tty/vt/keyboard: fix OOB access in do_compute_shiftstate()
[linux/fpc-iii.git] / drivers / tty / vt / keyboard.c
blob1e93a37e27f05091c6ade07f2798a514c55ae2b8
1 /*
2 * Written for linux by Johan Myreen as a translation from
3 * the assembly version by Linus (with diacriticals added)
5 * Some additional features added by Christoph Niemann (ChN), March 1993
7 * Loadable keymaps by Risto Kankkunen, May 1993
9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10 * Added decr/incr_console, dynamic keymaps, Unicode support,
11 * dynamic function/string keys, led setting, Sept 1994
12 * `Sticky' modifier keys, 951006.
14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
17 * Merge with the m68k keyboard driver and split-off of the PC low-level
18 * parts by Geert Uytterhoeven, May 1997
20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 #include <linux/consolemap.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/mm.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36 #include <linux/leds.h>
38 #include <linux/kbd_kern.h>
39 #include <linux/kbd_diacr.h>
40 #include <linux/vt_kern.h>
41 #include <linux/input.h>
42 #include <linux/reboot.h>
43 #include <linux/notifier.h>
44 #include <linux/jiffies.h>
45 #include <linux/uaccess.h>
47 #include <asm/irq_regs.h>
49 extern void ctrl_alt_del(void);
52 * Exported functions/variables
55 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
57 #if defined(CONFIG_X86) || defined(CONFIG_PARISC)
58 #include <asm/kbdleds.h>
59 #else
60 static inline int kbd_defleds(void)
62 return 0;
64 #endif
66 #define KBD_DEFLOCK 0
69 * Handler Tables.
72 #define K_HANDLERS\
73 k_self, k_fn, k_spec, k_pad,\
74 k_dead, k_cons, k_cur, k_shift,\
75 k_meta, k_ascii, k_lock, k_lowercase,\
76 k_slock, k_dead2, k_brl, k_ignore
78 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
79 char up_flag);
80 static k_handler_fn K_HANDLERS;
81 static k_handler_fn *k_handler[16] = { K_HANDLERS };
83 #define FN_HANDLERS\
84 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
85 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
86 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
87 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
88 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
90 typedef void (fn_handler_fn)(struct vc_data *vc);
91 static fn_handler_fn FN_HANDLERS;
92 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
95 * Variables exported for vt_ioctl.c
98 struct vt_spawn_console vt_spawn_con = {
99 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
100 .pid = NULL,
101 .sig = 0,
106 * Internal Data.
109 static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
110 static struct kbd_struct *kbd = kbd_table;
112 /* maximum values each key_handler can handle */
113 static const int max_vals[] = {
114 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
115 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
116 255, NR_LOCK - 1, 255, NR_BRL - 1
119 static const int NR_TYPES = ARRAY_SIZE(max_vals);
121 static struct input_handler kbd_handler;
122 static DEFINE_SPINLOCK(kbd_event_lock);
123 static DEFINE_SPINLOCK(led_lock);
124 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
125 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
126 static bool dead_key_next;
127 static int npadch = -1; /* -1 or number assembled on pad */
128 static unsigned int diacr;
129 static char rep; /* flag telling character repeat */
131 static int shift_state = 0;
133 static unsigned int ledstate = -1U; /* undefined */
134 static unsigned char ledioctl;
137 * Notifier list for console keyboard events
139 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
141 int register_keyboard_notifier(struct notifier_block *nb)
143 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
145 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
147 int unregister_keyboard_notifier(struct notifier_block *nb)
149 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
151 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
154 * Translation of scancodes to keycodes. We set them on only the first
155 * keyboard in the list that accepts the scancode and keycode.
156 * Explanation for not choosing the first attached keyboard anymore:
157 * USB keyboards for example have two event devices: one for all "normal"
158 * keys and one for extra function keys (like "volume up", "make coffee",
159 * etc.). So this means that scancodes for the extra function keys won't
160 * be valid for the first event device, but will be for the second.
163 struct getset_keycode_data {
164 struct input_keymap_entry ke;
165 int error;
168 static int getkeycode_helper(struct input_handle *handle, void *data)
170 struct getset_keycode_data *d = data;
172 d->error = input_get_keycode(handle->dev, &d->ke);
174 return d->error == 0; /* stop as soon as we successfully get one */
177 static int getkeycode(unsigned int scancode)
179 struct getset_keycode_data d = {
180 .ke = {
181 .flags = 0,
182 .len = sizeof(scancode),
183 .keycode = 0,
185 .error = -ENODEV,
188 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
190 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
192 return d.error ?: d.ke.keycode;
195 static int setkeycode_helper(struct input_handle *handle, void *data)
197 struct getset_keycode_data *d = data;
199 d->error = input_set_keycode(handle->dev, &d->ke);
201 return d->error == 0; /* stop as soon as we successfully set one */
204 static int setkeycode(unsigned int scancode, unsigned int keycode)
206 struct getset_keycode_data d = {
207 .ke = {
208 .flags = 0,
209 .len = sizeof(scancode),
210 .keycode = keycode,
212 .error = -ENODEV,
215 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
217 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
219 return d.error;
223 * Making beeps and bells. Note that we prefer beeps to bells, but when
224 * shutting the sound off we do both.
227 static int kd_sound_helper(struct input_handle *handle, void *data)
229 unsigned int *hz = data;
230 struct input_dev *dev = handle->dev;
232 if (test_bit(EV_SND, dev->evbit)) {
233 if (test_bit(SND_TONE, dev->sndbit)) {
234 input_inject_event(handle, EV_SND, SND_TONE, *hz);
235 if (*hz)
236 return 0;
238 if (test_bit(SND_BELL, dev->sndbit))
239 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
242 return 0;
245 static void kd_nosound(unsigned long ignored)
247 static unsigned int zero;
249 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
252 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
254 void kd_mksound(unsigned int hz, unsigned int ticks)
256 del_timer_sync(&kd_mksound_timer);
258 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
260 if (hz && ticks)
261 mod_timer(&kd_mksound_timer, jiffies + ticks);
263 EXPORT_SYMBOL(kd_mksound);
266 * Setting the keyboard rate.
269 static int kbd_rate_helper(struct input_handle *handle, void *data)
271 struct input_dev *dev = handle->dev;
272 struct kbd_repeat *rpt = data;
274 if (test_bit(EV_REP, dev->evbit)) {
276 if (rpt[0].delay > 0)
277 input_inject_event(handle,
278 EV_REP, REP_DELAY, rpt[0].delay);
279 if (rpt[0].period > 0)
280 input_inject_event(handle,
281 EV_REP, REP_PERIOD, rpt[0].period);
283 rpt[1].delay = dev->rep[REP_DELAY];
284 rpt[1].period = dev->rep[REP_PERIOD];
287 return 0;
290 int kbd_rate(struct kbd_repeat *rpt)
292 struct kbd_repeat data[2] = { *rpt };
294 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
295 *rpt = data[1]; /* Copy currently used settings */
297 return 0;
301 * Helper Functions.
