2 * offload engine driver for the Marvell XOR engine
3 * Copyright (C) 2007, 2008, Marvell International Ltd.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/memory.h>
24 #include <linux/clk.h>
26 #include <linux/of_irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/cpumask.h>
29 #include <linux/platform_data/dma-mv_xor.h>
31 #include "dmaengine.h"
45 static void mv_xor_issue_pending(struct dma_chan
*chan
);
47 #define to_mv_xor_chan(chan) \
48 container_of(chan, struct mv_xor_chan, dmachan)
50 #define to_mv_xor_slot(tx) \
51 container_of(tx, struct mv_xor_desc_slot, async_tx)
53 #define mv_chan_to_devp(chan) \
56 static void mv_desc_init(struct mv_xor_desc_slot
*desc
,
57 dma_addr_t addr
, u32 byte_count
,
58 enum dma_ctrl_flags flags
)
60 struct mv_xor_desc
*hw_desc
= desc
->hw_desc
;
62 hw_desc
->status
= XOR_DESC_DMA_OWNED
;
63 hw_desc
->phy_next_desc
= 0;
64 /* Enable end-of-descriptor interrupts only for DMA_PREP_INTERRUPT */
65 hw_desc
->desc_command
= (flags
& DMA_PREP_INTERRUPT
) ?
66 XOR_DESC_EOD_INT_EN
: 0;
67 hw_desc
->phy_dest_addr
= addr
;
68 hw_desc
->byte_count
= byte_count
;
71 static void mv_desc_set_mode(struct mv_xor_desc_slot
*desc
)
73 struct mv_xor_desc
*hw_desc
= desc
->hw_desc
;
78 hw_desc
->desc_command
|= XOR_DESC_OPERATION_XOR
;
81 hw_desc
->desc_command
|= XOR_DESC_OPERATION_MEMCPY
;
89 static void mv_desc_set_next_desc(struct mv_xor_desc_slot
*desc
,
92 struct mv_xor_desc
*hw_desc
= desc
->hw_desc
;
93 BUG_ON(hw_desc
->phy_next_desc
);
94 hw_desc
->phy_next_desc
= next_desc_addr
;
97 static void mv_desc_set_src_addr(struct mv_xor_desc_slot
*desc
,
98 int index
, dma_addr_t addr
)
100 struct mv_xor_desc
*hw_desc
= desc
->hw_desc
;
101 hw_desc
->phy_src_addr
[mv_phy_src_idx(index
)] = addr
;
102 if (desc
->type
== DMA_XOR
)
103 hw_desc
->desc_command
|= (1 << index
);
106 static u32
mv_chan_get_current_desc(struct mv_xor_chan
*chan
)
108 return readl_relaxed(XOR_CURR_DESC(chan
));
111 static void mv_chan_set_next_descriptor(struct mv_xor_chan
*chan
,
114 writel_relaxed(next_desc_addr
, XOR_NEXT_DESC(chan
));
117 static void mv_chan_unmask_interrupts(struct mv_xor_chan
*chan
)
119 u32 val
= readl_relaxed(XOR_INTR_MASK(chan
));
120 val
|= XOR_INTR_MASK_VALUE
<< (chan
->idx
* 16);
121 writel_relaxed(val
, XOR_INTR_MASK(chan
));
124 static u32
mv_chan_get_intr_cause(struct mv_xor_chan
*chan
)
126 u32 intr_cause
= readl_relaxed(XOR_INTR_CAUSE(chan
));
127 intr_cause
= (intr_cause
>> (chan
->idx
* 16)) & 0xFFFF;
131 static void mv_chan_clear_eoc_cause(struct mv_xor_chan
*chan
)
135 val
= XOR_INT_END_OF_DESC
| XOR_INT_END_OF_CHAIN
| XOR_INT_STOPPED
;
136 val
= ~(val
<< (chan
->idx
* 16));
137 dev_dbg(mv_chan_to_devp(chan
), "%s, val 0x%08x\n", __func__
, val
);
138 writel_relaxed(val
, XOR_INTR_CAUSE(chan
));
141 static void mv_chan_clear_err_status(struct mv_xor_chan
*chan
)
143 u32 val
= 0xFFFF0000 >> (chan
->idx
* 16);
144 writel_relaxed(val
, XOR_INTR_CAUSE(chan
));
147 static void mv_chan_set_mode(struct mv_xor_chan
*chan
,
150 u32 config
= readl_relaxed(XOR_CONFIG(chan
));
155 #if defined(__BIG_ENDIAN)
156 config
|= XOR_DESCRIPTOR_SWAP
;
158 config
&= ~XOR_DESCRIPTOR_SWAP
;
161 writel_relaxed(config
, XOR_CONFIG(chan
));
164 static void mv_chan_activate(struct mv_xor_chan
*chan
)
166 dev_dbg(mv_chan_to_devp(chan
), " activate chan.\n");
168 /* writel ensures all descriptors are flushed before activation */
169 writel(BIT(0), XOR_ACTIVATION(chan
));
172 static char mv_chan_is_busy(struct mv_xor_chan
*chan
)
174 u32 state
= readl_relaxed(XOR_ACTIVATION(chan
));
176 state
= (state
>> 4) & 0x3;
178 return (state
== 1) ? 1 : 0;
182 * mv_chan_start_new_chain - program the engine to operate on new
183 * chain headed by sw_desc
184 * Caller must hold &mv_chan->lock while calling this function
186 static void mv_chan_start_new_chain(struct mv_xor_chan
*mv_chan
,
187 struct mv_xor_desc_slot
*sw_desc
)
189 dev_dbg(mv_chan_to_devp(mv_chan
), "%s %d: sw_desc %p\n",
190 __func__
, __LINE__
, sw_desc
);
192 /* set the hardware chain */
193 mv_chan_set_next_descriptor(mv_chan
, sw_desc
->async_tx
.phys
);
196 mv_xor_issue_pending(&mv_chan
->dmachan
);
200 mv_desc_run_tx_complete_actions(struct mv_xor_desc_slot
