2 * Freescale MPC85xx, MPC83xx DMA Engine support
4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 #include <linux/fsldma.h>
40 #include "dmaengine.h"
43 #define chan_dbg(chan, fmt, arg...) \
44 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...) \
46 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
48 static const char msg_ld_oom
[] = "No free memory for link descriptor";
54 static void set_sr(struct fsldma_chan
*chan
, u32 val
)
56 DMA_OUT(chan
, &chan
->regs
->sr
, val
, 32);
59 static u32
get_sr(struct fsldma_chan
*chan
)
61 return DMA_IN(chan
, &chan
->regs
->sr
, 32);
64 static void set_mr(struct fsldma_chan
*chan
, u32 val
)
66 DMA_OUT(chan
, &chan
->regs
->mr
, val
, 32);
69 static u32
get_mr(struct fsldma_chan
*chan
)
71 return DMA_IN(chan
, &chan
->regs
->mr
, 32);
74 static void set_cdar(struct fsldma_chan
*chan
, dma_addr_t addr
)
76 DMA_OUT(chan
, &chan
->regs
->cdar
, addr
| FSL_DMA_SNEN
, 64);
79 static dma_addr_t
get_cdar(struct fsldma_chan
*chan
)
81 return DMA_IN(chan
, &chan
->regs
->cdar
, 64) & ~FSL_DMA_SNEN
;
84 static void set_bcr(struct fsldma_chan
*chan
, u32 val
)
86 DMA_OUT(chan
, &chan
->regs
->bcr
, val
, 32);
89 static u32
get_bcr(struct fsldma_chan
*chan
)
91 return DMA_IN(chan
, &chan
->regs
->bcr
, 32);
98 static void set_desc_cnt(struct fsldma_chan
*chan
,
99 struct fsl_dma_ld_hw
*hw
, u32 count
)
101 hw
->count
= CPU_TO_DMA(chan
, count
, 32);
104 static void set_desc_src(struct fsldma_chan
*chan
,
105 struct fsl_dma_ld_hw
*hw
, dma_addr_t src
)
109 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
)
110 ? ((u64
)FSL_DMA_SATR_SREADTYPE_SNOOP_READ
<< 32) : 0;
111 hw
->src_addr
= CPU_TO_DMA(chan
, snoop_bits
| src
, 64);
114 static void set_desc_dst(struct fsldma_chan
*chan
,
115 struct fsl_dma_ld_hw
*hw
, dma_addr_t dst
)
119 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
)
120 ? ((u64
)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE
<< 32) : 0;
121 hw
->dst_addr
= CPU_TO_DMA(chan
, snoop_bits
| dst
, 64);
124 static void set_desc_next(struct fsldma_chan
*chan
,
125 struct fsl_dma_ld_hw
*hw
, dma_addr_t next
)
129 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_83XX
)
131 hw
->next_ln_addr
= CPU_TO_DMA(chan
, snoop_bits
| next
, 64);
134 static void set_ld_eol(struct fsldma_chan
*chan
, struct fsl_desc_sw
*desc
)
138 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_83XX
)
141 desc
->hw
.next_ln_addr
= CPU_TO_DMA(chan
,
142 DMA_TO_CPU(chan
, desc
->hw
.next_ln_addr
, 64) | FSL_DMA_EOL
147 * DMA Engine Hardware Control Helpers
150 static void dma_init(struct fsldma_chan
*chan
)
152 /* Reset the channel */
155 switch (chan
->feature
& FSL_DMA_IP_MASK
) {
156 case FSL_DMA_IP_85XX
:
157 /* Set the channel to below modes:
158 * EIE - Error interrupt enable
159 * EOLNIE - End of links interrupt enable
160 * BWC - Bandwidth sharing among channels
162 set_mr(chan
, FSL_DMA_MR_BWC
| FSL_DMA_MR_EIE
163 | FSL_DMA_MR_EOLNIE
);
165 case FSL_DMA_IP_83XX
:
166 /* Set the channel to below modes:
167 * EOTIE - End-of-transfer interrupt enable
168 * PRC_RM - PCI read multiple
170 set_mr(chan
, FSL_DMA_MR_EOTIE
| FSL_DMA_MR_PRC_RM
);
175 static int dma_is_idle(struct fsldma_chan
*chan
)
177 u32 sr
= get_sr(chan
);
178 return (!(sr
& FSL_DMA_SR_CB
)) || (sr
& FSL_DMA_SR_CH
);
182 * Start the DMA controller
185 * - the CDAR register must point to the start descriptor
186 * - the MRn[CS] bit must be cleared
188 static void dma_start(struct fsldma_chan
*chan
)
194 if (chan
->feature
& FSL_DMA_CHAN_PAUSE_EXT
) {
196 mode
|= FSL_DMA_MR_EMP_EN
;
198 mode
&= ~FSL_DMA_MR_EMP_EN
;
201 if (chan
->feature
& FSL_DMA_CHAN_START_EXT
) {
202 mode
|= FSL_DMA_MR_EMS_EN
;
204 mode
&= ~FSL_DMA_MR_EMS_EN
;
205 mode
|= FSL_DMA_MR_CS
;
211 static void dma_halt(struct fsldma_chan
*chan
)
216 /* read the mode register */
220 * The 85xx controller supports channel abort, which will stop
221 * the current transfer. On 83xx, this bit is the transfer error
222 * mask bit, which should not be changed.