303 static void put_queue(struct vc_data *vc, int ch)
305 tty_insert_flip_char(&vc->port, ch, 0);
306 tty_schedule_flip(&vc->port);
309 static void puts_queue(struct vc_data *vc, char *cp)
311 while (*cp) {
312 tty_insert_flip_char(&vc->port, *cp, 0);
313 cp++;
315 tty_schedule_flip(&vc->port);
318 static void applkey(struct vc_data *vc, int key, char mode)
320 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
322 buf[1] = (mode ? 'O' : '[');
323 buf[2] = key;
324 puts_queue(vc, buf);
328 * Many other routines do put_queue, but I think either
329 * they produce ASCII, or they produce some user-assigned
330 * string, and in both cases we might assume that it is
331 * in utf-8 already.
333 static void to_utf8(struct vc_data *vc, uint c)
335 if (c < 0x80)
336 /* 0******* */
337 put_queue(vc, c);
338 else if (c < 0x800) {
339 /* 110***** 10****** */
340 put_queue(vc, 0xc0 | (c >> 6));
341 put_queue(vc, 0x80 | (c & 0x3f));
342 } else if (c < 0x10000) {
343 if (c >= 0xD800 && c < 0xE000)
344 return;
345 if (c == 0xFFFF)
346 return;
347 /* 1110**** 10****** 10****** */
348 put_queue(vc, 0xe0 | (c >> 12));
349 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
350 put_queue(vc, 0x80 | (c & 0x3f));
351 } else if (c < 0x110000) {
352 /* 11110*** 10****** 10****** 10****** */
353 put_queue(vc, 0xf0 | (c >> 18));
354 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
355 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
356 put_queue(vc, 0x80 | (c & 0x3f));
361 * Called after returning from RAW mode or when changing consoles - recompute
362 * shift_down[] and shift_state from key_down[] maybe called when keymap is
363 * undefined, so that shiftkey release is seen. The caller must hold the
364 * kbd_event_lock.
367 static void do_compute_shiftstate(void)
369 unsigned int k, sym, val;
371 shift_state = 0;
372 memset(shift_down, 0, sizeof(shift_down));
374 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
375 sym = U(key_maps[0][k]);
376 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
377 continue;
379 val = KVAL(sym);
380 if (val == KVAL(K_CAPSSHIFT))
381 val = KVAL(K_SHIFT);
383 shift_down[val]++;
384 shift_state |= BIT(val);
388 /* We still have to export this method to vt.c */
389 void compute_shiftstate(void)
391 unsigned long flags;
392 spin_lock_irqsave(&kbd_event_lock, flags);
393 do_compute_shiftstate();
394 spin_unlock_irqrestore(&kbd_event_lock, flags);
398 * We have a combining character DIACR here, followed by the character CH.
399 * If the combination occurs in the table, return the corresponding value.
400 * Otherwise, if CH is a space or equals DIACR, return DIACR.
401 * Otherwise, conclude that DIACR was not combining after all,
402 * queue it and return CH.
404 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
406 unsigned int d = diacr;
407 unsigned int i;
409 diacr = 0;
411 if ((d & ~0xff) == BRL_UC_ROW) {
412 if ((ch & ~0xff) == BRL_UC_ROW)
413 return d | ch;
414 } else {
415 for (i = 0; i < accent_table_size; i++)
416 if (accent_table[i].diacr == d && accent_table[i].base == ch)
417 return accent_table[i].result;
420 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
421 return d;
423 if (kbd->kbdmode == VC_UNICODE)
424 to_utf8(vc, d);
425 else {
426 int c = conv_uni_to_8bit(d);
427 if (c != -1)
428 put_queue(vc, c);
431 return ch;
435 * Special function handlers
437 static void fn_enter(struct vc_data *vc)
439 if (diacr) {
440 if (kbd->kbdmode == VC_UNICODE)
441 to_utf8(vc, diacr);
442 else {
443 int c = conv_uni_to_8bit(diacr);
444 if (c != -1)
445 put_queue(vc, c);
447 diacr = 0;
450 put_queue(vc, 13);
451 if (vc_kbd_mode(kbd, VC_CRLF))
452 put_queue(vc, 10);
455 static void fn_caps_toggle(struct vc_data *vc)
457 if (rep)
458 return;
460 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
463 static void fn_caps_on(struct vc_data *vc)
465 if (rep)
466 return;
468 set_vc_kbd_led(kbd, VC_CAPSLOCK);
471 static void fn_show_ptregs(struct vc_data *vc)
473 struct pt_regs *regs = get_irq_regs();
475 if (regs)
476 show_regs(regs);
479 static void fn_hold(struct vc_data *vc)
481 struct tty_struct *tty = vc->port.tty;
483 if (rep || !tty)
484 return;
487 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
488 * these routines are also activated by ^S/^Q.
489 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
491 if (tty->stopped)
492 start_tty(tty);
493 else
494 stop_tty(tty);
497 static void fn_num(struct vc_data *vc)
499 if (vc_kbd_mode(kbd, VC_APPLIC))
500 applkey(vc, 'P', 1);
501 else
502 fn_bare_num(vc);
506 * Bind this to Shift-NumLock if you work in application keypad mode
507 * but want to be able to change the NumLock flag.
508 * Bind this to NumLock if you prefer that the NumLock key always
509 * changes the NumLock flag.
511 static void fn_bare_num(struct vc_data *vc)
513 if (!rep)
514 chg_vc_kbd_led(kbd, VC_NUMLOCK);
517 static void fn_lastcons(struct vc_data *vc)
519 /* switch to the last used console, ChN */
520 set_console(last_console);
523 static void fn_dec_console(struct vc_data *vc)
525 int i, cur = fg_console;
527 /* Currently switching? Queue this next switch relative to that. */
528 if (want_console != -1)
529 cur = want_console;
531 for (i = cur - 1; i != cur; i--) {
532 if (i == -1)
533 i = MAX_NR_CONSOLES - 1;
534 if (vc_cons_allocated(i))
535 break;
537 set_console(i);
540 static void fn_inc_console(struct vc_data *vc)
542 int i, cur = fg_console;
544 /* Currently switching? Queue this next switch relative to that. */
545 if (want_console != -1)
546 cur = want_console;
548 for (i = cur+1; i != cur; i++) {
549 if (i == MAX_NR_CONSOLES)
550 i = 0;
551 if (vc_cons_allocated(i))
552 break;
554 set_console(i);
557 static void fn_send_intr(struct vc_data *vc)
559 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
560 tty_schedule_flip(&vc->port);
563 static void fn_scroll_forw(struct vc_data *vc)
565 scrollfront(vc, 0);
568 static void fn_scroll_back(struct vc_data *vc)
570 scrollback(vc, 0);
573 static void fn_show_mem(struct vc_data *vc)
575 show_mem(0);
578 static void fn_show_state(struct vc_data *vc)
580 show_state();
583 static void fn_boot_it(struct vc_data *vc)
585 ctrl_alt_del();
588 static void fn_compose(struct vc_data *vc)
590 dead_key_next = true;
593 static void fn_spawn_con(struct vc_data *vc)
595 spin_lock(&vt_spawn_con.lock);
596 if (vt_spawn_con.pid)
597 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
598 put_pid(vt_spawn_con.pid);
599 vt_spawn_con.pid = NULL;
601 spin_unlock(&vt_spawn_con.lock);
604 static void fn_SAK(struct vc_data *vc)
606 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
607 schedule_work(SAK_work);
610 static void fn_null(struct vc_data *vc)
612 do_compute_shiftstate();
616 * Special key handlers
618 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
622 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
624 if (up_flag)
625 return;
626 if (value >= ARRAY_SIZE(fn_handler))
627 return;
628 if ((kbd->kbdmode == VC_RAW ||
629 kbd->kbdmode == VC_MEDIUMRAW ||
630 kbd->kbdmode == VC_OFF) &&
631 value != KVAL(K_SAK))
632 return; /* SAK is allowed even in raw mode */
633 fn_handler[value](vc);
636 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
638 pr_err("k_lowercase was called - impossible\n");
641 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
643 if (up_flag)
644 return; /* no action, if this is a key release */
646 if (diacr)
647 value = handle_diacr(vc, value);
649 if (dead_key_next) {
650 dead_key_next = false;
651 diacr = value;
652 return;
654 if (kbd->kbdmode == VC_UNICODE)
655 to_utf8(vc, value);
656 else {
657 int c = conv_uni_to_8bit(value);
658 if (c != -1)
659 put_queue(vc, c);
664 * Handle dead key. Note that we now may have several
665 * dead keys modifying the same character. Very useful
666 * for Vietnamese.
