2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
41 #include <asm/irq_regs.h>
43 struct remote_function_call
{
44 struct task_struct
*p
;
45 int (*func
)(void *info
);
50 static void remote_function(void *data
)
52 struct remote_function_call
*tfc
= data
;
53 struct task_struct
*p
= tfc
->p
;
57 if (task_cpu(p
) != smp_processor_id() || !task_curr(p
))
61 tfc
->ret
= tfc
->func(tfc
->info
);
65 * task_function_call - call a function on the cpu on which a task runs
66 * @p: the task to evaluate
67 * @func: the function to be called
68 * @info: the function call argument
70 * Calls the function @func when the task is currently running. This might
71 * be on the current CPU, which just calls the function directly
73 * returns: @func return value, or
74 * -ESRCH - when the process isn't running
75 * -EAGAIN - when the process moved away
78 task_function_call(struct task_struct
*p
, int (*func
) (void *info
), void *info
)
80 struct remote_function_call data
= {
84 .ret
= -ESRCH
, /* No such (running) process */
88 smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
94 * cpu_function_call - call a function on the cpu
95 * @func: the function to be called
96 * @info: the function call argument
98 * Calls the function @func on the remote cpu.
100 * returns: @func return value or -ENXIO when the cpu is offline
102 static int cpu_function_call(int cpu
, int (*func
) (void *info
), void *info
)
104 struct remote_function_call data
= {
108 .ret
= -ENXIO
, /* No such CPU */
111 smp_call_function_single(cpu
, remote_function
, &data
, 1);
116 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
117 PERF_FLAG_FD_OUTPUT |\
118 PERF_FLAG_PID_CGROUP)
121 EVENT_FLEXIBLE
= 0x1,
123 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
127 * perf_sched_events : >0 events exist
128 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
130 struct jump_label_key perf_sched_events __read_mostly
;
131 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
133 static atomic_t nr_mmap_events __read_mostly
;
134 static atomic_t nr_comm_events __read_mostly
;
135 static atomic_t nr_task_events __read_mostly
;
137 static LIST_HEAD(pmus
);
138 static DEFINE_MUTEX(pmus_lock
);
139 static struct srcu_struct pmus_srcu
;
142 * perf event paranoia level:
143 * -1 - not paranoid at all
144 * 0 - disallow raw tracepoint access for unpriv
145 * 1 - disallow cpu events for unpriv
146 * 2 - disallow kernel profiling for unpriv
148 int sysctl_perf_event_paranoid __read_mostly
= 1;
150 /* Minimum for 512 kiB + 1 user control page */
151 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
154 * max perf event sample rate
156 #define DEFAULT_MAX_SAMPLE_RATE 100000
157 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
158 static int max_samples_per_tick __read_mostly
=
159 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
161 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
162 void __user
*buffer
, size_t *lenp
,
165 int ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
170 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
175 static atomic64_t perf_event_id
;
177 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
178 enum event_type_t event_type
);
180 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
181 enum event_type_t event_type
,
182 struct task_struct
*task
);
184 static void update_context_time(struct perf_event_context
*ctx
);
185 static u64
perf_event_time(struct perf_event
*event
);
187 void __weak
perf_event_print_debug(void) { }
189 extern __weak
const char *perf_pmu_name(void)
194 static inline u64
perf_clock(void)
196 return local_clock();
199 static inline struct perf_cpu_context
*
200 __get_cpu_context(struct perf_event_context
*ctx
)
202 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
205 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
206 struct perf_event_context
*ctx
)
208 raw_spin_lock(&cpuctx
->ctx
.lock
);
210 raw_spin_lock(&ctx
->lock
);
213 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
214 struct perf_event_context
*ctx
)
217 raw_spin_unlock(&ctx
->lock
);
218 raw_spin_unlock(&cpuctx
->ctx
.lock
);
221 #ifdef CONFIG_CGROUP_PERF
224 * Must ensure cgroup is pinned (css_get) before calling
225 * this function. In other words, we cannot call this function
226 * if there is no cgroup event for the current CPU context.
228 static inline struct perf_cgroup
*
229 perf_cgroup_from_task(struct task_struct
*task
)
231 return container_of(task_subsys_state(task
, perf_subsys_id
),
232 struct perf_cgroup
, css
);
236 perf_cgroup_match(struct perf_event
*event
)
238 struct perf_event_context
*ctx
= event
->ctx
;
239 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
241 return !event
->cgrp
|| event
->cgrp
== cpuctx
->cgrp
;
244 static inline void perf_get_cgroup(struct perf_event
*event
)
246 css_get(&event
->cgrp
->css
);
249 static inline void perf_put_cgroup(struct perf_event
*event
)
251 css_put(&event
->cgrp
->css
);
254 static inline void perf_detach_cgroup(struct perf_event
*event
)
256 perf_put_cgroup(event
);
260 static inline int is_cgroup_event(struct perf_event
*event
)
262 return event
->cgrp
!= NULL
;
265 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
267 struct perf_cgroup_info
*t
;
269 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
273 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
275 struct perf_cgroup_info
*info
;
280 info
= this_cpu_ptr(cgrp
->info
);
282 info
->time
+= now
- info
->timestamp
;
283 info
->timestamp
= now
;
286 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
288 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
290 __update_cgrp_time(cgrp_out
);
293 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
295 struct perf_cgroup
*cgrp
;
298 * ensure we access cgroup data only when needed and
299 * when we know the cgroup is pinned (css_get)
301 if (!is_cgroup_event(event
))
304 cgrp
= perf_cgroup_from_task(current
);
306 * Do not update time when cgroup is not active
308 if (cgrp
== event
->cgrp
)
309 __update_cgrp_time(event
->cgrp
);
313 perf_cgroup_set_timestamp(struct task_struct
*task
,
314 struct perf_event_context
*ctx
)
316 struct perf_cgroup
*cgrp
;
317 struct perf_cgroup_info
*info
;
320 * ctx->lock held by caller
321 * ensure we do not access cgroup data
322 * unless we have the cgroup pinned (css_get)
324 if (!task
|| !ctx
->nr_cgroups
)
327 cgrp
= perf_cgroup_from_task(task
);
328 info
= this_cpu_ptr(cgrp
->info
);
329 info
->timestamp
= ctx
->timestamp
;
332 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
333 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
336 * reschedule events based on the cgroup constraint of task.
338 * mode SWOUT : schedule out everything
339 * mode SWIN : schedule in based on cgroup for next
341 void perf_cgroup_switch(struct task_struct
*task
, int mode
)
343 struct perf_cpu_context
*cpuctx
;
348 * disable interrupts to avoid geting nr_cgroup
349 * changes via __perf_event_disable(). Also
352 local_irq_save(flags
);
355 * we reschedule only in the presence of cgroup
356 * constrained events.
360 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
361 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
364 * perf_cgroup_events says at least one
365 * context on this CPU has cgroup events.
367 * ctx->nr_cgroups reports the number of cgroup
368 * events for a context.
370 if (cpuctx
->ctx
.nr_cgroups
> 0) {
371 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
372 perf_pmu_disable(cpuctx
->ctx
.pmu
);
374 if (mode
& PERF_CGROUP_SWOUT
) {
375 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
377 * must not be done before ctxswout due
378 * to event_filter_match() in event_sched_out()
383 if (mode
& PERF_CGROUP_SWIN
) {
384 WARN_ON_ONCE(cpuctx
->cgrp
);
385 /* set cgrp before ctxsw in to
386 * allow event_filter_match() to not
387 * have to pass task around
389 cpuctx
->cgrp
= perf_cgroup_from_task(task
);
390 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
392 perf_pmu_enable(cpuctx
->ctx
.pmu
);
393 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
399 local_irq_restore(flags
);
402 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
403 struct task_struct
*next
)
405 struct perf_cgroup
*cgrp1
;
406 struct perf_cgroup
*cgrp2
= NULL
;
409 * we come here when we know perf_cgroup_events > 0
411 cgrp1
= perf_cgroup_from_task(task
);
414 * next is NULL when called from perf_event_enable_on_exec()
415 * that will systematically cause a cgroup_switch()
418 cgrp2
= perf_cgroup_from_task(next
);
421 * only schedule out current cgroup events if we know
422 * that we are switching to a different cgroup. Otherwise,
423 * do no touch the cgroup events.
426 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
429 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
430 struct task_struct
*task
)
432 struct perf_cgroup
*cgrp1
;
433 struct perf_cgroup
*cgrp2
= NULL
;
436 * we come here when we know perf_cgroup_events > 0
438 cgrp1
= perf_cgroup_from_task(task
);
440 /* prev can never be NULL */
441 cgrp2
= perf_cgroup_from_task(prev
);
444 * only need to schedule in cgroup events if we are changing
445 * cgroup during ctxsw. Cgroup events were not scheduled
446 * out of ctxsw out if that was not the case.
449 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
452 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
453 struct perf_event_attr
*attr
,
454 struct perf_event
*group_leader
)
456 struct perf_cgroup
*cgrp
;
457 struct cgroup_subsys_state
*css
;
459 int ret
= 0, fput_needed
;
461 file
= fget_light(fd
, &fput_needed
);
465 css
= cgroup_css_from_dir(file
, perf_subsys_id
);
471 cgrp
= container_of(css
, struct perf_cgroup
, css
);
474 /* must be done before we fput() the file */
475 perf_get_cgroup(event
);
478 * all events in a group must monitor
479 * the same cgroup because a task belongs
480 * to only one perf cgroup at a time
482 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
483 perf_detach_cgroup(event
);
487 fput_light(file
, fput_needed
);
492 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
494 struct perf_cgroup_info
*t
;
495 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
496 event
->shadow_ctx_time
= now
- t
->timestamp
;
500 perf_cgroup_defer_enabled(struct perf_event
*event
)
503 * when the current task's perf cgroup does not match
504 * the event's, we need to remember to call the
505 * perf_mark_enable() function the first time a task with
506 * a matching perf cgroup is scheduled in.
508 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
509 event
->cgrp_defer_enabled
= 1;
513 perf_cgroup_mark_enabled(struct perf_event
*event
,
514 struct perf_event_context
*ctx
)
516 struct perf_event
*sub
;
517 u64 tstamp
= perf_event_time(event
);
519 if (!event
->cgrp_defer_enabled
)
522 event
->cgrp_defer_enabled
= 0;
524 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
525 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
526 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
527 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
528 sub
->cgrp_defer_enabled
= 0;
532 #else /* !CONFIG_CGROUP_PERF */
535 perf_cgroup_match(struct perf_event
*event
)
540 static inline void perf_detach_cgroup(struct perf_event
*event
)
543 static inline int is_cgroup_event(struct perf_event
*event
)
548 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
553 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
557 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
561 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
562 struct task_struct
*next
)
566 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
567 struct task_struct
*task
)
571 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
572 struct perf_event_attr
*attr
,
573 struct perf_event
*group_leader
)
579 perf_cgroup_set_timestamp(struct task_struct
*task
,
580 struct perf_event_context
*ctx
)
585 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
590 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
594 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
600 perf_cgroup_defer_enabled(struct perf_event
*event
)
605 perf_cgroup_mark_enabled(struct perf_event
*event
,
606 struct perf_event_context
*ctx
)
611 void perf_pmu_disable(struct pmu
*pmu
)
613 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
615 pmu
->pmu_disable(pmu
);
618 void perf_pmu_enable(struct pmu
*pmu
)
620 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
622 pmu
->pmu_enable(pmu
);
625 static DEFINE_PER_CPU(struct list_head
, rotation_list
);
628 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
629 * because they're strictly cpu affine and rotate_start is called with IRQs
630 * disabled, while rotate_context is called from IRQ context.
632 static void perf_pmu_rotate_start(struct pmu
*pmu
)
634 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
635 struct list_head
*head
= &__get_cpu_var(rotation_list
);
637 WARN_ON(!irqs_disabled());
639 if (list_empty(&cpuctx
->rotation_list
))
640 list_add(&cpuctx
->rotation_list
, head
);
643 static void get_ctx(struct perf_event_context
*ctx
)
645 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
648 static void put_ctx(struct perf_event_context
*ctx
)
650 if (atomic_dec_and_test(&ctx
->refcount
)) {
652 put_ctx(ctx
->parent_ctx
);
654 put_task_struct(ctx
->task
);
655 kfree_rcu(ctx
, rcu_head
);
659 static void unclone_ctx(struct perf_event_context
*ctx
)
661 if (ctx
->parent_ctx
) {
662 put_ctx(ctx
->parent_ctx
);
663 ctx
->parent_ctx
= NULL
;
667 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
670 * only top level events have the pid namespace they were created in
673 event
= event
->parent
;
675 return task_tgid_nr_ns(p
, event
->ns
);
678 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
681 * only top level events have the pid namespace they were created in
684 event
= event
->parent
;
686 return task_pid_nr_ns(p
, event
->ns
);
690 * If we inherit events we want to return the parent event id
693 static u64
primary_event_id(struct perf_event
*event
)
698 id
= event
->parent
->id
;
704 * Get the perf_event_context for a task and lock it.
705 * This has to cope with with the fact that until it is locked,
706 * the context could get moved to another task.
708 static struct perf_event_context
*
709 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
711 struct perf_event_context
*ctx
;
715 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
718 * If this context is a clone of another, it might
719 * get swapped for another underneath us by
720 * perf_event_task_sched_out, though the
721 * rcu_read_lock() protects us from any context
722 * getting freed. Lock the context and check if it
723 * got swapped before we could get the lock, and retry
724 * if so. If we locked the right context, then it
725 * can't get swapped on us any more.
727 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
728 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
729 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
733 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
734 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
743 * Get the context for a task and increment its pin_count so it
744 * can't get swapped to another task. This also increments its
745 * reference count so that the context can't get freed.
747 static struct perf_event_context
*
748 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
750 struct perf_event_context
*ctx
;
753 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
756 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
761 static void perf_unpin_context(struct perf_event_context
*ctx
)
765 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
767 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
771 * Update the record of the current time in a context.
773 static void update_context_time(struct perf_event_context
*ctx
)
775 u64 now
= perf_clock();
777 ctx
->time
+= now
- ctx
->timestamp
;
778 ctx
->timestamp
= now
;
781 static u64
perf_event_time(struct perf_event
*event
)
783 struct perf_event_context
*ctx
= event
->ctx
;
785 if (is_cgroup_event(event
))
786 return perf_cgroup_event_time(event
);
788 return ctx
? ctx
->time
: 0;
792 * Update the total_time_enabled and total_time_running fields for a event.
793 * The caller of this function needs to hold the ctx->lock.
795 static void update_event_times(struct perf_event
*event
)
797 struct perf_event_context
*ctx
= event
->ctx
;
800 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
801 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
804 * in cgroup mode, time_enabled represents
805 * the time the event was enabled AND active
806 * tasks were in the monitored cgroup. This is
807 * independent of the activity of the context as
808 * there may be a mix of cgroup and non-cgroup events.
810 * That is why we treat cgroup events differently
813 if (is_cgroup_event(event
))
814 run_end
= perf_event_time(event
);
815 else if (ctx
->is_active
)
818 run_end
= event
->tstamp_stopped
;
820 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
822 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
823 run_end
= event
->tstamp_stopped
;
825 run_end
= perf_event_time(event
);
827 event
->total_time_running
= run_end
- event
->tstamp_running
;
832 * Update total_time_enabled and total_time_running for all events in a group.
834 static void update_group_times(struct perf_event
*leader
)
836 struct perf_event
*event
;
838 update_event_times(leader
);
839 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
840 update_event_times(event
);
843 static struct list_head
*
844 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
846 if (event
->attr
.pinned
)
847 return &ctx
->pinned_groups
;
849 return &ctx
->flexible_groups
;
853 * Add a event from the lists for its context.
854 * Must be called with ctx->mutex and ctx->lock held.
857 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
859 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
860 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
863 * If we're a stand alone event or group leader, we go to the context
864 * list, group events are kept attached to the group so that
865 * perf_group_detach can, at all times, locate all siblings.
867 if (event
->group_leader
== event
) {
868 struct list_head
*list
;
870 if (is_software_event(event
))
871 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
873 list
= ctx_group_list(event
, ctx
);
874 list_add_tail(&event
->group_entry
, list
);
877 if (is_cgroup_event(event
))
880 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
882 perf_pmu_rotate_start(ctx
->pmu
);
884 if (event
->attr
.inherit_stat
)
889 * Called at perf_event creation and when events are attached/detached from a
892 static void perf_event__read_size(struct perf_event
*event
)
894 int entry
= sizeof(u64
); /* value */
898 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
901 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
904 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
905 entry
+= sizeof(u64
);
907 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
908 nr
+= event
->group_leader
->nr_siblings
;
913 event
->read_size
= size
;
916 static void perf_event__header_size(struct perf_event
*event
)
918 struct perf_sample_data
*data
;
919 u64 sample_type
= event
->attr
.sample_type
;
922 perf_event__read_size(event
);
924 if (sample_type
& PERF_SAMPLE_IP
)
925 size
+= sizeof(data
->ip
);
927 if (sample_type
& PERF_SAMPLE_ADDR
)
928 size
+= sizeof(data
->addr
);
930 if (sample_type
& PERF_SAMPLE_PERIOD
)
931 size
+= sizeof(data
->period
);
933 if (sample_type
& PERF_SAMPLE_READ
)
934 size
+= event
->read_size
;
936 event
->header_size
= size
;
939 static void perf_event__id_header_size(struct perf_event
*event
)
941 struct perf_sample_data
*data
;
942 u64 sample_type
= event
->attr
.sample_type
;
945 if (sample_type
& PERF_SAMPLE_TID
)
946 size
+= sizeof(data
->tid_entry
);
948 if (sample_type
& PERF_SAMPLE_TIME
)
949 size
+= sizeof(data
->time
);
951 if (sample_type
& PERF_SAMPLE_ID
)
952 size
+= sizeof(data
->id
);
954 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
955 size
+= sizeof(data
->stream_id
);
957 if (sample_type
& PERF_SAMPLE_CPU
)
958 size
+= sizeof(data
->cpu_entry
);
960 event
->id_header_size
= size
;
963 static void perf_group_attach(struct perf_event
*event
)
965 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
968 * We can have double attach due to group movement in perf_event_open.
970 if (event
->attach_state
& PERF_ATTACH_GROUP
)
973 event
->attach_state
|= PERF_ATTACH_GROUP
;
975 if (group_leader
== event
)
978 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
979 !is_software_event(event
))
980 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
982 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
983 group_leader
->nr_siblings
++;
985 perf_event__header_size(group_leader
);
987 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
988 perf_event__header_size(pos
);
992 * Remove a event from the lists for its context.
993 * Must be called with ctx->mutex and ctx->lock held.
996 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
998 struct perf_cpu_context
*cpuctx
;
1000 * We can have double detach due to exit/hot-unplug + close.