*desc
,
201 struct mv_xor_chan
*mv_chan
,
204 BUG_ON(desc
->async_tx
.cookie
< 0);
206 if (desc
->async_tx
.cookie
> 0) {
207 cookie
= desc
->async_tx
.cookie
;
209 /* call the callback (must not sleep or submit new
210 * operations to this channel)
212 if (desc
->async_tx
.callback
)
213 desc
->async_tx
.callback(
214 desc
->async_tx
.callback_param
);
216 dma_descriptor_unmap(&desc
->async_tx
);
219 /* run dependent operations */
220 dma_run_dependencies(&desc
->async_tx
);
226 mv_chan_clean_completed_slots(struct mv_xor_chan
*mv_chan
)
228 struct mv_xor_desc_slot
*iter
, *_iter
;
230 dev_dbg(mv_chan_to_devp(mv_chan
), "%s %d\n", __func__
, __LINE__
);
231 list_for_each_entry_safe(iter
, _iter
, &mv_chan
->completed_slots
,
234 if (async_tx_test_ack(&iter
->async_tx
))
235 list_move_tail(&iter
->node
, &mv_chan
->free_slots
);
241 mv_desc_clean_slot(struct mv_xor_desc_slot
*desc
,
242 struct mv_xor_chan
*mv_chan
)
244 dev_dbg(mv_chan_to_devp(mv_chan
), "%s %d: desc %p flags %d\n",
245 __func__
, __LINE__
, desc
, desc
->async_tx
.flags
);
247 /* the client is allowed to attach dependent operations
250 if (!async_tx_test_ack(&desc
->async_tx
))
251 /* move this slot to the completed_slots */
252 list_move_tail(&desc
->node
, &mv_chan
->completed_slots
);
254 list_move_tail(&desc
->node
, &mv_chan
->free_slots
);
259 /* This function must be called with the mv_xor_chan spinlock held */
260 static void mv_chan_slot_cleanup(struct mv_xor_chan
*mv_chan
)
262 struct mv_xor_desc_slot
*iter
, *_iter
;
263 dma_cookie_t cookie
= 0;
264 int busy
= mv_chan_is_busy(mv_chan
);
265 u32 current_desc
= mv_chan_get_current_desc(mv_chan
);
266 int current_cleaned
= 0;
267 struct mv_xor_desc
*hw_desc
;
269 dev_dbg(mv_chan_to_devp(mv_chan
), "%s %d\n", __func__
, __LINE__
);
270 dev_dbg(mv_chan_to_devp(mv_chan
), "current_desc %x\n", current_desc
);
271 mv_chan_clean_completed_slots(mv_chan
);
273 /* free completed slots from the chain starting with
274 * the oldest descriptor
277 list_for_each_entry_safe(iter
, _iter
, &mv_chan
->chain
,
280 /* clean finished descriptors */
281 hw_desc
= iter
->hw_desc
;
282 if (hw_desc
->status
& XOR_DESC_SUCCESS
) {
283 cookie
= mv_desc_run_tx_complete_actions(iter
, mv_chan
,
286 /* done processing desc, clean slot */
287 mv_desc_clean_slot(iter
, mv_chan
);
289 /* break if we did cleaned the current */
290 if (iter
->async_tx
.phys
== current_desc
) {
295 if (iter
->async_tx
.phys
== current_desc
) {
302 if ((busy
== 0) && !list_empty(&mv_chan
->chain
)) {
303 if (current_cleaned
) {
305 * current descriptor cleaned and removed, run
308 iter
= list_entry(mv_chan
->chain
.next
,
309 struct mv_xor_desc_slot
,
311 mv_chan_start_new_chain(mv_chan
, iter
);
313 if (!list_is_last(&iter
->node
, &mv_chan
->chain
)) {
315 * descriptors are still waiting after
316 * current, trigger them
318 iter
= list_entry(iter
->node
.next
,
319 struct mv_xor_desc_slot
,
321 mv_chan_start_new_chain(mv_chan
, iter
);
324 * some descriptors are still waiting
327 tasklet_schedule(&mv_chan
->irq_tasklet
);
333 mv_chan
->dmachan
.completed_cookie
= cookie
;
336 static void mv_xor_tasklet(unsigned long data
)
338 struct mv_xor_chan
*chan
= (struct mv_xor_chan
*) data
;
340 spin_lock_bh(&chan
->lock
);
341 mv_chan_slot_cleanup(chan
);
342 spin_unlock_bh(&chan
->lock
);
345 static struct mv_xor_desc_slot
*
346 mv_chan_alloc_slot(struct mv_xor_chan
*mv_chan
)
348 struct mv_xor_desc_slot
*iter
;
350 spin_lock_bh(&mv_chan
->lock
);
352 if (!list_empty(&mv_chan
->free_slots
)) {
353 iter
= list_first_entry(&mv_chan
->free_slots
,
354 struct mv_xor_desc_slot
,
357 list_move_tail(&iter
->node
, &mv_chan
->allocated_slots
);
359 spin_unlock_bh(&mv_chan
->lock
);
361 /* pre-ack descriptor */
362 async_tx_ack(&iter
->async_tx
);
363 iter
->async_tx
.cookie
= -EBUSY
;
369 spin_unlock_bh(&mv_chan
->lock
);
371 /* try to free some slots if the allocation fails */
372 tasklet_schedule(&mv_chan
->irq_tasklet
);
377 /************************ DMA engine API functions ****************************/
379 mv_xor_tx_submit(struct dma_async_tx_descriptor
*tx
)
381 struct mv_xor_desc_slot
*sw_desc
= to_mv_xor_slot(tx