668 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
670 if (up_flag)
671 return;
673 diacr = (diacr ? handle_diacr(vc, value) : value);
676 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
678 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
681 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
683 k_deadunicode(vc, value, up_flag);
687 * Obsolete - for backwards compatibility only
689 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
691 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
693 k_deadunicode(vc, ret_diacr[value], up_flag);
696 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
698 if (up_flag)
699 return;
701 set_console(value);
704 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
706 if (up_flag)
707 return;
709 if ((unsigned)value < ARRAY_SIZE(func_table)) {
710 if (func_table[value])
711 puts_queue(vc, func_table[value]);
712 } else
713 pr_err("k_fn called with value=%d\n", value);
716 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
718 static const char cur_chars[] = "BDCA";
720 if (up_flag)
721 return;
723 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
726 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
728 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
729 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
731 if (up_flag)
732 return; /* no action, if this is a key release */
734 /* kludge... shift forces cursor/number keys */
735 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
736 applkey(vc, app_map[value], 1);
737 return;
740 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
742 switch (value) {
743 case KVAL(K_PCOMMA):
744 case KVAL(K_PDOT):
745 k_fn(vc, KVAL(K_REMOVE), 0);
746 return;
747 case KVAL(K_P0):
748 k_fn(vc, KVAL(K_INSERT), 0);
749 return;
750 case KVAL(K_P1):
751 k_fn(vc, KVAL(K_SELECT), 0);
752 return;
753 case KVAL(K_P2):
754 k_cur(vc, KVAL(K_DOWN), 0);
755 return;
756 case KVAL(K_P3):
757 k_fn(vc, KVAL(K_PGDN), 0);
758 return;
759 case KVAL(K_P4):
760 k_cur(vc, KVAL(K_LEFT), 0);
761 return;
762 case KVAL(K_P6):
763 k_cur(vc, KVAL(K_RIGHT), 0);
764 return;
765 case KVAL(K_P7):
766 k_fn(vc, KVAL(K_FIND), 0);
767 return;
768 case KVAL(K_P8):
769 k_cur(vc, KVAL(K_UP), 0);
770 return;
771 case KVAL(K_P9):
772 k_fn(vc, KVAL(K_PGUP), 0);
773 return;
774 case KVAL(K_P5):
775 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
776 return;
780 put_queue(vc, pad_chars[value]);
781 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
782 put_queue(vc, 10);
785 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
787 int old_state = shift_state;
789 if (rep)
790 return;
792 * Mimic typewriter:
793 * a CapsShift key acts like Shift but undoes CapsLock
795 if (value == KVAL(K_CAPSSHIFT)) {
796 value = KVAL(K_SHIFT);
797 if (!up_flag)
798 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
801 if (up_flag) {
803 * handle the case that two shift or control
804 * keys are depressed simultaneously
806 if (shift_down[value])
807 shift_down[value]--;
808 } else
809 shift_down[value]++;
811 if (shift_down[value])
812 shift_state |= (1 << value);
813 else
814 shift_state &= ~(1 << value);
816 /* kludge */
817 if (up_flag && shift_state != old_state && npadch != -1) {
818 if (kbd->kbdmode == VC_UNICODE)
819 to_utf8(vc, npadch);
820 else
821 put_queue(vc, npadch & 0xff);
822 npadch = -1;
826 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
828 if (up_flag)
829 return;
831 if (vc_kbd_mode(kbd, VC_META)) {
832 put_queue(vc, '\033');
833 put_queue(vc, value);
834 } else
835 put_queue(vc, value | 0x80);
838 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
840 int base;
842 if (up_flag)
843 return;
845 if (value < 10) {
846 /* decimal input of code, while Alt depressed */
847 base = 10;
848 } else {
849 /* hexadecimal input of code, while AltGr depressed */
850 value -= 10;
851 base = 16;
854 if (npadch == -1)
855 npadch = value;
856 else
857 npadch = npadch * base + value;
860 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
862 if (up_flag || rep)
863 return;
865 chg_vc_kbd_lock(kbd, value);
868 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
870 k_shift(vc, value, up_flag);
871 if (up_flag || rep)
872 return;
874 chg_vc_kbd_slock(kbd, value);
875 /* try to make Alt, oops, AltGr and such work */
876 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
877 kbd->slockstate = 0;
878 chg_vc_kbd_slock(kbd, value);
882 /* by default, 300ms interval for combination release */
883 static unsigned brl_timeout = 300;
884 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
885 module_param(brl_timeout, uint, 0644);
887 static unsigned brl_nbchords = 1;
888 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
889 module_param(brl_nbchords, uint, 0644);
891 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
893 static unsigned long chords;
894 static unsigned committed;
896 if (!brl_nbchords)
897 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
898 else {
899 committed |= pattern;
900 chords++;
901 if (chords == brl_nbchords) {
902 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
903 chords = 0;
904 committed = 0;
909 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
911 static unsigned pressed, committing;
912 static unsigned long releasestart;
914 if (kbd->kbdmode != VC_UNICODE) {
915 if (!up_flag)
916 pr_warn("keyboard mode must be unicode for braille patterns\n");
917 return;
920 if (!value) {
921 k_unicode(vc, BRL_UC_ROW, up_flag);
922 return;
925 if (value > 8)
926 return;
928 if (!up_flag) {
929 pressed |= 1 << (value - 1);
930 if (!brl_timeout)
931 committing = pressed;
932 } else if (brl_timeout) {
933 if (!committing ||
934 time_after(jiffies,
935 releasestart + msecs_to_jiffies(brl_timeout))) {
936 committing = pressed;
937 releasestart = jiffies;
939 pressed &= ~(1 << (value - 1));
940 if (!pressed && committing) {
941 k_brlcommit(vc, committing, 0);
942 committing = 0;
944 } else {
945 if (committing) {
946 k_brlcommit(vc, committing, 0);
947 committing = 0;
949 pressed &= ~(1 << (value - 1));
953 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
955 struct kbd_led_trigger {
956 struct led_trigger trigger;
957 unsigned int mask;
960 static void kbd_led_trigger_activate(struct led_classdev *cdev)
962 struct kbd_led_trigger *trigger =
963 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
965 tasklet_disable(&keyboard_tasklet);
966 if (ledstate != -1U)
967 led_trigger_event(&trigger->trigger,
968 ledstate & trigger->mask ?
