drm/i915: Mark the context and address space as closed
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / intel_ringbuffer.h
blob88952bf10b9d4317de55edfa8f9897179bc6e3e6
1 #ifndef _INTEL_RINGBUFFER_H_
2 #define _INTEL_RINGBUFFER_H_
4 #include <linux/hashtable.h>
5 #include "i915_gem_batch_pool.h"
7 #define I915_CMD_HASH_ORDER 9
9 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
10 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
11 * to give some inclination as to some of the magic values used in the various
12 * workarounds!
14 #define CACHELINE_BYTES 64
15 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
18 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
19 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
20 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
22 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
23 * cacheline, the Head Pointer must not be greater than the Tail
24 * Pointer."
26 #define I915_RING_FREE_SPACE 64
28 struct intel_hw_status_page {
29 u32 *page_addr;
30 unsigned int gfx_addr;
31 struct drm_i915_gem_object *obj;
34 #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
35 #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
37 #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
38 #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
40 #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
41 #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
43 #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
44 #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
46 #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
47 #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
49 #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
50 #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
52 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
53 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
55 #define gen8_semaphore_seqno_size sizeof(uint64_t)
56 #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
57 (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
58 #define GEN8_SIGNAL_OFFSET(__ring, to) \
59 (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
60 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
61 #define GEN8_WAIT_OFFSET(__ring, from) \
62 (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
63 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
65 enum intel_engine_hangcheck_action {
66 HANGCHECK_IDLE = 0,
67 HANGCHECK_WAIT,
68 HANGCHECK_ACTIVE,
69 HANGCHECK_KICK,
70 HANGCHECK_HUNG,
73 #define HANGCHECK_SCORE_RING_HUNG 31
75 struct intel_engine_hangcheck {
76 u64 acthd;
77 unsigned long user_interrupts;
78 u32 seqno;
79 int score;
80 enum intel_engine_hangcheck_action action;
81 int deadlock;
82 u32 instdone[I915_NUM_INSTDONE_REG];
85 struct intel_ring {
86 struct drm_i915_gem_object *obj;
87 void *vaddr;
88 struct i915_vma *vma;
90 struct intel_engine_cs *engine;
91 struct list_head link;
93 struct list_head request_list;
95 u32 head;
96 u32 tail;
97 int space;
98 int size;
99 int effective_size;
101 /** We track the position of the requests in the ring buffer, and
102 * when each is retired we increment last_retired_head as the GPU
103 * must have finished processing the request and so we know we
104 * can advance the ringbuffer up to that position.
106 * last_retired_head is set to -1 after the value is consumed so
107 * we can detect new retirements.
109 u32 last_retired_head;
112 struct i915_gem_context;
113 struct drm_i915_reg_table;
116 * we use a single page to load ctx workarounds so all of these
117 * values are referred in terms of dwords
119 * struct i915_wa_ctx_bb:
120 * offset: specifies batch starting position, also helpful in case
121 * if we want to have multiple batches at different offsets based on
122 * some criteria. It is not a requirement at the moment but provides
123 * an option for future use.
124 * size: size of the batch in DWORDS
126 struct i915_ctx_workarounds {
127 struct i915_wa_ctx_bb {
128 u32 offset;
129 u32 size;
130 } indirect_ctx, per_ctx;
131 struct drm_i915_gem_object *obj;
134 struct drm_i915_gem_request;
136 struct intel_engine_cs {
137 struct drm_i915_private *i915;
138 const char *name;
139 enum intel_engine_id {
140 RCS = 0,
141 BCS,
142 VCS,
143 VCS2, /* Keep instances of the same type engine together. */
144 VECS
145 } id;
146 #define I915_NUM_ENGINES 5
147 #define _VCS(n) (VCS + (n))
148 unsigned int exec_id;
149 unsigned int hw_id;
150 unsigned int guc_id; /* XXX same as hw_id? */
151 u64 fence_context;
152 u32 mmio_base;
153 unsigned int irq_shift;
154 struct intel_ring *buffer;
155 struct list_head buffers;
157 /* Rather than have every client wait upon all user interrupts,
158 * with the herd waking after every interrupt and each doing the
159 * heavyweight seqno dance, we delegate the task (of being the
160 * bottom-half of the user interrupt) to the first client. After
161 * every interrupt, we wake up one client, who does the heavyweight
162 * coherent seqno read and either goes back to sleep (if incomplete),
163 * or wakes up all the completed clients in parallel, before then
164 * transferring the bottom-half status to the next client in the queue.
