whereas some
1918 * use a mux in front of the signals and need dynamic
1919 * assignment of signals.
1921 chan->signal = i;
1922 pl08x_dma_slave_init(chan);
1923 } else {
1924 chan->cd = &pl08x->pd->memcpy_channel;
1925 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1926 if (!chan->name) {
1927 kfree(chan);
1928 return -ENOMEM;
1931 dev_dbg(&pl08x->adev->dev,
1932 "initialize virtual channel \"%s\"\n",
1933 chan->name);
1935 chan->vc.desc_free = pl08x_desc_free;
1936 vchan_init(&chan->vc, dmadev);
1938 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1939 i, slave ? "slave" : "memcpy");
1940 return i;
1943 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1945 struct pl08x_dma_chan *chan = NULL;
1946 struct pl08x_dma_chan *next;
1948 list_for_each_entry_safe(chan,
1949 next, &dmadev->channels, vc.chan.device_node) {
1950 list_del(&chan->vc.chan.device_node);
1951 kfree(chan);
1955 #ifdef CONFIG_DEBUG_FS
1956 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1958 switch (state) {
1959 case PL08X_CHAN_IDLE:
1960 return "idle";
1961 case PL08X_CHAN_RUNNING:
1962 return "running";
1963 case PL08X_CHAN_PAUSED:
1964 return "paused";
1965 case PL08X_CHAN_WAITING:
1966 return "waiting";
1967 default:
1968 break;
1970 return "UNKNOWN STATE";
1973 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1975 struct pl08x_driver_data *pl08x = s->private;
1976 struct pl08x_dma_chan *chan;
1977 struct pl08x_phy_chan *ch;
1978 unsigned long flags;
1979 int i;
1981 seq_printf(s, "PL08x physical channels:\n");
1982 seq_printf(s, "CHANNEL:\tUSER:\n");
1983 seq_printf(s, "--------\t-----\n");
1984 for (i = 0; i < pl08x->vd->channels; i++) {
1985 struct pl08x_dma_chan *virt_chan;
1987 ch = &pl08x->phy_chans[i];
1989 spin_lock_irqsave(&ch->lock, flags);
1990 virt_chan = ch->serving;
1992 seq_printf(s, "%d\t\t%s%s\n",
1993 ch->id,
1994 virt_chan ? virt_chan->name : "(none)",
1995 ch->locked ? " LOCKED" : "");
1997 spin_unlock_irqrestore(&ch->lock, flags);
2000 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2001 seq_printf(s, "CHANNEL:\tSTATE:\n");
2002 seq_printf(s, "--------\t------\n");
2003 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2004 seq_printf(s, "%s\t\t%s\n", chan->name,
2005 pl08x_state_str(chan->state));
2008 seq_printf(s, "\nPL08x virtual slave channels:\n");
2009 seq_printf(s, "CHANNEL:\tSTATE:\n");
2010 seq_printf(s, "--------\t------\n");
2011 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2012 seq_printf(s, "%s\t\t%s\n", chan->name,
2013 pl08x_state_str(chan->state));
2016 return 0;
2019 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2021 return single_open(file, pl08x_debugfs_show, inode->i_private);
2024 static const struct file_operations pl08x_debugfs_operations = {
2025 .open = pl08x_debugfs_open,
2026 .read = seq_read,
2027 .llseek = seq_lseek,
2028 .release = single_release,
2031 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2033 /* Expose a simple debugfs interface to view all clocks */
2034 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2035 S_IFREG | S_IRUGO, NULL, pl08x,
2036 &pl08x_debugfs_operations);
2039 #else
2040 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2043 #endif
2045 #ifdef CONFIG_OF
2046 static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2047 u32 id)
2049 struct pl08x_dma_chan *chan;
2051 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2052 if (chan->signal == id)
2053 return &chan->vc.chan;
2056 return NULL;
2059 static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2060 struct of_dma *ofdma)
2062 struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2063 struct dma_chan *dma_chan;
2064 struct pl08x_dma_chan *plchan;
2066 if (!pl08x)
2067 return NULL;
2069 if (dma_spec->args_count != 2) {
2070 dev_err(&pl08x->adev->dev,
2071 "DMA channel translation requires two cells\n");
2072 return NULL;
2075 dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2076 if (!dma_chan) {
2077 dev_err(&pl08x->adev->dev,
2078 "DMA slave channel not found\n");
2079 return NULL;
2082 plchan = to_pl08x_chan(dma_chan);
2083 dev_dbg(&pl08x->adev->dev,
2084 "translated channel for signal %d\n",
2085 dma_spec->args[0]);
