drm/i915: Mark the context and address space as closed
[linux/fpc-iii.git] / drivers / dma / fsldma.c
bloba8828ed639b3027c476fc7d82d4d6607221b2ae1
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
18 * on some platforms.
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 #include <linux/fsldma.h>
40 #include "dmaengine.h"
41 #include "fsldma.h"
43 #define chan_dbg(chan, fmt, arg...) \
44 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...) \
46 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
51 * Register Helpers
54 static void set_sr(struct fsldma_chan *chan, u32 val)
56 DMA_OUT(chan, &chan->regs->sr, val, 32);
59 static u32 get_sr(struct fsldma_chan *chan)
61 return DMA_IN(chan, &chan->regs->sr, 32);
64 static void set_mr(struct fsldma_chan *chan, u32 val)
66 DMA_OUT(chan, &chan->regs->mr, val, 32);
69 static u32 get_mr(struct fsldma_chan *chan)
71 return DMA_IN(chan, &chan->regs->mr, 32);
74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
76 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
79 static dma_addr_t get_cdar(struct fsldma_chan *chan)
81 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
84 static void set_bcr(struct fsldma_chan *chan, u32 val)
86 DMA_OUT(chan, &chan->regs->bcr, val, 32);
89 static u32 get_bcr(struct fsldma_chan *chan)
91 return DMA_IN(chan, &chan->regs->bcr, 32);
95 * Descriptor Helpers
98 static void set_desc_cnt(struct fsldma_chan *chan,
99 struct fsl_dma_ld_hw *hw, u32 count)
101 hw->count = CPU_TO_DMA(chan, count, 32);
104 static void set_desc_src(struct fsldma_chan *chan,
105 struct fsl_dma_ld_hw *hw, dma_addr_t src)
107 u64 snoop_bits;
109 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
114 static void set_desc_dst(struct fsldma_chan *chan,
115 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
117 u64 snoop_bits;
119 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
124 static void set_desc_next(struct fsldma_chan *chan,
125 struct fsl_dma_ld_hw *hw, dma_addr_t next)
127 u64 snoop_bits;
129 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
130 ? FSL_DMA_SNEN : 0;
131 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
136 u64 snoop_bits;
138 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
139 ? FSL_DMA_SNEN : 0;
141 desc->hw.next_ln_addr = CPU_TO_DMA(chan,
142 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
143 | snoop_bits, 64);
147 * DMA Engine Hardware Control Helpers
150 static void dma_init(struct fsldma_chan *chan)
152 /* Reset the channel */
153 set_mr(chan, 0);
155 switch (chan->feature & FSL_DMA_IP_MASK) {
156 case FSL_DMA_IP_85XX:
157 /* Set the channel to below modes:
158 * EIE - Error interrupt enable
159 * EOLNIE - End of links interrupt enable
160 * BWC - Bandwidth sharing among channels
162 set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
163 | FSL_DMA_MR_EOLNIE);
164 break;
165 case FSL_DMA_IP_83XX:
166 /* Set the channel to below modes:
167 * EOTIE - End-of-transfer interrupt enable
168 * PRC_RM - PCI read multiple
170 set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
171 break;
175 static int dma_is_idle(struct fsldma_chan *chan)
177 u32 sr = get_sr(chan);
178 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
182 * Start the DMA controller
184 * Preconditions:
185 * - the CDAR register must point to the start descriptor
186 * - the MRn[CS] bit must be cleared
188 static void dma_start(struct fsldma_chan *chan)
190 u32 mode;
192 mode = get_mr(chan);
194 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
195 set_bcr(chan, 0);
196 mode |= FSL_DMA_MR_EMP_EN;
197 } else {
198 mode &= ~FSL_DMA_MR_EMP_EN;
201 if (chan->feature & FSL_DMA_CHAN_START_EXT) {
202 mode |= FSL_DMA_MR_EMS_EN;
203 } else {
204 mode &= ~FSL_DMA_MR_EMS_EN;
205 mode |= FSL_DMA_MR_CS;
208 set_mr(chan, mode);
211 static void dma_halt(struct fsldma_chan *chan)
213 u32 mode;
214 int i;
216 /* read the mode register */
217 mode = get_mr(chan);
220 * The 85xx controller supports channel abort, which will stop
221 * the current transfer. On 83xx, this bit is the transfer error
222 * mask bit, which should not be changed.
224 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
225 mode |= FSL_DMA_MR_CA;
226 set_mr(chan, mode);
228 mode &= ~FSL_DMA_MR_CA;
231 /* stop the DMA controller */
232 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
233 set_mr(chan, mode);
235 /* wait for the DMA controller to become idle */
236 for (i = 0; i < 100; i++) {
237 if (dma_is_idle(chan))
238 return;
240 udelay(10);
243 if (!dma_is_idle(chan))
244 chan_err(chan, "DMA halt timeout!\n");
248 * fsl_chan_set_src_loop_size - Set source address hold transfer size
249 * @chan : Freescale DMA channel
250 * @size : Address loop size, 0 for disable loop
252 * The set source address hold transfer size. The source
253 * address hold or loop transfer size is when the DMA transfer
254 * data from source address (SA), if the loop size is 4, the DMA will
255 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256 * SA + 1 ... and so on.