);
382 struct mv_xor_chan
*mv_chan
= to_mv_xor_chan(tx
->chan
);
383 struct mv_xor_desc_slot
*old_chain_tail
;
385 int new_hw_chain
= 1;
387 dev_dbg(mv_chan_to_devp(mv_chan
),
388 "%s sw_desc %p: async_tx %p\n",
389 __func__
, sw_desc
, &sw_desc
->async_tx
);
391 spin_lock_bh(&mv_chan
->lock
);
392 cookie
= dma_cookie_assign(tx
);
394 if (list_empty(&mv_chan
->chain
))
395 list_move_tail(&sw_desc
->node
, &mv_chan
->chain
);
399 old_chain_tail
= list_entry(mv_chan
->chain
.prev
,
400 struct mv_xor_desc_slot
,
402 list_move_tail(&sw_desc
->node
, &mv_chan
->chain
);
404 dev_dbg(mv_chan_to_devp(mv_chan
), "Append to last desc %pa\n",
405 &old_chain_tail
->async_tx
.phys
);
407 /* fix up the hardware chain */
408 mv_desc_set_next_desc(old_chain_tail
, sw_desc
->async_tx
.phys
);
410 /* if the channel is not busy */
411 if (!mv_chan_is_busy(mv_chan
)) {
412 u32 current_desc
= mv_chan_get_current_desc(mv_chan
);
414 * and the curren desc is the end of the chain before
415 * the append, then we need to start the channel
417 if (current_desc
== old_chain_tail
->async_tx
.phys
)
423 mv_chan_start_new_chain(mv_chan
, sw_desc
);
425 spin_unlock_bh(&mv_chan
->lock
);
430 /* returns the number of allocated descriptors */
431 static int mv_xor_alloc_chan_resources(struct dma_chan
*chan
)
436 struct mv_xor_chan
*mv_chan
= to_mv_xor_chan(chan
);
437 struct mv_xor_desc_slot
*slot
= NULL
;
438 int num_descs_in_pool
= MV_XOR_POOL_SIZE
/MV_XOR_SLOT_SIZE
;
440 /* Allocate descriptor slots */
441 idx
= mv_chan
->slots_allocated
;
442 while (idx
< num_descs_in_pool
) {
443 slot
= kzalloc(sizeof(*slot
), GFP_KERNEL
);
445 dev_info(mv_chan_to_devp(mv_chan
),
446 "channel only initialized %d descriptor slots",
450 virt_desc
= mv_chan
->dma_desc_pool_virt
;
451 slot
->hw_desc
= virt_desc
+ idx
* MV_XOR_SLOT_SIZE
;
453 dma_async_tx_descriptor_init(&slot
->async_tx
, chan
);
454 slot
->async_tx
.tx_submit
= mv_xor_tx_submit
;
455 INIT_LIST_HEAD(&slot
->node
);
456 dma_desc
= mv_chan
->dma_desc_pool
;
457 slot
->async_tx
.phys
= dma_desc
+ idx
* MV_XOR_SLOT_SIZE
;
460 spin_lock_bh(&mv_chan
->lock
);
461 mv_chan
->slots_allocated
= idx
;
462 list_add_tail(&slot
->node
, &mv_chan
->free_slots
);
463 spin_unlock_bh(&mv_chan
->lock
);
466 dev_dbg(mv_chan_to_devp(mv_chan
),
467 "allocated %d descriptor slots\n",
468 mv_chan
->slots_allocated
);
470 return mv_chan
->slots_allocated
? : -ENOMEM
;
473 static struct dma_async_tx_descriptor
*
474 mv_xor_prep_dma_xor(struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t
*src
,
475 unsigned int src_cnt
, size_t len
, unsigned long flags
)
477 struct mv_xor_chan
*mv_chan
= to_mv_xor_chan(chan
);
478 struct mv_xor_desc_slot
*sw_desc
;
480 if (unlikely(len
< MV_XOR_MIN_BYTE_COUNT
))
483 BUG_ON(len
> MV_XOR_MAX_BYTE_COUNT
);
485 dev_dbg(mv_chan_to_devp(mv_chan
),
486 "%s src_cnt: %d len: %zu dest %pad flags: %ld\n",
487 __func__
, src_cnt
, len
, &dest
, flags
);
489 sw_desc
= mv_chan_alloc_slot(mv_chan
);
491 sw_desc
->type
= DMA_XOR
;
492 sw_desc
->async_tx
.flags
= flags
;
493 mv_desc_init(sw_desc
, dest
, len
, flags
);
494 if (mv_chan
->op_in_desc
== XOR_MODE_IN_DESC
)
495 mv_desc_set_mode(sw_desc
);
497 mv_desc_set_src_addr(sw_desc
, src_cnt
, src
[src_cnt
]);
500 dev_dbg(mv_chan_to_devp(mv_chan
),
501 "%s sw_desc %p async_tx %p \n",
502 __func__
, sw_desc
, &sw_desc
->async_tx
);
503 return sw_desc
? &sw_desc
->async_tx
: NULL
;
506 static struct dma_async_tx_descriptor
*
507 mv_xor_prep_dma_memcpy(struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
508 size_t len
, unsigned long flags
)
511 * A MEMCPY operation is identical to an XOR operation with only
512 * a single source address.
514 return mv_xor_prep_dma_xor(chan
, dest
, &src
, 1, len
, flags
);
517 static struct dma_async_tx_descriptor
*
518 mv_xor_prep_dma_interrupt(struct dma_chan
*chan
, unsigned long flags
)
520 struct mv_xor_chan
*mv_chan
= to_mv_xor_chan(chan
);
521 dma_addr_t src
, dest
;
524 src
= mv_chan
->dummy_src_addr
;
525 dest
= mv_chan
->dummy_dst_addr
;
526 len
= MV_XOR_MIN_BYTE_COUNT
;
529 * We implement the DMA_INTERRUPT operation as a minimum sized
530 * XOR operation with a single dummy source address.
