2 * TI EDMA DMA engine driver
4 * Copyright 2012 Texas Instruments
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
34 #include <linux/platform_data/edma.h>
36 #include "dmaengine.h"
39 /* Offsets matching "struct edmacc_param" */
42 #define PARM_A_B_CNT 0x08
44 #define PARM_SRC_DST_BIDX 0x10
45 #define PARM_LINK_BCNTRLD 0x14
46 #define PARM_SRC_DST_CIDX 0x18
47 #define PARM_CCNT 0x1c
49 #define PARM_SIZE 0x20
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER 0x00 /* 64 bits */
53 #define SH_ECR 0x08 /* 64 bits */
54 #define SH_ESR 0x10 /* 64 bits */
55 #define SH_CER 0x18 /* 64 bits */
56 #define SH_EER 0x20 /* 64 bits */
57 #define SH_EECR 0x28 /* 64 bits */
58 #define SH_EESR 0x30 /* 64 bits */
59 #define SH_SER 0x38 /* 64 bits */
60 #define SH_SECR 0x40 /* 64 bits */
61 #define SH_IER 0x50 /* 64 bits */
62 #define SH_IECR 0x58 /* 64 bits */
63 #define SH_IESR 0x60 /* 64 bits */
64 #define SH_IPR 0x68 /* 64 bits */
65 #define SH_ICR 0x70 /* 64 bits */
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV 0x0000
77 #define EDMA_CCCFG 0x0004
78 #define EDMA_QCHMAP 0x0200 /* 8 registers */
79 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM 0x0260
81 #define EDMA_QUETCMAP 0x0280
82 #define EDMA_QUEPRI 0x0284
83 #define EDMA_EMR 0x0300 /* 64 bits */
84 #define EDMA_EMCR 0x0308 /* 64 bits */
85 #define EDMA_QEMR 0x0310
86 #define EDMA_QEMCR 0x0314
87 #define EDMA_CCERR 0x0318
88 #define EDMA_CCERRCLR 0x031c
89 #define EDMA_EEVAL 0x0320
90 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
91 #define EDMA_QRAE 0x0380 /* 4 registers */
92 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
93 #define EDMA_QSTAT 0x0600 /* 2 registers */
94 #define EDMA_QWMTHRA 0x0620
95 #define EDMA_QWMTHRB 0x0624
96 #define EDMA_CCSTAT 0x0640
98 #define EDMA_M 0x1000 /* global channel registers */
99 #define EDMA_ECR 0x1008
100 #define EDMA_ECRH 0x100C
101 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
102 #define EDMA_PARM 0x4000 /* PaRAM entries */
104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
106 #define EDMA_DCHMAP 0x0100 /* 64 registers */
109 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST BIT(24)
116 /* CCSTAT register */
117 #define EDMA_CCSTAT_ACTV BIT(4)
120 * Max of 20 segments per channel to conserve PaRAM slots
121 * Also note that MAX_NR_SG should be atleast the no.of periods
122 * that are required for ASoC, otherwise DMA prep calls will
123 * fail. Today davinci-pcm is the only user of this driver and
124 * requires atleast 17 slots, so we setup the default to 20.
127 #define EDMA_MAX_SLOTS MAX_NR_SG
128 #define EDMA_DESCRIPTORS 16
130 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
131 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
132 #define EDMA_CONT_PARAMS_ANY 1001
133 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
136 /* PaRAM slots are laid out like this */
137 struct edmacc_param
{
148 /* fields in edmacc_param.opt */
151 #define SYNCDIM BIT(2)
152 #define STATIC BIT(3)
153 #define EDMA_FWID (0x07 << 8)
154 #define TCCMODE BIT(11)
155 #define EDMA_TCC(t) ((t) << 12)
156 #define TCINTEN BIT(20)
157 #define ITCINTEN BIT(21)
158 #define TCCHEN BIT(22)
159 #define ITCCHEN BIT(23)
164 struct edmacc_param param
;
168 struct virt_dma_desc vdesc
;
169 struct list_head node
;
170 enum dma_transfer_direction direction
;
174 struct edma_chan
*echan
;
178 * The following 4 elements are used for residue accounting.
180 * - processed_stat: the number of SG elements we have traversed
181 * so far to cover accounting. This is updated directly to processed
182 * during edma_callback and is always <= processed, because processed
183 * refers to the number of pending transfer (programmed to EDMA
184 * controller), where as processed_stat tracks number of transfers
185 * accounted for so far.
187 * - residue: The amount of bytes we have left to transfer for this desc
189 * - residue_stat: The residue in bytes of data we have covered
190 * so far for accounting. This is updated directly to residue
191 * during callbacks to keep it current.
193 * - sg_len: Tracks the length of the current intermediate transfer,
194 * this is required to update the residue during intermediate transfer
195 * completion callback.
202 struct edma_pset pset
[0];
208 struct device_node
*node
;
213 struct virt_dma_chan vchan
;
214 struct list_head node
;
215 struct edma_desc
*edesc
;
221 int slot
[EDMA_MAX_SLOTS
];
223 struct dma_slave_config cfg
;
228 struct edma_soc_info
*info
;
233 /* eDMA3 resource information */
234 unsigned num_channels
;
235 unsigned num_qchannels
;
240 enum dma_event_q default_queue
;
243 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
244 * in use by Linux or if it is allocated to be used by DSP.
246 unsigned long *slot_inuse
;
248 struct dma_device dma_slave
;
249 struct dma_device
*dma_memcpy
;
250 struct edma_chan
*slave_chans
;
251 struct edma_tc
*tc_list
;
255 /* dummy param set used to (re)initialize parameter RAM slots */
256 static const struct edmacc_param dummy_paramset
= {
257 .link_bcntrld
= 0xffff,
261 #define EDMA_BINDING_LEGACY 0
262 #define EDMA_BINDING_TPCC 1
263 static const struct of_device_id edma_of_ids
[] = {
265 .compatible
= "ti,edma3",
266 .data
= (void *)EDMA_BINDING_LEGACY
,
269 .compatible
= "ti,edma3-tpcc",
270 .data
= (void *)EDMA_BINDING_TPCC
,
275 static const struct of_device_id edma_tptc_of_ids
[] = {
276 { .compatible
= "ti,edma3-tptc", },
280 static inline unsigned int edma_read(struct edma_cc
*ecc
, int offset
)
282 return (unsigned int)__raw_readl(ecc
->base
+ offset
);
285 static inline void edma_write(struct edma_cc
*ecc
, int offset
, int val
)
287 __raw_writel(val
, ecc
->base
+ offset
);
290 static inline void edma_modify(struct edma_cc
*ecc
, int offset
, unsigned and,
293 unsigned val
= edma_read(ecc
, offset
);
297 edma_write(ecc
, offset
, val
);
300 static inline void edma_and(struct edma_cc
*ecc
, int offset
, unsigned and)
302 unsigned val
= edma_read(ecc
, offset
);
305 edma_write(ecc
, offset
, val
);
308 static inline void edma_or(struct edma_cc
*ecc
, int offset
, unsigned or)
310 unsigned val
= edma_read(ecc
, offset
);
313 edma_write(ecc
, offset
, val
);
316 static inline unsigned int edma_read_array(struct edma_cc
*ecc
, int offset
,
319 return edma_read(ecc
, offset
+ (i
<< 2));
322 static inline void edma_write_array(struct edma_cc
*ecc
, int offset
, int i
,
325 edma_write(ecc
, offset
+ (i
<< 2), val
);
328 static inline void edma_modify_array(struct edma_cc
*ecc
, int offset
, int i
,
329 unsigned and, unsigned or)
331 edma_modify(ecc
, offset
+ (i
<< 2), and, or);
334 static inline void edma_or_array(struct edma_cc
*ecc
, int offset
, int i
,
337 edma_or(ecc
, offset
+ (i
<< 2), or);
340 static inline void edma_or_array2(struct edma_cc
*ecc
, int offset
, int i
, int j
,
343 edma_or(ecc
, offset
+ ((i
* 2 + j
) << 2), or);
346 static inline void edma_write_array2(struct edma_cc
*ecc
, int offset
, int i
,
349 edma_write(ecc
, offset
+ ((i
* 2 + j
) << 2), val
);
352 static inline unsigned int edma_shadow0_read(struct edma_cc
*ecc
, int offset
)
354 return edma_read(ecc
, EDMA_SHADOW0
+ offset
);
357 static inline unsigned int edma_shadow0_read_array(struct edma_cc
*ecc
,
360 return edma_read(ecc
, EDMA_SHADOW0
+ offset
+ (i
<< 2));
363 static inline void edma_shadow0_write(struct edma_cc
*ecc
, int offset
,
366 edma_write(ecc
, EDMA_SHADOW0
+ offset
, val
);
369 static inline void edma_shadow0_write_array(struct edma_cc
*ecc
, int offset
,
372 edma_write(ecc
, EDMA_SHADOW0
+ offset
+ (i
<< 2), val
);
375 static inline unsigned int edma_param_read(struct edma_cc
*ecc
, int offset
,
378 return edma_read(ecc
, EDMA_PARM
+ offset
+ (param_no
<< 5));
381 static inline void edma_param_write(struct edma_cc
*ecc
, int offset
,
382 int param_no
, unsigned val
)
384 edma_write(ecc
, EDMA_PARM
+ offset
+ (param_no
<< 5), val
);
387 static inline void edma_param_modify(struct edma_cc
*ecc
, int offset
,
388 int param_no
, unsigned and, unsigned or)
390 edma_modify(ecc
, EDMA_PARM
+ offset
+ (param_no
<< 5), and, or);
393 static inline void edma_param_and(struct edma_cc
*ecc
, int offset
, int param_no
,
396 edma_and(ecc
, EDMA_PARM
+ offset
+ (param_no
<< 5), and);
399 static inline void edma_param_or(struct edma_cc
*ecc
, int offset
, int param_no
,
402 edma_or(ecc
, EDMA_PARM
+ offset
+ (param_no
<< 5), or);
405 static inline void set_bits(int offset
, int len
, unsigned long *p
)
407 for (; len
> 0; len
--)
408 set_bit(offset
+ (len
- 1), p
);
411 static inline void clear_bits(int offset
, int len
, unsigned long *p
)
413 for (; len
> 0; len
--)
414 clear_bit(offset
+ (len
- 1), p
);
417 static void edma_assign_priority_to_queue(struct edma_cc
*ecc
, int queue_no
,
420 int bit
= queue_no
* 4;
422 edma_modify(ecc
, EDMA_QUEPRI
, ~(0x7 << bit
), ((priority
& 0x7) << bit
));
425 static void edma_set_chmap(struct edma_chan
*echan
, int slot
)
427 struct edma_cc
*ecc
= echan
->ecc
;
428 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
430 if (ecc
->chmap_exist
) {
431 slot
= EDMA_CHAN_SLOT(slot
);
432 edma_write_array(ecc
, EDMA_DCHMAP
, channel
, (slot
<< 5));
436 static void edma_setup_interrupt(struct edma_chan
*echan
, bool enable
)
438 struct edma_cc
*ecc
= echan
->ecc
;
439 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
442 edma_shadow0_write_array(ecc
, SH_ICR
, channel
>> 5,
443 BIT(channel
& 0x1f));
444 edma_shadow0_write_array(ecc
, SH_IESR
, channel
>> 5,
445 BIT(channel
& 0x1f));
447 edma_shadow0_write_array(ecc
, SH_IECR
, channel
>> 5,
448 BIT(channel
& 0x1f));
453 * paRAM slot management functions
455 static void edma_write_slot(struct edma_cc
*ecc
, unsigned slot
,
456 const struct edmacc_param
*param
)
458 slot
= EDMA_CHAN_SLOT(slot
);
459 if (slot
>= ecc
->num_slots
)
461 memcpy_toio(ecc
->base
+ PARM_OFFSET(slot
), param
, PARM_SIZE
);
464 static void edma_read_slot(struct edma_cc
*ecc
, unsigned slot
,
465 struct edmacc_param
*param
)
467 slot
= EDMA_CHAN_SLOT(slot
);
468 if (slot
>= ecc
->num_slots
)
470 memcpy_fromio(param
, ecc
->base
+ PARM_OFFSET(slot
), PARM_SIZE
);
474 * edma_alloc_slot - allocate DMA parameter RAM
475 * @ecc: pointer to edma_cc struct
476 * @slot: specific slot to allocate; negative for "any unused slot"
478 * This allocates a parameter RAM slot, initializing it to hold a
479 * dummy transfer. Slots allocated using this routine have not been
480 * mapped to a hardware DMA channel, and will normally be used by
481 * linking to them from a slot associated with a DMA channel.