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
260 u32 mode;
262 mode = get_mr(chan);
264 switch (size) {
265 case 0:
266 mode &= ~FSL_DMA_MR_SAHE;
267 break;
268 case 1:
269 case 2:
270 case 4:
271 case 8:
272 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
273 break;
276 set_mr(chan, mode);
280 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
281 * @chan : Freescale DMA channel
282 * @size : Address loop size, 0 for disable loop
284 * The set destination address hold transfer size. The destination
285 * address hold or loop transfer size is when the DMA transfer
286 * data to destination address (TA), if the loop size is 4, the DMA will
287 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
288 * TA + 1 ... and so on.
290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
292 u32 mode;
294 mode = get_mr(chan);
296 switch (size) {
297 case 0:
298 mode &= ~FSL_DMA_MR_DAHE;
299 break;
300 case 1:
301 case 2:
302 case 4:
303 case 8:
304 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
305 break;
308 set_mr(chan, mode);
312 * fsl_chan_set_request_count - Set DMA Request Count for external control
313 * @chan : Freescale DMA channel
314 * @size : Number of bytes to transfer in a single request
316 * The Freescale DMA channel can be controlled by the external signal DREQ#.
317 * The DMA request count is how many bytes are allowed to transfer before
318 * pausing the channel, after which a new assertion of DREQ# resumes channel
319 * operation.
321 * A size of 0 disables external pause control. The maximum size is 1024.
323 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
325 u32 mode;
327 BUG_ON(size > 1024);
329 mode = get_mr(chan);
330 mode |= (__ilog2(size) << 24) & 0x0f000000;
332 set_mr(chan, mode);
336 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
337 * @chan : Freescale DMA channel
338 * @enable : 0 is disabled, 1 is enabled.
340 * The Freescale DMA channel can be controlled by the external signal DREQ#.
341 * The DMA Request Count feature should be used in addition to this feature
342 * to set the number of bytes to transfer before pausing the channel.
344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
346 if (enable)
347 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
348 else
349 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
353 * fsl_chan_toggle_ext_start - Toggle channel external start status
354 * @chan : Freescale DMA channel
355 * @enable : 0 is disabled, 1 is enabled.
357 * If enable the external start, the channel can be started by an
358 * external DMA start pin. So the dma_start() does not start the
359 * transfer immediately. The DMA channel will wait for the
360 * control pin asserted.
362 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
364 if (enable)
365 chan->feature |= FSL_DMA_CHAN_START_EXT;
366 else
367 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
370 int fsl_dma_external_start(struct dma_chan *dchan, int enable)
372 struct fsldma_chan *chan;
374 if (!dchan)
375 return -EINVAL;
377 chan = to_fsl_chan(dchan);
379 fsl_chan_toggle_ext_start(chan, enable);
380 return 0;
382 EXPORT_SYMBOL_GPL(fsl_dma_external_start);
384 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
386 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
388 if (list_empty(&chan->ld_pending))
389 goto out_splice;
392 * Add the hardware descriptor to the chain of hardware descriptors
393 * that already exists in memory.
395 * This will un-set the EOL bit of the existing transaction, and the
396 * last link in this transaction will become the EOL descriptor.
398 set_desc_next(chan, &tail->hw, desc->async_tx.phys);
401 * Add the software descriptor and all children to the list
402 * of pending transactions
404 out_splice:
405 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
408 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
410 struct fsldma_chan *chan = to_fsl_chan(tx->chan);
411 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
412 struct fsl_desc_sw *child;
413 dma_cookie_t cookie = -EINVAL;
415 spin_lock_bh(&chan->desc_lock);
417 #ifdef CONFIG_PM
418 if (unlikely(chan->pm_state != RUNNING)) {
419 chan_dbg(chan, "cannot submit due to suspend\n");
420 spin_unlock_bh(&chan->desc_lock);
421 return -1;
423 #endif
426 * assign cookies to all of the software descriptors
427 * that make up this transaction
429 list_for_each_entry(child, &desc->tx_list, node) {
430 cookie = dma_cookie_assign(&child->async_tx);
433 /* put this transaction onto the tail of the pending queue */
434 append_ld_queue(chan, desc);
436 spin_unlock_bh(&chan->desc_lock);
438 return cookie;
442 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
443 * @chan : Freescale DMA channel
444 * @desc: descriptor to be freed
446 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
447 struct fsl_desc_sw *desc)
449 list_del(&desc->node);
450 chan_dbg(chan, "LD %p free\n", desc);
451 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
455 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
456 * @chan : Freescale DMA channel
458 * Return - The descriptor allocated. NULL for failed.
