2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * The full GNU General Public License is in this distribution in the file
21 * Documentation: ARM DDI 0196G == PL080
22 * Documentation: ARM DDI 0218E == PL081
23 * Documentation: S3C6410 User's Manual == PL080S
25 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
28 * The PL080 has 8 channels available for simultaneous use, and the PL081
29 * has only two channels. So on these DMA controllers the number of channels
30 * and the number of incoming DMA signals are two totally different things.
31 * It is usually not possible to theoretically handle all physical signals,
32 * so a multiplexing scheme with possible denial of use is necessary.
34 * The PL080 has a dual bus master, PL081 has a single master.
36 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
37 * It differs in following aspects:
38 * - CH_CONFIG register at different offset,
39 * - separate CH_CONTROL2 register for transfer size,
40 * - bigger maximum transfer size,
41 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
42 * - no support for peripheral flow control.
44 * Memory to peripheral transfer may be visualized as
45 * Get data from memory to DMAC
47 * On burst request from peripheral
48 * Destination burst from DMAC to peripheral
50 * Raise terminal count interrupt
52 * For peripherals with a FIFO:
53 * Source burst size == half the depth of the peripheral FIFO
54 * Destination burst size == the depth of the peripheral FIFO
56 * (Bursts are irrelevant for mem to mem transfers - there are no burst
57 * signals, the DMA controller will simply facilitate its AHB master.)
59 * ASSUMES default (little) endianness for DMA transfers
61 * The PL08x has two flow control settings:
62 * - DMAC flow control: the transfer size defines the number of transfers
63 * which occur for the current LLI entry, and the DMAC raises TC at the
64 * end of every LLI entry. Observed behaviour shows the DMAC listening
65 * to both the BREQ and SREQ signals (contrary to documented),
66 * transferring data if either is active. The LBREQ and LSREQ signals
69 * - Peripheral flow control: the transfer size is ignored (and should be
70 * zero). The data is transferred from the current LLI entry, until
71 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
72 * will then move to the next LLI entry. Unsupported by PL080S.
74 #include <linux/amba/bus.h>
75 #include <linux/amba/pl08x.h>
76 #include <linux/debugfs.h>
77 #include <linux/delay.h>
78 #include <linux/device.h>
79 #include <linux/dmaengine.h>
80 #include <linux/dmapool.h>
81 #include <linux/dma-mapping.h>
82 #include <linux/export.h>
83 #include <linux/init.h>
84 #include <linux/interrupt.h>
85 #include <linux/module.h>
87 #include <linux/of_dma.h>
88 #include <linux/pm_runtime.h>
89 #include <linux/seq_file.h>
90 #include <linux/slab.h>
91 #include <linux/amba/pl080.h>
93 #include "dmaengine.h"
96 #define DRIVER_NAME "pl08xdmac"
98 #define PL80X_DMA_BUSWIDTHS \
99 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
100 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
101 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
102 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
104 static struct amba_driver pl08x_amba_driver
;
105 struct pl08x_driver_data
;
108 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
109 * @channels: the number of channels available in this variant
110 * @signals: the number of request signals available from the hardware
111 * @dualmaster: whether this version supports dual AHB masters or not.
112 * @nomadik: whether the channels have Nomadik security extension bits
113 * that need to be checked for permission before use and some registers are
115 * @pl080s: whether this version is a PL080S, which has separate register and
116 * LLI word for transfer size.
117 * @max_transfer_size: the maximum single element transfer size for this
127 u32 max_transfer_size
;
131 * struct pl08x_bus_data - information of source or destination
132 * busses for a transfer
133 * @addr: current address
134 * @maxwidth: the maximum width of a transfer on this bus
135 * @buswidth: the width of this bus in bytes: 1, 2 or 4
137 struct pl08x_bus_data
{
143 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
146 * struct pl08x_phy_chan - holder for the physical channels
147 * @id: physical index to this channel
148 * @lock: a lock to use when altering an instance of this struct
149 * @serving: the virtual channel currently being served by this physical
151 * @locked: channel unavailable for the system, e.g. dedicated to secure
154 struct pl08x_phy_chan
{
157 void __iomem
*reg_config
;
159 struct pl08x_dma_chan
*serving
;
164 * struct pl08x_sg - structure containing data per sg
165 * @src_addr: src address of sg
166 * @dst_addr: dst address of sg
167 * @len: transfer len in bytes
168 * @node: node for txd's dsg_list
174 struct list_head node
;
178 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
179 * @vd: virtual DMA descriptor
180 * @dsg_list: list of children sg's
181 * @llis_bus: DMA memory address (physical) start for the LLIs
182 * @llis_va: virtual memory address start for the LLIs
183 * @cctl: control reg values for current txd
184 * @ccfg: config reg values for current txd
185 * @done: this marks completed descriptors, which should not have their
187 * @cyclic: indicate cyclic transfers
190 struct virt_dma_desc vd
;
191 struct list_head dsg_list
;
194 /* Default cctl value for LLIs */
197 * Settings to be put into the physical channel when we
198 * trigger this txd. Other registers are in llis_va[0].
206 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
208 * @PL08X_CHAN_IDLE: the channel is idle
209 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
210 * channel and is running a transfer on it
211 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
212 * channel, but the transfer is currently paused
213 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
214 * channel to become available (only pertains to memcpy channels)
216 enum pl08x_dma_chan_state
{
224 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
225 * @vc: wrappped virtual channel
226 * @phychan: the physical channel utilized by this channel, if there is one
227 * @name: name of channel
228 * @cd: channel platform data
229 * @runtime_addr: address for RX/TX according to the runtime config
230 * @at: active transaction on this channel
231 * @lock: a lock for this channel data
232 * @host: a pointer to the host (internal use)
233 * @state: whether the channel is idle, paused, running etc
234 * @slave: whether this channel is a device (slave) or for memcpy
235 * @signal: the physical DMA request signal which this channel is using
236 * @mux_use: count of descriptors using this DMA request signal setting
238 struct pl08x_dma_chan
{
239 struct virt_dma_chan vc
;
240 struct pl08x_phy_chan
*phychan
;
242 struct pl08x_channel_data
*cd
;
243 struct dma_slave_config cfg
;
244 struct pl08x_txd
*at
;
245 struct pl08x_driver_data
*host
;
246 enum pl08x_dma_chan_state state
;
253 * struct pl08x_driver_data - the local state holder for the PL08x
254 * @slave: slave engine for this instance
255 * @memcpy: memcpy engine for this instance
256 * @base: virtual memory base (remapped) for the PL08x
257 * @adev: the corresponding AMBA (PrimeCell) bus entry
258 * @vd: vendor data for this PL08x variant
259 * @pd: platform data passed in from the platform/machine
260 * @phy_chans: array of data for the physical channels
261 * @pool: a pool for the LLI descriptors
262 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
264 * @mem_buses: set to indicate memory transfers on AHB2.
265 * @lock: a spinlock for this struct
267 struct pl08x_driver_data
{
268 struct dma_device slave
;
269 struct dma_device memcpy
;
271 struct amba_device
*adev
;
272 const struct vendor_data
*vd
;
273 struct pl08x_platform_data
*pd
;
274 struct pl08x_phy_chan
*phy_chans
;
275 struct dma_pool
*pool
;
282 * PL08X specific defines
285 /* The order of words in an LLI. */
286 #define PL080_LLI_SRC 0
287 #define PL080_LLI_DST 1
288 #define PL080_LLI_LLI 2
289 #define PL080_LLI_CCTL 3
290 #define PL080S_LLI_CCTL2 4
292 /* Total words in an LLI. */
293 #define PL080_LLI_WORDS 4
294 #define PL080S_LLI_WORDS 8
297 * Number of LLIs in each LLI buffer allocated for one transfer
298 * (maximum times we call dma_pool_alloc on this pool without freeing)
300 #define MAX_NUM_TSFR_LLIS 512
301 #define PL08X_ALIGN 8
303 static inline struct pl08x_dma_chan
*to_pl08x_chan(struct dma_chan
*chan
)
305 return container_of(chan
, struct pl08x_dma_chan
, vc
.chan
);
308 static inline struct pl08x_txd
*to_pl08x_txd(struct dma_async_tx_descriptor
*tx
)
310 return container_of(tx
, struct pl08x_txd
, vd
.tx
);
316 * This gives us the DMA request input to the PL08x primecell which the
317 * peripheral described by the channel data will be routed to, possibly
318 * via a board/SoC specific external MUX. One important point to note
319 * here is that this does not depend on the physical channel.