224 if ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
) {
225 mode
|= FSL_DMA_MR_CA
;
228 mode
&= ~FSL_DMA_MR_CA
;
231 /* stop the DMA controller */
232 mode
&= ~(FSL_DMA_MR_CS
| FSL_DMA_MR_EMS_EN
);
235 /* wait for the DMA controller to become idle */
236 for (i
= 0; i
< 100; i
++) {
237 if (dma_is_idle(chan
))
243 if (!dma_is_idle(chan
))
244 chan_err(chan
, "DMA halt timeout!\n");
248 * fsl_chan_set_src_loop_size - Set source address hold transfer size
249 * @chan : Freescale DMA channel
250 * @size : Address loop size, 0 for disable loop
252 * The set source address hold transfer size. The source
253 * address hold or loop transfer size is when the DMA transfer
254 * data from source address (SA), if the loop size is 4, the DMA will
255 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256 * SA + 1 ... and so on.
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan
*chan
, int size
)
266 mode
&= ~FSL_DMA_MR_SAHE
;
272 mode
|= FSL_DMA_MR_SAHE
| (__ilog2(size
) << 14);
280 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
281 * @chan : Freescale DMA channel
282 * @size : Address loop size, 0 for disable loop
284 * The set destination address hold transfer size. The destination
285 * address hold or loop transfer size is when the DMA transfer
286 * data to destination address (TA), if the loop size is 4, the DMA will
287 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
288 * TA + 1 ... and so on.
290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan
*chan
, int size
)
298 mode
&= ~FSL_DMA_MR_DAHE
;
304 mode
|= FSL_DMA_MR_DAHE
| (__ilog2(size
) << 16);
312 * fsl_chan_set_request_count - Set DMA Request Count for external control
313 * @chan : Freescale DMA channel
314 * @size : Number of bytes to transfer in a single request
316 * The Freescale DMA channel can be controlled by the external signal DREQ#.
317 * The DMA request count is how many bytes are allowed to transfer before
318 * pausing the channel, after which a new assertion of DREQ# resumes channel
321 * A size of 0 disables external pause control. The maximum size is 1024.
323 static void fsl_chan_set_request_count(struct fsldma_chan
*chan
, int size
)
330 mode
|= (__ilog2(size
) << 24) & 0x0f000000;
336 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
337 * @chan : Freescale DMA channel
338 * @enable : 0 is disabled, 1 is enabled.
340 * The Freescale DMA channel can be controlled by the external signal DREQ#.
341 * The DMA Request Count feature should be used in addition to this feature
342 * to set the number of bytes to transfer before pausing the channel.
344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan
*chan
, int enable
)
347 chan
->feature
|= FSL_DMA_CHAN_PAUSE_EXT
;
349 chan
->feature
&= ~FSL_DMA_CHAN_PAUSE_EXT
;
353 * fsl_chan_toggle_ext_start - Toggle channel external start status
354 * @chan : Freescale DMA channel
355 * @enable : 0 is disabled, 1 is enabled.
357 * If enable the external start, the channel can be started by an
358 * external DMA start pin. So the dma_start() does not start the
359 * transfer immediately. The DMA channel will wait for the
360 * control pin asserted.
362 static void fsl_chan_toggle_ext_start(struct fsldma_chan
*chan
, int enable
)
365 chan
->feature
|= FSL_DMA_CHAN_START_EXT
;
367 chan
->feature
&= ~FSL_DMA_CHAN_START_EXT
;
370 int fsl_dma_external_start(struct dma_chan
*dchan
, int enable
)
372 struct fsldma_chan
*chan
;
377 chan
= to_fsl_chan(dchan
);
379 fsl_chan_toggle_ext_start(chan
, enable
);
382 EXPORT_SYMBOL_GPL(fsl_dma_external_start
);
384 static void append_ld_queue(struct fsldma_chan
*chan
, struct fsl_desc_sw
*desc
)
386 struct fsl_desc_sw
*tail
= to_fsl_desc(chan
->ld_pending
.prev
);
388 if (list_empty(&chan
->ld_pending
))
392 * Add the hardware descriptor to the chain of hardware descriptors
393 * that already exists in memory.
395 * This will un-set the EOL bit of the existing transaction, and the
396 * last link in this transaction will become the EOL descriptor.
398 set_desc_next(chan
, &tail
->hw
, desc
->async_tx
.phys
);
401 * Add the software descriptor and all children to the list
402 * of pending transactions
405 list_splice_tail_init(&desc
->tx_list
, &chan
->ld_pending
);
408 static dma_cookie_t
fsl_dma_tx_submit(struct dma_async_tx_descriptor
*tx
)
410 struct fsldma_chan
*chan
= to_fsl_chan(tx
->chan
);
411 struct fsl_desc_sw
*desc
= tx_to_fsl_desc(tx
);
412 struct fsl_desc_sw
*child
;
413 dma_cookie_t cookie
= -EINVAL
;
415 spin_lock_bh(&chan
->desc_lock
);
418 if (unlikely(chan
->pm_state
!= RUNNING
)) {
419 chan_dbg(chan
, "cannot submit due to suspend\n");
420 spin_unlock_bh(&chan
->desc_lock
);
426 * assign cookies to all of the software descriptors
427 * that make up this transaction
429 list_for_each_entry(child
, &desc
->tx_list
, node
) {
430 cookie
= dma_cookie_assign(&child
->async_tx
);
433 /* put this transaction onto the tail of the pending queue */
434 append_ld_queue(chan
, desc
);
436 spin_unlock_bh(&chan
->desc_lock
);
442 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
443 * @chan : Freescale DMA channel
444 * @desc: descriptor to be freed
446 static void fsl_dma_free_descriptor(struct fsldma_chan
*chan
,
447 struct fsl_desc_sw
*desc
)
449 list_del(&desc
->node
);
450 chan_dbg(chan
, "LD %p free\n", desc
);
451 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
455 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
456 * @chan : Freescale DMA channel
458 * Return - The descriptor allocated. NULL for failed.