460 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
462 struct fsl_desc_sw *desc;
463 dma_addr_t pdesc;
465 desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
466 if (!desc) {
467 chan_dbg(chan, "out of memory for link descriptor\n");
468 return NULL;
471 INIT_LIST_HEAD(&desc->tx_list);
472 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
473 desc->async_tx.tx_submit = fsl_dma_tx_submit;
474 desc->async_tx.phys = pdesc;
476 chan_dbg(chan, "LD %p allocated\n", desc);
478 return desc;
482 * fsldma_clean_completed_descriptor - free all descriptors which
483 * has been completed and acked
484 * @chan: Freescale DMA channel
486 * This function is used on all completed and acked descriptors.
487 * All descriptors should only be freed in this function.
489 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
491 struct fsl_desc_sw *desc, *_desc;
493 /* Run the callback for each descriptor, in order */
494 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
495 if (async_tx_test_ack(&desc->async_tx))
496 fsl_dma_free_descriptor(chan, desc);
500 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
501 * @chan: Freescale DMA channel
502 * @desc: descriptor to cleanup and free
503 * @cookie: Freescale DMA transaction identifier
505 * This function is used on a descriptor which has been executed by the DMA
506 * controller. It will run any callbacks, submit any dependencies.
508 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
509 struct fsl_desc_sw *desc, dma_cookie_t cookie)
511 struct dma_async_tx_descriptor *txd = &desc->async_tx;
512 dma_cookie_t ret = cookie;
514 BUG_ON(txd->cookie < 0);
516 if (txd->cookie > 0) {
517 ret = txd->cookie;
519 /* Run the link descriptor callback function */
520 if (txd->callback) {
521 chan_dbg(chan, "LD %p callback\n", desc);
522 txd->callback(txd->callback_param);
525 dma_descriptor_unmap(txd);
528 /* Run any dependencies */
529 dma_run_dependencies(txd);
531 return ret;
535 * fsldma_clean_running_descriptor - move the completed descriptor from
536 * ld_running to ld_completed
537 * @chan: Freescale DMA channel
538 * @desc: the descriptor which is completed
540 * Free the descriptor directly if acked by async_tx api, or move it to
541 * queue ld_completed.
543 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
544 struct fsl_desc_sw *desc)
546 /* Remove from the list of transactions */
547 list_del(&desc->node);
550 * the client is allowed to attach dependent operations
551 * until 'ack' is set
553 if (!async_tx_test_ack(&desc->async_tx)) {
555 * Move this descriptor to the list of descriptors which is
556 * completed, but still awaiting the 'ack' bit to be set.
558 list_add_tail(&desc->node, &chan->ld_completed);
559 return;
562 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
566 * fsl_chan_xfer_ld_queue - transfer any pending transactions
567 * @chan : Freescale DMA channel
569 * HARDWARE STATE: idle
570 * LOCKING: must hold chan->desc_lock
572 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
574 struct fsl_desc_sw *desc;
577 * If the list of pending descriptors is empty, then we
578 * don't need to do any work at all
580 if (list_empty(&chan->ld_pending)) {
581 chan_dbg(chan, "no pending LDs\n");
582 return;
586 * The DMA controller is not idle, which means that the interrupt
587 * handler will start any queued transactions when it runs after
588 * this transaction finishes
590 if (!chan->idle) {
591 chan_dbg(chan, "DMA controller still busy\n");
592 return;
596 * If there are some link descriptors which have not been
597 * transferred, we need to start the controller
601 * Move all elements from the queue of pending transactions
602 * onto the list of running transactions
604 chan_dbg(chan, "idle, starting controller\n");
605 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
606 list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
609 * The 85xx DMA controller doesn't clear the channel start bit
610 * automatically at the end of a transfer. Therefore we must clear
611 * it in software before starting the transfer.
613 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
614 u32 mode;
616 mode = get_mr(chan);
617 mode &= ~FSL_DMA_MR_CS;
618 set_mr(chan, mode);
622 * Program the descriptor's address into the DMA controller,
623 * then start the DMA transaction
625 set_cdar(chan, desc->async_tx.phys);
626 get_cdar(chan);
628 dma_start(chan);
629 chan->idle = false;
633 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
634 * and move them to ld_completed to free until flag 'ack' is set
635 * @chan: Freescale DMA channel
637 * This function is used on descriptors which have been executed by the DMA
638 * controller. It will run any callbacks, submit any dependencies, then
639 * free these descriptors if flag 'ack' is set.