532 return mv_xor_prep_dma_xor(chan
, dest
, &src
, 1, len
, flags
);
535 static void mv_xor_free_chan_resources(struct dma_chan
*chan
)
537 struct mv_xor_chan
*mv_chan
= to_mv_xor_chan(chan
);
538 struct mv_xor_desc_slot
*iter
, *_iter
;
539 int in_use_descs
= 0;
541 spin_lock_bh(&mv_chan
->lock
);
543 mv_chan_slot_cleanup(mv_chan
);
545 list_for_each_entry_safe(iter
, _iter
, &mv_chan
->chain
,
548 list_move_tail(&iter
->node
, &mv_chan
->free_slots
);
550 list_for_each_entry_safe(iter
, _iter
, &mv_chan
->completed_slots
,
553 list_move_tail(&iter
->node
, &mv_chan
->free_slots
);
555 list_for_each_entry_safe(iter
, _iter
, &mv_chan
->allocated_slots
,
558 list_move_tail(&iter
->node
, &mv_chan
->free_slots
);
560 list_for_each_entry_safe_reverse(
561 iter
, _iter
, &mv_chan
->free_slots
, node
) {
562 list_del(&iter
->node
);
564 mv_chan
->slots_allocated
--;
567 dev_dbg(mv_chan_to_devp(mv_chan
), "%s slots_allocated %d\n",
568 __func__
, mv_chan
->slots_allocated
);
569 spin_unlock_bh(&mv_chan
->lock
);
572 dev_err(mv_chan_to_devp(mv_chan
),
573 "freeing %d in use descriptors!\n", in_use_descs
);
577 * mv_xor_status - poll the status of an XOR transaction
578 * @chan: XOR channel handle
579 * @cookie: XOR transaction identifier
580 * @txstate: XOR transactions state holder (or NULL)
582 static enum dma_status
mv_xor_status(struct dma_chan
*chan
,
584 struct dma_tx_state
*txstate
)
586 struct mv_xor_chan
*mv_chan
= to_mv_xor_chan(chan
);
589 ret
= dma_cookie_status(chan
, cookie
, txstate
);
590 if (ret
== DMA_COMPLETE
)
593 spin_lock_bh(&mv_chan
->lock
);
594 mv_chan_slot_cleanup(mv_chan
);
595 spin_unlock_bh(&mv_chan
->lock
);
597 return dma_cookie_status(chan
, cookie
, txstate
);
600 static void mv_chan_dump_regs(struct mv_xor_chan
*chan
)
604 val
= readl_relaxed(XOR_CONFIG(chan
));
605 dev_err(mv_chan_to_devp(chan
), "config 0x%08x\n", val
);
607 val
= readl_relaxed(XOR_ACTIVATION(chan
));
608 dev_err(mv_chan_to_devp(chan
), "activation 0x%08x\n", val
);
610 val
= readl_relaxed(XOR_INTR_CAUSE(chan
));
611 dev_err(mv_chan_to_devp(chan
), "intr cause 0x%08x\n", val
);
613 val
= readl_relaxed(XOR_INTR_MASK(chan
));
614 dev_err(mv_chan_to_devp(chan
), "intr mask 0x%08x\n", val
);
616 val
= readl_relaxed(XOR_ERROR_CAUSE(chan
));
617 dev_err(mv_chan_to_devp(chan
), "error cause 0x%08x\n", val
);
619 val
= readl_relaxed(XOR_ERROR_ADDR(chan
));
620 dev_err(mv_chan_to_devp(chan
), "error addr 0x%08x\n", val
);
623 static void mv_chan_err_interrupt_handler(struct mv_xor_chan
*chan
,
626 if (intr_cause
& XOR_INT_ERR_DECODE
) {
627 dev_dbg(mv_chan_to_devp(chan
), "ignoring address decode error\n");
631 dev_err(mv_chan_to_devp(chan
), "error on chan %d. intr cause 0x%08x\n",
632 chan
->idx
, intr_cause
);
634 mv_chan_dump_regs(chan
);
638 static irqreturn_t
mv_xor_interrupt_handler(int irq
, void *data
)
640 struct mv_xor_chan
*chan
= data
;
641 u32 intr_cause
= mv_chan_get_intr_cause(chan
);
643 dev_dbg(mv_chan_to_devp(chan
), "intr cause %x\n", intr_cause
);
645 if (intr_cause
& XOR_INTR_ERRORS
)
646 mv_chan_err_interrupt_handler(chan
, intr_cause
);
648 tasklet_schedule(&chan
->irq_tasklet
);
650 mv_chan_clear_eoc_cause(chan
);
655 static void mv_xor_issue_pending(struct dma_chan
*chan
)
657 struct mv_xor_chan
*mv_chan
= to_mv_xor_chan(chan
);
659 if (mv_chan
->pending
>= MV_XOR_THRESHOLD
) {
660 mv_chan
->pending
= 0;
661 mv_chan_activate(mv_chan
);
666 * Perform a transaction to verify the HW works.