483 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
484 * slots may be allocated on behalf of DSP firmware.
486 * Returns the number of the slot, else negative errno.
488 static int edma_alloc_slot(struct edma_cc
*ecc
, int slot
)
491 slot
= EDMA_CHAN_SLOT(slot
);
492 /* Requesting entry paRAM slot for a HW triggered channel. */
493 if (ecc
->chmap_exist
&& slot
< ecc
->num_channels
)
494 slot
= EDMA_SLOT_ANY
;
498 if (ecc
->chmap_exist
)
501 slot
= ecc
->num_channels
;
503 slot
= find_next_zero_bit(ecc
->slot_inuse
,
506 if (slot
== ecc
->num_slots
)
508 if (!test_and_set_bit(slot
, ecc
->slot_inuse
))
511 } else if (slot
>= ecc
->num_slots
) {
513 } else if (test_and_set_bit(slot
, ecc
->slot_inuse
)) {
517 edma_write_slot(ecc
, slot
, &dummy_paramset
);
519 return EDMA_CTLR_CHAN(ecc
->id
, slot
);
522 static void edma_free_slot(struct edma_cc
*ecc
, unsigned slot
)
524 slot
= EDMA_CHAN_SLOT(slot
);
525 if (slot
>= ecc
->num_slots
)
528 edma_write_slot(ecc
, slot
, &dummy_paramset
);
529 clear_bit(slot
, ecc
->slot_inuse
);
533 * edma_link - link one parameter RAM slot to another
534 * @ecc: pointer to edma_cc struct
535 * @from: parameter RAM slot originating the link
536 * @to: parameter RAM slot which is the link target
538 * The originating slot should not be part of any active DMA transfer.
540 static void edma_link(struct edma_cc
*ecc
, unsigned from
, unsigned to
)
542 if (unlikely(EDMA_CTLR(from
) != EDMA_CTLR(to
)))
543 dev_warn(ecc
->dev
, "Ignoring eDMA instance for linking\n");
545 from
= EDMA_CHAN_SLOT(from
);
546 to
= EDMA_CHAN_SLOT(to
);
547 if (from
>= ecc
->num_slots
|| to
>= ecc
->num_slots
)
550 edma_param_modify(ecc
, PARM_LINK_BCNTRLD
, from
, 0xffff0000,
555 * edma_get_position - returns the current transfer point
556 * @ecc: pointer to edma_cc struct
557 * @slot: parameter RAM slot being examined
558 * @dst: true selects the dest position, false the source
560 * Returns the position of the current active slot
562 static dma_addr_t
edma_get_position(struct edma_cc
*ecc
, unsigned slot
,
567 slot
= EDMA_CHAN_SLOT(slot
);
568 offs
= PARM_OFFSET(slot
);
569 offs
+= dst
? PARM_DST
: PARM_SRC
;
571 return edma_read(ecc
, offs
);
575 * Channels with event associations will be triggered by their hardware
576 * events, and channels without such associations will be triggered by
577 * software. (At this writing there is no interface for using software
578 * triggers except with channels that don't support hardware triggers.)
580 static void edma_start(struct edma_chan
*echan
)
582 struct edma_cc
*ecc
= echan
->ecc
;
583 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
584 int j
= (channel
>> 5);
585 unsigned int mask
= BIT(channel
& 0x1f);
587 if (!echan
->hw_triggered
) {
588 /* EDMA channels without event association */
589 dev_dbg(ecc
->dev
, "ESR%d %08x\n", j
,
590 edma_shadow0_read_array(ecc
, SH_ESR
, j
));
591 edma_shadow0_write_array(ecc
, SH_ESR
, j
, mask
);
593 /* EDMA channel with event association */
594 dev_dbg(ecc
->dev
, "ER%d %08x\n", j
,
595 edma_shadow0_read_array(ecc
, SH_ER
, j
));
596 /* Clear any pending event or error */
597 edma_write_array(ecc
, EDMA_ECR
, j
, mask
);
598 edma_write_array(ecc
, EDMA_EMCR
, j
, mask
);
600 edma_shadow0_write_array(ecc
, SH_SECR
, j
, mask
);
601 edma_shadow0_write_array(ecc
, SH_EESR
, j
, mask
);
602 dev_dbg(ecc
->dev
, "EER%d %08x\n", j
,
603 edma_shadow0_read_array(ecc
, SH_EER
, j
));
607 static void edma_stop(struct edma_chan
*echan
)
609 struct edma_cc
*ecc
= echan
->ecc
;
610 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
611 int j
= (channel
>> 5);
612 unsigned int mask
= BIT(channel
& 0x1f);
614 edma_shadow0_write_array(ecc
, SH_EECR
, j
, mask
);
615 edma_shadow0_write_array(ecc
, SH_ECR
, j
, mask
);
616 edma_shadow0_write_array(ecc
, SH_SECR
, j
, mask
);
617 edma_write_array(ecc
, EDMA_EMCR
, j
, mask
);
619 /* clear possibly pending completion interrupt */
620 edma_shadow0_write_array(ecc
, SH_ICR
, j
, mask
);
622 dev_dbg(ecc
->dev
, "EER%d %08x\n", j
,
623 edma_shadow0_read_array(ecc
, SH_EER
, j
));
625 /* REVISIT: consider guarding against inappropriate event
626 * chaining by overwriting with dummy_paramset.
