drm/i915: Mark the context and address space as closed
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / intel_pm.c
blob63f454a8e8118e436e7158a6dd986699309db2c8
1 /*
2 * Copyright © 2012 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
35 /**
36 * DOC: RC6
38 * RC6 is a special power stage which allows the GPU to enter an very
39 * low-voltage mode when idle, using down to 0V while at this stage. This
40 * stage is entered automatically when the GPU is idle when RC6 support is
41 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43 * There are different RC6 modes available in Intel GPU, which differentiate
44 * among each other with the latency required to enter and leave RC6 and
45 * voltage consumed by the GPU in different states.
47 * The combination of the following flags define which states GPU is allowed
48 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49 * RC6pp is deepest RC6. Their support by hardware varies according to the
50 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51 * which brings the most power savings; deeper states save more power, but
52 * require higher latency to switch to and wake up.
54 #define INTEL_RC6_ENABLE (1<<0)
55 #define INTEL_RC6p_ENABLE (1<<1)
56 #define INTEL_RC6pp_ENABLE (1<<2)
58 static void gen9_init_clock_gating(struct drm_device *dev)
60 struct drm_i915_private *dev_priv = to_i915(dev);
62 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 I915_WRITE(CHICKEN_PAR1_1,
64 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
66 I915_WRITE(GEN8_CONFIG0,
67 I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
69 /* WaEnableChickenDCPR:skl,bxt,kbl */
70 I915_WRITE(GEN8_CHICKEN_DCPR_1,
71 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
73 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74 /* WaFbcWakeMemOn:skl,bxt,kbl */
75 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
76 DISP_FBC_WM_DIS |
77 DISP_FBC_MEMORY_WAKE);
79 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
80 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
81 ILK_DPFC_DISABLE_DUMMY0);
84 static void bxt_init_clock_gating(struct drm_device *dev)
86 struct drm_i915_private *dev_priv = to_i915(dev);
88 gen9_init_clock_gating(dev);
90 /* WaDisableSDEUnitClockGating:bxt */
91 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
92 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
95 * FIXME:
96 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
98 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
102 * Wa: Backlight PWM may stop in the asserted state, causing backlight
103 * to stay fully on.
105 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
106 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
107 PWM1_GATING_DIS | PWM2_GATING_DIS);
110 static void i915_pineview_get_mem_freq(struct drm_device *dev)
112 struct drm_i915_private *dev_priv = to_i915(dev);
113 u32 tmp;
115 tmp = I915_READ(CLKCFG);
117 switch (tmp & CLKCFG_FSB_MASK) {
118 case CLKCFG_FSB_533:
119 dev_priv->fsb_freq = 533; /* 133*4 */
120 break;
121 case CLKCFG_FSB_800:
122 dev_priv->fsb_freq = 800; /* 200*4 */
123 break;
124 case CLKCFG_FSB_667:
125 dev_priv->fsb_freq = 667; /* 167*4 */
126 break;
127 case CLKCFG_FSB_400:
128 dev_priv->fsb_freq = 400; /* 100*4 */
129 break;
132 switch (tmp & CLKCFG_MEM_MASK) {
133 case CLKCFG_MEM_533:
134 dev_priv->mem_freq = 533;
135 break;
136 case CLKCFG_MEM_667:
137 dev_priv->mem_freq = 667;
138 break;
139 case CLKCFG_MEM_800:
140 dev_priv->mem_freq = 800;
141 break;
144 /* detect pineview DDR3 setting */
145 tmp = I915_READ(CSHRDDR3CTL);
146 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
149 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
151 struct drm_i915_private *dev_priv = to_i915(dev);
152 u16 ddrpll, csipll;
154 ddrpll = I915_READ16(DDRMPLL1);
155 csipll = I915_READ16(CSIPLL0);
157 switch (ddrpll & 0xff) {
158 case 0xc:
159 dev_priv->mem_freq = 800;
160 break;
161 case 0x10:
162 dev_priv->mem_freq = 1066;
163 break;
164 case 0x14:
165 dev_priv->mem_freq = 1333;
166 break;
167 case 0x18:
168 dev_priv->mem_freq = 1600;
169 break;
170 default:
171 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
172 ddrpll & 0xff);
173 dev_priv->mem_freq = 0;
174 break;
177 dev_priv->ips.r_t = dev_priv->mem_freq;
179 switch (csipll & 0x3ff) {
180 case 0x00c:
181 dev_priv->fsb_freq = 3200;
182 break;
183 case 0x00e:
184 dev_priv->fsb_freq = 3733;
185 break;
186 case 0x010:
187 dev_priv->fsb_freq = 4266;
188 break;
189 case 0x012:
190 dev_priv->fsb_freq = 4800;
191 break;
192 case 0x014:
193 dev_priv->fsb_freq = 5333;
194 break;
195 case 0x016:
196 dev_priv->fsb_freq = 5866;
197 break;
198 case 0x018:
199 dev_priv->fsb_freq = 6400;
200 break;
201 default:
202 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
203 csipll & 0x3ff);
204 dev_priv->fsb_freq = 0;
205 break;
208 if (dev_priv->fsb_freq == 3200) {
209 dev_priv->ips.c_m = 0;
210 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211 dev_priv->ips.c_m = 1;
212 } else {
213 dev_priv->ips.c_m = 2;
217 static const struct cxsr_latency cxsr_latency_table[] = {
218 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
219 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
220 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
221 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
222 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
224 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
225 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
226 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
227 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
228 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
230 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
231 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
232 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
233 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
234 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
236 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
237 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
238 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
239 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
240 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
242 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
243 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
244 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
245 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
246 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
248 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
249 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
250 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
251 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
252 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
255 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
256 int is_ddr3,
257 int fsb,
258 int mem)
260 const struct cxsr_latency *latency;
261 int i;
263 if (fsb == 0 || mem == 0)
264 return NULL;
266 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
267 latency = &cxsr_latency_table[i];
268 if (is_desktop == latency->is_desktop &&
269 is_ddr3 == latency->is_ddr3 &&
270 fsb == latency->fsb_freq && mem == latency->mem_freq)
271 return latency;
274 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
276 return NULL;
279 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
281 u32 val;
283 mutex_lock(&dev_priv->rps.hw_lock);
285 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
286 if (enable)
287 val &= ~FORCE_DDR_HIGH_FREQ;
288 else
289 val |= FORCE_DDR_HIGH_FREQ;
290 val &= ~FORCE_DDR_LOW_FREQ;
291 val |= FORCE_DDR_FREQ_REQ_ACK;
292 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
294 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
295 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
296 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
298 mutex_unlock(&dev_priv->rps.hw_lock);
301 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
303 u32 val;
305 mutex_lock(&dev_priv->rps.hw_lock);
307 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
308 if (enable)
309 val |= DSP_MAXFIFO_PM5_ENABLE;
310 else
311 val &= ~DSP_MAXFIFO_PM5_ENABLE;
312 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
314 mutex_unlock(&dev_priv->rps.hw_lock);
317 #define FW_WM(value, plane) \
318 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
320 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
322 struct drm_device *dev = &dev_priv->drm;
323 u32 val;
325 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327 POSTING_READ(FW_BLC_SELF_VLV);
328 dev_priv->wm.vlv.cxsr = enable;
329 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
330 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331 POSTING_READ(FW_BLC_SELF);
332 } else if (IS_PINEVIEW(dev)) {
333 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
334 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
335 I915_WRITE(DSPFW3, val);
336 POSTING_READ(DSPFW3);
337 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
338 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
339 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
340 I915_WRITE(FW_BLC_SELF, val);
341 POSTING_READ(FW_BLC_SELF);
342 } else if (IS_I915GM(dev)) {
344 * FIXME can't find a bit like this for 915G, and
345 * and yet it does have the related watermark in
346 * FW_BLC_SELF. What's going on?
348 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
349 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
350 I915_WRITE(INSTPM, val);
351 POSTING_READ(INSTPM);
352 } else {
353 return;
356 DRM_DEBUG_KMS("memory self-refresh is %s\n",
357 enable ? "enabled" : "disabled");
362 * Latency for FIFO fetches is dependent on several factors:
363 * - memory configuration (speed, channels)
364 * - chipset
365 * - current MCH state
366 * It can be fairly high in some situations, so here we assume a fairly
367 * pessimal value. It's a tradeoff between extra memory fetches (if we
368 * set this value too high, the FIFO will fetch frequently to stay full)
369 * and power consumption (set it too low to save power and we might see
370 * FIFO underruns and display "flicker").
372 * A value of 5us seems to be a good balance; safe for very low end
373 * platforms but not overly aggressive on lower latency configs.
375 static const int pessimal_latency_ns = 5000;
377 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
378 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
380 static int vlv_get_fifo_size(struct drm_device *dev,
381 enum pipe pipe, int plane)
383 struct drm_i915_private *dev_priv = to_i915(dev);
384 int sprite0_start, sprite1_start, size;
386 switch (pipe) {
387 uint32_t dsparb, dsparb2, dsparb3;
388 case PIPE_A:
389 dsparb = I915_READ(DSPARB);
390 dsparb2 = I915_READ(DSPARB2);
391 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
392 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
393 break;
394 case PIPE_B:
395 dsparb = I915_READ(DSPARB);
396 dsparb2 = I915_READ(DSPARB2);
397 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
398 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
399 break;
400 case PIPE_C:
401 dsparb2 = I915_READ(DSPARB2);
402 dsparb3 = I915_READ(DSPARB3);
403 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
404 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
405 break;
406 default:
407 return 0;
410 switch (plane) {
411 case 0:
412 size = sprite0_start;
413 break;
414 case 1:
415 size = sprite1_start - sprite0_start;
416 break;
417 case 2:
418 size = 512 - 1 - sprite1_start;
419 break;
420 default:
421 return 0;
424 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
425 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
426 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
427 size);
429 return size;
432 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
434 struct drm_i915_private *dev_priv = to_i915(dev);
435 uint32_t dsparb = I915_READ(DSPARB);
436 int size;
438 size = dsparb & 0x7f;
439 if (plane)
440 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
442 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
443 plane ? "B" : "A", size);
445 return size;
448 static int i830_get_fifo_size(struct drm_device *dev, int plane)
450 struct drm_i915_private *dev_priv = to_i915(dev);
451 uint32_t dsparb = I915_READ(DSPARB);
452 int size;
454 size = dsparb & 0x1ff;
455 if (plane)
456 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
457 size >>= 1; /* Convert to cachelines */
459 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
460 plane ? "B" : "A", size);
462 return size;
465 static int i845_get_fifo_size(struct drm_device *dev, int plane)
467 struct drm_i915_private *dev_priv = to_i915(dev);
468 uint32_t dsparb = I915_READ(DSPARB);
469 int size;
471 size = dsparb & 0x7f;
472 size >>= 2; /* Convert to cachelines */
474 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
475 plane ? "B" : "A",
476 size);
478 return size;
481 /* Pineview has different values for various configs */
482 static const struct intel_watermark_params pineview_display_wm = {
483 .fifo_size = PINEVIEW_DISPLAY_FIFO,
484 .max_wm = PINEVIEW_MAX_WM,
485 .default_wm = PINEVIEW_DFT_WM,
486 .guard_size = PINEVIEW_GUARD_WM,
487 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
489 static const struct intel_watermark_params pineview_display_hplloff_wm = {
490 .fifo_size = PINEVIEW_DISPLAY_FIFO,
491 .max_wm = PINEVIEW_MAX_WM,
492 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
493 .guard_size = PINEVIEW_GUARD_WM,
494 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
496 static const struct intel_watermark_params pineview_cursor_wm = {
497 .fifo_size = PINEVIEW_CURSOR_FIFO,
498 .max_wm = PINEVIEW_CURSOR_MAX_WM,
499 .default_wm = PINEVIEW_CURSOR_DFT_WM,
500 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
501 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
503 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
504 .fifo_size = PINEVIEW_CURSOR_FIFO,
505 .max_wm = PINEVIEW_CURSOR_MAX_WM,
506 .default_wm = PINEVIEW_CURSOR_DFT_WM,
507 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
508 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
510 static const struct intel_watermark_params g4x_wm_info = {
511 .fifo_size = G4X_FIFO_SIZE,
512 .max_wm = G4X_MAX_WM,
513 .default_wm = G4X_MAX_WM,
514 .guard_size = 2,
515 .cacheline_size = G4X_FIFO_LINE_SIZE,
517 static const struct intel_watermark_params g4x_cursor_wm_info = {
518 .fifo_size = I965_CURSOR_FIFO,
519 .max_wm = I965_CURSOR_MAX_WM,
520 .default_wm = I965_CURSOR_DFT_WM,
521 .guard_size = 2,
522 .cacheline_size = G4X_FIFO_LINE_SIZE,
524 static const struct intel_watermark_params i965_cursor_wm_info = {
525 .fifo_size = I965_CURSOR_FIFO,
526 .max_wm = I965_CURSOR_MAX_WM,
527 .default_wm = I965_CURSOR_DFT_WM,
528 .guard_size = 2,
529 .cacheline_size = I915_FIFO_LINE_SIZE,
531 static const struct intel_watermark_params i945_wm_info = {
532 .fifo_size = I945_FIFO_SIZE,
533 .max_wm = I915_MAX_WM,
534 .default_wm = 1,
535 .guard_size = 2,
536 .cacheline_size = I915_FIFO_LINE_SIZE,
538 static const struct intel_watermark_params i915_wm_info = {
539 .fifo_size = I915_FIFO_SIZE,
540 .max_wm = I915_MAX_WM,
541 .default_wm = 1,
542 .guard_size = 2,
543 .cacheline_size = I915_FIFO_LINE_SIZE,
545 static const struct intel_watermark_params i830_a_wm_info = {
546 .fifo_size = I855GM_FIFO_SIZE,
547 .max_wm = I915_MAX_WM,
548 .default_wm = 1,
549 .guard_size = 2,
550 .cacheline_size = I830_FIFO_LINE_SIZE,
552 static const struct intel_watermark_params i830_bc_wm_info = {
553 .fifo_size = I855GM_FIFO_SIZE,
554 .max_wm = I915_MAX_WM/2,
555 .default_wm = 1,
556 .guard_size = 2,
557 .cacheline_size = I830_FIFO_LINE_SIZE,
559 static const struct intel_watermark_params i845_wm_info = {
560 .fifo_size = I830_FIFO_SIZE,
561 .max_wm = I915_MAX_WM,
562 .default_wm = 1,
563 .guard_size = 2,
564 .cacheline_size = I830_FIFO_LINE_SIZE,
568 * intel_calculate_wm - calculate watermark level
569 * @clock_in_khz: pixel clock
570 * @wm: chip FIFO params
571 * @cpp: bytes per pixel
572 * @latency_ns: memory latency for the platform
574 * Calculate the watermark level (the level at which the display plane will
575 * start fetching from memory again). Each chip has a different display
576 * FIFO size and allocation, so the caller needs to figure that out and pass
577 * in the correct intel_watermark_params structure.
579 * As the pixel clock runs, the FIFO will be drained at a rate that depends
580 * on the pixel size. When it reaches the watermark level, it'll start
581 * fetching FIFO line sized based chunks from memory until the FIFO fills
582 * past the watermark point. If the FIFO drains completely, a FIFO underrun
583 * will occur, and a display engine hang could result.
585 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
586 const struct intel_watermark_params *wm,
587 int fifo_size, int cpp,
588 unsigned long latency_ns)
590 long entries_required, wm_size;
593 * Note: we need to make sure we don't overflow for various clock &
594 * latency values.
595 * clocks go from a few thousand to several hundred thousand.
596 * latency is usually a few thousand
598 entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
599 1000;
600 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
602 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
604 wm_size = fifo_size - (entries_required + wm->guard_size);
606 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
608 /* Don't promote wm_size to unsigned... */
609 if (wm_size > (long)wm->max_wm)
610 wm_size = wm->max_wm;
611 if (wm_size <= 0)
612 wm_size = wm->default_wm;
615 * Bspec seems to indicate that the value shouldn't be lower than
616 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
617 * Lets go for 8 which is the burst size since certain platforms
618 * already use a hardcoded 8 (which is what the spec says should be
619 * done).
621 if (wm_size <= 8)
622 wm_size = 8;
624 return wm_size;
627 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
629 struct drm_crtc *crtc, *enabled = NULL;
631 for_each_crtc(dev, crtc) {
632 if (intel_crtc_active(crtc)) {
633 if (enabled)
634 return NULL;
635 enabled = crtc;
639 return enabled;
642 static void pineview_update_wm(struct drm_crtc *unused_crtc)
644 struct drm_device *dev = unused_crtc->dev;
645 struct drm_i915_private *dev_priv = to_i915(dev);
646 struct drm_crtc *crtc;
647 const struct cxsr_latency *latency;
648 u32 reg;
649 unsigned long wm;
651 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
652 dev_priv->fsb_freq, dev_priv->mem_freq);
653 if (!latency) {
654 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
655 intel_set_memory_cxsr(dev_priv, false);
656 return;
659 crtc = single_enabled_crtc(dev);
660 if (crtc) {
661 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
662 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
663 int clock = adjusted_mode->crtc_clock;
665 /* Display SR */
666 wm = intel_calculate_wm(clock, &pineview_display_wm,
667 pineview_display_wm.fifo_size,
668 cpp, latency->display_sr);
669 reg = I915_READ(DSPFW1);
670 reg &= ~DSPFW_SR_MASK;
671 reg |= FW_WM(wm, SR);
672 I915_WRITE(DSPFW1, reg);
673 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
675 /* cursor SR */
676 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
677 pineview_display_wm.fifo_size,
678 cpp, latency->cursor_sr);
679 reg = I915_READ(DSPFW3);
680 reg &= ~DSPFW_CURSOR_SR_MASK;
681 reg |= FW_WM(wm, CURSOR_SR);
682 I915_WRITE(DSPFW3, reg);
684 /* Display HPLL off SR */
685 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
686 pineview_display_hplloff_wm.fifo_size,
687 cpp, latency->display_hpll_disable);
688 reg = I915_READ(DSPFW3);
689 reg &= ~DSPFW_HPLL_SR_MASK;
690 reg |= FW_WM(wm, HPLL_SR);
691 I915_WRITE(DSPFW3, reg);
693 /* cursor HPLL off SR */
694 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
695 pineview_display_hplloff_wm.fifo_size,
696 cpp, latency->cursor_hpll_disable);
697 reg = I915_READ(DSPFW3);
698 reg &= ~DSPFW_HPLL_CURSOR_MASK;
699 reg |= FW_WM(wm, HPLL_CURSOR);
700 I915_WRITE(DSPFW3, reg);
701 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
703 intel_set_memory_cxsr(dev_priv, true);
704 } else {
705 intel_set_memory_cxsr(dev_priv, false);
709 static bool g4x_compute_wm0(struct drm_device *dev,
710 int plane,
711 const struct intel_watermark_params *display,
712 int display_latency_ns,
713 const struct intel_watermark_params *cursor,
714 int cursor_latency_ns,
715 int *plane_wm,
716 int *cursor_wm)
718 struct drm_crtc *crtc;
719 const struct drm_display_mode *adjusted_mode;
720 int htotal, hdisplay, clock, cpp;
721 int line_time_us, line_count;
722 int entries, tlb_miss;
724 crtc = intel_get_crtc_for_plane(dev, plane);
725 if (!intel_crtc_active(crtc)) {
726 *cursor_wm = cursor->guard_size;
727 *plane_wm = display->guard_size;
728 return false;
731 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
732 clock = adjusted_mode->crtc_clock;
733 htotal = adjusted_mode->crtc_htotal;
734 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
735 cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
737 /* Use the small buffer method to calculate plane watermark */
738 entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
739 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
740 if (tlb_miss > 0)
741 entries += tlb_miss;
742 entries = DIV_ROUND_UP(entries, display->cacheline_size);
743 *plane_wm = entries + display->guard_size;
744 if (*plane_wm > (int)display->max_wm)
745 *plane_wm = display->max_wm;
747 /* Use the large buffer method to calculate cursor watermark */
748 line_time_us = max(htotal * 1000 / clock, 1);
749 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
750 entries = line_count * crtc->cursor->state->crtc_w * cpp;
751 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
752 if (tlb_miss > 0)
753 entries += tlb_miss;
754 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
755 *cursor_wm = entries + cursor->guard_size;
756 if (*cursor_wm > (int)cursor->max_wm)
757 *cursor_wm = (int)cursor->max_wm;
759 return true;
763 * Check the wm result.
765 * If any calculated watermark values is larger than the maximum value that
766 * can be programmed into the associated watermark register, that watermark
767 * must be disabled.
769 static bool g4x_check_srwm(struct drm_device *dev,
770 int display_wm, int cursor_wm,
771 const struct intel_watermark_params *display,
772 const struct intel_watermark_params *cursor)
774 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
775 display_wm, cursor_wm);
777 if (display_wm > display->max_wm) {
778 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
779 display_wm, display->max_wm);
780 return false;
783 if (cursor_wm > cursor->max_wm) {
784 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
785 cursor_wm, cursor->max_wm);
786 return false;
789 if (!(display_wm || cursor_wm)) {
790 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
791 return false;
794 return true;
797 static bool g4x_compute_srwm(struct drm_device *dev,
798 int plane,
799 int latency_ns,
800 const struct intel_watermark_params *display,
801 const struct intel_watermark_params *cursor,
802 int *display_wm, int *cursor_wm)
804 struct drm_crtc *crtc;
805 const struct drm_display_mode *adjusted_mode;
806 int hdisplay, htotal, cpp, clock;
807 unsigned long line_time_us;
808 int line_count, line_size;
809 int small, large;
810 int entries;
812 if (!latency_ns) {
813 *display_wm = *cursor_wm = 0;
814 return false;
817 crtc = intel_get_crtc_for_plane(dev, plane);
818 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
819 clock = adjusted_mode->crtc_clock;
820 htotal = adjusted_mode->crtc_htotal;
821 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
822 cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
824 line_time_us = max(htotal * 1000 / clock, 1);
825 line_count = (latency_ns / line_time_us + 1000) / 1000;
826 line_size = hdisplay * cpp;
828 /* Use the minimum of the small and large buffer method for primary */
829 small = ((clock * cpp / 1000) * latency_ns) / 1000;
830 large = line_count * line_size;
832 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
833 *display_wm = entries + display->guard_size;
835 /* calculate the self-refresh watermark for display cursor */
836 entries = line_count * cpp * crtc->cursor->state->crtc_w;
837 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
838 *cursor_wm = entries + cursor->guard_size;
840 return g4x_check_srwm(dev,
841 *display_wm, *cursor_wm,
842 display, cursor);
845 #define FW_WM_VLV(value, plane) \
846 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
848 static void vlv_write_wm_values(struct intel_crtc *crtc,
849 const struct vlv_wm_values *wm)
851 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
852 enum pipe pipe = crtc->pipe;
854 I915_WRITE(VLV_DDL(pipe),
855 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
856 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
857 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
858 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
860 I915_WRITE(DSPFW1,
861 FW_WM(wm->sr.plane, SR) |
862 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
863 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
864 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
865 I915_WRITE(DSPFW2,
866 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
867 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
868 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
869 I915_WRITE(DSPFW3,
870 FW_WM(wm->sr.cursor, CURSOR_SR));
872 if (IS_CHERRYVIEW(dev_priv)) {
873 I915_WRITE(DSPFW7_CHV,
874 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
875 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876 I915_WRITE(DSPFW8_CHV,
877 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
878 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
879 I915_WRITE(DSPFW9_CHV,
880 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
881 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
882 I915_WRITE(DSPHOWM,
883 FW_WM(wm->sr.plane >> 9, SR_HI) |
884 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
885 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
886 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
887 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
888 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
889 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
890 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
891 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
892 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
893 } else {
894 I915_WRITE(DSPFW7,
895 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
896 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
897 I915_WRITE(DSPHOWM,
898 FW_WM(wm->sr.plane >> 9, SR_HI) |
899 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
900 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
901 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
902 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
903 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
904 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
907 /* zero (unused) WM1 watermarks */
908 I915_WRITE(DSPFW4, 0);
909 I915_WRITE(DSPFW5, 0);
910 I915_WRITE(DSPFW6, 0);
911 I915_WRITE(DSPHOWM1, 0);
913 POSTING_READ(DSPFW1);
916 #undef FW_WM_VLV
918 enum vlv_wm_level {
919 VLV_WM_LEVEL_PM2,
920 VLV_WM_LEVEL_PM5,
921 VLV_WM_LEVEL_DDR_DVFS,
924 /* latency must be in 0.1us units. */
925 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
926 unsigned int pipe_htotal,
927 unsigned int horiz_pixels,
928 unsigned int cpp,
929 unsigned int latency)
931 unsigned int ret;
933 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
934 ret = (ret + 1) * horiz_pixels * cpp;
935 ret = DIV_ROUND_UP(ret, 64);
937 return ret;
940 static void vlv_setup_wm_latency(struct drm_device *dev)
942 struct drm_i915_private *dev_priv = to_i915(dev);
944 /* all latencies in usec */
945 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
947 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
949 if (IS_CHERRYVIEW(dev_priv)) {
950 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
951 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
953 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
957 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
958 struct intel_crtc *crtc,
959 const struct intel_plane_state *state,
960 int level)
962 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
963 int clock, htotal, cpp, width, wm;
965 if (dev_priv->wm.pri_latency[level] == 0)
966 return USHRT_MAX;
968 if (!state->visible)
969 return 0;
971 cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
972 clock = crtc->config->base.adjusted_mode.crtc_clock;
973 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
974 width = crtc->config->pipe_src_w;
975 if (WARN_ON(htotal == 0))
976 htotal = 1;
978 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
980 * FIXME the formula gives values that are
981 * too big for the cursor FIFO, and hence we
982 * would never be able to use cursors. For
983 * now just hardcode the watermark.
