i2c: aspeed: Fix initial values of master and slave state
[linux/fpc-iii.git] / drivers / mmc / host / sdhci-of-esdhc.c
blob4ffa6b173a21ef4a09a62108830869de16095ee2
1 /*
2 * Freescale eSDHC controller driver.
4 * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
5 * Copyright (c) 2009 MontaVista Software, Inc.
7 * Authors: Xiaobo Xie <X.Xie@freescale.com>
8 * Anton Vorontsov <avorontsov@ru.mvista.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/delay.h>
21 #include <linux/module.h>
22 #include <linux/sys_soc.h>
23 #include <linux/clk.h>
24 #include <linux/ktime.h>
25 #include <linux/mmc/host.h>
26 #include "sdhci-pltfm.h"
27 #include "sdhci-esdhc.h"
29 #define VENDOR_V_22 0x12
30 #define VENDOR_V_23 0x13
32 struct sdhci_esdhc {
33 u8 vendor_ver;
34 u8 spec_ver;
35 bool quirk_incorrect_hostver;
36 unsigned int peripheral_clock;
39 /**
40 * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
41 * to make it compatible with SD spec.
43 * @host: pointer to sdhci_host
44 * @spec_reg: SD spec register address
45 * @value: 32bit eSDHC register value on spec_reg address
47 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
48 * registers are 32 bits. There are differences in register size, register
49 * address, register function, bit position and function between eSDHC spec
50 * and SD spec.
52 * Return a fixed up register value
54 static u32 esdhc_readl_fixup(struct sdhci_host *host,
55 int spec_reg, u32 value)
57 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
58 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
59 u32 ret;
62 * The bit of ADMA flag in eSDHC is not compatible with standard
63 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
64 * supported by eSDHC.
65 * And for many FSL eSDHC controller, the reset value of field
66 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
67 * only these vendor version is greater than 2.2/0x12 support ADMA.
69 if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
70 if (esdhc->vendor_ver > VENDOR_V_22) {
71 ret = value | SDHCI_CAN_DO_ADMA2;
72 return ret;
76 * The DAT[3:0] line signal levels and the CMD line signal level are
77 * not compatible with standard SDHC register. The line signal levels
78 * DAT[7:0] are at bits 31:24 and the command line signal level is at
79 * bit 23. All other bits are the same as in the standard SDHC
80 * register.
82 if (spec_reg == SDHCI_PRESENT_STATE) {
83 ret = value & 0x000fffff;
84 ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
85 ret |= (value << 1) & SDHCI_CMD_LVL;
86 return ret;
90 * DTS properties of mmc host are used to enable each speed mode
91 * according to soc and board capability. So clean up
92 * SDR50/SDR104/DDR50 support bits here.
94 if (spec_reg == SDHCI_CAPABILITIES_1) {
95 ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
96 SDHCI_SUPPORT_DDR50);
97 return ret;
100 ret = value;
101 return ret;
104 static u16 esdhc_readw_fixup(struct sdhci_host *host,
105 int spec_reg, u32 value)
107 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
108 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
109 u16 ret;
110 int shift = (spec_reg & 0x2) * 8;
112 if (spec_reg == SDHCI_HOST_VERSION)
113 ret = value & 0xffff;
114 else
115 ret = (value >> shift) & 0xffff;
116 /* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
117 * vendor version and spec version information.
119 if ((spec_reg == SDHCI_HOST_VERSION) &&
120 (esdhc->quirk_incorrect_hostver))
121 ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
122 return ret;
125 static u8 esdhc_readb_fixup(struct sdhci_host *host,
126 int spec_reg, u32 value)
128 u8 ret;
129 u8 dma_bits;
130 int shift = (spec_reg & 0x3) * 8;
132 ret = (value >> shift) & 0xff;
135 * "DMA select" locates at offset 0x28 in SD specification, but on
136 * P5020 or P3041, it locates at 0x29.
138 if (spec_reg == SDHCI_HOST_CONTROL) {
139 /* DMA select is 22,23 bits in Protocol Control Register */
140 dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
141 /* fixup the result */
142 ret &= ~SDHCI_CTRL_DMA_MASK;
143 ret |= dma_bits;
145 return ret;
149 * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
150 * written into eSDHC register.
152 * @host: pointer to sdhci_host
153 * @spec_reg: SD spec register address
154 * @value: 8/16/32bit SD spec register value that would be written
155 * @old_value: 32bit eSDHC register value on spec_reg address
157 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
158 * registers are 32 bits. There are differences in register size, register
159 * address, register function, bit position and function between eSDHC spec
160 * and SD spec.
162 * Return a fixed up register value
164 static u32 esdhc_writel_fixup(struct sdhci_host *host,
165 int spec_reg, u32 value, u32 old_value)
167 u32 ret;
170 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
171 * when SYSCTL[RSTD] is set for some special operations.
172 * No any impact on other operation.