631 * Temporarily disable EDMA hardware events on the specified channel,
632 * preventing them from triggering new transfers
634 static void edma_pause(struct edma_chan
*echan
)
636 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
637 unsigned int mask
= BIT(channel
& 0x1f);
639 edma_shadow0_write_array(echan
->ecc
, SH_EECR
, channel
>> 5, mask
);
642 /* Re-enable EDMA hardware events on the specified channel. */
643 static void edma_resume(struct edma_chan
*echan
)
645 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
646 unsigned int mask
= BIT(channel
& 0x1f);
648 edma_shadow0_write_array(echan
->ecc
, SH_EESR
, channel
>> 5, mask
);
651 static void edma_trigger_channel(struct edma_chan
*echan
)
653 struct edma_cc
*ecc
= echan
->ecc
;
654 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
655 unsigned int mask
= BIT(channel
& 0x1f);
657 edma_shadow0_write_array(ecc
, SH_ESR
, (channel
>> 5), mask
);
659 dev_dbg(ecc
->dev
, "ESR%d %08x\n", (channel
>> 5),
660 edma_shadow0_read_array(ecc
, SH_ESR
, (channel
>> 5)));
663 static void edma_clean_channel(struct edma_chan
*echan
)
665 struct edma_cc
*ecc
= echan
->ecc
;
666 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
667 int j
= (channel
>> 5);
668 unsigned int mask
= BIT(channel
& 0x1f);
670 dev_dbg(ecc
->dev
, "EMR%d %08x\n", j
, edma_read_array(ecc
, EDMA_EMR
, j
));
671 edma_shadow0_write_array(ecc
, SH_ECR
, j
, mask
);
672 /* Clear the corresponding EMR bits */
673 edma_write_array(ecc
, EDMA_EMCR
, j
, mask
);
675 edma_shadow0_write_array(ecc
, SH_SECR
, j
, mask
);
676 edma_write(ecc
, EDMA_CCERRCLR
, BIT(16) | BIT(1) | BIT(0));
679 /* Move channel to a specific event queue */
680 static void edma_assign_channel_eventq(struct edma_chan
*echan
,
681 enum dma_event_q eventq_no
)
683 struct edma_cc
*ecc
= echan
->ecc
;
684 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
685 int bit
= (channel
& 0x7) * 4;
687 /* default to low priority queue */
688 if (eventq_no
== EVENTQ_DEFAULT
)
689 eventq_no
= ecc
->default_queue
;
690 if (eventq_no
>= ecc
->num_tc
)
694 edma_modify_array(ecc
, EDMA_DMAQNUM
, (channel
>> 3), ~(0x7 << bit
),
698 static int edma_alloc_channel(struct edma_chan
*echan
,
699 enum dma_event_q eventq_no
)
701 struct edma_cc
*ecc
= echan
->ecc
;
702 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
704 /* ensure access through shadow region 0 */
705 edma_or_array2(ecc
, EDMA_DRAE
, 0, channel
>> 5, BIT(channel
& 0x1f));
707 /* ensure no events are pending */
710 edma_setup_interrupt(echan
, true);
712 edma_assign_channel_eventq(echan
, eventq_no
);
717 static void edma_free_channel(struct edma_chan
*echan
)
719 /* ensure no events are pending */
721 /* REVISIT should probably take out of shadow region 0 */
722 edma_setup_interrupt(echan
, false);
725 static inline struct edma_cc
*to_edma_cc(struct dma_device
*d
)
727 return container_of(d
, struct edma_cc
, dma_slave
);
730 static inline struct edma_chan
*to_edma_chan(struct dma_chan
*c
)
732 return container_of(c
, struct edma_chan
, vchan
.chan
);
735 static inline struct edma_desc
*to_edma_desc(struct dma_async_tx_descriptor
*tx
)
737 return container_of(tx
, struct edma_desc
, vdesc
.tx
);
740 static void edma_desc_free(struct virt_dma_desc
*vdesc
)
742 kfree(container_of(vdesc
, struct edma_desc
, vdesc
));
745 /* Dispatch a queued descriptor to the controller (caller holds lock) */
746 static void edma_execute(struct edma_chan
*echan
)
748 struct edma_cc
*ecc
= echan
->ecc
;
749 struct virt_dma_desc
*vdesc
;
750 struct edma_desc
*edesc
;
751 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
752 int i
, j
, left
, nslots
;
755 /* Setup is needed for the first transfer */
756 vdesc
= vchan_next_desc(&echan
->vchan
);
759 list_del(&vdesc
->node
);
760 echan
->edesc
= to_edma_desc(&vdesc
->tx
);
763 edesc
= echan
->edesc
;
765 /* Find out how many left */
766 left
= edesc
->pset_nr
- edesc
->processed
;
767 nslots
= min(MAX_NR_SG
, left
);
770 /* Write descriptor PaRAM set(s) */
771 for (i
= 0; i
< nslots
; i
++) {
772 j
= i
+ edesc
->processed
;
773 edma_write_slot(ecc
, echan
->slot
[i
], &edesc
->pset
[j
].param
);
774 edesc
->sg_len
+= edesc
->pset
[j
].len
;
787 j
, echan
->ch_num
, echan
->slot
[i
],
788 edesc
->pset
[j
].param
.opt
,
789 edesc
->pset
[j
].param
.src
,
790 edesc
->pset
[j
].param
.dst
,
791 edesc
->pset
[j
].param
.a_b_cnt
,
792 edesc
->pset
[j
].param
.ccnt
,
793 edesc
->pset
[j
].param
.src_dst_bidx
,
794 edesc
->pset
[j
].param
.src_dst_cidx
,
795 edesc
->pset
[j
].param
.link_bcntrld
);
796 /* Link to the previous slot if not the last set */
797 if (i
!= (nslots
- 1))
798 edma_link(ecc
, echan
->slot
[i
], echan
->slot
[i
+ 1]);
801 edesc
->processed
+= nslots
;
804 * If this is either the last set in a set of SG-list transactions
805 * then setup a link to the dummy slot, this results in all future
806 * events being absorbed and that's OK because we're done
808 if (edesc
->processed
== edesc
->pset_nr
) {
810 edma_link(ecc
, echan
->slot
[nslots
- 1], echan
->slot
[1]);
812 edma_link(ecc
, echan
->slot
[nslots
- 1],
813 echan
->ecc
->dummy_slot
);
818 * This happens due to setup times between intermediate
819 * transfers in long SG lists which have to be broken up into
820 * transfers of MAX_NR_SG
822 dev_dbg(dev
, "missed event on channel %d\n", echan
->ch_num
);
823 edma_clean_channel(echan
);
826 edma_trigger_channel(echan
);
828 } else if (edesc
->processed
<= MAX_NR_SG
) {
829 dev_dbg(dev
, "first transfer starting on channel %d\n",
833 dev_dbg(dev
, "chan: %d: completed %d elements, resuming\n",
834 echan
->ch_num
, edesc
->processed
);
839 static int edma_terminate_all(struct dma_chan
*chan
)
841 struct edma_chan
*echan
= to_edma_chan(chan
);
845 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
848 * Stop DMA activity: we assume the callback will not be called
849 * after edma_dma() returns (even if it does, it will see
850 * echan->edesc is NULL and exit.)
854 /* Move the cyclic channel back to default queue */
855 if (!echan
->tc
&& echan
->edesc
->cyclic
)
856 edma_assign_channel_eventq(echan
, EVENTQ_DEFAULT
);
858 * free the running request descriptor
859 * since it is not in any of the vdesc lists
861 edma_desc_free(&echan
->edesc
->vdesc
);
865 vchan_get_all_descriptors(&echan
->vchan
, &head
);
866 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
867 vchan_dma_desc_free_list(&echan
->vchan
, &head
);
872 static void edma_synchronize(struct dma_chan
*chan
)
874 struct edma_chan
*echan
= to_edma_chan(chan
);
876 vchan_synchronize(&echan
->vchan
);
879 static int edma_slave_config(struct dma_chan
*chan
,
880 struct dma_slave_config
*cfg
)
882 struct edma_chan
*echan
= to_edma_chan(chan
);
884 if (cfg
->src_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
||
885 cfg
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
)
888 memcpy(&echan
->cfg
, cfg
, sizeof(echan
->cfg
));
893 static int edma_dma_pause(struct dma_chan
*chan
)
895 struct edma_chan
*echan
= to_edma_chan(chan
);
904 static int edma_dma_resume(struct dma_chan
*chan
)
906 struct edma_chan
*echan
= to_edma_chan(chan
);
913 * A PaRAM set configuration abstraction used by other modes
914 * @chan: Channel who's PaRAM set we're configuring
915 * @pset: PaRAM set to initialize and setup.
916 * @src_addr: Source address of the DMA
917 * @dst_addr: Destination address of the DMA
918 * @burst: In units of dev_width, how much to send
919 * @dev_width: How much is the dev_width
920 * @dma_length: Total length of the DMA transfer
921 * @direction: Direction of the transfer
923 static int edma_config_pset(struct dma_chan
*chan
, struct edma_pset
*epset
,
924 dma_addr_t src_addr
, dma_addr_t dst_addr
, u32 burst
,
925 unsigned int acnt
, unsigned int dma_length
,
926 enum dma_transfer_direction direction
)
928 struct edma_chan
*echan
= to_edma_chan(chan
);
929 struct device
*dev
= chan
->device
->dev
;
930 struct edmacc_param
*param
= &epset
->param
;
931 int bcnt
, ccnt
, cidx
;
932 int src_bidx
, dst_bidx
, src_cidx
, dst_cidx
;
935 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
939 * If the maxburst is equal to the fifo width, use
940 * A-synced transfers. This allows for large contiguous
941 * buffer transfers using only one PaRAM set.
945 * For the A-sync case, bcnt and ccnt are the remainder
946 * and quotient respectively of the division of:
947 * (dma_length / acnt) by (SZ_64K -1). This is so
948 * that in case bcnt over flows, we have ccnt to use.
949 * Note: In A-sync tranfer only, bcntrld is used, but it
950 * only applies for sg_dma_len(sg) >= SZ_64K.
951 * In this case, the best way adopted is- bccnt for the
952 * first frame will be the remainder below. Then for
953 * every successive frame, bcnt will be SZ_64K-1. This
954 * is assured as bcntrld = 0xffff in end of function.
957 ccnt
= dma_length
/ acnt
/ (SZ_64K
- 1);
958 bcnt
= dma_length
/ acnt
- ccnt
* (SZ_64K
- 1);
960 * If bcnt is non-zero, we have a remainder and hence an
961 * extra frame to transfer, so increment ccnt.
970 * If maxburst is greater than the fifo address_width,
971 * use AB-synced transfers where A count is the fifo
972 * address_width and B count is the maxburst. In this
973 * case, we are limited to transfers of C count frames
974 * of (address_width * maxburst) where C count is limited
975 * to SZ_64K-1. This places an upper bound on the length
976 * of an SG segment that can be handled.