460 static struct fsl_desc_sw
*fsl_dma_alloc_descriptor(struct fsldma_chan
*chan
)
462 struct fsl_desc_sw
*desc
;
465 desc
= dma_pool_zalloc(chan
->desc_pool
, GFP_ATOMIC
, &pdesc
);
467 chan_dbg(chan
, "out of memory for link descriptor\n");
471 INIT_LIST_HEAD(&desc
->tx_list
);
472 dma_async_tx_descriptor_init(&desc
->async_tx
, &chan
->common
);
473 desc
->async_tx
.tx_submit
= fsl_dma_tx_submit
;
474 desc
->async_tx
.phys
= pdesc
;
476 chan_dbg(chan
, "LD %p allocated\n", desc
);
482 * fsldma_clean_completed_descriptor - free all descriptors which
483 * has been completed and acked
484 * @chan: Freescale DMA channel
486 * This function is used on all completed and acked descriptors.
487 * All descriptors should only be freed in this function.
489 static void fsldma_clean_completed_descriptor(struct fsldma_chan
*chan
)
491 struct fsl_desc_sw
*desc
, *_desc
;
493 /* Run the callback for each descriptor, in order */
494 list_for_each_entry_safe(desc
, _desc
, &chan
->ld_completed
, node
)
495 if (async_tx_test_ack(&desc
->async_tx
))
496 fsl_dma_free_descriptor(chan
, desc
);
500 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
501 * @chan: Freescale DMA channel
502 * @desc: descriptor to cleanup and free
503 * @cookie: Freescale DMA transaction identifier
505 * This function is used on a descriptor which has been executed by the DMA
506 * controller. It will run any callbacks, submit any dependencies.
508 static dma_cookie_t
fsldma_run_tx_complete_actions(struct fsldma_chan
*chan
,
509 struct fsl_desc_sw
*desc
, dma_cookie_t cookie
)
511 struct dma_async_tx_descriptor
*txd
= &desc
->async_tx
;
512 dma_cookie_t ret
= cookie
;
514 BUG_ON(txd
->cookie
< 0);
516 if (txd
->cookie
> 0) {
519 /* Run the link descriptor callback function */
521 chan_dbg(chan
, "LD %p callback\n", desc
);
522 txd
->callback(txd
->callback_param
);
525 dma_descriptor_unmap(txd
);
528 /* Run any dependencies */
529 dma_run_dependencies(txd
);
535 * fsldma_clean_running_descriptor - move the completed descriptor from
536 * ld_running to ld_completed
537 * @chan: Freescale DMA channel
538 * @desc: the descriptor which is completed
540 * Free the descriptor directly if acked by async_tx api, or move it to
541 * queue ld_completed.
543 static void fsldma_clean_running_descriptor(struct fsldma_chan
*chan
,
544 struct fsl_desc_sw
*desc
)
546 /* Remove from the list of transactions */
547 list_del(&desc
->node
);
550 * the client is allowed to attach dependent operations
553 if (!async_tx_test_ack(&desc
->async_tx
)) {
555 * Move this descriptor to the list of descriptors which is
556 * completed, but still awaiting the 'ack' bit to be set.
558 list_add_tail(&desc
->node
, &chan
->ld_completed
);
562 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
566 * fsl_chan_xfer_ld_queue - transfer any pending transactions
567 * @chan : Freescale DMA channel
569 * HARDWARE STATE: idle
570 * LOCKING: must hold chan->desc_lock
572 static void fsl_chan_xfer_ld_queue(struct fsldma_chan
*chan
)
574 struct fsl_desc_sw
*desc
;
577 * If the list of pending descriptors is empty, then we
578 * don't need to do any work at all
580 if (list_empty(&chan
->ld_pending
)) {
581 chan_dbg(chan
, "no pending LDs\n");
586 * The DMA controller is not idle, which means that the interrupt
587 * handler will start any queued transactions when it runs after
588 * this transaction finishes
591 chan_dbg(chan
, "DMA controller still busy\n");
596 * If there are some link descriptors which have not been
597 * transferred, we need to start the controller
601 * Move all elements from the queue of pending transactions
602 * onto the list of running transactions
604 chan_dbg(chan
, "idle, starting controller\n");
605 desc
= list_first_entry(&chan
->ld_pending
, struct fsl_desc_sw
, node
);
606 list_splice_tail_init(&chan
->ld_pending
, &chan
->ld_running
);
609 * The 85xx DMA controller doesn't clear the channel start bit
610 * automatically at the end of a transfer. Therefore we must clear
611 * it in software before starting the transfer.