1002 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1005 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1007 if (is_cgroup_event(event
)) {
1009 cpuctx
= __get_cpu_context(ctx
);
1011 * if there are no more cgroup events
1012 * then cler cgrp to avoid stale pointer
1013 * in update_cgrp_time_from_cpuctx()
1015 if (!ctx
->nr_cgroups
)
1016 cpuctx
->cgrp
= NULL
;
1020 if (event
->attr
.inherit_stat
)
1023 list_del_rcu(&event
->event_entry
);
1025 if (event
->group_leader
== event
)
1026 list_del_init(&event
->group_entry
);
1028 update_group_times(event
);
1031 * If event was in error state, then keep it
1032 * that way, otherwise bogus counts will be
1033 * returned on read(). The only way to get out
1034 * of error state is by explicit re-enabling
1037 if (event
->state
> PERF_EVENT_STATE_OFF
)
1038 event
->state
= PERF_EVENT_STATE_OFF
;
1041 static void perf_group_detach(struct perf_event
*event
)
1043 struct perf_event
*sibling
, *tmp
;
1044 struct list_head
*list
= NULL
;
1047 * We can have double detach due to exit/hot-unplug + close.
1049 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1052 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1055 * If this is a sibling, remove it from its group.
1057 if (event
->group_leader
!= event
) {
1058 list_del_init(&event
->group_entry
);
1059 event
->group_leader
->nr_siblings
--;
1063 if (!list_empty(&event
->group_entry
))
1064 list
= &event
->group_entry
;
1067 * If this was a group event with sibling events then
1068 * upgrade the siblings to singleton events by adding them
1069 * to whatever list we are on.
1071 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1073 list_move_tail(&sibling
->group_entry
, list
);
1074 sibling
->group_leader
= sibling
;
1076 /* Inherit group flags from the previous leader */
1077 sibling
->group_flags
= event
->group_flags
;
1081 perf_event__header_size(event
->group_leader
);
1083 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1084 perf_event__header_size(tmp
);
1088 event_filter_match(struct perf_event
*event
)
1090 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id())
1091 && perf_cgroup_match(event
);
1095 event_sched_out(struct perf_event
*event
,
1096 struct perf_cpu_context
*cpuctx
,
1097 struct perf_event_context
*ctx
)
1099 u64 tstamp
= perf_event_time(event
);
1102 * An event which could not be activated because of
1103 * filter mismatch still needs to have its timings
1104 * maintained, otherwise bogus information is return
1105 * via read() for time_enabled, time_running:
1107 if (event
->state
== PERF_EVENT_STATE_INACTIVE
1108 && !event_filter_match(event
)) {
1109 delta
= tstamp
- event
->tstamp_stopped
;
1110 event
->tstamp_running
+= delta
;
1111 event
->tstamp_stopped
= tstamp
;
1114 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1117 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1118 if (event
->pending_disable
) {
1119 event
->pending_disable
= 0;
1120 event
->state
= PERF_EVENT_STATE_OFF
;
1122 event
->tstamp_stopped
= tstamp
;
1123 event
->pmu
->del(event
, 0);
1126 if (!is_software_event(event
))
1127 cpuctx
->active_oncpu
--;
1129 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1130 cpuctx
->exclusive
= 0;
1134 group_sched_out(struct perf_event
*group_event
,
1135 struct perf_cpu_context
*cpuctx
,
1136 struct perf_event_context
*ctx
)
1138 struct perf_event
*event
;
1139 int state
= group_event
->state
;
1141 event_sched_out(group_event
, cpuctx
, ctx
);
1144 * Schedule out siblings (if any):
1146 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1147 event_sched_out(event
, cpuctx
, ctx
);
1149 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1150 cpuctx
->exclusive
= 0;
1154 * Cross CPU call to remove a performance event
1156 * We disable the event on the hardware level first. After that we
1157 * remove it from the context list.
1159 static int __perf_remove_from_context(void *info
)
1161 struct perf_event
*event
= info
;
1162 struct perf_event_context
*ctx
= event
->ctx
;
1163 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1165 raw_spin_lock(&ctx
->lock
);
1166 event_sched_out(event
, cpuctx
, ctx
);
1167 list_del_event(event
, ctx
);
1168 if (!ctx
->nr_events
&& cpuctx
->task_ctx
== ctx
) {
1170 cpuctx
->task_ctx
= NULL
;
1172 raw_spin_unlock(&ctx
->lock
);
1179 * Remove the event from a task's (or a CPU's) list of events.
1181 * CPU events are removed with a smp call. For task events we only
1182 * call when the task is on a CPU.
1184 * If event->ctx is a cloned context, callers must make sure that
1185 * every task struct that event->ctx->task could possibly point to
1186 * remains valid. This is OK when called from perf_release since
1187 * that only calls us on the top-level context, which can't be a clone.
1188 * When called from perf_event_exit_task, it's OK because the
1189 * context has been detached from its task.
1191 static void perf_remove_from_context(struct perf_event
*event
)
1193 struct perf_event_context
*ctx
= event
->ctx
;
1194 struct task_struct
*task
= ctx
->task
;
1196 lockdep_assert_held(&ctx
->mutex
);
1200 * Per cpu events are removed via an smp call and
1201 * the removal is always successful.
1203 cpu_function_call(event
->cpu
, __perf_remove_from_context
, event
);
1208 if (!task_function_call(task
, __perf_remove_from_context
, event
))
1211 raw_spin_lock_irq(&ctx
->lock
);
1213 * If we failed to find a running task, but find the context active now
1214 * that we've acquired the ctx->lock, retry.
1216 if (ctx
->is_active
) {
1217 raw_spin_unlock_irq(&ctx
->lock
);
1222 * Since the task isn't running, its safe to remove the event, us
1223 * holding the ctx->lock ensures the task won't get scheduled in.
1225 list_del_event(event
, ctx
);
1226 raw_spin_unlock_irq(&ctx
->lock
);
1230 * Cross CPU call to disable a performance event
1232 static int __perf_event_disable(void *info
)
1234 struct perf_event
*event
= info
;
1235 struct perf_event_context
*ctx
= event
->ctx
;
1236 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1239 * If this is a per-task event, need to check whether this
1240 * event's task is the current task on this cpu.
1242 * Can trigger due to concurrent perf_event_context_sched_out()
1243 * flipping contexts around.
1245 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1248 raw_spin_lock(&ctx
->lock
);
1251 * If the event is on, turn it off.
1252 * If it is in error state, leave it in error state.
1254 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
1255 update_context_time(ctx
);
1256 update_cgrp_time_from_event(event
);
1257 update_group_times(event
);
1258 if (event
== event
->group_leader
)
1259 group_sched_out(event
, cpuctx
, ctx
);
1261 event_sched_out(event
, cpuctx
, ctx
);
1262 event
->state
= PERF_EVENT_STATE_OFF
;
1265 raw_spin_unlock(&ctx
->lock
);
1273 * If event->ctx is a cloned context, callers must make sure that
1274 * every task struct that event->ctx->task could possibly point to
1275 * remains valid. This condition is satisifed when called through
1276 * perf_event_for_each_child or perf_event_for_each because they
1277 * hold the top-level event's child_mutex, so any descendant that
1278 * goes to exit will block in sync_child_event.
1279 * When called from perf_pending_event it's OK because event->ctx
1280 * is the current context on this CPU and preemption is disabled,
1281 * hence we can't get into perf_event_task_sched_out for this context.
1283 void perf_event_disable(struct perf_event
*event
)
1285 struct perf_event_context
*ctx
= event
->ctx
;
1286 struct task_struct
*task
= ctx
->task
;
1290 * Disable the event on the cpu that it's on
1292 cpu_function_call(event
->cpu
, __perf_event_disable
, event
);
1297 if (!task_function_call(task
, __perf_event_disable
, event
))
1300 raw_spin_lock_irq(&ctx
->lock
);
1302 * If the event is still active, we need to retry the cross-call.
1304 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1305 raw_spin_unlock_irq(&ctx
->lock
);
1307 * Reload the task pointer, it might have been changed by
1308 * a concurrent perf_event_context_sched_out().
1315 * Since we have the lock this context can't be scheduled
1316 * in, so we can change the state safely.
1318 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1319 update_group_times(event
);
1320 event
->state
= PERF_EVENT_STATE_OFF
;
1322 raw_spin_unlock_irq(&ctx
->lock
);
1325 static void perf_set_shadow_time(struct perf_event
*event
,
1326 struct perf_event_context
*ctx
,
1330 * use the correct time source for the time snapshot
1332 * We could get by without this by leveraging the
1333 * fact that to get to this function, the caller
1334 * has most likely already called update_context_time()
1335 * and update_cgrp_time_xx() and thus both timestamp
1336 * are identical (or very close). Given that tstamp is,
1337 * already adjusted for cgroup, we could say that:
1338 * tstamp - ctx->timestamp
1340 * tstamp - cgrp->timestamp.
1342 * Then, in perf_output_read(), the calculation would
1343 * work with no changes because:
1344 * - event is guaranteed scheduled in
1345 * - no scheduled out in between
1346 * - thus the timestamp would be the same
1348 * But this is a bit hairy.
1350 * So instead, we have an explicit cgroup call to remain
1351 * within the time time source all along. We believe it
1352 * is cleaner and simpler to understand.
1354 if (is_cgroup_event(event
))
1355 perf_cgroup_set_shadow_time(event
, tstamp
);
1357 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
1360 #define MAX_INTERRUPTS (~0ULL)
1362 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1365 event_sched_in(struct perf_event
*event
,
1366 struct perf_cpu_context
*cpuctx
,
1367 struct perf_event_context
*ctx
)
1369 u64 tstamp
= perf_event_time(event
);
1371 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1374 event
->state
= PERF_EVENT_STATE_ACTIVE
;
1375 event
->oncpu
= smp_processor_id();
1378 * Unthrottle events, since we scheduled we might have missed several
1379 * ticks already, also for a heavily scheduling task there is little
1380 * guarantee it'll get a tick in a timely manner.
1382 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
1383 perf_log_throttle(event
, 1);
1384 event
->hw
.interrupts
= 0;
1388 * The new state must be visible before we turn it on in the hardware:
1392 if (event
->pmu
->add(event
, PERF_EF_START
)) {
1393 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1398 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
1400 perf_set_shadow_time(event
, ctx
, tstamp
);
1402 if (!is_software_event(event
))
1403 cpuctx
->active_oncpu
++;
1406 if (event
->attr
.exclusive
)
1407 cpuctx
->exclusive
= 1;
1413 group_sched_in(struct perf_event
*group_event
,
1414 struct perf_cpu_context
*cpuctx
,
1415 struct perf_event_context
*ctx
)
1417 struct perf_event
*event
, *partial_group
= NULL
;
1418 struct pmu
*pmu
= group_event
->pmu
;
1419 u64 now
= ctx
->time
;
1420 bool simulate
= false;
1422 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
1425 pmu
->start_txn(pmu
);
1427 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
1428 pmu
->cancel_txn(pmu
);
1433 * Schedule in siblings as one group (if any):
1435 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1436 if (event_sched_in(event
, cpuctx
, ctx
)) {
1437 partial_group
= event
;
1442 if (!pmu
->commit_txn(pmu
))
1447 * Groups can be scheduled in as one unit only, so undo any
1448 * partial group before returning:
1449 * The events up to the failed event are scheduled out normally,
1450 * tstamp_stopped will be updated.
1452 * The failed events and the remaining siblings need to have
1453 * their timings updated as if they had gone thru event_sched_in()
1454 * and event_sched_out(). This is required to get consistent timings
1455 * across the group. This also takes care of the case where the group
1456 * could never be scheduled by ensuring tstamp_stopped is set to mark
1457 * the time the event was actually stopped, such that time delta
1458 * calculation in update_event_times() is correct.
1460 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1461 if (event
== partial_group
)
1465 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
1466 event
->tstamp_stopped
= now
;
1468 event_sched_out(event
, cpuctx
, ctx
);
1471 event_sched_out(group_event
, cpuctx
, ctx
);
1473 pmu
->cancel_txn(pmu
);
1479 * Work out whether we can put this event group on the CPU now.
1481 static int group_can_go_on(struct perf_event
*event
,
1482 struct perf_cpu_context
*cpuctx
,
1486 * Groups consisting entirely of software events can always go on.
1488 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
1491 * If an exclusive group is already on, no other hardware
1494 if (cpuctx
->exclusive
)
1497 * If this group is exclusive and there are already
1498 * events on the CPU, it can't go on.
1500 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
1503 * Otherwise, try to add it if all previous groups were able
1509 static void add_event_to_ctx(struct perf_event
*event
,
1510 struct perf_event_context
*ctx
)
1512 u64 tstamp
= perf_event_time(event
);
1514 list_add_event(event
, ctx
);
1515 perf_group_attach(event
);
1516 event
->tstamp_enabled
= tstamp
;
1517 event
->tstamp_running
= tstamp
;
1518 event
->tstamp_stopped
= tstamp
;
1521 static void task_ctx_sched_out(struct perf_event_context
*ctx
);
1523 ctx_sched_in(struct perf_event_context
*ctx
,
1524 struct perf_cpu_context
*cpuctx
,
1525 enum event_type_t event_type
,
1526 struct task_struct
*task
);
1528 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
1529 struct perf_event_context
*ctx
,
1530 struct task_struct
*task
)
1532 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
1534 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
1535 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
1537 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
1541 * Cross CPU call to install and enable a performance event
1543 * Must be called with ctx->mutex held
1545 static int __perf_install_in_context(void *info
)
1547 struct perf_event
*event
= info
;
1548 struct perf_event_context
*ctx
= event
->ctx
;
1549 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1550 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
1551 struct task_struct
*task
= current
;
1553 perf_ctx_lock(cpuctx
, task_ctx
);
1554 perf_pmu_disable(cpuctx
->ctx
.pmu
);
1557 * If there was an active task_ctx schedule it out.
1560 task_ctx_sched_out(task_ctx
);
1563 * If the context we're installing events in is not the
1564 * active task_ctx, flip them.
1566 if (ctx
->task
&& task_ctx
!= ctx
) {
1568 raw_spin_unlock(&task_ctx
->lock
);
1569 raw_spin_lock(&ctx
->lock
);
1574 cpuctx
->task_ctx
= task_ctx
;
1575 task
= task_ctx
->task
;
1578 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
1580 update_context_time(ctx
);
1582 * update cgrp time only if current cgrp
1583 * matches event->cgrp. Must be done before
1584 * calling add_event_to_ctx()
1586 update_cgrp_time_from_event(event
);
1588 add_event_to_ctx(event
, ctx
);
1591 * Schedule everything back in
1593 perf_event_sched_in(cpuctx
, task_ctx
, task
);
1595 perf_pmu_enable(cpuctx
->ctx
.pmu
);
1596 perf_ctx_unlock(cpuctx
, task_ctx
);
1602 * Attach a performance event to a context
1604 * First we add the event to the list with the hardware enable bit
1605 * in event->hw_config cleared.
1607 * If the event is attached to a task which is on a CPU we use a smp
1608 * call to enable it in the task context. The task might have been
1609 * scheduled away, but we check this in the smp call again.
1612 perf_install_in_context(struct perf_event_context
*ctx
,
1613 struct perf_event
*event
,
1616 struct task_struct
*task
= ctx
->task
;
1618 lockdep_assert_held(&ctx
->mutex
);
1624 * Per cpu events are installed via an smp call and
1625 * the install is always successful.
1627 cpu_function_call(cpu
, __perf_install_in_context
, event
);
1632 if (!task_function_call(task
, __perf_install_in_context
, event
))
1635 raw_spin_lock_irq(&ctx
->lock
);
1637 * If we failed to find a running task, but find the context active now
1638 * that we've acquired the ctx->lock, retry.
1640 if (ctx
->is_active
) {
1641 raw_spin_unlock_irq(&ctx
->lock
);
1646 * Since the task isn't running, its safe to add the event, us holding
1647 * the ctx->lock ensures the task won't get scheduled in.
1649 add_event_to_ctx(event
, ctx
);
1650 raw_spin_unlock_irq(&ctx
->lock
);
1654 * Put a event into inactive state and update time fields.
1655 * Enabling the leader of a group effectively enables all
1656 * the group members that aren't explicitly disabled, so we
1657 * have to update their ->tstamp_enabled also.
1658 * Note: this works for group members as well as group leaders
1659 * since the non-leader members' sibling_lists will be empty.
1661 static void __perf_event_mark_enabled(struct perf_event
*event
,
1662 struct perf_event_context
*ctx
)
1664 struct perf_event
*sub
;
1665 u64 tstamp
= perf_event_time(event
);
1667 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1668 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
1669 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
1670 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
1671 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
1676 * Cross CPU call to enable a performance event
1678 static int __perf_event_enable(void *info
)
1680 struct perf_event
*event
= info
;
1681 struct perf_event_context
*ctx
= event
->ctx
;
1682 struct perf_event
*leader
= event
->group_leader
;
1683 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1686 if (WARN_ON_ONCE(!ctx
->is_active
))
1689 raw_spin_lock(&ctx
->lock
);
1690 update_context_time(ctx
);
1692 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1696 * set current task's cgroup time reference point
1698 perf_cgroup_set_timestamp(current
, ctx
);
1700 __perf_event_mark_enabled(event
, ctx
);
1702 if (!event_filter_match(event
)) {
1703 if (is_cgroup_event(event
))
1704 perf_cgroup_defer_enabled(event
);
1709 * If the event is in a group and isn't the group leader,
1710 * then don't put it on unless the group is on.
1712 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
1715 if (!group_can_go_on(event
, cpuctx
, 1)) {
1718 if (event
== leader
)
1719 err
= group_sched_in(event
, cpuctx
, ctx
);
1721 err
= event_sched_in(event
, cpuctx
, ctx
);
1726 * If this event can't go on and it's part of a
1727 * group, then the whole group has to come off.
1729 if (leader
!= event
)
1730 group_sched_out(leader
, cpuctx
, ctx
);
1731 if (leader
->attr
.pinned
) {
1732 update_group_times(leader
);
1733 leader
->state
= PERF_EVENT_STATE_ERROR
;
1738 raw_spin_unlock(&ctx
->lock
);
1746 * If event->ctx is a cloned context, callers must make sure that
1747 * every task struct that event->ctx->task could possibly point to
1748 * remains valid. This condition is satisfied when called through
1749 * perf_event_for_each_child or perf_event_for_each as described
1750 * for perf_event_disable.
1752 void perf_event_enable(struct perf_event
*event
)
1754 struct perf_event_context
*ctx
= event
->ctx
;
1755 struct task_struct
*task
= ctx
->task
;
1759 * Enable the event on the cpu that it's on
1761 cpu_function_call(event
->cpu
, __perf_event_enable
, event
);
1765 raw_spin_lock_irq(&ctx
->lock
);
1766 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1770 * If the event is in error state, clear that first.
1771 * That way, if we see the event in error state below, we
1772 * know that it has gone back into error state, as distinct
1773 * from the task having been scheduled away before the
1774 * cross-call arrived.
1776 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1777 event
->state
= PERF_EVENT_STATE_OFF
;
1780 if (!ctx
->is_active
) {
1781 __perf_event_mark_enabled(event
, ctx
);
1785 raw_spin_unlock_irq(&ctx
->lock
);
1787 if (!task_function_call(task
, __perf_event_enable
, event
))
1790 raw_spin_lock_irq(&ctx
->lock
);
1793 * If the context is active and the event is still off,
1794 * we need to retry the cross-call.