985 wm = 63;
986 } else {
987 wm = vlv_wm_method2(clock, htotal, width, cpp,
988 dev_priv->wm.pri_latency[level] * 10);
991 return min_t(int, wm, USHRT_MAX);
994 static void vlv_compute_fifo(struct intel_crtc *crtc)
996 struct drm_device *dev = crtc->base.dev;
997 struct vlv_wm_state *wm_state = &crtc->wm_state;
998 struct intel_plane *plane;
999 unsigned int total_rate = 0;
1000 const int fifo_size = 512 - 1;
1001 int fifo_extra, fifo_left = fifo_size;
1003 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1004 struct intel_plane_state *state =
1005 to_intel_plane_state(plane->base.state);
1007 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1008 continue;
1010 if (state->visible) {
1011 wm_state->num_active_planes++;
1012 total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1016 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1017 struct intel_plane_state *state =
1018 to_intel_plane_state(plane->base.state);
1019 unsigned int rate;
1021 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1022 plane->wm.fifo_size = 63;
1023 continue;
1026 if (!state->visible) {
1027 plane->wm.fifo_size = 0;
1028 continue;
1031 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1032 plane->wm.fifo_size = fifo_size * rate / total_rate;
1033 fifo_left -= plane->wm.fifo_size;
1036 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1038 /* spread the remainder evenly */
1039 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1040 int plane_extra;
1042 if (fifo_left == 0)
1043 break;
1045 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1046 continue;
1048 /* give it all to the first plane if none are active */
1049 if (plane->wm.fifo_size == 0 &&
1050 wm_state->num_active_planes)
1051 continue;
1053 plane_extra = min(fifo_extra, fifo_left);
1054 plane->wm.fifo_size += plane_extra;
1055 fifo_left -= plane_extra;
1058 WARN_ON(fifo_left != 0);
1061 static void vlv_invert_wms(struct intel_crtc *crtc)
1063 struct vlv_wm_state *wm_state = &crtc->wm_state;
1064 int level;
1066 for (level = 0; level < wm_state->num_levels; level++) {
1067 struct drm_device *dev = crtc->base.dev;
1068 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1069 struct intel_plane *plane;
1071 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1072 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1074 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1075 switch (plane->base.type) {
1076 int sprite;
1077 case DRM_PLANE_TYPE_CURSOR:
1078 wm_state->wm[level].cursor = plane->wm.fifo_size -
1079 wm_state->wm[level].cursor;
1080 break;
1081 case DRM_PLANE_TYPE_PRIMARY:
1082 wm_state->wm[level].primary = plane->wm.fifo_size -
1083 wm_state->wm[level].primary;
1084 break;
1085 case DRM_PLANE_TYPE_OVERLAY:
1086 sprite = plane->plane;
1087 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1088 wm_state->wm[level].sprite[sprite];
1089 break;
1095 static void vlv_compute_wm(struct intel_crtc *crtc)
1097 struct drm_device *dev = crtc->base.dev;
1098 struct vlv_wm_state *wm_state = &crtc->wm_state;
1099 struct intel_plane *plane;
1100 int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1101 int level;
1103 memset(wm_state, 0, sizeof(*wm_state));
1105 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1106 wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1108 wm_state->num_active_planes = 0;
1110 vlv_compute_fifo(crtc);
1112 if (wm_state->num_active_planes != 1)
1113 wm_state->cxsr = false;
1115 if (wm_state->cxsr) {
1116 for (level = 0; level < wm_state->num_levels; level++) {
1117 wm_state->sr[level].plane = sr_fifo_size;
1118 wm_state->sr[level].cursor = 63;
1122 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1123 struct intel_plane_state *state =
1124 to_intel_plane_state(plane->base.state);
1126 if (!state->visible)
1127 continue;
1129 /* normal watermarks */
1130 for (level = 0; level < wm_state->num_levels; level++) {
1131 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1132 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1134 /* hack */
1135 if (WARN_ON(level == 0 && wm > max_wm))
1136 wm = max_wm;
1138 if (wm > plane->wm.fifo_size)
1139 break;
1141 switch (plane->base.type) {
1142 int sprite;
1143 case DRM_PLANE_TYPE_CURSOR:
1144 wm_state->wm[level].cursor = wm;
1145 break;
1146 case DRM_PLANE_TYPE_PRIMARY:
1147 wm_state->wm[level].primary = wm;
1148 break;
1149 case DRM_PLANE_TYPE_OVERLAY:
1150 sprite = plane->plane;
1151 wm_state->wm[level].sprite[sprite] = wm;
1152 break;
1156 wm_state->num_levels = level;
1158 if (!wm_state->cxsr)
1159 continue;
1161 /* maxfifo watermarks */
1162 switch (plane->base.type) {
1163 int sprite, level;
1164 case DRM_PLANE_TYPE_CURSOR:
1165 for (level = 0; level < wm_state->num_levels; level++)
1166 wm_state->sr[level].cursor =
1167 wm_state->wm[level].cursor;
1168 break;
1169 case DRM_PLANE_TYPE_PRIMARY:
1170 for (level = 0; level < wm_state->num_levels; level++)
1171 wm_state->sr[level].plane =
1172 min(wm_state->sr[level].plane,
1173 wm_state->wm[level].primary);
1174 break;
1175 case DRM_PLANE_TYPE_OVERLAY:
1176 sprite = plane->plane;
1177 for (level = 0; level < wm_state->num_levels; level++)
1178 wm_state->sr[level].plane =
1179 min(wm_state->sr[level].plane,
1180 wm_state->wm[level].sprite[sprite]);
1181 break;
1185 /* clear any (partially) filled invalid levels */
1186 for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1187 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1188 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1191 vlv_invert_wms(crtc);
1194 #define VLV_FIFO(plane, value) \
1195 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1197 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1199 struct drm_device *dev = crtc->base.dev;
1200 struct drm_i915_private *dev_priv = to_i915(dev);
1201 struct intel_plane *plane;
1202 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1204 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1205 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1206 WARN_ON(plane->wm.fifo_size != 63);
1207 continue;
1210 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1211 sprite0_start = plane->wm.fifo_size;
1212 else if (plane->plane == 0)
1213 sprite1_start = sprite0_start + plane->wm.fifo_size;
1214 else
1215 fifo_size = sprite1_start + plane->wm.fifo_size;
1218 WARN_ON(fifo_size != 512 - 1);
1220 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1221 pipe_name(crtc->pipe), sprite0_start,
1222 sprite1_start, fifo_size);
1224 switch (crtc->pipe) {
1225 uint32_t dsparb, dsparb2, dsparb3;
1226 case PIPE_A:
1227 dsparb = I915_READ(DSPARB);
1228 dsparb2 = I915_READ(DSPARB2);
1230 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1231 VLV_FIFO(SPRITEB, 0xff));
1232 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1233 VLV_FIFO(SPRITEB, sprite1_start));
1235 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1236 VLV_FIFO(SPRITEB_HI, 0x1));
1237 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1238 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1240 I915_WRITE(DSPARB, dsparb);
1241 I915_WRITE(DSPARB2, dsparb2);
1242 break;
1243 case PIPE_B:
1244 dsparb = I915_READ(DSPARB);
1245 dsparb2 = I915_READ(DSPARB2);
1247 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1248 VLV_FIFO(SPRITED, 0xff));
1249 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1250 VLV_FIFO(SPRITED, sprite1_start));
1252 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1253 VLV_FIFO(SPRITED_HI, 0xff));
1254 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1255 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1257 I915_WRITE(DSPARB, dsparb);
1258 I915_WRITE(DSPARB2, dsparb2);
1259 break;
1260 case PIPE_C:
1261 dsparb3 = I915_READ(DSPARB3);
1262 dsparb2 = I915_READ(DSPARB2);
1264 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1265 VLV_FIFO(SPRITEF, 0xff));
1266 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1267 VLV_FIFO(SPRITEF, sprite1_start));
1269 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1270 VLV_FIFO(SPRITEF_HI, 0xff));
1271 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1272 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1274 I915_WRITE(DSPARB3, dsparb3);
1275 I915_WRITE(DSPARB2, dsparb2);
1276 break;
1277 default:
1278 break;
1282 #undef VLV_FIFO
1284 static void vlv_merge_wm(struct drm_device *dev,
1285 struct vlv_wm_values *wm)
1287 struct intel_crtc *crtc;
1288 int num_active_crtcs = 0;
1290 wm->level = to_i915(dev)->wm.max_level;
1291 wm->cxsr = true;
1293 for_each_intel_crtc(dev, crtc) {
1294 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1296 if (!crtc->active)
1297 continue;
1299 if (!wm_state->cxsr)
1300 wm->cxsr = false;
1302 num_active_crtcs++;
1303 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1306 if (num_active_crtcs != 1)
1307 wm->cxsr = false;
1309 if (num_active_crtcs > 1)
1310 wm->level = VLV_WM_LEVEL_PM2;
1312 for_each_intel_crtc(dev, crtc) {
1313 struct vlv_wm_state *wm_state = &crtc->wm_state;
1314 enum pipe pipe = crtc->pipe;
1316 if (!crtc->active)
1317 continue;
1319 wm->pipe[pipe] = wm_state->wm[wm->level];
1320 if (wm->cxsr)
1321 wm->sr = wm_state->sr[wm->level];
1323 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1324 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1325 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1326 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1330 static void vlv_update_wm(struct drm_crtc *crtc)
1332 struct drm_device *dev = crtc->dev;
1333 struct drm_i915_private *dev_priv = to_i915(dev);
1334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1335 enum pipe pipe = intel_crtc->pipe;
1336 struct vlv_wm_values wm = {};
1338 vlv_compute_wm(intel_crtc);
1339 vlv_merge_wm(dev, &wm);
1341 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1342 /* FIXME should be part of crtc atomic commit */
1343 vlv_pipe_set_fifo_size(intel_crtc);
1344 return;
1347 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1348 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1349 chv_set_memory_dvfs(dev_priv, false);
1351 if (wm.level < VLV_WM_LEVEL_PM5 &&
1352 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1353 chv_set_memory_pm5(dev_priv, false);
1355 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1356 intel_set_memory_cxsr(dev_priv, false);
1358 /* FIXME should be part of crtc atomic commit */
1359 vlv_pipe_set_fifo_size(intel_crtc);
1361 vlv_write_wm_values(intel_crtc, &wm);
1363 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1364 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1365 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1366 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1367 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1369 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1370 intel_set_memory_cxsr(dev_priv, true);
1372 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1373 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1374 chv_set_memory_pm5(dev_priv, true);
1376 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1377 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1378 chv_set_memory_dvfs(dev_priv, true);
1380 dev_priv->wm.vlv = wm;
1383 #define single_plane_enabled(mask) is_power_of_2(mask)
1385 static void g4x_update_wm(struct drm_crtc *crtc)
1387 struct drm_device *dev = crtc->dev;
1388 static const int sr_latency_ns = 12000;
1389 struct drm_i915_private *dev_priv = to_i915(dev);
1390 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1391 int plane_sr, cursor_sr;
1392 unsigned int enabled = 0;
1393 bool cxsr_enabled;
1395 if (g4x_compute_wm0(dev, PIPE_A,
1396 &g4x_wm_info, pessimal_latency_ns,
1397 &g4x_cursor_wm_info, pessimal_latency_ns,
1398 &planea_wm, &cursora_wm))
1399 enabled |= 1 << PIPE_A;
1401 if (g4x_compute_wm0(dev, PIPE_B,
1402 &g4x_wm_info, pessimal_latency_ns,
1403 &g4x_cursor_wm_info, pessimal_latency_ns,
1404 &planeb_wm, &cursorb_wm))
1405 enabled |= 1 << PIPE_B;
1407 if (single_plane_enabled(enabled) &&
1408 g4x_compute_srwm(dev, ffs(enabled) - 1,
1409 sr_latency_ns,
1410 &g4x_wm_info,
1411 &g4x_cursor_wm_info,
1412 &plane_sr, &cursor_sr)) {
1413 cxsr_enabled = true;
1414 } else {
1415 cxsr_enabled = false;
1416 intel_set_memory_cxsr(dev_priv, false);
1417 plane_sr = cursor_sr = 0;
1420 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1421 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1422 planea_wm, cursora_wm,
1423 planeb_wm, cursorb_wm,
1424 plane_sr, cursor_sr);
1426 I915_WRITE(DSPFW1,
1427 FW_WM(plane_sr, SR) |
1428 FW_WM(cursorb_wm, CURSORB) |
1429 FW_WM(planeb_wm, PLANEB) |
1430 FW_WM(planea_wm, PLANEA));
1431 I915_WRITE(DSPFW2,
1432 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1433 FW_WM(cursora_wm, CURSORA));
1434 /* HPLL off in SR has some issues on G4x... disable it */
1435 I915_WRITE(DSPFW3,
1436 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1437 FW_WM(cursor_sr, CURSOR_SR));
1439 if (cxsr_enabled)
1440 intel_set_memory_cxsr(dev_priv, true);
1443 static void i965_update_wm(struct drm_crtc *unused_crtc)
1445 struct drm_device *dev = unused_crtc->dev;
1446 struct drm_i915_private *dev_priv = to_i915(dev);
1447 struct drm_crtc *crtc;
1448 int srwm = 1;
1449 int cursor_sr = 16;
1450 bool cxsr_enabled;
1452 /* Calc sr entries for one plane configs */
1453 crtc = single_enabled_crtc(dev);
1454 if (crtc) {
1455 /* self-refresh has much higher latency */
1456 static const int sr_latency_ns = 12000;
1457 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1458 int clock = adjusted_mode->crtc_clock;
1459 int htotal = adjusted_mode->crtc_htotal;
1460 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1461 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1462 unsigned long line_time_us;
1463 int entries;
1465 line_time_us = max(htotal * 1000 / clock, 1);
1467 /* Use ns/us then divide to preserve precision */
1468 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1469 cpp * hdisplay;
1470 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1471 srwm = I965_FIFO_SIZE - entries;
1472 if (srwm < 0)
1473 srwm = 1;
1474 srwm &= 0x1ff;
1475 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1476 entries, srwm);
1478 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1479 cpp * crtc->cursor->state->crtc_w;
1480 entries = DIV_ROUND_UP(entries,
1481 i965_cursor_wm_info.cacheline_size);
1482 cursor_sr = i965_cursor_wm_info.fifo_size -
1483 (entries + i965_cursor_wm_info.guard_size);
1485 if (cursor_sr > i965_cursor_wm_info.max_wm)
1486 cursor_sr = i965_cursor_wm_info.max_wm;
1488 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1489 "cursor %d\n", srwm, cursor_sr);
1491 cxsr_enabled = true;
1492 } else {
1493 cxsr_enabled = false;
1494 /* Turn off self refresh if both pipes are enabled */
1495 intel_set_memory_cxsr(dev_priv, false);
1498 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1499 srwm);
1501 /* 965 has limitations... */
1502 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1503 FW_WM(8, CURSORB) |
1504 FW_WM(8, PLANEB) |
1505 FW_WM(8, PLANEA));
1506 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1507 FW_WM(8, PLANEC_OLD));
1508 /* update cursor SR watermark */
1509 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1511 if (cxsr_enabled)
1512 intel_set_memory_cxsr(dev_priv, true);
1515 #undef FW_WM
1517 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1519 struct drm_device *dev = unused_crtc->dev;
1520 struct drm_i915_private *dev_priv = to_i915(dev);
1521 const struct intel_watermark_params *wm_info;
1522 uint32_t fwater_lo;
1523 uint32_t fwater_hi;
1524 int cwm, srwm = 1;
1525 int fifo_size;
1526 int planea_wm, planeb_wm;
1527 struct drm_crtc *crtc, *enabled = NULL;
1529 if (IS_I945GM(dev))
1530 wm_info = &i945_wm_info;
1531 else if (!IS_GEN2(dev))
1532 wm_info = &i915_wm_info;
1533 else
1534 wm_info = &i830_a_wm_info;
1536 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1537 crtc = intel_get_crtc_for_plane(dev, 0);
1538 if (intel_crtc_active(crtc)) {
1539 const struct drm_display_mode *adjusted_mode;
1540 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1541 if (IS_GEN2(dev))
1542 cpp = 4;
1544 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1545 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1546 wm_info, fifo_size, cpp,
1547 pessimal_latency_ns);
1548 enabled = crtc;
1549 } else {
1550 planea_wm = fifo_size - wm_info->guard_size;
1551 if (planea_wm > (long)wm_info->max_wm)
1552 planea_wm = wm_info->max_wm;
1555 if (IS_GEN2(dev))
1556 wm_info = &i830_bc_wm_info;
1558 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1559 crtc = intel_get_crtc_for_plane(dev, 1);
1560 if (intel_crtc_active(crtc)) {
1561 const struct drm_display_mode *adjusted_mode;
1562 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1563 if (IS_GEN2(dev))
1564 cpp = 4;
1566 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1567 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1568 wm_info, fifo_size, cpp,
1569 pessimal_latency_ns);
1570 if (enabled == NULL)
1571 enabled = crtc;
1572 else
1573 enabled = NULL;
1574 } else {
1575 planeb_wm = fifo_size - wm_info->guard_size;
1576 if (planeb_wm > (long)wm_info->max_wm)
1577 planeb_wm = wm_info->max_wm;
1580 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1582 if (IS_I915GM(dev) && enabled) {
1583 struct drm_i915_gem_object *obj;
1585 obj = intel_fb_obj(enabled->primary->state->fb);
1587 /* self-refresh seems busted with untiled */
1588 if (obj->tiling_mode == I915_TILING_NONE)
1589 enabled = NULL;
1593 * Overlay gets an aggressive default since video jitter is bad.
1595 cwm = 2;
1597 /* Play safe and disable self-refresh before adjusting watermarks. */
1598 intel_set_memory_cxsr(dev_priv, false);
1600 /* Calc sr entries for one plane configs */
1601 if (HAS_FW_BLC(dev) && enabled) {
1602 /* self-refresh has much higher latency */
1603 static const int sr_latency_ns = 6000;
1604 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1605 int clock = adjusted_mode->crtc_clock;
1606 int htotal = adjusted_mode->crtc_htotal;
1607 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1608 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1609 unsigned long line_time_us;
1610 int entries;
1612 if (IS_I915GM(dev) || IS_I945GM(dev))
1613 cpp = 4;
1615 line_time_us = max(htotal * 1000 / clock, 1);
1617 /* Use ns/us then divide to preserve precision */
1618 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1619 cpp * hdisplay;
1620 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1621 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1622 srwm = wm_info->fifo_size - entries;
1623 if (srwm < 0)
1624 srwm = 1;
1626 if (IS_I945G(dev) || IS_I945GM(dev))
1627 I915_WRITE(FW_BLC_SELF,
1628 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1629 else
1630 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1633 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1634 planea_wm, planeb_wm, cwm, srwm);
1636 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1637 fwater_hi = (cwm & 0x1f);
1639 /* Set request length to 8 cachelines per fetch */
1640 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1641 fwater_hi = fwater_hi | (1 << 8);
1643 I915_WRITE(FW_BLC, fwater_lo);
1644 I915_WRITE(FW_BLC2, fwater_hi);
1646 if (enabled)
1647 intel_set_memory_cxsr(dev_priv, true);
1650 static void i845_update_wm(struct drm_crtc *unused_crtc)
1652 struct drm_device *dev = unused_crtc->dev;
1653 struct drm_i915_private *dev_priv = to_i915(dev);
1654 struct drm_crtc *crtc;
1655 const struct drm_display_mode *adjusted_mode;
1656 uint32_t fwater_lo;
1657 int planea_wm;
1659 crtc = single_enabled_crtc(dev);
1660 if (crtc == NULL)
1661 return;
1663 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1664 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1665 &i845_wm_info,
1666 dev_priv->display.get_fifo_size(dev, 0),
1667 4, pessimal_latency_ns);
1668 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1669 fwater_lo |= (3<<8) | planea_wm;
1671 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1673 I915_WRITE(FW_BLC, fwater_lo);
1676 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1678 uint32_t pixel_rate;
1680 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1682 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1683 * adjust the pixel_rate here. */
1685 if (pipe_config->pch_pfit.enabled) {
1686 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1687 uint32_t pfit_size = pipe_config->pch_pfit.size;
1689 pipe_w = pipe_config->pipe_src_w;
1690 pipe_h = pipe_config->pipe_src_h;
1692 pfit_w = (pfit_size >> 16) & 0xFFFF;
1693 pfit_h = pfit_size & 0xFFFF;
1694 if (pipe_w < pfit_w)
1695 pipe_w = pfit_w;
1696 if (pipe_h < pfit_h)
1697 pipe_h = pfit_h;
1699 if (WARN_ON(!pfit_w || !pfit_h))
1700 return pixel_rate;
1702 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1703 pfit_w * pfit_h);
1706 return pixel_rate;
1709 /* latency must be in 0.1us units. */
1710 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1712 uint64_t ret;
1714 if (WARN(latency == 0, "Latency value missing\n"))
1715 return UINT_MAX;
1717 ret = (uint64_t) pixel_rate * cpp * latency;
1718 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1720 return ret;
1723 /* latency must be in 0.1us units. */
1724 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1725 uint32_t horiz_pixels, uint8_t cpp,
1726 uint32_t latency)
1728 uint32_t ret;
1730 if (WARN(latency == 0, "Latency value missing\n"))
1731 return UINT_MAX;
1732 if (WARN_ON(!pipe_htotal))
1733 return UINT_MAX;
1735 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1736 ret = (ret + 1) * horiz_pixels * cpp;
1737 ret = DIV_ROUND_UP(ret, 64) + 2;
1738 return ret;
1741 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1742 uint8_t cpp)
1745 * Neither of these should be possible since this function shouldn't be
1746 * called if the CRTC is off or the plane is invisible. But let's be
1747 * extra paranoid to avoid a potential divide-by-zero if we screw up
1748 * elsewhere in the driver.
1750 if (WARN_ON(!cpp))
1751 return 0;
1752 if (WARN_ON(!horiz_pixels))
1753 return 0;
1755 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1758 struct ilk_wm_maximums {
1759 uint16_t pri;
1760 uint16_t spr;
1761 uint16_t cur;
1762 uint16_t fbc;
1766 * For both WM_PIPE and WM_LP.
1767 * mem_value must be in 0.1us units.
1769 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1770 const struct intel_plane_state *pstate,
1771 uint32_t mem_value,
1772 bool is_lp)
1774 int cpp = pstate->base.fb ?
1775 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1776 uint32_t method1, method2;
1778 if (!cstate->base.active || !pstate->visible)
1779 return 0;
1781 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1783 if (!is_lp)
1784 return method1;
1786 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1787 cstate->base.adjusted_mode.crtc_htotal,
1788 drm_rect_width(&pstate->dst),
1789 cpp, mem_value);
1791 return min(method1, method2);
1795 * For both WM_PIPE and WM_LP.
1796 * mem_value must be in 0.1us units.
1798 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1799 const struct intel_plane_state *pstate,
1800 uint32_t mem_value)
1802 int cpp = pstate->base.fb ?
1803 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1804 uint32_t method1, method2;
1806 if (!cstate->base.active || !pstate->visible)
1807 return 0;
1809 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1810 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1811 cstate->base.adjusted_mode.crtc_htotal,
1812 drm_rect_width(&pstate->dst),
1813 cpp, mem_value);
1814 return min(method1, method2);
1818 * For both WM_PIPE and WM_LP.
1819 * mem_value must be in 0.1us units.
1821 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1822 const struct intel_plane_state *pstate,
1823 uint32_t mem_value)
1826 * We treat the cursor plane as always-on for the purposes of watermark
1827 * calculation. Until we have two-stage watermark programming merged,
1828 * this is necessary to avoid flickering.
1830 int cpp = 4;
1831 int width = pstate->visible ? pstate->base.crtc_w : 64;
1833 if (!cstate->base.active)
1834 return 0;
1836 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1837 cstate->base.adjusted_mode.crtc_htotal,
1838 width, cpp, mem_value);
1841 /* Only for WM_LP. */
1842 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1843 const struct intel_plane_state *pstate,
1844 uint32_t pri_val)
1846 int cpp = pstate->base.fb ?
1847 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1849 if (!cstate->base.active || !pstate->visible)
1850 return 0;
1852 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1855 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1857 if (INTEL_INFO(dev)->gen >= 8)
1858 return 3072;
1859 else if (INTEL_INFO(dev)->gen >= 7)
1860 return 768;
1861 else
1862 return 512;
1865 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1866 int level, bool is_sprite)
1868 if (INTEL_INFO(dev)->gen >= 8)
1869 /* BDW primary/sprite plane watermarks */
1870 return level == 0 ? 255 : 2047;
1871 else if (INTEL_INFO(dev)->gen >= 7)
1872 /* IVB/HSW primary/sprite plane watermarks */
1873 return level == 0 ? 127 : 1023;
1874 else if (!is_sprite)
1875 /* ILK/SNB primary plane watermarks */
1876 return level == 0 ? 127 : 511;
1877 else
1878 /* ILK/SNB sprite plane watermarks */
1879 return level == 0 ? 63 : 255;
1882 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1883 int level)
1885 if (INTEL_INFO(dev)->gen >= 7)
1886 return level == 0 ? 63 : 255;
1887 else
1888 return level == 0 ? 31 : 63;
1891 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1893 if (INTEL_INFO(dev)->gen >= 8)
1894 return 31;
1895 else
1896 return 15;
1899 /* Calculate the maximum primary/sprite plane watermark */
1900 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1901 int level,
1902 const struct intel_wm_config *config,
1903 enum intel_ddb_partitioning ddb_partitioning,
1904 bool is_sprite)
1906 unsigned int fifo_size = ilk_display_fifo_size(dev);
1908 /* if sprites aren't enabled, sprites get nothing */
1909 if (is_sprite && !config->sprites_enabled)
1910 return 0;
1912 /* HSW allows LP1+ watermarks even with multiple pipes */
1913 if (level == 0 || config->num_pipes_active > 1) {
1914 fifo_size /= INTEL_INFO(dev)->num_pipes;
1917 * For some reason the non self refresh
1918 * FIFO size is only half of the self
1919 * refresh FIFO size on ILK/SNB.