980 ccnt
= dma_length
/ (acnt
* bcnt
);
981 if (ccnt
> (SZ_64K
- 1)) {
982 dev_err(dev
, "Exceeded max SG segment size\n");
988 epset
->len
= dma_length
;
990 if (direction
== DMA_MEM_TO_DEV
) {
995 epset
->addr
= src_addr
;
996 } else if (direction
== DMA_DEV_TO_MEM
) {
1001 epset
->addr
= dst_addr
;
1002 } else if (direction
== DMA_MEM_TO_MEM
) {
1008 dev_err(dev
, "%s: direction not implemented yet\n", __func__
);
1012 param
->opt
= EDMA_TCC(EDMA_CHAN_SLOT(echan
->ch_num
));
1013 /* Configure A or AB synchronized transfers */
1015 param
->opt
|= SYNCDIM
;
1017 param
->src
= src_addr
;
1018 param
->dst
= dst_addr
;
1020 param
->src_dst_bidx
= (dst_bidx
<< 16) | src_bidx
;
1021 param
->src_dst_cidx
= (dst_cidx
<< 16) | src_cidx
;
1023 param
->a_b_cnt
= bcnt
<< 16 | acnt
;
1026 * Only time when (bcntrld) auto reload is required is for
1027 * A-sync case, and in this case, a requirement of reload value
1028 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1029 * and then later will be populated by edma_execute.
1031 param
->link_bcntrld
= 0xffffffff;
1035 static struct dma_async_tx_descriptor
*edma_prep_slave_sg(
1036 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1037 unsigned int sg_len
, enum dma_transfer_direction direction
,
1038 unsigned long tx_flags
, void *context
)
1040 struct edma_chan
*echan
= to_edma_chan(chan
);
1041 struct device
*dev
= chan
->device
->dev
;
1042 struct edma_desc
*edesc
;
1043 dma_addr_t src_addr
= 0, dst_addr
= 0;
1044 enum dma_slave_buswidth dev_width
;
1046 struct scatterlist
*sg
;
1049 if (unlikely(!echan
|| !sgl
|| !sg_len
))
1052 if (direction
== DMA_DEV_TO_MEM
) {
1053 src_addr
= echan
->cfg
.src_addr
;
1054 dev_width
= echan
->cfg
.src_addr_width
;
1055 burst
= echan
->cfg
.src_maxburst
;
1056 } else if (direction
== DMA_MEM_TO_DEV
) {
1057 dst_addr
= echan
->cfg
.dst_addr
;
1058 dev_width
= echan
->cfg
.dst_addr_width
;
1059 burst
= echan
->cfg
.dst_maxburst
;
1061 dev_err(dev
, "%s: bad direction: %d\n", __func__
, direction
);
1065 if (dev_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) {
1066 dev_err(dev
, "%s: Undefined slave buswidth\n", __func__
);
1070 edesc
= kzalloc(sizeof(*edesc
) + sg_len
* sizeof(edesc
->pset
[0]),
1073 dev_err(dev
, "%s: Failed to allocate a descriptor\n", __func__
);
1077 edesc
->pset_nr
= sg_len
;
1079 edesc
->direction
= direction
;
1080 edesc
->echan
= echan
;
1082 /* Allocate a PaRAM slot, if needed */
1083 nslots
= min_t(unsigned, MAX_NR_SG
, sg_len
);
1085 for (i
= 0; i
< nslots
; i
++) {
1086 if (echan
->slot
[i
] < 0) {
1088 edma_alloc_slot(echan
->ecc
, EDMA_SLOT_ANY
);
1089 if (echan
->slot
[i
] < 0) {
1091 dev_err(dev
, "%s: Failed to allocate slot\n",
1098 /* Configure PaRAM sets for each SG */
1099 for_each_sg(sgl
, sg
, sg_len
, i
) {
1100 /* Get address for each SG */
1101 if (direction
== DMA_DEV_TO_MEM
)
1102 dst_addr
= sg_dma_address(sg
);
1104 src_addr
= sg_dma_address(sg
);
1106 ret
= edma_config_pset(chan
, &edesc
->pset
[i
], src_addr
,
1107 dst_addr
, burst
, dev_width
,
1108 sg_dma_len(sg
), direction
);
1114 edesc
->absync
= ret
;
1115 edesc
->residue
+= sg_dma_len(sg
);
1117 /* If this is the last in a current SG set of transactions,
1118 enable interrupts so that next set is processed */
1119 if (!((i
+1) % MAX_NR_SG
))
1120 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
1122 /* If this is the last set, enable completion interrupt flag */
1123 if (i
== sg_len
- 1)
1124 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
1126 edesc
->residue_stat
= edesc
->residue
;
1128 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
1131 static struct dma_async_tx_descriptor
*edma_prep_dma_memcpy(
1132 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
1133 size_t len
, unsigned long tx_flags
)
1136 struct edma_desc
*edesc
;
1137 struct device
*dev
= chan
->device
->dev
;
1138 struct edma_chan
*echan
= to_edma_chan(chan
);
1139 unsigned int width
, pset_len
;
1141 if (unlikely(!echan
|| !len
))
1146 * Transfer size less than 64K can be handled with one paRAM
1147 * slot and with one burst.
1155 * Transfer size bigger than 64K will be handled with maximum of
1157 * slot1: (full_length / 32767) times 32767 bytes bursts.
1158 * ACNT = 32767, length1: (full_length / 32767) * 32767
1159 * slot2: the remaining amount of data after slot1.
1160 * ACNT = full_length - length1, length2 = ACNT
1162 * When the full_length is multibple of 32767 one slot can be
1163 * used to complete the transfer.
1166 pset_len
= rounddown(len
, width
);
1167 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1168 if (unlikely(pset_len
== len
))
1174 edesc
= kzalloc(sizeof(*edesc
) + nslots
* sizeof(edesc
->pset
[0]),
1177 dev_dbg(dev
, "Failed to allocate a descriptor\n");
1181 edesc
->pset_nr
= nslots
;
1182 edesc
->residue
= edesc
->residue_stat
= len
;
1183 edesc
->direction
= DMA_MEM_TO_MEM
;
1184 edesc
->echan
= echan
;
1186 ret
= edma_config_pset(chan
, &edesc
->pset
[0], src
, dest
, 1,
1187 width
, pset_len
, DMA_MEM_TO_MEM
);
1193 edesc
->absync
= ret
;
1195 edesc
->pset
[0].param
.opt
|= ITCCHEN
;
1197 /* Enable transfer complete interrupt */
1198 edesc
->pset
[0].param
.opt
|= TCINTEN
;
1200 /* Enable transfer complete chaining for the first slot */
1201 edesc
->pset
[0].param
.opt
|= TCCHEN
;
1203 if (echan
->slot
[1] < 0) {
1204 echan
->slot
[1] = edma_alloc_slot(echan
->ecc
,
1206 if (echan
->slot
[1] < 0) {
1208 dev_err(dev
, "%s: Failed to allocate slot\n",
1215 pset_len
= width
= len
% (SZ_32K
- 1);
1217 ret
= edma_config_pset(chan
, &edesc
->pset
[1], src
, dest
, 1,
1218 width
, pset_len
, DMA_MEM_TO_MEM
);
1224 edesc
->pset
[1].param
.opt
|= ITCCHEN
;
1225 edesc
->pset
[1].param
.opt
|= TCINTEN
;
1228 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
1231 static struct dma_async_tx_descriptor
*edma_prep_dma_cyclic(
1232 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
1233 size_t period_len
, enum dma_transfer_direction direction
,
1234 unsigned long tx_flags
)
1236 struct edma_chan
*echan
= to_edma_chan(chan
);
1237 struct device
*dev
= chan
->device
->dev
;
1238 struct edma_desc
*edesc
;
1239 dma_addr_t src_addr
, dst_addr
;
1240 enum dma_slave_buswidth dev_width
;
1241 bool use_intermediate
= false;
1245 if (unlikely(!echan
|| !buf_len
|| !period_len
))
1248 if (direction
== DMA_DEV_TO_MEM
) {
1249 src_addr
= echan
->cfg
.src_addr
;
1250 dst_addr
= buf_addr
;
1251 dev_width
= echan
->cfg
.src_addr_width
;
1252 burst
= echan
->cfg
.src_maxburst
;
1253 } else if (direction
== DMA_MEM_TO_DEV
) {
1254 src_addr
= buf_addr
;
1255 dst_addr
= echan
->cfg
.dst_addr
;
1256 dev_width
= echan
->cfg
.dst_addr_width
;
1257 burst
= echan
->cfg
.dst_maxburst
;
1259 dev_err(dev
, "%s: bad direction: %d\n", __func__
, direction
);
1263 if (dev_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) {
1264 dev_err(dev
, "%s: Undefined slave buswidth\n", __func__
);
1268 if (unlikely(buf_len
% period_len
)) {
1269 dev_err(dev
, "Period should be multiple of Buffer length\n");
1273 nslots
= (buf_len
/ period_len
) + 1;
1276 * Cyclic DMA users such as audio cannot tolerate delays introduced
1277 * by cases where the number of periods is more than the maximum
1278 * number of SGs the EDMA driver can handle at a time. For DMA types
1279 * such as Slave SGs, such delays are tolerable and synchronized,
1280 * but the synchronization is difficult to achieve with Cyclic and
1281 * cannot be guaranteed, so we error out early.
1283 if (nslots
> MAX_NR_SG
) {
1285 * If the burst and period sizes are the same, we can put
1286 * the full buffer into a single period and activate
1287 * intermediate interrupts. This will produce interrupts
1288 * after each burst, which is also after each desired period.