641 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
643 struct fsl_desc_sw *desc, *_desc;
644 dma_cookie_t cookie = 0;
645 dma_addr_t curr_phys = get_cdar(chan);
646 int seen_current = 0;
648 fsldma_clean_completed_descriptor(chan);
650 /* Run the callback for each descriptor, in order */
651 list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
653 * do not advance past the current descriptor loaded into the
654 * hardware channel, subsequent descriptors are either in
655 * process or have not been submitted
657 if (seen_current)
658 break;
661 * stop the search if we reach the current descriptor and the
662 * channel is busy
664 if (desc->async_tx.phys == curr_phys) {
665 seen_current = 1;
666 if (!dma_is_idle(chan))
667 break;
670 cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
672 fsldma_clean_running_descriptor(chan, desc);
676 * Start any pending transactions automatically
678 * In the ideal case, we keep the DMA controller busy while we go
679 * ahead and free the descriptors below.
681 fsl_chan_xfer_ld_queue(chan);
683 if (cookie > 0)
684 chan->common.completed_cookie = cookie;
688 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
689 * @chan : Freescale DMA channel
691 * This function will create a dma pool for descriptor allocation.
693 * Return - The number of descriptors allocated.
695 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
697 struct fsldma_chan *chan = to_fsl_chan(dchan);
699 /* Has this channel already been allocated? */
700 if (chan->desc_pool)
701 return 1;
704 * We need the descriptor to be aligned to 32bytes
705 * for meeting FSL DMA specification requirement.
707 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
708 sizeof(struct fsl_desc_sw),
709 __alignof__(struct fsl_desc_sw), 0);
710 if (!chan->desc_pool) {
711 chan_err(chan, "unable to allocate descriptor pool\n");
712 return -ENOMEM;
715 /* there is at least one descriptor free to be allocated */
716 return 1;
720 * fsldma_free_desc_list - Free all descriptors in a queue
721 * @chan: Freescae DMA channel
722 * @list: the list to free
724 * LOCKING: must hold chan->desc_lock
726 static void fsldma_free_desc_list(struct fsldma_chan *chan,
727 struct list_head *list)
729 struct fsl_desc_sw *desc, *_desc;
731 list_for_each_entry_safe(desc, _desc, list, node)
732 fsl_dma_free_descriptor(chan, desc);
735 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
736 struct list_head *list)
738 struct fsl_desc_sw *desc, *_desc;
740 list_for_each_entry_safe_reverse(desc, _desc, list, node)
741 fsl_dma_free_descriptor(chan, desc);
745 * fsl_dma_free_chan_resources - Free all resources of the channel.
746 * @chan : Freescale DMA channel
748 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
750 struct fsldma_chan *chan = to_fsl_chan(dchan);
752 chan_dbg(chan, "free all channel resources\n");
753 spin_lock_bh(&chan->desc_lock);
754 fsldma_cleanup_descriptors(chan);
755 fsldma_free_desc_list(chan, &chan->ld_pending);
756 fsldma_free_desc_list(chan, &chan->ld_running);
757 fsldma_free_desc_list(chan, &chan->ld_completed);
758 spin_unlock_bh(&chan->desc_lock);
760 dma_pool_destroy(chan->desc_pool);
761 chan->desc_pool = NULL;
764 static struct dma_async_tx_descriptor *
765 fsl_dma_prep_memcpy(struct dma_chan *dchan,
766 dma_addr_t dma_dst, dma_addr_t dma_src,
767 size_t len, unsigned long flags)
769 struct fsldma_chan *chan;
770 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
771 size_t copy;
773 if (!dchan)
774 return NULL;
776 if (!len)
777 return NULL;
779 chan = to_fsl_chan(dchan);
781 do {
783 /* Allocate the link descriptor from DMA pool */
784 new = fsl_dma_alloc_descriptor(chan);
785 if (!new) {
786 chan_err(chan, "%s\n", msg_ld_oom);
787 goto fail;
790 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
792 set_desc_cnt(chan, &new->hw, copy);
793 set_desc_src(chan, &new->hw, dma_src);
794 set_desc_dst(chan, &new->hw, dma_dst);
796 if (!first)
797 first = new;
798 else
799 set_desc_next(chan, &prev->hw, new->async_tx.phys);
801 new->async_tx.cookie = 0;
802 async_tx_ack(&new->async_tx);
804 prev = new;
805 len -= copy;
806 dma_src += copy;
807 dma_dst += copy;
809 /* Insert the link descriptor to the LD ring */
810 list_add_tail(&new->node, &first->tx_list);
811 } while (len);
813 new->async_tx.flags = flags; /* client is in control of this ack */
814 new->async_tx.cookie = -EBUSY;
816 /* Set End-of-link to the last link descriptor of new list */
817 set_ld_eol(chan, new);
819 return &first->async_tx;
821 fail:
822 if (!first)
823 return NULL;
825 fsldma_free_desc_list_reverse(chan, &first->tx_list);
826 return NULL;
829 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
830 struct scatterlist *dst_sg, unsigned int dst_nents,
831 struct scatterlist *src_sg, unsigned int src_nents,
832 unsigned long flags)
834 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
835 struct fsldma_chan *chan = to_fsl_chan(dchan);
836 size_t dst_avail, src_avail;
837 dma_addr_t dst, src;
838 size_t len;
840 /* basic sanity checks */
841 if (dst_nents == 0 || src_nents == 0)
842 return NULL;
844 if (dst_sg == NULL || src_sg == NULL)
845 return NULL;
848 * TODO: should we check that both scatterlists have the same
849 * TODO: number of bytes in total? Is that really an error?