613 if ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
) {
617 mode
&= ~FSL_DMA_MR_CS
;
622 * Program the descriptor's address into the DMA controller,
623 * then start the DMA transaction
625 set_cdar(chan
, desc
->async_tx
.phys
);
633 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
634 * and move them to ld_completed to free until flag 'ack' is set
635 * @chan: Freescale DMA channel
637 * This function is used on descriptors which have been executed by the DMA
638 * controller. It will run any callbacks, submit any dependencies, then
639 * free these descriptors if flag 'ack' is set.
641 static void fsldma_cleanup_descriptors(struct fsldma_chan
*chan
)
643 struct fsl_desc_sw
*desc
, *_desc
;
644 dma_cookie_t cookie
= 0;
645 dma_addr_t curr_phys
= get_cdar(chan
);
646 int seen_current
= 0;
648 fsldma_clean_completed_descriptor(chan
);
650 /* Run the callback for each descriptor, in order */
651 list_for_each_entry_safe(desc
, _desc
, &chan
->ld_running
, node
) {
653 * do not advance past the current descriptor loaded into the
654 * hardware channel, subsequent descriptors are either in
655 * process or have not been submitted
661 * stop the search if we reach the current descriptor and the
664 if (desc
->async_tx
.phys
== curr_phys
) {
666 if (!dma_is_idle(chan
))
670 cookie
= fsldma_run_tx_complete_actions(chan
, desc
, cookie
);
672 fsldma_clean_running_descriptor(chan
, desc
);
676 * Start any pending transactions automatically
678 * In the ideal case, we keep the DMA controller busy while we go
679 * ahead and free the descriptors below.
681 fsl_chan_xfer_ld_queue(chan
);
684 chan
->common
.completed_cookie
= cookie
;
688 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
689 * @chan : Freescale DMA channel
691 * This function will create a dma pool for descriptor allocation.
693 * Return - The number of descriptors allocated.
695 static int fsl_dma_alloc_chan_resources(struct dma_chan
*dchan
)
697 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
699 /* Has this channel already been allocated? */
704 * We need the descriptor to be aligned to 32bytes
705 * for meeting FSL DMA specification requirement.
707 chan
->desc_pool
= dma_pool_create(chan
->name
, chan
->dev
,
708 sizeof(struct fsl_desc_sw
),
709 __alignof__(struct fsl_desc_sw
), 0);
710 if (!chan
->desc_pool
) {
711 chan_err(chan
, "unable to allocate descriptor pool\n");
715 /* there is at least one descriptor free to be allocated */
720 * fsldma_free_desc_list - Free all descriptors in a queue
721 * @chan: Freescae DMA channel
722 * @list: the list to free
724 * LOCKING: must hold chan->desc_lock
726 static void fsldma_free_desc_list(struct fsldma_chan
*chan
,
727 struct list_head
*list
)
729 struct fsl_desc_sw
*desc
, *_desc
;
731 list_for_each_entry_safe(desc
, _desc
, list
, node
)
732 fsl_dma_free_descriptor(chan
, desc
);
735 static void fsldma_free_desc_list_reverse(struct fsldma_chan
*chan
,
736 struct list_head
*list
)
738 struct fsl_desc_sw
*desc
, *_desc
;
740 list_for_each_entry_safe_reverse(desc
, _desc
, list
, node
)
741 fsl_dma_free_descriptor(chan
, desc
);
745 * fsl_dma_free_chan_resources - Free all resources of the channel.
746 * @chan : Freescale DMA channel
748 static void fsl_dma_free_chan_resources(struct dma_chan
*dchan
)
750 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
752 chan_dbg(chan
, "free all channel resources\n");
753 spin_lock_bh(&chan
->desc_lock
);
754 fsldma_cleanup_descriptors(chan
);
755 fsldma_free_desc_list(chan
, &chan
->ld_pending
);
756 fsldma_free_desc_list(chan
, &chan
->ld_running
);
757 fsldma_free_desc_list(chan
, &chan
->ld_completed
);
758 spin_unlock_bh(&chan
->desc_lock
);
760 dma_pool_destroy(chan
->desc_pool
);
761 chan
->desc_pool
= NULL
;
764 static struct dma_async_tx_descriptor
*
765 fsl_dma_prep_memcpy(struct dma_chan
*dchan
,
766 dma_addr_t dma_dst
, dma_addr_t dma_src
,
767 size_t len
, unsigned long flags
)
769 struct fsldma_chan
*chan
;
770 struct fsl_desc_sw
*first
= NULL
, *prev
= NULL
, *new;
779 chan
= to_fsl_chan(dchan
);
783 /* Allocate the link descriptor from DMA pool */
784 new = fsl_dma_alloc_descriptor(chan
);
786 chan_err(chan
, "%s\n", msg_ld_oom
);
790 copy
= min(len
, (size_t)FSL_DMA_BCR_MAX_CNT
);
792 set_desc_cnt(chan
, &new->hw
, copy
);
793 set_desc_src(chan
, &new->hw
, dma_src
);
794 set_desc_dst(chan
, &new->hw
, dma_dst
);
799 set_desc_next(chan
, &prev
->hw
, new->async_tx
.phys
);
801 new->async_tx
.cookie
= 0;
802 async_tx_ack(&new->async_tx
);
809 /* Insert the link descriptor to the LD ring */
810 list_add_tail(&new->node
, &first
->tx_list
);
813 new->async_tx
.flags
= flags
; /* client is in control of this ack */
814 new->async_tx
.cookie
= -EBUSY
;
816 /* Set End-of-link to the last link descriptor of new list */
817 set_ld_eol(chan
, new);
819 return &first
->async_tx
;
825 fsldma_free_desc_list_reverse(chan
, &first
->tx_list
);
829 static struct dma_async_tx_descriptor
*fsl_dma_prep_sg(struct dma_chan
*dchan
,
830 struct scatterlist
*dst_sg
, unsigned int dst_nents
,
831 struct scatterlist
*src_sg
, unsigned int src_nents
,
834 struct fsl_desc_sw
*first
= NULL
, *prev
= NULL
, *new = NULL
;
835 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
836 size_t dst_avail
, src_avail
;
840 /* basic sanity checks */
841 if (dst_nents
== 0 || src_nents
== 0)
844 if (dst_sg
== NULL
|| src_sg
== NULL
)
848 * TODO: should we check that both scatterlists have the same
849 * TODO: number of bytes in total? Is that really an error?