321 static int pl08x_request_mux(struct pl08x_dma_chan
*plchan
)
323 const struct pl08x_platform_data
*pd
= plchan
->host
->pd
;
326 if (plchan
->mux_use
++ == 0 && pd
->get_xfer_signal
) {
327 ret
= pd
->get_xfer_signal(plchan
->cd
);
333 plchan
->signal
= ret
;
338 static void pl08x_release_mux(struct pl08x_dma_chan
*plchan
)
340 const struct pl08x_platform_data
*pd
= plchan
->host
->pd
;
342 if (plchan
->signal
>= 0) {
343 WARN_ON(plchan
->mux_use
== 0);
345 if (--plchan
->mux_use
== 0 && pd
->put_xfer_signal
) {
346 pd
->put_xfer_signal(plchan
->cd
, plchan
->signal
);
353 * Physical channel handling
356 /* Whether a certain channel is busy or not */
357 static int pl08x_phy_channel_busy(struct pl08x_phy_chan
*ch
)
361 val
= readl(ch
->reg_config
);
362 return val
& PL080_CONFIG_ACTIVE
;
365 static void pl08x_write_lli(struct pl08x_driver_data
*pl08x
,
366 struct pl08x_phy_chan
*phychan
, const u32
*lli
, u32 ccfg
)
368 if (pl08x
->vd
->pl080s
)
369 dev_vdbg(&pl08x
->adev
->dev
,
370 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
371 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
372 phychan
->id
, lli
[PL080_LLI_SRC
], lli
[PL080_LLI_DST
],
373 lli
[PL080_LLI_LLI
], lli
[PL080_LLI_CCTL
],
374 lli
[PL080S_LLI_CCTL2
], ccfg
);
376 dev_vdbg(&pl08x
->adev
->dev
,
377 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
378 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
379 phychan
->id
, lli
[PL080_LLI_SRC
], lli
[PL080_LLI_DST
],
380 lli
[PL080_LLI_LLI
], lli
[PL080_LLI_CCTL
], ccfg
);
382 writel_relaxed(lli
[PL080_LLI_SRC
], phychan
->base
+ PL080_CH_SRC_ADDR
);
383 writel_relaxed(lli
[PL080_LLI_DST
], phychan
->base
+ PL080_CH_DST_ADDR
);
384 writel_relaxed(lli
[PL080_LLI_LLI
], phychan
->base
+ PL080_CH_LLI
);
385 writel_relaxed(lli
[PL080_LLI_CCTL
], phychan
->base
+ PL080_CH_CONTROL
);
387 if (pl08x
->vd
->pl080s
)
388 writel_relaxed(lli
[PL080S_LLI_CCTL2
],
389 phychan
->base
+ PL080S_CH_CONTROL2
);
391 writel(ccfg
, phychan
->reg_config
);
395 * Set the initial DMA register values i.e. those for the first LLI
396 * The next LLI pointer and the configuration interrupt bit have
397 * been set when the LLIs were constructed. Poke them into the hardware
398 * and start the transfer.
400 static void pl08x_start_next_txd(struct pl08x_dma_chan
*plchan
)
402 struct pl08x_driver_data
*pl08x
= plchan
->host
;
403 struct pl08x_phy_chan
*phychan
= plchan
->phychan
;
404 struct virt_dma_desc
*vd
= vchan_next_desc(&plchan
->vc
);
405 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
408 list_del(&txd
->vd
.node
);
412 /* Wait for channel inactive */
413 while (pl08x_phy_channel_busy(phychan
))
416 pl08x_write_lli(pl08x
, phychan
, &txd
->llis_va
[0], txd
->ccfg
);
418 /* Enable the DMA channel */
419 /* Do not access config register until channel shows as disabled */
420 while (readl(pl08x
->base
+ PL080_EN_CHAN
) & (1 << phychan
->id
))
423 /* Do not access config register until channel shows as inactive */
424 val
= readl(phychan
->reg_config
);
425 while ((val
& PL080_CONFIG_ACTIVE
) || (val
& PL080_CONFIG_ENABLE
))
426 val
= readl(phychan
->reg_config
);
428 writel(val
| PL080_CONFIG_ENABLE
, phychan
->reg_config
);
432 * Pause the channel by setting the HALT bit.
434 * For M->P transfers, pause the DMAC first and then stop the peripheral -
435 * the FIFO can only drain if the peripheral is still requesting data.
436 * (note: this can still timeout if the DMAC FIFO never drains of data.)
438 * For P->M transfers, disable the peripheral first to stop it filling
439 * the DMAC FIFO, and then pause the DMAC.
441 static void pl08x_pause_phy_chan(struct pl08x_phy_chan
*ch
)
446 /* Set the HALT bit and wait for the FIFO to drain */
447 val
= readl(ch
->reg_config
);
448 val
|= PL080_CONFIG_HALT
;
449 writel(val
, ch
->reg_config
);
451 /* Wait for channel inactive */
452 for (timeout
= 1000; timeout
; timeout
--) {
453 if (!pl08x_phy_channel_busy(ch
))
457 if (pl08x_phy_channel_busy(ch
))
458 pr_err("pl08x: channel%u timeout waiting for pause\n", ch
->id
);
461 static void pl08x_resume_phy_chan(struct pl08x_phy_chan
*ch
)
465 /* Clear the HALT bit */
466 val
= readl(ch
->reg_config
);
467 val
&= ~PL080_CONFIG_HALT
;
468 writel(val
, ch
->reg_config
);
472 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
473 * clears any pending interrupt status. This should not be used for
474 * an on-going transfer, but as a method of shutting down a channel
475 * (eg, when it's no longer used) or terminating a transfer.
477 static void pl08x_terminate_phy_chan(struct pl08x_driver_data
*pl08x
,
478 struct pl08x_phy_chan
*ch
)
480 u32 val
= readl(ch
->reg_config
);
482 val
&= ~(PL080_CONFIG_ENABLE
| PL080_CONFIG_ERR_IRQ_MASK
|
483 PL080_CONFIG_TC_IRQ_MASK
);
485 writel(val
, ch
->reg_config
);
487 writel(1 << ch
->id
, pl08x
->base
+ PL080_ERR_CLEAR
);
488 writel(1 << ch
->id
, pl08x
->base
+ PL080_TC_CLEAR
);
491 static inline u32
get_bytes_in_cctl(u32 cctl
)
493 /* The source width defines the number of bytes */
494 u32 bytes
= cctl
& PL080_CONTROL_TRANSFER_SIZE_MASK
;
496 cctl
&= PL080_CONTROL_SWIDTH_MASK
;
498 switch (cctl
>> PL080_CONTROL_SWIDTH_SHIFT
) {
499 case PL080_WIDTH_8BIT
:
501 case PL080_WIDTH_16BIT
:
504 case PL080_WIDTH_32BIT
:
511 static inline u32
get_bytes_in_cctl_pl080s(u32 cctl
, u32 cctl1
)
513 /* The source width defines the number of bytes */
514 u32 bytes
= cctl1
& PL080S_CONTROL_TRANSFER_SIZE_MASK
;
516 cctl
&= PL080_CONTROL_SWIDTH_MASK
;
518 switch (cctl
>> PL080_CONTROL_SWIDTH_SHIFT
) {
519 case PL080_WIDTH_8BIT
:
521 case PL080_WIDTH_16BIT
:
524 case PL080_WIDTH_32BIT
:
531 /* The channel should be paused when calling this */
532 static u32
pl08x_getbytes_chan(struct pl08x_dma_chan
*plchan
)
534 struct pl08x_driver_data
*pl08x
= plchan
->host
;
535 const u32
*llis_va
, *llis_va_limit
;
536 struct pl08x_phy_chan
*ch
;
538 struct pl08x_txd
*txd
;
543 ch
= plchan
->phychan
;
550 * Follow the LLIs to get the number of remaining
551 * bytes in the currently active transaction.
553 clli
= readl(ch
->base
+ PL080_CH_LLI
) & ~PL080_LLI_LM_AHB2
;
555 /* First get the remaining bytes in the active transfer */
556 if (pl08x
->vd
->pl080s
)
557 bytes
= get_bytes_in_cctl_pl080s(
558 readl(ch
->base
+ PL080_CH_CONTROL
),
559 readl(ch
->base
+ PL080S_CH_CONTROL2
));
561 bytes
= get_bytes_in_cctl(readl(ch
->base
+ PL080_CH_CONTROL
));
566 llis_va
= txd
->llis_va
;
567 llis_bus
= txd
->llis_bus
;
569 llis_max_words
= pl08x
->lli_words
* MAX_NUM_TSFR_LLIS
;
570 BUG_ON(clli
< llis_bus
|| clli
>= llis_bus
+
571 sizeof(u32
) * llis_max_words
);
574 * Locate the next LLI - as this is an array,
575 * it's simple maths to find.
577 llis_va
+= (clli
- llis_bus
) / sizeof(u32
);
579 llis_va_limit
= llis_va
+ llis_max_words
;
581 for (; llis_va
< llis_va_limit
; llis_va
+= pl08x
->lli_words
) {
582 if (pl08x
->vd
->pl080s
)
583 bytes
+= get_bytes_in_cctl_pl080s(
584 llis_va
[PL080_LLI_CCTL
],
585 llis_va
[PL080S_LLI_CCTL2
]);
587 bytes
+= get_bytes_in_cctl(llis_va
[PL080_LLI_CCTL
]);
590 * A LLI pointer going backward terminates the LLI list
592 if (llis_va
[PL080_LLI_LLI
] <= clli
)
600 * Allocate a physical channel for a virtual channel
602 * Try to locate a physical channel to be used for this transfer. If all
603 * are taken return NULL and the requester will have to cope by using
604 * some fallback PIO mode or retrying later.
606 static struct pl08x_phy_chan
*
607 pl08x_get_phy_channel(struct pl08x_driver_data
*pl08x
,
608 struct pl08x_dma_chan
*virt_chan
)
610 struct pl08x_phy_chan
*ch
= NULL
;
614 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
615 ch
= &pl08x
->phy_chans
[i
];
617 spin_lock_irqsave(&ch
->lock
, flags
);
619 if (!ch
->locked
&& !ch
->serving
) {
620 ch
->serving
= virt_chan
;
621 spin_unlock_irqrestore(&ch
->lock
, flags
);
625 spin_unlock_irqrestore(&ch
->lock
, flags
);
628 if (i
== pl08x
->vd
->channels
) {
629 /* No physical channel available, cope with it */
636 /* Mark the physical channel as free. Note, this write is atomic. */
637 static inline void pl08x_put_phy_channel(struct pl08x_driver_data
*pl08x
,
638 struct pl08x_phy_chan
*ch
)
644 * Try to allocate a physical channel. When successful, assign it to
645 * this virtual channel, and initiate the next descriptor. The
646 * virtual channel lock must be held at this point.