669 static int mv_chan_memcpy_self_test(struct mv_xor_chan
*mv_chan
)
673 dma_addr_t src_dma
, dest_dma
;
674 struct dma_chan
*dma_chan
;
676 struct dma_async_tx_descriptor
*tx
;
677 struct dmaengine_unmap_data
*unmap
;
680 src
= kmalloc(sizeof(u8
) * PAGE_SIZE
, GFP_KERNEL
);
684 dest
= kzalloc(sizeof(u8
) * PAGE_SIZE
, GFP_KERNEL
);
690 /* Fill in src buffer */
691 for (i
= 0; i
< PAGE_SIZE
; i
++)
692 ((u8
*) src
)[i
] = (u8
)i
;
694 dma_chan
= &mv_chan
->dmachan
;
695 if (mv_xor_alloc_chan_resources(dma_chan
) < 1) {
700 unmap
= dmaengine_get_unmap_data(dma_chan
->device
->dev
, 2, GFP_KERNEL
);
706 src_dma
= dma_map_page(dma_chan
->device
->dev
, virt_to_page(src
), 0,
707 PAGE_SIZE
, DMA_TO_DEVICE
);
708 unmap
->addr
[0] = src_dma
;
710 ret
= dma_mapping_error(dma_chan
->device
->dev
, src_dma
);
717 dest_dma
= dma_map_page(dma_chan
->device
->dev
, virt_to_page(dest
), 0,
718 PAGE_SIZE
, DMA_FROM_DEVICE
);
719 unmap
->addr
[1] = dest_dma
;
721 ret
= dma_mapping_error(dma_chan
->device
->dev
, dest_dma
);
727 unmap
->len
= PAGE_SIZE
;
729 tx
= mv_xor_prep_dma_memcpy(dma_chan
, dest_dma
, src_dma
,
732 dev_err(dma_chan
->device
->dev
,
733 "Self-test cannot prepare operation, disabling\n");
738 cookie
= mv_xor_tx_submit(tx
);
739 if (dma_submit_error(cookie
)) {
740 dev_err(dma_chan
->device
->dev
,
741 "Self-test submit error, disabling\n");
746 mv_xor_issue_pending(dma_chan
);
750 if (mv_xor_status(dma_chan
, cookie
, NULL
) !=
752 dev_err(dma_chan
->device
->dev
,
753 "Self-test copy timed out, disabling\n");
758 dma_sync_single_for_cpu(dma_chan
->device
->dev
, dest_dma
,
759 PAGE_SIZE
, DMA_FROM_DEVICE
);
760 if (memcmp(src
, dest
, PAGE_SIZE
)) {
761 dev_err(dma_chan
->device
->dev
,
762 "Self-test copy failed compare, disabling\n");
768 dmaengine_unmap_put(unmap
);
769 mv_xor_free_chan_resources(dma_chan
);
776 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
778 mv_chan_xor_self_test(struct mv_xor_chan
*mv_chan
)
782 struct page
*xor_srcs
[MV_XOR_NUM_SRC_TEST
];
783 dma_addr_t dma_srcs
[MV_XOR_NUM_SRC_TEST
];
785 struct dma_async_tx_descriptor
*tx
;
786 struct dmaengine_unmap_data
*unmap
;
787 struct dma_chan
*dma_chan
;
792 int src_count
= MV_XOR_NUM_SRC_TEST
;
794 for (src_idx
= 0; src_idx
< src_count
; src_idx
++) {
795 xor_srcs
[src_idx
] = alloc_page(GFP_KERNEL
);
796 if (!xor_srcs
[src_idx
]) {
798 __free_page(xor_srcs
[src_idx
]);
803 dest
= alloc_page(GFP_KERNEL
);
806 __free_page(xor_srcs
[src_idx
]);
810 /* Fill in src buffers */
811 for (src_idx
= 0; src_idx
< src_count
; src_idx
++) {
812 u8
*ptr
= page_address(xor_srcs
[src_idx
]);
813 for (i
= 0; i
< PAGE_SIZE
; i
++)
814 ptr
[i
] = (1 << src_idx
);
817 for (src_idx
= 0; src_idx
< src_count
; src_idx
++)
818 cmp_byte
^= (u8
) (1 << src_idx
);
820 cmp_word
= (cmp_byte
<< 24) | (cmp_byte
<< 16) |
821 (cmp_byte
<< 8) | cmp_byte
;
823 memset(page_address(dest
), 0, PAGE_SIZE
);
825 dma_chan
= &mv_chan
->dmachan
;
826 if (mv_xor_alloc_chan_resources(dma_chan
) < 1) {
831 unmap
= dmaengine_get_unmap_data(dma_chan
->device
->dev
, src_count
+ 1,
839 for (i
= 0; i
< src_count
; i
++) {
840 unmap
->addr
[i
] = dma_map_page(dma_chan
->device
->dev
, xor_srcs
[i
],
841 0, PAGE_SIZE
, DMA_TO_DEVICE
);
842 dma_srcs
[i
] = unmap
->addr
[i
];
843 ret
= dma_mapping_error(dma_chan
->device
->dev
, unmap
->addr
[i
]);
851 unmap
->addr
[src_count
] = dma_map_page(dma_chan
->device
->dev
, dest
, 0, PAGE_SIZE
,
853 dest_dma
= unmap
->addr
[src_count
];
854 ret
= dma_mapping_error(dma_chan
->device
->dev
, unmap
->addr
[src_count
]);
860 unmap
->len
= PAGE_SIZE
;
862 tx
= mv_xor_prep_dma_xor(dma_chan
, dest_dma
, dma_srcs
,
863 src_count
, PAGE_SIZE
, 0);
865 dev_err(dma_chan
->device
->dev
,
866 "Self-test cannot prepare operation, disabling\n");
871 cookie
= mv_xor_tx_submit(tx
);
872 if (dma_submit_error(cookie
)) {
873 dev_err(dma_chan
->device
->dev
,
874 "Self-test submit error, disabling\n");
879 mv_xor_issue_pending(dma_chan
);
883 if (mv_xor_status(dma_chan
, cookie
, NULL
) !=
885 dev_err(dma_chan
->device
->dev
,
886 "Self-test xor timed out, disabling\n");
891 dma_sync_single_for_cpu(dma_chan
->device
->dev
, dest_dma
,
892 PAGE_SIZE
, DMA_FROM_DEVICE
);
893 for (i
= 0; i
< (PAGE_SIZE
/ sizeof(u32
)); i
++) {
894 u32
*ptr
= page_address(dest
);
895 if (ptr
[i
] != cmp_word
) {
896 dev_err(dma_chan
->device
->dev
,
897 "Self-test xor failed compare, disabling. index %d, data %x, expected %x\n",
898 i
, ptr
[i
], cmp_word
);
905 dmaengine_unmap_put(unmap