166 * Compared to walking the entire list of waiters in a single dedicated
167 * bottom-half, we reduce the latency of the first waiter by avoiding
168 * a context switch, but incur additional coherent seqno reads when
169 * following the chain of request breadcrumbs. Since it is most likely
170 * that we have a single client waiting on each seqno, then reducing
171 * the overhead of waking that client is much preferred.
173 struct intel_breadcrumbs {
174 struct task_struct *irq_seqno_bh; /* bh for user interrupts */
175 unsigned long irq_wakeups;
176 bool irq_posted;
178 spinlock_t lock; /* protects the lists of requests */
179 struct rb_root waiters; /* sorted by retirement, priority */
180 struct rb_root signals; /* sorted by retirement */
181 struct intel_wait *first_wait; /* oldest waiter by retirement */
182 struct task_struct *signaler; /* used for fence signalling */
183 struct drm_i915_gem_request *first_signal;
184 struct timer_list fake_irq; /* used after a missed interrupt */
186 bool irq_enabled : 1;
187 bool rpm_wakelock : 1;
188 } breadcrumbs;
191 * A pool of objects to use as shadow copies of client batch buffers
192 * when the command parser is enabled. Prevents the client from
193 * modifying the batch contents after software parsing.
195 struct i915_gem_batch_pool batch_pool;
197 struct intel_hw_status_page status_page;
198 struct i915_ctx_workarounds wa_ctx;
200 u32 irq_keep_mask; /* always keep these interrupts */
201 u32 irq_enable_mask; /* bitmask to enable ring interrupt */
202 void (*irq_enable)(struct intel_engine_cs *engine);
203 void (*irq_disable)(struct intel_engine_cs *engine);
205 int (*init_hw)(struct intel_engine_cs *engine);
207 int (*init_context)(struct drm_i915_gem_request *req);
209 int (*emit_flush)(struct drm_i915_gem_request *request,
210 u32 mode);
211 #define EMIT_INVALIDATE BIT(0)
212 #define EMIT_FLUSH BIT(1)
213 #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
214 int (*emit_bb_start)(struct drm_i915_gem_request *req,
215 u64 offset, u32 length,
216 unsigned int dispatch_flags);
217 #define I915_DISPATCH_SECURE BIT(0)
218 #define I915_DISPATCH_PINNED BIT(1)
219 #define I915_DISPATCH_RS BIT(2)
220 int (*emit_request)(struct drm_i915_gem_request *req);
221 void (*submit_request)(struct drm_i915_gem_request *req);
222 /* Some chipsets are not quite as coherent as advertised and need
223 * an expensive kick to force a true read of the up-to-date seqno.
224 * However, the up-to-date seqno is not always required and the last
225 * seen value is good enough. Note that the seqno will always be
226 * monotonic, even if not coherent.
228 void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
229 void (*cleanup)(struct intel_engine_cs *engine);
231 /* GEN8 signal/wait table - never trust comments!