648 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan
*plchan
)
650 struct pl08x_driver_data
*pl08x
= plchan
->host
;
651 struct pl08x_phy_chan
*ch
;
653 ch
= pl08x_get_phy_channel(pl08x
, plchan
);
655 dev_dbg(&pl08x
->adev
->dev
, "no physical channel available for xfer on %s\n", plchan
->name
);
656 plchan
->state
= PL08X_CHAN_WAITING
;
660 dev_dbg(&pl08x
->adev
->dev
, "allocated physical channel %d for xfer on %s\n",
661 ch
->id
, plchan
->name
);
663 plchan
->phychan
= ch
;
664 plchan
->state
= PL08X_CHAN_RUNNING
;
665 pl08x_start_next_txd(plchan
);
668 static void pl08x_phy_reassign_start(struct pl08x_phy_chan
*ch
,
669 struct pl08x_dma_chan
*plchan
)
671 struct pl08x_driver_data
*pl08x
= plchan
->host
;
673 dev_dbg(&pl08x
->adev
->dev
, "reassigned physical channel %d for xfer on %s\n",
674 ch
->id
, plchan
->name
);
677 * We do this without taking the lock; we're really only concerned
678 * about whether this pointer is NULL or not, and we're guaranteed
679 * that this will only be called when it _already_ is non-NULL.
681 ch
->serving
= plchan
;
682 plchan
->phychan
= ch
;
683 plchan
->state
= PL08X_CHAN_RUNNING
;
684 pl08x_start_next_txd(plchan
);
688 * Free a physical DMA channel, potentially reallocating it to another
689 * virtual channel if we have any pending.
691 static void pl08x_phy_free(struct pl08x_dma_chan
*plchan
)
693 struct pl08x_driver_data
*pl08x
= plchan
->host
;
694 struct pl08x_dma_chan
*p
, *next
;
699 /* Find a waiting virtual channel for the next transfer. */
700 list_for_each_entry(p
, &pl08x
->memcpy
.channels
, vc
.chan
.device_node
)
701 if (p
->state
== PL08X_CHAN_WAITING
) {
707 list_for_each_entry(p
, &pl08x
->slave
.channels
, vc
.chan
.device_node
)
708 if (p
->state
== PL08X_CHAN_WAITING
) {
714 /* Ensure that the physical channel is stopped */
715 pl08x_terminate_phy_chan(pl08x
, plchan
->phychan
);
721 * Eww. We know this isn't going to deadlock
722 * but lockdep probably doesn't.
724 spin_lock(&next
->vc
.lock
);
725 /* Re-check the state now that we have the lock */
726 success
= next
->state
== PL08X_CHAN_WAITING
;
728 pl08x_phy_reassign_start(plchan
->phychan
, next
);
729 spin_unlock(&next
->vc
.lock
);
731 /* If the state changed, try to find another channel */
735 /* No more jobs, so free up the physical channel */
736 pl08x_put_phy_channel(pl08x
, plchan
->phychan
);
739 plchan
->phychan
= NULL
;
740 plchan
->state
= PL08X_CHAN_IDLE
;
747 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded
)
750 case PL080_WIDTH_8BIT
:
752 case PL080_WIDTH_16BIT
:
754 case PL080_WIDTH_32BIT
:
763 static inline u32
pl08x_cctl_bits(u32 cctl
, u8 srcwidth
, u8 dstwidth
,
768 /* Remove all src, dst and transfer size bits */
769 retbits
&= ~PL080_CONTROL_DWIDTH_MASK
;
770 retbits
&= ~PL080_CONTROL_SWIDTH_MASK
;
771 retbits
&= ~PL080_CONTROL_TRANSFER_SIZE_MASK
;
773 /* Then set the bits according to the parameters */
776 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
779 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
782 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
791 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
794 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
797 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
804 tsize
&= PL080_CONTROL_TRANSFER_SIZE_MASK
;
805 retbits
|= tsize
<< PL080_CONTROL_TRANSFER_SIZE_SHIFT
;
809 struct pl08x_lli_build_data
{
810 struct pl08x_txd
*txd
;
811 struct pl08x_bus_data srcbus
;
812 struct pl08x_bus_data dstbus
;
818 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
819 * victim in case src & dest are not similarly aligned. i.e. If after aligning
820 * masters address with width requirements of transfer (by sending few byte by
821 * byte data), slave is still not aligned, then its width will be reduced to
823 * - prefers the destination bus if both available
824 * - prefers bus with fixed address (i.e. peripheral)
826 static void pl08x_choose_master_bus(struct pl08x_lli_build_data
*bd
,
827 struct pl08x_bus_data
**mbus
, struct pl08x_bus_data
**sbus
, u32 cctl
)
829 if (!(cctl
& PL080_CONTROL_DST_INCR
)) {
832 } else if (!(cctl
& PL080_CONTROL_SRC_INCR
)) {
836 if (bd
->dstbus
.buswidth
>= bd
->srcbus
.buswidth
) {
847 * Fills in one LLI for a certain transfer descriptor and advance the counter
849 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data
*pl08x
,
850 struct pl08x_lli_build_data
*bd
,
851 int num_llis
, int len
, u32 cctl
, u32 cctl2
)
853 u32 offset
= num_llis
* pl08x
->lli_words
;
854 u32
*llis_va
= bd
->txd
->llis_va
+ offset
;
855 dma_addr_t llis_bus
= bd
->txd
->llis_bus
;
857 BUG_ON(num_llis
>= MAX_NUM_TSFR_LLIS
);
859 /* Advance the offset to next LLI. */
860 offset
+= pl08x
->lli_words
;
862 llis_va
[PL080_LLI_SRC
] = bd
->srcbus
.addr
;
863 llis_va
[PL080_LLI_DST
] = bd
->dstbus
.addr
;
864 llis_va
[PL080_LLI_LLI
] = (llis_bus
+ sizeof(u32
) * offset
);
865 llis_va
[PL080_LLI_LLI
] |= bd
->lli_bus
;
866 llis_va
[PL080_LLI_CCTL
] = cctl
;
867 if (pl08x
->vd
->pl080s
)
868 llis_va
[PL080S_LLI_CCTL2
] = cctl2
;
870 if (cctl
& PL080_CONTROL_SRC_INCR
)
871 bd
->srcbus
.addr
+= len
;
872 if (cctl
& PL080_CONTROL_DST_INCR
)
873 bd
->dstbus
.addr
+= len
;
875 BUG_ON(bd
->remainder
< len
);
877 bd
->remainder
-= len
;
880 static inline void prep_byte_width_lli(struct pl08x_driver_data
*pl08x
,
881 struct pl08x_lli_build_data
*bd
, u32
*cctl
, u32 len
,
882 int num_llis
, size_t *total_bytes
)
884 *cctl
= pl08x_cctl_bits(*cctl
, 1, 1, len
);
885 pl08x_fill_lli_for_desc(pl08x
, bd
, num_llis
, len
, *cctl
, len
);
886 (*total_bytes
) += len
;
890 static void pl08x_dump_lli(struct pl08x_driver_data
*pl08x
,
891 const u32
*llis_va
, int num_llis
)
895 if (pl08x
->vd
->pl080s
) {
896 dev_vdbg(&pl08x
->adev
->dev
,
897 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
898 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
899 for (i
= 0; i
< num_llis
; i
++) {
900 dev_vdbg(&pl08x
->adev
->dev
,
901 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
902 i
, llis_va
, llis_va
[PL080_LLI_SRC
],
903 llis_va
[PL080_LLI_DST
], llis_va
[PL080_LLI_LLI
],
904 llis_va
[PL080_LLI_CCTL
],
905 llis_va
[PL080S_LLI_CCTL2
]);
906 llis_va
+= pl08x
->lli_words
;
909 dev_vdbg(&pl08x
->adev
->dev
,
910 "%-3s %-9s %-10s %-10s %-10s %s\n",
911 "lli", "", "csrc", "cdst", "clli", "cctl");
912 for (i
= 0; i
< num_llis
; i
++) {
913 dev_vdbg(&pl08x
->adev
->dev
,
914 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
915 i
, llis_va
, llis_va
[PL080_LLI_SRC
],
916 llis_va
[PL080_LLI_DST
], llis_va
[PL080_LLI_LLI
],
917 llis_va
[PL080_LLI_CCTL
]);
918 llis_va
+= pl08x
->lli_words
;
923 static inline void pl08x_dump_lli(struct pl08x_driver_data
*pl08x
,
924 const u32
*llis_va
, int num_llis
) {}
928 * This fills in the table of LLIs for the transfer descriptor
929 * Note that we assume we never have to change the burst sizes
932 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data
*pl08x
,
933 struct pl08x_txd
*txd
)
935 struct pl08x_bus_data
*mbus
, *sbus
;
936 struct pl08x_lli_build_data bd
;
938 u32 cctl
, early_bytes
= 0;
939 size_t max_bytes_per_lli
, total_bytes
;
940 u32
*llis_va
, *last_lli
;
941 struct pl08x_sg
*dsg
;
943 txd
->llis_va
= dma_pool_alloc(pl08x
->pool
, GFP_NOWAIT
, &txd
->llis_bus
);
945 dev_err(&pl08x
->adev
->dev
, "%s no memory for llis\n", __func__
);
950 bd
.lli_bus
= (pl08x
->lli_buses
& PL08X_AHB2
) ? PL080_LLI_LM_AHB2
: 0;
953 /* Find maximum width of the source bus */
955 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_SWIDTH_MASK
) >>
956 PL080_CONTROL_SWIDTH_SHIFT
);
958 /* Find maximum width of the destination bus */
960 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_DWIDTH_MASK
) >>
961 PL080_CONTROL_DWIDTH_SHIFT
);
963 list_for_each_entry(dsg
, &txd
->dsg_list
, node
) {
967 bd
.srcbus
.addr
= dsg
->src_addr
;
968 bd
.dstbus
.addr
= dsg
->dst_addr
;
969 bd
.remainder
= dsg
->len
;
970 bd
.srcbus
.buswidth
= bd
.srcbus
.maxwidth
;
971 bd
.dstbus
.buswidth
= bd
.dstbus
.maxwidth
;
973 pl08x_choose_master_bus(&bd
, &mbus
, &sbus
, cctl
);
975 dev_vdbg(&pl08x
->adev
->dev
,
976 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
978 cctl
& PL080_CONTROL_SRC_INCR
? "+" : "",
981 cctl
& PL080_CONTROL_DST_INCR
? "+" : "",
984 dev_vdbg(&pl08x
->adev
->dev
, "mbus=%s sbus=%s\n",
985 mbus
== &bd
.srcbus
? "src" : "dst",
986 sbus
== &bd
.srcbus
? "src" : "dst");
989 * Zero length is only allowed if all these requirements are
991 * - flow controller is peripheral.