969 LED_FULL : LED_OFF);
970 tasklet_enable(&keyboard_tasklet);
973 #define KBD_LED_TRIGGER(_led_bit, _name) { \
974 .trigger = { \
975 .name = _name, \
976 .activate = kbd_led_trigger_activate, \
977 }, \
978 .mask = BIT(_led_bit), \
981 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
982 KBD_LED_TRIGGER((_led_bit) + 8, _name)
984 static struct kbd_led_trigger kbd_led_triggers[] = {
985 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrollock"),
986 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
987 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
988 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
990 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
991 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
992 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
993 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
994 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
995 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
996 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
997 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1000 static void kbd_propagate_led_state(unsigned int old_state,
1001 unsigned int new_state)
1003 struct kbd_led_trigger *trigger;
1004 unsigned int changed = old_state ^ new_state;
1005 int i;
1007 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1008 trigger = &kbd_led_triggers[i];
1010 if (changed & trigger->mask)
1011 led_trigger_event(&trigger->trigger,
1012 new_state & trigger->mask ?
1013 LED_FULL : LED_OFF);
1017 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1019 unsigned int led_state = *(unsigned int *)data;
1021 if (test_bit(EV_LED, handle->dev->evbit))
1022 kbd_propagate_led_state(~led_state, led_state);
1024 return 0;
1027 static void kbd_init_leds(void)
1029 int error;
1030 int i;
1032 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1033 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1034 if (error)
1035 pr_err("error %d while registering trigger %s\n",
1036 error, kbd_led_triggers[i].trigger.name);
1040 #else
1042 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1044 unsigned int leds = *(unsigned int *)data;
1046 if (test_bit(EV_LED, handle->dev->evbit)) {
1047 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1048 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1049 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1050 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1053 return 0;
1056 static void kbd_propagate_led_state(unsigned int old_state,
1057 unsigned int new_state)
1059 input_handler_for_each_handle(&kbd_handler, &new_state,
1060 kbd_update_leds_helper);
1063 static void kbd_init_leds(void)
1067 #endif
1070 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1071 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1072 * or (iii) specified bits of specified words in kernel memory.
1074 static unsigned char getledstate(void)
1076 return ledstate & 0xff;
1079 void setledstate(struct kbd_struct *kb, unsigned int led)
1081 unsigned long flags;
1082 spin_lock_irqsave(&led_lock, flags);
1083 if (!(led & ~7)) {
1084 ledioctl = led;
1085 kb->ledmode = LED_SHOW_IOCTL;
1086 } else
1087 kb->ledmode = LED_SHOW_FLAGS;
1089 set_leds();
1090 spin_unlock_irqrestore(&led_lock, flags);
1093 static inline unsigned char getleds(void)
1095 struct kbd_struct *kb = kbd_table + fg_console;
1097 if (kb->ledmode == LED_SHOW_IOCTL)
1098 return ledioctl;
1100 return kb->ledflagstate;
1104 * vt_get_leds - helper for braille console
1105 * @console: console to read
1106 * @flag: flag we want to check
1108 * Check the status of a keyboard led flag and report it back
1110 int vt_get_leds(int console, int flag)
1112 struct kbd_struct *kb = kbd_table + console;
1113 int ret;
1114 unsigned long flags;
1116 spin_lock_irqsave(&led_lock, flags);
1117 ret = vc_kbd_led(kb, flag);
1118 spin_unlock_irqrestore(&led_lock, flags);
1120 return ret;
1122 EXPORT_SYMBOL_GPL(vt_get_leds);
1125 * vt_set_led_state - set LED state of a console
1126 * @console: console to set
1127 * @leds: LED bits
1129 * Set the LEDs on a console. This is a wrapper for the VT layer
1130 * so that we can keep kbd knowledge internal
1132 void vt_set_led_state(int console, int leds)
1134 struct kbd_struct *kb = kbd_table + console;
1135 setledstate(kb, leds);
1139 * vt_kbd_con_start - Keyboard side of console start
1140 * @console: console
1142 * Handle console start. This is a wrapper for the VT layer
1143 * so that we can keep kbd knowledge internal
1145 * FIXME: We eventually need to hold the kbd lock here to protect
1146 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1147 * and start_tty under the kbd_event_lock, while normal tty paths
1148 * don't hold the lock. We probably need to split out an LED lock
1149 * but not during an -rc release!
1151 void vt_kbd_con_start(int console)
1153 struct kbd_struct *kb = kbd_table + console;
1154 unsigned long flags;
1155 spin_lock_irqsave(&led_lock, flags);
1156 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1157 set_leds();
1158 spin_unlock_irqrestore(&led_lock, flags);
1162 * vt_kbd_con_stop - Keyboard side of console stop
1163 * @console: console
1165 * Handle console stop. This is a wrapper for the VT layer
1166 * so that we can keep kbd knowledge internal
1168 void vt_kbd_con_stop(int console)
1170 struct kbd_struct *kb = kbd_table + console;
1171 unsigned long flags;
1172 spin_lock_irqsave(&led_lock, flags);
1173 set_vc_kbd_led(kb, VC_SCROLLOCK);
1174 set_leds();
1175 spin_unlock_irqrestore(&led_lock, flags);
1179 * This is the tasklet that updates LED state of LEDs using standard
1180 * keyboard triggers. The reason we use tasklet is that we need to
1181 * handle the scenario when keyboard handler is not registered yet
1182 * but we already getting updates from the VT to update led state.
1184 static void kbd_bh(unsigned long dummy)
1186 unsigned int leds;
1187 unsigned long flags;
1189 spin_lock_irqsave(&led_lock, flags);
1190 leds = getleds();
1191 leds |= (unsigned int)kbd->lockstate << 8;
1192 spin_unlock_irqrestore(&led_lock, flags);
1194 if (leds != ledstate) {
1195 kbd_propagate_led_state(ledstate, leds);
1196 ledstate = leds;
1200 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1202 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1203 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1204 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1205 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1206 defined(CONFIG_AVR32)
1208 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1209 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1211 static const unsigned short x86_keycodes[256] =
1212 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1213 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1214 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1215 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1216 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1217 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1218 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1219 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1220 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1221 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1222 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1223 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1224 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1225 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1226 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1228 #ifdef CONFIG_SPARC
1229 static int sparc_l1_a_state;
1230 extern void sun_do_break(void);
1231 #endif
1233 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1234 unsigned char up_flag)
1236 int code;
1238 switch (keycode) {
1240 case KEY_PAUSE:
1241 put_queue(vc, 0xe1);
1242 put_queue(vc, 0x1d | up_flag);
1243 put_queue(vc, 0x45 | up_flag);
1244 break;
1246 case KEY_HANGEUL:
1247 if (!up_flag)
1248 put_queue(vc, 0xf2);
1249 break;
1251 case KEY_HANJA:
1252 if (!up_flag)
1253 put_queue(vc, 0xf1);
1254 break;
1256 case KEY_SYSRQ:
1258 * Real AT keyboards (that's what we're trying
1259 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1260 * pressing PrtSc/SysRq alone, but simply 0x54
1261 * when pressing Alt+PrtSc/SysRq.