174 if (spec_reg == SDHCI_INT_ENABLE)
175 ret = value | SDHCI_INT_BLK_GAP;
176 else
177 ret = value;
179 return ret;
182 static u32 esdhc_writew_fixup(struct sdhci_host *host,
183 int spec_reg, u16 value, u32 old_value)
185 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
186 int shift = (spec_reg & 0x2) * 8;
187 u32 ret;
189 switch (spec_reg) {
190 case SDHCI_TRANSFER_MODE:
192 * Postpone this write, we must do it together with a
193 * command write that is down below. Return old value.
195 pltfm_host->xfer_mode_shadow = value;
196 return old_value;
197 case SDHCI_COMMAND:
198 ret = (value << 16) | pltfm_host->xfer_mode_shadow;
199 return ret;
202 ret = old_value & (~(0xffff << shift));
203 ret |= (value << shift);
205 if (spec_reg == SDHCI_BLOCK_SIZE) {
207 * Two last DMA bits are reserved, and first one is used for
208 * non-standard blksz of 4096 bytes that we don't support
209 * yet. So clear the DMA boundary bits.
211 ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
213 return ret;
216 static u32 esdhc_writeb_fixup(struct sdhci_host *host,
217 int spec_reg, u8 value, u32 old_value)
219 u32 ret;
220 u32 dma_bits;
221 u8 tmp;
222 int shift = (spec_reg & 0x3) * 8;
225 * eSDHC doesn't have a standard power control register, so we do
226 * nothing here to avoid incorrect operation.
228 if (spec_reg == SDHCI_POWER_CONTROL)
229 return old_value;
231 * "DMA select" location is offset 0x28 in SD specification, but on
232 * P5020 or P3041, it's located at 0x29.
234 if (spec_reg == SDHCI_HOST_CONTROL) {
236 * If host control register is not standard, exit
237 * this function
239 if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
240 return old_value;
242 /* DMA select is 22,23 bits in Protocol Control Register */
243 dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
244 ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
245 tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
246 (old_value & SDHCI_CTRL_DMA_MASK);
247 ret = (ret & (~0xff)) | tmp;
249 /* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
250 ret &= ~ESDHC_HOST_CONTROL_RES;
251 return ret;
254 ret = (old_value & (~(0xff << shift))) | (value << shift);
255 return ret;
258 static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
260 u32 ret;
261 u32 value;
263 if (reg == SDHCI_CAPABILITIES_1)
264 value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
265 else
266 value = ioread32be(host->ioaddr + reg);
268 ret = esdhc_readl_fixup(host, reg, value);
270 return ret;
273 static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
275 u32 ret;
276 u32 value;
278 if (reg == SDHCI_CAPABILITIES_1)
279 value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
280 else
281 value = ioread32(host->ioaddr + reg);
283 ret = esdhc_readl_fixup(host, reg, value);
285 return ret;
288 static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
290 u16 ret;
291 u32 value;
292 int base = reg & ~0x3;
294 value = ioread32be(host->ioaddr + base);
295 ret = esdhc_readw_fixup(host, reg, value);
296 return ret;
299 static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
301 u16 ret;
302 u32 value;
303 int base = reg & ~0x3;
305 value = ioread32(host->ioaddr + base);
306 ret = esdhc_readw_fixup(host, reg, value);
307 return ret;
310 static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
312 u8 ret;
313 u32 value;
314 int base = reg & ~0x3;
316 value = ioread32be(host->ioaddr + base);
317 ret = esdhc_readb_fixup(host, reg, value);
318 return ret;
321 static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
323 u8 ret;
324 u32 value;
325 int base = reg & ~0x3;
327 value = ioread32(host->ioaddr + base);
328 ret = esdhc_readb_fixup(host, reg, value);
329 return ret;
332 static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
334 u32 value;
336 value = esdhc_writel_fixup(host, reg, val, 0);
337 iowrite32be(value, host->ioaddr + reg);
340 static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
342 u32 value;
344 value = esdhc_writel_fixup(host, reg, val, 0);
345 iowrite32(value, host->ioaddr + reg);
348 static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
350 int base = reg & ~0x3;
351 u32 value;
352 u32 ret;
354 value = ioread32be(host->ioaddr + base);
355 ret = esdhc_writew_fixup(host, reg, val, value);
356 if (reg != SDHCI_TRANSFER_MODE)
357 iowrite32be(ret, host->ioaddr + base);
360 static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
362 int base = reg & ~0x3;
363 u32 value;
364 u32 ret;
366 value = ioread32(host->ioaddr + base);
367 ret = esdhc_writew_fixup(host, reg, val, value);
368 if (reg != SDHCI_TRANSFER_MODE)
369 iowrite32(ret, host->ioaddr + base);
372 static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
374 int base = reg & ~0x3;
375 u32 value;
376 u32 ret;
378 value = ioread32be(host->ioaddr + base);
379 ret = esdhc_writeb_fixup(host, reg, val, value);
380 iowrite32be(ret, host->ioaddr + base);
383 static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
385 int base = reg & ~0x3;
386 u32 value;
387 u32 ret;
389 value = ioread32(host->ioaddr + base);
390 ret = esdhc_writeb_fixup(host, reg, val, value);
391 iowrite32(ret, host->ioaddr + base);
395 * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
396 * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
397 * and Block Gap Event(IRQSTAT[BGE]) are also set.