992 * - src.addr is aligned to src.width
993 * - dst.addr is aligned to dst.width
995 * sg_len == 1 should be true, as there can be two cases here:
997 * - Memory addresses are contiguous and are not scattered.
998 * Here, Only one sg will be passed by user driver, with
999 * memory address and zero length. We pass this to controller
1000 * and after the transfer it will receive the last burst
1001 * request from peripheral and so transfer finishes.
1003 * - Memory addresses are scattered and are not contiguous.
1004 * Here, Obviously as DMA controller doesn't know when a lli's
1005 * transfer gets over, it can't load next lli. So in this
1006 * case, there has to be an assumption that only one lli is
1007 * supported. Thus, we can't have scattered addresses.
1009 if (!bd
.remainder
) {
1010 u32 fc
= (txd
->ccfg
& PL080_CONFIG_FLOW_CONTROL_MASK
) >>
1011 PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1012 if (!((fc
>= PL080_FLOW_SRC2DST_DST
) &&
1013 (fc
<= PL080_FLOW_SRC2DST_SRC
))) {
1014 dev_err(&pl08x
->adev
->dev
, "%s sg len can't be zero",
1019 if (!IS_BUS_ALIGNED(&bd
.srcbus
) ||
1020 !IS_BUS_ALIGNED(&bd
.dstbus
)) {
1021 dev_err(&pl08x
->adev
->dev
,
1022 "%s src & dst address must be aligned to src"
1023 " & dst width if peripheral is flow controller",
1028 cctl
= pl08x_cctl_bits(cctl
, bd
.srcbus
.buswidth
,
1029 bd
.dstbus
.buswidth
, 0);
1030 pl08x_fill_lli_for_desc(pl08x
, &bd
, num_llis
++,
1036 * Send byte by byte for following cases
1037 * - Less than a bus width available
1038 * - until master bus is aligned
1040 if (bd
.remainder
< mbus
->buswidth
)
1041 early_bytes
= bd
.remainder
;
1042 else if (!IS_BUS_ALIGNED(mbus
)) {
1043 early_bytes
= mbus
->buswidth
-
1044 (mbus
->addr
& (mbus
->buswidth
- 1));
1045 if ((bd
.remainder
- early_bytes
) < mbus
->buswidth
)
1046 early_bytes
= bd
.remainder
;
1050 dev_vdbg(&pl08x
->adev
->dev
,
1051 "%s byte width LLIs (remain 0x%08zx)\n",
1052 __func__
, bd
.remainder
);
1053 prep_byte_width_lli(pl08x
, &bd
, &cctl
, early_bytes
,
1054 num_llis
++, &total_bytes
);
1059 * Master now aligned
1060 * - if slave is not then we must set its width down
1062 if (!IS_BUS_ALIGNED(sbus
)) {
1063 dev_dbg(&pl08x
->adev
->dev
,
1064 "%s set down bus width to one byte\n",
1071 * Bytes transferred = tsize * src width, not
1074 max_bytes_per_lli
= bd
.srcbus
.buswidth
*
1075 pl08x
->vd
->max_transfer_size
;
1076 dev_vdbg(&pl08x
->adev
->dev
,
1077 "%s max bytes per lli = %zu\n",
1078 __func__
, max_bytes_per_lli
);
1081 * Make largest possible LLIs until less than one bus
1084 while (bd
.remainder
> (mbus
->buswidth
- 1)) {
1085 size_t lli_len
, tsize
, width
;
1088 * If enough left try to send max possible,
1089 * otherwise try to send the remainder
1091 lli_len
= min(bd
.remainder
, max_bytes_per_lli
);
1094 * Check against maximum bus alignment:
1095 * Calculate actual transfer size in relation to
1096 * bus width an get a maximum remainder of the
1097 * highest bus width - 1
1099 width
= max(mbus
->buswidth
, sbus
->buswidth
);
1100 lli_len
= (lli_len
/ width
) * width
;
1101 tsize
= lli_len
/ bd
.srcbus
.buswidth
;
1103 dev_vdbg(&pl08x
->adev
->dev
,
1104 "%s fill lli with single lli chunk of "
1105 "size 0x%08zx (remainder 0x%08zx)\n",
1106 __func__
, lli_len
, bd
.remainder
);
1108 cctl
= pl08x_cctl_bits(cctl
, bd
.srcbus
.buswidth
,
1109 bd
.dstbus
.buswidth
, tsize
);
1110 pl08x_fill_lli_for_desc(pl08x
, &bd
, num_llis
++,
1111 lli_len
, cctl
, tsize
);
1112 total_bytes
+= lli_len
;
1116 * Send any odd bytes
1119 dev_vdbg(&pl08x
->adev
->dev
,
1120 "%s align with boundary, send odd bytes (remain %zu)\n",
1121 __func__
, bd
.remainder
);
1122 prep_byte_width_lli(pl08x
, &bd
, &cctl
,
1123 bd
.remainder
, num_llis
++, &total_bytes
);
1127 if (total_bytes
!= dsg
->len
) {
1128 dev_err(&pl08x
->adev
->dev
,
1129 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1130 __func__
, total_bytes
, dsg
->len
);
1134 if (num_llis
>= MAX_NUM_TSFR_LLIS
) {
1135 dev_err(&pl08x
->adev
->dev
,
1136 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1137 __func__
, MAX_NUM_TSFR_LLIS
);
1142 llis_va
= txd
->llis_va
;
1143 last_lli
= llis_va
+ (num_llis
- 1) * pl08x
->lli_words
;
1146 /* Link back to the first LLI. */
1147 last_lli
[PL080_LLI_LLI
] = txd
->llis_bus
| bd
.lli_bus
;
1149 /* The final LLI terminates the LLI. */
1150 last_lli
[PL080_LLI_LLI
] = 0;
1151 /* The final LLI element shall also fire an interrupt. */
1152 last_lli
[PL080_LLI_CCTL
] |= PL080_CONTROL_TC_IRQ_EN
;
1155 pl08x_dump_lli(pl08x
, llis_va
, num_llis
);
1160 static void pl08x_free_txd(struct pl08x_driver_data
*pl08x
,
1161 struct pl08x_txd
*txd
)
1163 struct pl08x_sg
*dsg
, *_dsg
;
1166 dma_pool_free(pl08x
->pool
, txd
->llis_va
, txd
->llis_bus
);
1168 list_for_each_entry_safe(dsg
, _dsg
, &txd
->dsg_list
, node
) {
1169 list_del(&dsg
->node
);
1176 static void pl08x_desc_free(struct virt_dma_desc
*vd
)
1178 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
1179 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(vd
->tx
.chan
);
1181 dma_descriptor_unmap(&vd
->tx
);
1183 pl08x_release_mux(plchan
);
1185 pl08x_free_txd(plchan
->host
, txd
);
1188 static void pl08x_free_txd_list(struct pl08x_driver_data
*pl08x
,
1189 struct pl08x_dma_chan
*plchan
)
1193 vchan_get_all_descriptors(&plchan
->vc
, &head
);
1194 vchan_dma_desc_free_list(&plchan
->vc
, &head
);
1198 * The DMA ENGINE API
1200 static void pl08x_free_chan_resources(struct dma_chan
*chan
)
1202 /* Ensure all queued descriptors are freed */
1203 vchan_free_chan_resources(to_virt_chan(chan
));
1206 static struct dma_async_tx_descriptor
*pl08x_prep_dma_interrupt(
1207 struct dma_chan
*chan
, unsigned long flags
)
1209 struct dma_async_tx_descriptor
*retval
= NULL
;
1215 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1216 * If slaves are relying on interrupts to signal completion this function
1217 * must not be called with interrupts disabled.
1219 static enum dma_status
pl08x_dma_tx_status(struct dma_chan
*chan
,
1220 dma_cookie_t cookie
, struct dma_tx_state
*txstate
)
1222 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1223 struct virt_dma_desc
*vd
;
1224 unsigned long flags
;
1225 enum dma_status ret
;
1228 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1229 if (ret
== DMA_COMPLETE
)
1233 * There's no point calculating the residue if there's
1234 * no txstate to store the value.
1237 if (plchan
->state
== PL08X_CHAN_PAUSED
)
1242 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1243 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1244 if (ret
!= DMA_COMPLETE
) {
1245 vd
= vchan_find_desc(&plchan
->vc
, cookie
);
1247 /* On the issued list, so hasn't been processed yet */
1248 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
1249 struct pl08x_sg
*dsg
;
1251 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
1254 bytes
= pl08x_getbytes_chan(plchan
);
1257 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1260 * This cookie not complete yet
1261 * Get number of bytes left in the active transactions and queue
1263 dma_set_residue(txstate
, bytes
);
1265 if (plchan
->state
== PL08X_CHAN_PAUSED
&& ret
== DMA_IN_PROGRESS
)
1268 /* Whether waiting or running, we're in progress */
1272 /* PrimeCell DMA extension */
1273 struct burst_table
{
1278 static const struct burst_table burst_sizes
[] = {
1281 .reg
= PL080_BSIZE_256
,
1285 .reg
= PL080_BSIZE_128
,
1289 .reg
= PL080_BSIZE_64
,
1293 .reg
= PL080_BSIZE_32
,
1297 .reg
= PL080_BSIZE_16
,
1301 .reg
= PL080_BSIZE_8
,
1305 .reg
= PL080_BSIZE_4
,
1309 .reg
= PL080_BSIZE_1
,
1314 * Given the source and destination available bus masks, select which
1315 * will be routed to each port. We try to have source and destination
1316 * on separate ports, but always respect the allowable settings.
