iommu/amd: Moving PPR fault flags macros definitions
[linux/fpc-iii.git] / fs / jffs2 / file.c
blob64989ca9ba90b71e3a8d16ff90dda67a913cc988
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
5 * Copyright © 2004-2010 David Woodhouse <dwmw2@infradead.org>
7 * Created by David Woodhouse <dwmw2@infradead.org>
9 * For licensing information, see the file 'LICENCE' in this directory.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/kernel.h>
16 #include <linux/fs.h>
17 #include <linux/time.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/crc32.h>
21 #include <linux/jffs2.h>
22 #include "nodelist.h"
24 static int jffs2_write_end(struct file *filp, struct address_space *mapping,
25 loff_t pos, unsigned len, unsigned copied,
26 struct page *pg, void *fsdata);
27 static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
28 loff_t pos, unsigned len, unsigned flags,
29 struct page **pagep, void **fsdata);
30 static int jffs2_readpage (struct file *filp, struct page *pg);
32 int jffs2_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
34 struct inode *inode = filp->f_mapping->host;
35 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
36 int ret;
38 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
39 if (ret)
40 return ret;
42 mutex_lock(&inode->i_mutex);
43 /* Trigger GC to flush any pending writes for this inode */
44 jffs2_flush_wbuf_gc(c, inode->i_ino);
45 mutex_unlock(&inode->i_mutex);
47 return 0;
50 const struct file_operations jffs2_file_operations =
52 .llseek = generic_file_llseek,
53 .open = generic_file_open,
54 .read = new_sync_read,
55 .read_iter = generic_file_read_iter,
56 .write = new_sync_write,
57 .write_iter = generic_file_write_iter,
58 .unlocked_ioctl=jffs2_ioctl,
59 .mmap = generic_file_readonly_mmap,
60 .fsync = jffs2_fsync,
61 .splice_read = generic_file_splice_read,
64 /* jffs2_file_inode_operations */
66 const struct inode_operations jffs2_file_inode_operations =
68 .get_acl = jffs2_get_acl,
69 .set_acl = jffs2_set_acl,
70 .setattr = jffs2_setattr,
71 .setxattr = jffs2_setxattr,
72 .getxattr = jffs2_getxattr,
73 .listxattr = jffs2_listxattr,
74 .removexattr = jffs2_removexattr
77 const struct address_space_operations jffs2_file_address_operations =
79 .readpage = jffs2_readpage,
80 .write_begin = jffs2_write_begin,
81 .write_end = jffs2_write_end,
84 static int jffs2_do_readpage_nolock (struct inode *inode, struct page *pg)
86 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
87 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
88 unsigned char *pg_buf;
89 int ret;
91 jffs2_dbg(2, "%s(): ino #%lu, page at offset 0x%lx\n",
92 __func__, inode->i_ino, pg->index << PAGE_CACHE_SHIFT);
94 BUG_ON(!PageLocked(pg));
96 pg_buf = kmap(pg);
97 /* FIXME: Can kmap fail? */
99 ret = jffs2_read_inode_range(c, f, pg_buf, pg->index << PAGE_CACHE_SHIFT, PAGE_CACHE_SIZE);
101 if (ret) {
102 ClearPageUptodate(pg);
103 SetPageError(pg);
104 } else {
105 SetPageUptodate(pg);
106 ClearPageError(pg);
109 flush_dcache_page(pg);
110 kunmap(pg);
112 jffs2_dbg(2, "readpage finished\n");
113 return ret;
116 int jffs2_do_readpage_unlock(struct inode *inode, struct page *pg)
118 int ret = jffs2_do_readpage_nolock(inode, pg);
119 unlock_page(pg);
120 return ret;
124 static int jffs2_readpage (struct file *filp, struct page *pg)
126 struct jffs2_inode_info *f = JFFS2_INODE_INFO(pg->mapping->host);
127 int ret;
129 mutex_lock(&f->sem);
130 ret = jffs2_do_readpage_unlock(pg->mapping->host, pg);
131 mutex_unlock(&f->sem);
132 return ret;
135 static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
136 loff_t pos, unsigned len, unsigned flags,
137 struct page **pagep, void **fsdata)
139 struct page *pg;
140 struct inode *inode = mapping->host;
141 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
142 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
143 struct jffs2_raw_inode ri;
144 uint32_t alloc_len = 0;
145 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
146 uint32_t pageofs = index << PAGE_CACHE_SHIFT;
147 int ret = 0;
149 jffs2_dbg(1, "%s()\n", __func__);
151 if (pageofs > inode->i_size) {
152 ret = jffs2_reserve_space(c, sizeof(ri), &alloc_len,
153 ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
154 if (ret)
155 return ret;
158 mutex_lock(&f->sem);
159 pg = grab_cache_page_write_begin(mapping, index, flags);
160 if (!pg) {
161 if (alloc_len)
162 jffs2_complete_reservation(c);
163 mutex_unlock(&f->sem);
164 return -ENOMEM;
166 *pagep = pg;
168 if (alloc_len) {
169 /* Make new hole frag from old EOF to new page */
170 struct jffs2_full_dnode *fn;
172 jffs2_dbg(1, "Writing new hole frag 0x%x-0x%x between current EOF and new page\n",
173 (unsigned int)inode->i_size, pageofs);
175 memset(&ri, 0, sizeof(ri));
177 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
178 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
179 ri.totlen = cpu_to_je32(sizeof(ri));
180 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
182 ri.ino = cpu_to_je32(f->inocache->ino);
183 ri.version = cpu_to_je32(++f->highest_version);
184 ri.mode = cpu_to_jemode(inode->i_mode);
185 ri.uid = cpu_to_je16(i_uid_read(inode));
186 ri.gid = cpu_to_je16(i_gid_read(inode));
187 ri.isize = cpu_to_je32(max((uint32_t)inode->i_size, pageofs));
188 ri.atime = ri.ctime = ri.mtime = cpu_to_je32(get_seconds());
189 ri.offset = cpu_to_je32(inode->i_size);
190 ri.dsize = cpu_to_je32(pageofs - inode->i_size);
191 ri.csize = cpu_to_je32(0);
192 ri.compr = JFFS2_COMPR_ZERO;
193 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
194 ri.data_crc = cpu_to_je32(0);
196 fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_NORMAL);
198 if (IS_ERR(fn)) {
199 ret = PTR_ERR(fn);
200 jffs2_complete_reservation(c);
201 goto out_page;
203 ret = jffs2_add_full_dnode_to_inode(c, f, fn);
204 if (f->metadata) {
205 jffs2_mark_node_obsolete(c, f->metadata->raw);
206 jffs2_free_full_dnode(f->metadata);
207 f->metadata = NULL;
209 if (ret) {
210 jffs2_dbg(1, "Eep. add_full_dnode_to_inode() failed in write_begin, returned %d\n",
211 ret);
212 jffs2_mark_node_obsolete(c, fn->raw);
213 jffs2_free_full_dnode(fn);
214 jffs2_complete_reservation(c);
215 goto out_page;
217 jffs2_complete_reservation(c);
218 inode->i_size = pageofs;
222 * Read in the page if it wasn't already present. Cannot optimize away
223 * the whole page write case until jffs2_write_end can handle the
224 * case of a short-copy.