1796 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
) {
1798 * task could have been flipped by a concurrent
1799 * perf_event_context_sched_out()
1806 raw_spin_unlock_irq(&ctx
->lock
);
1809 int perf_event_refresh(struct perf_event
*event
, int refresh
)
1812 * not supported on inherited events
1814 if (event
->attr
.inherit
|| !is_sampling_event(event
))
1817 atomic_add(refresh
, &event
->event_limit
);
1818 perf_event_enable(event
);
1822 EXPORT_SYMBOL_GPL(perf_event_refresh
);
1824 static void ctx_sched_out(struct perf_event_context
*ctx
,
1825 struct perf_cpu_context
*cpuctx
,
1826 enum event_type_t event_type
)
1828 struct perf_event
*event
;
1829 int is_active
= ctx
->is_active
;
1831 ctx
->is_active
&= ~event_type
;
1832 if (likely(!ctx
->nr_events
))
1835 update_context_time(ctx
);
1836 update_cgrp_time_from_cpuctx(cpuctx
);
1837 if (!ctx
->nr_active
)
1840 perf_pmu_disable(ctx
->pmu
);
1841 if ((is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
)) {
1842 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
1843 group_sched_out(event
, cpuctx
, ctx
);
1846 if ((is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
)) {
1847 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
1848 group_sched_out(event
, cpuctx
, ctx
);
1850 perf_pmu_enable(ctx
->pmu
);
1854 * Test whether two contexts are equivalent, i.e. whether they
1855 * have both been cloned from the same version of the same context
1856 * and they both have the same number of enabled events.
1857 * If the number of enabled events is the same, then the set
1858 * of enabled events should be the same, because these are both
1859 * inherited contexts, therefore we can't access individual events
1860 * in them directly with an fd; we can only enable/disable all
1861 * events via prctl, or enable/disable all events in a family
1862 * via ioctl, which will have the same effect on both contexts.
1864 static int context_equiv(struct perf_event_context
*ctx1
,
1865 struct perf_event_context
*ctx2
)
1867 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1868 && ctx1
->parent_gen
== ctx2
->parent_gen
1869 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1872 static void __perf_event_sync_stat(struct perf_event
*event
,
1873 struct perf_event
*next_event
)
1877 if (!event
->attr
.inherit_stat
)
1881 * Update the event value, we cannot use perf_event_read()
1882 * because we're in the middle of a context switch and have IRQs
1883 * disabled, which upsets smp_call_function_single(), however
1884 * we know the event must be on the current CPU, therefore we
1885 * don't need to use it.
1887 switch (event
->state
) {
1888 case PERF_EVENT_STATE_ACTIVE
:
1889 event
->pmu
->read(event
);
1892 case PERF_EVENT_STATE_INACTIVE
:
1893 update_event_times(event
);
1901 * In order to keep per-task stats reliable we need to flip the event
1902 * values when we flip the contexts.
1904 value
= local64_read(&next_event
->count
);
1905 value
= local64_xchg(&event
->count
, value
);
1906 local64_set(&next_event
->count
, value
);
1908 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1909 swap(event
->total_time_running
, next_event
->total_time_running
);
1912 * Since we swizzled the values, update the user visible data too.
1914 perf_event_update_userpage(event
);
1915 perf_event_update_userpage(next_event
);
1918 #define list_next_entry(pos, member) \
1919 list_entry(pos->member.next, typeof(*pos), member)
1921 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1922 struct perf_event_context
*next_ctx
)
1924 struct perf_event
*event
, *next_event
;
1929 update_context_time(ctx
);
1931 event
= list_first_entry(&ctx
->event_list
,
1932 struct perf_event
, event_entry
);
1934 next_event
= list_first_entry(&next_ctx
->event_list
,
1935 struct perf_event
, event_entry
);
1937 while (&event
->event_entry
!= &ctx
->event_list
&&
1938 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1940 __perf_event_sync_stat(event
, next_event
);
1942 event
= list_next_entry(event
, event_entry
);
1943 next_event
= list_next_entry(next_event
, event_entry
);
1947 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
1948 struct task_struct
*next
)
1950 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
1951 struct perf_event_context
*next_ctx
;
1952 struct perf_event_context
*parent
;
1953 struct perf_cpu_context
*cpuctx
;
1959 cpuctx
= __get_cpu_context(ctx
);
1960 if (!cpuctx
->task_ctx
)
1964 parent
= rcu_dereference(ctx
->parent_ctx
);
1965 next_ctx
= next
->perf_event_ctxp
[ctxn
];
1966 if (parent
&& next_ctx
&&
1967 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1969 * Looks like the two contexts are clones, so we might be
1970 * able to optimize the context switch. We lock both
1971 * contexts and check that they are clones under the
1972 * lock (including re-checking that neither has been
1973 * uncloned in the meantime). It doesn't matter which
1974 * order we take the locks because no other cpu could
1975 * be trying to lock both of these tasks.
1977 raw_spin_lock(&ctx
->lock
);
1978 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1979 if (context_equiv(ctx
, next_ctx
)) {
1981 * XXX do we need a memory barrier of sorts
1982 * wrt to rcu_dereference() of perf_event_ctxp
1984 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
1985 next
->perf_event_ctxp
[ctxn
] = ctx
;
1987 next_ctx
->task
= task
;
1990 perf_event_sync_stat(ctx
, next_ctx
);
1992 raw_spin_unlock(&next_ctx
->lock
);
1993 raw_spin_unlock(&ctx
->lock
);
1998 raw_spin_lock(&ctx
->lock
);
1999 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2000 cpuctx
->task_ctx
= NULL
;
2001 raw_spin_unlock(&ctx
->lock
);
2005 #define for_each_task_context_nr(ctxn) \
2006 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2009 * Called from scheduler to remove the events of the current task,
2010 * with interrupts disabled.
2012 * We stop each event and update the event value in event->count.
2014 * This does not protect us against NMI, but disable()
2015 * sets the disabled bit in the control field of event _before_
2016 * accessing the event control register. If a NMI hits, then it will
2017 * not restart the event.
2019 void __perf_event_task_sched_out(struct task_struct
*task
,
2020 struct task_struct
*next
)
2024 for_each_task_context_nr(ctxn
)
2025 perf_event_context_sched_out(task
, ctxn
, next
);
2028 * if cgroup events exist on this CPU, then we need
2029 * to check if we have to switch out PMU state.
2030 * cgroup event are system-wide mode only
2032 if (atomic_read(&__get_cpu_var(perf_cgroup_events
)))
2033 perf_cgroup_sched_out(task
, next
);
2036 static void task_ctx_sched_out(struct perf_event_context
*ctx
)
2038 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2040 if (!cpuctx
->task_ctx
)
2043 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2046 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2047 cpuctx
->task_ctx
= NULL
;
2051 * Called with IRQs disabled
2053 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2054 enum event_type_t event_type
)
2056 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
2060 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
2061 struct perf_cpu_context
*cpuctx
)
2063 struct perf_event
*event
;
2065 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2066 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2068 if (!event_filter_match(event
))
2071 /* may need to reset tstamp_enabled */
2072 if (is_cgroup_event(event
))
2073 perf_cgroup_mark_enabled(event
, ctx
);
2075 if (group_can_go_on(event
, cpuctx
, 1))
2076 group_sched_in(event
, cpuctx
, ctx
);
2079 * If this pinned group hasn't been scheduled,
2080 * put it in error state.
2082 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2083 update_group_times(event
);
2084 event
->state
= PERF_EVENT_STATE_ERROR
;
2090 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
2091 struct perf_cpu_context
*cpuctx
)
2093 struct perf_event
*event
;
2096 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2097 /* Ignore events in OFF or ERROR state */
2098 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2101 * Listen to the 'cpu' scheduling filter constraint
2104 if (!event_filter_match(event
))
2107 /* may need to reset tstamp_enabled */
2108 if (is_cgroup_event(event
))
2109 perf_cgroup_mark_enabled(event
, ctx
);
2111 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
2112 if (group_sched_in(event
, cpuctx
, ctx
))
2119 ctx_sched_in(struct perf_event_context
*ctx
,
2120 struct perf_cpu_context
*cpuctx
,
2121 enum event_type_t event_type
,
2122 struct task_struct
*task
)
2125 int is_active
= ctx
->is_active
;
2127 ctx
->is_active
|= event_type
;
2128 if (likely(!ctx
->nr_events
))
2132 ctx
->timestamp
= now
;
2133 perf_cgroup_set_timestamp(task
, ctx
);
2135 * First go through the list and put on any pinned groups
2136 * in order to give them the best chance of going on.
2138 if (!(is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
))
2139 ctx_pinned_sched_in(ctx
, cpuctx
);
2141 /* Then walk through the lower prio flexible groups */
2142 if (!(is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
))
2143 ctx_flexible_sched_in(ctx
, cpuctx
);
2146 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
2147 enum event_type_t event_type
,
2148 struct task_struct
*task
)
2150 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
2152 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
2155 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
2156 struct task_struct
*task
)
2158 struct perf_cpu_context
*cpuctx
;
2160 cpuctx
= __get_cpu_context(ctx
);
2161 if (cpuctx
->task_ctx
== ctx
)
2164 perf_ctx_lock(cpuctx
, ctx
);
2165 perf_pmu_disable(ctx
->pmu
);
2167 * We want to keep the following priority order:
2168 * cpu pinned (that don't need to move), task pinned,
2169 * cpu flexible, task flexible.
2171 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2173 perf_event_sched_in(cpuctx
, ctx
, task
);
2175 cpuctx
->task_ctx
= ctx
;
2177 perf_pmu_enable(ctx
->pmu
);
2178 perf_ctx_unlock(cpuctx
, ctx
);
2181 * Since these rotations are per-cpu, we need to ensure the
2182 * cpu-context we got scheduled on is actually rotating.
2184 perf_pmu_rotate_start(ctx
->pmu
);
2188 * Called from scheduler to add the events of the current task
2189 * with interrupts disabled.
2191 * We restore the event value and then enable it.
2193 * This does not protect us against NMI, but enable()
2194 * sets the enabled bit in the control field of event _before_
2195 * accessing the event control register. If a NMI hits, then it will
2196 * keep the event running.
2198 void __perf_event_task_sched_in(struct task_struct
*prev
,
2199 struct task_struct
*task
)
2201 struct perf_event_context
*ctx
;
2204 for_each_task_context_nr(ctxn
) {
2205 ctx
= task
->perf_event_ctxp
[ctxn
];
2209 perf_event_context_sched_in(ctx
, task
);
2212 * if cgroup events exist on this CPU, then we need
2213 * to check if we have to switch in PMU state.
2214 * cgroup event are system-wide mode only
2216 if (atomic_read(&__get_cpu_var(perf_cgroup_events
)))
2217 perf_cgroup_sched_in(prev
, task
);
2220 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2222 u64 frequency
= event
->attr
.sample_freq
;
2223 u64 sec
= NSEC_PER_SEC
;
2224 u64 divisor
, dividend
;
2226 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
2228 count_fls
= fls64(count
);
2229 nsec_fls
= fls64(nsec
);
2230 frequency_fls
= fls64(frequency
);
2234 * We got @count in @nsec, with a target of sample_freq HZ
2235 * the target period becomes:
2238 * period = -------------------
2239 * @nsec * sample_freq
2244 * Reduce accuracy by one bit such that @a and @b converge
2245 * to a similar magnitude.
2247 #define REDUCE_FLS(a, b) \
2249 if (a##_fls > b##_fls) { \
2259 * Reduce accuracy until either term fits in a u64, then proceed with
2260 * the other, so that finally we can do a u64/u64 division.
2262 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
2263 REDUCE_FLS(nsec
, frequency
);
2264 REDUCE_FLS(sec
, count
);
2267 if (count_fls
+ sec_fls
> 64) {
2268 divisor
= nsec
* frequency
;
2270 while (count_fls
+ sec_fls
> 64) {
2271 REDUCE_FLS(count
, sec
);
2275 dividend
= count
* sec
;
2277 dividend
= count
* sec
;
2279 while (nsec_fls
+ frequency_fls
> 64) {
2280 REDUCE_FLS(nsec
, frequency
);
2284 divisor
= nsec
* frequency
;
2290 return div64_u64(dividend
, divisor
);
2293 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2295 struct hw_perf_event
*hwc
= &event
->hw
;
2296 s64 period
, sample_period
;
2299 period
= perf_calculate_period(event
, nsec
, count
);
2301 delta
= (s64
)(period
- hwc
->sample_period
);
2302 delta
= (delta
+ 7) / 8; /* low pass filter */
2304 sample_period
= hwc
->sample_period
+ delta
;
2309 hwc
->sample_period
= sample_period
;
2311 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
2312 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2313 local64_set(&hwc
->period_left
, 0);
2314 event
->pmu
->start(event
, PERF_EF_RELOAD
);
2318 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
, u64 period
)
2320 struct perf_event
*event
;
2321 struct hw_perf_event
*hwc
;
2322 u64 interrupts
, now
;
2325 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
2326 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2329 if (!event_filter_match(event
))
2334 interrupts
= hwc
->interrupts
;
2335 hwc
->interrupts
= 0;
2338 * unthrottle events on the tick
2340 if (interrupts
== MAX_INTERRUPTS
) {
2341 perf_log_throttle(event
, 1);
2342 event
->pmu
->start(event
, 0);
2345 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
2348 event
->pmu
->read(event
);
2349 now
= local64_read(&event
->count
);
2350 delta
= now
- hwc
->freq_count_stamp
;
2351 hwc
->freq_count_stamp
= now
;
2354 perf_adjust_period(event
, period
, delta
);
2359 * Round-robin a context's events:
2361 static void rotate_ctx(struct perf_event_context
*ctx
)
2364 * Rotate the first entry last of non-pinned groups. Rotation might be
2365 * disabled by the inheritance code.
2367 if (!ctx
->rotate_disable
)
2368 list_rotate_left(&ctx
->flexible_groups
);
2372 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2373 * because they're strictly cpu affine and rotate_start is called with IRQs
2374 * disabled, while rotate_context is called from IRQ context.
2376 static void perf_rotate_context(struct perf_cpu_context
*cpuctx
)
2378 u64 interval
= (u64
)cpuctx
->jiffies_interval
* TICK_NSEC
;
2379 struct perf_event_context
*ctx
= NULL
;
2380 int rotate
= 0, remove
= 1;
2382 if (cpuctx
->ctx
.nr_events
) {
2384 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
2388 ctx
= cpuctx
->task_ctx
;
2389 if (ctx
&& ctx
->nr_events
) {
2391 if (ctx
->nr_events
!= ctx
->nr_active
)
2395 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2396 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2397 perf_ctx_adjust_freq(&cpuctx
->ctx
, interval
);
2399 perf_ctx_adjust_freq(ctx
, interval
);
2404 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2406 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
2408 rotate_ctx(&cpuctx
->ctx
);
2412 perf_event_sched_in(cpuctx
, ctx
, current
);
2416 list_del_init(&cpuctx
->rotation_list
);
2418 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2419 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2422 void perf_event_task_tick(void)
2424 struct list_head
*head
= &__get_cpu_var(rotation_list
);
2425 struct perf_cpu_context
*cpuctx
, *tmp
;
2427 WARN_ON(!irqs_disabled());
2429 list_for_each_entry_safe(cpuctx
, tmp
, head
, rotation_list
) {
2430 if (cpuctx
->jiffies_interval
== 1 ||
2431 !(jiffies
% cpuctx
->jiffies_interval
))
2432 perf_rotate_context(cpuctx
);
2436 static int event_enable_on_exec(struct perf_event
*event
,
2437 struct perf_event_context
*ctx
)
2439 if (!event
->attr
.enable_on_exec
)
2442 event
->attr
.enable_on_exec
= 0;
2443 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2446 __perf_event_mark_enabled(event
, ctx
);
2452 * Enable all of a task's events that have been marked enable-on-exec.
2453 * This expects task == current.
2455 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
2457 struct perf_event
*event
;
2458 unsigned long flags
;
2462 local_irq_save(flags
);
2463 if (!ctx
|| !ctx
->nr_events
)
2467 * We must ctxsw out cgroup events to avoid conflict
2468 * when invoking perf_task_event_sched_in() later on
2469 * in this function. Otherwise we end up trying to
2470 * ctxswin cgroup events which are already scheduled
2473 perf_cgroup_sched_out(current
, NULL
);
2475 raw_spin_lock(&ctx
->lock
);
2476 task_ctx_sched_out(ctx
);
2478 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2479 ret
= event_enable_on_exec(event
, ctx
);
2484 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2485 ret
= event_enable_on_exec(event
, ctx
);
2491 * Unclone this context if we enabled any event.
2496 raw_spin_unlock(&ctx
->lock
);
2499 * Also calls ctxswin for cgroup events, if any:
2501 perf_event_context_sched_in(ctx
, ctx
->task
);
2503 local_irq_restore(flags
);
2507 * Cross CPU call to read the hardware event
2509 static void __perf_event_read(void *info
)
2511 struct perf_event
*event
= info
;
2512 struct perf_event_context
*ctx
= event
->ctx
;
2513 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2516 * If this is a task context, we need to check whether it is
2517 * the current task context of this cpu. If not it has been
2518 * scheduled out before the smp call arrived. In that case
2519 * event->count would have been updated to a recent sample
2520 * when the event was scheduled out.
2522 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
2525 raw_spin_lock(&ctx
->lock
);
2526 if (ctx
->is_active
) {
2527 update_context_time(ctx
);
2528 update_cgrp_time_from_event(event
);
2530 update_event_times(event
);
2531 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2532 event
->pmu
->read(event
);
2533 raw_spin_unlock(&ctx
->lock
);
2536 static inline u64
perf_event_count(struct perf_event
*event
)
2538 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
2541 static u64
perf_event_read(struct perf_event
*event
)
2544 * If event is enabled and currently active on a CPU, update the
2545 * value in the event structure:
2547 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
2548 smp_call_function_single(event
->oncpu
,
2549 __perf_event_read
, event
, 1);
2550 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2551 struct perf_event_context
*ctx
= event
->ctx
;
2552 unsigned long flags
;
2554 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
2556 * may read while context is not active
2557 * (e.g., thread is blocked), in that case
2558 * we cannot update context time
2560 if (ctx
->is_active
) {
2561 update_context_time(ctx
);
2562 update_cgrp_time_from_event(event
);
2564 update_event_times(event
);
2565 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2568 return perf_event_count(event
);
2575 struct callchain_cpus_entries
{
2576 struct rcu_head rcu_head
;
2577 struct perf_callchain_entry
*cpu_entries
[0];
2580 static DEFINE_PER_CPU(int, callchain_recursion
[PERF_NR_CONTEXTS
]);
2581 static atomic_t nr_callchain_events
;
2582 static DEFINE_MUTEX(callchain_mutex
);
2583 struct callchain_cpus_entries
*callchain_cpus_entries
;
2586 __weak
void perf_callchain_kernel(struct perf_callchain_entry
*entry
,
2587 struct pt_regs
*regs
)
2591 __weak
void perf_callchain_user(struct perf_callchain_entry
*entry
,
2592 struct pt_regs
*regs
)
2596 static void release_callchain_buffers_rcu(struct rcu_head
*head
)
2598 struct callchain_cpus_entries
*entries
;
2601 entries
= container_of(head
, struct callchain_cpus_entries
, rcu_head
);
2603 for_each_possible_cpu(cpu
)
2604 kfree(entries
->cpu_entries
[cpu
]);
2609 static void release_callchain_buffers(void)
2611 struct callchain_cpus_entries
*entries
;
2613 entries
= callchain_cpus_entries
;
2614 rcu_assign_pointer(callchain_cpus_entries
, NULL
);
2615 call_rcu(&entries
->rcu_head
, release_callchain_buffers_rcu
);
2618 static int alloc_callchain_buffers(void)
2622 struct callchain_cpus_entries
*entries
;
2625 * We can't use the percpu allocation API for data that can be
2626 * accessed from NMI. Use a temporary manual per cpu allocation
2627 * until that gets sorted out.