1318 static u32
pl08x_select_bus(u8 src
, u8 dst
)
1322 if (!(dst
& PL08X_AHB1
) || ((dst
& PL08X_AHB2
) && (src
& PL08X_AHB1
)))
1323 cctl
|= PL080_CONTROL_DST_AHB2
;
1324 if (!(src
& PL08X_AHB1
) || ((src
& PL08X_AHB2
) && !(dst
& PL08X_AHB2
)))
1325 cctl
|= PL080_CONTROL_SRC_AHB2
;
1330 static u32
pl08x_cctl(u32 cctl
)
1332 cctl
&= ~(PL080_CONTROL_SRC_AHB2
| PL080_CONTROL_DST_AHB2
|
1333 PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
|
1334 PL080_CONTROL_PROT_MASK
);
1336 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1337 return cctl
| PL080_CONTROL_PROT_SYS
;
1340 static u32
pl08x_width(enum dma_slave_buswidth width
)
1343 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1344 return PL080_WIDTH_8BIT
;
1345 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1346 return PL080_WIDTH_16BIT
;
1347 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1348 return PL080_WIDTH_32BIT
;
1354 static u32
pl08x_burst(u32 maxburst
)
1358 for (i
= 0; i
< ARRAY_SIZE(burst_sizes
); i
++)
1359 if (burst_sizes
[i
].burstwords
<= maxburst
)
1362 return burst_sizes
[i
].reg
;
1365 static u32
pl08x_get_cctl(struct pl08x_dma_chan
*plchan
,
1366 enum dma_slave_buswidth addr_width
, u32 maxburst
)
1368 u32 width
, burst
, cctl
= 0;
1370 width
= pl08x_width(addr_width
);
1374 cctl
|= width
<< PL080_CONTROL_SWIDTH_SHIFT
;
1375 cctl
|= width
<< PL080_CONTROL_DWIDTH_SHIFT
;
1378 * If this channel will only request single transfers, set this
1379 * down to ONE element. Also select one element if no maxburst
1382 if (plchan
->cd
->single
)
1385 burst
= pl08x_burst(maxburst
);
1386 cctl
|= burst
<< PL080_CONTROL_SB_SIZE_SHIFT
;
1387 cctl
|= burst
<< PL080_CONTROL_DB_SIZE_SHIFT
;
1389 return pl08x_cctl(cctl
);
1393 * Slave transactions callback to the slave device to allow
1394 * synchronization of slave DMA signals with the DMAC enable
1396 static void pl08x_issue_pending(struct dma_chan
*chan
)
1398 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1399 unsigned long flags
;
1401 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1402 if (vchan_issue_pending(&plchan
->vc
)) {
1403 if (!plchan
->phychan
&& plchan
->state
!= PL08X_CHAN_WAITING
)
1404 pl08x_phy_alloc_and_start(plchan
);
1406 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1409 static struct pl08x_txd
*pl08x_get_txd(struct pl08x_dma_chan
*plchan
)
1411 struct pl08x_txd
*txd
= kzalloc(sizeof(*txd
), GFP_NOWAIT
);
1414 INIT_LIST_HEAD(&txd
->dsg_list
);
1416 /* Always enable error and terminal interrupts */
1417 txd
->ccfg
= PL080_CONFIG_ERR_IRQ_MASK
|
1418 PL080_CONFIG_TC_IRQ_MASK
;
1424 * Initialize a descriptor to be used by memcpy submit
1426 static struct dma_async_tx_descriptor
*pl08x_prep_dma_memcpy(
1427 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
1428 size_t len
, unsigned long flags
)
1430 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1431 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1432 struct pl08x_txd
*txd
;
1433 struct pl08x_sg
*dsg
;
1436 txd
= pl08x_get_txd(plchan
);
1438 dev_err(&pl08x
->adev
->dev
,
1439 "%s no memory for descriptor\n", __func__
);
1443 dsg
= kzalloc(sizeof(struct pl08x_sg
), GFP_NOWAIT
);
1445 pl08x_free_txd(pl08x
, txd
);
1446 dev_err(&pl08x
->adev
->dev
, "%s no memory for pl080 sg\n",
1450 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
1452 dsg
->src_addr
= src
;
1453 dsg
->dst_addr
= dest
;
1456 /* Set platform data for m2m */
1457 txd
->ccfg
|= PL080_FLOW_MEM2MEM
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1458 txd
->cctl
= pl08x
->pd
->memcpy_channel
.cctl_memcpy
&
1459 ~(PL080_CONTROL_DST_AHB2
| PL080_CONTROL_SRC_AHB2
);
1461 /* Both to be incremented or the code will break */
1462 txd
->cctl
|= PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
;
1464 if (pl08x
->vd
->dualmaster
)
1465 txd
->cctl
|= pl08x_select_bus(pl08x
->mem_buses
,
1468 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
1470 pl08x_free_txd(pl08x
, txd
);
1474 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
1477 static struct pl08x_txd
*pl08x_init_txd(
1478 struct dma_chan
*chan
,
1479 enum dma_transfer_direction direction
,
1480 dma_addr_t
*slave_addr
)
1482 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1483 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1484 struct pl08x_txd
*txd
;
1485 enum dma_slave_buswidth addr_width
;
1487 u8 src_buses
, dst_buses
;
1490 txd
= pl08x_get_txd(plchan
);
1492 dev_err(&pl08x
->adev
->dev
, "%s no txd\n", __func__
);
1497 * Set up addresses, the PrimeCell configured address
1498 * will take precedence since this may configure the
1499 * channel target address dynamically at runtime.
1501 if (direction
== DMA_MEM_TO_DEV
) {
1502 cctl
= PL080_CONTROL_SRC_INCR
;
1503 *slave_addr
= plchan
->cfg
.dst_addr
;
1504 addr_width
= plchan
->cfg
.dst_addr_width
;
1505 maxburst
= plchan
->cfg
.dst_maxburst
;
1506 src_buses
= pl08x
->mem_buses
;
1507 dst_buses
= plchan
->cd
->periph_buses
;
1508 } else if (direction
== DMA_DEV_TO_MEM
) {
1509 cctl
= PL080_CONTROL_DST_INCR
;
1510 *slave_addr
= plchan
->cfg
.src_addr
;
1511 addr_width
= plchan
->cfg
.src_addr_width
;
1512 maxburst
= plchan
->cfg
.src_maxburst
;
1513 src_buses
= plchan
->cd
->periph_buses
;
1514 dst_buses
= pl08x
->mem_buses
;
1516 pl08x_free_txd(pl08x
, txd
);
1517 dev_err(&pl08x
->adev
->dev
,
1518 "%s direction unsupported\n", __func__
);
1522 cctl
|= pl08x_get_cctl(plchan
, addr_width
, maxburst
);
1524 pl08x_free_txd(pl08x
, txd
);
1525 dev_err(&pl08x
->adev
->dev
,
1526 "DMA slave configuration botched?\n");
1530 txd
->cctl
= cctl
| pl08x_select_bus(src_buses
, dst_buses
);
1532 if (plchan
->cfg
.device_fc
)
1533 tmp
= (direction
== DMA_MEM_TO_DEV
) ? PL080_FLOW_MEM2PER_PER
:
1534 PL080_FLOW_PER2MEM_PER
;
1536 tmp
= (direction
== DMA_MEM_TO_DEV
) ? PL080_FLOW_MEM2PER
:
1539 txd
->ccfg
|= tmp
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1541 ret
= pl08x_request_mux(plchan
);
1543 pl08x_free_txd(pl08x
, txd
);
1544 dev_dbg(&pl08x
->adev
->dev
,
1545 "unable to mux for transfer on %s due to platform restrictions\n",
1550 dev_dbg(&pl08x
->adev
->dev
, "allocated DMA request signal %d for xfer on %s\n",
1551 plchan
->signal
, plchan
->name
);
1553 /* Assign the flow control signal to this channel */
1554 if (direction
== DMA_MEM_TO_DEV
)
1555 txd
->ccfg
|= plchan
->signal
<< PL080_CONFIG_DST_SEL_SHIFT
;
1557 txd
->ccfg
|= plchan
->signal
<< PL080_CONFIG_SRC_SEL_SHIFT
;
1562 static int pl08x_tx_add_sg(struct pl08x_txd
*txd
,
1563 enum dma_transfer_direction direction
,
1564 dma_addr_t slave_addr
,
1565 dma_addr_t buf_addr
,
1568 struct pl08x_sg
*dsg
;
1570 dsg
= kzalloc(sizeof(struct pl08x_sg
), GFP_NOWAIT
);
1574 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
1577 if (direction
== DMA_MEM_TO_DEV
) {
1578 dsg
->src_addr
= buf_addr
;
1579 dsg
->dst_addr
= slave_addr
;
1581 dsg
->src_addr
= slave_addr
;
1582 dsg
->dst_addr
= buf_addr
;
1588 static struct dma_async_tx_descriptor
*pl08x_prep_slave_sg(
1589 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1590 unsigned int sg_len
, enum dma_transfer_direction direction
,
1591 unsigned long flags
, void *context
)
1593 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1594 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1595 struct pl08x_txd
*txd
;
1596 struct scatterlist
*sg
;
1598 dma_addr_t slave_addr
;
1600 dev_dbg(&pl08x
->adev
->dev
, "%s prepare transaction of %d bytes from %s\n",