232 * signal to signal to signal to signal to signal to
233 * RCS VCS BCS VECS VCS2
234 * --------------------------------------------------------------------
235 * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
236 * |-------------------------------------------------------------------
237 * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
238 * |-------------------------------------------------------------------
239 * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
240 * |-------------------------------------------------------------------
241 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
242 * |-------------------------------------------------------------------
243 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
244 * |-------------------------------------------------------------------
246 * Generalization:
247 * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
248 * ie. transpose of g(x, y)
250 * sync from sync from sync from sync from sync from
251 * RCS VCS BCS VECS VCS2
252 * --------------------------------------------------------------------
253 * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
254 * |-------------------------------------------------------------------
255 * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
256 * |-------------------------------------------------------------------
257 * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
258 * |-------------------------------------------------------------------
259 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
260 * |-------------------------------------------------------------------
261 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
262 * |-------------------------------------------------------------------
264 * Generalization:
265 * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
266 * ie. transpose of f(x, y)
268 struct {
269 u32 sync_seqno[I915_NUM_ENGINES-1];
271 union {
272 struct {
273 /* our mbox written by others */
274 u32 wait[I915_NUM_ENGINES];
275 /* mboxes this ring signals to */
276 i915_reg_t signal[I915_NUM_ENGINES];
277 } mbox;
278 u64 signal_ggtt[I915_NUM_ENGINES];
281 /* AKA wait() */
282 int (*sync_to)(struct drm_i915_gem_request *req,
283 struct drm_i915_gem_request *signal);
284 int (*signal)(struct drm_i915_gem_request *req);
285 } semaphore;
287 /* Execlists */
288 struct tasklet_struct irq_tasklet;
289 spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
290 struct list_head execlist_queue;
291 unsigned int fw_domains;
292 unsigned int next_context_status_buffer;
293 unsigned int idle_lite_restore_wa;
294 bool disable_lite_restore_wa;
295 u32 ctx_desc_template;
298 * List of breadcrumbs associated with GPU requests currently
299 * outstanding.
301 struct list_head request_list;
304 * Seqno of request most recently submitted to request_list.
305 * Used exclusively by hang checker to avoid grabbing lock while
306 * inspecting request list.
308 u32 last_submitted_seqno;
310 struct i915_gem_context *last_context;
312 struct intel_engine_hangcheck hangcheck;
314 struct {
315 struct drm_i915_gem_object *obj;
316 u32 gtt_offset;
317 } scratch;
319 bool needs_cmd_parser;
322 * Table of commands the command parser needs to know about
323 * for this engine.
325 DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
328 * Table of registers allowed in commands that read/write registers.
330 const struct drm_i915_reg_table *reg_tables;
331 int reg_table_count;
334 * Returns the bitmask for the length field of the specified command.
335 * Return 0 for an unrecognized/invalid command.
337 * If the command parser finds an entry for a command in the engine's
338 * cmd_tables, it gets the command's length based on the table entry.
339 * If not, it calls this function to determine the per-engine length
340 * field encoding for the command (i.e. different opcode ranges use
341 * certain bits to encode the command length in the header).
343 u32 (*get_cmd_length_mask)(u32 cmd_header);
346 static inline bool
347 intel_engine_initialized(const struct intel_engine_cs *engine)
349 return engine->i915 != NULL;
352 static inline unsigned
353 intel_engine_flag(const struct intel_engine_cs *engine)
355 return 1 << engine->id;
358 static inline u32
359 intel_engine_sync_index(struct intel_engine_cs *engine,
360 struct intel_engine_cs *other)
362 int idx;
365 * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
366 * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
367 * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
368 * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
369 * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
372 idx = (other - engine) - 1;
373 if (idx < 0)
374 idx += I915_NUM_ENGINES;
376 return idx;
379 static inline void
380 intel_flush_status_page(struct intel_engine_cs *engine, int reg)
382 mb();
383 clflush(&engine->status_page.page_addr[reg]);
384 mb();
387 static inline u32
388 intel_read_status_page(struct intel_engine_cs *engine, int reg)
390 /* Ensure that the compiler doesn't optimize away the load. */
391 return READ_ONCE(engine->status_page.page_addr[reg]);
394 static inline void
395 intel_write_status_page(struct intel_engine_cs *engine,
396 int reg, u32 value)
398 engine->status_page.page_addr[reg] = value;
402 * Reads a dword out of the status page, which is written to from the command
403 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
404 * MI_STORE_DATA_IMM.
406 * The following dwords have a reserved meaning:
407 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
408 * 0x04: ring 0 head pointer
409 * 0x05: ring 1 head pointer (915-class)
410 * 0x06: ring 2 head pointer (915-class)
411 * 0x10-0x1b: Context status DWords (GM45)
412 * 0x1f: Last written status offset. (GM45)
413 * 0x20-0x2f: Reserved (Gen6+)
415 * The area from dword 0x30 to 0x3ff is available for driver usage.