852 /* get prepared for the loop */
853 dst_avail = sg_dma_len(dst_sg);
854 src_avail = sg_dma_len(src_sg);
856 /* run until we are out of scatterlist entries */
857 while (true) {
859 /* create the largest transaction possible */
860 len = min_t(size_t, src_avail, dst_avail);
861 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
862 if (len == 0)
863 goto fetch;
865 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
866 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
868 /* allocate and populate the descriptor */
869 new = fsl_dma_alloc_descriptor(chan);
870 if (!new) {
871 chan_err(chan, "%s\n", msg_ld_oom);
872 goto fail;
875 set_desc_cnt(chan, &new->hw, len);
876 set_desc_src(chan, &new->hw, src);
877 set_desc_dst(chan, &new->hw, dst);
879 if (!first)
880 first = new;
881 else
882 set_desc_next(chan, &prev->hw, new->async_tx.phys);
884 new->async_tx.cookie = 0;
885 async_tx_ack(&new->async_tx);
886 prev = new;
888 /* Insert the link descriptor to the LD ring */
889 list_add_tail(&new->node, &first->tx_list);
891 /* update metadata */
892 dst_avail -= len;
893 src_avail -= len;
895 fetch:
896 /* fetch the next dst scatterlist entry */
897 if (dst_avail == 0) {
899 /* no more entries: we're done */
900 if (dst_nents == 0)
901 break;
903 /* fetch the next entry: if there are no more: done */
904 dst_sg = sg_next(dst_sg);
905 if (dst_sg == NULL)
906 break;
908 dst_nents--;
909 dst_avail = sg_dma_len(dst_sg);
912 /* fetch the next src scatterlist entry */
913 if (src_avail == 0) {
915 /* no more entries: we're done */
916 if (src_nents == 0)
917 break;
919 /* fetch the next entry: if there are no more: done */
920 src_sg = sg_next(src_sg);
921 if (src_sg == NULL)
922 break;
924 src_nents--;
925 src_avail = sg_dma_len(src_sg);
929 new->async_tx.flags = flags; /* client is in control of this ack */
930 new->async_tx.cookie = -EBUSY;
932 /* Set End-of-link to the last link descriptor of new list */
933 set_ld_eol(chan, new);
935 return &first->async_tx;
937 fail:
938 if (!first)
939 return NULL;
941 fsldma_free_desc_list_reverse(chan, &first->tx_list);
942 return NULL;
945 static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
947 struct fsldma_chan *chan;
949 if (!dchan)
950 return -EINVAL;
952 chan = to_fsl_chan(dchan);
954 spin_lock_bh(&chan->desc_lock);
956 /* Halt the DMA engine */
957 dma_halt(chan);
959 /* Remove and free all of the descriptors in the LD queue */
960 fsldma_free_desc_list(chan, &chan->ld_pending);
961 fsldma_free_desc_list(chan, &chan->ld_running);
962 fsldma_free_desc_list(chan, &chan->ld_completed);
963 chan->idle = true;
965 spin_unlock_bh(&chan->desc_lock);
966 return 0;
969 static int fsl_dma_device_config(struct dma_chan *dchan,
970 struct dma_slave_config *config)
972 struct fsldma_chan *chan;
973 int size;
975 if (!dchan)
976 return -EINVAL;
978 chan = to_fsl_chan(dchan);
980 /* make sure the channel supports setting burst size */
981 if (!chan->set_request_count)
982 return -ENXIO;
984 /* we set the controller burst size depending on direction */
985 if (config->direction == DMA_MEM_TO_DEV)
986 size = config->dst_addr_width * config->dst_maxburst;
987 else
988 size = config->src_addr_width * config->src_maxburst;
990 chan->set_request_count(chan, size);
991 return 0;
996 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
997 * @chan : Freescale DMA channel
999 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
1001 struct fsldma_chan *chan = to_fsl_chan(dchan);
1003 spin_lock_bh(&chan->desc_lock);
1004 fsl_chan_xfer_ld_queue(chan);
1005 spin_unlock_bh(&chan->desc_lock);
1009 * fsl_tx_status - Determine the DMA status
1010 * @chan : Freescale DMA channel
1012 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
1013 dma_cookie_t cookie,
1014 struct dma_tx_state *txstate)
1016 struct fsldma_chan *chan = to_fsl_chan(dchan);
1017 enum dma_status ret;
1019 ret = dma_cookie_status(dchan, cookie, txstate);
1020 if (ret == DMA_COMPLETE)
1021 return ret;
1023 spin_lock_bh(&chan->desc_lock);
1024 fsldma_cleanup_descriptors(chan);
1025 spin_unlock_bh(&chan->desc_lock);
1027 return dma_cookie_status(dchan, cookie, txstate);
1030 /*----------------------------------------------------------------------------*/
1031 /* Interrupt Handling */
1032 /*----------------------------------------------------------------------------*/
1034 static irqreturn_t fsldma_chan_irq(int irq, void *data)
1036 struct fsldma_chan *chan = data;
1037 u32 stat;
1039 /* save and clear the status register */
1040 stat = get_sr(chan);
1041 set_sr(chan, stat);
1042 chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1044 /* check that this was really our device */
1045 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1046 if (!stat)
1047 return IRQ_NONE;
1049 if (stat & FSL_DMA_SR_TE)
1050 chan_err(chan, "Transfer Error!\n");
1053 * Programming Error
1054 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1055 * trigger a PE interrupt.