1290 if (burst
== period_len
) {
1291 period_len
= buf_len
;
1293 use_intermediate
= true;
1299 edesc
= kzalloc(sizeof(*edesc
) + nslots
* sizeof(edesc
->pset
[0]),
1302 dev_err(dev
, "%s: Failed to allocate a descriptor\n", __func__
);
1307 edesc
->pset_nr
= nslots
;
1308 edesc
->residue
= edesc
->residue_stat
= buf_len
;
1309 edesc
->direction
= direction
;
1310 edesc
->echan
= echan
;
1312 dev_dbg(dev
, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1313 __func__
, echan
->ch_num
, nslots
, period_len
, buf_len
);
1315 for (i
= 0; i
< nslots
; i
++) {
1316 /* Allocate a PaRAM slot, if needed */
1317 if (echan
->slot
[i
] < 0) {
1319 edma_alloc_slot(echan
->ecc
, EDMA_SLOT_ANY
);
1320 if (echan
->slot
[i
] < 0) {
1322 dev_err(dev
, "%s: Failed to allocate slot\n",
1328 if (i
== nslots
- 1) {
1329 memcpy(&edesc
->pset
[i
], &edesc
->pset
[0],
1330 sizeof(edesc
->pset
[0]));
1334 ret
= edma_config_pset(chan
, &edesc
->pset
[i
], src_addr
,
1335 dst_addr
, burst
, dev_width
, period_len
,
1342 if (direction
== DMA_DEV_TO_MEM
)
1343 dst_addr
+= period_len
;
1345 src_addr
+= period_len
;
1347 dev_vdbg(dev
, "%s: Configure period %d of buf:\n", __func__
, i
);
1360 i
, echan
->ch_num
, echan
->slot
[i
],
1361 edesc
->pset
[i
].param
.opt
,
1362 edesc
->pset
[i
].param
.src
,
1363 edesc
->pset
[i
].param
.dst
,
1364 edesc
->pset
[i
].param
.a_b_cnt
,
1365 edesc
->pset
[i
].param
.ccnt
,
1366 edesc
->pset
[i
].param
.src_dst_bidx
,
1367 edesc
->pset
[i
].param
.src_dst_cidx
,
1368 edesc
->pset
[i
].param
.link_bcntrld
);
1370 edesc
->absync
= ret
;
1373 * Enable period interrupt only if it is requested
1375 if (tx_flags
& DMA_PREP_INTERRUPT
) {
1376 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
1378 /* Also enable intermediate interrupts if necessary */
1379 if (use_intermediate
)
1380 edesc
->pset
[i
].param
.opt
|= ITCINTEN
;
1384 /* Place the cyclic channel to highest priority queue */
1386 edma_assign_channel_eventq(echan
, EVENTQ_0
);
1388 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
1391 static void edma_completion_handler(struct edma_chan
*echan
)
1393 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
1394 struct edma_desc
*edesc
;
1396 spin_lock(&echan
->vchan
.lock
);
1397 edesc
= echan
->edesc
;
1399 if (edesc
->cyclic
) {
1400 vchan_cyclic_callback(&edesc
->vdesc
);
1401 spin_unlock(&echan
->vchan
.lock
);
1403 } else if (edesc
->processed
== edesc
->pset_nr
) {
1406 vchan_cookie_complete(&edesc
->vdesc
);
1407 echan
->edesc
= NULL
;
1409 dev_dbg(dev
, "Transfer completed on channel %d\n",
1412 dev_dbg(dev
, "Sub transfer completed on channel %d\n",
1417 /* Update statistics for tx_status */
1418 edesc
->residue
-= edesc
->sg_len
;
1419 edesc
->residue_stat
= edesc
->residue
;
1420 edesc
->processed_stat
= edesc
->processed
;
1422 edma_execute(echan
);
1425 spin_unlock(&echan
->vchan
.lock
);
1428 /* eDMA interrupt handler */
1429 static irqreturn_t
dma_irq_handler(int irq
, void *data
)
1431 struct edma_cc
*ecc
= data
;
1441 dev_vdbg(ecc
->dev
, "dma_irq_handler\n");
1443 sh_ipr
= edma_shadow0_read_array(ecc
, SH_IPR
, 0);
1445 sh_ipr
= edma_shadow0_read_array(ecc
, SH_IPR
, 1);
1448 sh_ier
= edma_shadow0_read_array(ecc
, SH_IER
, 1);
1451 sh_ier
= edma_shadow0_read_array(ecc
, SH_IER
, 0);
1459 slot
= __ffs(sh_ipr
);
1460 sh_ipr
&= ~(BIT(slot
));
1462 if (sh_ier
& BIT(slot
)) {
1463 channel
= (bank
<< 5) | slot
;
1464 /* Clear the corresponding IPR bits */
1465 edma_shadow0_write_array(ecc
, SH_ICR
, bank
, BIT(slot
));
1466 edma_completion_handler(&ecc
->slave_chans
[channel
]);
1470 edma_shadow0_write(ecc
, SH_IEVAL
, 1);
1474 static void edma_error_handler(struct edma_chan
*echan
)
1476 struct edma_cc
*ecc
= echan
->ecc
;
1477 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
1478 struct edmacc_param p
;
1483 spin_lock(&echan
->vchan
.lock
);
1485 edma_read_slot(ecc
, echan
->slot
[0], &p
);
1487 * Issue later based on missed flag which will be sure
1489 * (1) we finished transmitting an intermediate slot and
1490 * edma_execute is coming up.
1491 * (2) or we finished current transfer and issue will
1492 * call edma_execute.
1494 * Important note: issuing can be dangerous here and
1495 * lead to some nasty recursion when we are in a NULL
1496 * slot. So we avoid doing so and set the missed flag.
1498 if (p
.a_b_cnt
== 0 && p
.ccnt
== 0) {
1499 dev_dbg(dev
, "Error on null slot, setting miss\n");
1503 * The slot is already programmed but the event got
1504 * missed, so its safe to issue it here.
1506 dev_dbg(dev
, "Missed event, TRIGGERING\n");
1507 edma_clean_channel(echan
);
1510 edma_trigger_channel(echan
);
1512 spin_unlock(&echan
->vchan
.lock
);
1515 static inline bool edma_error_pending(struct edma_cc
*ecc
)
1517 if (edma_read_array(ecc
, EDMA_EMR
, 0) ||
1518 edma_read_array(ecc
, EDMA_EMR
, 1) ||
1519 edma_read(ecc
, EDMA_QEMR
) || edma_read(ecc
, EDMA_CCERR
))
1525 /* eDMA error interrupt handler */
1526 static irqreturn_t
dma_ccerr_handler(int irq
, void *data
)
1528 struct edma_cc
*ecc
= data
;
1531 unsigned int cnt
= 0;
1538 dev_vdbg(ecc
->dev
, "dma_ccerr_handler\n");
1540 if (!edma_error_pending(ecc
)) {
1542 * The registers indicate no pending error event but the irq
1543 * handler has been called.
1544 * Ask eDMA to re-evaluate the error registers.
1546 dev_err(ecc
->dev
, "%s: Error interrupt without error event!\n",
1548 edma_write(ecc
, EDMA_EEVAL
, 1);
1553 /* Event missed register(s) */
1554 for (j
= 0; j
< 2; j
++) {
1557 val
= edma_read_array(ecc
, EDMA_EMR
, j
);
1561 dev_dbg(ecc
->dev
, "EMR%d 0x%08x\n", j
, val
);
1563 for (i
= find_next_bit(&emr
, 32, 0); i
< 32;
1564 i
= find_next_bit(&emr
, 32, i
+ 1)) {
1565 int k
= (j
<< 5) + i
;
1567 /* Clear the corresponding EMR bits */
1568 edma_write_array(ecc
, EDMA_EMCR
, j
, BIT(i
));
1570 edma_shadow0_write_array(ecc
, SH_SECR
, j
,
1572 edma_error_handler(&ecc
->slave_chans
[k
]);
1576 val
= edma_read(ecc
, EDMA_QEMR
);
1578 dev_dbg(ecc
->dev
, "QEMR 0x%02x\n", val
);
1579 /* Not reported, just clear the interrupt reason. */
1580 edma_write(ecc
, EDMA_QEMCR
, val
);
1581 edma_shadow0_write(ecc
, SH_QSECR
, val
);
1584 val
= edma_read(ecc
, EDMA_CCERR
);
1586 dev_warn(ecc
->dev
, "CCERR 0x%08x\n", val
);
1587 /* Not reported, just clear the interrupt reason. */
1588 edma_write(ecc
, EDMA_CCERRCLR
, val
);
1591 if (!edma_error_pending(ecc
))
1597 edma_write(ecc
, EDMA_EEVAL
, 1);
1601 /* Alloc channel resources */
1602 static int edma_alloc_chan_resources(struct dma_chan
*chan
)
1604 struct edma_chan
*echan
= to_edma_chan(chan
);
1605 struct edma_cc
*ecc
= echan
->ecc
;
1606 struct device
*dev
= ecc
->dev
;
1607 enum dma_event_q eventq_no
= EVENTQ_DEFAULT
;
1611 eventq_no
= echan
->tc
->id
;
1612 } else if (ecc
->tc_list
) {
1613 /* memcpy channel */
1614 echan
->tc
= &ecc
->tc_list
[ecc
->info
->default_queue
];
1615 eventq_no
= echan
->tc
->id
;
1618 ret
= edma_alloc_channel(echan
, eventq_no
);
1622 echan
->slot
[0] = edma_alloc_slot(ecc
, echan
->ch_num
);
1623 if (echan
->slot
[0] < 0) {
1624 dev_err(dev
, "Entry slot allocation failed for channel %u\n",
1625 EDMA_CHAN_SLOT(echan
->ch_num
));
1629 /* Set up channel -> slot mapping for the entry slot */
1630 edma_set_chmap(echan
, echan
->slot
[0]);
1631 echan
->alloced
= true;
1633 dev_dbg(dev
, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1634 EDMA_CHAN_SLOT(echan
->ch_num
), chan
->chan_id
,
1635 echan
->hw_triggered
? "HW" : "SW");
1640 edma_free_channel(echan
);
1644 /* Free channel resources */
1645 static void edma_free_chan_resources(struct dma_chan
*chan
)
1647 struct edma_chan
*echan
= to_edma_chan(chan
);
1648 struct device
*dev
= echan
->ecc
->dev
;
1651 /* Terminate transfers */
1654 vchan_free_chan_resources(&echan
->vchan
);
1656 /* Free EDMA PaRAM slots */
1657 for (i
= 0; i
< EDMA_MAX_SLOTS
; i
++) {
1658 if (echan
->slot
[i
] >= 0) {
1659 edma_free_slot(echan
->ecc
, echan
->slot
[i
]);
1660 echan
->slot
[i
] = -1;
1664 /* Set entry slot to the dummy slot */
1665 edma_set_chmap(echan
, echan
->ecc
->dummy_slot
);
1667 /* Free EDMA channel */
1668 if (echan
->alloced
) {
1669 edma_free_channel(echan
);
1670 echan
->alloced
= false;
1674 echan
->hw_triggered
= false;
1676 dev_dbg(dev
, "Free eDMA channel %d for virt channel %d\n",
1677 EDMA_CHAN_SLOT(echan
->ch_num
), chan
->chan_id
);
1680 /* Send pending descriptor to hardware */
1681 static void edma_issue_pending(struct dma_chan
*chan
)
1683 struct edma_chan
*echan
= to_edma_chan(chan
);
1684 unsigned long flags
;
1686 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
1687 if (vchan_issue_pending(&echan
->vchan
) && !echan
->edesc
)
1688 edma_execute(echan
);
1689 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
1693 * This limit exists to avoid a possible infinite loop when waiting for proof
1694 * that a particular transfer is completed. This limit can be hit if there
1695 * are large bursts to/from slow devices or the CPU is never able to catch
1696 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1697 * RX-FIFO, as many as 55 loops have been seen.