2087 /* Augment channel data for applicable AHB buses */
2088 plchan->cd->periph_buses = dma_spec->args[1];
2089 return dma_get_slave_channel(dma_chan);
2092 static int pl08x_of_probe(struct amba_device *adev,
2093 struct pl08x_driver_data *pl08x,
2094 struct device_node *np)
2096 struct pl08x_platform_data *pd;
2097 struct pl08x_channel_data *chanp = NULL;
2098 u32 cctl_memcpy = 0;
2099 u32 val;
2100 int ret;
2101 int i;
2103 pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2104 if (!pd)
2105 return -ENOMEM;
2107 /* Eligible bus masters for fetching LLIs */
2108 if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2109 pd->lli_buses |= PL08X_AHB1;
2110 if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2111 pd->lli_buses |= PL08X_AHB2;
2112 if (!pd->lli_buses) {
2113 dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2114 pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2117 /* Eligible bus masters for memory access */
2118 if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2119 pd->mem_buses |= PL08X_AHB1;
2120 if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2121 pd->mem_buses |= PL08X_AHB2;
2122 if (!pd->mem_buses) {
2123 dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2124 pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2127 /* Parse the memcpy channel properties */
2128 ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2129 if (ret) {
2130 dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2131 val = 1;
2133 switch (val) {
2134 default:
2135 dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2136 /* Fall through */
2137 case 1:
2138 cctl_memcpy |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
2139 PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
2140 break;
2141 case 4:
2142 cctl_memcpy |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
2143 PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
2144 break;
2145 case 8:
2146 cctl_memcpy |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
2147 PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
2148 break;
2149 case 16:
2150 cctl_memcpy |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
2151 PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
2152 break;
2153 case 32:
2154 cctl_memcpy |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
2155 PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
2156 break;
2157 case 64:
2158 cctl_memcpy |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
2159 PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
2160 break;
2161 case 128:
2162 cctl_memcpy |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
2163 PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
2164 break;
2165 case 256:
2166 cctl_memcpy |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
2167 PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
2168 break;
2171 ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2172 if (ret) {
2173 dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2174 val = 8;
2176 switch (val) {
2177 default:
2178 dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2179 /* Fall through */
2180 case 8:
2181 cctl_memcpy |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
2182 PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
2183 break;
2184 case 16:
2185 cctl_memcpy |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
2186 PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
2187 break;
2188 case 32:
2189 cctl_memcpy |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
2190 PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
2191 break;
2194 /* This is currently the only thing making sense */
2195 cctl_memcpy |= PL080_CONTROL_PROT_SYS;
2197 /* Set up memcpy channel */
2198 pd->memcpy_channel.bus_id = "memcpy";
2199 pd->memcpy_channel.cctl_memcpy = cctl_memcpy;
2200 /* Use the buses that can access memory, obviously */
2201 pd->memcpy_channel.periph_buses = pd->mem_buses;
2204 * Allocate channel data for all possible slave channels (one
2205 * for each possible signal), channels will then be allocated
2206 * for a device and have it's AHB interfaces set up at
2207 * translation time.