1921 if (INTEL_INFO(dev)->gen <= 6)
1922 fifo_size /= 2;
1925 if (config->sprites_enabled) {
1926 /* level 0 is always calculated with 1:1 split */
1927 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1928 if (is_sprite)
1929 fifo_size *= 5;
1930 fifo_size /= 6;
1931 } else {
1932 fifo_size /= 2;
1936 /* clamp to max that the registers can hold */
1937 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1940 /* Calculate the maximum cursor plane watermark */
1941 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1942 int level,
1943 const struct intel_wm_config *config)
1945 /* HSW LP1+ watermarks w/ multiple pipes */
1946 if (level > 0 && config->num_pipes_active > 1)
1947 return 64;
1949 /* otherwise just report max that registers can hold */
1950 return ilk_cursor_wm_reg_max(dev, level);
1953 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1954 int level,
1955 const struct intel_wm_config *config,
1956 enum intel_ddb_partitioning ddb_partitioning,
1957 struct ilk_wm_maximums *max)
1959 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1960 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1961 max->cur = ilk_cursor_wm_max(dev, level, config);
1962 max->fbc = ilk_fbc_wm_reg_max(dev);
1965 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1966 int level,
1967 struct ilk_wm_maximums *max)
1969 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1970 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1971 max->cur = ilk_cursor_wm_reg_max(dev, level);
1972 max->fbc = ilk_fbc_wm_reg_max(dev);
1975 static bool ilk_validate_wm_level(int level,
1976 const struct ilk_wm_maximums *max,
1977 struct intel_wm_level *result)
1979 bool ret;
1981 /* already determined to be invalid? */
1982 if (!result->enable)
1983 return false;
1985 result->enable = result->pri_val <= max->pri &&
1986 result->spr_val <= max->spr &&
1987 result->cur_val <= max->cur;
1989 ret = result->enable;
1992 * HACK until we can pre-compute everything,
1993 * and thus fail gracefully if LP0 watermarks
1994 * are exceeded...
1996 if (level == 0 && !result->enable) {
1997 if (result->pri_val > max->pri)
1998 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1999 level, result->pri_val, max->pri);
2000 if (result->spr_val > max->spr)
2001 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2002 level, result->spr_val, max->spr);
2003 if (result->cur_val > max->cur)
2004 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2005 level, result->cur_val, max->cur);
2007 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2008 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2009 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2010 result->enable = true;
2013 return ret;
2016 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2017 const struct intel_crtc *intel_crtc,
2018 int level,
2019 struct intel_crtc_state *cstate,
2020 struct intel_plane_state *pristate,
2021 struct intel_plane_state *sprstate,
2022 struct intel_plane_state *curstate,
2023 struct intel_wm_level *result)
2025 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2026 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2027 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2029 /* WM1+ latency values stored in 0.5us units */
2030 if (level > 0) {
2031 pri_latency *= 5;
2032 spr_latency *= 5;
2033 cur_latency *= 5;
2036 if (pristate) {
2037 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2038 pri_latency, level);
2039 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2042 if (sprstate)
2043 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2045 if (curstate)
2046 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2048 result->enable = true;
2051 static uint32_t
2052 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2054 const struct intel_atomic_state *intel_state =
2055 to_intel_atomic_state(cstate->base.state);
2056 const struct drm_display_mode *adjusted_mode =
2057 &cstate->base.adjusted_mode;
2058 u32 linetime, ips_linetime;
2060 if (!cstate->base.active)
2061 return 0;
2062 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2063 return 0;
2064 if (WARN_ON(intel_state->cdclk == 0))
2065 return 0;
2067 /* The WM are computed with base on how long it takes to fill a single
2068 * row at the given clock rate, multiplied by 8.
2069 * */
2070 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2071 adjusted_mode->crtc_clock);
2072 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2073 intel_state->cdclk);
2075 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2076 PIPE_WM_LINETIME_TIME(linetime);
2079 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2081 struct drm_i915_private *dev_priv = to_i915(dev);
2083 if (IS_GEN9(dev)) {
2084 uint32_t val;
2085 int ret, i;
2086 int level, max_level = ilk_wm_max_level(dev);
2088 /* read the first set of memory latencies[0:3] */
2089 val = 0; /* data0 to be programmed to 0 for first set */
2090 mutex_lock(&dev_priv->rps.hw_lock);
2091 ret = sandybridge_pcode_read(dev_priv,
2092 GEN9_PCODE_READ_MEM_LATENCY,
2093 &val);
2094 mutex_unlock(&dev_priv->rps.hw_lock);
2096 if (ret) {
2097 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2098 return;
2101 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2102 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2103 GEN9_MEM_LATENCY_LEVEL_MASK;
2104 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2105 GEN9_MEM_LATENCY_LEVEL_MASK;
2106 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2107 GEN9_MEM_LATENCY_LEVEL_MASK;
2109 /* read the second set of memory latencies[4:7] */
2110 val = 1; /* data0 to be programmed to 1 for second set */
2111 mutex_lock(&dev_priv->rps.hw_lock);
2112 ret = sandybridge_pcode_read(dev_priv,
2113 GEN9_PCODE_READ_MEM_LATENCY,
2114 &val);
2115 mutex_unlock(&dev_priv->rps.hw_lock);
2116 if (ret) {
2117 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2118 return;
2121 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2122 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2123 GEN9_MEM_LATENCY_LEVEL_MASK;
2124 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2125 GEN9_MEM_LATENCY_LEVEL_MASK;
2126 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2127 GEN9_MEM_LATENCY_LEVEL_MASK;
2130 * WaWmMemoryReadLatency:skl
2132 * punit doesn't take into account the read latency so we need
2133 * to add 2us to the various latency levels we retrieve from
2134 * the punit.
2135 * - W0 is a bit special in that it's the only level that
2136 * can't be disabled if we want to have display working, so
2137 * we always add 2us there.
2138 * - For levels >=1, punit returns 0us latency when they are
2139 * disabled, so we respect that and don't add 2us then
2141 * Additionally, if a level n (n > 1) has a 0us latency, all
2142 * levels m (m >= n) need to be disabled. We make sure to
2143 * sanitize the values out of the punit to satisfy this
2144 * requirement.
2146 wm[0] += 2;
2147 for (level = 1; level <= max_level; level++)
2148 if (wm[level] != 0)
2149 wm[level] += 2;
2150 else {
2151 for (i = level + 1; i <= max_level; i++)
2152 wm[i] = 0;
2154 break;
2156 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2157 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2159 wm[0] = (sskpd >> 56) & 0xFF;
2160 if (wm[0] == 0)
2161 wm[0] = sskpd & 0xF;
2162 wm[1] = (sskpd >> 4) & 0xFF;
2163 wm[2] = (sskpd >> 12) & 0xFF;
2164 wm[3] = (sskpd >> 20) & 0x1FF;
2165 wm[4] = (sskpd >> 32) & 0x1FF;
2166 } else if (INTEL_INFO(dev)->gen >= 6) {
2167 uint32_t sskpd = I915_READ(MCH_SSKPD);
2169 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2170 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2171 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2172 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2173 } else if (INTEL_INFO(dev)->gen >= 5) {
2174 uint32_t mltr = I915_READ(MLTR_ILK);
2176 /* ILK primary LP0 latency is 700 ns */
2177 wm[0] = 7;
2178 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2179 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2183 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2185 /* ILK sprite LP0 latency is 1300 ns */
2186 if (IS_GEN5(dev))
2187 wm[0] = 13;
2190 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2192 /* ILK cursor LP0 latency is 1300 ns */
2193 if (IS_GEN5(dev))
2194 wm[0] = 13;
2196 /* WaDoubleCursorLP3Latency:ivb */
2197 if (IS_IVYBRIDGE(dev))
2198 wm[3] *= 2;
2201 int ilk_wm_max_level(const struct drm_device *dev)
2203 /* how many WM levels are we expecting */
2204 if (INTEL_INFO(dev)->gen >= 9)
2205 return 7;
2206 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2207 return 4;
2208 else if (INTEL_INFO(dev)->gen >= 6)
2209 return 3;
2210 else
2211 return 2;
2214 static void intel_print_wm_latency(struct drm_device *dev,
2215 const char *name,
2216 const uint16_t wm[8])
2218 int level, max_level = ilk_wm_max_level(dev);
2220 for (level = 0; level <= max_level; level++) {
2221 unsigned int latency = wm[level];
2223 if (latency == 0) {
2224 DRM_ERROR("%s WM%d latency not provided\n",
2225 name, level);
2226 continue;
2230 * - latencies are in us on gen9.
2231 * - before then, WM1+ latency values are in 0.5us units
2233 if (IS_GEN9(dev))
2234 latency *= 10;
2235 else if (level > 0)
2236 latency *= 5;
2238 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2239 name, level, wm[level],
2240 latency / 10, latency % 10);
2244 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2245 uint16_t wm[5], uint16_t min)
2247 int level, max_level = ilk_wm_max_level(&dev_priv->drm);
2249 if (wm[0] >= min)
2250 return false;
2252 wm[0] = max(wm[0], min);
2253 for (level = 1; level <= max_level; level++)
2254 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2256 return true;
2259 static void snb_wm_latency_quirk(struct drm_device *dev)
2261 struct drm_i915_private *dev_priv = to_i915(dev);
2262 bool changed;
2265 * The BIOS provided WM memory latency values are often
2266 * inadequate for high resolution displays. Adjust them.
2268 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2269 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2270 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2272 if (!changed)
2273 return;
2275 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2276 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2277 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2278 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2281 static void ilk_setup_wm_latency(struct drm_device *dev)
2283 struct drm_i915_private *dev_priv = to_i915(dev);
2285 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2287 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2288 sizeof(dev_priv->wm.pri_latency));
2289 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2290 sizeof(dev_priv->wm.pri_latency));
2292 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2293 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2295 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2296 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2297 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2299 if (IS_GEN6(dev))
2300 snb_wm_latency_quirk(dev);
2303 static void skl_setup_wm_latency(struct drm_device *dev)
2305 struct drm_i915_private *dev_priv = to_i915(dev);
2307 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2308 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2311 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2312 struct intel_pipe_wm *pipe_wm)
2314 /* LP0 watermark maximums depend on this pipe alone */
2315 const struct intel_wm_config config = {
2316 .num_pipes_active = 1,
2317 .sprites_enabled = pipe_wm->sprites_enabled,
2318 .sprites_scaled = pipe_wm->sprites_scaled,
2320 struct ilk_wm_maximums max;
2322 /* LP0 watermarks always use 1/2 DDB partitioning */
2323 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2325 /* At least LP0 must be valid */
2326 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2327 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2328 return false;
2331 return true;
2334 /* Compute new watermarks for the pipe */
2335 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2337 struct drm_atomic_state *state = cstate->base.state;
2338 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2339 struct intel_pipe_wm *pipe_wm;
2340 struct drm_device *dev = state->dev;
2341 const struct drm_i915_private *dev_priv = to_i915(dev);
2342 struct intel_plane *intel_plane;
2343 struct intel_plane_state *pristate = NULL;
2344 struct intel_plane_state *sprstate = NULL;
2345 struct intel_plane_state *curstate = NULL;
2346 int level, max_level = ilk_wm_max_level(dev), usable_level;
2347 struct ilk_wm_maximums max;
2349 pipe_wm = &cstate->wm.ilk.optimal;
2351 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2352 struct intel_plane_state *ps;
2354 ps = intel_atomic_get_existing_plane_state(state,
2355 intel_plane);
2356 if (!ps)
2357 continue;
2359 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2360 pristate = ps;
2361 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2362 sprstate = ps;
2363 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2364 curstate = ps;
2367 pipe_wm->pipe_enabled = cstate->base.active;
2368 if (sprstate) {
2369 pipe_wm->sprites_enabled = sprstate->visible;
2370 pipe_wm->sprites_scaled = sprstate->visible &&
2371 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2372 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2375 usable_level = max_level;
2377 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2378 if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2379 usable_level = 1;
2381 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2382 if (pipe_wm->sprites_scaled)
2383 usable_level = 0;
2385 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2386 pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2388 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2389 pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2391 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2392 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2394 if (!ilk_validate_pipe_wm(dev, pipe_wm))
2395 return -EINVAL;
2397 ilk_compute_wm_reg_maximums(dev, 1, &max);
2399 for (level = 1; level <= max_level; level++) {
2400 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2402 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2403 pristate, sprstate, curstate, wm);
2406 * Disable any watermark level that exceeds the
2407 * register maximums since such watermarks are
2408 * always invalid.
2410 if (level > usable_level)
2411 continue;
2413 if (ilk_validate_wm_level(level, &max, wm))
2414 pipe_wm->wm[level] = *wm;
2415 else
2416 usable_level = level;
2419 return 0;
2423 * Build a set of 'intermediate' watermark values that satisfy both the old
2424 * state and the new state. These can be programmed to the hardware
2425 * immediately.
2427 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2428 struct intel_crtc *intel_crtc,
2429 struct intel_crtc_state *newstate)
2431 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2432 struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2433 int level, max_level = ilk_wm_max_level(dev);
2436 * Start with the final, target watermarks, then combine with the
2437 * currently active watermarks to get values that are safe both before
2438 * and after the vblank.
2440 *a = newstate->wm.ilk.optimal;
2441 a->pipe_enabled |= b->pipe_enabled;
2442 a->sprites_enabled |= b->sprites_enabled;
2443 a->sprites_scaled |= b->sprites_scaled;
2445 for (level = 0; level <= max_level; level++) {
2446 struct intel_wm_level *a_wm = &a->wm[level];
2447 const struct intel_wm_level *b_wm = &b->wm[level];
2449 a_wm->enable &= b_wm->enable;
2450 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2451 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2452 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2453 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2457 * We need to make sure that these merged watermark values are
2458 * actually a valid configuration themselves. If they're not,
2459 * there's no safe way to transition from the old state to
2460 * the new state, so we need to fail the atomic transaction.
2462 if (!ilk_validate_pipe_wm(dev, a))
2463 return -EINVAL;
2466 * If our intermediate WM are identical to the final WM, then we can
2467 * omit the post-vblank programming; only update if it's different.
2469 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2470 newstate->wm.need_postvbl_update = false;
2472 return 0;
2476 * Merge the watermarks from all active pipes for a specific level.
2478 static void ilk_merge_wm_level(struct drm_device *dev,
2479 int level,
2480 struct intel_wm_level *ret_wm)
2482 const struct intel_crtc *intel_crtc;
2484 ret_wm->enable = true;
2486 for_each_intel_crtc(dev, intel_crtc) {
2487 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2488 const struct intel_wm_level *wm = &active->wm[level];
2490 if (!active->pipe_enabled)
2491 continue;
2494 * The watermark values may have been used in the past,
2495 * so we must maintain them in the registers for some
2496 * time even if the level is now disabled.
2498 if (!wm->enable)
2499 ret_wm->enable = false;
2501 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2502 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2503 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2504 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2509 * Merge all low power watermarks for all active pipes.
2511 static void ilk_wm_merge(struct drm_device *dev,
2512 const struct intel_wm_config *config,
2513 const struct ilk_wm_maximums *max,
2514 struct intel_pipe_wm *merged)
2516 struct drm_i915_private *dev_priv = to_i915(dev);
2517 int level, max_level = ilk_wm_max_level(dev);
2518 int last_enabled_level = max_level;
2520 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2521 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2522 config->num_pipes_active > 1)
2523 last_enabled_level = 0;
2525 /* ILK: FBC WM must be disabled always */
2526 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2528 /* merge each WM1+ level */
2529 for (level = 1; level <= max_level; level++) {
2530 struct intel_wm_level *wm = &merged->wm[level];
2532 ilk_merge_wm_level(dev, level, wm);
2534 if (level > last_enabled_level)
2535 wm->enable = false;
2536 else if (!ilk_validate_wm_level(level, max, wm))
2537 /* make sure all following levels get disabled */
2538 last_enabled_level = level - 1;
2541 * The spec says it is preferred to disable
2542 * FBC WMs instead of disabling a WM level.
2544 if (wm->fbc_val > max->fbc) {
2545 if (wm->enable)
2546 merged->fbc_wm_enabled = false;
2547 wm->fbc_val = 0;
2551 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2553 * FIXME this is racy. FBC might get enabled later.
2554 * What we should check here is whether FBC can be
2555 * enabled sometime later.
2557 if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2558 intel_fbc_is_active(dev_priv)) {
2559 for (level = 2; level <= max_level; level++) {
2560 struct intel_wm_level *wm = &merged->wm[level];
2562 wm->enable = false;
2567 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2569 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2570 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2573 /* The value we need to program into the WM_LPx latency field */
2574 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2576 struct drm_i915_private *dev_priv = to_i915(dev);
2578 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2579 return 2 * level;
2580 else
2581 return dev_priv->wm.pri_latency[level];
2584 static void ilk_compute_wm_results(struct drm_device *dev,
2585 const struct intel_pipe_wm *merged,
2586 enum intel_ddb_partitioning partitioning,
2587 struct ilk_wm_values *results)
2589 struct intel_crtc *intel_crtc;
2590 int level, wm_lp;
2592 results->enable_fbc_wm = merged->fbc_wm_enabled;
2593 results->partitioning = partitioning;
2595 /* LP1+ register values */
2596 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2597 const struct intel_wm_level *r;
2599 level = ilk_wm_lp_to_level(wm_lp, merged);
2601 r = &merged->wm[level];
2604 * Maintain the watermark values even if the level is
2605 * disabled. Doing otherwise could cause underruns.
2607 results->wm_lp[wm_lp - 1] =
2608 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2609 (r->pri_val << WM1_LP_SR_SHIFT) |
2610 r->cur_val;
2612 if (r->enable)
2613 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2615 if (INTEL_INFO(dev)->gen >= 8)
2616 results->wm_lp[wm_lp - 1] |=
2617 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2618 else
2619 results->wm_lp[wm_lp - 1] |=
2620 r->fbc_val << WM1_LP_FBC_SHIFT;
2623 * Always set WM1S_LP_EN when spr_val != 0, even if the
2624 * level is disabled. Doing otherwise could cause underruns.
2626 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2627 WARN_ON(wm_lp != 1);
2628 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2629 } else
2630 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2633 /* LP0 register values */
2634 for_each_intel_crtc(dev, intel_crtc) {
2635 enum pipe pipe = intel_crtc->pipe;
2636 const struct intel_wm_level *r =
2637 &intel_crtc->wm.active.ilk.wm[0];
2639 if (WARN_ON(!r->enable))
2640 continue;
2642 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2644 results->wm_pipe[pipe] =
2645 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2646 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2647 r->cur_val;
2651 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2652 * case both are at the same level. Prefer r1 in case they're the same. */
2653 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2654 struct intel_pipe_wm *r1,
2655 struct intel_pipe_wm *r2)
2657 int level, max_level = ilk_wm_max_level(dev);
2658 int level1 = 0, level2 = 0;
2660 for (level = 1; level <= max_level; level++) {
2661 if (r1->wm[level].enable)
2662 level1 = level;
2663 if (r2->wm[level].enable)
2664 level2 = level;
2667 if (level1 == level2) {
2668 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2669 return r2;
2670 else
2671 return r1;
2672 } else if (level1 > level2) {
2673 return r1;
2674 } else {
2675 return r2;
2679 /* dirty bits used to track which watermarks need changes */
2680 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2681 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2682 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2683 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2684 #define WM_DIRTY_FBC (1 << 24)
2685 #define WM_DIRTY_DDB (1 << 25)
2687 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2688 const struct ilk_wm_values *old,
2689 const struct ilk_wm_values *new)
2691 unsigned int dirty = 0;
2692 enum pipe pipe;
2693 int wm_lp;
2695 for_each_pipe(dev_priv, pipe) {
2696 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2697 dirty |= WM_DIRTY_LINETIME(pipe);
2698 /* Must disable LP1+ watermarks too */
2699 dirty |= WM_DIRTY_LP_ALL;
2702 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2703 dirty |= WM_DIRTY_PIPE(pipe);
2704 /* Must disable LP1+ watermarks too */
2705 dirty |= WM_DIRTY_LP_ALL;
2709 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2710 dirty |= WM_DIRTY_FBC;
2711 /* Must disable LP1+ watermarks too */
2712 dirty |= WM_DIRTY_LP_ALL;
2715 if (old->partitioning != new->partitioning) {
2716 dirty |= WM_DIRTY_DDB;
2717 /* Must disable LP1+ watermarks too */
2718 dirty |= WM_DIRTY_LP_ALL;
2721 /* LP1+ watermarks already deemed dirty, no need to continue */
2722 if (dirty & WM_DIRTY_LP_ALL)
2723 return dirty;
2725 /* Find the lowest numbered LP1+ watermark in need of an update... */
2726 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2727 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2728 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2729 break;
2732 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2733 for (; wm_lp <= 3; wm_lp++)
2734 dirty |= WM_DIRTY_LP(wm_lp);
2736 return dirty;
2739 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2740 unsigned int dirty)
2742 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2743 bool changed = false;
2745 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2746 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2747 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2748 changed = true;
2750 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2751 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2752 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2753 changed = true;
2755 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2756 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2757 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2758 changed = true;
2762 * Don't touch WM1S_LP_EN here.
2763 * Doing so could cause underruns.
2766 return changed;
2770 * The spec says we shouldn't write when we don't need, because every write
2771 * causes WMs to be re-evaluated, expending some power.
2773 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2774 struct ilk_wm_values *results)
2776 struct drm_device *dev = &dev_priv->drm;
2777 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2778 unsigned int dirty;
2779 uint32_t val;
2781 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2782 if (!dirty)
2783 return;
2785 _ilk_disable_lp_wm(dev_priv, dirty);
2787 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2788 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2789 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2790 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2791 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2792 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2794 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2795 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2796 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2797 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2798 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2799 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2801 if (dirty & WM_DIRTY_DDB) {
2802 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2803 val = I915_READ(WM_MISC);
2804 if (results->partitioning == INTEL_DDB_PART_1_2)
2805 val &= ~WM_MISC_DATA_PARTITION_5_6;
2806 else
2807 val |= WM_MISC_DATA_PARTITION_5_6;
2808 I915_WRITE(WM_MISC, val);
2809 } else {
2810 val = I915_READ(DISP_ARB_CTL2);
2811 if (results->partitioning == INTEL_DDB_PART_1_2)
2812 val &= ~DISP_DATA_PARTITION_5_6;
2813 else
2814 val |= DISP_DATA_PARTITION_5_6;
2815 I915_WRITE(DISP_ARB_CTL2, val);
2819 if (dirty & WM_DIRTY_FBC) {
2820 val = I915_READ(DISP_ARB_CTL);
2821 if (results->enable_fbc_wm)
2822 val &= ~DISP_FBC_WM_DIS;
2823 else
2824 val |= DISP_FBC_WM_DIS;
2825 I915_WRITE(DISP_ARB_CTL, val);
2828 if (dirty & WM_DIRTY_LP(1) &&
2829 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2830 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2832 if (INTEL_INFO(dev)->gen >= 7) {
2833 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2834 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2835 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2836 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2839 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2840 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2841 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2842 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2843 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2844 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2846 dev_priv->wm.hw = *results;
2849 bool ilk_disable_lp_wm(struct drm_device *dev)
2851 struct drm_i915_private *dev_priv = to_i915(dev);
2853 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2857 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2858 * different active planes.
2861 #define SKL_DDB_SIZE 896 /* in blocks */
2862 #define BXT_DDB_SIZE 512
2865 * Return the index of a plane in the SKL DDB and wm result arrays. Primary
2866 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2867 * other universal planes are in indices 1..n. Note that this may leave unused
2868 * indices between the top "sprite" plane and the cursor.
2870 static int
2871 skl_wm_plane_id(const struct intel_plane *plane)
2873 switch (plane->base.type) {
2874 case DRM_PLANE_TYPE_PRIMARY:
2875 return 0;
2876 case DRM_PLANE_TYPE_CURSOR:
2877 return PLANE_CURSOR;
2878 case DRM_PLANE_TYPE_OVERLAY:
2879 return plane->plane + 1;
2880 default:
2881 MISSING_CASE(plane->base.type);
2882 return plane->plane;
2886 static void
2887 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2888 const struct intel_crtc_state *cstate,
2889 struct skl_ddb_entry *alloc, /* out */
2890 int *num_active /* out */)
2892 struct drm_atomic_state *state = cstate->base.state;
2893 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2894 struct drm_i915_private *dev_priv = to_i915(dev);
2895 struct drm_crtc *for_crtc = cstate->base.crtc;
2896 unsigned int pipe_size, ddb_size;
2897 int nth_active_pipe;
2898 int pipe = to_intel_crtc(for_crtc)->pipe;
2900 if (WARN_ON(!state) || !cstate->base.active) {
2901 alloc->start = 0;
2902 alloc->end = 0;
2903 *num_active = hweight32(dev_priv->active_crtcs);
2904 return;
2907 if (intel_state->active_pipe_changes)
2908 *num_active = hweight32(intel_state->active_crtcs);
2909 else
2910 *num_active = hweight32(dev_priv->active_crtcs);
2912 if (IS_BROXTON(dev))
2913 ddb_size = BXT_DDB_SIZE;
2914 else
2915 ddb_size = SKL_DDB_SIZE;
2917 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2920 * If the state doesn't change the active CRTC's, then there's
2921 * no need to recalculate; the existing pipe allocation limits
2922 * should remain unchanged. Note that we're safe from racing
2923 * commits since any racing commit that changes the active CRTC
2924 * list would need to grab _all_ crtc locks, including the one
2925 * we currently hold.