1057 if (stat & FSL_DMA_SR_PE) {
1058 chan_dbg(chan, "irq: Programming Error INT\n");
1059 stat &= ~FSL_DMA_SR_PE;
1060 if (get_bcr(chan) != 0)
1061 chan_err(chan, "Programming Error!\n");
1065 * For MPC8349, EOCDI event need to update cookie
1066 * and start the next transfer if it exist.
1068 if (stat & FSL_DMA_SR_EOCDI) {
1069 chan_dbg(chan, "irq: End-of-Chain link INT\n");
1070 stat &= ~FSL_DMA_SR_EOCDI;
1074 * If it current transfer is the end-of-transfer,
1075 * we should clear the Channel Start bit for
1076 * prepare next transfer.
1078 if (stat & FSL_DMA_SR_EOLNI) {
1079 chan_dbg(chan, "irq: End-of-link INT\n");
1080 stat &= ~FSL_DMA_SR_EOLNI;
1083 /* check that the DMA controller is really idle */
1084 if (!dma_is_idle(chan))
1085 chan_err(chan, "irq: controller not idle!\n");
1087 /* check that we handled all of the bits */
1088 if (stat)
1089 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1092 * Schedule the tasklet to handle all cleanup of the current
1093 * transaction. It will start a new transaction if there is
1094 * one pending.
1096 tasklet_schedule(&chan->tasklet);
1097 chan_dbg(chan, "irq: Exit\n");
1098 return IRQ_HANDLED;
1101 static void dma_do_tasklet(unsigned long data)
1103 struct fsldma_chan *chan = (struct fsldma_chan *)data;
1105 chan_dbg(chan, "tasklet entry\n");
1107 spin_lock_bh(&chan->desc_lock);
1109 /* the hardware is now idle and ready for more */
1110 chan->idle = true;
1112 /* Run all cleanup for descriptors which have been completed */
1113 fsldma_cleanup_descriptors(chan);
1115 spin_unlock_bh(&chan->desc_lock);
1117 chan_dbg(chan, "tasklet exit\n");
1120 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1122 struct fsldma_device *fdev = data;
1123 struct fsldma_chan *chan;
1124 unsigned int handled = 0;
1125 u32 gsr, mask;
1126 int i;
1128 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1129 : in_le32(fdev->regs);
1130 mask = 0xff000000;
1131 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1133 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1134 chan = fdev->chan[i];
1135 if (!chan)
1136 continue;
1138 if (gsr & mask) {
1139 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1140 fsldma_chan_irq(irq, chan);
1141 handled++;
1144 gsr &= ~mask;
1145 mask >>= 8;
1148 return IRQ_RETVAL(handled);
1151 static void fsldma_free_irqs(struct fsldma_device *fdev)
1153 struct fsldma_chan *chan;
1154 int i;
1156 if (fdev->irq != NO_IRQ) {
1157 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1158 free_irq(fdev->irq, fdev);
1159 return;
1162 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1163 chan = fdev->chan[i];
1164 if (chan && chan->irq != NO_IRQ) {
1165 chan_dbg(chan, "free per-channel IRQ\n");
1166 free_irq(chan->irq, chan);
1171 static int fsldma_request_irqs(struct fsldma_device *fdev)
1173 struct fsldma_chan *chan;
1174 int ret;
1175 int i;
1177 /* if we have a per-controller IRQ, use that */
1178 if (fdev->irq != NO_IRQ) {
1179 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1180 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1181 "fsldma-controller", fdev);
1182 return ret;
1185 /* no per-controller IRQ, use the per-channel IRQs */
1186 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1187 chan = fdev->chan[i];
1188 if (!chan)
1189 continue;
1191 if (chan->irq == NO_IRQ) {
1192 chan_err(chan, "interrupts property missing in device tree\n");
1193 ret = -ENODEV;
1194 goto out_unwind;
1197 chan_dbg(chan, "request per-channel IRQ\n");
1198 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1199 "fsldma-chan", chan);
1200 if (ret) {
1201 chan_err(chan, "unable to request per-channel IRQ\n");
1202 goto out_unwind;
1206 return 0;
1208 out_unwind:
1209 for (/* none */; i >= 0; i--) {
1210 chan = fdev->chan[i];
1211 if (!chan)
1212 continue;
1214 if (chan->irq == NO_IRQ)
1215 continue;
1217 free_irq(chan->irq, chan);
1220 return ret;
1223 /*----------------------------------------------------------------------------*/
1224 /* OpenFirmware Subsystem */
1225 /*----------------------------------------------------------------------------*/
1227 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1228 struct device_node *node, u32 feature, const char *compatible)
1230 struct fsldma_chan *chan;
1231 struct resource res;
1232 int err;
1234 /* alloc channel */
1235 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1236 if (!chan) {
1237 dev_err(fdev->dev, "no free memory for DMA channels!\n");