226 if (!PageUptodate(pg)) {
227 ret = jffs2_do_readpage_nolock(inode, pg);
228 if (ret)
229 goto out_page;
231 mutex_unlock(&f->sem);
232 jffs2_dbg(1, "end write_begin(). pg->flags %lx\n", pg->flags);
233 return ret;
235 out_page:
236 unlock_page(pg);
237 page_cache_release(pg);
238 mutex_unlock(&f->sem);
239 return ret;
242 static int jffs2_write_end(struct file *filp, struct address_space *mapping,
243 loff_t pos, unsigned len, unsigned copied,
244 struct page *pg, void *fsdata)
246 /* Actually commit the write from the page cache page we're looking at.
247 * For now, we write the full page out each time. It sucks, but it's simple
249 struct inode *inode = mapping->host;
250 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
251 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
252 struct jffs2_raw_inode *ri;
253 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
254 unsigned end = start + copied;
255 unsigned aligned_start = start & ~3;
256 int ret = 0;
257 uint32_t writtenlen = 0;
259 jffs2_dbg(1, "%s(): ino #%lu, page at 0x%lx, range %d-%d, flags %lx\n",
260 __func__, inode->i_ino, pg->index << PAGE_CACHE_SHIFT,
261 start, end, pg->flags);
263 /* We need to avoid deadlock with page_cache_read() in
264 jffs2_garbage_collect_pass(). So the page must be
265 up to date to prevent page_cache_read() from trying
266 to re-lock it. */
267 BUG_ON(!PageUptodate(pg));
269 if (end == PAGE_CACHE_SIZE) {
270 /* When writing out the end of a page, write out the
271 _whole_ page. This helps to reduce the number of
272 nodes in files which have many short writes, like
273 syslog files. */
274 aligned_start = 0;
277 ri = jffs2_alloc_raw_inode();
279 if (!ri) {
280 jffs2_dbg(1, "%s(): Allocation of raw inode failed\n",
281 __func__);
282 unlock_page(pg);
283 page_cache_release(pg);
284 return -ENOMEM;
287 /* Set the fields that the generic jffs2_write_inode_range() code can't find */
288 ri->ino = cpu_to_je32(inode->i_ino);
289 ri->mode = cpu_to_jemode(inode->i_mode);
290 ri->uid = cpu_to_je16(i_uid_read(inode));
291 ri->gid = cpu_to_je16(i_gid_read(inode));
292 ri->isize = cpu_to_je32((uint32_t)inode->i_size);
293 ri->atime = ri->ctime = ri->mtime = cpu_to_je32(get_seconds());
295 /* In 2.4, it was already kmapped by generic_file_write(). Doesn't
296 hurt to do it again. The alternative is ifdefs, which are ugly. */
297 kmap(pg);
299 ret = jffs2_write_inode_range(c, f, ri, page_address(pg) + aligned_start,
300 (pg->index << PAGE_CACHE_SHIFT) + aligned_start,
301 end - aligned_start, &writtenlen);
303 kunmap(pg);
305 if (ret) {
306 /* There was an error writing. */
307 SetPageError(pg);
310 /* Adjust writtenlen for the padding we did, so we don't confuse our caller */
311 writtenlen -= min(writtenlen, (start - aligned_start));
313 if (writtenlen) {
314 if (inode->i_size < pos + writtenlen) {
315 inode->i_size = pos + writtenlen;
316 inode->i_blocks = (inode->i_size + 511) >> 9;
318 inode->i_ctime = inode->i_mtime = ITIME(je32_to_cpu(ri->ctime));
322 jffs2_free_raw_inode(ri);
324 if (start+writtenlen < end) {
325 /* generic_file_write has written more to the page cache than we've
326 actually written to the medium. Mark the page !Uptodate so that
327 it gets reread */
328 jffs2_dbg(1, "%s(): Not all bytes written. Marking page !uptodate\n",
329 __func__);
330 SetPageError(pg);
331 ClearPageUptodate(pg);
334 jffs2_dbg(1, "%s() returning %d\n",
335 __func__, writtenlen > 0 ? writtenlen : ret);
336 unlock_page(pg);
337 page_cache_release(pg);
338 return writtenlen > 0 ? writtenlen : ret;