2927 if (!intel_state->active_pipe_changes) {
2928 *alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
2929 return;
2932 nth_active_pipe = hweight32(intel_state->active_crtcs &
2933 (drm_crtc_mask(for_crtc) - 1));
2934 pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
2935 alloc->start = nth_active_pipe * ddb_size / *num_active;
2936 alloc->end = alloc->start + pipe_size;
2939 static unsigned int skl_cursor_allocation(int num_active)
2941 if (num_active == 1)
2942 return 32;
2944 return 8;
2947 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2949 entry->start = reg & 0x3ff;
2950 entry->end = (reg >> 16) & 0x3ff;
2951 if (entry->end)
2952 entry->end += 1;
2955 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2956 struct skl_ddb_allocation *ddb /* out */)
2958 enum pipe pipe;
2959 int plane;
2960 u32 val;
2962 memset(ddb, 0, sizeof(*ddb));
2964 for_each_pipe(dev_priv, pipe) {
2965 enum intel_display_power_domain power_domain;
2967 power_domain = POWER_DOMAIN_PIPE(pipe);
2968 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2969 continue;
2971 for_each_plane(dev_priv, pipe, plane) {
2972 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2973 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2974 val);
2977 val = I915_READ(CUR_BUF_CFG(pipe));
2978 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2979 val);
2981 intel_display_power_put(dev_priv, power_domain);
2986 * Determines the downscale amount of a plane for the purposes of watermark calculations.
2987 * The bspec defines downscale amount as:
2989 * """
2990 * Horizontal down scale amount = maximum[1, Horizontal source size /
2991 * Horizontal destination size]
2992 * Vertical down scale amount = maximum[1, Vertical source size /
2993 * Vertical destination size]
2994 * Total down scale amount = Horizontal down scale amount *
2995 * Vertical down scale amount
2996 * """
2998 * Return value is provided in 16.16 fixed point form to retain fractional part.
2999 * Caller should take care of dividing & rounding off the value.
3001 static uint32_t
3002 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
3004 uint32_t downscale_h, downscale_w;
3005 uint32_t src_w, src_h, dst_w, dst_h;
3007 if (WARN_ON(!pstate->visible))
3008 return DRM_PLANE_HELPER_NO_SCALING;
3010 /* n.b., src is 16.16 fixed point, dst is whole integer */
3011 src_w = drm_rect_width(&pstate->src);
3012 src_h = drm_rect_height(&pstate->src);
3013 dst_w = drm_rect_width(&pstate->dst);
3014 dst_h = drm_rect_height(&pstate->dst);
3015 if (intel_rotation_90_or_270(pstate->base.rotation))
3016 swap(dst_w, dst_h);
3018 downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3019 downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3021 /* Provide result in 16.16 fixed point */
3022 return (uint64_t)downscale_w * downscale_h >> 16;
3025 static unsigned int
3026 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3027 const struct drm_plane_state *pstate,
3028 int y)
3030 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3031 struct drm_framebuffer *fb = pstate->fb;
3032 uint32_t down_scale_amount, data_rate;
3033 uint32_t width = 0, height = 0;
3034 unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3036 if (!intel_pstate->visible)
3037 return 0;
3038 if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3039 return 0;
3040 if (y && format != DRM_FORMAT_NV12)
3041 return 0;
3043 width = drm_rect_width(&intel_pstate->src) >> 16;
3044 height = drm_rect_height(&intel_pstate->src) >> 16;
3046 if (intel_rotation_90_or_270(pstate->rotation))
3047 swap(width, height);
3049 /* for planar format */
3050 if (format == DRM_FORMAT_NV12) {
3051 if (y) /* y-plane data rate */
3052 data_rate = width * height *
3053 drm_format_plane_cpp(format, 0);
3054 else /* uv-plane data rate */
3055 data_rate = (width / 2) * (height / 2) *
3056 drm_format_plane_cpp(format, 1);
3057 } else {
3058 /* for packed formats */
3059 data_rate = width * height * drm_format_plane_cpp(format, 0);
3062 down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3064 return (uint64_t)data_rate * down_scale_amount >> 16;
3068 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3069 * a 8192x4096@32bpp framebuffer:
3070 * 3 * 4096 * 8192 * 4 < 2^32
3072 static unsigned int
3073 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3075 struct drm_crtc_state *cstate = &intel_cstate->base;
3076 struct drm_atomic_state *state = cstate->state;
3077 struct drm_crtc *crtc = cstate->crtc;
3078 struct drm_device *dev = crtc->dev;
3079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3080 const struct drm_plane *plane;
3081 const struct intel_plane *intel_plane;
3082 struct drm_plane_state *pstate;
3083 unsigned int rate, total_data_rate = 0;
3084 int id;
3085 int i;
3087 if (WARN_ON(!state))
3088 return 0;
3090 /* Calculate and cache data rate for each plane */
3091 for_each_plane_in_state(state, plane, pstate, i) {
3092 id = skl_wm_plane_id(to_intel_plane(plane));
3093 intel_plane = to_intel_plane(plane);
3095 if (intel_plane->pipe != intel_crtc->pipe)
3096 continue;
3098 /* packed/uv */
3099 rate = skl_plane_relative_data_rate(intel_cstate,
3100 pstate, 0);
3101 intel_cstate->wm.skl.plane_data_rate[id] = rate;
3103 /* y-plane */
3104 rate = skl_plane_relative_data_rate(intel_cstate,
3105 pstate, 1);
3106 intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3109 /* Calculate CRTC's total data rate from cached values */
3110 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3111 int id = skl_wm_plane_id(intel_plane);
3113 /* packed/uv */
3114 total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
3115 total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3118 WARN_ON(cstate->plane_mask && total_data_rate == 0);
3120 return total_data_rate;
3123 static uint16_t
3124 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3125 const int y)
3127 struct drm_framebuffer *fb = pstate->fb;
3128 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3129 uint32_t src_w, src_h;
3130 uint32_t min_scanlines = 8;
3131 uint8_t plane_bpp;
3133 if (WARN_ON(!fb))
3134 return 0;
3136 /* For packed formats, no y-plane, return 0 */
3137 if (y && fb->pixel_format != DRM_FORMAT_NV12)
3138 return 0;
3140 /* For Non Y-tile return 8-blocks */
3141 if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
3142 fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
3143 return 8;
3145 src_w = drm_rect_width(&intel_pstate->src) >> 16;
3146 src_h = drm_rect_height(&intel_pstate->src) >> 16;
3148 if (intel_rotation_90_or_270(pstate->rotation))
3149 swap(src_w, src_h);
3151 /* Halve UV plane width and height for NV12 */
3152 if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3153 src_w /= 2;
3154 src_h /= 2;
3157 if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3158 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3159 else
3160 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3162 if (intel_rotation_90_or_270(pstate->rotation)) {
3163 switch (plane_bpp) {
3164 case 1:
3165 min_scanlines = 32;
3166 break;
3167 case 2:
3168 min_scanlines = 16;
3169 break;
3170 case 4:
3171 min_scanlines = 8;
3172 break;
3173 case 8:
3174 min_scanlines = 4;
3175 break;
3176 default:
3177 WARN(1, "Unsupported pixel depth %u for rotation",
3178 plane_bpp);
3179 min_scanlines = 32;
3183 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3186 static int
3187 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3188 struct skl_ddb_allocation *ddb /* out */)
3190 struct drm_atomic_state *state = cstate->base.state;
3191 struct drm_crtc *crtc = cstate->base.crtc;
3192 struct drm_device *dev = crtc->dev;
3193 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3194 struct intel_plane *intel_plane;
3195 struct drm_plane *plane;
3196 struct drm_plane_state *pstate;
3197 enum pipe pipe = intel_crtc->pipe;
3198 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3199 uint16_t alloc_size, start, cursor_blocks;
3200 uint16_t *minimum = cstate->wm.skl.minimum_blocks;
3201 uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3202 unsigned int total_data_rate;
3203 int num_active;
3204 int id, i;
3206 if (WARN_ON(!state))
3207 return 0;
3209 if (!cstate->base.active) {
3210 ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
3211 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3212 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3213 return 0;
3216 skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3217 alloc_size = skl_ddb_entry_size(alloc);
3218 if (alloc_size == 0) {
3219 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3220 return 0;
3223 cursor_blocks = skl_cursor_allocation(num_active);
3224 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3225 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3227 alloc_size -= cursor_blocks;
3229 /* 1. Allocate the mininum required blocks for each active plane */
3230 for_each_plane_in_state(state, plane, pstate, i) {
3231 intel_plane = to_intel_plane(plane);
3232 id = skl_wm_plane_id(intel_plane);
3234 if (intel_plane->pipe != pipe)
3235 continue;
3237 if (!to_intel_plane_state(pstate)->visible) {
3238 minimum[id] = 0;
3239 y_minimum[id] = 0;
3240 continue;
3242 if (plane->type == DRM_PLANE_TYPE_CURSOR) {
3243 minimum[id] = 0;
3244 y_minimum[id] = 0;
3245 continue;
3248 minimum[id] = skl_ddb_min_alloc(pstate, 0);
3249 y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3252 for (i = 0; i < PLANE_CURSOR; i++) {
3253 alloc_size -= minimum[i];
3254 alloc_size -= y_minimum[i];
3258 * 2. Distribute the remaining space in proportion to the amount of
3259 * data each plane needs to fetch from memory.
3261 * FIXME: we may not allocate every single block here.
3263 total_data_rate = skl_get_total_relative_data_rate(cstate);
3264 if (total_data_rate == 0)
3265 return 0;
3267 start = alloc->start;
3268 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3269 unsigned int data_rate, y_data_rate;
3270 uint16_t plane_blocks, y_plane_blocks = 0;
3271 int id = skl_wm_plane_id(intel_plane);
3273 data_rate = cstate->wm.skl.plane_data_rate[id];
3276 * allocation for (packed formats) or (uv-plane part of planar format):
3277 * promote the expression to 64 bits to avoid overflowing, the
3278 * result is < available as data_rate / total_data_rate < 1
3280 plane_blocks = minimum[id];
3281 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3282 total_data_rate);
3284 /* Leave disabled planes at (0,0) */
3285 if (data_rate) {
3286 ddb->plane[pipe][id].start = start;
3287 ddb->plane[pipe][id].end = start + plane_blocks;
3290 start += plane_blocks;
3293 * allocation for y_plane part of planar format:
3295 y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
3297 y_plane_blocks = y_minimum[id];
3298 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3299 total_data_rate);
3301 if (y_data_rate) {
3302 ddb->y_plane[pipe][id].start = start;
3303 ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3306 start += y_plane_blocks;
3309 return 0;
3312 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3314 /* TODO: Take into account the scalers once we support them */
3315 return config->base.adjusted_mode.crtc_clock;
3319 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3320 * for the read latency) and cpp should always be <= 8, so that
3321 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3322 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3324 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3326 uint32_t wm_intermediate_val, ret;
3328 if (latency == 0)
3329 return UINT_MAX;
3331 wm_intermediate_val = latency * pixel_rate * cpp / 512;
3332 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3334 return ret;
3337 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3338 uint32_t horiz_pixels, uint8_t cpp,
3339 uint64_t tiling, uint32_t latency)
3341 uint32_t ret;
3342 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3343 uint32_t wm_intermediate_val;
3345 if (latency == 0)
3346 return UINT_MAX;
3348 plane_bytes_per_line = horiz_pixels * cpp;
3350 if (tiling == I915_FORMAT_MOD_Y_TILED ||
3351 tiling == I915_FORMAT_MOD_Yf_TILED) {
3352 plane_bytes_per_line *= 4;
3353 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3354 plane_blocks_per_line /= 4;
3355 } else {
3356 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3359 wm_intermediate_val = latency * pixel_rate;
3360 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3361 plane_blocks_per_line;
3363 return ret;
3366 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3367 struct intel_plane_state *pstate)
3369 uint64_t adjusted_pixel_rate;
3370 uint64_t downscale_amount;
3371 uint64_t pixel_rate;
3373 /* Shouldn't reach here on disabled planes... */
3374 if (WARN_ON(!pstate->visible))
3375 return 0;
3378 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3379 * with additional adjustments for plane-specific scaling.
3381 adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
3382 downscale_amount = skl_plane_downscale_amount(pstate);
3384 pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3385 WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3387 return pixel_rate;
3390 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3391 struct intel_crtc_state *cstate,
3392 struct intel_plane_state *intel_pstate,
3393 uint16_t ddb_allocation,
3394 int level,
3395 uint16_t *out_blocks, /* out */
3396 uint8_t *out_lines, /* out */
3397 bool *enabled /* out */)
3399 struct drm_plane_state *pstate = &intel_pstate->base;
3400 struct drm_framebuffer *fb = pstate->fb;
3401 uint32_t latency = dev_priv->wm.skl_latency[level];
3402 uint32_t method1, method2;
3403 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3404 uint32_t res_blocks, res_lines;
3405 uint32_t selected_result;
3406 uint8_t cpp;
3407 uint32_t width = 0, height = 0;
3408 uint32_t plane_pixel_rate;
3410 if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
3411 *enabled = false;
3412 return 0;
3415 width = drm_rect_width(&intel_pstate->src) >> 16;
3416 height = drm_rect_height(&intel_pstate->src) >> 16;
3418 if (intel_rotation_90_or_270(pstate->rotation))
3419 swap(width, height);
3421 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3422 plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3424 method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3425 method2 = skl_wm_method2(plane_pixel_rate,
3426 cstate->base.adjusted_mode.crtc_htotal,
3427 width,
3428 cpp,
3429 fb->modifier[0],
3430 latency);
3432 plane_bytes_per_line = width * cpp;
3433 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3435 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3436 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3437 uint32_t min_scanlines = 4;
3438 uint32_t y_tile_minimum;
3439 if (intel_rotation_90_or_270(pstate->rotation)) {
3440 int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3441 drm_format_plane_cpp(fb->pixel_format, 1) :
3442 drm_format_plane_cpp(fb->pixel_format, 0);
3444 switch (cpp) {
3445 case 1:
3446 min_scanlines = 16;
3447 break;
3448 case 2:
3449 min_scanlines = 8;
3450 break;
3451 case 8:
3452 WARN(1, "Unsupported pixel depth for rotation");
3455 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3456 selected_result = max(method2, y_tile_minimum);
3457 } else {
3458 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3459 selected_result = min(method1, method2);
3460 else
3461 selected_result = method1;
3464 res_blocks = selected_result + 1;
3465 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3467 if (level >= 1 && level <= 7) {
3468 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3469 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3470 res_lines += 4;
3471 else
3472 res_blocks++;
3475 if (res_blocks >= ddb_allocation || res_lines > 31) {
3476 *enabled = false;
3479 * If there are no valid level 0 watermarks, then we can't
3480 * support this display configuration.
3482 if (level) {
3483 return 0;
3484 } else {
3485 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3486 DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3487 to_intel_crtc(cstate->base.crtc)->pipe,
3488 skl_wm_plane_id(to_intel_plane(pstate->plane)),
3489 res_blocks, ddb_allocation, res_lines);
3491 return -EINVAL;
3495 *out_blocks = res_blocks;
3496 *out_lines = res_lines;
3497 *enabled = true;
3499 return 0;
3502 static int
3503 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3504 struct skl_ddb_allocation *ddb,
3505 struct intel_crtc_state *cstate,
3506 int level,
3507 struct skl_wm_level *result)
3509 struct drm_atomic_state *state = cstate->base.state;
3510 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3511 struct drm_plane *plane;
3512 struct intel_plane *intel_plane;
3513 struct intel_plane_state *intel_pstate;
3514 uint16_t ddb_blocks;
3515 enum pipe pipe = intel_crtc->pipe;
3516 int ret;
3519 * We'll only calculate watermarks for planes that are actually
3520 * enabled, so make sure all other planes are set as disabled.
3522 memset(result, 0, sizeof(*result));
3524 for_each_intel_plane_mask(&dev_priv->drm,
3525 intel_plane,
3526 cstate->base.plane_mask) {
3527 int i = skl_wm_plane_id(intel_plane);
3529 plane = &intel_plane->base;
3530 intel_pstate = NULL;
3531 if (state)
3532 intel_pstate =
3533 intel_atomic_get_existing_plane_state(state,
3534 intel_plane);
3537 * Note: If we start supporting multiple pending atomic commits
3538 * against the same planes/CRTC's in the future, plane->state
3539 * will no longer be the correct pre-state to use for the
3540 * calculations here and we'll need to change where we get the
3541 * 'unchanged' plane data from.
3543 * For now this is fine because we only allow one queued commit
3544 * against a CRTC. Even if the plane isn't modified by this
3545 * transaction and we don't have a plane lock, we still have
3546 * the CRTC's lock, so we know that no other transactions are
3547 * racing with us to update it.
3549 if (!intel_pstate)
3550 intel_pstate = to_intel_plane_state(plane->state);
3552 WARN_ON(!intel_pstate->base.fb);
3554 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3556 ret = skl_compute_plane_wm(dev_priv,
3557 cstate,
3558 intel_pstate,
3559 ddb_blocks,
3560 level,
3561 &result->plane_res_b[i],
3562 &result->plane_res_l[i],
3563 &result->plane_en[i]);
3564 if (ret)
3565 return ret;
3568 return 0;
3571 static uint32_t
3572 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3574 if (!cstate->base.active)
3575 return 0;
3577 if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3578 return 0;
3580 return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3581 skl_pipe_pixel_rate(cstate));
3584 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3585 struct skl_wm_level *trans_wm /* out */)
3587 struct drm_crtc *crtc = cstate->base.crtc;
3588 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3589 struct intel_plane *intel_plane;
3591 if (!cstate->base.active)
3592 return;
3594 /* Until we know more, just disable transition WMs */
3595 for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3596 int i = skl_wm_plane_id(intel_plane);
3598 trans_wm->plane_en[i] = false;
3602 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3603 struct skl_ddb_allocation *ddb,
3604 struct skl_pipe_wm *pipe_wm)
3606 struct drm_device *dev = cstate->base.crtc->dev;
3607 const struct drm_i915_private *dev_priv = to_i915(dev);
3608 int level, max_level = ilk_wm_max_level(dev);
3609 int ret;
3611 for (level = 0; level <= max_level; level++) {
3612 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3613 level, &pipe_wm->wm[level]);
3614 if (ret)
3615 return ret;
3617 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3619 skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3621 return 0;
3624 static void skl_compute_wm_results(struct drm_device *dev,
3625 struct skl_pipe_wm *p_wm,
3626 struct skl_wm_values *r,
3627 struct intel_crtc *intel_crtc)
3629 int level, max_level = ilk_wm_max_level(dev);
3630 enum pipe pipe = intel_crtc->pipe;
3631 uint32_t temp;
3632 int i;
3634 for (level = 0; level <= max_level; level++) {
3635 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3636 temp = 0;
3638 temp |= p_wm->wm[level].plane_res_l[i] <<
3639 PLANE_WM_LINES_SHIFT;
3640 temp |= p_wm->wm[level].plane_res_b[i];
3641 if (p_wm->wm[level].plane_en[i])
3642 temp |= PLANE_WM_EN;
3644 r->plane[pipe][i][level] = temp;
3647 temp = 0;
3649 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3650 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3652 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3653 temp |= PLANE_WM_EN;
3655 r->plane[pipe][PLANE_CURSOR][level] = temp;
3659 /* transition WMs */
3660 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3661 temp = 0;
3662 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3663 temp |= p_wm->trans_wm.plane_res_b[i];
3664 if (p_wm->trans_wm.plane_en[i])
3665 temp |= PLANE_WM_EN;
3667 r->plane_trans[pipe][i] = temp;
3670 temp = 0;
3671 temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3672 temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3673 if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3674 temp |= PLANE_WM_EN;
3676 r->plane_trans[pipe][PLANE_CURSOR] = temp;
3678 r->wm_linetime[pipe] = p_wm->linetime;
3681 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3682 i915_reg_t reg,
3683 const struct skl_ddb_entry *entry)
3685 if (entry->end)
3686 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3687 else
3688 I915_WRITE(reg, 0);
3691 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3692 const struct skl_wm_values *new)
3694 struct drm_device *dev = &dev_priv->drm;
3695 struct intel_crtc *crtc;
3697 for_each_intel_crtc(dev, crtc) {
3698 int i, level, max_level = ilk_wm_max_level(dev);
3699 enum pipe pipe = crtc->pipe;
3701 if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3702 continue;
3703 if (!crtc->active)
3704 continue;
3706 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3708 for (level = 0; level <= max_level; level++) {
3709 for (i = 0; i < intel_num_planes(crtc); i++)
3710 I915_WRITE(PLANE_WM(pipe, i, level),
3711 new->plane[pipe][i][level]);
3712 I915_WRITE(CUR_WM(pipe, level),
3713 new->plane[pipe][PLANE_CURSOR][level]);
3715 for (i = 0; i < intel_num_planes(crtc); i++)
3716 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3717 new->plane_trans[pipe][i]);
3718 I915_WRITE(CUR_WM_TRANS(pipe),
3719 new->plane_trans[pipe][PLANE_CURSOR]);
3721 for (i = 0; i < intel_num_planes(crtc); i++) {
3722 skl_ddb_entry_write(dev_priv,
3723 PLANE_BUF_CFG(pipe, i),
3724 &new->ddb.plane[pipe][i]);
3725 skl_ddb_entry_write(dev_priv,
3726 PLANE_NV12_BUF_CFG(pipe, i),
3727 &new->ddb.y_plane[pipe][i]);
3730 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3731 &new->ddb.plane[pipe][PLANE_CURSOR]);
3736 * When setting up a new DDB allocation arrangement, we need to correctly
3737 * sequence the times at which the new allocations for the pipes are taken into
3738 * account or we'll have pipes fetching from space previously allocated to
3739 * another pipe.
3741 * Roughly the sequence looks like:
3742 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3743 * overlapping with a previous light-up pipe (another way to put it is:
3744 * pipes with their new allocation strickly included into their old ones).
3745 * 2. re-allocate the other pipes that get their allocation reduced
3746 * 3. allocate the pipes having their allocation increased
3748 * Steps 1. and 2. are here to take care of the following case:
3749 * - Initially DDB looks like this:
3750 * | B | C |
3751 * - enable pipe A.
3752 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3753 * allocation
3754 * | A | B | C |
3756 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3759 static void
3760 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3762 int plane;
3764 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3766 for_each_plane(dev_priv, pipe, plane) {
3767 I915_WRITE(PLANE_SURF(pipe, plane),
3768 I915_READ(PLANE_SURF(pipe, plane)));
3770 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3773 static bool
3774 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3775 const struct skl_ddb_allocation *new,
3776 enum pipe pipe)
3778 uint16_t old_size, new_size;
3780 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3781 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3783 return old_size != new_size &&
3784 new->pipe[pipe].start >= old->pipe[pipe].start &&
3785 new->pipe[pipe].end <= old->pipe[pipe].end;
3788 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3789 struct skl_wm_values *new_values)
3791 struct drm_device *dev = &dev_priv->drm;
3792 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3793 bool reallocated[I915_MAX_PIPES] = {};
3794 struct intel_crtc *crtc;
3795 enum pipe pipe;
3797 new_ddb = &new_values->ddb;
3798 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3801 * First pass: flush the pipes with the new allocation contained into
3802 * the old space.
3804 * We'll wait for the vblank on those pipes to ensure we can safely
3805 * re-allocate the freed space without this pipe fetching from it.
3807 for_each_intel_crtc(dev, crtc) {
3808 if (!crtc->active)
3809 continue;
3811 pipe = crtc->pipe;
3813 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3814 continue;
3816 skl_wm_flush_pipe(dev_priv, pipe, 1);
3817 intel_wait_for_vblank(dev, pipe);
3819 reallocated[pipe] = true;
3824 * Second pass: flush the pipes that are having their allocation
3825 * reduced, but overlapping with a previous allocation.
3827 * Here as well we need to wait for the vblank to make sure the freed
3828 * space is not used anymore.
3830 for_each_intel_crtc(dev, crtc) {
3831 if (!crtc->active)
3832 continue;
3834 pipe = crtc->pipe;
3836 if (reallocated[pipe])
3837 continue;
3839 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3840 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3841 skl_wm_flush_pipe(dev_priv, pipe, 2);
3842 intel_wait_for_vblank(dev, pipe);
3843 reallocated[pipe] = true;
3848 * Third pass: flush the pipes that got more space allocated.
3850 * We don't need to actively wait for the update here, next vblank
3851 * will just get more DDB space with the correct WM values.
3853 for_each_intel_crtc(dev, crtc) {
3854 if (!crtc->active)
3855 continue;
3857 pipe = crtc->pipe;
3860 * At this point, only the pipes more space than before are
3861 * left to re-allocate.