2629 size
= offsetof(struct callchain_cpus_entries
, cpu_entries
[nr_cpu_ids
]);
2631 entries
= kzalloc(size
, GFP_KERNEL
);
2635 size
= sizeof(struct perf_callchain_entry
) * PERF_NR_CONTEXTS
;
2637 for_each_possible_cpu(cpu
) {
2638 entries
->cpu_entries
[cpu
] = kmalloc_node(size
, GFP_KERNEL
,
2640 if (!entries
->cpu_entries
[cpu
])
2644 rcu_assign_pointer(callchain_cpus_entries
, entries
);
2649 for_each_possible_cpu(cpu
)
2650 kfree(entries
->cpu_entries
[cpu
]);
2656 static int get_callchain_buffers(void)
2661 mutex_lock(&callchain_mutex
);
2663 count
= atomic_inc_return(&nr_callchain_events
);
2664 if (WARN_ON_ONCE(count
< 1)) {
2670 /* If the allocation failed, give up */
2671 if (!callchain_cpus_entries
)
2676 err
= alloc_callchain_buffers();
2678 release_callchain_buffers();
2680 mutex_unlock(&callchain_mutex
);
2685 static void put_callchain_buffers(void)
2687 if (atomic_dec_and_mutex_lock(&nr_callchain_events
, &callchain_mutex
)) {
2688 release_callchain_buffers();
2689 mutex_unlock(&callchain_mutex
);
2693 static int get_recursion_context(int *recursion
)
2701 else if (in_softirq())
2706 if (recursion
[rctx
])
2715 static inline void put_recursion_context(int *recursion
, int rctx
)
2721 static struct perf_callchain_entry
*get_callchain_entry(int *rctx
)
2724 struct callchain_cpus_entries
*entries
;
2726 *rctx
= get_recursion_context(__get_cpu_var(callchain_recursion
));
2730 entries
= rcu_dereference(callchain_cpus_entries
);
2734 cpu
= smp_processor_id();
2736 return &entries
->cpu_entries
[cpu
][*rctx
];
2740 put_callchain_entry(int rctx
)
2742 put_recursion_context(__get_cpu_var(callchain_recursion
), rctx
);
2745 static struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2748 struct perf_callchain_entry
*entry
;
2751 entry
= get_callchain_entry(&rctx
);
2760 if (!user_mode(regs
)) {
2761 perf_callchain_store(entry
, PERF_CONTEXT_KERNEL
);
2762 perf_callchain_kernel(entry
, regs
);
2764 regs
= task_pt_regs(current
);
2770 perf_callchain_store(entry
, PERF_CONTEXT_USER
);
2771 perf_callchain_user(entry
, regs
);
2775 put_callchain_entry(rctx
);
2781 * Initialize the perf_event context in a task_struct:
2783 static void __perf_event_init_context(struct perf_event_context
*ctx
)
2785 raw_spin_lock_init(&ctx
->lock
);
2786 mutex_init(&ctx
->mutex
);
2787 INIT_LIST_HEAD(&ctx
->pinned_groups
);
2788 INIT_LIST_HEAD(&ctx
->flexible_groups
);
2789 INIT_LIST_HEAD(&ctx
->event_list
);
2790 atomic_set(&ctx
->refcount
, 1);
2793 static struct perf_event_context
*
2794 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
2796 struct perf_event_context
*ctx
;
2798 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
2802 __perf_event_init_context(ctx
);
2805 get_task_struct(task
);
2812 static struct task_struct
*
2813 find_lively_task_by_vpid(pid_t vpid
)
2815 struct task_struct
*task
;
2822 task
= find_task_by_vpid(vpid
);
2824 get_task_struct(task
);
2828 return ERR_PTR(-ESRCH
);
2830 /* Reuse ptrace permission checks for now. */
2832 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
2837 put_task_struct(task
);
2838 return ERR_PTR(err
);
2843 * Returns a matching context with refcount and pincount.
2845 static struct perf_event_context
*
2846 find_get_context(struct pmu
*pmu
, struct task_struct
*task
, int cpu
)
2848 struct perf_event_context
*ctx
;
2849 struct perf_cpu_context
*cpuctx
;
2850 unsigned long flags
;
2854 /* Must be root to operate on a CPU event: */
2855 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
2856 return ERR_PTR(-EACCES
);
2859 * We could be clever and allow to attach a event to an
2860 * offline CPU and activate it when the CPU comes up, but
2863 if (!cpu_online(cpu
))
2864 return ERR_PTR(-ENODEV
);
2866 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
2875 ctxn
= pmu
->task_ctx_nr
;
2880 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
2884 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2886 ctx
= alloc_perf_context(pmu
, task
);
2892 mutex_lock(&task
->perf_event_mutex
);
2894 * If it has already passed perf_event_exit_task().
2895 * we must see PF_EXITING, it takes this mutex too.
2897 if (task
->flags
& PF_EXITING
)
2899 else if (task
->perf_event_ctxp
[ctxn
])
2904 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
2906 mutex_unlock(&task
->perf_event_mutex
);
2908 if (unlikely(err
)) {
2920 return ERR_PTR(err
);
2923 static void perf_event_free_filter(struct perf_event
*event
);
2925 static void free_event_rcu(struct rcu_head
*head
)
2927 struct perf_event
*event
;
2929 event
= container_of(head
, struct perf_event
, rcu_head
);
2931 put_pid_ns(event
->ns
);
2932 perf_event_free_filter(event
);
2936 static void ring_buffer_put(struct ring_buffer
*rb
);
2938 static void free_event(struct perf_event
*event
)
2940 irq_work_sync(&event
->pending
);
2942 if (!event
->parent
) {
2943 if (event
->attach_state
& PERF_ATTACH_TASK
)
2944 jump_label_dec(&perf_sched_events
);
2945 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
2946 atomic_dec(&nr_mmap_events
);
2947 if (event
->attr
.comm
)
2948 atomic_dec(&nr_comm_events
);
2949 if (event
->attr
.task
)
2950 atomic_dec(&nr_task_events
);
2951 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
2952 put_callchain_buffers();
2953 if (is_cgroup_event(event
)) {
2954 atomic_dec(&per_cpu(perf_cgroup_events
, event
->cpu
));
2955 jump_label_dec(&perf_sched_events
);
2960 ring_buffer_put(event
->rb
);
2964 if (is_cgroup_event(event
))
2965 perf_detach_cgroup(event
);
2968 event
->destroy(event
);
2971 put_ctx(event
->ctx
);
2973 call_rcu(&event
->rcu_head
, free_event_rcu
);
2976 int perf_event_release_kernel(struct perf_event
*event
)
2978 struct perf_event_context
*ctx
= event
->ctx
;
2980 WARN_ON_ONCE(ctx
->parent_ctx
);
2982 * There are two ways this annotation is useful:
2984 * 1) there is a lock recursion from perf_event_exit_task
2985 * see the comment there.
2987 * 2) there is a lock-inversion with mmap_sem through
2988 * perf_event_read_group(), which takes faults while
2989 * holding ctx->mutex, however this is called after
2990 * the last filedesc died, so there is no possibility
2991 * to trigger the AB-BA case.
2993 mutex_lock_nested(&ctx
->mutex
, SINGLE_DEPTH_NESTING
);
2994 raw_spin_lock_irq(&ctx
->lock
);
2995 perf_group_detach(event
);
2996 raw_spin_unlock_irq(&ctx
->lock
);
2997 perf_remove_from_context(event
);
2998 mutex_unlock(&ctx
->mutex
);
3004 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
3007 * Called when the last reference to the file is gone.
3009 static int perf_release(struct inode
*inode
, struct file
*file
)
3011 struct perf_event
*event
= file
->private_data
;
3012 struct task_struct
*owner
;
3014 file
->private_data
= NULL
;
3017 owner
= ACCESS_ONCE(event
->owner
);
3019 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3020 * !owner it means the list deletion is complete and we can indeed
3021 * free this event, otherwise we need to serialize on
3022 * owner->perf_event_mutex.
3024 smp_read_barrier_depends();
3027 * Since delayed_put_task_struct() also drops the last
3028 * task reference we can safely take a new reference
3029 * while holding the rcu_read_lock().
3031 get_task_struct(owner
);
3036 mutex_lock(&owner
->perf_event_mutex
);
3038 * We have to re-check the event->owner field, if it is cleared
3039 * we raced with perf_event_exit_task(), acquiring the mutex
3040 * ensured they're done, and we can proceed with freeing the
3044 list_del_init(&event
->owner_entry
);
3045 mutex_unlock(&owner
->perf_event_mutex
);
3046 put_task_struct(owner
);
3049 return perf_event_release_kernel(event
);
3052 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
3054 struct perf_event
*child
;
3060 mutex_lock(&event
->child_mutex
);
3061 total
+= perf_event_read(event
);
3062 *enabled
+= event
->total_time_enabled
+
3063 atomic64_read(&event
->child_total_time_enabled
);
3064 *running
+= event
->total_time_running
+
3065 atomic64_read(&event
->child_total_time_running
);
3067 list_for_each_entry(child
, &event
->child_list
, child_list
) {
3068 total
+= perf_event_read(child
);
3069 *enabled
+= child
->total_time_enabled
;
3070 *running
+= child
->total_time_running
;
3072 mutex_unlock(&event
->child_mutex
);
3076 EXPORT_SYMBOL_GPL(perf_event_read_value
);
3078 static int perf_event_read_group(struct perf_event
*event
,
3079 u64 read_format
, char __user
*buf
)
3081 struct perf_event
*leader
= event
->group_leader
, *sub
;
3082 int n
= 0, size
= 0, ret
= -EFAULT
;
3083 struct perf_event_context
*ctx
= leader
->ctx
;
3085 u64 count
, enabled
, running
;
3087 mutex_lock(&ctx
->mutex
);
3088 count
= perf_event_read_value(leader
, &enabled
, &running
);
3090 values
[n
++] = 1 + leader
->nr_siblings
;
3091 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3092 values
[n
++] = enabled
;
3093 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3094 values
[n
++] = running
;
3095 values
[n
++] = count
;
3096 if (read_format
& PERF_FORMAT_ID
)
3097 values
[n
++] = primary_event_id(leader
);
3099 size
= n
* sizeof(u64
);
3101 if (copy_to_user(buf
, values
, size
))
3106 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3109 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
3110 if (read_format
& PERF_FORMAT_ID
)
3111 values
[n
++] = primary_event_id(sub
);
3113 size
= n
* sizeof(u64
);
3115 if (copy_to_user(buf
+ ret
, values
, size
)) {
3123 mutex_unlock(&ctx
->mutex
);
3128 static int perf_event_read_one(struct perf_event
*event
,
3129 u64 read_format
, char __user
*buf
)
3131 u64 enabled
, running
;
3135 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
3136 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3137 values
[n
++] = enabled
;
3138 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3139 values
[n
++] = running
;
3140 if (read_format
& PERF_FORMAT_ID
)
3141 values
[n
++] = primary_event_id(event
);
3143 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
3146 return n
* sizeof(u64
);
3150 * Read the performance event - simple non blocking version for now
3153 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
3155 u64 read_format
= event
->attr
.read_format
;
3159 * Return end-of-file for a read on a event that is in
3160 * error state (i.e. because it was pinned but it couldn't be
3161 * scheduled on to the CPU at some point).
3163 if (event
->state
== PERF_EVENT_STATE_ERROR
)
3166 if (count
< event
->read_size
)
3169 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3170 if (read_format
& PERF_FORMAT_GROUP
)
3171 ret
= perf_event_read_group(event
, read_format
, buf
);
3173 ret
= perf_event_read_one(event
, read_format
, buf
);
3179 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
3181 struct perf_event
*event
= file
->private_data
;
3183 return perf_read_hw(event
, buf
, count
);
3186 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
3188 struct perf_event
*event
= file
->private_data
;
3189 struct ring_buffer
*rb
;
3190 unsigned int events
= POLL_HUP
;
3193 rb
= rcu_dereference(event
->rb
);
3195 events
= atomic_xchg(&rb
->poll
, 0);
3198 poll_wait(file
, &event
->waitq
, wait
);
3203 static void perf_event_reset(struct perf_event
*event
)
3205 (void)perf_event_read(event
);
3206 local64_set(&event
->count
, 0);
3207 perf_event_update_userpage(event
);
3211 * Holding the top-level event's child_mutex means that any
3212 * descendant process that has inherited this event will block
3213 * in sync_child_event if it goes to exit, thus satisfying the
3214 * task existence requirements of perf_event_enable/disable.
3216 static void perf_event_for_each_child(struct perf_event
*event
,
3217 void (*func
)(struct perf_event
*))
3219 struct perf_event
*child
;
3221 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3222 mutex_lock(&event
->child_mutex
);
3224 list_for_each_entry(child
, &event
->child_list
, child_list
)
3226 mutex_unlock(&event
->child_mutex
);
3229 static void perf_event_for_each(struct perf_event
*event
,
3230 void (*func
)(struct perf_event
*))
3232 struct perf_event_context
*ctx
= event
->ctx
;
3233 struct perf_event
*sibling
;
3235 WARN_ON_ONCE(ctx
->parent_ctx
);
3236 mutex_lock(&ctx
->mutex
);
3237 event
= event
->group_leader
;
3239 perf_event_for_each_child(event
, func
);
3241 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
3242 perf_event_for_each_child(event
, func
);
3243 mutex_unlock(&ctx
->mutex
);
3246 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
3248 struct perf_event_context
*ctx
= event
->ctx
;
3252 if (!is_sampling_event(event
))
3255 if (copy_from_user(&value
, arg
, sizeof(value
)))
3261 raw_spin_lock_irq(&ctx
->lock
);
3262 if (event
->attr
.freq
) {
3263 if (value
> sysctl_perf_event_sample_rate
) {
3268 event
->attr
.sample_freq
= value
;
3270 event
->attr
.sample_period
= value
;
3271 event
->hw
.sample_period
= value
;
3274 raw_spin_unlock_irq(&ctx
->lock
);
3279 static const struct file_operations perf_fops
;
3281 static struct perf_event
*perf_fget_light(int fd
, int *fput_needed
)
3285 file
= fget_light(fd
, fput_needed
);
3287 return ERR_PTR(-EBADF
);
3289 if (file
->f_op
!= &perf_fops
) {
3290 fput_light(file
, *fput_needed
);
3292 return ERR_PTR(-EBADF
);
3295 return file
->private_data
;
3298 static int perf_event_set_output(struct perf_event
*event
,
3299 struct perf_event
*output_event
);
3300 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
3302 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
3304 struct perf_event
*event
= file
->private_data
;
3305 void (*func
)(struct perf_event
*);
3309 case PERF_EVENT_IOC_ENABLE
:
3310 func
= perf_event_enable
;
3312 case PERF_EVENT_IOC_DISABLE
:
3313 func
= perf_event_disable
;
3315 case PERF_EVENT_IOC_RESET
:
3316 func
= perf_event_reset
;
3319 case PERF_EVENT_IOC_REFRESH
:
3320 return perf_event_refresh(event
, arg
);
3322 case PERF_EVENT_IOC_PERIOD
:
3323 return perf_event_period(event
, (u64 __user
*)arg
);
3325 case PERF_EVENT_IOC_SET_OUTPUT
:
3327 struct perf_event
*output_event
= NULL
;
3328 int fput_needed
= 0;
3332 output_event
= perf_fget_light(arg
, &fput_needed
);
3333 if (IS_ERR(output_event
))
3334 return PTR_ERR(output_event
);
3337 ret
= perf_event_set_output(event
, output_event
);
3339 fput_light(output_event
->filp
, fput_needed
);
3344 case PERF_EVENT_IOC_SET_FILTER
:
3345 return perf_event_set_filter(event
, (void __user
*)arg
);
3351 if (flags
& PERF_IOC_FLAG_GROUP
)
3352 perf_event_for_each(event
, func
);
3354 perf_event_for_each_child(event
, func
);
3359 int perf_event_task_enable(void)
3361 struct perf_event
*event
;
3363 mutex_lock(¤t
->perf_event_mutex
);
3364 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
3365 perf_event_for_each_child(event
, perf_event_enable
);
3366 mutex_unlock(¤t
->perf_event_mutex
);
3371 int perf_event_task_disable(void)
3373 struct perf_event
*event
;
3375 mutex_lock(¤t
->perf_event_mutex
);
3376 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
3377 perf_event_for_each_child(event
, perf_event_disable
);
3378 mutex_unlock(¤t
->perf_event_mutex
);
3383 #ifndef PERF_EVENT_INDEX_OFFSET
3384 # define PERF_EVENT_INDEX_OFFSET 0
3387 static int perf_event_index(struct perf_event
*event
)
3389 if (event
->hw
.state
& PERF_HES_STOPPED
)
3392 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3395 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
3398 static void calc_timer_values(struct perf_event
*event
,
3405 ctx_time
= event
->shadow_ctx_time
+ now
;
3406 *enabled
= ctx_time
- event
->tstamp_enabled
;
3407 *running
= ctx_time
- event
->tstamp_running
;
3411 * Callers need to ensure there can be no nesting of this function, otherwise
3412 * the seqlock logic goes bad. We can not serialize this because the arch
3413 * code calls this from NMI context.
3415 void perf_event_update_userpage(struct perf_event
*event
)
3417 struct perf_event_mmap_page
*userpg
;
3418 struct ring_buffer
*rb
;
3419 u64 enabled
, running
;
3423 * compute total_time_enabled, total_time_running
3424 * based on snapshot values taken when the event
3425 * was last scheduled in.
3427 * we cannot simply called update_context_time()
3428 * because of locking issue as we can be called in
3431 calc_timer_values(event
, &enabled
, &running
);
3432 rb
= rcu_dereference(event
->rb
);
3436 userpg
= rb
->user_page
;
3439 * Disable preemption so as to not let the corresponding user-space
3440 * spin too long if we get preempted.