1263 if (test_bit(KEY_LEFTALT, key_down) ||
1264 test_bit(KEY_RIGHTALT, key_down)) {
1265 put_queue(vc, 0x54 | up_flag);
1266 } else {
1267 put_queue(vc, 0xe0);
1268 put_queue(vc, 0x2a | up_flag);
1269 put_queue(vc, 0xe0);
1270 put_queue(vc, 0x37 | up_flag);
1272 break;
1274 default:
1275 if (keycode > 255)
1276 return -1;
1278 code = x86_keycodes[keycode];
1279 if (!code)
1280 return -1;
1282 if (code & 0x100)
1283 put_queue(vc, 0xe0);
1284 put_queue(vc, (code & 0x7f) | up_flag);
1286 break;
1289 return 0;
1292 #else
1294 #define HW_RAW(dev) 0
1296 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1298 if (keycode > 127)
1299 return -1;
1301 put_queue(vc, keycode | up_flag);
1302 return 0;
1304 #endif
1306 static void kbd_rawcode(unsigned char data)
1308 struct vc_data *vc = vc_cons[fg_console].d;
1310 kbd = kbd_table + vc->vc_num;
1311 if (kbd->kbdmode == VC_RAW)
1312 put_queue(vc, data);
1315 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1317 struct vc_data *vc = vc_cons[fg_console].d;
1318 unsigned short keysym, *key_map;
1319 unsigned char type;
1320 bool raw_mode;
1321 struct tty_struct *tty;
1322 int shift_final;
1323 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1324 int rc;
1326 tty = vc->port.tty;
1328 if (tty && (!tty->driver_data)) {
1329 /* No driver data? Strange. Okay we fix it then. */
1330 tty->driver_data = vc;
1333 kbd = kbd_table + vc->vc_num;
1335 #ifdef CONFIG_SPARC
1336 if (keycode == KEY_STOP)
1337 sparc_l1_a_state = down;
1338 #endif
1340 rep = (down == 2);
1342 raw_mode = (kbd->kbdmode == VC_RAW);
1343 if (raw_mode && !hw_raw)
1344 if (emulate_raw(vc, keycode, !down << 7))
1345 if (keycode < BTN_MISC && printk_ratelimit())
1346 pr_warn("can't emulate rawmode for keycode %d\n",
1347 keycode);
1349 #ifdef CONFIG_SPARC
1350 if (keycode == KEY_A && sparc_l1_a_state) {
1351 sparc_l1_a_state = false;
1352 sun_do_break();
1354 #endif
1356 if (kbd->kbdmode == VC_MEDIUMRAW) {
1358 * This is extended medium raw mode, with keys above 127
1359 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1360 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1361 * interfere with anything else. The two bytes after 0 will
1362 * always have the up flag set not to interfere with older
1363 * applications. This allows for 16384 different keycodes,
1364 * which should be enough.
1366 if (keycode < 128) {
1367 put_queue(vc, keycode | (!down << 7));
1368 } else {
1369 put_queue(vc, !down << 7);
1370 put_queue(vc, (keycode >> 7) | 0x80);
1371 put_queue(vc, keycode | 0x80);
1373 raw_mode = true;
1376 if (down)
1377 set_bit(keycode, key_down);
1378 else
1379 clear_bit(keycode, key_down);
1381 if (rep &&
1382 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1383 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1385 * Don't repeat a key if the input buffers are not empty and the
1386 * characters get aren't echoed locally. This makes key repeat
1387 * usable with slow applications and under heavy loads.
1389 return;
1392 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1393 param.ledstate = kbd->ledflagstate;
1394 key_map = key_maps[shift_final];
1396 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1397 KBD_KEYCODE, &param);
1398 if (rc == NOTIFY_STOP || !key_map) {
1399 atomic_notifier_call_chain(&keyboard_notifier_list,
1400 KBD_UNBOUND_KEYCODE, &param);
1401 do_compute_shiftstate();
1402 kbd->slockstate = 0;
1403 return;
1406 if (keycode < NR_KEYS)
1407 keysym = key_map[keycode];
1408 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1409 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1410 else
1411 return;
1413 type = KTYP(keysym);
1415 if (type < 0xf0) {
1416 param.value = keysym;
1417 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1418 KBD_UNICODE, &param);
1419 if (rc != NOTIFY_STOP)
1420 if (down && !raw_mode)
1421 to_utf8(vc, keysym);
1422 return;
1425 type -= 0xf0;
1427 if (type == KT_LETTER) {
1428 type = KT_LATIN;
1429 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1430 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1431 if (key_map)
1432 keysym = key_map[keycode];
1436 param.value = keysym;
1437 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1438 KBD_KEYSYM, &param);
1439 if (rc == NOTIFY_STOP)
1440 return;
1442 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1443 return;
1445 (*k_handler[type])(vc, keysym & 0xff, !down);
1447 param.ledstate = kbd->ledflagstate;
1448 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1450 if (type != KT_SLOCK)
1451 kbd->slockstate = 0;
1454 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1455 unsigned int event_code, int value)
1457 /* We are called with interrupts disabled, just take the lock */
1458 spin_lock(&kbd_event_lock);
1460 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1461 kbd_rawcode(value);
1462 if (event_type == EV_KEY)
1463 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1465 spin_unlock(&kbd_event_lock);
1467 tasklet_schedule(&keyboard_tasklet);
1468 do_poke_blanked_console = 1;
1469 schedule_console_callback();
1472 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1474 int i;
1476 if (test_bit(EV_SND, dev->evbit))
1477 return true;
1479 if (test_bit(EV_KEY, dev->evbit)) {
1480 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1481 if (test_bit(i, dev->keybit))
1482 return true;
1483 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1484 if (test_bit(i, dev->keybit))
1485 return true;
1488 return false;
1492 * When a keyboard (or other input device) is found, the kbd_connect
1493 * function is called. The function then looks at the device, and if it
1494 * likes it, it can open it and get events from it. In this (kbd_connect)
1495 * function, we should decide which VT to bind that keyboard to initially.
1497 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1498 const struct input_device_id *id)
1500 struct input_handle *handle;
1501 int error;
1503 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1504 if (!handle)
1505 return -ENOMEM;
1507 handle->dev = dev;
1508 handle->handler = handler;
1509 handle->name = "kbd";
1511 error = input_register_handle(handle);
1512 if (error)
1513 goto err_free_handle;
1515 error = input_open_device(handle);
1516 if (error)
1517 goto err_unregister_handle;
1519 return 0;
1521 err_unregister_handle:
1522 input_unregister_handle(handle);
1523 err_free_handle:
1524 kfree(handle);
1525 return error;
1528 static void kbd_disconnect(struct input_handle *handle)
1530 input_close_device(handle);
1531 input_unregister_handle(handle);
1532 kfree(handle);
1536 * Start keyboard handler on the new keyboard by refreshing LED state to
1537 * match the rest of the system.