852 /* get prepared for the loop */
853 dst_avail
= sg_dma_len(dst_sg
);
854 src_avail
= sg_dma_len(src_sg
);
856 /* run until we are out of scatterlist entries */
859 /* create the largest transaction possible */
860 len
= min_t(size_t, src_avail
, dst_avail
);
861 len
= min_t(size_t, len
, FSL_DMA_BCR_MAX_CNT
);
865 dst
= sg_dma_address(dst_sg
) + sg_dma_len(dst_sg
) - dst_avail
;
866 src
= sg_dma_address(src_sg
) + sg_dma_len(src_sg
) - src_avail
;
868 /* allocate and populate the descriptor */
869 new = fsl_dma_alloc_descriptor(chan
);
871 chan_err(chan
, "%s\n", msg_ld_oom
);
875 set_desc_cnt(chan
, &new->hw
, len
);
876 set_desc_src(chan
, &new->hw
, src
);
877 set_desc_dst(chan
, &new->hw
, dst
);
882 set_desc_next(chan
, &prev
->hw
, new->async_tx
.phys
);
884 new->async_tx
.cookie
= 0;
885 async_tx_ack(&new->async_tx
);
888 /* Insert the link descriptor to the LD ring */
889 list_add_tail(&new->node
, &first
->tx_list
);
891 /* update metadata */
896 /* fetch the next dst scatterlist entry */
897 if (dst_avail
== 0) {
899 /* no more entries: we're done */
903 /* fetch the next entry: if there are no more: done */
904 dst_sg
= sg_next(dst_sg
);
909 dst_avail
= sg_dma_len(dst_sg
);
912 /* fetch the next src scatterlist entry */
913 if (src_avail
== 0) {
915 /* no more entries: we're done */
919 /* fetch the next entry: if there are no more: done */
920 src_sg
= sg_next(src_sg
);
925 src_avail
= sg_dma_len(src_sg
);
929 new->async_tx
.flags
= flags
; /* client is in control of this ack */
930 new->async_tx
.cookie
= -EBUSY
;
932 /* Set End-of-link to the last link descriptor of new list */
933 set_ld_eol(chan
, new);
935 return &first
->async_tx
;
941 fsldma_free_desc_list_reverse(chan
, &first
->tx_list
);
945 static int fsl_dma_device_terminate_all(struct dma_chan
*dchan
)
947 struct fsldma_chan
*chan
;
952 chan
= to_fsl_chan(dchan
);
954 spin_lock_bh(&chan
->desc_lock
);
956 /* Halt the DMA engine */
959 /* Remove and free all of the descriptors in the LD queue */
960 fsldma_free_desc_list(chan
, &chan
->ld_pending
);
961 fsldma_free_desc_list(chan
, &chan
->ld_running
);
962 fsldma_free_desc_list(chan
, &chan
->ld_completed
);
965 spin_unlock_bh(&chan
->desc_lock
);
969 static int fsl_dma_device_config(struct dma_chan
*dchan
,
970 struct dma_slave_config
*config
)
972 struct fsldma_chan
*chan
;
978 chan
= to_fsl_chan(dchan
);
980 /* make sure the channel supports setting burst size */
981 if (!chan
->set_request_count
)
984 /* we set the controller burst size depending on direction */
985 if (config
->direction
== DMA_MEM_TO_DEV
)
986 size
= config
->dst_addr_width
* config
->dst_maxburst
;
988 size
= config
->src_addr_width
* config
->src_maxburst
;
990 chan
->set_request_count(chan
, size
);
996 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
997 * @chan : Freescale DMA channel
999 static void fsl_dma_memcpy_issue_pending(struct dma_chan
*dchan
)
1001 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
1003 spin_lock_bh(&chan
->desc_lock
);
1004 fsl_chan_xfer_ld_queue(chan
);
1005 spin_unlock_bh(&chan
->desc_lock
);
1009 * fsl_tx_status - Determine the DMA status
1010 * @chan : Freescale DMA channel
1012 static enum dma_status
fsl_tx_status(struct dma_chan
*dchan
,
1013 dma_cookie_t cookie
,
1014 struct dma_tx_state
*txstate
)
1016 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
1017 enum dma_status ret
;
1019 ret
= dma_cookie_status(dchan
, cookie
, txstate
);
1020 if (ret
== DMA_COMPLETE
)
1023 spin_lock_bh(&chan
->desc_lock
);
1024 fsldma_cleanup_descriptors(chan
);
1025 spin_unlock_bh(&chan
->desc_lock
);
1027 return dma_cookie_status(dchan
, cookie
, txstate
);
1030 /*----------------------------------------------------------------------------*/
1031 /* Interrupt Handling */
1032 /*----------------------------------------------------------------------------*/
1034 static irqreturn_t
fsldma_chan_irq(int irq
, void *data
)
1036 struct fsldma_chan
*chan
= data
;
1039 /* save and clear the status register */
1040 stat
= get_sr(chan
);
1042 chan_dbg(chan
, "irq: stat = 0x%x\n", stat
);
1044 /* check that this was really our device */
1045 stat
&= ~(FSL_DMA_SR_CB
| FSL_DMA_SR_CH
);
1049 if (stat
& FSL_DMA_SR_TE
)
1050 chan_err(chan
, "Transfer Error!\n");
1054 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1055 * trigger a PE interrupt.