3863 if (reallocated[pipe])
3864 continue;
3866 skl_wm_flush_pipe(dev_priv, pipe, 3);
3870 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3871 struct skl_ddb_allocation *ddb, /* out */
3872 struct skl_pipe_wm *pipe_wm, /* out */
3873 bool *changed /* out */)
3875 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
3876 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3877 int ret;
3879 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3880 if (ret)
3881 return ret;
3883 if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3884 *changed = false;
3885 else
3886 *changed = true;
3888 return 0;
3891 static uint32_t
3892 pipes_modified(struct drm_atomic_state *state)
3894 struct drm_crtc *crtc;
3895 struct drm_crtc_state *cstate;
3896 uint32_t i, ret = 0;
3898 for_each_crtc_in_state(state, crtc, cstate, i)
3899 ret |= drm_crtc_mask(crtc);
3901 return ret;
3904 static int
3905 skl_compute_ddb(struct drm_atomic_state *state)
3907 struct drm_device *dev = state->dev;
3908 struct drm_i915_private *dev_priv = to_i915(dev);
3909 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3910 struct intel_crtc *intel_crtc;
3911 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3912 uint32_t realloc_pipes = pipes_modified(state);
3913 int ret;
3916 * If this is our first atomic update following hardware readout,
3917 * we can't trust the DDB that the BIOS programmed for us. Let's
3918 * pretend that all pipes switched active status so that we'll
3919 * ensure a full DDB recompute.
3921 if (dev_priv->wm.distrust_bios_wm)
3922 intel_state->active_pipe_changes = ~0;
3925 * If the modeset changes which CRTC's are active, we need to
3926 * recompute the DDB allocation for *all* active pipes, even
3927 * those that weren't otherwise being modified in any way by this
3928 * atomic commit. Due to the shrinking of the per-pipe allocations
3929 * when new active CRTC's are added, it's possible for a pipe that
3930 * we were already using and aren't changing at all here to suddenly
3931 * become invalid if its DDB needs exceeds its new allocation.
3933 * Note that if we wind up doing a full DDB recompute, we can't let
3934 * any other display updates race with this transaction, so we need
3935 * to grab the lock on *all* CRTC's.
3937 if (intel_state->active_pipe_changes) {
3938 realloc_pipes = ~0;
3939 intel_state->wm_results.dirty_pipes = ~0;
3942 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
3943 struct intel_crtc_state *cstate;
3945 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
3946 if (IS_ERR(cstate))
3947 return PTR_ERR(cstate);
3949 ret = skl_allocate_pipe_ddb(cstate, ddb);
3950 if (ret)
3951 return ret;
3954 return 0;
3957 static int
3958 skl_compute_wm(struct drm_atomic_state *state)
3960 struct drm_crtc *crtc;
3961 struct drm_crtc_state *cstate;
3962 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3963 struct skl_wm_values *results = &intel_state->wm_results;
3964 struct skl_pipe_wm *pipe_wm;
3965 bool changed = false;
3966 int ret, i;
3969 * If this transaction isn't actually touching any CRTC's, don't
3970 * bother with watermark calculation. Note that if we pass this
3971 * test, we're guaranteed to hold at least one CRTC state mutex,
3972 * which means we can safely use values like dev_priv->active_crtcs
3973 * since any racing commits that want to update them would need to
3974 * hold _all_ CRTC state mutexes.
3976 for_each_crtc_in_state(state, crtc, cstate, i)
3977 changed = true;
3978 if (!changed)
3979 return 0;
3981 /* Clear all dirty flags */
3982 results->dirty_pipes = 0;
3984 ret = skl_compute_ddb(state);
3985 if (ret)
3986 return ret;
3989 * Calculate WM's for all pipes that are part of this transaction.
3990 * Note that the DDB allocation above may have added more CRTC's that
3991 * weren't otherwise being modified (and set bits in dirty_pipes) if
3992 * pipe allocations had to change.
3994 * FIXME: Now that we're doing this in the atomic check phase, we
3995 * should allow skl_update_pipe_wm() to return failure in cases where
3996 * no suitable watermark values can be found.
3998 for_each_crtc_in_state(state, crtc, cstate, i) {
3999 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4000 struct intel_crtc_state *intel_cstate =
4001 to_intel_crtc_state(cstate);
4003 pipe_wm = &intel_cstate->wm.skl.optimal;
4004 ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
4005 &changed);
4006 if (ret)
4007 return ret;
4009 if (changed)
4010 results->dirty_pipes |= drm_crtc_mask(crtc);
4012 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4013 /* This pipe's WM's did not change */
4014 continue;
4016 intel_cstate->update_wm_pre = true;
4017 skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
4020 return 0;
4023 static void skl_update_wm(struct drm_crtc *crtc)
4025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4026 struct drm_device *dev = crtc->dev;
4027 struct drm_i915_private *dev_priv = to_i915(dev);
4028 struct skl_wm_values *results = &dev_priv->wm.skl_results;
4029 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4030 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4032 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4033 return;
4035 intel_crtc->wm.active.skl = *pipe_wm;
4037 mutex_lock(&dev_priv->wm.wm_mutex);
4039 skl_write_wm_values(dev_priv, results);
4040 skl_flush_wm_values(dev_priv, results);
4042 /* store the new configuration */
4043 dev_priv->wm.skl_hw = *results;
4045 mutex_unlock(&dev_priv->wm.wm_mutex);
4048 static void ilk_compute_wm_config(struct drm_device *dev,
4049 struct intel_wm_config *config)
4051 struct intel_crtc *crtc;
4053 /* Compute the currently _active_ config */
4054 for_each_intel_crtc(dev, crtc) {
4055 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4057 if (!wm->pipe_enabled)
4058 continue;
4060 config->sprites_enabled |= wm->sprites_enabled;
4061 config->sprites_scaled |= wm->sprites_scaled;
4062 config->num_pipes_active++;
4066 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4068 struct drm_device *dev = &dev_priv->drm;
4069 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4070 struct ilk_wm_maximums max;
4071 struct intel_wm_config config = {};
4072 struct ilk_wm_values results = {};
4073 enum intel_ddb_partitioning partitioning;
4075 ilk_compute_wm_config(dev, &config);
4077 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4078 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4080 /* 5/6 split only in single pipe config on IVB+ */
4081 if (INTEL_INFO(dev)->gen >= 7 &&
4082 config.num_pipes_active == 1 && config.sprites_enabled) {
4083 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4084 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4086 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4087 } else {
4088 best_lp_wm = &lp_wm_1_2;
4091 partitioning = (best_lp_wm == &lp_wm_1_2) ?
4092 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4094 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4096 ilk_write_wm_values(dev_priv, &results);
4099 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4101 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4102 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4104 mutex_lock(&dev_priv->wm.wm_mutex);
4105 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4106 ilk_program_watermarks(dev_priv);
4107 mutex_unlock(&dev_priv->wm.wm_mutex);
4110 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
4112 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4113 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4115 mutex_lock(&dev_priv->wm.wm_mutex);
4116 if (cstate->wm.need_postvbl_update) {
4117 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4118 ilk_program_watermarks(dev_priv);
4120 mutex_unlock(&dev_priv->wm.wm_mutex);
4123 static void skl_pipe_wm_active_state(uint32_t val,
4124 struct skl_pipe_wm *active,
4125 bool is_transwm,
4126 bool is_cursor,
4127 int i,
4128 int level)
4130 bool is_enabled = (val & PLANE_WM_EN) != 0;
4132 if (!is_transwm) {
4133 if (!is_cursor) {
4134 active->wm[level].plane_en[i] = is_enabled;
4135 active->wm[level].plane_res_b[i] =
4136 val & PLANE_WM_BLOCKS_MASK;
4137 active->wm[level].plane_res_l[i] =
4138 (val >> PLANE_WM_LINES_SHIFT) &
4139 PLANE_WM_LINES_MASK;
4140 } else {
4141 active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
4142 active->wm[level].plane_res_b[PLANE_CURSOR] =
4143 val & PLANE_WM_BLOCKS_MASK;
4144 active->wm[level].plane_res_l[PLANE_CURSOR] =
4145 (val >> PLANE_WM_LINES_SHIFT) &
4146 PLANE_WM_LINES_MASK;
4148 } else {
4149 if (!is_cursor) {
4150 active->trans_wm.plane_en[i] = is_enabled;
4151 active->trans_wm.plane_res_b[i] =
4152 val & PLANE_WM_BLOCKS_MASK;
4153 active->trans_wm.plane_res_l[i] =
4154 (val >> PLANE_WM_LINES_SHIFT) &
4155 PLANE_WM_LINES_MASK;
4156 } else {
4157 active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
4158 active->trans_wm.plane_res_b[PLANE_CURSOR] =
4159 val & PLANE_WM_BLOCKS_MASK;
4160 active->trans_wm.plane_res_l[PLANE_CURSOR] =
4161 (val >> PLANE_WM_LINES_SHIFT) &
4162 PLANE_WM_LINES_MASK;
4167 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4169 struct drm_device *dev = crtc->dev;
4170 struct drm_i915_private *dev_priv = to_i915(dev);
4171 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4172 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4173 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4174 struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4175 enum pipe pipe = intel_crtc->pipe;
4176 int level, i, max_level;
4177 uint32_t temp;
4179 max_level = ilk_wm_max_level(dev);
4181 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4183 for (level = 0; level <= max_level; level++) {
4184 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4185 hw->plane[pipe][i][level] =
4186 I915_READ(PLANE_WM(pipe, i, level));
4187 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4190 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4191 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4192 hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4194 if (!intel_crtc->active)
4195 return;
4197 hw->dirty_pipes |= drm_crtc_mask(crtc);
4199 active->linetime = hw->wm_linetime[pipe];
4201 for (level = 0; level <= max_level; level++) {
4202 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4203 temp = hw->plane[pipe][i][level];
4204 skl_pipe_wm_active_state(temp, active, false,
4205 false, i, level);
4207 temp = hw->plane[pipe][PLANE_CURSOR][level];
4208 skl_pipe_wm_active_state(temp, active, false, true, i, level);
4211 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4212 temp = hw->plane_trans[pipe][i];
4213 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
4216 temp = hw->plane_trans[pipe][PLANE_CURSOR];
4217 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4219 intel_crtc->wm.active.skl = *active;
4222 void skl_wm_get_hw_state(struct drm_device *dev)
4224 struct drm_i915_private *dev_priv = to_i915(dev);
4225 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4226 struct drm_crtc *crtc;
4228 skl_ddb_get_hw_state(dev_priv, ddb);
4229 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
4230 skl_pipe_wm_get_hw_state(crtc);
4232 if (dev_priv->active_crtcs) {
4233 /* Fully recompute DDB on first atomic commit */
4234 dev_priv->wm.distrust_bios_wm = true;
4235 } else {
4236 /* Easy/common case; just sanitize DDB now if everything off */
4237 memset(ddb, 0, sizeof(*ddb));
4241 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4243 struct drm_device *dev = crtc->dev;
4244 struct drm_i915_private *dev_priv = to_i915(dev);
4245 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4246 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4247 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4248 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4249 enum pipe pipe = intel_crtc->pipe;
4250 static const i915_reg_t wm0_pipe_reg[] = {
4251 [PIPE_A] = WM0_PIPEA_ILK,
4252 [PIPE_B] = WM0_PIPEB_ILK,
4253 [PIPE_C] = WM0_PIPEC_IVB,
4256 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4257 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4258 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4260 memset(active, 0, sizeof(*active));
4262 active->pipe_enabled = intel_crtc->active;
4264 if (active->pipe_enabled) {
4265 u32 tmp = hw->wm_pipe[pipe];
4268 * For active pipes LP0 watermark is marked as
4269 * enabled, and LP1+ watermaks as disabled since
4270 * we can't really reverse compute them in case
4271 * multiple pipes are active.
4273 active->wm[0].enable = true;
4274 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4275 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4276 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4277 active->linetime = hw->wm_linetime[pipe];
4278 } else {
4279 int level, max_level = ilk_wm_max_level(dev);
4282 * For inactive pipes, all watermark levels
4283 * should be marked as enabled but zeroed,
4284 * which is what we'd compute them to.
4286 for (level = 0; level <= max_level; level++)
4287 active->wm[level].enable = true;
4290 intel_crtc->wm.active.ilk = *active;
4293 #define _FW_WM(value, plane) \
4294 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4295 #define _FW_WM_VLV(value, plane) \
4296 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4298 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4299 struct vlv_wm_values *wm)
4301 enum pipe pipe;
4302 uint32_t tmp;
4304 for_each_pipe(dev_priv, pipe) {
4305 tmp = I915_READ(VLV_DDL(pipe));
4307 wm->ddl[pipe].primary =
4308 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4309 wm->ddl[pipe].cursor =
4310 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4311 wm->ddl[pipe].sprite[0] =
4312 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4313 wm->ddl[pipe].sprite[1] =
4314 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4317 tmp = I915_READ(DSPFW1);
4318 wm->sr.plane = _FW_WM(tmp, SR);
4319 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4320 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4321 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4323 tmp = I915_READ(DSPFW2);
4324 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4325 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4326 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4328 tmp = I915_READ(DSPFW3);
4329 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4331 if (IS_CHERRYVIEW(dev_priv)) {
4332 tmp = I915_READ(DSPFW7_CHV);
4333 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4334 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4336 tmp = I915_READ(DSPFW8_CHV);
4337 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4338 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4340 tmp = I915_READ(DSPFW9_CHV);
4341 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4342 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4344 tmp = I915_READ(DSPHOWM);
4345 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4346 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4347 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4348 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4349 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4350 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4351 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4352 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4353 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4354 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4355 } else {
4356 tmp = I915_READ(DSPFW7);
4357 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4358 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4360 tmp = I915_READ(DSPHOWM);
4361 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4362 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4363 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4364 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4365 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4366 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4367 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4371 #undef _FW_WM
4372 #undef _FW_WM_VLV
4374 void vlv_wm_get_hw_state(struct drm_device *dev)
4376 struct drm_i915_private *dev_priv = to_i915(dev);
4377 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4378 struct intel_plane *plane;
4379 enum pipe pipe;
4380 u32 val;
4382 vlv_read_wm_values(dev_priv, wm);
4384 for_each_intel_plane(dev, plane) {
4385 switch (plane->base.type) {
4386 int sprite;
4387 case DRM_PLANE_TYPE_CURSOR:
4388 plane->wm.fifo_size = 63;
4389 break;
4390 case DRM_PLANE_TYPE_PRIMARY:
4391 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4392 break;
4393 case DRM_PLANE_TYPE_OVERLAY:
4394 sprite = plane->plane;
4395 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4396 break;
4400 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4401 wm->level = VLV_WM_LEVEL_PM2;
4403 if (IS_CHERRYVIEW(dev_priv)) {
4404 mutex_lock(&dev_priv->rps.hw_lock);
4406 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4407 if (val & DSP_MAXFIFO_PM5_ENABLE)
4408 wm->level = VLV_WM_LEVEL_PM5;
4411 * If DDR DVFS is disabled in the BIOS, Punit
4412 * will never ack the request. So if that happens
4413 * assume we don't have to enable/disable DDR DVFS
4414 * dynamically. To test that just set the REQ_ACK
4415 * bit to poke the Punit, but don't change the
4416 * HIGH/LOW bits so that we don't actually change
4417 * the current state.
4419 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4420 val |= FORCE_DDR_FREQ_REQ_ACK;
4421 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4423 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4424 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4425 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4426 "assuming DDR DVFS is disabled\n");
4427 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4428 } else {
4429 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4430 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4431 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4434 mutex_unlock(&dev_priv->rps.hw_lock);
4437 for_each_pipe(dev_priv, pipe)
4438 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4439 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4440 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4442 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4443 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4446 void ilk_wm_get_hw_state(struct drm_device *dev)
4448 struct drm_i915_private *dev_priv = to_i915(dev);
4449 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4450 struct drm_crtc *crtc;
4452 for_each_crtc(dev, crtc)
4453 ilk_pipe_wm_get_hw_state(crtc);
4455 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4456 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4457 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4459 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4460 if (INTEL_INFO(dev)->gen >= 7) {
4461 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4462 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4465 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4466 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4467 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4468 else if (IS_IVYBRIDGE(dev))
4469 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4470 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4472 hw->enable_fbc_wm =
4473 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4477 * intel_update_watermarks - update FIFO watermark values based on current modes
4479 * Calculate watermark values for the various WM regs based on current mode
4480 * and plane configuration.
4482 * There are several cases to deal with here:
4483 * - normal (i.e. non-self-refresh)
4484 * - self-refresh (SR) mode
4485 * - lines are large relative to FIFO size (buffer can hold up to 2)
4486 * - lines are small relative to FIFO size (buffer can hold more than 2
4487 * lines), so need to account for TLB latency
4489 * The normal calculation is:
4490 * watermark = dotclock * bytes per pixel * latency
4491 * where latency is platform & configuration dependent (we assume pessimal
4492 * values here).
4494 * The SR calculation is:
4495 * watermark = (trunc(latency/line time)+1) * surface width *
4496 * bytes per pixel
4497 * where
4498 * line time = htotal / dotclock
4499 * surface width = hdisplay for normal plane and 64 for cursor
4500 * and latency is assumed to be high, as above.
4502 * The final value programmed to the register should always be rounded up,
4503 * and include an extra 2 entries to account for clock crossings.
4505 * We don't use the sprite, so we can ignore that. And on Crestline we have
4506 * to set the non-SR watermarks to 8.
4508 void intel_update_watermarks(struct drm_crtc *crtc)
4510 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4512 if (dev_priv->display.update_wm)
4513 dev_priv->display.update_wm(crtc);
4517 * Lock protecting IPS related data structures
4519 DEFINE_SPINLOCK(mchdev_lock);
4521 /* Global for IPS driver to get at the current i915 device. Protected by
4522 * mchdev_lock. */
4523 static struct drm_i915_private *i915_mch_dev;
4525 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4527 u16 rgvswctl;
4529 assert_spin_locked(&mchdev_lock);
4531 rgvswctl = I915_READ16(MEMSWCTL);
4532 if (rgvswctl & MEMCTL_CMD_STS) {
4533 DRM_DEBUG("gpu busy, RCS change rejected\n");
4534 return false; /* still busy with another command */
4537 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4538 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4539 I915_WRITE16(MEMSWCTL, rgvswctl);
4540 POSTING_READ16(MEMSWCTL);
4542 rgvswctl |= MEMCTL_CMD_STS;
4543 I915_WRITE16(MEMSWCTL, rgvswctl);
4545 return true;
4548 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4550 u32 rgvmodectl;
4551 u8 fmax, fmin, fstart, vstart;
4553 spin_lock_irq(&mchdev_lock);
4555 rgvmodectl = I915_READ(MEMMODECTL);
4557 /* Enable temp reporting */
4558 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4559 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4561 /* 100ms RC evaluation intervals */
4562 I915_WRITE(RCUPEI, 100000);
4563 I915_WRITE(RCDNEI, 100000);
4565 /* Set max/min thresholds to 90ms and 80ms respectively */
4566 I915_WRITE(RCBMAXAVG, 90000);
4567 I915_WRITE(RCBMINAVG, 80000);
4569 I915_WRITE(MEMIHYST, 1);
4571 /* Set up min, max, and cur for interrupt handling */
4572 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4573 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4574 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4575 MEMMODE_FSTART_SHIFT;
4577 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4578 PXVFREQ_PX_SHIFT;
4580 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4581 dev_priv->ips.fstart = fstart;
4583 dev_priv->ips.max_delay = fstart;
4584 dev_priv->ips.min_delay = fmin;
4585 dev_priv->ips.cur_delay = fstart;
4587 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4588 fmax, fmin, fstart);
4590 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4593 * Interrupts will be enabled in ironlake_irq_postinstall
4596 I915_WRITE(VIDSTART, vstart);
4597 POSTING_READ(VIDSTART);
4599 rgvmodectl |= MEMMODE_SWMODE_EN;
4600 I915_WRITE(MEMMODECTL, rgvmodectl);
4602 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4603 DRM_ERROR("stuck trying to change perf mode\n");
4604 mdelay(1);
4606 ironlake_set_drps(dev_priv, fstart);
4608 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4609 I915_READ(DDREC) + I915_READ(CSIEC);
4610 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4611 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4612 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4614 spin_unlock_irq(&mchdev_lock);
4617 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4619 u16 rgvswctl;
4621 spin_lock_irq(&mchdev_lock);
4623 rgvswctl = I915_READ16(MEMSWCTL);
4625 /* Ack interrupts, disable EFC interrupt */
4626 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4627 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4628 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4629 I915_WRITE(DEIIR, DE_PCU_EVENT);
4630 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4632 /* Go back to the starting frequency */
4633 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4634 mdelay(1);
4635 rgvswctl |= MEMCTL_CMD_STS;
4636 I915_WRITE(MEMSWCTL, rgvswctl);
4637 mdelay(1);
4639 spin_unlock_irq(&mchdev_lock);
4642 /* There's a funny hw issue where the hw returns all 0 when reading from
4643 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4644 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4645 * all limits and the gpu stuck at whatever frequency it is at atm).
4647 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4649 u32 limits;
4651 /* Only set the down limit when we've reached the lowest level to avoid
4652 * getting more interrupts, otherwise leave this clear. This prevents a
4653 * race in the hw when coming out of rc6: There's a tiny window where
4654 * the hw runs at the minimal clock before selecting the desired
4655 * frequency, if the down threshold expires in that window we will not
4656 * receive a down interrupt. */
4657 if (IS_GEN9(dev_priv)) {
4658 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4659 if (val <= dev_priv->rps.min_freq_softlimit)
4660 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4661 } else {
4662 limits = dev_priv->rps.max_freq_softlimit << 24;
4663 if (val <= dev_priv->rps.min_freq_softlimit)
4664 limits |= dev_priv->rps.min_freq_softlimit << 16;
4667 return limits;
4670 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4672 int new_power;
4673 u32 threshold_up = 0, threshold_down = 0; /* in % */
4674 u32 ei_up = 0, ei_down = 0;
4676 new_power = dev_priv->rps.power;
4677 switch (dev_priv->rps.power) {
4678 case LOW_POWER:
4679 if (val > dev_priv->rps.efficient_freq + 1 &&
4680 val > dev_priv->rps.cur_freq)
4681 new_power = BETWEEN;
4682 break;
4684 case BETWEEN:
4685 if (val <= dev_priv->rps.efficient_freq &&
4686 val < dev_priv->rps.cur_freq)
4687 new_power = LOW_POWER;
4688 else if (val >= dev_priv->rps.rp0_freq &&
4689 val > dev_priv->rps.cur_freq)
4690 new_power = HIGH_POWER;
4691 break;
4693 case HIGH_POWER:
4694 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
4695 val < dev_priv->rps.cur_freq)
4696 new_power = BETWEEN;
4697 break;
4699 /* Max/min bins are special */
4700 if (val <= dev_priv->rps.min_freq_softlimit)
4701 new_power = LOW_POWER;
4702 if (val >= dev_priv->rps.max_freq_softlimit)
4703 new_power = HIGH_POWER;
4704 if (new_power == dev_priv->rps.power)
4705 return;
4707 /* Note the units here are not exactly 1us, but 1280ns. */
4708 switch (new_power) {
4709 case LOW_POWER:
4710 /* Upclock if more than 95% busy over 16ms */
4711 ei_up = 16000;
4712 threshold_up = 95;
4714 /* Downclock if less than 85% busy over 32ms */
4715 ei_down = 32000;
4716 threshold_down = 85;
4717 break;
4719 case BETWEEN:
4720 /* Upclock if more than 90% busy over 13ms */
4721 ei_up = 13000;
4722 threshold_up = 90;
4724 /* Downclock if less than 75% busy over 32ms */
4725 ei_down = 32000;
4726 threshold_down = 75;
4727 break;
4729 case HIGH_POWER:
4730 /* Upclock if more than 85% busy over 10ms */
4731 ei_up = 10000;
4732 threshold_up = 85;
4734 /* Downclock if less than 60% busy over 32ms */
4735 ei_down = 32000;
4736 threshold_down = 60;
4737 break;
4740 I915_WRITE(GEN6_RP_UP_EI,
4741 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4742 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4743 GT_INTERVAL_FROM_US(dev_priv,
4744 ei_up * threshold_up / 100));
4746 I915_WRITE(GEN6_RP_DOWN_EI,
4747 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4748 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4749 GT_INTERVAL_FROM_US(dev_priv,
4750 ei_down * threshold_down / 100));
4752 I915_WRITE(GEN6_RP_CONTROL,
4753 GEN6_RP_MEDIA_TURBO |
4754 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4755 GEN6_RP_MEDIA_IS_GFX |
4756 GEN6_RP_ENABLE |
4757 GEN6_RP_UP_BUSY_AVG |
4758 GEN6_RP_DOWN_IDLE_AVG);
4760 dev_priv->rps.power = new_power;
4761 dev_priv->rps.up_threshold = threshold_up;
4762 dev_priv->rps.down_threshold = threshold_down;
4763 dev_priv->rps.last_adj = 0;
4766 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4768 u32 mask = 0;
4770 if (val > dev_priv->rps.min_freq_softlimit)
4771 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4772 if (val < dev_priv->rps.max_freq_softlimit)
4773 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4775 mask &= dev_priv->pm_rps_events;
4777 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4780 /* gen6_set_rps is called to update the frequency request, but should also be
4781 * called when the range (min_delay and max_delay) is modified so that we can
4782 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4783 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4785 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4786 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4787 return;
4789 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4790 WARN_ON(val > dev_priv->rps.max_freq);
4791 WARN_ON(val < dev_priv->rps.min_freq);
4793 /* min/max delay may still have been modified so be sure to
4794 * write the limits value.
4796 if (val != dev_priv->rps.cur_freq) {
4797 gen6_set_rps_thresholds(dev_priv, val);
4799 if (IS_GEN9(dev_priv))
4800 I915_WRITE(GEN6_RPNSWREQ,
4801 GEN9_FREQUENCY(val));
4802 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4803 I915_WRITE(GEN6_RPNSWREQ,
4804 HSW_FREQUENCY(val));
4805 else
4806 I915_WRITE(GEN6_RPNSWREQ,
4807 GEN6_FREQUENCY(val) |
4808 GEN6_OFFSET(0) |
4809 GEN6_AGGRESSIVE_TURBO);
4812 /* Make sure we continue to get interrupts
4813 * until we hit the minimum or maximum frequencies.