);
906 mv_xor_free_chan_resources(dma_chan
);
910 __free_page(xor_srcs
[src_idx
]);
915 static int mv_xor_channel_remove(struct mv_xor_chan
*mv_chan
)
917 struct dma_chan
*chan
, *_chan
;
918 struct device
*dev
= mv_chan
->dmadev
.dev
;
920 dma_async_device_unregister(&mv_chan
->dmadev
);
922 dma_free_coherent(dev
, MV_XOR_POOL_SIZE
,
923 mv_chan
->dma_desc_pool_virt
, mv_chan
->dma_desc_pool
);
924 dma_unmap_single(dev
, mv_chan
->dummy_src_addr
,
925 MV_XOR_MIN_BYTE_COUNT
, DMA_FROM_DEVICE
);
926 dma_unmap_single(dev
, mv_chan
->dummy_dst_addr
,
927 MV_XOR_MIN_BYTE_COUNT
, DMA_TO_DEVICE
);
929 list_for_each_entry_safe(chan
, _chan
, &mv_chan
->dmadev
.channels
,
931 list_del(&chan
->device_node
);
934 free_irq(mv_chan
->irq
, mv_chan
);
939 static struct mv_xor_chan
*
940 mv_xor_channel_add(struct mv_xor_device
*xordev
,
941 struct platform_device
*pdev
,
942 int idx
, dma_cap_mask_t cap_mask
, int irq
)
945 struct mv_xor_chan
*mv_chan
;
946 struct dma_device
*dma_dev
;
948 mv_chan
= devm_kzalloc(&pdev
->dev
, sizeof(*mv_chan
), GFP_KERNEL
);
950 return ERR_PTR(-ENOMEM
);
954 if (xordev
->xor_type
== XOR_ORION
)
955 mv_chan
->op_in_desc
= XOR_MODE_IN_REG
;
957 mv_chan
->op_in_desc
= XOR_MODE_IN_DESC
;
959 dma_dev
= &mv_chan
->dmadev
;
962 * These source and destination dummy buffers are used to implement
963 * a DMA_INTERRUPT operation as a minimum-sized XOR operation.
964 * Hence, we only need to map the buffers at initialization-time.
966 mv_chan
->dummy_src_addr
= dma_map_single(dma_dev
->dev
,
967 mv_chan
->dummy_src
, MV_XOR_MIN_BYTE_COUNT
, DMA_FROM_DEVICE
);
968 mv_chan
->dummy_dst_addr
= dma_map_single(dma_dev
->dev
,
969 mv_chan
->dummy_dst
, MV_XOR_MIN_BYTE_COUNT
, DMA_TO_DEVICE
);
971 /* allocate coherent memory for hardware descriptors
972 * note: writecombine gives slightly better performance, but
973 * requires that we explicitly flush the writes
975 mv_chan
->dma_desc_pool_virt
=
976 dma_alloc_wc(&pdev
->dev
, MV_XOR_POOL_SIZE
, &mv_chan
->dma_desc_pool
,
978 if (!mv_chan
->dma_desc_pool_virt
)
979 return ERR_PTR(-ENOMEM
);
981 /* discover transaction capabilites from the platform data */
982 dma_dev
->cap_mask
= cap_mask
;
984 INIT_LIST_HEAD(&dma_dev
->channels
);
986 /* set base routines */
987 dma_dev
->device_alloc_chan_resources
= mv_xor_alloc_chan_resources
;
988 dma_dev
->device_free_chan_resources
= mv_xor_free_chan_resources
;
989 dma_dev
->device_tx_status
= mv_xor_status
;
990 dma_dev
->device_issue_pending
= mv_xor_issue_pending
;
991 dma_dev
->dev
= &pdev
->dev
;
993 /* set prep routines based on capability */
994 if (dma_has_cap(DMA_INTERRUPT
, dma_dev
->cap_mask
))
995 dma_dev
->device_prep_dma_interrupt
= mv_xor_prep_dma_interrupt
;
996 if (dma_has_cap(DMA_MEMCPY
, dma_dev
->cap_mask
))
997 dma_dev
->device_prep_dma_memcpy
= mv_xor_prep_dma_memcpy
;
998 if (dma_has_cap(DMA_XOR
, dma_dev
->cap_mask
)) {
999 dma_dev
->max_xor
= 8;
1000 dma_dev
->device_prep_dma_xor
= mv_xor_prep_dma_xor
;
1003 mv_chan
->mmr_base
= xordev
->xor_base
;
1004 mv_chan
->mmr_high_base
= xordev
->xor_high_base
;
1005 tasklet_init(&mv_chan
->irq_tasklet
, mv_xor_tasklet
, (unsigned long)
1008 /* clear errors before enabling interrupts */
1009 mv_chan_clear_err_status(mv_chan
);
1011 ret
= request_irq(mv_chan
->irq
, mv_xor_interrupt_handler
,
1012 0, dev_name(&pdev
->dev
), mv_chan
);
1016 mv_chan_unmask_interrupts(mv_chan
);
1018 if (mv_chan
->op_in_desc
== XOR_MODE_IN_DESC
)
1019 mv_chan_set_mode(mv_chan
, XOR_OPERATION_MODE_IN_DESC
);
1021 mv_chan_set_mode(mv_chan
, XOR_OPERATION_MODE_XOR
);
1023 spin_lock_init(&mv_chan
->lock
);
1024 INIT_LIST_HEAD(&mv_chan
->chain
);
1025 INIT_LIST_HEAD(&mv_chan
->completed_slots
);
1026 INIT_LIST_HEAD(&mv_chan
->free_slots
);
1027 INIT_LIST_HEAD(&mv_chan
->allocated_slots
);
1028 mv_chan
->dmachan
.device
= dma_dev
;
1029 dma_cookie_init(&mv_chan
->dmachan
);
1031 list_add_tail(&mv_chan
->dmachan
.device_node
, &dma_dev
->channels
);
1033 if (dma_has_cap(DMA_MEMCPY
, dma_dev
->cap_mask
)) {
1034 ret
= mv_chan_memcpy_self_test(mv_chan
);
1035 dev_dbg(&pdev
->dev
, "memcpy self test returned %d\n", ret
);
1040 if (dma_has_cap(DMA_XOR
, dma_dev
->cap_mask
)) {
1041 ret
= mv_chan_xor_self_test(mv_chan
);
1042 dev_dbg(&pdev
->dev
, "xor self test returned %d\n", ret
);
1047 dev_info(&pdev
->dev
, "Marvell XOR (%s): ( %s%s%s)\n",
1048 mv_chan
->op_in_desc
? "Descriptor Mode" : "Registers Mode",
1049 dma_has_cap(DMA_XOR
, dma_dev
->cap_mask
) ? "xor " : "",
1050 dma_has_cap(DMA_MEMCPY