1057 if (stat
& FSL_DMA_SR_PE
) {
1058 chan_dbg(chan
, "irq: Programming Error INT\n");
1059 stat
&= ~FSL_DMA_SR_PE
;
1060 if (get_bcr(chan
) != 0)
1061 chan_err(chan
, "Programming Error!\n");
1065 * For MPC8349, EOCDI event need to update cookie
1066 * and start the next transfer if it exist.
1068 if (stat
& FSL_DMA_SR_EOCDI
) {
1069 chan_dbg(chan
, "irq: End-of-Chain link INT\n");
1070 stat
&= ~FSL_DMA_SR_EOCDI
;
1074 * If it current transfer is the end-of-transfer,
1075 * we should clear the Channel Start bit for
1076 * prepare next transfer.
1078 if (stat
& FSL_DMA_SR_EOLNI
) {
1079 chan_dbg(chan
, "irq: End-of-link INT\n");
1080 stat
&= ~FSL_DMA_SR_EOLNI
;
1083 /* check that the DMA controller is really idle */
1084 if (!dma_is_idle(chan
))
1085 chan_err(chan
, "irq: controller not idle!\n");
1087 /* check that we handled all of the bits */
1089 chan_err(chan
, "irq: unhandled sr 0x%08x\n", stat
);
1092 * Schedule the tasklet to handle all cleanup of the current
1093 * transaction. It will start a new transaction if there is
1096 tasklet_schedule(&chan
->tasklet
);
1097 chan_dbg(chan
, "irq: Exit\n");
1101 static void dma_do_tasklet(unsigned long data
)
1103 struct fsldma_chan
*chan
= (struct fsldma_chan
*)data
;
1105 chan_dbg(chan
, "tasklet entry\n");
1107 spin_lock_bh(&chan
->desc_lock
);
1109 /* the hardware is now idle and ready for more */
1112 /* Run all cleanup for descriptors which have been completed */
1113 fsldma_cleanup_descriptors(chan
);
1115 spin_unlock_bh(&chan
->desc_lock
);
1117 chan_dbg(chan
, "tasklet exit\n");
1120 static irqreturn_t
fsldma_ctrl_irq(int irq
, void *data
)
1122 struct fsldma_device
*fdev
= data
;
1123 struct fsldma_chan
*chan
;
1124 unsigned int handled
= 0;
1128 gsr
= (fdev
->feature
& FSL_DMA_BIG_ENDIAN
) ? in_be32(fdev
->regs
)
1129 : in_le32(fdev
->regs
);
1131 dev_dbg(fdev
->dev
, "IRQ: gsr 0x%.8x\n", gsr
);
1133 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1134 chan
= fdev
->chan
[i
];
1139 dev_dbg(fdev
->dev
, "IRQ: chan %d\n", chan
->id
);
1140 fsldma_chan_irq(irq
, chan
);
1148 return IRQ_RETVAL(handled
);
1151 static void fsldma_free_irqs(struct fsldma_device
*fdev
)
1153 struct fsldma_chan
*chan
;
1156 if (fdev
->irq
!= NO_IRQ
) {
1157 dev_dbg(fdev
->dev
, "free per-controller IRQ\n");
1158 free_irq(fdev
->irq
, fdev
);
1162 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1163 chan
= fdev
->chan
[i
];
1164 if (chan
&& chan
->irq
!= NO_IRQ
) {
1165 chan_dbg(chan
, "free per-channel IRQ\n");
1166 free_irq(chan
->irq
, chan
);
1171 static int fsldma_request_irqs(struct fsldma_device
*fdev
)
1173 struct fsldma_chan
*chan
;
1177 /* if we have a per-controller IRQ, use that */
1178 if (fdev
->irq
!= NO_IRQ
) {
1179 dev_dbg(fdev
->dev
, "request per-controller IRQ\n");
1180 ret
= request_irq(fdev
->irq
, fsldma_ctrl_irq
, IRQF_SHARED
,
1181 "fsldma-controller", fdev
);
1185 /* no per-controller IRQ, use the per-channel IRQs */
1186 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1187 chan
= fdev
->chan
[i
];
1191 if (chan
->irq
== NO_IRQ
) {
1192 chan_err(chan
, "interrupts property missing in device tree\n");
1197 chan_dbg(chan
, "request per-channel IRQ\n");
1198 ret
= request_irq(chan
->irq
, fsldma_chan_irq
, IRQF_SHARED
,
1199 "fsldma-chan", chan
);
1201 chan_err(chan
, "unable to request per-channel IRQ\n");
1209 for (/* none */; i
>= 0; i
--) {
1210 chan
= fdev
->chan
[i
];
1214 if (chan
->irq
== NO_IRQ
)
1217 free_irq(chan
->irq
, chan
);
1223 /*----------------------------------------------------------------------------*/
1224 /* OpenFirmware Subsystem */
1225 /*----------------------------------------------------------------------------*/
1227 static int fsl_dma_chan_probe(struct fsldma_device
*fdev
,
1228 struct device_node
*node
, u32 feature
, const char *compatible
)
1230 struct fsldma_chan
*chan
;
1231 struct resource res
;
1235 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
1237 dev_err(fdev
->dev
, "no free memory for DMA channels!\n");
1242 /* ioremap registers for use */
1243 chan
->regs
= of_iomap(node
, 0);
1245 dev_err(fdev
->dev
, "unable to ioremap registers\n");
1250 err
= of_address_to_resource(node
, 0, &res
);
1252 dev_err(fdev
->dev
, "unable to find 'reg' property\n");
1253 goto out_iounmap_regs
;
1256 chan
->feature
= feature
;
1258 fdev
->feature
= chan
->feature
;
1261 * If the DMA device's feature is different than the feature
1262 * of its channels, report the bug
1264 WARN_ON(fdev
->feature
!= chan
->feature
);
1266 chan
->dev
= fdev
->dev
;
1267 chan
->id
= (res
.start
& 0xfff) < 0x300 ?