1238 err = -ENOMEM;
1239 goto out_return;
1242 /* ioremap registers for use */
1243 chan->regs = of_iomap(node, 0);
1244 if (!chan->regs) {
1245 dev_err(fdev->dev, "unable to ioremap registers\n");
1246 err = -ENOMEM;
1247 goto out_free_chan;
1250 err = of_address_to_resource(node, 0, &res);
1251 if (err) {
1252 dev_err(fdev->dev, "unable to find 'reg' property\n");
1253 goto out_iounmap_regs;
1256 chan->feature = feature;
1257 if (!fdev->feature)
1258 fdev->feature = chan->feature;
1261 * If the DMA device's feature is different than the feature
1262 * of its channels, report the bug
1264 WARN_ON(fdev->feature != chan->feature);
1266 chan->dev = fdev->dev;
1267 chan->id = (res.start & 0xfff) < 0x300 ?
1268 ((res.start - 0x100) & 0xfff) >> 7 :
1269 ((res.start - 0x200) & 0xfff) >> 7;
1270 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1271 dev_err(fdev->dev, "too many channels for device\n");
1272 err = -EINVAL;
1273 goto out_iounmap_regs;
1276 fdev->chan[chan->id] = chan;
1277 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1278 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1280 /* Initialize the channel */
1281 dma_init(chan);
1283 /* Clear cdar registers */
1284 set_cdar(chan, 0);
1286 switch (chan->feature & FSL_DMA_IP_MASK) {
1287 case FSL_DMA_IP_85XX:
1288 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1289 case FSL_DMA_IP_83XX:
1290 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1291 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1292 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1293 chan->set_request_count = fsl_chan_set_request_count;
1296 spin_lock_init(&chan->desc_lock);
1297 INIT_LIST_HEAD(&chan->ld_pending);
1298 INIT_LIST_HEAD(&chan->ld_running);
1299 INIT_LIST_HEAD(&chan->ld_completed);
1300 chan->idle = true;
1301 #ifdef CONFIG_PM
1302 chan->pm_state = RUNNING;
1303 #endif
1305 chan->common.device = &fdev->common;
1306 dma_cookie_init(&chan->common);
1308 /* find the IRQ line, if it exists in the device tree */
1309 chan->irq = irq_of_parse_and_map(node, 0);
1311 /* Add the channel to DMA device channel list */
1312 list_add_tail(&chan->common.device_node, &fdev->common.channels);
1314 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1315 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1317 return 0;
1319 out_iounmap_regs:
1320 iounmap(chan->regs);
1321 out_free_chan:
1322 kfree(chan);
1323 out_return:
1324 return err;
1327 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1329 irq_dispose_mapping(chan->irq);
1330 list_del(&chan->common.device_node);
1331 iounmap(chan->regs);
1332 kfree(chan);
1335 static int fsldma_of_probe(struct platform_device *op)
1337 struct fsldma_device *fdev;
1338 struct device_node *child;
1339 int err;
1341 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1342 if (!fdev) {
1343 dev_err(&op->dev, "No enough memory for 'priv'\n");
1344 err = -ENOMEM;
1345 goto out_return;
1348 fdev->dev = &op->dev;
1349 INIT_LIST_HEAD(&fdev->common.channels);
1351 /* ioremap the registers for use */
1352 fdev->regs = of_iomap(op->dev.of_node, 0);
1353 if (!fdev->regs) {
1354 dev_err(&op->dev, "unable to ioremap registers\n");
1355 err = -ENOMEM;
1356 goto out_free_fdev;
1359 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1360 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1362 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1363 dma_cap_set(DMA_SG, fdev->common.cap_mask);
1364 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1365 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1366 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1367 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1368 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1369 fdev->common.device_tx_status = fsl_tx_status;
1370 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1371 fdev->common.device_config = fsl_dma_device_config;
1372 fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1373 fdev->common.dev = &op->dev;
1375 fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1376 fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1377 fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1378 fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1380 dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1382 platform_set_drvdata(op, fdev);
1385 * We cannot use of_platform_bus_probe() because there is no
1386 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1387 * channel object.