3445 userpg
->index
= perf_event_index(event
);
3446 userpg
->offset
= perf_event_count(event
);
3447 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3448 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
3450 userpg
->time_enabled
= enabled
+
3451 atomic64_read(&event
->child_total_time_enabled
);
3453 userpg
->time_running
= running
+
3454 atomic64_read(&event
->child_total_time_running
);
3463 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
3465 struct perf_event
*event
= vma
->vm_file
->private_data
;
3466 struct ring_buffer
*rb
;
3467 int ret
= VM_FAULT_SIGBUS
;
3469 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
3470 if (vmf
->pgoff
== 0)
3476 rb
= rcu_dereference(event
->rb
);
3480 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
3483 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
3487 get_page(vmf
->page
);
3488 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
3489 vmf
->page
->index
= vmf
->pgoff
;
3498 static void rb_free_rcu(struct rcu_head
*rcu_head
)
3500 struct ring_buffer
*rb
;
3502 rb
= container_of(rcu_head
, struct ring_buffer
, rcu_head
);
3506 static struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
3508 struct ring_buffer
*rb
;
3511 rb
= rcu_dereference(event
->rb
);
3513 if (!atomic_inc_not_zero(&rb
->refcount
))
3521 static void ring_buffer_put(struct ring_buffer
*rb
)
3523 if (!atomic_dec_and_test(&rb
->refcount
))
3526 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
3529 static void perf_mmap_open(struct vm_area_struct
*vma
)
3531 struct perf_event
*event
= vma
->vm_file
->private_data
;
3533 atomic_inc(&event
->mmap_count
);
3536 static void perf_mmap_close(struct vm_area_struct
*vma
)
3538 struct perf_event
*event
= vma
->vm_file
->private_data
;
3540 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
3541 unsigned long size
= perf_data_size(event
->rb
);
3542 struct user_struct
*user
= event
->mmap_user
;
3543 struct ring_buffer
*rb
= event
->rb
;
3545 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
3546 vma
->vm_mm
->locked_vm
-= event
->mmap_locked
;
3547 rcu_assign_pointer(event
->rb
, NULL
);
3548 mutex_unlock(&event
->mmap_mutex
);
3550 ring_buffer_put(rb
);
3555 static const struct vm_operations_struct perf_mmap_vmops
= {
3556 .open
= perf_mmap_open
,
3557 .close
= perf_mmap_close
,
3558 .fault
= perf_mmap_fault
,
3559 .page_mkwrite
= perf_mmap_fault
,
3562 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
3564 struct perf_event
*event
= file
->private_data
;
3565 unsigned long user_locked
, user_lock_limit
;
3566 struct user_struct
*user
= current_user();
3567 unsigned long locked
, lock_limit
;
3568 struct ring_buffer
*rb
;
3569 unsigned long vma_size
;
3570 unsigned long nr_pages
;
3571 long user_extra
, extra
;
3572 int ret
= 0, flags
= 0;
3575 * Don't allow mmap() of inherited per-task counters. This would
3576 * create a performance issue due to all children writing to the
3579 if (event
->cpu
== -1 && event
->attr
.inherit
)
3582 if (!(vma
->vm_flags
& VM_SHARED
))
3585 vma_size
= vma
->vm_end
- vma
->vm_start
;
3586 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
3589 * If we have rb pages ensure they're a power-of-two number, so we
3590 * can do bitmasks instead of modulo.
3592 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
3595 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
3598 if (vma
->vm_pgoff
!= 0)
3601 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3602 mutex_lock(&event
->mmap_mutex
);
3604 if (event
->rb
->nr_pages
== nr_pages
)
3605 atomic_inc(&event
->rb
->refcount
);
3611 user_extra
= nr_pages
+ 1;
3612 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
3615 * Increase the limit linearly with more CPUs:
3617 user_lock_limit
*= num_online_cpus();
3619 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
3622 if (user_locked
> user_lock_limit
)
3623 extra
= user_locked
- user_lock_limit
;
3625 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
3626 lock_limit
>>= PAGE_SHIFT
;
3627 locked
= vma
->vm_mm
->locked_vm
+ extra
;
3629 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
3630 !capable(CAP_IPC_LOCK
)) {
3637 if (vma
->vm_flags
& VM_WRITE
)
3638 flags
|= RING_BUFFER_WRITABLE
;
3640 rb
= rb_alloc(nr_pages
,
3641 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
3648 rcu_assign_pointer(event
->rb
, rb
);
3650 atomic_long_add(user_extra
, &user
->locked_vm
);
3651 event
->mmap_locked
= extra
;
3652 event
->mmap_user
= get_current_user();
3653 vma
->vm_mm
->locked_vm
+= event
->mmap_locked
;
3657 atomic_inc(&event
->mmap_count
);
3658 mutex_unlock(&event
->mmap_mutex
);
3660 vma
->vm_flags
|= VM_RESERVED
;
3661 vma
->vm_ops
= &perf_mmap_vmops
;
3666 static int perf_fasync(int fd
, struct file
*filp
, int on
)
3668 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
3669 struct perf_event
*event
= filp
->private_data
;
3672 mutex_lock(&inode
->i_mutex
);
3673 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
3674 mutex_unlock(&inode
->i_mutex
);
3682 static const struct file_operations perf_fops
= {
3683 .llseek
= no_llseek
,
3684 .release
= perf_release
,
3687 .unlocked_ioctl
= perf_ioctl
,
3688 .compat_ioctl
= perf_ioctl
,
3690 .fasync
= perf_fasync
,
3696 * If there's data, ensure we set the poll() state and publish everything
3697 * to user-space before waking everybody up.
3700 void perf_event_wakeup(struct perf_event
*event
)
3702 wake_up_all(&event
->waitq
);
3704 if (event
->pending_kill
) {
3705 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
3706 event
->pending_kill
= 0;
3710 static void perf_pending_event(struct irq_work
*entry
)
3712 struct perf_event
*event
= container_of(entry
,
3713 struct perf_event
, pending
);
3715 if (event
->pending_disable
) {
3716 event
->pending_disable
= 0;
3717 __perf_event_disable(event
);
3720 if (event
->pending_wakeup
) {
3721 event
->pending_wakeup
= 0;
3722 perf_event_wakeup(event
);
3727 * We assume there is only KVM supporting the callbacks.
3728 * Later on, we might change it to a list if there is
3729 * another virtualization implementation supporting the callbacks.
3731 struct perf_guest_info_callbacks
*perf_guest_cbs
;
3733 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3735 perf_guest_cbs
= cbs
;
3738 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
3740 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3742 perf_guest_cbs
= NULL
;
3745 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
3747 static void __perf_event_header__init_id(struct perf_event_header
*header
,
3748 struct perf_sample_data
*data
,
3749 struct perf_event
*event
)
3751 u64 sample_type
= event
->attr
.sample_type
;
3753 data
->type
= sample_type
;
3754 header
->size
+= event
->id_header_size
;
3756 if (sample_type
& PERF_SAMPLE_TID
) {
3757 /* namespace issues */
3758 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3759 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3762 if (sample_type
& PERF_SAMPLE_TIME
)
3763 data
->time
= perf_clock();
3765 if (sample_type
& PERF_SAMPLE_ID
)
3766 data
->id
= primary_event_id(event
);
3768 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3769 data
->stream_id
= event
->id
;
3771 if (sample_type
& PERF_SAMPLE_CPU
) {
3772 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3773 data
->cpu_entry
.reserved
= 0;
3777 void perf_event_header__init_id(struct perf_event_header
*header
,
3778 struct perf_sample_data
*data
,
3779 struct perf_event
*event
)
3781 if (event
->attr
.sample_id_all
)
3782 __perf_event_header__init_id(header
, data
, event
);
3785 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
3786 struct perf_sample_data
*data
)
3788 u64 sample_type
= data
->type
;
3790 if (sample_type
& PERF_SAMPLE_TID
)
3791 perf_output_put(handle
, data
->tid_entry
);
3793 if (sample_type
& PERF_SAMPLE_TIME
)
3794 perf_output_put(handle
, data
->time
);
3796 if (sample_type
& PERF_SAMPLE_ID
)
3797 perf_output_put(handle
, data
->id
);
3799 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3800 perf_output_put(handle
, data
->stream_id
);
3802 if (sample_type
& PERF_SAMPLE_CPU
)
3803 perf_output_put(handle
, data
->cpu_entry
);
3806 void perf_event__output_id_sample(struct perf_event
*event
,
3807 struct perf_output_handle
*handle
,
3808 struct perf_sample_data
*sample
)
3810 if (event
->attr
.sample_id_all
)
3811 __perf_event__output_id_sample(handle
, sample
);
3814 static void perf_output_read_one(struct perf_output_handle
*handle
,
3815 struct perf_event
*event
,
3816 u64 enabled
, u64 running
)
3818 u64 read_format
= event
->attr
.read_format
;
3822 values
[n
++] = perf_event_count(event
);
3823 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
3824 values
[n
++] = enabled
+
3825 atomic64_read(&event
->child_total_time_enabled
);
3827 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
3828 values
[n
++] = running
+
3829 atomic64_read(&event
->child_total_time_running
);
3831 if (read_format
& PERF_FORMAT_ID
)
3832 values
[n
++] = primary_event_id(event
);
3834 __output_copy(handle
, values
, n
* sizeof(u64
));
3838 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3840 static void perf_output_read_group(struct perf_output_handle
*handle
,
3841 struct perf_event
*event
,
3842 u64 enabled
, u64 running
)
3844 struct perf_event
*leader
= event
->group_leader
, *sub
;
3845 u64 read_format
= event
->attr
.read_format
;
3849 values
[n
++] = 1 + leader
->nr_siblings
;
3851 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3852 values
[n
++] = enabled
;
3854 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3855 values
[n
++] = running
;
3857 if (leader
!= event
)
3858 leader
->pmu
->read(leader
);
3860 values
[n
++] = perf_event_count(leader
);
3861 if (read_format
& PERF_FORMAT_ID
)
3862 values
[n
++] = primary_event_id(leader
);
3864 __output_copy(handle
, values
, n
* sizeof(u64
));
3866 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3870 sub
->pmu
->read(sub
);
3872 values
[n
++] = perf_event_count(sub
);
3873 if (read_format
& PERF_FORMAT_ID
)
3874 values
[n
++] = primary_event_id(sub
);
3876 __output_copy(handle
, values
, n
* sizeof(u64
));
3880 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3881 PERF_FORMAT_TOTAL_TIME_RUNNING)
3883 static void perf_output_read(struct perf_output_handle
*handle
,
3884 struct perf_event
*event
)
3886 u64 enabled
= 0, running
= 0;
3887 u64 read_format
= event
->attr
.read_format
;
3890 * compute total_time_enabled, total_time_running
3891 * based on snapshot values taken when the event
3892 * was last scheduled in.
3894 * we cannot simply called update_context_time()
3895 * because of locking issue as we are called in
3898 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
3899 calc_timer_values(event
, &enabled
, &running
);
3901 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
3902 perf_output_read_group(handle
, event
, enabled
, running
);
3904 perf_output_read_one(handle
, event
, enabled
, running
);
3907 void perf_output_sample(struct perf_output_handle
*handle
,
3908 struct perf_event_header
*header
,
3909 struct perf_sample_data
*data
,
3910 struct perf_event
*event
)
3912 u64 sample_type
= data
->type
;
3914 perf_output_put(handle
, *header
);
3916 if (sample_type
& PERF_SAMPLE_IP
)
3917 perf_output_put(handle
, data
->ip
);
3919 if (sample_type
& PERF_SAMPLE_TID
)
3920 perf_output_put(handle
, data
->tid_entry
);
3922 if (sample_type
& PERF_SAMPLE_TIME
)
3923 perf_output_put(handle
, data
->time
);
3925 if (sample_type
& PERF_SAMPLE_ADDR
)
3926 perf_output_put(handle
, data
->addr
);
3928 if (sample_type
& PERF_SAMPLE_ID
)
3929 perf_output_put(handle
, data
->id
);
3931 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3932 perf_output_put(handle
, data
->stream_id
);
3934 if (sample_type
& PERF_SAMPLE_CPU
)
3935 perf_output_put(handle
, data
->cpu_entry
);
3937 if (sample_type
& PERF_SAMPLE_PERIOD
)
3938 perf_output_put(handle
, data
->period
);
3940 if (sample_type
& PERF_SAMPLE_READ
)
3941 perf_output_read(handle
, event
);
3943 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3944 if (data
->callchain
) {
3947 if (data
->callchain
)
3948 size
+= data
->callchain
->nr
;
3950 size
*= sizeof(u64
);
3952 __output_copy(handle
, data
->callchain
, size
);
3955 perf_output_put(handle
, nr
);
3959 if (sample_type
& PERF_SAMPLE_RAW
) {
3961 perf_output_put(handle
, data
->raw
->size
);
3962 __output_copy(handle
, data
->raw
->data
,
3969 .size
= sizeof(u32
),
3972 perf_output_put(handle
, raw
);
3976 if (!event
->attr
.watermark
) {
3977 int wakeup_events
= event
->attr
.wakeup_events
;
3979 if (wakeup_events
) {
3980 struct ring_buffer
*rb
= handle
->rb
;
3981 int events
= local_inc_return(&rb
->events
);
3983 if (events
>= wakeup_events
) {
3984 local_sub(wakeup_events
, &rb
->events
);
3985 local_inc(&rb
->wakeup
);
3991 void perf_prepare_sample(struct perf_event_header
*header
,
3992 struct perf_sample_data
*data
,
3993 struct perf_event
*event
,
3994 struct pt_regs
*regs
)
3996 u64 sample_type
= event
->attr
.sample_type
;
3998 header
->type
= PERF_RECORD_SAMPLE
;
3999 header
->size
= sizeof(*header
) + event
->header_size
;
4002 header
->misc
|= perf_misc_flags(regs
);
4004 __perf_event_header__init_id(header
, data
, event
);
4006 if (sample_type
& PERF_SAMPLE_IP
)
4007 data
->ip
= perf_instruction_pointer(regs
);
4009 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
4012 data
->callchain
= perf_callchain(regs
);
4014 if (data
->callchain
)
4015 size
+= data
->callchain
->nr
;
4017 header
->size
+= size
* sizeof(u64
);
4020 if (sample_type
& PERF_SAMPLE_RAW
) {
4021 int size
= sizeof(u32
);
4024 size
+= data
->raw
->size
;
4026 size
+= sizeof(u32
);
4028 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
4029 header
->size
+= size
;
4033 static void perf_event_output(struct perf_event
*event
,
4034 struct perf_sample_data
*data
,
4035 struct pt_regs
*regs
)
4037 struct perf_output_handle handle
;
4038 struct perf_event_header header
;
4040 /* protect the callchain buffers */
4043 perf_prepare_sample(&header
, data
, event
, regs
);
4045 if (perf_output_begin(&handle
, event
, header
.size
))
4048 perf_output_sample(&handle
, &header
, data
, event
);
4050 perf_output_end(&handle
);
4060 struct perf_read_event
{
4061 struct perf_event_header header
;
4068 perf_event_read_event(struct perf_event
*event
,
4069 struct task_struct
*task
)
4071 struct perf_output_handle handle
;
4072 struct perf_sample_data sample
;
4073 struct perf_read_event read_event
= {
4075 .type
= PERF_RECORD_READ
,
4077 .size
= sizeof(read_event
) + event
->read_size
,
4079 .pid
= perf_event_pid(event
, task
),
4080 .tid
= perf_event_tid(event
, task
),
4084 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
4085 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
4089 perf_output_put(&handle
, read_event
);
4090 perf_output_read(&handle
, event
);
4091 perf_event__output_id_sample(event
, &handle
, &sample
);
4093 perf_output_end(&handle
);
4097 * task tracking -- fork/exit
4099 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4102 struct perf_task_event
{
4103 struct task_struct
*task
;
4104 struct perf_event_context
*task_ctx
;
4107 struct perf_event_header header
;
4117 static void perf_event_task_output(struct perf_event
*event
,
4118 struct perf_task_event
*task_event
)
4120 struct perf_output_handle handle
;
4121 struct perf_sample_data sample
;
4122 struct task_struct
*task
= task_event
->task
;
4123 int ret
, size
= task_event
->event_id
.header
.size
;
4125 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
4127 ret
= perf_output_begin(&handle
, event
,
4128 task_event
->event_id
.header
.size
);
4132 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
4133 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
4135 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
4136 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
4138 perf_output_put(&handle
, task_event
->event_id
);
4140 perf_event__output_id_sample(event
, &handle
, &sample
);
4142 perf_output_end(&handle
);
4144 task_event
->event_id
.header
.size
= size
;
4147 static int perf_event_task_match(struct perf_event
*event
)
4149 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4152 if (!event_filter_match(event
))
4155 if (event
->attr
.comm
|| event
->attr
.mmap
||
4156 event
->attr
.mmap_data
|| event
->attr
.task
)
4162 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
4163 struct perf_task_event
*task_event
)
4165 struct perf_event
*event
;
4167 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4168 if (perf_event_task_match(event
))
4169 perf_event_task_output(event
, task_event
);
4173 static void perf_event_task_event(struct perf_task_event
*task_event
)
4175 struct perf_cpu_context
*cpuctx
;
4176 struct perf_event_context
*ctx
;
4181 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4182 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4183 if (cpuctx
->active_pmu
!= pmu
)
4185 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
4187 ctx
= task_event
->task_ctx
;
4189 ctxn
= pmu
->task_ctx_nr
;
4192 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4195 perf_event_task_ctx(ctx
, task_event
);
4197 put_cpu_ptr(pmu
->pmu_cpu_context
);
4202 static void perf_event_task(struct task_struct
*task
,
4203 struct perf_event_context
*task_ctx
,
4206 struct perf_task_event task_event
;
4208 if (!atomic_read(&nr_comm_events
) &&
4209 !atomic_read(&nr_mmap_events
) &&
4210 !atomic_read(&nr_task_events
))
4213 task_event
= (struct perf_task_event
){
4215 .task_ctx
= task_ctx
,
4218 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
4220 .size
= sizeof(task_event
.event_id
),
4226 .time
= perf_clock(),
4230 perf_event_task_event(&task_event
);
4233 void perf_event_fork(struct task_struct
*task
)
4235 perf_event_task(task
, NULL
, 1);
4242 struct perf_comm_event
{
4243 struct task_struct
*task
;
4248 struct perf_event_header header
;
4255 static void perf_event_comm_output(struct perf_event
*event
,
4256 struct perf_comm_event
*comm_event
)
4258 struct perf_output_handle handle
;
4259 struct perf_sample_data sample
;
4260 int size
= comm_event
->event_id
.header
.size
;
4263 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
4264 ret
= perf_output_begin(&handle
, event
,
4265 comm_event
->event_id
.header
.size
);
4270 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
4271 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
4273 perf_output_put(&handle
, comm_event
->event_id
);
4274 __output_copy(&handle
, comm_event
->comm
,
4275 comm_event
->comm_size
);
4277 perf_event__output_id_sample(event
, &handle
, &sample
);
4279 perf_output_end(&handle
);
4281 comm_event
->event_id
.header
.size
= size
;
4284 static int perf_event_comm_match(struct perf_event
*event
)
4286 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4289 if (!event_filter_match(event
))
4292 if (event
->attr
.comm
)
4298 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
4299 struct perf_comm_event
*comm_event
)
4301 struct perf_event
*event
;
4303 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4304 if (perf_event_comm_match(event
))
4305 perf_event_comm_output(event
, comm_event
);
4309 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
4311 struct perf_cpu_context
*cpuctx
;
4312 struct perf_event_context
*ctx
;
4313 char comm
[TASK_COMM_LEN
];
4318 memset(comm
, 0, sizeof(comm
));
4319 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
4320 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
4322 comm_event
->comm
= comm
;
4323 comm_event
->comm_size
= size
;
4325 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
4327 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4328 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4329 if (cpuctx
->active_pmu
!= pmu
)
4331 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
4333 ctxn
= pmu
->task_ctx_nr
;
4337 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4339 perf_event_comm_ctx(ctx
, comm_event
);
4341 put_cpu_ptr(pmu
->pmu_cpu_context
);
4346 void perf_event_comm(struct task_struct
*task
)
4348 struct perf_comm_event comm_event
;
4349 struct perf_event_context
*ctx
;
4352 for_each_task_context_nr(ctxn
) {
4353 ctx
= task
->perf_event_ctxp
[ctxn
];
4357 perf_event_enable_on_exec(ctx
);
4360 if (!atomic_read(&nr_comm_events
))
4363 comm_event
= (struct perf_comm_event
){
4369 .type
= PERF_RECORD_COMM
,
4378 perf_event_comm_event(&comm_event
);
4385 struct perf_mmap_event
{
4386 struct vm_area_struct
*vma
;
4388 const char *file_name
;
4392 struct perf_event_header header
;
4402 static void perf_event_mmap_output(struct perf_event
*event
,
4403 struct perf_mmap_event
*mmap_event
)
4405 struct perf_output_handle handle
;
4406 struct perf_sample_data sample
;
4407 int size
= mmap_event
->event_id
.header
.size
;
4410 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
4411 ret
= perf_output_begin(&handle
, event
,
4412 mmap_event
->event_id
.header
.size
);
4416 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
4417 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
4419 perf_output_put(&handle
, mmap_event
->event_id
);
4420 __output_copy(&handle
, mmap_event
->file_name
,
4421 mmap_event
->file_size
);
4423 perf_event__output_id_sample(event
, &handle
, &sample
);
4425 perf_output_end(&handle
);
4427 mmap_event
->event_id
.header
.size
= size
;
4430 static int perf_event_mmap_match(struct perf_event
*event
,
4431 struct perf_mmap_event
*mmap_event
,
4434 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4437 if (!event_filter_match(event
))
4440 if ((!executable
&& event
->attr
.mmap_data
) ||
4441 (executable
&& event
->attr
.mmap
))
4447 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
4448 struct perf_mmap_event
*mmap_event
,
4451 struct perf_event
*event
;
4453 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4454 if (perf_event_mmap_match(event
, mmap_event
, executable
))
4455 perf_event_mmap_output(event
, mmap_event
);
4459 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
4461 struct perf_cpu_context
*cpuctx
;
4462 struct perf_event_context
*ctx
;
4463 struct vm_area_struct
*vma
= mmap_event
->vma
;
4464 struct file
*file
= vma
->vm_file
;
4472 memset(tmp
, 0, sizeof(tmp
));
4476 * d_path works from the end of the rb backwards, so we
4477 * need to add enough zero bytes after the string to handle
4478 * the 64bit alignment we do later.