1601 __func__
, sg_dma_len(sgl
), plchan
->name
);
1603 txd
= pl08x_init_txd(chan
, direction
, &slave_addr
);
1607 for_each_sg(sgl
, sg
, sg_len
, tmp
) {
1608 ret
= pl08x_tx_add_sg(txd
, direction
, slave_addr
,
1612 pl08x_release_mux(plchan
);
1613 pl08x_free_txd(pl08x
, txd
);
1614 dev_err(&pl08x
->adev
->dev
, "%s no mem for pl080 sg\n",
1620 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
1622 pl08x_release_mux(plchan
);
1623 pl08x_free_txd(pl08x
, txd
);
1627 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
1630 static struct dma_async_tx_descriptor
*pl08x_prep_dma_cyclic(
1631 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
1632 size_t period_len
, enum dma_transfer_direction direction
,
1633 unsigned long flags
)
1635 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1636 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1637 struct pl08x_txd
*txd
;
1639 dma_addr_t slave_addr
;
1641 dev_dbg(&pl08x
->adev
->dev
,
1642 "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
1643 __func__
, period_len
, buf_len
,
1644 direction
== DMA_MEM_TO_DEV
? "to" : "from",
1647 txd
= pl08x_init_txd(chan
, direction
, &slave_addr
);
1652 txd
->cctl
|= PL080_CONTROL_TC_IRQ_EN
;
1653 for (tmp
= 0; tmp
< buf_len
; tmp
+= period_len
) {
1654 ret
= pl08x_tx_add_sg(txd
, direction
, slave_addr
,
1655 buf_addr
+ tmp
, period_len
);
1657 pl08x_release_mux(plchan
);
1658 pl08x_free_txd(pl08x
, txd
);
1663 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
1665 pl08x_release_mux(plchan
);
1666 pl08x_free_txd(pl08x
, txd
);
1670 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
1673 static int pl08x_config(struct dma_chan
*chan
,
1674 struct dma_slave_config
*config
)
1676 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1677 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1682 /* Reject definitely invalid configurations */
1683 if (config
->src_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
||
1684 config
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
)
1687 if (config
->device_fc
&& pl08x
->vd
->pl080s
) {
1688 dev_err(&pl08x
->adev
->dev
,
1689 "%s: PL080S does not support peripheral flow control\n",
1694 plchan
->cfg
= *config
;
1699 static int pl08x_terminate_all(struct dma_chan
*chan
)
1701 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1702 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1703 unsigned long flags
;
1705 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1706 if (!plchan
->phychan
&& !plchan
->at
) {
1707 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1711 plchan
->state
= PL08X_CHAN_IDLE
;
1713 if (plchan
->phychan
) {
1715 * Mark physical channel as free and free any slave
1718 pl08x_phy_free(plchan
);
1720 /* Dequeue jobs and free LLIs */
1722 pl08x_desc_free(&plchan
->at
->vd
);
1725 /* Dequeue jobs not yet fired as well */
1726 pl08x_free_txd_list(pl08x
, plchan
);
1728 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1733 static int pl08x_pause(struct dma_chan
*chan
)
1735 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1736 unsigned long flags
;
1739 * Anything succeeds on channels with no physical allocation and
1740 * no queued transfers.
1742 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1743 if (!plchan
->phychan
&& !plchan
->at
) {
1744 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1748 pl08x_pause_phy_chan(plchan
->phychan
);
1749 plchan
->state
= PL08X_CHAN_PAUSED
;
1751 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1756 static int pl08x_resume(struct dma_chan
*chan
)
1758 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1759 unsigned long flags
;
1762 * Anything succeeds on channels with no physical allocation and
1763 * no queued transfers.
1765 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1766 if (!plchan
->phychan
&& !plchan
->at
) {
1767 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1771 pl08x_resume_phy_chan(plchan
->phychan
);
1772 plchan
->state
= PL08X_CHAN_RUNNING
;
1774 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1779 bool pl08x_filter_id(struct dma_chan
*chan
, void *chan_id
)
1781 struct pl08x_dma_chan
*plchan
;
1782 char *name
= chan_id
;
1784 /* Reject channels for devices not bound to this driver */
1785 if (chan
->device
->dev
->driver
!= &pl08x_amba_driver
.drv
)
1788 plchan
= to_pl08x_chan(chan
);
1790 /* Check that the channel is not taken! */
1791 if (!strcmp(plchan
->name
, name
))
1796 EXPORT_SYMBOL_GPL(pl08x_filter_id
);
1799 * Just check that the device is there and active
1800 * TODO: turn this bit on/off depending on the number of physical channels
1801 * actually used, if it is zero... well shut it off. That will save some
1802 * power. Cut the clock at the same time.
1804 static void pl08x_ensure_on(struct pl08x_driver_data
*pl08x
)
1806 /* The Nomadik variant does not have the config register */
1807 if (pl08x
->vd
->nomadik
)
1809 writel(PL080_CONFIG_ENABLE
, pl08x
->base
+ PL080_CONFIG
);
1812 static irqreturn_t
pl08x_irq(int irq
, void *dev
)
1814 struct pl08x_driver_data
*pl08x
= dev
;
1815 u32 mask
= 0, err
, tc
, i
;
1817 /* check & clear - ERR & TC interrupts */
1818 err
= readl(pl08x
->base
+ PL080_ERR_STATUS
);
1820 dev_err(&pl08x
->adev
->dev
, "%s error interrupt, register value 0x%08x\n",
1822 writel(err
, pl08x
->base
+ PL080_ERR_CLEAR
);
1824 tc
= readl(pl08x
->base
+ PL080_TC_STATUS
);
1826 writel(tc
, pl08x
->base
+ PL080_TC_CLEAR
);
1831 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1832 if (((1 << i
) & err
) || ((1 << i
) & tc
)) {
1833 /* Locate physical channel */
1834 struct pl08x_phy_chan
*phychan
= &pl08x
->phy_chans
[i
];
1835 struct pl08x_dma_chan
*plchan
= phychan
->serving
;
1836 struct pl08x_txd
*tx
;
1839 dev_err(&pl08x
->adev
->dev
,
1840 "%s Error TC interrupt on unused channel: 0x%08x\n",
1845 spin_lock(&plchan
->vc
.lock
);
1847 if (tx
&& tx
->cyclic
) {
1848 vchan_cyclic_callback(&tx
->vd
);
1852 * This descriptor is done, release its mux
1855 pl08x_release_mux(plchan
);
1857 vchan_cookie_complete(&tx
->vd
);
1860 * And start the next descriptor (if any),
1861 * otherwise free this channel.
1863 if (vchan_next_desc(&plchan
->vc
))
1864 pl08x_start_next_txd(plchan
);
1866 pl08x_phy_free(plchan
);
1868 spin_unlock(&plchan
->vc
.lock
);
1874 return mask
? IRQ_HANDLED
: IRQ_NONE
;
1877 static void pl08x_dma_slave_init(struct pl08x_dma_chan
*chan
)
1880 chan
->name
= chan
->cd
->bus_id
;
1881 chan
->cfg
.src_addr
= chan
->cd
->addr
;
1882 chan
->cfg
.dst_addr
= chan
->cd
->addr
;
1886 * Initialise the DMAC memcpy/slave channels.
1887 * Make a local wrapper to hold required data
1889 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data
*pl08x
,
1890 struct dma_device
*dmadev
, unsigned int channels
, bool slave
)
1892 struct pl08x_dma_chan
*chan
;
1895 INIT_LIST_HEAD(&dmadev
->channels
);
1898 * Register as many many memcpy as we have physical channels,
1899 * we won't always be able to use all but the code will have
1900 * to cope with that situation.
1902 for (i
= 0; i
< channels
; i
++) {
1903 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
1905 dev_err(&pl08x
->adev
->dev
,
1906 "%s no memory for channel\n", __func__
);
1911 chan
->state
= PL08X_CHAN_IDLE
;
1915 chan
->cd
= &pl08x
->pd
->slave_channels
[i
];
1917 * Some implementations have muxed signals, whereas some
1918 * use a mux in front of the signals and need dynamic
1919 * assignment of signals.