1539 static void kbd_start(struct input_handle *handle)
1541 tasklet_disable(&keyboard_tasklet);
1543 if (ledstate != -1U)
1544 kbd_update_leds_helper(handle, &ledstate);
1546 tasklet_enable(&keyboard_tasklet);
1549 static const struct input_device_id kbd_ids[] = {
1551 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1552 .evbit = { BIT_MASK(EV_KEY) },
1556 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1557 .evbit = { BIT_MASK(EV_SND) },
1560 { }, /* Terminating entry */
1563 MODULE_DEVICE_TABLE(input, kbd_ids);
1565 static struct input_handler kbd_handler = {
1566 .event = kbd_event,
1567 .match = kbd_match,
1568 .connect = kbd_connect,
1569 .disconnect = kbd_disconnect,
1570 .start = kbd_start,
1571 .name = "kbd",
1572 .id_table = kbd_ids,
1575 int __init kbd_init(void)
1577 int i;
1578 int error;
1580 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1581 kbd_table[i].ledflagstate = kbd_defleds();
1582 kbd_table[i].default_ledflagstate = kbd_defleds();
1583 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1584 kbd_table[i].lockstate = KBD_DEFLOCK;
1585 kbd_table[i].slockstate = 0;
1586 kbd_table[i].modeflags = KBD_DEFMODE;
1587 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1590 kbd_init_leds();
1592 error = input_register_handler(&kbd_handler);
1593 if (error)
1594 return error;
1596 tasklet_enable(&keyboard_tasklet);
1597 tasklet_schedule(&keyboard_tasklet);
1599 return 0;
1602 /* Ioctl support code */
1605 * vt_do_diacrit - diacritical table updates
1606 * @cmd: ioctl request
1607 * @udp: pointer to user data for ioctl
1608 * @perm: permissions check computed by caller
1610 * Update the diacritical tables atomically and safely. Lock them
1611 * against simultaneous keypresses
1613 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1615 unsigned long flags;
1616 int asize;
1617 int ret = 0;
1619 switch (cmd) {
1620 case KDGKBDIACR:
1622 struct kbdiacrs __user *a = udp;
1623 struct kbdiacr *dia;
1624 int i;
1626 dia = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1627 GFP_KERNEL);
1628 if (!dia)
1629 return -ENOMEM;
1631 /* Lock the diacriticals table, make a copy and then
1632 copy it after we unlock */
1633 spin_lock_irqsave(&kbd_event_lock, flags);
1635 asize = accent_table_size;
1636 for (i = 0; i < asize; i++) {
1637 dia[i].diacr = conv_uni_to_8bit(
1638 accent_table[i].diacr);
1639 dia[i].base = conv_uni_to_8bit(
1640 accent_table[i].base);
1641 dia[i].result = conv_uni_to_8bit(
1642 accent_table[i].result);
1644 spin_unlock_irqrestore(&kbd_event_lock, flags);
1646 if (put_user(asize, &a->kb_cnt))
1647 ret = -EFAULT;
1648 else if (copy_to_user(a->kbdiacr, dia,
1649 asize * sizeof(struct kbdiacr)))
1650 ret = -EFAULT;
1651 kfree(dia);
1652 return ret;
1654 case KDGKBDIACRUC:
1656 struct kbdiacrsuc __user *a = udp;
1657 void *buf;
1659 buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1660 GFP_KERNEL);
1661 if (buf == NULL)
1662 return -ENOMEM;
1664 /* Lock the diacriticals table, make a copy and then
1665 copy it after we unlock */
1666 spin_lock_irqsave(&kbd_event_lock, flags);
1668 asize = accent_table_size;
1669 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1671 spin_unlock_irqrestore(&kbd_event_lock, flags);
1673 if (put_user(asize, &a->kb_cnt))
1674 ret = -EFAULT;
1675 else if (copy_to_user(a->kbdiacruc, buf,
1676 asize*sizeof(struct kbdiacruc)))
1677 ret = -EFAULT;
1678 kfree(buf);
1679 return ret;
1682 case KDSKBDIACR:
1684 struct kbdiacrs __user *a = udp;
1685 struct kbdiacr *dia = NULL;
1686 unsigned int ct;
1687 int i;
1689 if (!perm)
1690 return -EPERM;
1691 if (get_user(ct, &a->kb_cnt))
1692 return -EFAULT;
1693 if (ct >= MAX_DIACR)
1694 return -EINVAL;
1696 if (ct) {
1698 dia = memdup_user(a->kbdiacr,
1699 sizeof(struct kbdiacr) * ct);
1700 if (IS_ERR(dia))
1701 return PTR_ERR(dia);
1705 spin_lock_irqsave(&kbd_event_lock, flags);
1706 accent_table_size = ct;
1707 for (i = 0; i < ct; i++) {
1708 accent_table[i].diacr =
1709 conv_8bit_to_uni(dia[i].diacr);
1710 accent_table[i].base =
1711 conv_8bit_to_uni(dia[i].base);
1712 accent_table[i].result =
1713 conv_8bit_to_uni(dia[i].result);
1715 spin_unlock_irqrestore(&kbd_event_lock, flags);
1716 kfree(dia);
1717 return 0;
1720 case KDSKBDIACRUC:
1722 struct kbdiacrsuc __user *a = udp;
1723 unsigned int ct;
1724 void *buf = NULL;
1726 if (!perm)
1727 return -EPERM;
1729 if (get_user(ct, &a->kb_cnt))
1730 return -EFAULT;
1732 if (ct >= MAX_DIACR)
1733 return -EINVAL;
1735 if (ct) {
1736 buf = kmalloc(ct * sizeof(struct kbdiacruc),
1737 GFP_KERNEL);
1738 if (buf == NULL)
1739 return -ENOMEM;
1741 if (copy_from_user(buf, a->kbdiacruc,
1742 ct * sizeof(struct kbdiacruc))) {
1743 kfree(buf);
1744 return -EFAULT;
1747 spin_lock_irqsave(&kbd_event_lock, flags);
1748 if (ct)
1749 memcpy(accent_table, buf,
1750 ct * sizeof(struct kbdiacruc));
1751 accent_table_size = ct;
1752 spin_unlock_irqrestore(&kbd_event_lock, flags);
1753 kfree(buf);
1754 return 0;
1757 return ret;
1761 * vt_do_kdskbmode - set keyboard mode ioctl
1762 * @console: the console to use
1763 * @arg: the requested mode
1765 * Update the keyboard mode bits while holding the correct locks.
1766 * Return 0 for success or an error code.