4815 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4816 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4818 POSTING_READ(GEN6_RPNSWREQ);
4820 dev_priv->rps.cur_freq = val;
4821 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4824 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4826 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4827 WARN_ON(val > dev_priv->rps.max_freq);
4828 WARN_ON(val < dev_priv->rps.min_freq);
4830 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4831 "Odd GPU freq value\n"))
4832 val &= ~1;
4834 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4836 if (val != dev_priv->rps.cur_freq) {
4837 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4838 if (!IS_CHERRYVIEW(dev_priv))
4839 gen6_set_rps_thresholds(dev_priv, val);
4842 dev_priv->rps.cur_freq = val;
4843 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4846 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4848 * * If Gfx is Idle, then
4849 * 1. Forcewake Media well.
4850 * 2. Request idle freq.
4851 * 3. Release Forcewake of Media well.
4853 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4855 u32 val = dev_priv->rps.idle_freq;
4857 if (dev_priv->rps.cur_freq <= val)
4858 return;
4860 /* Wake up the media well, as that takes a lot less
4861 * power than the Render well. */
4862 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4863 valleyview_set_rps(dev_priv, val);
4864 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4867 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4869 mutex_lock(&dev_priv->rps.hw_lock);
4870 if (dev_priv->rps.enabled) {
4871 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4872 gen6_rps_reset_ei(dev_priv);
4873 I915_WRITE(GEN6_PMINTRMSK,
4874 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4876 gen6_enable_rps_interrupts(dev_priv);
4878 /* Ensure we start at the user's desired frequency */
4879 intel_set_rps(dev_priv,
4880 clamp(dev_priv->rps.cur_freq,
4881 dev_priv->rps.min_freq_softlimit,
4882 dev_priv->rps.max_freq_softlimit));
4884 mutex_unlock(&dev_priv->rps.hw_lock);
4887 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4889 /* Flush our bottom-half so that it does not race with us
4890 * setting the idle frequency and so that it is bounded by
4891 * our rpm wakeref. And then disable the interrupts to stop any
4892 * futher RPS reclocking whilst we are asleep.
4894 gen6_disable_rps_interrupts(dev_priv);
4896 mutex_lock(&dev_priv->rps.hw_lock);
4897 if (dev_priv->rps.enabled) {
4898 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4899 vlv_set_rps_idle(dev_priv);
4900 else
4901 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4902 dev_priv->rps.last_adj = 0;
4903 I915_WRITE(GEN6_PMINTRMSK,
4904 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4906 mutex_unlock(&dev_priv->rps.hw_lock);
4908 spin_lock(&dev_priv->rps.client_lock);
4909 while (!list_empty(&dev_priv->rps.clients))
4910 list_del_init(dev_priv->rps.clients.next);
4911 spin_unlock(&dev_priv->rps.client_lock);
4914 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4915 struct intel_rps_client *rps,
4916 unsigned long submitted)
4918 /* This is intentionally racy! We peek at the state here, then
4919 * validate inside the RPS worker.
4921 if (!(dev_priv->gt.awake &&
4922 dev_priv->rps.enabled &&
4923 dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
4924 return;
4926 /* Force a RPS boost (and don't count it against the client) if
4927 * the GPU is severely congested.
4929 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4930 rps = NULL;
4932 spin_lock(&dev_priv->rps.client_lock);
4933 if (rps == NULL || list_empty(&rps->link)) {
4934 spin_lock_irq(&dev_priv->irq_lock);
4935 if (dev_priv->rps.interrupts_enabled) {
4936 dev_priv->rps.client_boost = true;
4937 schedule_work(&dev_priv->rps.work);
4939 spin_unlock_irq(&dev_priv->irq_lock);
4941 if (rps != NULL) {
4942 list_add(&rps->link, &dev_priv->rps.clients);
4943 rps->boosts++;
4944 } else
4945 dev_priv->rps.boosts++;
4947 spin_unlock(&dev_priv->rps.client_lock);
4950 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4952 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4953 valleyview_set_rps(dev_priv, val);
4954 else
4955 gen6_set_rps(dev_priv, val);
4958 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
4960 I915_WRITE(GEN6_RC_CONTROL, 0);
4961 I915_WRITE(GEN9_PG_ENABLE, 0);
4964 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4966 I915_WRITE(GEN6_RP_CONTROL, 0);
4969 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4971 I915_WRITE(GEN6_RC_CONTROL, 0);
4972 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4973 I915_WRITE(GEN6_RP_CONTROL, 0);
4976 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4978 I915_WRITE(GEN6_RC_CONTROL, 0);
4981 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4983 /* we're doing forcewake before Disabling RC6,
4984 * This what the BIOS expects when going into suspend */
4985 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4987 I915_WRITE(GEN6_RC_CONTROL, 0);
4989 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4992 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
4994 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4995 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4996 mode = GEN6_RC_CTL_RC6_ENABLE;
4997 else
4998 mode = 0;
5000 if (HAS_RC6p(dev_priv))
5001 DRM_DEBUG_DRIVER("Enabling RC6 states: "
5002 "RC6 %s RC6p %s RC6pp %s\n",
5003 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
5004 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
5005 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5007 else
5008 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5009 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5012 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5014 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5015 bool enable_rc6 = true;
5016 unsigned long rc6_ctx_base;
5017 u32 rc_ctl;
5018 int rc_sw_target;
5020 rc_ctl = I915_READ(GEN6_RC_CONTROL);
5021 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5022 RC_SW_TARGET_STATE_SHIFT;
5023 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5024 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5025 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5026 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5027 rc_sw_target);
5029 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5030 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5031 enable_rc6 = false;
5035 * The exact context size is not known for BXT, so assume a page size
5036 * for this check.
5038 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5039 if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5040 (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5041 ggtt->stolen_reserved_size))) {
5042 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5043 enable_rc6 = false;
5046 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5047 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5048 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5049 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5050 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5051 enable_rc6 = false;
5054 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5055 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5056 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5057 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5058 enable_rc6 = false;
5061 if (!I915_READ(GEN6_GFXPAUSE)) {
5062 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5063 enable_rc6 = false;
5066 if (!I915_READ(GEN8_MISC_CTRL0)) {
5067 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5068 enable_rc6 = false;
5071 return enable_rc6;
5074 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5076 /* No RC6 before Ironlake and code is gone for ilk. */
5077 if (INTEL_INFO(dev_priv)->gen < 6)
5078 return 0;
5080 if (!enable_rc6)
5081 return 0;
5083 if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5084 DRM_INFO("RC6 disabled by BIOS\n");
5085 return 0;
5088 /* Respect the kernel parameter if it is set */
5089 if (enable_rc6 >= 0) {
5090 int mask;
5092 if (HAS_RC6p(dev_priv))
5093 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5094 INTEL_RC6pp_ENABLE;
5095 else
5096 mask = INTEL_RC6_ENABLE;
5098 if ((enable_rc6 & mask) != enable_rc6)
5099 DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5100 "(requested %d, valid %d)\n",
5101 enable_rc6 & mask, enable_rc6, mask);
5103 return enable_rc6 & mask;
5106 if (IS_IVYBRIDGE(dev_priv))
5107 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5109 return INTEL_RC6_ENABLE;
5112 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5114 /* All of these values are in units of 50MHz */
5116 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5117 if (IS_BROXTON(dev_priv)) {
5118 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5119 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5120 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
5121 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
5122 } else {
5123 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5124 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
5125 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
5126 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5128 /* hw_max = RP0 until we check for overclocking */
5129 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5131 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5132 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5133 IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5134 u32 ddcc_status = 0;
5136 if (sandybridge_pcode_read(dev_priv,
5137 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5138 &ddcc_status) == 0)
5139 dev_priv->rps.efficient_freq =
5140 clamp_t(u8,
5141 ((ddcc_status >> 8) & 0xff),
5142 dev_priv->rps.min_freq,
5143 dev_priv->rps.max_freq);
5146 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5147 /* Store the frequency values in 16.66 MHZ units, which is
5148 * the natural hardware unit for SKL
5150 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5151 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5152 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5153 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5154 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5158 static void reset_rps(struct drm_i915_private *dev_priv,
5159 void (*set)(struct drm_i915_private *, u8))
5161 u8 freq = dev_priv->rps.cur_freq;
5163 /* force a reset */
5164 dev_priv->rps.power = -1;
5165 dev_priv->rps.cur_freq = -1;
5167 set(dev_priv, freq);
5170 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5171 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5173 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5175 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5176 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5178 * BIOS could leave the Hw Turbo enabled, so need to explicitly
5179 * clear out the Control register just to avoid inconsitency
5180 * with debugfs interface, which will show Turbo as enabled
5181 * only and that is not expected by the User after adding the
5182 * WaGsvDisableTurbo. Apart from this there is no problem even
5183 * if the Turbo is left enabled in the Control register, as the
5184 * Up/Down interrupts would remain masked.
5186 gen9_disable_rps(dev_priv);
5187 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5188 return;
5191 /* Program defaults and thresholds for RPS*/
5192 I915_WRITE(GEN6_RC_VIDEO_FREQ,
5193 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5195 /* 1 second timeout*/
5196 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5197 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5199 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5201 /* Leaning on the below call to gen6_set_rps to program/setup the
5202 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5203 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5204 reset_rps(dev_priv, gen6_set_rps);
5206 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5209 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5211 struct intel_engine_cs *engine;
5212 uint32_t rc6_mask = 0;
5214 /* 1a: Software RC state - RC0 */
5215 I915_WRITE(GEN6_RC_STATE, 0);
5217 /* 1b: Get forcewake during program sequence. Although the driver
5218 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5219 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5221 /* 2a: Disable RC states. */
5222 I915_WRITE(GEN6_RC_CONTROL, 0);
5224 /* 2b: Program RC6 thresholds.*/
5226 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5227 if (IS_SKYLAKE(dev_priv))
5228 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5229 else
5230 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5231 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5232 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5233 for_each_engine(engine, dev_priv)
5234 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5236 if (HAS_GUC(dev_priv))
5237 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5239 I915_WRITE(GEN6_RC_SLEEP, 0);
5241 /* 2c: Program Coarse Power Gating Policies. */
5242 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5243 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5245 /* 3a: Enable RC6 */
5246 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5247 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5248 DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5249 /* WaRsUseTimeoutMode */
5250 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
5251 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5252 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5253 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5254 GEN7_RC_CTL_TO_MODE |
5255 rc6_mask);
5256 } else {
5257 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5258 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5259 GEN6_RC_CTL_EI_MODE(1) |
5260 rc6_mask);
5264 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5265 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5267 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5268 I915_WRITE(GEN9_PG_ENABLE, 0);
5269 else
5270 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5271 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5273 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5276 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5278 struct intel_engine_cs *engine;
5279 uint32_t rc6_mask = 0;
5281 /* 1a: Software RC state - RC0 */
5282 I915_WRITE(GEN6_RC_STATE, 0);
5284 /* 1c & 1d: Get forcewake during program sequence. Although the driver
5285 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5286 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5288 /* 2a: Disable RC states. */
5289 I915_WRITE(GEN6_RC_CONTROL, 0);
5291 /* 2b: Program RC6 thresholds.*/
5292 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5293 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5294 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5295 for_each_engine(engine, dev_priv)
5296 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5297 I915_WRITE(GEN6_RC_SLEEP, 0);
5298 if (IS_BROADWELL(dev_priv))
5299 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5300 else
5301 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5303 /* 3: Enable RC6 */
5304 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5305 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5306 intel_print_rc6_info(dev_priv, rc6_mask);
5307 if (IS_BROADWELL(dev_priv))
5308 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5309 GEN7_RC_CTL_TO_MODE |
5310 rc6_mask);
5311 else
5312 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5313 GEN6_RC_CTL_EI_MODE(1) |
5314 rc6_mask);
5316 /* 4 Program defaults and thresholds for RPS*/
5317 I915_WRITE(GEN6_RPNSWREQ,
5318 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5319 I915_WRITE(GEN6_RC_VIDEO_FREQ,
5320 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5321 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5322 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5324 /* Docs recommend 900MHz, and 300 MHz respectively */
5325 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5326 dev_priv->rps.max_freq_softlimit << 24 |
5327 dev_priv->rps.min_freq_softlimit << 16);
5329 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5330 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5331 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5332 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5334 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5336 /* 5: Enable RPS */
5337 I915_WRITE(GEN6_RP_CONTROL,
5338 GEN6_RP_MEDIA_TURBO |
5339 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5340 GEN6_RP_MEDIA_IS_GFX |
5341 GEN6_RP_ENABLE |
5342 GEN6_RP_UP_BUSY_AVG |
5343 GEN6_RP_DOWN_IDLE_AVG);
5345 /* 6: Ring frequency + overclocking (our driver does this later */
5347 reset_rps(dev_priv, gen6_set_rps);
5349 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5352 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5354 struct intel_engine_cs *engine;
5355 u32 rc6vids, rc6_mask = 0;
5356 u32 gtfifodbg;
5357 int rc6_mode;
5358 int ret;
5360 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5362 /* Here begins a magic sequence of register writes to enable
5363 * auto-downclocking.
5365 * Perhaps there might be some value in exposing these to
5366 * userspace...
5368 I915_WRITE(GEN6_RC_STATE, 0);
5370 /* Clear the DBG now so we don't confuse earlier errors */
5371 gtfifodbg = I915_READ(GTFIFODBG);
5372 if (gtfifodbg) {
5373 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5374 I915_WRITE(GTFIFODBG, gtfifodbg);
5377 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5379 /* disable the counters and set deterministic thresholds */
5380 I915_WRITE(GEN6_RC_CONTROL, 0);
5382 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5383 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5384 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5385 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5386 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5388 for_each_engine(engine, dev_priv)
5389 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5391 I915_WRITE(GEN6_RC_SLEEP, 0);
5392 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5393 if (IS_IVYBRIDGE(dev_priv))
5394 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5395 else
5396 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5397 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5398 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5400 /* Check if we are enabling RC6 */
5401 rc6_mode = intel_enable_rc6();
5402 if (rc6_mode & INTEL_RC6_ENABLE)
5403 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5405 /* We don't use those on Haswell */
5406 if (!IS_HASWELL(dev_priv)) {
5407 if (rc6_mode & INTEL_RC6p_ENABLE)
5408 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5410 if (rc6_mode & INTEL_RC6pp_ENABLE)
5411 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5414 intel_print_rc6_info(dev_priv, rc6_mask);
5416 I915_WRITE(GEN6_RC_CONTROL,
5417 rc6_mask |
5418 GEN6_RC_CTL_EI_MODE(1) |
5419 GEN6_RC_CTL_HW_ENABLE);
5421 /* Power down if completely idle for over 50ms */
5422 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5423 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5425 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5426 if (ret)
5427 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5429 reset_rps(dev_priv, gen6_set_rps);
5431 rc6vids = 0;
5432 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5433 if (IS_GEN6(dev_priv) && ret) {
5434 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5435 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5436 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5437 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5438 rc6vids &= 0xffff00;
5439 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5440 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5441 if (ret)
5442 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5445 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5448 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5450 int min_freq = 15;
5451 unsigned int gpu_freq;
5452 unsigned int max_ia_freq, min_ring_freq;
5453 unsigned int max_gpu_freq, min_gpu_freq;
5454 int scaling_factor = 180;
5455 struct cpufreq_policy *policy;
5457 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5459 policy = cpufreq_cpu_get(0);
5460 if (policy) {
5461 max_ia_freq = policy->cpuinfo.max_freq;
5462 cpufreq_cpu_put(policy);
5463 } else {
5465 * Default to measured freq if none found, PCU will ensure we
5466 * don't go over
5468 max_ia_freq = tsc_khz;
5471 /* Convert from kHz to MHz */
5472 max_ia_freq /= 1000;
5474 min_ring_freq = I915_READ(DCLK) & 0xf;
5475 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5476 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5478 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5479 /* Convert GT frequency to 50 HZ units */
5480 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5481 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5482 } else {
5483 min_gpu_freq = dev_priv->rps.min_freq;
5484 max_gpu_freq = dev_priv->rps.max_freq;
5488 * For each potential GPU frequency, load a ring frequency we'd like
5489 * to use for memory access. We do this by specifying the IA frequency
5490 * the PCU should use as a reference to determine the ring frequency.
5492 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5493 int diff = max_gpu_freq - gpu_freq;
5494 unsigned int ia_freq = 0, ring_freq = 0;
5496 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5498 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5499 * No floor required for ring frequency on SKL.
5501 ring_freq = gpu_freq;
5502 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5503 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5504 ring_freq = max(min_ring_freq, gpu_freq);
5505 } else if (IS_HASWELL(dev_priv)) {
5506 ring_freq = mult_frac(gpu_freq, 5, 4);
5507 ring_freq = max(min_ring_freq, ring_freq);
5508 /* leave ia_freq as the default, chosen by cpufreq */
5509 } else {
5510 /* On older processors, there is no separate ring
5511 * clock domain, so in order to boost the bandwidth
5512 * of the ring, we need to upclock the CPU (ia_freq).
5514 * For GPU frequencies less than 750MHz,
5515 * just use the lowest ring freq.
5517 if (gpu_freq < min_freq)
5518 ia_freq = 800;
5519 else
5520 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5521 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5524 sandybridge_pcode_write(dev_priv,
5525 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5526 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5527 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5528 gpu_freq);
5532 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5534 u32 val, rp0;
5536 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5538 switch (INTEL_INFO(dev_priv)->eu_total) {
5539 case 8:
5540 /* (2 * 4) config */
5541 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5542 break;
5543 case 12:
5544 /* (2 * 6) config */
5545 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5546 break;
5547 case 16:
5548 /* (2 * 8) config */
5549 default:
5550 /* Setting (2 * 8) Min RP0 for any other combination */
5551 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5552 break;
5555 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5557 return rp0;
5560 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5562 u32 val, rpe;
5564 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5565 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5567 return rpe;
5570 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5572 u32 val, rp1;
5574 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5575 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5577 return rp1;
5580 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5582 u32 val, rp1;
5584 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5586 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5588 return rp1;
5591 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5593 u32 val, rp0;
5595 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5597 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5598 /* Clamp to max */
5599 rp0 = min_t(u32, rp0, 0xea);
5601 return rp0;
5604 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5606 u32 val, rpe;
5608 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5609 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5610 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5611 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5613 return rpe;
5616 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5618 u32 val;
5620 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5622 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5623 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5624 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5625 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5626 * to make sure it matches what Punit accepts.
5628 return max_t(u32, val, 0xc0);
5631 /* Check that the pctx buffer wasn't move under us. */
5632 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5634 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5636 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5637 dev_priv->vlv_pctx->stolen->start);
5641 /* Check that the pcbr address is not empty. */
5642 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5644 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5646 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5649 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5651 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5652 unsigned long pctx_paddr, paddr;
5653 u32 pcbr;
5654 int pctx_size = 32*1024;
5656 pcbr = I915_READ(VLV_PCBR);
5657 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5658 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5659 paddr = (dev_priv->mm.stolen_base +
5660 (ggtt->stolen_size - pctx_size));
5662 pctx_paddr = (paddr & (~4095));
5663 I915_WRITE(VLV_PCBR, pctx_paddr);
5666 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5669 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5671 struct drm_i915_gem_object *pctx;
5672 unsigned long pctx_paddr;
5673 u32 pcbr;
5674 int pctx_size = 24*1024;
5676 mutex_lock(&dev_priv->drm.struct_mutex);
5678 pcbr = I915_READ(VLV_PCBR);
5679 if (pcbr) {
5680 /* BIOS set it up already, grab the pre-alloc'd space */
5681 int pcbr_offset;
5683 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5684 pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5685 pcbr_offset,
5686 I915_GTT_OFFSET_NONE,
5687 pctx_size);
5688 goto out;
5691 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5694 * From the Gunit register HAS:
5695 * The Gfx driver is expected to program this register and ensure
5696 * proper allocation within Gfx stolen memory. For example, this
5697 * register should be programmed such than the PCBR range does not
5698 * overlap with other ranges, such as the frame buffer, protected
5699 * memory, or any other relevant ranges.
5701 pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5702 if (!pctx) {
5703 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5704 goto out;
5707 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5708 I915_WRITE(VLV_PCBR, pctx_paddr);
5710 out:
5711 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5712 dev_priv->vlv_pctx = pctx;
5713 mutex_unlock(&dev_priv->drm.struct_mutex);
5716 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5718 if (WARN_ON(!dev_priv->vlv_pctx))
5719 return;
5721 i915_gem_object_put_unlocked(dev_priv->vlv_pctx);
5722 dev_priv->vlv_pctx = NULL;
5725 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5727 dev_priv->rps.gpll_ref_freq =
5728 vlv_get_cck_clock(dev_priv, "GPLL ref",
5729 CCK_GPLL_CLOCK_CONTROL,
5730 dev_priv->czclk_freq);
5732 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5733 dev_priv->rps.gpll_ref_freq);
5736 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5738 u32 val;
5740 valleyview_setup_pctx(dev_priv);
5742 vlv_init_gpll_ref_freq(dev_priv);
5744 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5745 switch ((val >> 6) & 3) {
5746 case 0:
5747 case 1:
5748 dev_priv->mem_freq = 800;
5749 break;
5750 case 2:
5751 dev_priv->mem_freq = 1066;
5752 break;
5753 case 3:
5754 dev_priv->mem_freq = 1333;
5755 break;
5757 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5759 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5760 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5761 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5762 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5763 dev_priv->rps.max_freq);
5765 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5766 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5767 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5768 dev_priv->rps.efficient_freq);
5770 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5771 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5772 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5773 dev_priv->rps.rp1_freq);
5775 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5776 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5777 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5778 dev_priv->rps.min_freq);
5781 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5783 u32 val;
5785 cherryview_setup_pctx(dev_priv);
5787 vlv_init_gpll_ref_freq(dev_priv);
5789 mutex_lock(&dev_priv->sb_lock);
5790 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5791 mutex_unlock(&dev_priv->sb_lock);
5793 switch ((val >> 2) & 0x7) {
5794 case 3:
5795 dev_priv->mem_freq = 2000;
5796 break;
5797 default:
5798 dev_priv->mem_freq = 1600;
5799 break;
5801 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5803 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5804 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5805 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5806 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5807 dev_priv->rps.max_freq);
5809 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5810 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5811 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5812 dev_priv->rps.efficient_freq);
5814 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5815 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5816 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5817 dev_priv->rps.rp1_freq);
5819 /* PUnit validated range is only [RPe, RP0] */
5820 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5821 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5822 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5823 dev_priv->rps.min_freq);
5825 WARN_ONCE((dev_priv->rps.max_freq |
5826 dev_priv->rps.efficient_freq |
5827 dev_priv->rps.rp1_freq |
5828 dev_priv->rps.min_freq) & 1,
5829 "Odd GPU freq values\n");
5832 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5834 valleyview_cleanup_pctx(dev_priv);
5837 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5839 struct intel_engine_cs *engine;
5840 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5842 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5844 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5845 GT_FIFO_FREE_ENTRIES_CHV);
5846 if (gtfifodbg) {
5847 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5848 gtfifodbg);
5849 I915_WRITE(GTFIFODBG, gtfifodbg);
5852 cherryview_check_pctx(dev_priv);
5854 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5855 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5856 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5858 /* Disable RC states. */
5859 I915_WRITE(GEN6_RC_CONTROL, 0);
5861 /* 2a: Program RC6 thresholds.*/
5862 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5863 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5864 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5866 for_each_engine(engine, dev_priv)
5867 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5868 I915_WRITE(GEN6_RC_SLEEP, 0);
5870 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5871 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5873 /* allows RC6 residency counter to work */
5874 I915_WRITE(VLV_COUNTER_CONTROL,
5875 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5876 VLV_MEDIA_RC6_COUNT_EN |
5877 VLV_RENDER_RC6_COUNT_EN));
5879 /* For now we assume BIOS is allocating and populating the PCBR */
5880 pcbr = I915_READ(VLV_PCBR);
5882 /* 3: Enable RC6 */
5883 if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
5884 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5885 rc6_mode = GEN7_RC_CTL_TO_MODE;
5887 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5889 /* 4 Program defaults and thresholds for RPS*/
5890 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5891 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5892 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5893 I915_WRITE(GEN6_RP_UP_EI, 66000);
5894 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5896 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5898 /* 5: Enable RPS */
5899 I915_WRITE(GEN6_RP_CONTROL,
5900 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5901 GEN6_RP_MEDIA_IS_GFX |
5902 GEN6_RP_ENABLE |
5903 GEN6_RP_UP_BUSY_AVG |
5904 GEN6_RP_DOWN_IDLE_AVG);
5906 /* Setting Fixed Bias */
5907 val = VLV_OVERRIDE_EN |
5908 VLV_SOC_TDP_EN |
5909 CHV_BIAS_CPU_50_SOC_50;
5910 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5912 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5914 /* RPS code assumes GPLL is used */
5915 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5917 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5918 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5920 reset_rps(dev_priv, valleyview_set_rps);
5922 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5925 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5927 struct intel_engine_cs *engine;
5928 u32 gtfifodbg, val, rc6_mode = 0;
5930 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5932 valleyview_check_pctx(dev_priv);
5934 gtfifodbg = I915_READ(GTFIFODBG);
5935 if (gtfifodbg) {
5936 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5937 gtfifodbg);
5938 I915_WRITE(GTFIFODBG, gtfifodbg);
5941 /* If VLV, Forcewake all wells, else re-direct to regular path */
5942 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5944 /* Disable RC states. */
5945 I915_WRITE(GEN6_RC_CONTROL, 0);
5947 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5948 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5949 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5950 I915_WRITE(GEN6_RP_UP_EI, 66000);
5951 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5953 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5955 I915_WRITE(GEN6_RP_CONTROL,
5956 GEN6_RP_MEDIA_TURBO |
5957 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5958 GEN6_RP_MEDIA_IS_GFX |
5959 GEN6_RP_ENABLE |
5960 GEN6_RP_UP_BUSY_AVG |
5961 GEN6_RP_DOWN_IDLE_CONT);
5963 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5964 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5965 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5967 for_each_engine(engine, dev_priv)
5968 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5970 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5972 /* allows RC6 residency counter to work */
5973 I915_WRITE(VLV_COUNTER_CONTROL,
5974 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5975 VLV_RENDER_RC0_COUNT_EN |
5976 VLV_MEDIA_RC6_COUNT_EN |
5977 VLV_RENDER_RC6_COUNT_EN));
5979 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5980 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5982 intel_print_rc6_info(dev_priv, rc6_mode);
5984 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5986 /* Setting Fixed Bias */
5987 val = VLV_OVERRIDE_EN |
5988 VLV_SOC_TDP_EN |
5989 VLV_BIAS_CPU_125_SOC_875;
5990 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5992 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5994 /* RPS code assumes GPLL is used */
5995 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5997 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5998 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6000 reset_rps(dev_priv, valleyview_set_rps);
6002 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6005 static unsigned long intel_pxfreq(u32 vidfreq)
6007 unsigned long freq;
6008 int div = (vidfreq & 0x3f0000) >> 16;
6009 int post = (vidfreq & 0x3000) >> 12;
6010 int pre = (vidfreq & 0x7);
6012 if (!pre)
6013 return 0;
6015 freq = ((div * 133333) / ((1<<post) * pre));
6017 return freq;
6020 static const struct cparams {
6021 u16 i;
6022 u16 t;
6023 u16 m;
6024 u16 c;
6025 } cparams[] = {
6026 { 1, 1333, 301, 28664 },
6027 { 1, 1066, 294, 24460 },
6028 { 1, 800, 294, 25192 },
6029 { 0, 1333, 276, 27605 },
6030 { 0, 1066, 276, 27605 },
6031 { 0, 800, 231, 23784 },
6034 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6036 u64 total_count, diff, ret;
6037 u32 count1, count2, count3, m = 0, c = 0;
6038 unsigned long now = jiffies_to_msecs(jiffies), diff1;
6039 int i;
6041 assert_spin_locked(&mchdev_lock);
6043 diff1 = now - dev_priv->ips.last_time1;
6045 /* Prevent division-by-zero if we are asking too fast.