2209 chanp = devm_kcalloc(&adev->dev,
2210 pl08x->vd->signals,
2211 sizeof(struct pl08x_channel_data),
2212 GFP_KERNEL);
2213 if (!chanp)
2214 return -ENOMEM;
2216 pd->slave_channels = chanp;
2217 for (i = 0; i < pl08x->vd->signals; i++) {
2218 /* chanp->periph_buses will be assigned at translation */
2219 chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2220 chanp++;
2222 pd->num_slave_channels = pl08x->vd->signals;
2224 pl08x->pd = pd;
2226 return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2227 pl08x);
2229 #else
2230 static inline int pl08x_of_probe(struct amba_device *adev,
2231 struct pl08x_driver_data *pl08x,
2232 struct device_node *np)
2234 return -EINVAL;
2236 #endif
2238 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2240 struct pl08x_driver_data *pl08x;
2241 const struct vendor_data *vd = id->data;
2242 struct device_node *np = adev->dev.of_node;
2243 u32 tsfr_size;
2244 int ret = 0;
2245 int i;
2247 ret = amba_request_regions(adev, NULL);
2248 if (ret)
2249 return ret;
2251 /* Ensure that we can do DMA */
2252 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2253 if (ret)
2254 goto out_no_pl08x;
2256 /* Create the driver state holder */
2257 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2258 if (!pl08x) {
2259 ret = -ENOMEM;
2260 goto out_no_pl08x;
2263 /* Assign useful pointers to the driver state */
2264 pl08x->adev = adev;
2265 pl08x->vd = vd;
2267 /* Initialize memcpy engine */
2268 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2269 pl08x->memcpy.dev = &adev->dev;
2270 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2271 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2272 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2273 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2274 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2275 pl08x->memcpy.device_config = pl08x_config;
2276 pl08x->memcpy.device_pause = pl08x_pause;
2277 pl08x->memcpy.device_resume = pl08x_resume;
2278 pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2279 pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2280 pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2281 pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2282 pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2284 /* Initialize slave engine */
2285 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2286 dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2287 pl08x->slave.dev = &adev->dev;
2288 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2289 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2290 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2291 pl08x->slave.device_issue_pending = pl08x_issue_pending;
2292 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2293 pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2294 pl08x->slave.device_config = pl08x_config;
2295 pl08x->slave.device_pause = pl08x_pause;
2296 pl08x->slave.device_resume = pl08x_resume;
2297 pl08x->slave.device_terminate_all = pl08x_terminate_all;
2298 pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2299 pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2300 pl08x->slave.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2301 pl08x->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2303 /* Get the platform data */
2304 pl08x->pd = dev_get_platdata(&adev->dev);
2305 if (!pl08x->pd) {
2306 if (np) {
2307 ret = pl08x_of_probe(adev, pl08x, np);
2308 if (ret)
2309 goto out_no_platdata;
2310 } else {
2311 dev_err(&adev->dev, "no platform data supplied\n");
2312 ret = -EINVAL;
2313 goto out_no_platdata;
2317 /* By default, AHB1 only. If dualmaster, from platform */
2318 pl08x->lli_buses = PL08X_AHB1;
2319 pl08x->mem_buses = PL08X_AHB1;
2320 if (pl08x->vd->dualmaster) {
2321 pl08x->lli_buses = pl08x->pd->lli_buses;
2322 pl08x->mem_buses = pl08x->pd->mem_buses;
2325 if (vd->pl080s)
2326 pl08x->lli_words = PL080S_LLI_WORDS;
2327 else
2328 pl08x->lli_words = PL080_LLI_WORDS;
2329 tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2331 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2332 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2333 tsfr_size, PL08X_ALIGN, 0);
2334 if (!pl08x->pool) {
2335 ret = -ENOMEM;
2336 goto out_no_lli_pool;
2339 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2340 if (!pl08x->base) {
2341 ret = -ENOMEM;
2342 goto out_no_ioremap;
2345 /* Turn on the PL08x */
2346 pl08x_ensure_on(pl08x);
2348 /* Attach the interrupt handler */
2349 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2350 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2352 ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2353 if (ret) {
2354 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2355 __func__, adev->irq[0]);
2356 goto out_no_irq;
2359 /* Initialize physical channels */
2360 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2361 GFP_KERNEL);
2362 if (!pl08x->phy_chans) {
2363 dev_err(&adev->dev, "%s failed to allocate "
2364 "physical channel holders\n",
2365 __func__);
2366 ret = -ENOMEM;
2367 goto out_no_phychans;
2370 for (i = 0; i < vd->channels; i++) {
2371 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2373 ch->id = i;
2374 ch->base = pl08x->base + PL080_Cx_BASE(i);
2375 ch->reg_config = ch->base + vd->config_offset;
2376 spin_lock_init(&ch->lock);
2379 * Nomadik variants can have channels that are locked
2380 * down for the secure world only. Lock up these channels
2381 * by perpetually serving a dummy virtual channel.