1768 int vt_do_kdskbmode(int console, unsigned int arg)
1770 struct kbd_struct *kb = kbd_table + console;
1771 int ret = 0;
1772 unsigned long flags;
1774 spin_lock_irqsave(&kbd_event_lock, flags);
1775 switch(arg) {
1776 case K_RAW:
1777 kb->kbdmode = VC_RAW;
1778 break;
1779 case K_MEDIUMRAW:
1780 kb->kbdmode = VC_MEDIUMRAW;
1781 break;
1782 case K_XLATE:
1783 kb->kbdmode = VC_XLATE;
1784 do_compute_shiftstate();
1785 break;
1786 case K_UNICODE:
1787 kb->kbdmode = VC_UNICODE;
1788 do_compute_shiftstate();
1789 break;
1790 case K_OFF:
1791 kb->kbdmode = VC_OFF;
1792 break;
1793 default:
1794 ret = -EINVAL;
1796 spin_unlock_irqrestore(&kbd_event_lock, flags);
1797 return ret;
1801 * vt_do_kdskbmeta - set keyboard meta state
1802 * @console: the console to use
1803 * @arg: the requested meta state
1805 * Update the keyboard meta bits while holding the correct locks.
1806 * Return 0 for success or an error code.
1808 int vt_do_kdskbmeta(int console, unsigned int arg)
1810 struct kbd_struct *kb = kbd_table + console;
1811 int ret = 0;
1812 unsigned long flags;
1814 spin_lock_irqsave(&kbd_event_lock, flags);
1815 switch(arg) {
1816 case K_METABIT:
1817 clr_vc_kbd_mode(kb, VC_META);
1818 break;
1819 case K_ESCPREFIX:
1820 set_vc_kbd_mode(kb, VC_META);
1821 break;
1822 default:
1823 ret = -EINVAL;
1825 spin_unlock_irqrestore(&kbd_event_lock, flags);
1826 return ret;
1829 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1830 int perm)
1832 struct kbkeycode tmp;
1833 int kc = 0;
1835 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1836 return -EFAULT;
1837 switch (cmd) {
1838 case KDGETKEYCODE:
1839 kc = getkeycode(tmp.scancode);
1840 if (kc >= 0)
1841 kc = put_user(kc, &user_kbkc->keycode);
1842 break;
1843 case KDSETKEYCODE:
1844 if (!perm)
1845 return -EPERM;
1846 kc = setkeycode(tmp.scancode, tmp.keycode);
1847 break;
1849 return kc;
1852 #define i (tmp.kb_index)
1853 #define s (tmp.kb_table)
1854 #define v (tmp.kb_value)
1856 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1857 int console)
1859 struct kbd_struct *kb = kbd_table + console;
1860 struct kbentry tmp;
1861 ushort *key_map, *new_map, val, ov;
1862 unsigned long flags;
1864 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1865 return -EFAULT;
1867 if (!capable(CAP_SYS_TTY_CONFIG))
1868 perm = 0;
1870 switch (cmd) {
1871 case KDGKBENT:
1872 /* Ensure another thread doesn't free it under us */
1873 spin_lock_irqsave(&kbd_event_lock, flags);
1874 key_map = key_maps[s];
1875 if (key_map) {
1876 val = U(key_map[i]);
1877 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1878 val = K_HOLE;
1879 } else
1880 val = (i ? K_HOLE : K_NOSUCHMAP);
1881 spin_unlock_irqrestore(&kbd_event_lock, flags);
1882 return put_user(val, &user_kbe->kb_value);
1883 case KDSKBENT:
1884 if (!perm)
1885 return -EPERM;
1886 if (!i && v == K_NOSUCHMAP) {
1887 spin_lock_irqsave(&kbd_event_lock, flags);
1888 /* deallocate map */
1889 key_map = key_maps[s];
1890 if (s && key_map) {
1891 key_maps[s] = NULL;
1892 if (key_map[0] == U(K_ALLOCATED)) {
1893 kfree(key_map);
1894 keymap_count--;
1897 spin_unlock_irqrestore(&kbd_event_lock, flags);
1898 break;
1901 if (KTYP(v) < NR_TYPES) {
1902 if (KVAL(v) > max_vals[KTYP(v)])
1903 return -EINVAL;
1904 } else
1905 if (kb->kbdmode != VC_UNICODE)
1906 return -EINVAL;
1908 /* ++Geert: non-PC keyboards may generate keycode zero */
1909 #if !defined(__mc68000__) && !defined(__powerpc__)
1910 /* assignment to entry 0 only tests validity of args */
1911 if (!i)
1912 break;
1913 #endif
1915 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1916 if (!new_map)
1917 return -ENOMEM;
1918 spin_lock_irqsave(&kbd_event_lock, flags);
1919 key_map = key_maps[s];
1920 if (key_map == NULL) {
1921 int j;
1923 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1924 !capable(CAP_SYS_RESOURCE)) {
1925 spin_unlock_irqrestore(&kbd_event_lock, flags);
1926 kfree(new_map);
1927 return -EPERM;
1929 key_maps[s] = new_map;
1930 key_map = new_map;
1931 key_map[0] = U(K_ALLOCATED);
1932 for (j = 1; j < NR_KEYS; j++)
1933 key_map[j] = U(K_HOLE);
1934 keymap_count++;
1935 } else
1936 kfree(new_map);
1938 ov = U(key_map[i]);
1939 if (v == ov)
1940 goto out;
1942 * Attention Key.