6046 * Also, we don't get interesting results if we are polling
6047 * faster than once in 10ms, so just return the saved value
6048 * in such cases.
6050 if (diff1 <= 10)
6051 return dev_priv->ips.chipset_power;
6053 count1 = I915_READ(DMIEC);
6054 count2 = I915_READ(DDREC);
6055 count3 = I915_READ(CSIEC);
6057 total_count = count1 + count2 + count3;
6059 /* FIXME: handle per-counter overflow */
6060 if (total_count < dev_priv->ips.last_count1) {
6061 diff = ~0UL - dev_priv->ips.last_count1;
6062 diff += total_count;
6063 } else {
6064 diff = total_count - dev_priv->ips.last_count1;
6067 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6068 if (cparams[i].i == dev_priv->ips.c_m &&
6069 cparams[i].t == dev_priv->ips.r_t) {
6070 m = cparams[i].m;
6071 c = cparams[i].c;
6072 break;
6076 diff = div_u64(diff, diff1);
6077 ret = ((m * diff) + c);
6078 ret = div_u64(ret, 10);
6080 dev_priv->ips.last_count1 = total_count;
6081 dev_priv->ips.last_time1 = now;
6083 dev_priv->ips.chipset_power = ret;
6085 return ret;
6088 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6090 unsigned long val;
6092 if (INTEL_INFO(dev_priv)->gen != 5)
6093 return 0;
6095 spin_lock_irq(&mchdev_lock);
6097 val = __i915_chipset_val(dev_priv);
6099 spin_unlock_irq(&mchdev_lock);
6101 return val;
6104 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6106 unsigned long m, x, b;
6107 u32 tsfs;
6109 tsfs = I915_READ(TSFS);
6111 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6112 x = I915_READ8(TR1);
6114 b = tsfs & TSFS_INTR_MASK;
6116 return ((m * x) / 127) - b;
6119 static int _pxvid_to_vd(u8 pxvid)
6121 if (pxvid == 0)
6122 return 0;
6124 if (pxvid >= 8 && pxvid < 31)
6125 pxvid = 31;
6127 return (pxvid + 2) * 125;
6130 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6132 const int vd = _pxvid_to_vd(pxvid);
6133 const int vm = vd - 1125;
6135 if (INTEL_INFO(dev_priv)->is_mobile)
6136 return vm > 0 ? vm : 0;
6138 return vd;
6141 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6143 u64 now, diff, diffms;
6144 u32 count;
6146 assert_spin_locked(&mchdev_lock);
6148 now = ktime_get_raw_ns();
6149 diffms = now - dev_priv->ips.last_time2;
6150 do_div(diffms, NSEC_PER_MSEC);
6152 /* Don't divide by 0 */
6153 if (!diffms)
6154 return;
6156 count = I915_READ(GFXEC);
6158 if (count < dev_priv->ips.last_count2) {
6159 diff = ~0UL - dev_priv->ips.last_count2;
6160 diff += count;
6161 } else {
6162 diff = count - dev_priv->ips.last_count2;
6165 dev_priv->ips.last_count2 = count;
6166 dev_priv->ips.last_time2 = now;
6168 /* More magic constants... */
6169 diff = diff * 1181;
6170 diff = div_u64(diff, diffms * 10);
6171 dev_priv->ips.gfx_power = diff;
6174 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6176 if (INTEL_INFO(dev_priv)->gen != 5)
6177 return;
6179 spin_lock_irq(&mchdev_lock);
6181 __i915_update_gfx_val(dev_priv);
6183 spin_unlock_irq(&mchdev_lock);
6186 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6188 unsigned long t, corr, state1, corr2, state2;
6189 u32 pxvid, ext_v;
6191 assert_spin_locked(&mchdev_lock);
6193 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6194 pxvid = (pxvid >> 24) & 0x7f;
6195 ext_v = pvid_to_extvid(dev_priv, pxvid);
6197 state1 = ext_v;
6199 t = i915_mch_val(dev_priv);
6201 /* Revel in the empirically derived constants */
6203 /* Correction factor in 1/100000 units */
6204 if (t > 80)
6205 corr = ((t * 2349) + 135940);
6206 else if (t >= 50)
6207 corr = ((t * 964) + 29317);
6208 else /* < 50 */
6209 corr = ((t * 301) + 1004);
6211 corr = corr * ((150142 * state1) / 10000 - 78642);
6212 corr /= 100000;
6213 corr2 = (corr * dev_priv->ips.corr);
6215 state2 = (corr2 * state1) / 10000;
6216 state2 /= 100; /* convert to mW */
6218 __i915_update_gfx_val(dev_priv);
6220 return dev_priv->ips.gfx_power + state2;
6223 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6225 unsigned long val;
6227 if (INTEL_INFO(dev_priv)->gen != 5)
6228 return 0;
6230 spin_lock_irq(&mchdev_lock);
6232 val = __i915_gfx_val(dev_priv);
6234 spin_unlock_irq(&mchdev_lock);
6236 return val;
6240 * i915_read_mch_val - return value for IPS use
6242 * Calculate and return a value for the IPS driver to use when deciding whether
6243 * we have thermal and power headroom to increase CPU or GPU power budget.
6245 unsigned long i915_read_mch_val(void)
6247 struct drm_i915_private *dev_priv;
6248 unsigned long chipset_val, graphics_val, ret = 0;
6250 spin_lock_irq(&mchdev_lock);
6251 if (!i915_mch_dev)
6252 goto out_unlock;
6253 dev_priv = i915_mch_dev;
6255 chipset_val = __i915_chipset_val(dev_priv);
6256 graphics_val = __i915_gfx_val(dev_priv);
6258 ret = chipset_val + graphics_val;
6260 out_unlock:
6261 spin_unlock_irq(&mchdev_lock);
6263 return ret;
6265 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6268 * i915_gpu_raise - raise GPU frequency limit
6270 * Raise the limit; IPS indicates we have thermal headroom.
6272 bool i915_gpu_raise(void)
6274 struct drm_i915_private *dev_priv;
6275 bool ret = true;
6277 spin_lock_irq(&mchdev_lock);
6278 if (!i915_mch_dev) {
6279 ret = false;
6280 goto out_unlock;
6282 dev_priv = i915_mch_dev;
6284 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6285 dev_priv->ips.max_delay--;
6287 out_unlock:
6288 spin_unlock_irq(&mchdev_lock);
6290 return ret;
6292 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6295 * i915_gpu_lower - lower GPU frequency limit
6297 * IPS indicates we're close to a thermal limit, so throttle back the GPU
6298 * frequency maximum.
6300 bool i915_gpu_lower(void)
6302 struct drm_i915_private *dev_priv;
6303 bool ret = true;
6305 spin_lock_irq(&mchdev_lock);
6306 if (!i915_mch_dev) {
6307 ret = false;
6308 goto out_unlock;
6310 dev_priv = i915_mch_dev;
6312 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6313 dev_priv->ips.max_delay++;
6315 out_unlock:
6316 spin_unlock_irq(&mchdev_lock);
6318 return ret;
6320 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6323 * i915_gpu_busy - indicate GPU business to IPS
6325 * Tell the IPS driver whether or not the GPU is busy.
6327 bool i915_gpu_busy(void)
6329 struct drm_i915_private *dev_priv;
6330 struct intel_engine_cs *engine;
6331 bool ret = false;
6333 spin_lock_irq(&mchdev_lock);
6334 if (!i915_mch_dev)
6335 goto out_unlock;
6336 dev_priv = i915_mch_dev;
6338 for_each_engine(engine, dev_priv)
6339 ret |= !list_empty(&engine->request_list);
6341 out_unlock:
6342 spin_unlock_irq(&mchdev_lock);
6344 return ret;
6346 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6349 * i915_gpu_turbo_disable - disable graphics turbo
6351 * Disable graphics turbo by resetting the max frequency and setting the
6352 * current frequency to the default.
6354 bool i915_gpu_turbo_disable(void)
6356 struct drm_i915_private *dev_priv;
6357 bool ret = true;
6359 spin_lock_irq(&mchdev_lock);
6360 if (!i915_mch_dev) {
6361 ret = false;
6362 goto out_unlock;
6364 dev_priv = i915_mch_dev;
6366 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6368 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6369 ret = false;
6371 out_unlock:
6372 spin_unlock_irq(&mchdev_lock);
6374 return ret;
6376 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6379 * Tells the intel_ips driver that the i915 driver is now loaded, if
6380 * IPS got loaded first.
6382 * This awkward dance is so that neither module has to depend on the
6383 * other in order for IPS to do the appropriate communication of
6384 * GPU turbo limits to i915.
6386 static void
6387 ips_ping_for_i915_load(void)
6389 void (*link)(void);
6391 link = symbol_get(ips_link_to_i915_driver);
6392 if (link) {
6393 link();
6394 symbol_put(ips_link_to_i915_driver);
6398 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6400 /* We only register the i915 ips part with intel-ips once everything is
6401 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6402 spin_lock_irq(&mchdev_lock);
6403 i915_mch_dev = dev_priv;
6404 spin_unlock_irq(&mchdev_lock);
6406 ips_ping_for_i915_load();
6409 void intel_gpu_ips_teardown(void)
6411 spin_lock_irq(&mchdev_lock);
6412 i915_mch_dev = NULL;
6413 spin_unlock_irq(&mchdev_lock);
6416 static void intel_init_emon(struct drm_i915_private *dev_priv)
6418 u32 lcfuse;
6419 u8 pxw[16];
6420 int i;
6422 /* Disable to program */
6423 I915_WRITE(ECR, 0);
6424 POSTING_READ(ECR);
6426 /* Program energy weights for various events */
6427 I915_WRITE(SDEW, 0x15040d00);
6428 I915_WRITE(CSIEW0, 0x007f0000);
6429 I915_WRITE(CSIEW1, 0x1e220004);
6430 I915_WRITE(CSIEW2, 0x04000004);
6432 for (i = 0; i < 5; i++)
6433 I915_WRITE(PEW(i), 0);
6434 for (i = 0; i < 3; i++)
6435 I915_WRITE(DEW(i), 0);
6437 /* Program P-state weights to account for frequency power adjustment */
6438 for (i = 0; i < 16; i++) {
6439 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6440 unsigned long freq = intel_pxfreq(pxvidfreq);
6441 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6442 PXVFREQ_PX_SHIFT;
6443 unsigned long val;
6445 val = vid * vid;
6446 val *= (freq / 1000);
6447 val *= 255;
6448 val /= (127*127*900);
6449 if (val > 0xff)
6450 DRM_ERROR("bad pxval: %ld\n", val);
6451 pxw[i] = val;
6453 /* Render standby states get 0 weight */
6454 pxw[14] = 0;
6455 pxw[15] = 0;
6457 for (i = 0; i < 4; i++) {
6458 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6459 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6460 I915_WRITE(PXW(i), val);
6463 /* Adjust magic regs to magic values (more experimental results) */
6464 I915_WRITE(OGW0, 0);
6465 I915_WRITE(OGW1, 0);
6466 I915_WRITE(EG0, 0x00007f00);
6467 I915_WRITE(EG1, 0x0000000e);
6468 I915_WRITE(EG2, 0x000e0000);
6469 I915_WRITE(EG3, 0x68000300);
6470 I915_WRITE(EG4, 0x42000000);
6471 I915_WRITE(EG5, 0x00140031);
6472 I915_WRITE(EG6, 0);
6473 I915_WRITE(EG7, 0);
6475 for (i = 0; i < 8; i++)
6476 I915_WRITE(PXWL(i), 0);
6478 /* Enable PMON + select events */
6479 I915_WRITE(ECR, 0x80000019);
6481 lcfuse = I915_READ(LCFUSE02);
6483 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6486 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6489 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6490 * requirement.
6492 if (!i915.enable_rc6) {
6493 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6494 intel_runtime_pm_get(dev_priv);
6497 mutex_lock(&dev_priv->rps.hw_lock);
6499 /* Initialize RPS limits (for userspace) */
6500 if (IS_CHERRYVIEW(dev_priv))
6501 cherryview_init_gt_powersave(dev_priv);
6502 else if (IS_VALLEYVIEW(dev_priv))
6503 valleyview_init_gt_powersave(dev_priv);
6504 else if (INTEL_GEN(dev_priv) >= 6)
6505 gen6_init_rps_frequencies(dev_priv);
6507 /* Derive initial user preferences/limits from the hardware limits */
6508 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6509 dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
6511 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6512 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6514 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6515 dev_priv->rps.min_freq_softlimit =
6516 max_t(int,
6517 dev_priv->rps.efficient_freq,
6518 intel_freq_opcode(dev_priv, 450));
6520 /* After setting max-softlimit, find the overclock max freq */
6521 if (IS_GEN6(dev_priv) ||
6522 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
6523 u32 params = 0;
6525 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
6526 if (params & BIT(31)) { /* OC supported */
6527 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
6528 (dev_priv->rps.max_freq & 0xff) * 50,
6529 (params & 0xff) * 50);
6530 dev_priv->rps.max_freq = params & 0xff;
6534 /* Finally allow us to boost to max by default */
6535 dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
6537 mutex_unlock(&dev_priv->rps.hw_lock);
6539 intel_autoenable_gt_powersave(dev_priv);
6542 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6544 if (IS_VALLEYVIEW(dev_priv))
6545 valleyview_cleanup_gt_powersave(dev_priv);
6547 if (!i915.enable_rc6)
6548 intel_runtime_pm_put(dev_priv);
6552 * intel_suspend_gt_powersave - suspend PM work and helper threads
6553 * @dev_priv: i915 device
6555 * We don't want to disable RC6 or other features here, we just want
6556 * to make sure any work we've queued has finished and won't bother
6557 * us while we're suspended.
6559 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6561 if (INTEL_GEN(dev_priv) < 6)
6562 return;
6564 if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
6565 intel_runtime_pm_put(dev_priv);
6567 /* gen6_rps_idle() will be called later to disable interrupts */
6570 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
6572 dev_priv->rps.enabled = true; /* force disabling */
6573 intel_disable_gt_powersave(dev_priv);
6575 gen6_reset_rps_interrupts(dev_priv);
6578 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6580 if (!READ_ONCE(dev_priv->rps.enabled))
6581 return;
6583 mutex_lock(&dev_priv->rps.hw_lock);
6585 if (INTEL_GEN(dev_priv) >= 9) {
6586 gen9_disable_rc6(dev_priv);
6587 gen9_disable_rps(dev_priv);
6588 } else if (IS_CHERRYVIEW(dev_priv)) {
6589 cherryview_disable_rps(dev_priv);
6590 } else if (IS_VALLEYVIEW(dev_priv)) {
6591 valleyview_disable_rps(dev_priv);
6592 } else if (INTEL_GEN(dev_priv) >= 6) {
6593 gen6_disable_rps(dev_priv);
6594 } else if (IS_IRONLAKE_M(dev_priv)) {
6595 ironlake_disable_drps(dev_priv);
6598 dev_priv->rps.enabled = false;
6599 mutex_unlock(&dev_priv->rps.hw_lock);
6602 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6604 /* We shouldn't be disabling as we submit, so this should be less
6605 * racy than it appears!
6607 if (READ_ONCE(dev_priv->rps.enabled))
6608 return;
6610 /* Powersaving is controlled by the host when inside a VM */
6611 if (intel_vgpu_active(dev_priv))
6612 return;
6614 mutex_lock(&dev_priv->rps.hw_lock);
6616 if (IS_CHERRYVIEW(dev_priv)) {
6617 cherryview_enable_rps(dev_priv);
6618 } else if (IS_VALLEYVIEW(dev_priv)) {
6619 valleyview_enable_rps(dev_priv);
6620 } else if (INTEL_GEN(dev_priv) >= 9) {
6621 gen9_enable_rc6(dev_priv);
6622 gen9_enable_rps(dev_priv);
6623 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6624 gen6_update_ring_freq(dev_priv);
6625 } else if (IS_BROADWELL(dev_priv)) {
6626 gen8_enable_rps(dev_priv);
6627 gen6_update_ring_freq(dev_priv);
6628 } else if (INTEL_GEN(dev_priv) >= 6) {
6629 gen6_enable_rps(dev_priv);
6630 gen6_update_ring_freq(dev_priv);
6631 } else if (IS_IRONLAKE_M(dev_priv)) {
6632 ironlake_enable_drps(dev_priv);
6633 intel_init_emon(dev_priv);
6636 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6637 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6639 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6640 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6642 dev_priv->rps.enabled = true;
6643 mutex_unlock(&dev_priv->rps.hw_lock);
6646 static void __intel_autoenable_gt_powersave(struct work_struct *work)
6648 struct drm_i915_private *dev_priv =
6649 container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
6650 struct intel_engine_cs *rcs;
6651 struct drm_i915_gem_request *req;
6653 if (READ_ONCE(dev_priv->rps.enabled))
6654 goto out;
6656 rcs = &dev_priv->engine[RCS];
6657 if (rcs->last_context)
6658 goto out;
6660 if (!rcs->init_context)
6661 goto out;
6663 mutex_lock(&dev_priv->drm.struct_mutex);
6665 req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
6666 if (IS_ERR(req))
6667 goto unlock;
6669 if (!i915.enable_execlists && i915_switch_context(req) == 0)
6670 rcs->init_context(req);
6672 /* Mark the device busy, calling intel_enable_gt_powersave() */
6673 i915_add_request_no_flush(req);
6675 unlock:
6676 mutex_unlock(&dev_priv->drm.struct_mutex);
6677 out:
6678 intel_runtime_pm_put(dev_priv);
6681 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
6683 if (READ_ONCE(dev_priv->rps.enabled))
6684 return;
6686 if (IS_IRONLAKE_M(dev_priv)) {
6687 ironlake_enable_drps(dev_priv);
6688 mutex_lock(&dev_priv->drm.struct_mutex);
6689 intel_init_emon(dev_priv);
6690 mutex_unlock(&dev_priv->drm.struct_mutex);
6691 } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6693 * PCU communication is slow and this doesn't need to be
6694 * done at any specific time, so do this out of our fast path
6695 * to make resume and init faster.
6697 * We depend on the HW RC6 power context save/restore
6698 * mechanism when entering D3 through runtime PM suspend. So
6699 * disable RPM until RPS/RC6 is properly setup. We can only
6700 * get here via the driver load/system resume/runtime resume
6701 * paths, so the _noresume version is enough (and in case of
6702 * runtime resume it's necessary).
6704 if (queue_delayed_work(dev_priv->wq,
6705 &dev_priv->rps.autoenable_work,
6706 round_jiffies_up_relative(HZ)))
6707 intel_runtime_pm_get_noresume(dev_priv);
6711 static void ibx_init_clock_gating(struct drm_device *dev)
6713 struct drm_i915_private *dev_priv = to_i915(dev);
6716 * On Ibex Peak and Cougar Point, we need to disable clock
6717 * gating for the panel power sequencer or it will fail to
6718 * start up when no ports are active.
6720 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6723 static void g4x_disable_trickle_feed(struct drm_device *dev)
6725 struct drm_i915_private *dev_priv = to_i915(dev);
6726 enum pipe pipe;
6728 for_each_pipe(dev_priv, pipe) {
6729 I915_WRITE(DSPCNTR(pipe),
6730 I915_READ(DSPCNTR(pipe)) |
6731 DISPPLANE_TRICKLE_FEED_DISABLE);
6733 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6734 POSTING_READ(DSPSURF(pipe));
6738 static void ilk_init_lp_watermarks(struct drm_device *dev)
6740 struct drm_i915_private *dev_priv = to_i915(dev);
6742 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6743 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6744 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6747 * Don't touch WM1S_LP_EN here.
6748 * Doing so could cause underruns.
6752 static void ironlake_init_clock_gating(struct drm_device *dev)
6754 struct drm_i915_private *dev_priv = to_i915(dev);
6755 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6758 * Required for FBC
6759 * WaFbcDisableDpfcClockGating:ilk
6761 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6762 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6763 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6765 I915_WRITE(PCH_3DCGDIS0,
6766 MARIUNIT_CLOCK_GATE_DISABLE |
6767 SVSMUNIT_CLOCK_GATE_DISABLE);
6768 I915_WRITE(PCH_3DCGDIS1,
6769 VFMUNIT_CLOCK_GATE_DISABLE);
6772 * According to the spec the following bits should be set in
6773 * order to enable memory self-refresh
6774 * The bit 22/21 of 0x42004
6775 * The bit 5 of 0x42020
6776 * The bit 15 of 0x45000
6778 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6779 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6780 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6781 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6782 I915_WRITE(DISP_ARB_CTL,
6783 (I915_READ(DISP_ARB_CTL) |
6784 DISP_FBC_WM_DIS));
6786 ilk_init_lp_watermarks(dev);
6789 * Based on the document from hardware guys the following bits
6790 * should be set unconditionally in order to enable FBC.
6791 * The bit 22 of 0x42000
6792 * The bit 22 of 0x42004
6793 * The bit 7,8,9 of 0x42020.
6795 if (IS_IRONLAKE_M(dev)) {
6796 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6797 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6798 I915_READ(ILK_DISPLAY_CHICKEN1) |
6799 ILK_FBCQ_DIS);
6800 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6801 I915_READ(ILK_DISPLAY_CHICKEN2) |
6802 ILK_DPARB_GATE);
6805 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6807 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6808 I915_READ(ILK_DISPLAY_CHICKEN2) |
6809 ILK_ELPIN_409_SELECT);
6810 I915_WRITE(_3D_CHICKEN2,
6811 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6812 _3D_CHICKEN2_WM_READ_PIPELINED);
6814 /* WaDisableRenderCachePipelinedFlush:ilk */
6815 I915_WRITE(CACHE_MODE_0,
6816 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6818 /* WaDisable_RenderCache_OperationalFlush:ilk */
6819 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6821 g4x_disable_trickle_feed(dev);
6823 ibx_init_clock_gating(dev);
6826 static void cpt_init_clock_gating(struct drm_device *dev)
6828 struct drm_i915_private *dev_priv = to_i915(dev);
6829 int pipe;
6830 uint32_t val;
6833 * On Ibex Peak and Cougar Point, we need to disable clock
6834 * gating for the panel power sequencer or it will fail to
6835 * start up when no ports are active.
6837 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6838 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6839 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6840 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6841 DPLS_EDP_PPS_FIX_DIS);
6842 /* The below fixes the weird display corruption, a few pixels shifted
6843 * downward, on (only) LVDS of some HP laptops with IVY.