1389 for_each_child_of_node(op->dev.of_node, child) {
1390 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1391 fsl_dma_chan_probe(fdev, child,
1392 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1393 "fsl,eloplus-dma-channel");
1396 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1397 fsl_dma_chan_probe(fdev, child,
1398 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1399 "fsl,elo-dma-channel");
1404 * Hookup the IRQ handler(s)
1406 * If we have a per-controller interrupt, we prefer that to the
1407 * per-channel interrupts to reduce the number of shared interrupt
1408 * handlers on the same IRQ line
1410 err = fsldma_request_irqs(fdev);
1411 if (err) {
1412 dev_err(fdev->dev, "unable to request IRQs\n");
1413 goto out_free_fdev;
1416 dma_async_device_register(&fdev->common);
1417 return 0;
1419 out_free_fdev:
1420 irq_dispose_mapping(fdev->irq);
1421 kfree(fdev);
1422 out_return:
1423 return err;
1426 static int fsldma_of_remove(struct platform_device *op)
1428 struct fsldma_device *fdev;
1429 unsigned int i;
1431 fdev = platform_get_drvdata(op);
1432 dma_async_device_unregister(&fdev->common);
1434 fsldma_free_irqs(fdev);
1436 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1437 if (fdev->chan[i])
1438 fsl_dma_chan_remove(fdev->chan[i]);
1441 iounmap(fdev->regs);
1442 kfree(fdev);
1444 return 0;
1447 #ifdef CONFIG_PM
1448 static int fsldma_suspend_late(struct device *dev)
1450 struct platform_device *pdev = to_platform_device(dev);
1451 struct fsldma_device *fdev = platform_get_drvdata(pdev);
1452 struct fsldma_chan *chan;
1453 int i;
1455 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1456 chan = fdev->chan[i];
1457 if (!chan)
1458 continue;
1460 spin_lock_bh(&chan->desc_lock);
1461 if (unlikely(!chan->idle))
1462 goto out;
1463 chan->regs_save.mr = get_mr(chan);
1464 chan->pm_state = SUSPENDED;
1465 spin_unlock_bh(&chan->desc_lock);
1467 return 0;
1469 out:
1470 for (; i >= 0; i--) {
1471 chan = fdev->chan[i];
1472 if (!chan)
1473 continue;
1474 chan->pm_state = RUNNING;
1475 spin_unlock_bh(&chan->desc_lock);
1477 return -EBUSY;
1480 static int fsldma_resume_early(struct device *dev)
1482 struct platform_device *pdev = to_platform_device(dev);
1483 struct fsldma_device *fdev = platform_get_drvdata(pdev);
1484 struct fsldma_chan *chan;
1485 u32 mode;
1486 int i;
1488 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1489 chan = fdev->chan[i];
1490 if (!chan)
1491 continue;
1493 spin_lock_bh(&chan->desc_lock);
1494 mode = chan->regs_save.mr
1495 & ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1496 set_mr(chan, mode);
1497 chan->pm_state = RUNNING;
1498 spin_unlock_bh(&chan->desc_lock);
1501 return 0;
1504 static const struct dev_pm_ops fsldma_pm_ops = {
1505 .suspend_late = fsldma_suspend_late,
1506 .resume_early = fsldma_resume_early,
1508 #endif
1510 static const struct of_device_id fsldma_of_ids[] = {
1511 { .compatible = "fsl,elo3-dma", },
1512 { .compatible = "fsl,eloplus-dma", },
1513 { .compatible = "fsl,elo-dma", },
1516 MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1518 static struct platform_driver fsldma_of_driver = {
1519 .driver = {
1520 .name = "fsl-elo-dma",
1521 .of_match_table = fsldma_of_ids,
1522 #ifdef CONFIG_PM
1523 .pm = &fsldma_pm_ops,
1524 #endif
1526 .probe = fsldma_of_probe,
1527 .remove = fsldma_of_remove,
1530 /*----------------------------------------------------------------------------*/
1531 /* Module Init / Exit */
1532 /*----------------------------------------------------------------------------*/
1534 static __init int fsldma_init(void)
1536 pr_info("Freescale Elo series DMA driver\n");
1537 return platform_driver_register(&fsldma_of_driver);
1540 static void __exit fsldma_exit(void)
1542 platform_driver_unregister(&fsldma_of_driver);
1545 subsys_initcall(fsldma_init);
1546 module_exit(fsldma_exit);
1548 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1549 MODULE_LICENSE("GPL");