1922 pl08x_dma_slave_init(chan
);
1924 chan
->cd
= &pl08x
->pd
->memcpy_channel
;
1925 chan
->name
= kasprintf(GFP_KERNEL
, "memcpy%d", i
);
1931 dev_dbg(&pl08x
->adev
->dev
,
1932 "initialize virtual channel \"%s\"\n",
1935 chan
->vc
.desc_free
= pl08x_desc_free
;
1936 vchan_init(&chan
->vc
, dmadev
);
1938 dev_info(&pl08x
->adev
->dev
, "initialized %d virtual %s channels\n",
1939 i
, slave
? "slave" : "memcpy");
1943 static void pl08x_free_virtual_channels(struct dma_device
*dmadev
)
1945 struct pl08x_dma_chan
*chan
= NULL
;
1946 struct pl08x_dma_chan
*next
;
1948 list_for_each_entry_safe(chan
,
1949 next
, &dmadev
->channels
, vc
.chan
.device_node
) {
1950 list_del(&chan
->vc
.chan
.device_node
);
1955 #ifdef CONFIG_DEBUG_FS
1956 static const char *pl08x_state_str(enum pl08x_dma_chan_state state
)
1959 case PL08X_CHAN_IDLE
:
1961 case PL08X_CHAN_RUNNING
:
1963 case PL08X_CHAN_PAUSED
:
1965 case PL08X_CHAN_WAITING
:
1970 return "UNKNOWN STATE";
1973 static int pl08x_debugfs_show(struct seq_file
*s
, void *data
)
1975 struct pl08x_driver_data
*pl08x
= s
->private;
1976 struct pl08x_dma_chan
*chan
;
1977 struct pl08x_phy_chan
*ch
;
1978 unsigned long flags
;
1981 seq_printf(s
, "PL08x physical channels:\n");
1982 seq_printf(s
, "CHANNEL:\tUSER:\n");
1983 seq_printf(s
, "--------\t-----\n");
1984 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1985 struct pl08x_dma_chan
*virt_chan
;
1987 ch
= &pl08x
->phy_chans
[i
];
1989 spin_lock_irqsave(&ch
->lock
, flags
);
1990 virt_chan
= ch
->serving
;
1992 seq_printf(s
, "%d\t\t%s%s\n",
1994 virt_chan
? virt_chan
->name
: "(none)",
1995 ch
->locked
? " LOCKED" : "");
1997 spin_unlock_irqrestore(&ch
->lock
, flags
);
2000 seq_printf(s
, "\nPL08x virtual memcpy channels:\n");
2001 seq_printf(s
, "CHANNEL:\tSTATE:\n");
2002 seq_printf(s
, "--------\t------\n");
2003 list_for_each_entry(chan
, &pl08x
->memcpy
.channels
, vc
.chan
.device_node
) {
2004 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
2005 pl08x_state_str(chan
->state
));
2008 seq_printf(s
, "\nPL08x virtual slave channels:\n");
2009 seq_printf(s
, "CHANNEL:\tSTATE:\n");
2010 seq_printf(s
, "--------\t------\n");
2011 list_for_each_entry(chan
, &pl08x
->slave
.channels
, vc
.chan
.device_node
) {
2012 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
2013 pl08x_state_str(chan
->state
));
2019 static int pl08x_debugfs_open(struct inode
*inode
, struct file
*file
)
2021 return single_open(file
, pl08x_debugfs_show
, inode
->i_private
);
2024 static const struct file_operations pl08x_debugfs_operations
= {
2025 .open
= pl08x_debugfs_open
,
2027 .llseek
= seq_lseek
,
2028 .release
= single_release
,
2031 static void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
2033 /* Expose a simple debugfs interface to view all clocks */
2034 (void) debugfs_create_file(dev_name(&pl08x
->adev
->dev
),
2035 S_IFREG
| S_IRUGO
, NULL
, pl08x
,
2036 &pl08x_debugfs_operations
);
2040 static inline void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
2046 static struct dma_chan
*pl08x_find_chan_id(struct pl08x_driver_data
*pl08x
,
2049 struct pl08x_dma_chan
*chan
;
2051 list_for_each_entry(chan
, &pl08x
->slave
.channels
, vc
.chan
.device_node
) {
2052 if (chan
->signal
== id
)
2053 return &chan
->vc
.chan
;
2059 static struct dma_chan
*pl08x_of_xlate(struct of_phandle_args
*dma_spec
,
2060 struct of_dma
*ofdma
)
2062 struct pl08x_driver_data
*pl08x
= ofdma
->of_dma_data
;
2063 struct dma_chan
*dma_chan
;
2064 struct pl08x_dma_chan
*plchan
;
2069 if (dma_spec
->args_count
!= 2) {
2070 dev_err(&pl08x
->adev
->dev
,
2071 "DMA channel translation requires two cells\n");
2075 dma_chan
= pl08x_find_chan_id(pl08x
, dma_spec
->args
[0]);
2077 dev_err(&pl08x
->adev
->dev
,
2078 "DMA slave channel not found\n");
2082 plchan
= to_pl08x_chan(dma_chan
);
2083 dev_dbg(&pl08x
->adev
->dev
,
2084 "translated channel for signal %d\n",
2087 /* Augment channel data for applicable AHB buses */
2088 plchan
->cd
->periph_buses
= dma_spec
->args
[1];
2089 return dma_get_slave_channel(dma_chan
);
2092 static int pl08x_of_probe(struct amba_device
*adev
,
2093 struct pl08x_driver_data
*pl08x
,
2094 struct device_node
*np
)
2096 struct pl08x_platform_data
*pd
;
2097 struct pl08x_channel_data
*chanp
= NULL
;
2098 u32 cctl_memcpy
= 0;
2103 pd
= devm_kzalloc(&adev
->dev
, sizeof(*pd
), GFP_KERNEL
);
2107 /* Eligible bus masters for fetching LLIs */
2108 if (of_property_read_bool(np
, "lli-bus-interface-ahb1"))
2109 pd
->lli_buses
|= PL08X_AHB1
;
2110 if (of_property_read_bool(np
, "lli-bus-interface-ahb2"))
2111 pd
->lli_buses
|= PL08X_AHB2
;
2112 if (!pd
->lli_buses
) {
2113 dev_info(&adev
->dev
, "no bus masters for LLIs stated, assume all\n");
2114 pd
->lli_buses
|= PL08X_AHB1
| PL08X_AHB2
;
2117 /* Eligible bus masters for memory access */
2118 if (of_property_read_bool(np
, "mem-bus-interface-ahb1"))
2119 pd
->mem_buses
|= PL08X_AHB1
;
2120 if (of_property_read_bool(np
, "mem-bus-interface-ahb2"))
2121 pd
->mem_buses
|= PL08X_AHB2
;
2122 if (!pd
->mem_buses
) {
2123 dev_info(&adev
->dev
, "no bus masters for memory stated, assume all\n");
2124 pd
->mem_buses
|= PL08X_AHB1
| PL08X_AHB2
;
2127 /* Parse the memcpy channel properties */
2128 ret
= of_property_read_u32(np
, "memcpy-burst-size", &val
);
2130 dev_info(&adev
->dev
, "no memcpy burst size specified, using 1 byte\n");
2135 dev_err(&adev
->dev
, "illegal burst size for memcpy, set to 1\n");
2138 cctl_memcpy
|= PL080_BSIZE_1
<< PL080_CONTROL_SB_SIZE_SHIFT
|
2139 PL080_BSIZE_1
<< PL080_CONTROL_DB_SIZE_SHIFT
;
2142 cctl_memcpy
|= PL080_BSIZE_4
<< PL080_CONTROL_SB_SIZE_SHIFT
|
2143 PL080_BSIZE_4
<< PL080_CONTROL_DB_SIZE_SHIFT
;
2146 cctl_memcpy
|= PL080_BSIZE_8
<< PL080_CONTROL_SB_SIZE_SHIFT
|
2147 PL080_BSIZE_8
<< PL080_CONTROL_DB_SIZE_SHIFT
;
2150 cctl_memcpy
|= PL080_BSIZE_16
<< PL080_CONTROL_SB_SIZE_SHIFT
|
2151 PL080_BSIZE_16
<< PL080_CONTROL_DB_SIZE_SHIFT
;
2154 cctl_memcpy
|= PL080_BSIZE_32
<< PL080_CONTROL_SB_SIZE_SHIFT
|
2155 PL080_BSIZE_32
<< PL080_CONTROL_DB_SIZE_SHIFT
;
2158 cctl_memcpy
|= PL080_BSIZE_64
<< PL080_CONTROL_SB_SIZE_SHIFT
|
2159 PL080_BSIZE_64
<< PL080_CONTROL_DB_SIZE_SHIFT
;
2162 cctl_memcpy
|= PL080_BSIZE_128
<< PL080_CONTROL_SB_SIZE_SHIFT
|
2163 PL080_BSIZE_128
<< PL080_CONTROL_DB_SIZE_SHIFT
;
2166 cctl_memcpy
|= PL080_BSIZE_256
<< PL080_CONTROL_SB_SIZE_SHIFT
|
2167 PL080_BSIZE_256
<< PL080_CONTROL_DB_SIZE_SHIFT
;
2171 ret
= of_property_read_u32(np
, "memcpy-bus-width", &val
);
2173 dev_info(&adev
->dev
, "no memcpy bus width specified, using 8 bits\n");
2178 dev_err(&adev
->dev
, "illegal bus width for memcpy, set to 8 bits\n");
2181 cctl_memcpy
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_SWIDTH_SHIFT
|
2182 PL080_WIDTH_8BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
2185 cctl_memcpy
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_SWIDTH_SHIFT
|
2186 PL080_WIDTH_16BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
2189 cctl_memcpy
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_SWIDTH_SHIFT
|
2190 PL080_WIDTH_32BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
2194 /* This is currently the only thing making sense */
2195 cctl_memcpy
|= PL080_CONTROL_PROT_SYS
;
2197 /* Set up memcpy channel */
2198 pd
->memcpy_channel
.bus_id
= "memcpy";
2199 pd
->memcpy_channel
.cctl_memcpy
= cctl_memcpy
;
2200 /* Use the buses that can access memory, obviously */
2201 pd
->memcpy_channel
.periph_buses
= pd
->mem_buses
;
2204 * Allocate channel data for all possible slave channels (one
2205 * for each possible signal), channels will then be allocated
2206 * for a device and have it's AHB interfaces set up at
2209 chanp
= devm_kcalloc(&adev
->dev
,
2211 sizeof(struct pl08x_channel_data
),
2216 pd
->slave_channels
= chanp
;
2217 for (i
= 0; i
< pl08x
->vd
->signals
; i
++) {
2218 /* chanp->periph_buses will be assigned at translation */
2219 chanp
->bus_id
= kasprintf(GFP_KERNEL
, "slave%d", i
);
2222 pd
->num_slave_channels
= pl08x
->vd