6845 for_each_pipe(dev_priv, pipe) {
6846 val = I915_READ(TRANS_CHICKEN2(pipe));
6847 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6848 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6849 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6850 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6851 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6852 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6853 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6854 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6856 /* WADP0ClockGatingDisable */
6857 for_each_pipe(dev_priv, pipe) {
6858 I915_WRITE(TRANS_CHICKEN1(pipe),
6859 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6863 static void gen6_check_mch_setup(struct drm_device *dev)
6865 struct drm_i915_private *dev_priv = to_i915(dev);
6866 uint32_t tmp;
6868 tmp = I915_READ(MCH_SSKPD);
6869 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6870 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6871 tmp);
6874 static void gen6_init_clock_gating(struct drm_device *dev)
6876 struct drm_i915_private *dev_priv = to_i915(dev);
6877 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6879 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6881 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6882 I915_READ(ILK_DISPLAY_CHICKEN2) |
6883 ILK_ELPIN_409_SELECT);
6885 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6886 I915_WRITE(_3D_CHICKEN,
6887 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6889 /* WaDisable_RenderCache_OperationalFlush:snb */
6890 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6893 * BSpec recoomends 8x4 when MSAA is used,
6894 * however in practice 16x4 seems fastest.
6896 * Note that PS/WM thread counts depend on the WIZ hashing
6897 * disable bit, which we don't touch here, but it's good
6898 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6900 I915_WRITE(GEN6_GT_MODE,
6901 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6903 ilk_init_lp_watermarks(dev);
6905 I915_WRITE(CACHE_MODE_0,
6906 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6908 I915_WRITE(GEN6_UCGCTL1,
6909 I915_READ(GEN6_UCGCTL1) |
6910 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6911 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6913 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6914 * gating disable must be set. Failure to set it results in
6915 * flickering pixels due to Z write ordering failures after
6916 * some amount of runtime in the Mesa "fire" demo, and Unigine
6917 * Sanctuary and Tropics, and apparently anything else with
6918 * alpha test or pixel discard.
6920 * According to the spec, bit 11 (RCCUNIT) must also be set,
6921 * but we didn't debug actual testcases to find it out.
6923 * WaDisableRCCUnitClockGating:snb
6924 * WaDisableRCPBUnitClockGating:snb
6926 I915_WRITE(GEN6_UCGCTL2,
6927 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6928 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6930 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6931 I915_WRITE(_3D_CHICKEN3,
6932 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6935 * Bspec says:
6936 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6937 * 3DSTATE_SF number of SF output attributes is more than 16."
6939 I915_WRITE(_3D_CHICKEN3,
6940 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6943 * According to the spec the following bits should be
6944 * set in order to enable memory self-refresh and fbc:
6945 * The bit21 and bit22 of 0x42000
6946 * The bit21 and bit22 of 0x42004
6947 * The bit5 and bit7 of 0x42020
6948 * The bit14 of 0x70180
6949 * The bit14 of 0x71180
6951 * WaFbcAsynchFlipDisableFbcQueue:snb
6953 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6954 I915_READ(ILK_DISPLAY_CHICKEN1) |
6955 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6956 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6957 I915_READ(ILK_DISPLAY_CHICKEN2) |
6958 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6959 I915_WRITE(ILK_DSPCLK_GATE_D,
6960 I915_READ(ILK_DSPCLK_GATE_D) |
6961 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6962 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6964 g4x_disable_trickle_feed(dev);
6966 cpt_init_clock_gating(dev);
6968 gen6_check_mch_setup(dev);
6971 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6973 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6976 * WaVSThreadDispatchOverride:ivb,vlv
6978 * This actually overrides the dispatch
6979 * mode for all thread types.
6981 reg &= ~GEN7_FF_SCHED_MASK;
6982 reg |= GEN7_FF_TS_SCHED_HW;
6983 reg |= GEN7_FF_VS_SCHED_HW;
6984 reg |= GEN7_FF_DS_SCHED_HW;
6986 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6989 static void lpt_init_clock_gating(struct drm_device *dev)
6991 struct drm_i915_private *dev_priv = to_i915(dev);
6994 * TODO: this bit should only be enabled when really needed, then
6995 * disabled when not needed anymore in order to save power.
6997 if (HAS_PCH_LPT_LP(dev))
6998 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6999 I915_READ(SOUTH_DSPCLK_GATE_D) |
7000 PCH_LP_PARTITION_LEVEL_DISABLE);
7002 /* WADPOClockGatingDisable:hsw */
7003 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7004 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7005 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7008 static void lpt_suspend_hw(struct drm_device *dev)
7010 struct drm_i915_private *dev_priv = to_i915(dev);
7012 if (HAS_PCH_LPT_LP(dev)) {
7013 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7015 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7016 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7020 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7021 int general_prio_credits,
7022 int high_prio_credits)
7024 u32 misccpctl;
7026 /* WaTempDisableDOPClkGating:bdw */
7027 misccpctl = I915_READ(GEN7_MISCCPCTL);
7028 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7030 I915_WRITE(GEN8_L3SQCREG1,
7031 L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7032 L3_HIGH_PRIO_CREDITS(high_prio_credits));
7035 * Wait at least 100 clocks before re-enabling clock gating.
7036 * See the definition of L3SQCREG1 in BSpec.
7038 POSTING_READ(GEN8_L3SQCREG1);
7039 udelay(1);
7040 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7043 static void kabylake_init_clock_gating(struct drm_device *dev)
7045 struct drm_i915_private *dev_priv = to_i915(dev);
7047 gen9_init_clock_gating(dev);
7049 /* WaDisableSDEUnitClockGating:kbl */
7050 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7051 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7052 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7054 /* WaDisableGamClockGating:kbl */
7055 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7056 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7057 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7059 /* WaFbcNukeOnHostModify:kbl */
7060 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7061 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7064 static void skylake_init_clock_gating(struct drm_device *dev)
7066 struct drm_i915_private *dev_priv = to_i915(dev);
7068 gen9_init_clock_gating(dev);
7070 /* WAC6entrylatency:skl */
7071 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7072 FBC_LLC_FULLY_OPEN);
7074 /* WaFbcNukeOnHostModify:skl */
7075 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7076 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7079 static void broadwell_init_clock_gating(struct drm_device *dev)
7081 struct drm_i915_private *dev_priv = to_i915(dev);
7082 enum pipe pipe;
7084 ilk_init_lp_watermarks(dev);
7086 /* WaSwitchSolVfFArbitrationPriority:bdw */
7087 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7089 /* WaPsrDPAMaskVBlankInSRD:bdw */
7090 I915_WRITE(CHICKEN_PAR1_1,
7091 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7093 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7094 for_each_pipe(dev_priv, pipe) {
7095 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7096 I915_READ(CHICKEN_PIPESL_1(pipe)) |
7097 BDW_DPRS_MASK_VBLANK_SRD);
7100 /* WaVSRefCountFullforceMissDisable:bdw */
7101 /* WaDSRefCountFullforceMissDisable:bdw */
7102 I915_WRITE(GEN7_FF_THREAD_MODE,
7103 I915_READ(GEN7_FF_THREAD_MODE) &
7104 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7106 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7107 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7109 /* WaDisableSDEUnitClockGating:bdw */
7110 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7111 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7113 /* WaProgramL3SqcReg1Default:bdw */
7114 gen8_set_l3sqc_credits(dev_priv, 30, 2);
7117 * WaGttCachingOffByDefault:bdw
7118 * GTT cache may not work with big pages, so if those
7119 * are ever enabled GTT cache may need to be disabled.
7121 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7123 /* WaKVMNotificationOnConfigChange:bdw */
7124 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7125 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7127 lpt_init_clock_gating(dev);
7130 static void haswell_init_clock_gating(struct drm_device *dev)
7132 struct drm_i915_private *dev_priv = to_i915(dev);
7134 ilk_init_lp_watermarks(dev);
7136 /* L3 caching of data atomics doesn't work -- disable it. */
7137 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7138 I915_WRITE(HSW_ROW_CHICKEN3,
7139 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7141 /* This is required by WaCatErrorRejectionIssue:hsw */
7142 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7143 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7144 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7146 /* WaVSRefCountFullforceMissDisable:hsw */
7147 I915_WRITE(GEN7_FF_THREAD_MODE,
7148 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7150 /* WaDisable_RenderCache_OperationalFlush:hsw */
7151 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7153 /* enable HiZ Raw Stall Optimization */
7154 I915_WRITE(CACHE_MODE_0_GEN7,
7155 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7157 /* WaDisable4x2SubspanOptimization:hsw */
7158 I915_WRITE(CACHE_MODE_1,
7159 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7162 * BSpec recommends 8x4 when MSAA is used,
7163 * however in practice 16x4 seems fastest.
7165 * Note that PS/WM thread counts depend on the WIZ hashing
7166 * disable bit, which we don't touch here, but it's good
7167 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7169 I915_WRITE(GEN7_GT_MODE,
7170 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7172 /* WaSampleCChickenBitEnable:hsw */
7173 I915_WRITE(HALF_SLICE_CHICKEN3,
7174 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7176 /* WaSwitchSolVfFArbitrationPriority:hsw */
7177 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7179 /* WaRsPkgCStateDisplayPMReq:hsw */
7180 I915_WRITE(CHICKEN_PAR1_1,
7181 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7183 lpt_init_clock_gating(dev);
7186 static void ivybridge_init_clock_gating(struct drm_device *dev)
7188 struct drm_i915_private *dev_priv = to_i915(dev);
7189 uint32_t snpcr;
7191 ilk_init_lp_watermarks(dev);
7193 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7195 /* WaDisableEarlyCull:ivb */
7196 I915_WRITE(_3D_CHICKEN3,
7197 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7199 /* WaDisableBackToBackFlipFix:ivb */
7200 I915_WRITE(IVB_CHICKEN3,
7201 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7202 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7204 /* WaDisablePSDDualDispatchEnable:ivb */
7205 if (IS_IVB_GT1(dev))
7206 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7207 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7209 /* WaDisable_RenderCache_OperationalFlush:ivb */
7210 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7212 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7213 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7214 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7216 /* WaApplyL3ControlAndL3ChickenMode:ivb */
7217 I915_WRITE(GEN7_L3CNTLREG1,
7218 GEN7_WA_FOR_GEN7_L3_CONTROL);
7219 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7220 GEN7_WA_L3_CHICKEN_MODE);
7221 if (IS_IVB_GT1(dev))
7222 I915_WRITE(GEN7_ROW_CHICKEN2,
7223 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7224 else {
7225 /* must write both registers */
7226 I915_WRITE(GEN7_ROW_CHICKEN2,
7227 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7228 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7229 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7232 /* WaForceL3Serialization:ivb */
7233 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7234 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7237 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7238 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7240 I915_WRITE(GEN6_UCGCTL2,
7241 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7243 /* This is required by WaCatErrorRejectionIssue:ivb */
7244 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7245 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7246 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7248 g4x_disable_trickle_feed(dev);
7250 gen7_setup_fixed_func_scheduler(dev_priv);
7252 if (0) { /* causes HiZ corruption on ivb:gt1 */
7253 /* enable HiZ Raw Stall Optimization */
7254 I915_WRITE(CACHE_MODE_0_GEN7,
7255 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7258 /* WaDisable4x2SubspanOptimization:ivb */
7259 I915_WRITE(CACHE_MODE_1,
7260 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7263 * BSpec recommends 8x4 when MSAA is used,
7264 * however in practice 16x4 seems fastest.
7266 * Note that PS/WM thread counts depend on the WIZ hashing
7267 * disable bit, which we don't touch here, but it's good
7268 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7270 I915_WRITE(GEN7_GT_MODE,
7271 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7273 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7274 snpcr &= ~GEN6_MBC_SNPCR_MASK;
7275 snpcr |= GEN6_MBC_SNPCR_MED;
7276 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7278 if (!HAS_PCH_NOP(dev))
7279 cpt_init_clock_gating(dev);
7281 gen6_check_mch_setup(dev);
7284 static void valleyview_init_clock_gating(struct drm_device *dev)
7286 struct drm_i915_private *dev_priv = to_i915(dev);
7288 /* WaDisableEarlyCull:vlv */
7289 I915_WRITE(_3D_CHICKEN3,
7290 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7292 /* WaDisableBackToBackFlipFix:vlv */
7293 I915_WRITE(IVB_CHICKEN3,
7294 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7295 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7297 /* WaPsdDispatchEnable:vlv */
7298 /* WaDisablePSDDualDispatchEnable:vlv */
7299 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7300 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7301 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7303 /* WaDisable_RenderCache_OperationalFlush:vlv */
7304 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7306 /* WaForceL3Serialization:vlv */
7307 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7308 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7310 /* WaDisableDopClockGating:vlv */
7311 I915_WRITE(GEN7_ROW_CHICKEN2,
7312 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7314 /* This is required by WaCatErrorRejectionIssue:vlv */
7315 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7316 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7317 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7319 gen7_setup_fixed_func_scheduler(dev_priv);
7322 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7323 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7325 I915_WRITE(GEN6_UCGCTL2,
7326 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7328 /* WaDisableL3Bank2xClockGate:vlv
7329 * Disabling L3 clock gating- MMIO 940c[25] = 1
7330 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7331 I915_WRITE(GEN7_UCGCTL4,
7332 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7335 * BSpec says this must be set, even though
7336 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7338 I915_WRITE(CACHE_MODE_1,
7339 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7342 * BSpec recommends 8x4 when MSAA is used,
7343 * however in practice 16x4 seems fastest.
7345 * Note that PS/WM thread counts depend on the WIZ hashing
7346 * disable bit, which we don't touch here, but it's good
7347 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7349 I915_WRITE(GEN7_GT_MODE,
7350 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7353 * WaIncreaseL3CreditsForVLVB0:vlv
7354 * This is the hardware default actually.
7356 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7359 * WaDisableVLVClockGating_VBIIssue:vlv
7360 * Disable clock gating on th GCFG unit to prevent a delay
7361 * in the reporting of vblank events.
7363 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7366 static void cherryview_init_clock_gating(struct drm_device *dev)
7368 struct drm_i915_private *dev_priv = to_i915(dev);
7370 /* WaVSRefCountFullforceMissDisable:chv */
7371 /* WaDSRefCountFullforceMissDisable:chv */
7372 I915_WRITE(GEN7_FF_THREAD_MODE,
7373 I915_READ(GEN7_FF_THREAD_MODE) &
7374 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7376 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7377 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7378 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7380 /* WaDisableCSUnitClockGating:chv */
7381 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7382 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7384 /* WaDisableSDEUnitClockGating:chv */
7385 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7386 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7389 * WaProgramL3SqcReg1Default:chv
7390 * See gfxspecs/Related Documents/Performance Guide/
7391 * LSQC Setting Recommendations.
7393 gen8_set_l3sqc_credits(dev_priv, 38, 2);
7396 * GTT cache may not work with big pages, so if those
7397 * are ever enabled GTT cache may need to be disabled.
7399 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7402 static void g4x_init_clock_gating(struct drm_device *dev)
7404 struct drm_i915_private *dev_priv = to_i915(dev);
7405 uint32_t dspclk_gate;
7407 I915_WRITE(RENCLK_GATE_D1, 0);
7408 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7409 GS_UNIT_CLOCK_GATE_DISABLE |
7410 CL_UNIT_CLOCK_GATE_DISABLE);
7411 I915_WRITE(RAMCLK_GATE_D, 0);
7412 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7413 OVRUNIT_CLOCK_GATE_DISABLE |
7414 OVCUNIT_CLOCK_GATE_DISABLE;
7415 if (IS_GM45(dev))
7416 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7417 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7419 /* WaDisableRenderCachePipelinedFlush */
7420 I915_WRITE(CACHE_MODE_0,
7421 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7423 /* WaDisable_RenderCache_OperationalFlush:g4x */
7424 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7426 g4x_disable_trickle_feed(dev);
7429 static void crestline_init_clock_gating(struct drm_device *dev)
7431 struct drm_i915_private *dev_priv = to_i915(dev);
7433 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7434 I915_WRITE(RENCLK_GATE_D2, 0);
7435 I915_WRITE(DSPCLK_GATE_D, 0);
7436 I915_WRITE(RAMCLK_GATE_D, 0);
7437 I915_WRITE16(DEUC, 0);
7438 I915_WRITE(MI_ARB_STATE,
7439 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7441 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7442 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7445 static void broadwater_init_clock_gating(struct drm_device *dev)
7447 struct drm_i915_private *dev_priv = to_i915(dev);
7449 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7450 I965_RCC_CLOCK_GATE_DISABLE |
7451 I965_RCPB_CLOCK_GATE_DISABLE |
7452 I965_ISC_CLOCK_GATE_DISABLE |
7453 I965_FBC_CLOCK_GATE_DISABLE);
7454 I915_WRITE(RENCLK_GATE_D2, 0);
7455 I915_WRITE(MI_ARB_STATE,
7456 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7458 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7459 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7462 static void gen3_init_clock_gating(struct drm_device *dev)
7464 struct drm_i915_private *dev_priv = to_i915(dev);
7465 u32 dstate = I915_READ(D_STATE);
7467 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7468 DSTATE_DOT_CLOCK_GATING;
7469 I915_WRITE(D_STATE, dstate);
7471 if (IS_PINEVIEW(dev))
7472 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7474 /* IIR "flip pending" means done if this bit is set */
7475 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7477 /* interrupts should cause a wake up from C3 */
7478 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7480 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7481 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7483 I915_WRITE(MI_ARB_STATE,
7484 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7487 static void i85x_init_clock_gating(struct drm_device *dev)
7489 struct drm_i915_private *dev_priv = to_i915(dev);
7491 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7493 /* interrupts should cause a wake up from C3 */
7494 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7495 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7497 I915_WRITE(MEM_MODE,
7498 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7501 static void i830_init_clock_gating(struct drm_device *dev)
7503 struct drm_i915_private *dev_priv = to_i915(dev);
7505 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7507 I915_WRITE(MEM_MODE,
7508 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7509 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7512 void intel_init_clock_gating(struct drm_device *dev)
7514 struct drm_i915_private *dev_priv = to_i915(dev);
7516 dev_priv->display.init_clock_gating(dev);
7519 void intel_suspend_hw(struct drm_device *dev)
7521 if (HAS_PCH_LPT(dev))
7522 lpt_suspend_hw(dev);
7525 static void nop_init_clock_gating(struct drm_device *dev)
7527 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7531 * intel_init_clock_gating_hooks - setup the clock gating hooks
7532 * @dev_priv: device private
7534 * Setup the hooks that configure which clocks of a given platform can be
7535 * gated and also apply various GT and display specific workarounds for these
7536 * platforms. Note that some GT specific workarounds are applied separately
7537 * when GPU contexts or batchbuffers start their execution.
7539 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7541 if (IS_SKYLAKE(dev_priv))
7542 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7543 else if (IS_KABYLAKE(dev_priv))
7544 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7545 else if (IS_BROXTON(dev_priv))
7546 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7547 else if (IS_BROADWELL(dev_priv))
7548 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7549 else if (IS_CHERRYVIEW(dev_priv))
7550 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7551 else if (IS_HASWELL(dev_priv))
7552 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7553 else if (IS_IVYBRIDGE(dev_priv))
7554 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7555 else if (IS_VALLEYVIEW(dev_priv))
7556 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7557 else if (IS_GEN6(dev_priv))
7558 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7559 else if (IS_GEN5(dev_priv))
7560 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7561 else if (IS_G4X(dev_priv))
7562 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7563 else if (IS_CRESTLINE(dev_priv))
7564 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7565 else if (IS_BROADWATER(dev_priv))
7566 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7567 else if (IS_GEN3(dev_priv))
7568 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7569 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7570 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7571 else if (IS_GEN2(dev_priv))
7572 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7573 else {
7574 MISSING_CASE(INTEL_DEVID(dev_priv));
7575 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7579 /* Set up chip specific power management-related functions */
7580 void intel_init_pm(struct drm_device *dev)
7582 struct drm_i915_private *dev_priv = to_i915(dev);
7584 intel_fbc_init(dev_priv);
7586 /* For cxsr */
7587 if (IS_PINEVIEW(dev))
7588 i915_pineview_get_mem_freq(dev);
7589 else if (IS_GEN5(dev))
7590 i915_ironlake_get_mem_freq(dev);
7592 /* For FIFO watermark updates */
7593 if (INTEL_INFO(dev)->gen >= 9) {
7594 skl_setup_wm_latency(dev);
7595 dev_priv->display.update_wm = skl_update_wm;
7596 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7597 } else if (HAS_PCH_SPLIT(dev)) {
7598 ilk_setup_wm_latency(dev);
7600 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7601 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7602 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7603 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7604 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7605 dev_priv->display.compute_intermediate_wm =
7606 ilk_compute_intermediate_wm;
7607 dev_priv->display.initial_watermarks =
7608 ilk_initial_watermarks;
7609 dev_priv->display.optimize_watermarks =
7610 ilk_optimize_watermarks;
7611 } else {
7612 DRM_DEBUG_KMS("Failed to read display plane latency. "
7613 "Disable CxSR\n");
7615 } else if (IS_CHERRYVIEW(dev)) {
7616 vlv_setup_wm_latency(dev);
7617 dev_priv->display.update_wm = vlv_update_wm;
7618 } else if (IS_VALLEYVIEW(dev)) {
7619 vlv_setup_wm_latency(dev);
7620 dev_priv->display.update_wm = vlv_update_wm;
7621 } else if (IS_PINEVIEW(dev)) {
7622 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7623 dev_priv->is_ddr3,
7624 dev_priv->fsb_freq,
7625 dev_priv->mem_freq)) {
7626 DRM_INFO("failed to find known CxSR latency "
7627 "(found ddr%s fsb freq %d, mem freq %d), "
7628 "disabling CxSR\n",
7629 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7630 dev_priv->fsb_freq, dev_priv->mem_freq);
7631 /* Disable CxSR and never update its watermark again */
7632 intel_set_memory_cxsr(dev_priv, false);
7633 dev_priv->display.update_wm = NULL;
7634 } else
7635 dev_priv->display.update_wm = pineview_update_wm;
7636 } else if (IS_G4X(dev)) {
7637 dev_priv->display.update_wm = g4x_update_wm;
7638 } else if (IS_GEN4(dev)) {
7639 dev_priv->display.update_wm = i965_update_wm;
7640 } else if (IS_GEN3(dev)) {
7641 dev_priv->display.update_wm = i9xx_update_wm;
7642 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7643 } else if (IS_GEN2(dev)) {
7644 if (INTEL_INFO(dev)->num_pipes == 1) {
7645 dev_priv->display.update_wm = i845_update_wm;
7646 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7647 } else {
7648 dev_priv->display.update_wm = i9xx_update_wm;
7649 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7651 } else {
7652 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7656 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7658 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7660 /* GEN6_PCODE_* are outside of the forcewake domain, we can
7661 * use te fw I915_READ variants to reduce the amount of work
7662 * required when reading/writing.
7665 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7666 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7667 return -EAGAIN;
7670 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
7671 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7672 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7674 if (intel_wait_for_register_fw(dev_priv,
7675 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7676 500)) {
7677 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7678 return -ETIMEDOUT;
7681 *val = I915_READ_FW(GEN6_PCODE_DATA);
7682 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7684 return 0;
7687 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7688 u32 mbox, u32 val)
7690 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7692 /* GEN6_PCODE_* are outside of the forcewake domain, we can
7693 * use te fw I915_READ variants to reduce the amount of work
7694 * required when reading/writing.
7697 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7698 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7699 return -EAGAIN;
7702 I915_WRITE_FW(GEN6_PCODE_DATA, val);
7703 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7705 if (intel_wait_for_register_fw(dev_priv,
7706 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7707 500)) {
7708 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7709 return -ETIMEDOUT;
7712 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7714 return 0;
7717 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7720 * N = val - 0xb7
7721 * Slow = Fast = GPLL ref * N
7723 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7726 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7728 return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7731 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7734 * N = val / 2
7735 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7737 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7740 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7742 /* CHV needs even values */
7743 return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7746 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7748 if (IS_GEN9(dev_priv))
7749 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7750 GEN9_FREQ_SCALER);
7751 else if (IS_CHERRYVIEW(dev_priv))
7752 return chv_gpu_freq(dev_priv, val);
7753 else if (IS_VALLEYVIEW(dev_priv))
7754 return byt_gpu_freq(dev_priv, val);
7755 else
7756 return val * GT_FREQUENCY_MULTIPLIER;
7759 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7761 if (IS_GEN9(dev_priv))
7762 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7763 GT_FREQUENCY_MULTIPLIER);
7764 else if (IS_CHERRYVIEW(dev_priv))
7765 return chv_freq_opcode(dev_priv, val);
7766 else if (IS_VALLEYVIEW(dev_priv))
7767 return byt_freq_opcode(dev_priv, val);
7768 else
7769 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7772 struct request_boost {
7773 struct work_struct work;
7774 struct drm_i915_gem_request *req;
7777 static void __intel_rps_boost_work(struct work_struct *work)
7779 struct request_boost *boost = container_of(work, struct request_boost, work);
7780 struct drm_i915_gem_request *req = boost->req;
7782 if (!i915_gem_request_completed(req))
7783 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7785 i915_gem_request_put(req);
7786 kfree(boost);
7789 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7791 struct request_boost *boost;
7793 if (req == NULL || INTEL_GEN(req->i915) < 6)
7794 return;
7796 if (i915_gem_request_completed(req))
7797 return;
7799 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7800 if (boost == NULL)
7801 return;
7803 boost->req = i915_gem_request_get(req);
7805 INIT_WORK(&boost->work, __intel_rps_boost_work);
7806 queue_work(req->i915->wq, &boost->work);
7809 void intel_pm_setup(struct drm_device *dev)
7811 struct drm_i915_private *dev_priv = to_i915(dev);
7813 mutex_init(&dev_priv->rps.hw_lock);
7814 spin_lock_init(&dev_priv->rps.client_lock);
7816 INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
7817 __intel_autoenable_gt_powersave);
7818 INIT_LIST_HEAD(&dev_priv->rps.clients);
7820 dev_priv->pm.suspended = false;
7821 atomic_set(&dev_priv->pm.wakeref_count, 0);
7822 atomic_set(&dev_priv->pm.atomic_seq, 0);