1699 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1701 static u32
edma_residue(struct edma_desc
*edesc
)
1703 bool dst
= edesc
->direction
== DMA_DEV_TO_MEM
;
1704 int loop_count
= EDMA_MAX_TR_WAIT_LOOPS
;
1705 struct edma_chan
*echan
= edesc
->echan
;
1706 struct edma_pset
*pset
= edesc
->pset
;
1707 dma_addr_t done
, pos
;
1711 * We always read the dst/src position from the first RamPar
1712 * pset. That's the one which is active now.
1714 pos
= edma_get_position(echan
->ecc
, echan
->slot
[0], dst
);
1717 * "pos" may represent a transfer request that is still being
1718 * processed by the EDMACC or EDMATC. We will busy wait until
1719 * any one of the situations occurs:
1720 * 1. the DMA hardware is idle
1721 * 2. a new transfer request is setup
1722 * 3. we hit the loop limit
1724 while (edma_read(echan
->ecc
, EDMA_CCSTAT
) & EDMA_CCSTAT_ACTV
) {
1725 /* check if a new transfer request is setup */
1726 if (edma_get_position(echan
->ecc
,
1727 echan
->slot
[0], dst
) != pos
) {
1731 if (!--loop_count
) {
1732 dev_dbg_ratelimited(echan
->vchan
.chan
.device
->dev
,
1733 "%s: timeout waiting for PaRAM update\n",
1742 * Cyclic is simple. Just subtract pset[0].addr from pos.
1744 * We never update edesc->residue in the cyclic case, so we
1745 * can tell the remaining room to the end of the circular
1748 if (edesc
->cyclic
) {
1749 done
= pos
- pset
->addr
;
1750 edesc
->residue_stat
= edesc
->residue
- done
;
1751 return edesc
->residue_stat
;
1755 * For SG operation we catch up with the last processed
1758 pset
+= edesc
->processed_stat
;
1760 for (i
= edesc
->processed_stat
; i
< edesc
->processed
; i
++, pset
++) {
1762 * If we are inside this pset address range, we know
1763 * this is the active one. Get the current delta and
1764 * stop walking the psets.
1766 if (pos
>= pset
->addr
&& pos
< pset
->addr
+ pset
->len
)
1767 return edesc
->residue_stat
- (pos
- pset
->addr
);
1769 /* Otherwise mark it done and update residue_stat. */
1770 edesc
->processed_stat
++;
1771 edesc
->residue_stat
-= pset
->len
;
1773 return edesc
->residue_stat
;
1776 /* Check request completion status */
1777 static enum dma_status
edma_tx_status(struct dma_chan
*chan
,
1778 dma_cookie_t cookie
,
1779 struct dma_tx_state
*txstate
)
1781 struct edma_chan
*echan
= to_edma_chan(chan
);
1782 struct virt_dma_desc
*vdesc
;
1783 enum dma_status ret
;
1784 unsigned long flags
;
1786 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1787 if (ret
== DMA_COMPLETE
|| !txstate
)
1790 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
1791 if (echan
->edesc
&& echan
->edesc
->vdesc
.tx
.cookie
== cookie
)
1792 txstate
->residue
= edma_residue(echan
->edesc
);
1793 else if ((vdesc
= vchan_find_desc(&echan
->vchan
, cookie
)))
1794 txstate
->residue
= to_edma_desc(&vdesc
->tx
)->residue
;
1795 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
1800 static bool edma_is_memcpy_channel(int ch_num
, s32
*memcpy_channels
)
1802 if (!memcpy_channels
)
1804 while (*memcpy_channels
!= -1) {
1805 if (*memcpy_channels
== ch_num
)
1812 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1813 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1814 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1815 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1817 static void edma_dma_init(struct edma_cc
*ecc
, bool legacy_mode
)
1819 struct dma_device
*s_ddev
= &ecc
->dma_slave
;
1820 struct dma_device
*m_ddev
= NULL
;
1821 s32
*memcpy_channels
= ecc
->info
->memcpy_channels
;
1824 dma_cap_zero(s_ddev
->cap_mask
);
1825 dma_cap_set(DMA_SLAVE
, s_ddev
->cap_mask
);
1826 dma_cap_set(DMA_CYCLIC
, s_ddev
->cap_mask
);
1827 if (ecc
->legacy_mode
&& !memcpy_channels
) {
1829 "Legacy memcpy is enabled, things might not work\n");
1831 dma_cap_set(DMA_MEMCPY
, s_ddev
->cap_mask
);
1832 s_ddev
->device_prep_dma_memcpy
= edma_prep_dma_memcpy
;
1833 s_ddev
->directions
= BIT(DMA_MEM_TO_MEM
);
1836 s_ddev
->device_prep_slave_sg
= edma_prep_slave_sg
;
1837 s_ddev
->device_prep_dma_cyclic
= edma_prep_dma_cyclic
;
1838 s_ddev
->device_alloc_chan_resources
= edma_alloc_chan_resources
;
1839 s_ddev
->device_free_chan_resources
= edma_free_chan_resources
;
1840 s_ddev
->device_issue_pending
= edma_issue_pending
;
1841 s_ddev
->device_tx_status
= edma_tx_status
;
1842 s_ddev
->device_config
= edma_slave_config
;
1843 s_ddev
->device_pause
= edma_dma_pause
;
1844 s_ddev
->device_resume
= edma_dma_resume
;
1845 s_ddev
->device_terminate_all
= edma_terminate_all
;
1846 s_ddev
->device_synchronize
= edma_synchronize
;
1848 s_ddev
->src_addr_widths
= EDMA_DMA_BUSWIDTHS
;
1849 s_ddev
->dst_addr_widths
= EDMA_DMA_BUSWIDTHS
;
1850 s_ddev
->directions
|= (BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
));
1851 s_ddev
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1853 s_ddev
->dev
= ecc
->dev
;
1854 INIT_LIST_HEAD(&s_ddev
->channels
);
1856 if (memcpy_channels
) {
1857 m_ddev
= devm_kzalloc(ecc
->dev
, sizeof(*m_ddev
), GFP_KERNEL
);
1858 ecc
->dma_memcpy
= m_ddev
;
1860 dma_cap_zero(m_ddev
->cap_mask
);
1861 dma_cap_set(DMA_MEMCPY
, m_ddev
->cap_mask
);
1863 m_ddev
->device_prep_dma_memcpy
= edma_prep_dma_memcpy
;
1864 m_ddev
->device_alloc_chan_resources
= edma_alloc_chan_resources
;
1865 m_ddev
->device_free_chan_resources
= edma_free_chan_resources
;
1866 m_ddev
->device_issue_pending
= edma_issue_pending
;
1867 m_ddev
->device_tx_status
= edma_tx_status
;
1868 m_ddev
->device_config
= edma_slave_config
;
1869 m_ddev
->device_pause
= edma_dma_pause
;
1870 m_ddev
->device_resume
= edma_dma_resume
;
1871 m_ddev
->device_terminate_all
= edma_terminate_all
;
1872 m_ddev
->device_synchronize
= edma_synchronize
;
1874 m_ddev
->src_addr_widths
= EDMA_DMA_BUSWIDTHS
;
1875 m_ddev
->dst_addr_widths
= EDMA_DMA_BUSWIDTHS
;
1876 m_ddev
->directions
= BIT(DMA_MEM_TO_MEM
);
1877 m_ddev
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1879 m_ddev
->dev
= ecc
->dev
;
1880 INIT_LIST_HEAD(&m_ddev
->channels
);
1881 } else if (!ecc
->legacy_mode
) {
1882 dev_info(ecc
->dev
, "memcpy is disabled\n");
1885 for (i
= 0; i
< ecc
->num_channels
; i
++) {
1886 struct edma_chan
*echan
= &ecc
->slave_chans
[i
];
1887 echan
->ch_num
= EDMA_CTLR_CHAN(ecc
->id
, i
);
1889 echan
->vchan
.desc_free
= edma_desc_free
;
1891 if (m_ddev
&& edma_is_memcpy_channel(i
, memcpy_channels
))
1892 vchan_init(&echan
->vchan
, m_ddev
);
1894 vchan_init(&echan
->vchan
, s_ddev
);
1896 INIT_LIST_HEAD(&echan
->node
);
1897 for (j
= 0; j
< EDMA_MAX_SLOTS
; j
++)
1898 echan
->slot
[j
] = -1;
1902 static int edma_setup_from_hw(struct device
*dev
, struct edma_soc_info
*pdata
,
1903 struct edma_cc
*ecc
)
1907 s8 (*queue_priority_map
)[2];
1909 /* Decode the eDMA3 configuration from CCCFG register */
1910 cccfg
= edma_read(ecc
, EDMA_CCCFG
);
1912 value
= GET_NUM_REGN(cccfg
);
1913 ecc
->num_region
= BIT(value
);
1915 value
= GET_NUM_DMACH(cccfg
);
1916 ecc
->num_channels
= BIT(value
+ 1);
1918 value
= GET_NUM_QDMACH(cccfg
);
1919 ecc
->num_qchannels
= value
* 2;
1921 value
= GET_NUM_PAENTRY(cccfg
);
1922 ecc
->num_slots
= BIT(value
+ 4);
1924 value
= GET_NUM_EVQUE(cccfg
);
1925 ecc
->num_tc
= value
+ 1;
1927 ecc
->chmap_exist
= (cccfg
& CHMAP_EXIST
) ? true : false;
1929 dev_dbg(dev
, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg
);
1930 dev_dbg(dev
, "num_region: %u\n", ecc
->num_region
);
1931 dev_dbg(dev
, "num_channels: %u\n", ecc
->num_channels
);
1932 dev_dbg(dev
, "num_qchannels: %u\n", ecc
->num_qchannels
);
1933 dev_dbg(dev
, "num_slots: %u\n", ecc
->num_slots
);
1934 dev_dbg(dev
, "num_tc: %u\n", ecc
->num_tc
);
1935 dev_dbg(dev
, "chmap_exist: %s\n", ecc
->chmap_exist
? "yes" : "no");
1937 /* Nothing need to be done if queue priority is provided */
1938 if (pdata
->queue_priority_mapping
)
1942 * Configure TC/queue priority as follows:
1947 * The meaning of priority numbers: 0 highest priority, 7 lowest
1948 * priority. So Q0 is the highest priority queue and the last queue has
1949 * the lowest priority.