1944 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1945 spin_unlock_irqrestore(&kbd_event_lock, flags);
1946 return -EPERM;
1948 key_map[i] = U(v);
1949 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1950 do_compute_shiftstate();
1951 out:
1952 spin_unlock_irqrestore(&kbd_event_lock, flags);
1953 break;
1955 return 0;
1957 #undef i
1958 #undef s
1959 #undef v
1961 /* FIXME: This one needs untangling and locking */
1962 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1964 struct kbsentry *kbs;
1965 char *p;
1966 u_char *q;
1967 u_char __user *up;
1968 int sz;
1969 int delta;
1970 char *first_free, *fj, *fnw;
1971 int i, j, k;
1972 int ret;
1974 if (!capable(CAP_SYS_TTY_CONFIG))
1975 perm = 0;
1977 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1978 if (!kbs) {
1979 ret = -ENOMEM;
1980 goto reterr;
1983 /* we mostly copy too much here (512bytes), but who cares ;) */
1984 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1985 ret = -EFAULT;
1986 goto reterr;
1988 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1989 i = kbs->kb_func;
1991 switch (cmd) {
1992 case KDGKBSENT:
1993 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1994 a struct member */
1995 up = user_kdgkb->kb_string;
1996 p = func_table[i];
1997 if(p)
1998 for ( ; *p && sz; p++, sz--)
1999 if (put_user(*p, up++)) {
2000 ret = -EFAULT;
2001 goto reterr;
2003 if (put_user('\0', up)) {
2004 ret = -EFAULT;
2005 goto reterr;
2007 kfree(kbs);
2008 return ((p && *p) ? -EOVERFLOW : 0);
2009 case KDSKBSENT:
2010 if (!perm) {
2011 ret = -EPERM;
2012 goto reterr;
2015 q = func_table[i];
2016 first_free = funcbufptr + (funcbufsize - funcbufleft);
2017 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2019 if (j < MAX_NR_FUNC)
2020 fj = func_table[j];
2021 else
2022 fj = first_free;
2024 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2025 if (delta <= funcbufleft) { /* it fits in current buf */
2026 if (j < MAX_NR_FUNC) {
2027 memmove(fj + delta, fj, first_free - fj);
2028 for (k = j; k < MAX_NR_FUNC; k++)
2029 if (func_table[k])
2030 func_table[k] += delta;
2032 if (!q)
2033 func_table[i] = fj;
2034 funcbufleft -= delta;
2035 } else { /* allocate a larger buffer */
2036 sz = 256;
2037 while (sz < funcbufsize - funcbufleft + delta)
2038 sz <<= 1;
2039 fnw = kmalloc(sz, GFP_KERNEL);
2040 if(!fnw) {
2041 ret = -ENOMEM;
2042 goto reterr;
2045 if (!q)
2046 func_table[i] = fj;
2047 if (fj > funcbufptr)
2048 memmove(fnw, funcbufptr, fj - funcbufptr);
2049 for (k = 0; k < j; k++)
2050 if (func_table[k])
2051 func_table[k] = fnw + (func_table[k] - funcbufptr);
2053 if (first_free > fj) {
2054 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2055 for (k = j; k < MAX_NR_FUNC; k++)
2056 if (func_table[k])
2057 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2059 if (funcbufptr != func_buf)
2060 kfree(funcbufptr);
2061 funcbufptr = fnw;
2062 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2063 funcbufsize = sz;
2065 strcpy(func_table[i], kbs->kb_string);
2066 break;
2068 ret = 0;
2069 reterr:
2070 kfree(kbs);
2071 return ret;
2074 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2076 struct kbd_struct *kb = kbd_table + console;
2077 unsigned long flags;
2078 unsigned char ucval;
2080 switch(cmd) {
2081 /* the ioctls below read/set the flags usually shown in the leds */
2082 /* don't use them - they will go away without warning */
2083 case KDGKBLED:
2084 spin_lock_irqsave(&kbd_event_lock, flags);
2085 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2086 spin_unlock_irqrestore(&kbd_event_lock, flags);
2087 return put_user(ucval, (char __user *)arg);
2089 case KDSKBLED:
2090 if (!perm)
2091 return -EPERM;
2092 if (arg & ~0x77)
2093 return -EINVAL;
2094 spin_lock_irqsave(&led_lock, flags);
2095 kb->ledflagstate = (arg & 7);
2096 kb->default_ledflagstate = ((arg >> 4) & 7);
2097 set_leds();
2098 spin_unlock_irqrestore(&led_lock, flags);
2099 return 0;
2101 /* the ioctls below only set the lights, not the functions */
2102 /* for those, see KDGKBLED and KDSKBLED above */
2103 case KDGETLED:
2104 ucval = getledstate();
2105 return put_user(ucval, (char __user *)arg);
2107 case KDSETLED:
2108 if (!perm)
2109 return -EPERM;
2110 setledstate(kb, arg);
2111 return 0;
2113 return -ENOIOCTLCMD;
2116 int vt_do_kdgkbmode(int console)
2118 struct kbd_struct *kb = kbd_table + console;
2119 /* This is a spot read so needs no locking */
2120 switch (kb->kbdmode) {
2121 case VC_RAW:
2122 return K_RAW;
2123 case VC_MEDIUMRAW:
2124 return K_MEDIUMRAW;
2125 case VC_UNICODE:
2126 return K_UNICODE;
2127 case VC_OFF:
2128 return K_OFF;
2129 default:
2130 return K_XLATE;
2135 * vt_do_kdgkbmeta - report meta status
2136 * @console: console to report
2138 * Report the meta flag status of this console
2140 int vt_do_kdgkbmeta(int console)
2142 struct kbd_struct *kb = kbd_table + console;
2143 /* Again a spot read so no locking */
2144 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2148 * vt_reset_unicode - reset the unicode status
2149 * @console: console being reset
2151 * Restore the unicode console state to its default
2153 void vt_reset_unicode(int console)
2155 unsigned long flags;
2157 spin_lock_irqsave(&kbd_event_lock, flags);
2158 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2159 spin_unlock_irqrestore(&kbd_event_lock, flags);
2163 * vt_get_shiftstate - shift bit state
2165 * Report the shift bits from the keyboard state. We have to export
2166 * this to support some oddities in the vt layer.
2168 int vt_get_shift_state(void)
2170 /* Don't lock as this is a transient report */
2171 return shift_state;
2175 * vt_reset_keyboard - reset keyboard state
2176 * @console: console to reset
2178 * Reset the keyboard bits for a console as part of a general console
2179 * reset event
2181 void vt_reset_keyboard(int console)
2183 struct kbd_struct *kb = kbd_table + console;
2184 unsigned long flags;
2186 spin_lock_irqsave(&kbd_event_lock, flags);
2187 set_vc_kbd_mode(kb, VC_REPEAT);
2188 clr_vc_kbd_mode(kb, VC_CKMODE);
2189 clr_vc_kbd_mode(kb, VC_APPLIC);
2190 clr_vc_kbd_mode(kb, VC_CRLF);
2191 kb->lockstate = 0;
2192 kb->slockstate = 0;
2193 spin_lock(&led_lock);
2194 kb->ledmode = LED_SHOW_FLAGS;
2195 kb->ledflagstate = kb->default_ledflagstate;
2196 spin_unlock(&led_lock);
2197 /* do not do set_leds here because this causes an endless tasklet loop
2198 when the keyboard hasn't been initialized yet */
2199 spin_unlock_irqrestore(&kbd_event_lock, flags);
2203 * vt_get_kbd_mode_bit - read keyboard status bits
2204 * @console: console to read from
2205 * @bit: mode bit to read
2207 * Report back a vt mode bit. We do this without locking so the
2208 * caller must be sure that there are no synchronization needs
2211 int vt_get_kbd_mode_bit(int console, int bit)
2213 struct kbd_struct *kb = kbd_table + console;
2214 return vc_kbd_mode(kb, bit);
2218 * vt_set_kbd_mode_bit - read keyboard status bits
2219 * @console: console to read from
2220 * @bit: mode bit to read
2222 * Set a vt mode bit. We do this without locking so the
2223 * caller must be sure that there are no synchronization needs
2226 void vt_set_kbd_mode_bit(int console, int bit)
2228 struct kbd_struct *kb = kbd_table + console;
2229 unsigned long flags;
2231 spin_lock_irqsave(&kbd_event_lock, flags);
2232 set_vc_kbd_mode(kb, bit);
2233 spin_unlock_irqrestore(&kbd_event_lock, flags);
2237 * vt_clr_kbd_mode_bit - read keyboard status bits
2238 * @console: console to read from
2239 * @bit: mode bit to read
2241 * Report back a vt mode bit. We do this without locking so the
2242 * caller must be sure that there are no synchronization needs
2245 void vt_clr_kbd_mode_bit(int console, int bit)
2247 struct kbd_struct *kb = kbd_table + console;
2248 unsigned long flags;
2250 spin_lock_irqsave(&kbd_event_lock, flags);
2251 clr_vc_kbd_mode(kb, bit);
2252 spin_unlock_irqrestore(&kbd_event_lock, flags);