4480 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
4482 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
4485 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
4487 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
4491 if (arch_vma_name(mmap_event
->vma
)) {
4492 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
4498 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
4500 } else if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
4501 vma
->vm_end
>= vma
->vm_mm
->brk
) {
4502 name
= strncpy(tmp
, "[heap]", sizeof(tmp
));
4504 } else if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
4505 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
4506 name
= strncpy(tmp
, "[stack]", sizeof(tmp
));
4510 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
4515 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
4517 mmap_event
->file_name
= name
;
4518 mmap_event
->file_size
= size
;
4520 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
4523 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4524 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4525 if (cpuctx
->active_pmu
!= pmu
)
4527 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
,
4528 vma
->vm_flags
& VM_EXEC
);
4530 ctxn
= pmu
->task_ctx_nr
;
4534 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4536 perf_event_mmap_ctx(ctx
, mmap_event
,
4537 vma
->vm_flags
& VM_EXEC
);
4540 put_cpu_ptr(pmu
->pmu_cpu_context
);
4547 void perf_event_mmap(struct vm_area_struct
*vma
)
4549 struct perf_mmap_event mmap_event
;
4551 if (!atomic_read(&nr_mmap_events
))
4554 mmap_event
= (struct perf_mmap_event
){
4560 .type
= PERF_RECORD_MMAP
,
4561 .misc
= PERF_RECORD_MISC_USER
,
4566 .start
= vma
->vm_start
,
4567 .len
= vma
->vm_end
- vma
->vm_start
,
4568 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
4572 perf_event_mmap_event(&mmap_event
);
4576 * IRQ throttle logging
4579 static void perf_log_throttle(struct perf_event
*event
, int enable
)
4581 struct perf_output_handle handle
;
4582 struct perf_sample_data sample
;
4586 struct perf_event_header header
;
4590 } throttle_event
= {
4592 .type
= PERF_RECORD_THROTTLE
,
4594 .size
= sizeof(throttle_event
),
4596 .time
= perf_clock(),
4597 .id
= primary_event_id(event
),
4598 .stream_id
= event
->id
,
4602 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
4604 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
4606 ret
= perf_output_begin(&handle
, event
,
4607 throttle_event
.header
.size
);
4611 perf_output_put(&handle
, throttle_event
);
4612 perf_event__output_id_sample(event
, &handle
, &sample
);
4613 perf_output_end(&handle
);
4617 * Generic event overflow handling, sampling.
4620 static int __perf_event_overflow(struct perf_event
*event
,
4621 int throttle
, struct perf_sample_data
*data
,
4622 struct pt_regs
*regs
)
4624 int events
= atomic_read(&event
->event_limit
);
4625 struct hw_perf_event
*hwc
= &event
->hw
;
4629 * Non-sampling counters might still use the PMI to fold short
4630 * hardware counters, ignore those.
4632 if (unlikely(!is_sampling_event(event
)))
4635 if (unlikely(hwc
->interrupts
>= max_samples_per_tick
)) {
4637 hwc
->interrupts
= MAX_INTERRUPTS
;
4638 perf_log_throttle(event
, 0);
4644 if (event
->attr
.freq
) {
4645 u64 now
= perf_clock();
4646 s64 delta
= now
- hwc
->freq_time_stamp
;
4648 hwc
->freq_time_stamp
= now
;
4650 if (delta
> 0 && delta
< 2*TICK_NSEC
)
4651 perf_adjust_period(event
, delta
, hwc
->last_period
);
4655 * XXX event_limit might not quite work as expected on inherited
4659 event
->pending_kill
= POLL_IN
;
4660 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
4662 event
->pending_kill
= POLL_HUP
;
4663 event
->pending_disable
= 1;
4664 irq_work_queue(&event
->pending
);
4667 if (event
->overflow_handler
)
4668 event
->overflow_handler(event
, data
, regs
);
4670 perf_event_output(event
, data
, regs
);
4672 if (event
->fasync
&& event
->pending_kill
) {
4673 event
->pending_wakeup
= 1;
4674 irq_work_queue(&event
->pending
);
4680 int perf_event_overflow(struct perf_event
*event
,
4681 struct perf_sample_data
*data
,
4682 struct pt_regs
*regs
)
4684 return __perf_event_overflow(event
, 1, data
, regs
);
4688 * Generic software event infrastructure
4691 struct swevent_htable
{
4692 struct swevent_hlist
*swevent_hlist
;
4693 struct mutex hlist_mutex
;
4696 /* Recursion avoidance in each contexts */
4697 int recursion
[PERF_NR_CONTEXTS
];
4700 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
4703 * We directly increment event->count and keep a second value in
4704 * event->hw.period_left to count intervals. This period event
4705 * is kept in the range [-sample_period, 0] so that we can use the
4709 static u64
perf_swevent_set_period(struct perf_event
*event
)
4711 struct hw_perf_event
*hwc
= &event
->hw
;
4712 u64 period
= hwc
->last_period
;
4716 hwc
->last_period
= hwc
->sample_period
;
4719 old
= val
= local64_read(&hwc
->period_left
);
4723 nr
= div64_u64(period
+ val
, period
);
4724 offset
= nr
* period
;
4726 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
4732 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
4733 struct perf_sample_data
*data
,
4734 struct pt_regs
*regs
)
4736 struct hw_perf_event
*hwc
= &event
->hw
;
4739 data
->period
= event
->hw
.last_period
;
4741 overflow
= perf_swevent_set_period(event
);
4743 if (hwc
->interrupts
== MAX_INTERRUPTS
)
4746 for (; overflow
; overflow
--) {
4747 if (__perf_event_overflow(event
, throttle
,
4750 * We inhibit the overflow from happening when
4751 * hwc->interrupts == MAX_INTERRUPTS.
4759 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
4760 struct perf_sample_data
*data
,
4761 struct pt_regs
*regs
)
4763 struct hw_perf_event
*hwc
= &event
->hw
;
4765 local64_add(nr
, &event
->count
);
4770 if (!is_sampling_event(event
))
4773 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
4774 return perf_swevent_overflow(event
, 1, data
, regs
);
4776 if (local64_add_negative(nr
, &hwc
->period_left
))
4779 perf_swevent_overflow(event
, 0, data
, regs
);
4782 static int perf_exclude_event(struct perf_event
*event
,
4783 struct pt_regs
*regs
)
4785 if (event
->hw
.state
& PERF_HES_STOPPED
)
4789 if (event
->attr
.exclude_user
&& user_mode(regs
))
4792 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
4799 static int perf_swevent_match(struct perf_event
*event
,
4800 enum perf_type_id type
,
4802 struct perf_sample_data
*data
,
4803 struct pt_regs
*regs
)
4805 if (event
->attr
.type
!= type
)
4808 if (event
->attr
.config
!= event_id
)
4811 if (perf_exclude_event(event
, regs
))
4817 static inline u64
swevent_hash(u64 type
, u32 event_id
)
4819 u64 val
= event_id
| (type
<< 32);
4821 return hash_64(val
, SWEVENT_HLIST_BITS
);
4824 static inline struct hlist_head
*
4825 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
4827 u64 hash
= swevent_hash(type
, event_id
);
4829 return &hlist
->heads
[hash
];
4832 /* For the read side: events when they trigger */
4833 static inline struct hlist_head
*
4834 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
4836 struct swevent_hlist
*hlist
;
4838 hlist
= rcu_dereference(swhash
->swevent_hlist
);
4842 return __find_swevent_head(hlist
, type
, event_id
);
4845 /* For the event head insertion and removal in the hlist */
4846 static inline struct hlist_head
*
4847 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
4849 struct swevent_hlist
*hlist
;
4850 u32 event_id
= event
->attr
.config
;
4851 u64 type
= event
->attr
.type
;
4854 * Event scheduling is always serialized against hlist allocation
4855 * and release. Which makes the protected version suitable here.
4856 * The context lock guarantees that.
4858 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
4859 lockdep_is_held(&event
->ctx
->lock
));
4863 return __find_swevent_head(hlist
, type
, event_id
);
4866 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
4868 struct perf_sample_data
*data
,
4869 struct pt_regs
*regs
)
4871 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4872 struct perf_event
*event
;
4873 struct hlist_node
*node
;
4874 struct hlist_head
*head
;
4877 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
4881 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4882 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
4883 perf_swevent_event(event
, nr
, data
, regs
);
4889 int perf_swevent_get_recursion_context(void)
4891 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4893 return get_recursion_context(swhash
->recursion
);
4895 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
4897 inline void perf_swevent_put_recursion_context(int rctx
)
4899 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4901 put_recursion_context(swhash
->recursion
, rctx
);
4904 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
4906 struct perf_sample_data data
;
4909 preempt_disable_notrace();
4910 rctx
= perf_swevent_get_recursion_context();
4914 perf_sample_data_init(&data
, addr
);
4916 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
4918 perf_swevent_put_recursion_context(rctx
);
4919 preempt_enable_notrace();
4922 static void perf_swevent_read(struct perf_event
*event
)
4926 static int perf_swevent_add(struct perf_event
*event
, int flags
)
4928 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4929 struct hw_perf_event
*hwc
= &event
->hw
;
4930 struct hlist_head
*head
;
4932 if (is_sampling_event(event
)) {
4933 hwc
->last_period
= hwc
->sample_period
;
4934 perf_swevent_set_period(event
);
4937 hwc
->state
= !(flags
& PERF_EF_START
);
4939 head
= find_swevent_head(swhash
, event
);
4940 if (WARN_ON_ONCE(!head
))
4943 hlist_add_head_rcu(&event
->hlist_entry
, head
);
4948 static void perf_swevent_del(struct perf_event
*event
, int flags
)
4950 hlist_del_rcu(&event
->hlist_entry
);
4953 static void perf_swevent_start(struct perf_event
*event
, int flags
)
4955 event
->hw
.state
= 0;
4958 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
4960 event
->hw
.state
= PERF_HES_STOPPED
;
4963 /* Deref the hlist from the update side */
4964 static inline struct swevent_hlist
*
4965 swevent_hlist_deref(struct swevent_htable
*swhash
)
4967 return rcu_dereference_protected(swhash
->swevent_hlist
,
4968 lockdep_is_held(&swhash
->hlist_mutex
));
4971 static void swevent_hlist_release(struct swevent_htable
*swhash
)
4973 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
4978 rcu_assign_pointer(swhash
->swevent_hlist
, NULL
);
4979 kfree_rcu(hlist
, rcu_head
);
4982 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
4984 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
4986 mutex_lock(&swhash
->hlist_mutex
);
4988 if (!--swhash
->hlist_refcount
)
4989 swevent_hlist_release(swhash
);
4991 mutex_unlock(&swhash
->hlist_mutex
);
4994 static void swevent_hlist_put(struct perf_event
*event
)
4998 if (event
->cpu
!= -1) {
4999 swevent_hlist_put_cpu(event
, event
->cpu
);
5003 for_each_possible_cpu(cpu
)
5004 swevent_hlist_put_cpu(event
, cpu
);
5007 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
5009 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
5012 mutex_lock(&swhash
->hlist_mutex
);
5014 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
5015 struct swevent_hlist
*hlist
;
5017 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
5022 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
5024 swhash
->hlist_refcount
++;
5026 mutex_unlock(&swhash
->hlist_mutex
);
5031 static int swevent_hlist_get(struct perf_event
*event
)
5034 int cpu
, failed_cpu
;
5036 if (event
->cpu
!= -1)
5037 return swevent_hlist_get_cpu(event
, event
->cpu
);
5040 for_each_possible_cpu(cpu
) {
5041 err
= swevent_hlist_get_cpu(event
, cpu
);
5051 for_each_possible_cpu(cpu
) {
5052 if (cpu
== failed_cpu
)
5054 swevent_hlist_put_cpu(event
, cpu
);
5061 struct jump_label_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
5063 static void sw_perf_event_destroy(struct perf_event
*event
)
5065 u64 event_id
= event
->attr
.config
;
5067 WARN_ON(event
->parent
);
5069 jump_label_dec(&perf_swevent_enabled
[event_id
]);
5070 swevent_hlist_put(event
);
5073 static int perf_swevent_init(struct perf_event
*event
)
5075 int event_id
= event
->attr
.config
;
5077 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5081 case PERF_COUNT_SW_CPU_CLOCK
:
5082 case PERF_COUNT_SW_TASK_CLOCK
:
5089 if (event_id
>= PERF_COUNT_SW_MAX
)
5092 if (!event
->parent
) {
5095 err
= swevent_hlist_get(event
);
5099 jump_label_inc(&perf_swevent_enabled
[event_id
]);
5100 event
->destroy
= sw_perf_event_destroy
;
5106 static struct pmu perf_swevent
= {
5107 .task_ctx_nr
= perf_sw_context
,
5109 .event_init
= perf_swevent_init
,
5110 .add
= perf_swevent_add
,
5111 .del
= perf_swevent_del
,
5112 .start
= perf_swevent_start
,
5113 .stop
= perf_swevent_stop
,
5114 .read
= perf_swevent_read
,
5117 #ifdef CONFIG_EVENT_TRACING
5119 static int perf_tp_filter_match(struct perf_event
*event
,
5120 struct perf_sample_data
*data
)
5122 void *record
= data
->raw
->data
;
5124 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
5129 static int perf_tp_event_match(struct perf_event
*event
,
5130 struct perf_sample_data
*data
,
5131 struct pt_regs
*regs
)
5133 if (event
->hw
.state
& PERF_HES_STOPPED
)
5136 * All tracepoints are from kernel-space.
5138 if (event
->attr
.exclude_kernel
)
5141 if (!perf_tp_filter_match(event
, data
))
5147 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
5148 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
)
5150 struct perf_sample_data data
;
5151 struct perf_event
*event
;
5152 struct hlist_node
*node
;
5154 struct perf_raw_record raw
= {
5159 perf_sample_data_init(&data
, addr
);
5162 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
5163 if (perf_tp_event_match(event
, &data
, regs
))
5164 perf_swevent_event(event
, count
, &data
, regs
);
5167 perf_swevent_put_recursion_context(rctx
);
5169 EXPORT_SYMBOL_GPL(perf_tp_event
);
5171 static void tp_perf_event_destroy(struct perf_event
*event
)
5173 perf_trace_destroy(event
);
5176 static int perf_tp_event_init(struct perf_event
*event
)
5180 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
5183 err
= perf_trace_init(event
);
5187 event
->destroy
= tp_perf_event_destroy
;
5192 static struct pmu perf_tracepoint
= {
5193 .task_ctx_nr
= perf_sw_context
,
5195 .event_init
= perf_tp_event_init
,
5196 .add
= perf_trace_add
,
5197 .del
= perf_trace_del
,
5198 .start
= perf_swevent_start
,
5199 .stop
= perf_swevent_stop
,
5200 .read
= perf_swevent_read
,
5203 static inline void perf_tp_register(void)
5205 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
5208 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5213 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
5216 filter_str
= strndup_user(arg
, PAGE_SIZE
);
5217 if (IS_ERR(filter_str
))
5218 return PTR_ERR(filter_str
);
5220 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
5226 static void perf_event_free_filter(struct perf_event
*event
)
5228 ftrace_profile_free_filter(event
);
5233 static inline void perf_tp_register(void)
5237 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5242 static void perf_event_free_filter(struct perf_event
*event
)
5246 #endif /* CONFIG_EVENT_TRACING */
5248 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5249 void perf_bp_event(struct perf_event
*bp
, void *data
)
5251 struct perf_sample_data sample
;
5252 struct pt_regs
*regs
= data
;
5254 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
);
5256 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
5257 perf_swevent_event(bp
, 1, &sample
, regs
);
5262 * hrtimer based swevent callback
5265 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
5267 enum hrtimer_restart ret
= HRTIMER_RESTART
;
5268 struct perf_sample_data data
;
5269 struct pt_regs
*regs
;
5270 struct perf_event
*event
;
5273 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
5275 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
5276 return HRTIMER_NORESTART
;
5278 event
->pmu
->read(event
);
5280 perf_sample_data_init(&data
, 0);
5281 data
.period
= event
->hw
.last_period
;
5282 regs
= get_irq_regs();
5284 if (regs
&& !perf_exclude_event(event
, regs
)) {
5285 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
5286 if (perf_event_overflow(event
, &data
, regs
))
5287 ret
= HRTIMER_NORESTART
;
5290 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
5291 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
5296 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
5298 struct hw_perf_event
*hwc
= &event
->hw
;
5301 if (!is_sampling_event(event
))
5304 period
= local64_read(&hwc
->period_left
);
5309 local64_set(&hwc
->period_left
, 0);
5311 period
= max_t(u64
, 10000, hwc
->sample_period
);
5313 __hrtimer_start_range_ns(&hwc
->hrtimer
,
5314 ns_to_ktime(period
), 0,
5315 HRTIMER_MODE_REL_PINNED
, 0);
5318 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
5320 struct hw_perf_event
*hwc
= &event
->hw
;
5322 if (is_sampling_event(event
)) {
5323 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
5324 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
5326 hrtimer_cancel(&hwc
->hrtimer
);
5330 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
5332 struct hw_perf_event
*hwc
= &event
->hw
;
5334 if (!is_sampling_event(event
))
5337 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
5338 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
5341 * Since hrtimers have a fixed rate, we can do a static freq->period
5342 * mapping and avoid the whole period adjust feedback stuff.