, dma_dev
->cap_mask
) ? "cpy " : "",
1051 dma_has_cap(DMA_INTERRUPT
, dma_dev
->cap_mask
) ? "intr " : "");
1053 dma_async_device_register(dma_dev
);
1057 free_irq(mv_chan
->irq
, mv_chan
);
1059 dma_free_coherent(&pdev
->dev
, MV_XOR_POOL_SIZE
,
1060 mv_chan
->dma_desc_pool_virt
, mv_chan
->dma_desc_pool
);
1061 return ERR_PTR(ret
);
1065 mv_xor_conf_mbus_windows(struct mv_xor_device
*xordev
,
1066 const struct mbus_dram_target_info
*dram
)
1068 void __iomem
*base
= xordev
->xor_high_base
;
1072 for (i
= 0; i
< 8; i
++) {
1073 writel(0, base
+ WINDOW_BASE(i
));
1074 writel(0, base
+ WINDOW_SIZE(i
));
1076 writel(0, base
+ WINDOW_REMAP_HIGH(i
));
1079 for (i
= 0; i
< dram
->num_cs
; i
++) {
1080 const struct mbus_dram_window
*cs
= dram
->cs
+ i
;
1082 writel((cs
->base
& 0xffff0000) |
1083 (cs
->mbus_attr
<< 8) |
1084 dram
->mbus_dram_target_id
, base
+ WINDOW_BASE(i
));
1085 writel((cs
->size
- 1) & 0xffff0000, base
+ WINDOW_SIZE(i
));
1087 win_enable
|= (1 << i
);
1088 win_enable
|= 3 << (16 + (2 * i
));
1091 writel(win_enable
, base
+ WINDOW_BAR_ENABLE(0));
1092 writel(win_enable
, base
+ WINDOW_BAR_ENABLE(1));
1093 writel(0, base
+ WINDOW_OVERRIDE_CTRL(0));
1094 writel(0, base
+ WINDOW_OVERRIDE_CTRL(1));
1098 mv_xor_conf_mbus_windows_a3700(struct mv_xor_device
*xordev
)
1100 void __iomem
*base
= xordev
->xor_high_base
;
1104 for (i
= 0; i
< 8; i
++) {
1105 writel(0, base
+ WINDOW_BASE(i
));
1106 writel(0, base
+ WINDOW_SIZE(i
));
1108 writel(0, base
+ WINDOW_REMAP_HIGH(i
));
1111 * For Armada3700 open default 4GB Mbus window. The dram
1112 * related configuration are done at AXIS level.
1114 writel(0xffff0000, base
+ WINDOW_SIZE(0));
1116 win_enable
|= 3 << 16;
1118 writel(win_enable
, base
+ WINDOW_BAR_ENABLE(0));
1119 writel(win_enable
, base
+ WINDOW_BAR_ENABLE(1));
1120 writel(0, base
+ WINDOW_OVERRIDE_CTRL(0));
1121 writel(0, base
+ WINDOW_OVERRIDE_CTRL(1));
1125 * Since this XOR driver is basically used only for RAID5, we don't
1126 * need to care about synchronizing ->suspend with DMA activity,
1127 * because the DMA engine will naturally be quiet due to the block
1128 * devices being suspended.
1130 static int mv_xor_suspend(struct platform_device
*pdev
, pm_message_t state
)
1132 struct mv_xor_device
*xordev
= platform_get_drvdata(pdev
);
1135 for (i
= 0; i
< MV_XOR_MAX_CHANNELS
; i
++) {
1136 struct mv_xor_chan
*mv_chan
= xordev
->channels
[i
];
1141 mv_chan
->saved_config_reg
=
1142 readl_relaxed(XOR_CONFIG(mv_chan
));
1143 mv_chan
->saved_int_mask_reg
=
1144 readl_relaxed(XOR_INTR_MASK(mv_chan
));
1150 static int mv_xor_resume(struct platform_device
*dev
)
1152 struct mv_xor_device
*xordev
= platform_get_drvdata(dev
);
1153 const struct mbus_dram_target_info
*dram
;
1156 for (i
= 0; i
< MV_XOR_MAX_CHANNELS
; i
++) {
1157 struct mv_xor_chan
*mv_chan
= xordev
->channels
[i
];
1162 writel_relaxed(mv_chan
->saved_config_reg
,
1163 XOR_CONFIG(mv_chan
));
1164 writel_relaxed(mv_chan
->saved_int_mask_reg
,
1165 XOR_INTR_MASK(mv_chan
));
1168 if (xordev
->xor_type
== XOR_ARMADA_37XX
) {
1169 mv_xor_conf_mbus_windows_a3700(xordev
);
1173 dram
= mv_mbus_dram_info();
1175 mv_xor_conf_mbus_windows(xordev
, dram
);
1180 static const struct of_device_id mv_xor_dt_ids
[] = {
1181 { .compatible
= "marvell,orion-xor", .data
= (void *)XOR_ORION
},
1182 { .compatible
= "marvell,armada-380-xor", .data
= (void *)XOR_ARMADA_38X
},
1183 { .compatible
= "marvell,armada-3700-xor", .data
= (void *)XOR_ARMADA_37XX
},
1187 static unsigned int mv_xor_engine_count
;
1189 static int mv_xor_probe(struct platform_device
*pdev
)
1191 const struct mbus_dram_target_info
*dram
;
1192 struct mv_xor_device
*xordev
;
1193 struct mv_xor_platform_data
*pdata
= dev_get_platdata(&pdev
->dev
);
1194 struct resource
*res
;
1195 unsigned int max_engines
, max_channels
;
1198 dev_notice(&pdev
->dev
, "Marvell shared XOR driver\n");
1200 xordev
= devm_kzalloc(&pdev
->dev
, sizeof(*xordev
), GFP_KERNEL
);
1204 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1208 xordev
->xor_base
= devm_ioremap(&pdev
->dev
, res
->start
,
1209 resource_size(res
));
1210 if (!xordev
->xor_base
)
1213 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1217 xordev
->xor_high_base
= devm_ioremap(&pdev
->dev
, res
->start
,
1218 resource_size(res
));
1219 if (!xordev
->xor_high_base
)
1222 platform_set_drvdata(pdev
, xordev
);
1226 * We need to know which type of XOR device we use before
1227 * setting up. In non-dt case it can only be the legacy one.