1951 queue_priority_map
= devm_kcalloc(dev
, ecc
->num_tc
+ 1, sizeof(s8
),
1953 if (!queue_priority_map
)
1956 for (i
= 0; i
< ecc
->num_tc
; i
++) {
1957 queue_priority_map
[i
][0] = i
;
1958 queue_priority_map
[i
][1] = i
;
1960 queue_priority_map
[i
][0] = -1;
1961 queue_priority_map
[i
][1] = -1;
1963 pdata
->queue_priority_mapping
= queue_priority_map
;
1964 /* Default queue has the lowest priority */
1965 pdata
->default_queue
= i
- 1;
1970 #if IS_ENABLED(CONFIG_OF)
1971 static int edma_xbar_event_map(struct device
*dev
, struct edma_soc_info
*pdata
,
1974 const char pname
[] = "ti,edma-xbar-event-map";
1975 struct resource res
;
1977 s16 (*xbar_chans
)[2];
1978 size_t nelm
= sz
/ sizeof(s16
);
1979 u32 shift
, offset
, mux
;
1982 xbar_chans
= devm_kcalloc(dev
, nelm
+ 2, sizeof(s16
), GFP_KERNEL
);
1986 ret
= of_address_to_resource(dev
->of_node
, 1, &res
);
1990 xbar
= devm_ioremap(dev
, res
.start
, resource_size(&res
));
1994 ret
= of_property_read_u16_array(dev
->of_node
, pname
, (u16
*)xbar_chans
,
1999 /* Invalidate last entry for the other user of this mess */
2001 xbar_chans
[nelm
][0] = -1;
2002 xbar_chans
[nelm
][1] = -1;
2004 for (i
= 0; i
< nelm
; i
++) {
2005 shift
= (xbar_chans
[i
][1] & 0x03) << 3;
2006 offset
= xbar_chans
[i
][1] & 0xfffffffc;
2007 mux
= readl(xbar
+ offset
);
2008 mux
&= ~(0xff << shift
);
2009 mux
|= xbar_chans
[i
][0] << shift
;
2010 writel(mux
, (xbar
+ offset
));
2013 pdata
->xbar_chans
= (const s16 (*)[2]) xbar_chans
;
2017 static struct edma_soc_info
*edma_setup_info_from_dt(struct device
*dev
,
2020 struct edma_soc_info
*info
;
2021 struct property
*prop
;
2025 info
= devm_kzalloc(dev
, sizeof(struct edma_soc_info
), GFP_KERNEL
);
2027 return ERR_PTR(-ENOMEM
);
2030 prop
= of_find_property(dev
->of_node
, "ti,edma-xbar-event-map",
2033 ret
= edma_xbar_event_map(dev
, info
, sz
);
2035 return ERR_PTR(ret
);
2040 /* Get the list of channels allocated to be used for memcpy */
2041 prop
= of_find_property(dev
->of_node
, "ti,edma-memcpy-channels", &sz
);
2043 const char pname
[] = "ti,edma-memcpy-channels";
2044 size_t nelm
= sz
/ sizeof(s32
);
2047 memcpy_ch
= devm_kcalloc(dev
, nelm
+ 1, sizeof(s32
),
2050 return ERR_PTR(-ENOMEM
);
2052 ret
= of_property_read_u32_array(dev
->of_node
, pname
,
2053 (u32
*)memcpy_ch
, nelm
);
2055 return ERR_PTR(ret
);
2057 memcpy_ch
[nelm
] = -1;
2058 info
->memcpy_channels
= memcpy_ch
;
2061 prop
= of_find_property(dev
->of_node
, "ti,edma-reserved-slot-ranges",
2064 const char pname
[] = "ti,edma-reserved-slot-ranges";
2066 s16 (*rsv_slots
)[2];
2067 size_t nelm
= sz
/ sizeof(*tmp
);
2068 struct edma_rsv_info
*rsv_info
;
2074 tmp
= kcalloc(nelm
, sizeof(*tmp
), GFP_KERNEL
);
2076 return ERR_PTR(-ENOMEM
);
2078 rsv_info
= devm_kzalloc(dev
, sizeof(*rsv_info
), GFP_KERNEL
);
2081 return ERR_PTR(-ENOMEM
);
2084 rsv_slots
= devm_kcalloc(dev
, nelm
+ 1, sizeof(*rsv_slots
),
2088 return ERR_PTR(-ENOMEM
);
2091 ret
= of_property_read_u32_array(dev
->of_node
, pname
,
2092 (u32
*)tmp
, nelm
* 2);
2095 return ERR_PTR(ret
);
2098 for (i
= 0; i
< nelm
; i
++) {
2099 rsv_slots
[i
][0] = tmp
[i
][0];
2100 rsv_slots
[i
][1] = tmp
[i
][1];
2102 rsv_slots
[nelm
][0] = -1;
2103 rsv_slots
[nelm
][1] = -1;
2105 info
->rsv
= rsv_info
;
2106 info
->rsv
->rsv_slots
= (const s16 (*)[2])rsv_slots
;
2114 static struct dma_chan
*of_edma_xlate(struct of_phandle_args
*dma_spec
,
2115 struct of_dma
*ofdma
)
2117 struct edma_cc
*ecc
= ofdma
->of_dma_data
;
2118 struct dma_chan
*chan
= NULL
;
2119 struct edma_chan
*echan
;
2122 if (!ecc
|| dma_spec
->args_count
< 1)
2125 for (i
= 0; i
< ecc
->num_channels
; i
++) {
2126 echan
= &ecc
->slave_chans
[i
];
2127 if (echan
->ch_num
== dma_spec
->args
[0]) {
2128 chan
= &echan
->vchan
.chan
;
2136 if (echan
->ecc
->legacy_mode
&& dma_spec
->args_count
== 1)
2139 if (!echan
->ecc
->legacy_mode
&& dma_spec
->args_count
== 2 &&
2140 dma_spec
->args
[1] < echan
->ecc
->num_tc
) {
2141 echan
->tc
= &echan
->ecc
->tc_list
[dma_spec
->args
[1]];
2147 /* The channel is going to be used as HW synchronized */
2148 echan
->hw_triggered
= true;
2149 return dma_get_slave_channel(chan
);
2152 static struct edma_soc_info
*edma_setup_info_from_dt(struct device
*dev
,
2155 return ERR_PTR(-EINVAL
);
2158 static struct dma_chan
*of_edma_xlate(struct of_phandle_args
*dma_spec
,
2159 struct of_dma
*ofdma
)
2165 static int edma_probe(struct platform_device
*pdev
)
2167 struct edma_soc_info
*info
= pdev
->dev
.platform_data
;
2168 s8 (*queue_priority_mapping
)[2];
2170 const s16 (*rsv_slots
)[2];
2171 const s16 (*xbar_chans
)[2];
2174 struct resource
*mem
;
2175 struct device_node
*node
= pdev
->dev
.of_node
;
2176 struct device
*dev
= &pdev
->dev
;
2177 struct edma_cc
*ecc
;
2178 bool legacy_mode
= true;
2182 const struct of_device_id
*match
;
2184 match
= of_match_node(edma_of_ids
, node
);
2185 if (match
&& (u32
)match
->data
== EDMA_BINDING_TPCC
)
2186 legacy_mode
= false;
2188 info
= edma_setup_info_from_dt(dev
, legacy_mode
);
2190 dev_err(dev
, "failed to get DT data\n");
2191 return PTR_ERR(info
);
2198 pm_runtime_enable(dev
);
2199 ret
= pm_runtime_get_sync(dev
);
2201 dev_err(dev
, "pm_runtime_get_sync() failed\n");
2205 ret
= dma_set_mask_and_coherent(dev
, DMA_BIT_MASK(32));
2209 ecc
= devm_kzalloc(dev
, sizeof(*ecc
), GFP_KERNEL
);
2211 dev_err(dev
, "Can't allocate controller\n");
2217 ecc
->legacy_mode
= legacy_mode
;
2218 /* When booting with DT the pdev->id is -1 */
2222 mem
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "edma3_cc");
2224 dev_dbg(dev
, "mem resource not found, using index 0\n");
2225 mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2227 dev_err(dev
, "no mem resource?\n");
2231 ecc
->base
= devm_ioremap_resource(dev
, mem
);
2232 if (IS_ERR(ecc
->base
))
2233 return PTR_ERR(ecc
->base
);
2235 platform_set_drvdata(pdev
, ecc
);
2237 /* Get eDMA3 configuration from IP */
2238 ret
= edma_setup_from_hw(dev
, info
, ecc
);
2242 /* Allocate memory based on the information we got from the IP */
2243 ecc
->slave_chans
= devm_kcalloc(dev
, ecc
->num_channels
,
2244 sizeof(*ecc
->slave_chans
), GFP_KERNEL
);
2245 if (!ecc
->slave_chans
)
2248 ecc
->slot_inuse
= devm_kcalloc(dev
, BITS_TO_LONGS(ecc
->num_slots
),
2249 sizeof(unsigned long), GFP_KERNEL
);
2250 if (!ecc
->slot_inuse
)
2253 ecc
->default_queue
= info
->default_queue
;
2255 for (i
= 0; i
< ecc