5344 if (event
->attr
.freq
) {
5345 long freq
= event
->attr
.sample_freq
;
5347 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
5348 hwc
->sample_period
= event
->attr
.sample_period
;
5349 local64_set(&hwc
->period_left
, hwc
->sample_period
);
5350 event
->attr
.freq
= 0;
5355 * Software event: cpu wall time clock
5358 static void cpu_clock_event_update(struct perf_event
*event
)
5363 now
= local_clock();
5364 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5365 local64_add(now
- prev
, &event
->count
);
5368 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
5370 local64_set(&event
->hw
.prev_count
, local_clock());
5371 perf_swevent_start_hrtimer(event
);
5374 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
5376 perf_swevent_cancel_hrtimer(event
);
5377 cpu_clock_event_update(event
);
5380 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
5382 if (flags
& PERF_EF_START
)
5383 cpu_clock_event_start(event
, flags
);
5388 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
5390 cpu_clock_event_stop(event
, flags
);
5393 static void cpu_clock_event_read(struct perf_event
*event
)
5395 cpu_clock_event_update(event
);
5398 static int cpu_clock_event_init(struct perf_event
*event
)
5400 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5403 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
5406 perf_swevent_init_hrtimer(event
);
5411 static struct pmu perf_cpu_clock
= {
5412 .task_ctx_nr
= perf_sw_context
,
5414 .event_init
= cpu_clock_event_init
,
5415 .add
= cpu_clock_event_add
,
5416 .del
= cpu_clock_event_del
,
5417 .start
= cpu_clock_event_start
,
5418 .stop
= cpu_clock_event_stop
,
5419 .read
= cpu_clock_event_read
,
5423 * Software event: task time clock
5426 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
5431 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5433 local64_add(delta
, &event
->count
);
5436 static void task_clock_event_start(struct perf_event
*event
, int flags
)
5438 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
5439 perf_swevent_start_hrtimer(event
);
5442 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
5444 perf_swevent_cancel_hrtimer(event
);
5445 task_clock_event_update(event
, event
->ctx
->time
);
5448 static int task_clock_event_add(struct perf_event
*event
, int flags
)
5450 if (flags
& PERF_EF_START
)
5451 task_clock_event_start(event
, flags
);
5456 static void task_clock_event_del(struct perf_event
*event
, int flags
)
5458 task_clock_event_stop(event
, PERF_EF_UPDATE
);
5461 static void task_clock_event_read(struct perf_event
*event
)
5463 u64 now
= perf_clock();
5464 u64 delta
= now
- event
->ctx
->timestamp
;
5465 u64 time
= event
->ctx
->time
+ delta
;
5467 task_clock_event_update(event
, time
);
5470 static int task_clock_event_init(struct perf_event
*event
)
5472 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5475 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
5478 perf_swevent_init_hrtimer(event
);
5483 static struct pmu perf_task_clock
= {
5484 .task_ctx_nr
= perf_sw_context
,
5486 .event_init
= task_clock_event_init
,
5487 .add
= task_clock_event_add
,
5488 .del
= task_clock_event_del
,
5489 .start
= task_clock_event_start
,
5490 .stop
= task_clock_event_stop
,
5491 .read
= task_clock_event_read
,
5494 static void perf_pmu_nop_void(struct pmu
*pmu
)
5498 static int perf_pmu_nop_int(struct pmu
*pmu
)
5503 static void perf_pmu_start_txn(struct pmu
*pmu
)
5505 perf_pmu_disable(pmu
);
5508 static int perf_pmu_commit_txn(struct pmu
*pmu
)
5510 perf_pmu_enable(pmu
);
5514 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
5516 perf_pmu_enable(pmu
);
5520 * Ensures all contexts with the same task_ctx_nr have the same
5521 * pmu_cpu_context too.
5523 static void *find_pmu_context(int ctxn
)
5530 list_for_each_entry(pmu
, &pmus
, entry
) {
5531 if (pmu
->task_ctx_nr
== ctxn
)
5532 return pmu
->pmu_cpu_context
;
5538 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
5542 for_each_possible_cpu(cpu
) {
5543 struct perf_cpu_context
*cpuctx
;
5545 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5547 if (cpuctx
->active_pmu
== old_pmu
)
5548 cpuctx
->active_pmu
= pmu
;
5552 static void free_pmu_context(struct pmu
*pmu
)
5556 mutex_lock(&pmus_lock
);
5558 * Like a real lame refcount.
5560 list_for_each_entry(i
, &pmus
, entry
) {
5561 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
5562 update_pmu_context(i
, pmu
);
5567 free_percpu(pmu
->pmu_cpu_context
);
5569 mutex_unlock(&pmus_lock
);
5571 static struct idr pmu_idr
;
5574 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
5576 struct pmu
*pmu
= dev_get_drvdata(dev
);
5578 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
5581 static struct device_attribute pmu_dev_attrs
[] = {
5586 static int pmu_bus_running
;
5587 static struct bus_type pmu_bus
= {
5588 .name
= "event_source",
5589 .dev_attrs
= pmu_dev_attrs
,
5592 static void pmu_dev_release(struct device
*dev
)
5597 static int pmu_dev_alloc(struct pmu
*pmu
)
5601 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
5605 device_initialize(pmu
->dev
);
5606 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
5610 dev_set_drvdata(pmu
->dev
, pmu
);
5611 pmu
->dev
->bus
= &pmu_bus
;
5612 pmu
->dev
->release
= pmu_dev_release
;
5613 ret
= device_add(pmu
->dev
);
5621 put_device(pmu
->dev
);
5625 static struct lock_class_key cpuctx_mutex
;
5626 static struct lock_class_key cpuctx_lock
;
5628 int perf_pmu_register(struct pmu
*pmu
, char *name
, int type
)
5632 mutex_lock(&pmus_lock
);
5634 pmu
->pmu_disable_count
= alloc_percpu(int);
5635 if (!pmu
->pmu_disable_count
)
5644 int err
= idr_pre_get(&pmu_idr
, GFP_KERNEL
);
5648 err
= idr_get_new_above(&pmu_idr
, pmu
, PERF_TYPE_MAX
, &type
);
5656 if (pmu_bus_running
) {
5657 ret
= pmu_dev_alloc(pmu
);
5663 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
5664 if (pmu
->pmu_cpu_context
)
5665 goto got_cpu_context
;
5667 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
5668 if (!pmu
->pmu_cpu_context
)
5671 for_each_possible_cpu(cpu
) {
5672 struct perf_cpu_context
*cpuctx
;
5674 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5675 __perf_event_init_context(&cpuctx
->ctx
);
5676 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
5677 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
5678 cpuctx
->ctx
.type
= cpu_context
;
5679 cpuctx
->ctx
.pmu
= pmu
;
5680 cpuctx
->jiffies_interval
= 1;
5681 INIT_LIST_HEAD(&cpuctx
->rotation_list
);
5682 cpuctx
->active_pmu
= pmu
;
5686 if (!pmu
->start_txn
) {
5687 if (pmu
->pmu_enable
) {
5689 * If we have pmu_enable/pmu_disable calls, install
5690 * transaction stubs that use that to try and batch
5691 * hardware accesses.
5693 pmu
->start_txn
= perf_pmu_start_txn
;
5694 pmu
->commit_txn
= perf_pmu_commit_txn
;
5695 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
5697 pmu
->start_txn
= perf_pmu_nop_void
;
5698 pmu
->commit_txn
= perf_pmu_nop_int
;
5699 pmu
->cancel_txn
= perf_pmu_nop_void
;
5703 if (!pmu
->pmu_enable
) {
5704 pmu
->pmu_enable
= perf_pmu_nop_void
;
5705 pmu
->pmu_disable
= perf_pmu_nop_void
;
5708 list_add_rcu(&pmu
->entry
, &pmus
);
5711 mutex_unlock(&pmus_lock
);
5716 device_del(pmu
->dev
);
5717 put_device(pmu
->dev
);
5720 if (pmu
->type
>= PERF_TYPE_MAX
)
5721 idr_remove(&pmu_idr
, pmu
->type
);
5724 free_percpu(pmu
->pmu_disable_count
);
5728 void perf_pmu_unregister(struct pmu
*pmu
)
5730 mutex_lock(&pmus_lock
);
5731 list_del_rcu(&pmu
->entry
);
5732 mutex_unlock(&pmus_lock
);
5735 * We dereference the pmu list under both SRCU and regular RCU, so
5736 * synchronize against both of those.
5738 synchronize_srcu(&pmus_srcu
);
5741 free_percpu(pmu
->pmu_disable_count
);
5742 if (pmu
->type
>= PERF_TYPE_MAX
)
5743 idr_remove(&pmu_idr
, pmu
->type
);
5744 device_del(pmu
->dev
);
5745 put_device(pmu
->dev
);
5746 free_pmu_context(pmu
);
5749 struct pmu
*perf_init_event(struct perf_event
*event
)
5751 struct pmu
*pmu
= NULL
;
5755 idx
= srcu_read_lock(&pmus_srcu
);
5758 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
5761 ret
= pmu
->event_init(event
);
5767 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
5768 ret
= pmu
->event_init(event
);
5772 if (ret
!= -ENOENT
) {
5777 pmu
= ERR_PTR(-ENOENT
);
5779 srcu_read_unlock(&pmus_srcu
, idx
);
5785 * Allocate and initialize a event structure
5787 static struct perf_event
*
5788 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
5789 struct task_struct
*task
,
5790 struct perf_event
*group_leader
,
5791 struct perf_event
*parent_event
,
5792 perf_overflow_handler_t overflow_handler
,
5796 struct perf_event
*event
;
5797 struct hw_perf_event
*hwc
;
5800 if ((unsigned)cpu
>= nr_cpu_ids
) {
5801 if (!task
|| cpu
!= -1)
5802 return ERR_PTR(-EINVAL
);
5805 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
5807 return ERR_PTR(-ENOMEM
);
5810 * Single events are their own group leaders, with an
5811 * empty sibling list:
5814 group_leader
= event
;
5816 mutex_init(&event
->child_mutex
);
5817 INIT_LIST_HEAD(&event
->child_list
);
5819 INIT_LIST_HEAD(&event
->group_entry
);
5820 INIT_LIST_HEAD(&event
->event_entry
);
5821 INIT_LIST_HEAD(&event
->sibling_list
);
5822 init_waitqueue_head(&event
->waitq
);
5823 init_irq_work(&event
->pending
, perf_pending_event
);
5825 mutex_init(&event
->mmap_mutex
);
5828 event
->attr
= *attr
;
5829 event
->group_leader
= group_leader
;
5833 event
->parent
= parent_event
;
5835 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
5836 event
->id
= atomic64_inc_return(&perf_event_id
);
5838 event
->state
= PERF_EVENT_STATE_INACTIVE
;
5841 event
->attach_state
= PERF_ATTACH_TASK
;
5842 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5844 * hw_breakpoint is a bit difficult here..
5846 if (attr
->type
== PERF_TYPE_BREAKPOINT
)
5847 event
->hw
.bp_target
= task
;
5851 if (!overflow_handler
&& parent_event
) {
5852 overflow_handler
= parent_event
->overflow_handler
;
5853 context
= parent_event
->overflow_handler_context
;
5856 event
->overflow_handler
= overflow_handler
;
5857 event
->overflow_handler_context
= context
;
5860 event
->state
= PERF_EVENT_STATE_OFF
;
5865 hwc
->sample_period
= attr
->sample_period
;
5866 if (attr
->freq
&& attr
->sample_freq
)
5867 hwc
->sample_period
= 1;
5868 hwc
->last_period
= hwc
->sample_period
;
5870 local64_set(&hwc
->period_left
, hwc
->sample_period
);
5873 * we currently do not support PERF_FORMAT_GROUP on inherited events
5875 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
5878 pmu
= perf_init_event(event
);
5884 else if (IS_ERR(pmu
))
5889 put_pid_ns(event
->ns
);
5891 return ERR_PTR(err
);
5896 if (!event
->parent
) {
5897 if (event
->attach_state
& PERF_ATTACH_TASK
)
5898 jump_label_inc(&perf_sched_events
);
5899 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
5900 atomic_inc(&nr_mmap_events
);
5901 if (event
->attr
.comm
)
5902 atomic_inc(&nr_comm_events
);
5903 if (event
->attr
.task
)
5904 atomic_inc(&nr_task_events
);
5905 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5906 err
= get_callchain_buffers();
5909 return ERR_PTR(err
);
5917 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
5918 struct perf_event_attr
*attr
)
5923 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
5927 * zero the full structure, so that a short copy will be nice.
5929 memset(attr
, 0, sizeof(*attr
));
5931 ret
= get_user(size
, &uattr
->size
);
5935 if (size
> PAGE_SIZE
) /* silly large */
5938 if (!size
) /* abi compat */
5939 size
= PERF_ATTR_SIZE_VER0
;
5941 if (size
< PERF_ATTR_SIZE_VER0
)
5945 * If we're handed a bigger struct than we know of,
5946 * ensure all the unknown bits are 0 - i.e. new
5947 * user-space does not rely on any kernel feature
5948 * extensions we dont know about yet.
5950 if (size
> sizeof(*attr
)) {
5951 unsigned char __user
*addr
;
5952 unsigned char __user
*end
;
5955 addr
= (void __user
*)uattr
+ sizeof(*attr
);
5956 end
= (void __user
*)uattr
+ size
;
5958 for (; addr
< end
; addr
++) {
5959 ret
= get_user(val
, addr
);
5965 size
= sizeof(*attr
);
5968 ret
= copy_from_user(attr
, uattr
, size
);
5972 if (attr
->__reserved_1
)
5975 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
5978 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
5985 put_user(sizeof(*attr
), &uattr
->size
);
5991 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
5993 struct ring_buffer
*rb
= NULL
, *old_rb
= NULL
;
5999 /* don't allow circular references */
6000 if (event
== output_event
)
6004 * Don't allow cross-cpu buffers
6006 if (output_event
->cpu
!= event
->cpu
)
6010 * If its not a per-cpu rb, it must be the same task.
6012 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
6016 mutex_lock(&event
->mmap_mutex
);
6017 /* Can't redirect output if we've got an active mmap() */
6018 if (atomic_read(&event
->mmap_count
))
6022 /* get the rb we want to redirect to */
6023 rb
= ring_buffer_get(output_event
);
6029 rcu_assign_pointer(event
->rb
, rb
);
6032 mutex_unlock(&event
->mmap_mutex
);
6035 ring_buffer_put(old_rb
);
6041 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6043 * @attr_uptr: event_id type attributes for monitoring/sampling
6046 * @group_fd: group leader event fd
6048 SYSCALL_DEFINE5(perf_event_open
,
6049 struct perf_event_attr __user
*, attr_uptr
,
6050 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
6052 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
6053 struct perf_event
*event
, *sibling
;
6054 struct perf_event_attr attr
;
6055 struct perf_event_context
*ctx
;
6056 struct file
*event_file
= NULL
;
6057 struct file
*group_file
= NULL
;
6058 struct task_struct
*task
= NULL
;
6062 int fput_needed
= 0;
6065 /* for future expandability... */
6066 if (flags
& ~PERF_FLAG_ALL
)
6069 err
= perf_copy_attr(attr_uptr
, &attr
);
6073 if (!attr
.exclude_kernel
) {
6074 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
6079 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
6084 * In cgroup mode, the pid argument is used to pass the fd
6085 * opened to the cgroup directory in cgroupfs. The cpu argument
6086 * designates the cpu on which to monitor threads from that
6089 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
6092 event_fd
= get_unused_fd_flags(O_RDWR
);
6096 if (group_fd
!= -1) {
6097 group_leader
= perf_fget_light(group_fd
, &fput_needed
);
6098 if (IS_ERR(group_leader
)) {
6099 err
= PTR_ERR(group_leader
);
6102 group_file
= group_leader
->filp
;
6103 if (flags
& PERF_FLAG_FD_OUTPUT
)
6104 output_event
= group_leader
;
6105 if (flags
& PERF_FLAG_FD_NO_GROUP
)
6106 group_leader
= NULL
;
6109 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
6110 task
= find_lively_task_by_vpid(pid
);
6112 err
= PTR_ERR(task
);
6117 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
6119 if (IS_ERR(event
)) {
6120 err
= PTR_ERR(event
);
6124 if (flags
& PERF_FLAG_PID_CGROUP
) {
6125 err
= perf_cgroup_connect(pid
, event
, &attr
, group_leader
);
6130 * - that has cgroup constraint on event->cpu
6131 * - that may need work on context switch
6133 atomic_inc(&per_cpu(perf_cgroup_events
, event
->cpu
));
6134 jump_label_inc(&perf_sched_events
);
6138 * Special case software events and allow them to be part of
6139 * any hardware group.
6144 (is_software_event(event
) != is_software_event(group_leader
))) {
6145 if (is_software_event(event
)) {
6147 * If event and group_leader are not both a software
6148 * event, and event is, then group leader is not.
6150 * Allow the addition of software events to !software
6151 * groups, this is safe because software events never
6154 pmu
= group_leader
->pmu
;
6155 } else if (is_software_event(group_leader
) &&
6156 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
6158 * In case the group is a pure software group, and we
6159 * try to add a hardware event, move the whole group to
6160 * the hardware context.
6167 * Get the target context (task or percpu):
6169 ctx
= find_get_context(pmu
, task
, cpu
);
6176 put_task_struct(task
);
6181 * Look up the group leader (we will attach this event to it):
6187 * Do not allow a recursive hierarchy (this new sibling
6188 * becoming part of another group-sibling):
6190 if (group_leader
->group_leader
!= group_leader
)
6193 * Do not allow to attach to a group in a different
6194 * task or CPU context:
6197 if (group_leader
->ctx
->type
!= ctx
->type
)
6200 if (group_leader
->ctx
!= ctx
)
6205 * Only a group leader can be exclusive or pinned
6207 if (attr
.exclusive
|| attr
.pinned
)
6212 err
= perf_event_set_output(event
, output_event
);
6217 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
, O_RDWR
);
6218 if (IS_ERR(event_file
)) {
6219 err
= PTR_ERR(event_file
);
6224 struct perf_event_context
*gctx
= group_leader
->ctx
;
6226 mutex_lock(&gctx
->mutex
);
6227 perf_remove_from_context(group_leader
);
6228 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
6230 perf_remove_from_context(sibling
);
6233 mutex_unlock(&gctx
->mutex
);
6237 event
->filp
= event_file
;
6238 WARN_ON_ONCE(ctx
->parent_ctx
);
6239 mutex_lock(&ctx
->mutex
);
6242 perf_install_in_context(ctx
, group_leader
, cpu
);
6244 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
6246 perf_install_in_context(ctx
, sibling
, cpu
);
6251 perf_install_in_context(ctx
, event
, cpu
);
6253 perf_unpin_context(ctx
);
6254 mutex_unlock(&ctx
->mutex
);
6256 event
->owner
= current
;
6258 mutex_lock(¤t
->perf_event_mutex
);
6259 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
6260 mutex_unlock(¤t
->perf_event_mutex
);
6263 * Precalculate sample_data sizes
6265 perf_event__header_size(event
);
6266 perf_event__id_header_size(event
);
6269 * Drop the reference on the group_event after placing the
6270 * new event on the sibling_list. This ensures destruction
6271 * of the group leader will find the pointer to itself in
6272 * perf_group_detach().