1229 xordev
->xor_type
= XOR_ORION
;
1230 if (pdev
->dev
.of_node
) {
1231 const struct of_device_id
*of_id
=
1232 of_match_device(mv_xor_dt_ids
,
1235 xordev
->xor_type
= (uintptr_t)of_id
->data
;
1239 * (Re-)program MBUS remapping windows if we are asked to.
1241 if (xordev
->xor_type
== XOR_ARMADA_37XX
) {
1242 mv_xor_conf_mbus_windows_a3700(xordev
);
1244 dram
= mv_mbus_dram_info();
1246 mv_xor_conf_mbus_windows(xordev
, dram
);
1249 /* Not all platforms can gate the clock, so it is not
1250 * an error if the clock does not exists.
1252 xordev
->clk
= clk_get(&pdev
->dev
, NULL
);
1253 if (!IS_ERR(xordev
->clk
))
1254 clk_prepare_enable(xordev
->clk
);
1257 * We don't want to have more than one channel per CPU in
1258 * order for async_tx to perform well. So we limit the number
1259 * of engines and channels so that we take into account this
1260 * constraint. Note that we also want to use channels from
1261 * separate engines when possible. For dual-CPU Armada 3700
1262 * SoC with single XOR engine allow using its both channels.
1264 max_engines
= num_present_cpus();
1265 if (xordev
->xor_type
== XOR_ARMADA_37XX
)
1266 max_channels
= num_present_cpus();
1268 max_channels
= min_t(unsigned int,
1269 MV_XOR_MAX_CHANNELS
,
1270 DIV_ROUND_UP(num_present_cpus(), 2));
1272 if (mv_xor_engine_count
>= max_engines
)
1275 if (pdev
->dev
.of_node
) {
1276 struct device_node
*np
;
1279 for_each_child_of_node(pdev
->dev
.of_node
, np
) {
1280 struct mv_xor_chan
*chan
;
1281 dma_cap_mask_t cap_mask
;
1284 if (i
>= max_channels
)
1287 dma_cap_zero(cap_mask
);
1288 dma_cap_set(DMA_MEMCPY
, cap_mask
);
1289 dma_cap_set(DMA_XOR
, cap_mask
);
1290 dma_cap_set(DMA_INTERRUPT
, cap_mask
);
1292 irq
= irq_of_parse_and_map(np
, 0);
1295 goto err_channel_add
;
1298 chan
= mv_xor_channel_add(xordev
, pdev
, i
,
1301 ret
= PTR_ERR(chan
);
1302 irq_dispose_mapping(irq
);
1303 goto err_channel_add
;
1306 xordev
->channels
[i
] = chan
;
1309 } else if (pdata
&& pdata
->channels
) {
1310 for (i
= 0; i
< max_channels
; i
++) {
1311 struct mv_xor_channel_data
*cd
;
1312 struct mv_xor_chan
*chan
;
1315 cd
= &pdata
->channels
[i
];
1318 goto err_channel_add
;
1321 irq
= platform_get_irq(pdev
, i
);
1324 goto err_channel_add
;
1327 chan
= mv_xor_channel_add(xordev
, pdev
, i
,
1330 ret
= PTR_ERR(chan
);
1331 goto err_channel_add
;
1334 xordev
->channels
[i
] = chan
;
1341 for (i
= 0; i
< MV_XOR_MAX_CHANNELS
; i
++)
1342 if (xordev
->channels
[i
]) {
1343 mv_xor_channel_remove(xordev
->channels
[i
]);
1344 if (pdev
->dev
.of_node
)
1345 irq_dispose_mapping(xordev
->channels
[i
]->irq
);
1348 if (!IS_ERR(xordev
->clk
)) {
1349 clk_disable_unprepare(xordev
->clk
);
1350 clk_put(xordev
->clk
);
1356 static struct platform_driver mv_xor_driver
= {
1357 .probe
= mv_xor_probe
,
1358 .suspend
= mv_xor_suspend
,
1359 .resume
= mv_xor_resume
,
1361 .name
= MV_XOR_NAME
,
1362 .of_match_table
= of_match_ptr(mv_xor_dt_ids
),
1367 static int __init
mv_xor_init(void)
1369 return platform_driver_register(&mv_xor_driver
);
1371 device_initcall(mv_xor_init
);
1374 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
1375 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
1376 MODULE_LICENSE("GPL");