2383 if (vd->nomadik) {
2384 u32 val;
2386 val = readl(ch->reg_config);
2387 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2388 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2389 ch->locked = true;
2393 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2394 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2397 /* Register as many memcpy channels as there are physical channels */
2398 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2399 pl08x->vd->channels, false);
2400 if (ret <= 0) {
2401 dev_warn(&pl08x->adev->dev,
2402 "%s failed to enumerate memcpy channels - %d\n",
2403 __func__, ret);
2404 goto out_no_memcpy;
2407 /* Register slave channels */
2408 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2409 pl08x->pd->num_slave_channels, true);
2410 if (ret < 0) {
2411 dev_warn(&pl08x->adev->dev,
2412 "%s failed to enumerate slave channels - %d\n",
2413 __func__, ret);
2414 goto out_no_slave;
2417 ret = dma_async_device_register(&pl08x->memcpy);
2418 if (ret) {
2419 dev_warn(&pl08x->adev->dev,
2420 "%s failed to register memcpy as an async device - %d\n",
2421 __func__, ret);
2422 goto out_no_memcpy_reg;
2425 ret = dma_async_device_register(&pl08x->slave);
2426 if (ret) {
2427 dev_warn(&pl08x->adev->dev,
2428 "%s failed to register slave as an async device - %d\n",
2429 __func__, ret);
2430 goto out_no_slave_reg;
2433 amba_set_drvdata(adev, pl08x);
2434 init_pl08x_debugfs(pl08x);
2435 dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2436 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2437 (unsigned long long)adev->res.start, adev->irq[0]);
2439 return 0;
2441 out_no_slave_reg:
2442 dma_async_device_unregister(&pl08x->memcpy);
2443 out_no_memcpy_reg:
2444 pl08x_free_virtual_channels(&pl08x->slave);
2445 out_no_slave:
2446 pl08x_free_virtual_channels(&pl08x->memcpy);
2447 out_no_memcpy:
2448 kfree(pl08x->phy_chans);
2449 out_no_phychans:
2450 free_irq(adev->irq[0], pl08x);
2451 out_no_irq:
2452 iounmap(pl08x->base);
2453 out_no_ioremap:
2454 dma_pool_destroy(pl08x->pool);
2455 out_no_lli_pool:
2456 out_no_platdata:
2457 kfree(pl08x);
2458 out_no_pl08x:
2459 amba_release_regions(adev);
2460 return ret;
2463 /* PL080 has 8 channels and the PL080 have just 2 */
2464 static struct vendor_data vendor_pl080 = {
2465 .config_offset = PL080_CH_CONFIG,
2466 .channels = 8,
2467 .signals = 16,
2468 .dualmaster = true,
2469 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2472 static struct vendor_data vendor_nomadik = {
2473 .config_offset = PL080_CH_CONFIG,
2474 .channels = 8,
2475 .signals = 32,
2476 .dualmaster = true,
2477 .nomadik = true,
2478 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2481 static struct vendor_data vendor_pl080s = {
2482 .config_offset = PL080S_CH_CONFIG,
2483 .channels = 8,
2484 .signals = 32,
2485 .pl080s = true,
2486 .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2489 static struct vendor_data vendor_pl081 = {
2490 .config_offset = PL080_CH_CONFIG,
2491 .channels = 2,
2492 .signals = 16,
2493 .dualmaster = false,
2494 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2497 static struct amba_id pl08x_ids[] = {
2498 /* Samsung PL080S variant */
2500 .id = 0x0a141080,
2501 .mask = 0xffffffff,
2502 .data = &vendor_pl080s,
2504 /* PL080 */
2506 .id = 0x00041080,
2507 .mask = 0x000fffff,
2508 .data = &vendor_pl080,
2510 /* PL081 */
2512 .id = 0x00041081,
2513 .mask = 0x000fffff,
2514 .data = &vendor_pl081,
2516 /* Nomadik 8815 PL080 variant */
2518 .id = 0x00280080,
2519 .mask = 0x00ffffff,
2520 .data = &vendor_nomadik,
2522 { 0, 0 },
2525 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2527 static struct amba_driver pl08x_amba_driver = {
2528 .drv.name = DRIVER_NAME,
2529 .id_table = pl08x_ids,
2530 .probe = pl08x_probe,
2533 static int __init pl08x_init(void)
2535 int retval;
2536 retval = amba_driver_register(&pl08x_amba_driver);
2537 if (retval)
2538 printk(KERN_WARNING DRIVER_NAME
2539 "failed to register as an AMBA device (%d)\n",
2540 retval);
2541 return retval;
2543 subsys_initcall(pl08x_init);