6274 fput_light(group_file
, fput_needed
);
6275 fd_install(event_fd
, event_file
);
6279 perf_unpin_context(ctx
);
6285 put_task_struct(task
);
6287 fput_light(group_file
, fput_needed
);
6289 put_unused_fd(event_fd
);
6294 * perf_event_create_kernel_counter
6296 * @attr: attributes of the counter to create
6297 * @cpu: cpu in which the counter is bound
6298 * @task: task to profile (NULL for percpu)
6301 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
6302 struct task_struct
*task
,
6303 perf_overflow_handler_t overflow_handler
,
6306 struct perf_event_context
*ctx
;
6307 struct perf_event
*event
;
6311 * Get the target context (task or percpu):
6314 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
6315 overflow_handler
, context
);
6316 if (IS_ERR(event
)) {
6317 err
= PTR_ERR(event
);
6321 ctx
= find_get_context(event
->pmu
, task
, cpu
);
6328 WARN_ON_ONCE(ctx
->parent_ctx
);
6329 mutex_lock(&ctx
->mutex
);
6330 perf_install_in_context(ctx
, event
, cpu
);
6332 perf_unpin_context(ctx
);
6333 mutex_unlock(&ctx
->mutex
);
6340 return ERR_PTR(err
);
6342 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
6344 static void sync_child_event(struct perf_event
*child_event
,
6345 struct task_struct
*child
)
6347 struct perf_event
*parent_event
= child_event
->parent
;
6350 if (child_event
->attr
.inherit_stat
)
6351 perf_event_read_event(child_event
, child
);
6353 child_val
= perf_event_count(child_event
);
6356 * Add back the child's count to the parent's count:
6358 atomic64_add(child_val
, &parent_event
->child_count
);
6359 atomic64_add(child_event
->total_time_enabled
,
6360 &parent_event
->child_total_time_enabled
);
6361 atomic64_add(child_event
->total_time_running
,
6362 &parent_event
->child_total_time_running
);
6365 * Remove this event from the parent's list
6367 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6368 mutex_lock(&parent_event
->child_mutex
);
6369 list_del_init(&child_event
->child_list
);
6370 mutex_unlock(&parent_event
->child_mutex
);
6373 * Release the parent event, if this was the last
6376 fput(parent_event
->filp
);
6380 __perf_event_exit_task(struct perf_event
*child_event
,
6381 struct perf_event_context
*child_ctx
,
6382 struct task_struct
*child
)
6384 if (child_event
->parent
) {
6385 raw_spin_lock_irq(&child_ctx
->lock
);
6386 perf_group_detach(child_event
);
6387 raw_spin_unlock_irq(&child_ctx
->lock
);
6390 perf_remove_from_context(child_event
);
6393 * It can happen that the parent exits first, and has events
6394 * that are still around due to the child reference. These
6395 * events need to be zapped.
6397 if (child_event
->parent
) {
6398 sync_child_event(child_event
, child
);
6399 free_event(child_event
);
6403 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
6405 struct perf_event
*child_event
, *tmp
;
6406 struct perf_event_context
*child_ctx
;
6407 unsigned long flags
;
6409 if (likely(!child
->perf_event_ctxp
[ctxn
])) {
6410 perf_event_task(child
, NULL
, 0);
6414 local_irq_save(flags
);
6416 * We can't reschedule here because interrupts are disabled,
6417 * and either child is current or it is a task that can't be
6418 * scheduled, so we are now safe from rescheduling changing
6421 child_ctx
= rcu_dereference_raw(child
->perf_event_ctxp
[ctxn
]);
6424 * Take the context lock here so that if find_get_context is
6425 * reading child->perf_event_ctxp, we wait until it has
6426 * incremented the context's refcount before we do put_ctx below.
6428 raw_spin_lock(&child_ctx
->lock
);
6429 task_ctx_sched_out(child_ctx
);
6430 child
->perf_event_ctxp
[ctxn
] = NULL
;
6432 * If this context is a clone; unclone it so it can't get
6433 * swapped to another process while we're removing all
6434 * the events from it.
6436 unclone_ctx(child_ctx
);
6437 update_context_time(child_ctx
);
6438 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6441 * Report the task dead after unscheduling the events so that we
6442 * won't get any samples after PERF_RECORD_EXIT. We can however still
6443 * get a few PERF_RECORD_READ events.
6445 perf_event_task(child
, child_ctx
, 0);
6448 * We can recurse on the same lock type through:
6450 * __perf_event_exit_task()
6451 * sync_child_event()
6452 * fput(parent_event->filp)
6454 * mutex_lock(&ctx->mutex)
6456 * But since its the parent context it won't be the same instance.
6458 mutex_lock(&child_ctx
->mutex
);
6461 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->pinned_groups
,
6463 __perf_event_exit_task(child_event
, child_ctx
, child
);
6465 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->flexible_groups
,
6467 __perf_event_exit_task(child_event
, child_ctx
, child
);
6470 * If the last event was a group event, it will have appended all
6471 * its siblings to the list, but we obtained 'tmp' before that which
6472 * will still point to the list head terminating the iteration.
6474 if (!list_empty(&child_ctx
->pinned_groups
) ||
6475 !list_empty(&child_ctx
->flexible_groups
))
6478 mutex_unlock(&child_ctx
->mutex
);
6484 * When a child task exits, feed back event values to parent events.
6486 void perf_event_exit_task(struct task_struct
*child
)
6488 struct perf_event
*event
, *tmp
;
6491 mutex_lock(&child
->perf_event_mutex
);
6492 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
6494 list_del_init(&event
->owner_entry
);
6497 * Ensure the list deletion is visible before we clear
6498 * the owner, closes a race against perf_release() where
6499 * we need to serialize on the owner->perf_event_mutex.
6502 event
->owner
= NULL
;
6504 mutex_unlock(&child
->perf_event_mutex
);
6506 for_each_task_context_nr(ctxn
)
6507 perf_event_exit_task_context(child
, ctxn
);
6510 static void perf_free_event(struct perf_event
*event
,
6511 struct perf_event_context
*ctx
)
6513 struct perf_event
*parent
= event
->parent
;
6515 if (WARN_ON_ONCE(!parent
))
6518 mutex_lock(&parent
->child_mutex
);
6519 list_del_init(&event
->child_list
);
6520 mutex_unlock(&parent
->child_mutex
);
6524 perf_group_detach(event
);
6525 list_del_event(event
, ctx
);
6530 * free an unexposed, unused context as created by inheritance by
6531 * perf_event_init_task below, used by fork() in case of fail.
6533 void perf_event_free_task(struct task_struct
*task
)
6535 struct perf_event_context
*ctx
;
6536 struct perf_event
*event
, *tmp
;
6539 for_each_task_context_nr(ctxn
) {
6540 ctx
= task
->perf_event_ctxp
[ctxn
];
6544 mutex_lock(&ctx
->mutex
);
6546 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
6548 perf_free_event(event
, ctx
);
6550 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
6552 perf_free_event(event
, ctx
);
6554 if (!list_empty(&ctx
->pinned_groups
) ||
6555 !list_empty(&ctx
->flexible_groups
))
6558 mutex_unlock(&ctx
->mutex
);
6564 void perf_event_delayed_put(struct task_struct
*task
)
6568 for_each_task_context_nr(ctxn
)
6569 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
6573 * inherit a event from parent task to child task:
6575 static struct perf_event
*
6576 inherit_event(struct perf_event
*parent_event
,
6577 struct task_struct
*parent
,
6578 struct perf_event_context
*parent_ctx
,
6579 struct task_struct
*child
,
6580 struct perf_event
*group_leader
,
6581 struct perf_event_context
*child_ctx
)
6583 struct perf_event
*child_event
;
6584 unsigned long flags
;
6587 * Instead of creating recursive hierarchies of events,
6588 * we link inherited events back to the original parent,
6589 * which has a filp for sure, which we use as the reference
6592 if (parent_event
->parent
)
6593 parent_event
= parent_event
->parent
;
6595 child_event
= perf_event_alloc(&parent_event
->attr
,
6598 group_leader
, parent_event
,
6600 if (IS_ERR(child_event
))
6605 * Make the child state follow the state of the parent event,
6606 * not its attr.disabled bit. We hold the parent's mutex,
6607 * so we won't race with perf_event_{en, dis}able_family.
6609 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
6610 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
6612 child_event
->state
= PERF_EVENT_STATE_OFF
;
6614 if (parent_event
->attr
.freq
) {
6615 u64 sample_period
= parent_event
->hw
.sample_period
;
6616 struct hw_perf_event
*hwc
= &child_event
->hw
;
6618 hwc
->sample_period
= sample_period
;
6619 hwc
->last_period
= sample_period
;
6621 local64_set(&hwc
->period_left
, sample_period
);
6624 child_event
->ctx
= child_ctx
;
6625 child_event
->overflow_handler
= parent_event
->overflow_handler
;
6626 child_event
->overflow_handler_context
6627 = parent_event
->overflow_handler_context
;
6630 * Precalculate sample_data sizes
6632 perf_event__header_size(child_event
);
6633 perf_event__id_header_size(child_event
);
6636 * Link it up in the child's context:
6638 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
6639 add_event_to_ctx(child_event
, child_ctx
);
6640 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6643 * Get a reference to the parent filp - we will fput it
6644 * when the child event exits. This is safe to do because
6645 * we are in the parent and we know that the filp still
6646 * exists and has a nonzero count:
6648 atomic_long_inc(&parent_event
->filp
->f_count
);
6651 * Link this into the parent event's child list
6653 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6654 mutex_lock(&parent_event
->child_mutex
);
6655 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
6656 mutex_unlock(&parent_event
->child_mutex
);
6661 static int inherit_group(struct perf_event
*parent_event
,
6662 struct task_struct
*parent
,
6663 struct perf_event_context
*parent_ctx
,
6664 struct task_struct
*child
,
6665 struct perf_event_context
*child_ctx
)
6667 struct perf_event
*leader
;
6668 struct perf_event
*sub
;
6669 struct perf_event
*child_ctr
;
6671 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
6672 child
, NULL
, child_ctx
);
6674 return PTR_ERR(leader
);
6675 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
6676 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
6677 child
, leader
, child_ctx
);
6678 if (IS_ERR(child_ctr
))
6679 return PTR_ERR(child_ctr
);
6685 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
6686 struct perf_event_context
*parent_ctx
,
6687 struct task_struct
*child
, int ctxn
,
6691 struct perf_event_context
*child_ctx
;
6693 if (!event
->attr
.inherit
) {
6698 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6701 * This is executed from the parent task context, so
6702 * inherit events that have been marked for cloning.
6703 * First allocate and initialize a context for the
6707 child_ctx
= alloc_perf_context(event
->pmu
, child
);
6711 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
6714 ret
= inherit_group(event
, parent
, parent_ctx
,
6724 * Initialize the perf_event context in task_struct
6726 int perf_event_init_context(struct task_struct
*child
, int ctxn
)
6728 struct perf_event_context
*child_ctx
, *parent_ctx
;
6729 struct perf_event_context
*cloned_ctx
;
6730 struct perf_event
*event
;
6731 struct task_struct
*parent
= current
;
6732 int inherited_all
= 1;
6733 unsigned long flags
;
6736 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
6740 * If the parent's context is a clone, pin it so it won't get
6743 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
6746 * No need to check if parent_ctx != NULL here; since we saw
6747 * it non-NULL earlier, the only reason for it to become NULL
6748 * is if we exit, and since we're currently in the middle of
6749 * a fork we can't be exiting at the same time.
6753 * Lock the parent list. No need to lock the child - not PID
6754 * hashed yet and not running, so nobody can access it.
6756 mutex_lock(&parent_ctx
->mutex
);
6759 * We dont have to disable NMIs - we are only looking at
6760 * the list, not manipulating it:
6762 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
6763 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6764 child
, ctxn
, &inherited_all
);
6770 * We can't hold ctx->lock when iterating the ->flexible_group list due
6771 * to allocations, but we need to prevent rotation because
6772 * rotate_ctx() will change the list from interrupt context.
6774 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
6775 parent_ctx
->rotate_disable
= 1;
6776 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
6778 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
6779 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6780 child
, ctxn
, &inherited_all
);
6785 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
6786 parent_ctx
->rotate_disable
= 0;
6788 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6790 if (child_ctx
&& inherited_all
) {
6792 * Mark the child context as a clone of the parent
6793 * context, or of whatever the parent is a clone of.
6795 * Note that if the parent is a clone, the holding of
6796 * parent_ctx->lock avoids it from being uncloned.
6798 cloned_ctx
= parent_ctx
->parent_ctx
;
6800 child_ctx
->parent_ctx
= cloned_ctx
;
6801 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
6803 child_ctx
->parent_ctx
= parent_ctx
;
6804 child_ctx
->parent_gen
= parent_ctx
->generation
;
6806 get_ctx(child_ctx
->parent_ctx
);
6809 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
6810 mutex_unlock(&parent_ctx
->mutex
);
6812 perf_unpin_context(parent_ctx
);
6813 put_ctx(parent_ctx
);
6819 * Initialize the perf_event context in task_struct
6821 int perf_event_init_task(struct task_struct
*child
)
6825 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
6826 mutex_init(&child
->perf_event_mutex
);
6827 INIT_LIST_HEAD(&child
->perf_event_list
);
6829 for_each_task_context_nr(ctxn
) {
6830 ret
= perf_event_init_context(child
, ctxn
);
6838 static void __init
perf_event_init_all_cpus(void)
6840 struct swevent_htable
*swhash
;
6843 for_each_possible_cpu(cpu
) {
6844 swhash
= &per_cpu(swevent_htable
, cpu
);
6845 mutex_init(&swhash
->hlist_mutex
);
6846 INIT_LIST_HEAD(&per_cpu(rotation_list
, cpu
));
6850 static void __cpuinit
perf_event_init_cpu(int cpu
)
6852 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6854 mutex_lock(&swhash
->hlist_mutex
);
6855 if (swhash
->hlist_refcount
> 0) {
6856 struct swevent_hlist
*hlist
;
6858 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
6860 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
6862 mutex_unlock(&swhash
->hlist_mutex
);
6865 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6866 static void perf_pmu_rotate_stop(struct pmu
*pmu
)
6868 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
6870 WARN_ON(!irqs_disabled());
6872 list_del_init(&cpuctx
->rotation_list
);
6875 static void __perf_event_exit_context(void *__info
)
6877 struct perf_event_context
*ctx
= __info
;
6878 struct perf_event
*event
, *tmp
;
6880 perf_pmu_rotate_stop(ctx
->pmu
);
6882 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
6883 __perf_remove_from_context(event
);
6884 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
, group_entry
)
6885 __perf_remove_from_context(event
);
6888 static void perf_event_exit_cpu_context(int cpu
)
6890 struct perf_event_context
*ctx
;
6894 idx
= srcu_read_lock(&pmus_srcu
);
6895 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
6896 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
6898 mutex_lock(&ctx
->mutex
);
6899 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
6900 mutex_unlock(&ctx
->mutex
);
6902 srcu_read_unlock(&pmus_srcu
, idx
);
6905 static void perf_event_exit_cpu(int cpu
)
6907 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6909 mutex_lock(&swhash
->hlist_mutex
);
6910 swevent_hlist_release(swhash
);
6911 mutex_unlock(&swhash
->hlist_mutex
);
6913 perf_event_exit_cpu_context(cpu
);
6916 static inline void perf_event_exit_cpu(int cpu
) { }
6920 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
6924 for_each_online_cpu(cpu
)
6925 perf_event_exit_cpu(cpu
);
6931 * Run the perf reboot notifier at the very last possible moment so that
6932 * the generic watchdog code runs as long as possible.
6934 static struct notifier_block perf_reboot_notifier
= {
6935 .notifier_call
= perf_reboot
,
6936 .priority
= INT_MIN
,
6939 static int __cpuinit
6940 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
6942 unsigned int cpu
= (long)hcpu
;
6944 switch (action
& ~CPU_TASKS_FROZEN
) {
6946 case CPU_UP_PREPARE
:
6947 case CPU_DOWN_FAILED
:
6948 perf_event_init_cpu(cpu
);
6951 case CPU_UP_CANCELED
:
6952 case CPU_DOWN_PREPARE
:
6953 perf_event_exit_cpu(cpu
);
6963 void __init
perf_event_init(void)
6969 perf_event_init_all_cpus();
6970 init_srcu_struct(&pmus_srcu
);
6971 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
6972 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
6973 perf_pmu_register(&perf_task_clock
, NULL
, -1);
6975 perf_cpu_notifier(perf_cpu_notify
);
6976 register_reboot_notifier(&perf_reboot_notifier
);
6978 ret
= init_hw_breakpoint();
6979 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
6982 static int __init
perf_event_sysfs_init(void)
6987 mutex_lock(&pmus_lock
);
6989 ret
= bus_register(&pmu_bus
);
6993 list_for_each_entry(pmu
, &pmus
, entry
) {
6994 if (!pmu
->name
|| pmu
->type
< 0)
6997 ret
= pmu_dev_alloc(pmu
);
6998 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
7000 pmu_bus_running
= 1;
7004 mutex_unlock(&pmus_lock
);
7008 device_initcall(perf_event_sysfs_init
);
7010 #ifdef CONFIG_CGROUP_PERF
7011 static struct cgroup_subsys_state
*perf_cgroup_create(
7012 struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7014 struct perf_cgroup
*jc
;
7016 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
7018 return ERR_PTR(-ENOMEM
);
7020 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
7023 return ERR_PTR(-ENOMEM
);
7029 static void perf_cgroup_destroy(struct cgroup_subsys
*ss
,
7030 struct cgroup
*cont
)
7032 struct perf_cgroup
*jc
;
7033 jc
= container_of(cgroup_subsys_state(cont
, perf_subsys_id
),
7034 struct perf_cgroup
, css
);
7035 free_percpu(jc
->info
);
7039 static int __perf_cgroup_move(void *info
)
7041 struct task_struct
*task
= info
;
7042 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
7047 perf_cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*task
)
7049 task_function_call(task
, __perf_cgroup_move
, task
);
7052 static void perf_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7053 struct cgroup
*old_cgrp
, struct task_struct
*task
)
7056 * cgroup_exit() is called in the copy_process() failure path.
7057 * Ignore this case since the task hasn't ran yet, this avoids
7058 * trying to poke a half freed task state from generic code.
7060 if (!(task
->flags
& PF_EXITING
))
7063 perf_cgroup_attach_task(cgrp
, task
);
7066 struct cgroup_subsys perf_subsys
= {
7067 .name
= "perf_event",
7068 .subsys_id
= perf_subsys_id
,
7069 .create
= perf_cgroup_create
,
7070 .destroy
= perf_cgroup_destroy
,
7071 .exit
= perf_cgroup_exit
,
7072 .attach_task
= perf_cgroup_attach_task
,
7074 #endif /* CONFIG_CGROUP_PERF */