->signals
;
2226 return of_dma_controller_register(adev
->dev
.of_node
, pl08x_of_xlate
,
2230 static inline int pl08x_of_probe(struct amba_device
*adev
,
2231 struct pl08x_driver_data
*pl08x
,
2232 struct device_node
*np
)
2238 static int pl08x_probe(struct amba_device
*adev
, const struct amba_id
*id
)
2240 struct pl08x_driver_data
*pl08x
;
2241 const struct vendor_data
*vd
= id
->data
;
2242 struct device_node
*np
= adev
->dev
.of_node
;
2247 ret
= amba_request_regions(adev
, NULL
);
2251 /* Ensure that we can do DMA */
2252 ret
= dma_set_mask_and_coherent(&adev
->dev
, DMA_BIT_MASK(32));
2256 /* Create the driver state holder */
2257 pl08x
= kzalloc(sizeof(*pl08x
), GFP_KERNEL
);
2263 /* Assign useful pointers to the driver state */
2267 /* Initialize memcpy engine */
2268 dma_cap_set(DMA_MEMCPY
, pl08x
->memcpy
.cap_mask
);
2269 pl08x
->memcpy
.dev
= &adev
->dev
;
2270 pl08x
->memcpy
.device_free_chan_resources
= pl08x_free_chan_resources
;
2271 pl08x
->memcpy
.device_prep_dma_memcpy
= pl08x_prep_dma_memcpy
;
2272 pl08x
->memcpy
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
2273 pl08x
->memcpy
.device_tx_status
= pl08x_dma_tx_status
;
2274 pl08x
->memcpy
.device_issue_pending
= pl08x_issue_pending
;
2275 pl08x
->memcpy
.device_config
= pl08x_config
;
2276 pl08x
->memcpy
.device_pause
= pl08x_pause
;
2277 pl08x
->memcpy
.device_resume
= pl08x_resume
;
2278 pl08x
->memcpy
.device_terminate_all
= pl08x_terminate_all
;
2279 pl08x
->memcpy
.src_addr_widths
= PL80X_DMA_BUSWIDTHS
;
2280 pl08x
->memcpy
.dst_addr_widths
= PL80X_DMA_BUSWIDTHS
;
2281 pl08x
->memcpy
.directions
= BIT(DMA_MEM_TO_MEM
);
2282 pl08x
->memcpy
.residue_granularity
= DMA_RESIDUE_GRANULARITY_SEGMENT
;
2284 /* Initialize slave engine */
2285 dma_cap_set(DMA_SLAVE
, pl08x
->slave
.cap_mask
);
2286 dma_cap_set(DMA_CYCLIC
, pl08x
->slave
.cap_mask
);
2287 pl08x
->slave
.dev
= &adev
->dev
;
2288 pl08x
->slave
.device_free_chan_resources
= pl08x_free_chan_resources
;
2289 pl08x
->slave
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
2290 pl08x
->slave
.device_tx_status
= pl08x_dma_tx_status
;
2291 pl08x
->slave
.device_issue_pending
= pl08x_issue_pending
;
2292 pl08x
->slave
.device_prep_slave_sg
= pl08x_prep_slave_sg
;
2293 pl08x
->slave
.device_prep_dma_cyclic
= pl08x_prep_dma_cyclic
;
2294 pl08x
->slave
.device_config
= pl08x_config
;
2295 pl08x
->slave
.device_pause
= pl08x_pause
;
2296 pl08x
->slave
.device_resume
= pl08x_resume
;
2297 pl08x
->slave
.device_terminate_all
= pl08x_terminate_all
;
2298 pl08x
->slave
.src_addr_widths
= PL80X_DMA_BUSWIDTHS
;
2299 pl08x
->slave
.dst_addr_widths
= PL80X_DMA_BUSWIDTHS
;
2300 pl08x
->slave
.directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
2301 pl08x
->slave
.residue_granularity
= DMA_RESIDUE_GRANULARITY_SEGMENT
;
2303 /* Get the platform data */
2304 pl08x
->pd
= dev_get_platdata(&adev
->dev
);
2307 ret
= pl08x_of_probe(adev
, pl08x
, np
);
2309 goto out_no_platdata
;
2311 dev_err(&adev
->dev
, "no platform data supplied\n");
2313 goto out_no_platdata
;
2317 /* By default, AHB1 only. If dualmaster, from platform */
2318 pl08x
->lli_buses
= PL08X_AHB1
;
2319 pl08x
->mem_buses
= PL08X_AHB1
;
2320 if (pl08x
->vd
->dualmaster
) {
2321 pl08x
->lli_buses
= pl08x
->pd
->lli_buses
;
2322 pl08x
->mem_buses
= pl08x
->pd
->mem_buses
;
2326 pl08x
->lli_words
= PL080S_LLI_WORDS
;
2328 pl08x
->lli_words
= PL080_LLI_WORDS
;
2329 tsfr_size
= MAX_NUM_TSFR_LLIS
* pl08x
->lli_words
* sizeof(u32
);
2331 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2332 pl08x
->pool
= dma_pool_create(DRIVER_NAME
, &pl08x
->adev
->dev
,
2333 tsfr_size
, PL08X_ALIGN
, 0);
2336 goto out_no_lli_pool
;
2339 pl08x
->base
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
2342 goto out_no_ioremap
;
2345 /* Turn on the PL08x */
2346 pl08x_ensure_on(pl08x
);
2348 /* Attach the interrupt handler */
2349 writel(0x000000FF, pl08x
->base
+ PL080_ERR_CLEAR
);
2350 writel(0x000000FF, pl08x
->base
+ PL080_TC_CLEAR
);
2352 ret
= request_irq(adev
->irq
[0], pl08x_irq
, 0, DRIVER_NAME
, pl08x
);
2354 dev_err(&adev
->dev
, "%s failed to request interrupt %d\n",
2355 __func__
, adev
->irq
[0]);
2359 /* Initialize physical channels */
2360 pl08x
->phy_chans
= kzalloc((vd
->channels
* sizeof(*pl08x
->phy_chans
)),
2362 if (!pl08x
->phy_chans
) {
2363 dev_err(&adev
->dev
, "%s failed to allocate "
2364 "physical channel holders\n",
2367 goto out_no_phychans
;
2370 for (i
= 0; i
< vd
->channels
; i
++) {
2371 struct pl08x_phy_chan
*ch
= &pl08x
->phy_chans
[i
];
2374 ch
->base
= pl08x
->base
+ PL080_Cx_BASE(i
);
2375 ch
->reg_config
= ch
->base
+ vd
->config_offset
;
2376 spin_lock_init(&ch
->lock
);
2379 * Nomadik variants can have channels that are locked
2380 * down for the secure world only. Lock up these channels
2381 * by perpetually serving a dummy virtual channel.
2386 val
= readl(ch
->reg_config
);
2387 if (val
& (PL080N_CONFIG_ITPROT
| PL080N_CONFIG_SECPROT
)) {
2388 dev_info(&adev
->dev
, "physical channel %d reserved for secure access only\n", i
);
2393 dev_dbg(&adev
->dev
, "physical channel %d is %s\n",
2394 i
, pl08x_phy_channel_busy(ch
) ? "BUSY" : "FREE");
2397 /* Register as many memcpy channels as there are physical channels */
2398 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->memcpy
,
2399 pl08x
->vd
->channels
, false);
2401 dev_warn(&pl08x
->adev
->dev
,
2402 "%s failed to enumerate memcpy channels - %d\n",
2407 /* Register slave channels */
2408 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->slave
,
2409 pl08x
->pd
->num_slave_channels
, true);
2411 dev_warn(&pl08x
->adev
->dev
,
2412 "%s failed to enumerate slave channels - %d\n",
2417 ret
= dma_async_device_register(&pl08x
->memcpy
);
2419 dev_warn(&pl08x
->adev
->dev
,
2420 "%s failed to register memcpy as an async device - %d\n",
2422 goto out_no_memcpy_reg
;
2425 ret
= dma_async_device_register(&pl08x
->slave
);
2427 dev_warn(&pl08x
->adev
->dev
,
2428 "%s failed to register slave as an async device - %d\n",
2430 goto out_no_slave_reg
;
2433 amba_set_drvdata(adev
, pl08x
);
2434 init_pl08x_debugfs(pl08x
);
2435 dev_info(&pl08x
->adev
->dev
, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2436 amba_part(adev
), pl08x
->vd
->pl080s
? "s" : "", amba_rev(adev
),
2437 (unsigned long long)adev
->res
.start
, adev
->irq
[0]);
2442 dma_async_device_unregister(&pl08x
->memcpy
);
2444 pl08x_free_virtual_channels(&pl08x
->slave
);
2446 pl08x_free_virtual_channels(&pl08x
->memcpy
);
2448 kfree(pl08x
->phy_chans
);
2450 free_irq(adev
->irq
[0], pl08x
);
2452 iounmap(pl08x
->base
);
2454 dma_pool_destroy(pl08x
->pool
);
2459 amba_release_regions(adev
);
2463 /* PL080 has 8 channels and the PL080 have just 2 */
2464 static struct vendor_data vendor_pl080
= {
2465 .config_offset
= PL080_CH_CONFIG
,
2469 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
2472 static struct vendor_data vendor_nomadik
= {
2473 .config_offset
= PL080_CH_CONFIG
,
2478 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
2481 static struct vendor_data vendor_pl080s
= {
2482 .config_offset
= PL080S_CH_CONFIG
,
2486 .max_transfer_size
= PL080S_CONTROL_TRANSFER_SIZE_MASK
,
2489 static struct vendor_data vendor_pl081
= {
2490 .config_offset
= PL080_CH_CONFIG
,
2493 .dualmaster
= false,
2494 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
2497 static struct amba_id pl08x_ids
[] = {
2498 /* Samsung PL080S variant */
2502 .data
= &vendor_pl080s
,
2508 .data
= &vendor_pl080
,
2514 .data
= &vendor_pl081
,
2516 /* Nomadik 8815 PL080 variant */
2520 .data
= &vendor_nomadik
,
2525 MODULE_DEVICE_TABLE(amba
, pl08x_ids
);
2527 static struct amba_driver pl08x_amba_driver
= {
2528 .drv
.name
= DRIVER_NAME
,
2529 .id_table
= pl08x_ids
,
2530 .probe
= pl08x_probe
,
2533 static int __init
pl08x_init(void)
2536 retval
= amba_driver_register(&pl08x_amba_driver
);
2538 printk(KERN_WARNING DRIVER_NAME
2539 "failed to register as an AMBA device (%d)\n",
2543 subsys_initcall(pl08x_init
);