1268 ((res
.start
- 0x100) & 0xfff) >> 7 :
1269 ((res
.start
- 0x200) & 0xfff) >> 7;
1270 if (chan
->id
>= FSL_DMA_MAX_CHANS_PER_DEVICE
) {
1271 dev_err(fdev
->dev
, "too many channels for device\n");
1273 goto out_iounmap_regs
;
1276 fdev
->chan
[chan
->id
] = chan
;
1277 tasklet_init(&chan
->tasklet
, dma_do_tasklet
, (unsigned long)chan
);
1278 snprintf(chan
->name
, sizeof(chan
->name
), "chan%d", chan
->id
);
1280 /* Initialize the channel */
1283 /* Clear cdar registers */
1286 switch (chan
->feature
& FSL_DMA_IP_MASK
) {
1287 case FSL_DMA_IP_85XX
:
1288 chan
->toggle_ext_pause
= fsl_chan_toggle_ext_pause
;
1289 case FSL_DMA_IP_83XX
:
1290 chan
->toggle_ext_start
= fsl_chan_toggle_ext_start
;
1291 chan
->set_src_loop_size
= fsl_chan_set_src_loop_size
;
1292 chan
->set_dst_loop_size
= fsl_chan_set_dst_loop_size
;
1293 chan
->set_request_count
= fsl_chan_set_request_count
;
1296 spin_lock_init(&chan
->desc_lock
);
1297 INIT_LIST_HEAD(&chan
->ld_pending
);
1298 INIT_LIST_HEAD(&chan
->ld_running
);
1299 INIT_LIST_HEAD(&chan
->ld_completed
);
1302 chan
->pm_state
= RUNNING
;
1305 chan
->common
.device
= &fdev
->common
;
1306 dma_cookie_init(&chan
->common
);
1308 /* find the IRQ line, if it exists in the device tree */
1309 chan
->irq
= irq_of_parse_and_map(node
, 0);
1311 /* Add the channel to DMA device channel list */
1312 list_add_tail(&chan
->common
.device_node
, &fdev
->common
.channels
);
1314 dev_info(fdev
->dev
, "#%d (%s), irq %d\n", chan
->id
, compatible
,
1315 chan
->irq
!= NO_IRQ
? chan
->irq
: fdev
->irq
);
1320 iounmap(chan
->regs
);
1327 static void fsl_dma_chan_remove(struct fsldma_chan
*chan
)
1329 irq_dispose_mapping(chan
->irq
);
1330 list_del(&chan
->common
.device_node
);
1331 iounmap(chan
->regs
);
1335 static int fsldma_of_probe(struct platform_device
*op
)
1337 struct fsldma_device
*fdev
;
1338 struct device_node
*child
;
1341 fdev
= kzalloc(sizeof(*fdev
), GFP_KERNEL
);
1343 dev_err(&op
->dev
, "No enough memory for 'priv'\n");
1348 fdev
->dev
= &op
->dev
;
1349 INIT_LIST_HEAD(&fdev
->common
.channels
);
1351 /* ioremap the registers for use */
1352 fdev
->regs
= of_iomap(op
->dev
.of_node
, 0);
1354 dev_err(&op
->dev
, "unable to ioremap registers\n");
1359 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1360 fdev
->irq
= irq_of_parse_and_map(op
->dev
.of_node
, 0);
1362 dma_cap_set(DMA_MEMCPY
, fdev
->common
.cap_mask
);
1363 dma_cap_set(DMA_SG
, fdev
->common
.cap_mask
);
1364 dma_cap_set(DMA_SLAVE
, fdev
->common
.cap_mask
);
1365 fdev
->common
.device_alloc_chan_resources
= fsl_dma_alloc_chan_resources
;
1366 fdev
->common
.device_free_chan_resources
= fsl_dma_free_chan_resources
;
1367 fdev
->common
.device_prep_dma_memcpy
= fsl_dma_prep_memcpy
;
1368 fdev
->common
.device_prep_dma_sg
= fsl_dma_prep_sg
;
1369 fdev
->common
.device_tx_status
= fsl_tx_status
;
1370 fdev
->common
.device_issue_pending
= fsl_dma_memcpy_issue_pending
;
1371 fdev
->common
.device_config
= fsl_dma_device_config
;
1372 fdev
->common
.device_terminate_all
= fsl_dma_device_terminate_all
;
1373 fdev
->common
.dev
= &op
->dev
;
1375 fdev
->common
.src_addr_widths
= FSL_DMA_BUSWIDTHS
;
1376 fdev
->common
.dst_addr_widths
= FSL_DMA_BUSWIDTHS
;
1377 fdev
->common
.directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
1378 fdev
->common
.residue_granularity
= DMA_RESIDUE_GRANULARITY_DESCRIPTOR
;
1380 dma_set_mask(&(op
->dev
), DMA_BIT_MASK(36));
1382 platform_set_drvdata(op
, fdev
);
1385 * We cannot use of_platform_bus_probe() because there is no