->num_slots
; i
++)
2256 edma_write_slot(ecc
, i
, &dummy_paramset
);
2259 /* Set the reserved slots in inuse list */
2260 rsv_slots
= info
->rsv
->rsv_slots
;
2262 for (i
= 0; rsv_slots
[i
][0] != -1; i
++) {
2263 off
= rsv_slots
[i
][0];
2264 ln
= rsv_slots
[i
][1];
2265 set_bits(off
, ln
, ecc
->slot_inuse
);
2270 /* Clear the xbar mapped channels in unused list */
2271 xbar_chans
= info
->xbar_chans
;
2273 for (i
= 0; xbar_chans
[i
][1] != -1; i
++) {
2274 off
= xbar_chans
[i
][1];
2278 irq
= platform_get_irq_byname(pdev
, "edma3_ccint");
2279 if (irq
< 0 && node
)
2280 irq
= irq_of_parse_and_map(node
, 0);
2283 irq_name
= devm_kasprintf(dev
, GFP_KERNEL
, "%s_ccint",
2285 ret
= devm_request_irq(dev
, irq
, dma_irq_handler
, 0, irq_name
,
2288 dev_err(dev
, "CCINT (%d) failed --> %d\n", irq
, ret
);
2293 irq
= platform_get_irq_byname(pdev
, "edma3_ccerrint");
2294 if (irq
< 0 && node
)
2295 irq
= irq_of_parse_and_map(node
, 2);
2298 irq_name
= devm_kasprintf(dev
, GFP_KERNEL
, "%s_ccerrint",
2300 ret
= devm_request_irq(dev
, irq
, dma_ccerr_handler
, 0, irq_name
,
2303 dev_err(dev
, "CCERRINT (%d) failed --> %d\n", irq
, ret
);
2308 ecc
->dummy_slot
= edma_alloc_slot(ecc
, EDMA_SLOT_ANY
);
2309 if (ecc
->dummy_slot
< 0) {
2310 dev_err(dev
, "Can't allocate PaRAM dummy slot\n");
2311 return ecc
->dummy_slot
;
2314 queue_priority_mapping
= info
->queue_priority_mapping
;
2316 if (!ecc
->legacy_mode
) {
2317 int lowest_priority
= 0;
2318 struct of_phandle_args tc_args
;
2320 ecc
->tc_list
= devm_kcalloc(dev
, ecc
->num_tc
,
2321 sizeof(*ecc
->tc_list
), GFP_KERNEL
);
2326 ret
= of_parse_phandle_with_fixed_args(node
, "ti,tptcs",
2328 if (ret
|| i
== ecc
->num_tc
)
2331 ecc
->tc_list
[i
].node
= tc_args
.np
;
2332 ecc
->tc_list
[i
].id
= i
;
2333 queue_priority_mapping
[i
][1] = tc_args
.args
[0];
2334 if (queue_priority_mapping
[i
][1] > lowest_priority
) {
2335 lowest_priority
= queue_priority_mapping
[i
][1];
2336 info
->default_queue
= i
;
2341 /* Event queue priority mapping */
2342 for (i
= 0; queue_priority_mapping
[i
][0] != -1; i
++)
2343 edma_assign_priority_to_queue(ecc
, queue_priority_mapping
[i
][0],
2344 queue_priority_mapping
[i
][1]);
2346 for (i
= 0; i
< ecc
->num_region
; i
++) {
2347 edma_write_array2(ecc
, EDMA_DRAE
, i
, 0, 0x0);
2348 edma_write_array2(ecc
, EDMA_DRAE
, i
, 1, 0x0);
2349 edma_write_array(ecc
, EDMA_QRAE
, i
, 0x0);
2353 /* Init the dma device and channels */
2354 edma_dma_init(ecc
, legacy_mode
);
2356 for (i
= 0; i
< ecc
->num_channels
; i
++) {
2357 /* Assign all channels to the default queue */
2358 edma_assign_channel_eventq(&ecc
->slave_chans
[i
],
2359 info
->default_queue
);
2360 /* Set entry slot to the dummy slot */
2361 edma_set_chmap(&ecc
->slave_chans
[i
], ecc
->dummy_slot
);
2364 ecc
->dma_slave
.filter
.map
= info
->slave_map
;
2365 ecc
->dma_slave
.filter
.mapcnt
= info
->slavecnt
;
2366 ecc
->dma_slave
.filter
.fn
= edma_filter_fn
;
2368 ret
= dma_async_device_register(&ecc
->dma_slave
);
2370 dev_err(dev
, "slave ddev registration failed (%d)\n", ret
);
2374 if (ecc
->dma_memcpy
) {
2375 ret
= dma_async_device_register(ecc
->dma_memcpy
);
2377 dev_err(dev
, "memcpy ddev registration failed (%d)\n",
2379 dma_async_device_unregister(&ecc
->dma_slave
);
2385 of_dma_controller_register(node
, of_edma_xlate
, ecc
);
2387 dev_info(dev
, "TI EDMA DMA engine driver\n");
2392 edma_free_slot(ecc
, ecc
->dummy_slot
);
2396 static int edma_remove(struct platform_device
*pdev
)
2398 struct device
*dev
= &pdev
->dev
;
2399 struct edma_cc
*ecc
= dev_get_drvdata(dev
);
2402 of_dma_controller_free(dev
->of_node
);
2403 dma_async_device_unregister(&ecc
->dma_slave
);
2404 if (ecc
->dma_memcpy
)
2405 dma_async_device_unregister(ecc
->dma_memcpy
);
2406 edma_free_slot(ecc
, ecc
->dummy_slot
);
2411 #ifdef CONFIG_PM_SLEEP
2412 static int edma_pm_suspend(struct device
*dev
)
2414 struct edma_cc
*ecc
= dev_get_drvdata(dev
);
2415 struct edma_chan
*echan
= ecc
->slave_chans
;
2418 for (i
= 0; i
< ecc
->num_channels
; i
++) {
2419 if (echan
[i
].alloced
)
2420 edma_setup_interrupt(&echan
[i
], false);
2426 static int edma_pm_resume(struct device
*dev
)
2428 struct edma_cc
*ecc
= dev_get_drvdata(dev
);
2429 struct edma_chan
*echan
= ecc
->slave_chans
;
2431 s8 (*queue_priority_mapping
)[2];
2433 queue_priority_mapping
= ecc
->info
->queue_priority_mapping
;
2435 /* Event queue priority mapping */
2436 for (i
= 0; queue_priority_mapping
[i
][0] != -1; i
++)
2437 edma_assign_priority_to_queue(ecc
, queue_priority_mapping
[i
][0],
2438 queue_priority_mapping
[i
][1]);
2440 for (i
= 0; i
< ecc
->num_channels
; i
++) {
2441 if (echan
[i
].alloced
) {
2442 /* ensure access through shadow region 0 */
2443 edma_or_array2(ecc
, EDMA_DRAE
, 0, i
>> 5,
2446 edma_setup_interrupt(&echan
[i
], true);
2448 /* Set up channel -> slot mapping for the entry slot */
2449 edma_set_chmap(&echan
[i
], echan
[i
].slot
[0]);
2457 static const struct dev_pm_ops edma_pm_ops
= {
2458 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend
, edma_pm_resume
)
2461 static struct platform_driver edma_driver
= {
2462 .probe
= edma_probe
,
2463 .remove
= edma_remove
,
2467 .of_match_table
= edma_of_ids
,
2471 static int edma_tptc_probe(struct platform_device
*pdev
)
2473 pm_runtime_enable(&pdev
->dev
);
2474 return pm_runtime_get_sync(&pdev
->dev
);
2477 static struct platform_driver edma_tptc_driver
= {
2478 .probe
= edma_tptc_probe
,
2480 .name
= "edma3-tptc",
2481 .of_match_table
= edma_tptc_of_ids
,
2485 bool edma_filter_fn(struct dma_chan
*chan
, void *param
)
2489 if (chan
->device
->dev
->driver
== &edma_driver
.driver
) {
2490 struct edma_chan
*echan
= to_edma_chan(chan
);
2491 unsigned ch_req
= *(unsigned *)param
;
2492 if (ch_req
== echan
->ch_num
) {
2493 /* The channel is going to be used as HW synchronized */
2494 echan
->hw_triggered
= true;
2500 EXPORT_SYMBOL(edma_filter_fn
);
2502 static int edma_init(void)
2506 ret
= platform_driver_register(&edma_tptc_driver
);
2510 return platform_driver_register(&edma_driver
);
2512 subsys_initcall(edma_init
);
2514 static void __exit
edma_exit(void)
2516 platform_driver_unregister(&edma_driver
);
2517 platform_driver_unregister(&edma_tptc_driver
);
2519 module_exit(edma_exit
);
2521 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2522 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2523 MODULE_LICENSE("GPL v2");