417 #define I915_GEM_HWS_INDEX 0x30
418 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
419 #define I915_GEM_HWS_SCRATCH_INDEX 0x40
420 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
422 struct intel_ring *
423 intel_engine_create_ring(struct intel_engine_cs *engine, int size);
424 int intel_ring_pin(struct intel_ring *ring);
425 void intel_ring_unpin(struct intel_ring *ring);
426 void intel_ring_free(struct intel_ring *ring);
428 void intel_engine_stop(struct intel_engine_cs *engine);
429 void intel_engine_cleanup(struct intel_engine_cs *engine);
431 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
433 int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
434 int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
436 static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
438 *(uint32_t *)(ring->vaddr + ring->tail) = data;
439 ring->tail += 4;
442 static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
444 intel_ring_emit(ring, i915_mmio_reg_offset(reg));
447 static inline void intel_ring_advance(struct intel_ring *ring)
449 /* Dummy function.
451 * This serves as a placeholder in the code so that the reader
452 * can compare against the preceding intel_ring_begin() and
453 * check that the number of dwords emitted matches the space
454 * reserved for the command packet (i.e. the value passed to
455 * intel_ring_begin()).
459 static inline u32 intel_ring_offset(struct intel_ring *ring, u32 value)
461 /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
462 return value & (ring->size - 1);
465 int __intel_ring_space(int head, int tail, int size);
466 void intel_ring_update_space(struct intel_ring *ring);
468 int __must_check intel_engine_idle(struct intel_engine_cs *engine);
469 void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno);
471 int intel_init_pipe_control(struct intel_engine_cs *engine, int size);
472 void intel_fini_pipe_control(struct intel_engine_cs *engine);
474 void intel_engine_setup_common(struct intel_engine_cs *engine);
475 int intel_engine_init_common(struct intel_engine_cs *engine);
476 void intel_engine_cleanup_common(struct intel_engine_cs *engine);
478 int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
479 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
480 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
481 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
482 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
484 u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
485 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
487 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
490 int init_workarounds_ring(struct intel_engine_cs *engine);
493 * Arbitrary size for largest possible 'add request' sequence. The code paths
494 * are complex and variable. Empirical measurement shows that the worst case
495 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
496 * we need to allocate double the largest single packet within that emission
497 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
499 #define MIN_SPACE_FOR_ADD_REQUEST 336
501 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
503 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
506 /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
507 struct intel_wait {
508 struct rb_node node;
509 struct task_struct *tsk;
510 u32 seqno;
513 struct intel_signal_node {
514 struct rb_node node;
515 struct intel_wait wait;
518 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
520 static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
522 wait->tsk = current;
523 wait->seqno = seqno;
526 static inline bool intel_wait_complete(const struct intel_wait *wait)
528 return RB_EMPTY_NODE(&wait->node);
531 bool intel_engine_add_wait(struct intel_engine_cs *engine,
532 struct intel_wait *wait);
533 void intel_engine_remove_wait(struct intel_engine_cs *engine,
534 struct intel_wait *wait);
535 void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
537 static inline bool intel_engine_has_waiter(struct intel_engine_cs *engine)
539 return READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
542 static inline bool intel_engine_wakeup(struct intel_engine_cs *engine)
544 bool wakeup = false;
545 struct task_struct *tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
546 /* Note that for this not to dangerously chase a dangling pointer,
547 * the caller is responsible for ensure that the task remain valid for
548 * wake_up_process() i.e. that the RCU grace period cannot expire.
550 * Also note that tsk is likely to be in !TASK_RUNNING state so an
551 * early test for tsk->state != TASK_RUNNING before wake_up_process()
552 * is unlikely to be beneficial.
554 if (tsk)
555 wakeup = wake_up_process(tsk);
556 return wakeup;
559 void intel_engine_enable_fake_irq(struct intel_engine_cs *engine);
560 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
561 unsigned int intel_kick_waiters(struct drm_i915_private *i915);
562 unsigned int intel_kick_signalers(struct drm_i915_private *i915);
564 #endif /* _INTEL_RINGBUFFER_H_ */