1386 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1389 for_each_child_of_node(op
->dev
.of_node
, child
) {
1390 if (of_device_is_compatible(child
, "fsl,eloplus-dma-channel")) {
1391 fsl_dma_chan_probe(fdev
, child
,
1392 FSL_DMA_IP_85XX
| FSL_DMA_BIG_ENDIAN
,
1393 "fsl,eloplus-dma-channel");
1396 if (of_device_is_compatible(child
, "fsl,elo-dma-channel")) {
1397 fsl_dma_chan_probe(fdev
, child
,
1398 FSL_DMA_IP_83XX
| FSL_DMA_LITTLE_ENDIAN
,
1399 "fsl,elo-dma-channel");
1404 * Hookup the IRQ handler(s)
1406 * If we have a per-controller interrupt, we prefer that to the
1407 * per-channel interrupts to reduce the number of shared interrupt
1408 * handlers on the same IRQ line
1410 err
= fsldma_request_irqs(fdev
);
1412 dev_err(fdev
->dev
, "unable to request IRQs\n");
1416 dma_async_device_register(&fdev
->common
);
1420 irq_dispose_mapping(fdev
->irq
);
1426 static int fsldma_of_remove(struct platform_device
*op
)
1428 struct fsldma_device
*fdev
;
1431 fdev
= platform_get_drvdata(op
);
1432 dma_async_device_unregister(&fdev
->common
);
1434 fsldma_free_irqs(fdev
);
1436 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1438 fsl_dma_chan_remove(fdev
->chan
[i
]);
1441 iounmap(fdev
->regs
);
1448 static int fsldma_suspend_late(struct device
*dev
)
1450 struct platform_device
*pdev
= to_platform_device(dev
);
1451 struct fsldma_device
*fdev
= platform_get_drvdata(pdev
);
1452 struct fsldma_chan
*chan
;
1455 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1456 chan
= fdev
->chan
[i
];
1460 spin_lock_bh(&chan
->desc_lock
);
1461 if (unlikely(!chan
->idle
))
1463 chan
->regs_save
.mr
= get_mr(chan
);
1464 chan
->pm_state
= SUSPENDED
;
1465 spin_unlock_bh(&chan
->desc_lock
);
1470 for (; i
>= 0; i
--) {
1471 chan
= fdev
->chan
[i
];
1474 chan
->pm_state
= RUNNING
;
1475 spin_unlock_bh(&chan
->desc_lock
);
1480 static int fsldma_resume_early(struct device
*dev
)
1482 struct platform_device
*pdev
= to_platform_device(dev
);
1483 struct fsldma_device
*fdev
= platform_get_drvdata(pdev
);
1484 struct fsldma_chan
*chan
;
1488 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1489 chan
= fdev
->chan
[i
];
1493 spin_lock_bh(&chan
->desc_lock
);
1494 mode
= chan
->regs_save
.mr
1495 & ~FSL_DMA_MR_CS
& ~FSL_DMA_MR_CC
& ~FSL_DMA_MR_CA
;
1497 chan
->pm_state
= RUNNING
;
1498 spin_unlock_bh(&chan
->desc_lock
);
1504 static const struct dev_pm_ops fsldma_pm_ops
= {
1505 .suspend_late
= fsldma_suspend_late
,
1506 .resume_early
= fsldma_resume_early
,
1510 static const struct of_device_id fsldma_of_ids
[] = {
1511 { .compatible
= "fsl,elo3-dma", },
1512 { .compatible
= "fsl,eloplus-dma", },
1513 { .compatible
= "fsl,elo-dma", },
1516 MODULE_DEVICE_TABLE(of
, fsldma_of_ids
);
1518 static struct platform_driver fsldma_of_driver
= {
1520 .name
= "fsl-elo-dma",
1521 .of_match_table
= fsldma_of_ids
,
1523 .pm
= &fsldma_pm_ops
,
1526 .probe
= fsldma_of_probe
,
1527 .remove
= fsldma_of_remove
,
1530 /*----------------------------------------------------------------------------*/
1531 /* Module Init / Exit */
1532 /*----------------------------------------------------------------------------*/
1534 static __init
int fsldma_init(void)
1536 pr_info("Freescale Elo series DMA driver\n");
1537 return platform_driver_register(&fsldma_of_driver
);
1540 static void __exit
fsldma_exit(void)
1542 platform_driver_unregister(&fsldma_of_driver
);
1545 subsys_initcall(fsldma_init
);
1546 module_exit(fsldma_exit
);
1548 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1549 MODULE_LICENSE("GPL");