398 * For Continue, apply soft reset for data(SYSCTL[RSTD]);
399 * and re-issue the entire read transaction from beginning.
401 static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
403 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
404 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
405 bool applicable;
406 dma_addr_t dmastart;
407 dma_addr_t dmanow;
409 applicable = (intmask & SDHCI_INT_DATA_END) &&
410 (intmask & SDHCI_INT_BLK_GAP) &&
411 (esdhc->vendor_ver == VENDOR_V_23);
412 if (!applicable)
413 return;
415 host->data->error = 0;
416 dmastart = sg_dma_address(host->data->sg);
417 dmanow = dmastart + host->data->bytes_xfered;
419 * Force update to the next DMA block boundary.
421 dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
422 SDHCI_DEFAULT_BOUNDARY_SIZE;
423 host->data->bytes_xfered = dmanow - dmastart;
424 sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
427 static int esdhc_of_enable_dma(struct sdhci_host *host)
429 u32 value;
431 value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
432 value |= ESDHC_DMA_SNOOP;
433 sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
434 return 0;
437 static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
439 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
440 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
442 if (esdhc->peripheral_clock)
443 return esdhc->peripheral_clock;
444 else
445 return pltfm_host->clock;
448 static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
450 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
451 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
452 unsigned int clock;
454 if (esdhc->peripheral_clock)
455 clock = esdhc->peripheral_clock;
456 else
457 clock = pltfm_host->clock;
458 return clock / 256 / 16;
461 static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
463 u32 val;
464 ktime_t timeout;
466 val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
468 if (enable)
469 val |= ESDHC_CLOCK_SDCLKEN;
470 else
471 val &= ~ESDHC_CLOCK_SDCLKEN;
473 sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
475 /* Wait max 20 ms */
476 timeout = ktime_add_ms(ktime_get(), 20);
477 val = ESDHC_CLOCK_STABLE;
478 while (!(sdhci_readl(host, ESDHC_PRSSTAT) & val)) {
479 if (ktime_after(ktime_get(), timeout)) {
480 pr_err("%s: Internal clock never stabilised.\n",
481 mmc_hostname(host->mmc));
482 break;
484 udelay(10);
488 static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
490 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
491 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
492 int pre_div = 1;
493 int div = 1;
494 ktime_t timeout;
495 u32 temp;
497 host->mmc->actual_clock = 0;
499 if (clock == 0) {
500 esdhc_clock_enable(host, false);
501 return;
504 /* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */
505 if (esdhc->vendor_ver < VENDOR_V_23)
506 pre_div = 2;
509 * Limit SD clock to 167MHz for ls1046a according to its datasheet
511 if (clock > 167000000 &&
512 of_find_compatible_node(NULL, NULL, "fsl,ls1046a-esdhc"))
513 clock = 167000000;
516 * Limit SD clock to 125MHz for ls1012a according to its datasheet
518 if (clock > 125000000 &&
519 of_find_compatible_node(NULL, NULL, "fsl,ls1012a-esdhc"))
520 clock = 125000000;
522 /* Workaround to reduce the clock frequency for p1010 esdhc */
523 if (of_find_compatible_node(NULL, NULL, "fsl,p1010-esdhc")) {
524 if (clock > 20000000)
525 clock -= 5000000;
526 if (clock > 40000000)
527 clock -= 5000000;
530 temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
531 temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
532 ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK);
533 sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
535 while (host->max_clk / pre_div / 16 > clock && pre_div < 256)
536 pre_div *= 2;
538 while (host->max_clk / pre_div / div > clock && div < 16)
539 div++;
541 dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
542 clock, host->max_clk / pre_div / div);
543 host->mmc->actual_clock = host->max_clk / pre_div / div;
544 pre_div >>= 1;
545 div--;
547 temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
548 temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN
549 | (div << ESDHC_DIVIDER_SHIFT)
550 | (pre_div << ESDHC_PREDIV_SHIFT));
551 sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
553 /* Wait max 20 ms */
554 timeout = ktime_add_ms(ktime_get(), 20);
555 while (!(sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)) {
556 if (ktime_after(ktime_get(), timeout)) {
557 pr_err("%s: Internal clock never stabilised.\n",
558 mmc_hostname(host->mmc));
559 return;
561 udelay(10);
564 temp |= ESDHC_CLOCK_SDCLKEN;
565 sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
568 static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
570 u32 ctrl;
572 ctrl = sdhci_readl(host, ESDHC_PROCTL);
573 ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
574 switch (width) {
575 case MMC_BUS_WIDTH_8:
576 ctrl |= ESDHC_CTRL_8BITBUS;
577 break;
579 case MMC_BUS_WIDTH_4:
580 ctrl |= ESDHC_CTRL_4BITBUS;
581 break;
583 default:
584 break;
587 sdhci_writel(host, ctrl, ESDHC_PROCTL);
590 static void esdhc_reset(struct sdhci_host *host, u8 mask)
592 u32 val;
594 sdhci_reset(host, mask);
596 sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
597 sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
599 if (mask & SDHCI_RESET_ALL) {
600 val = sdhci_readl(host, ESDHC_TBCTL);
601 val &= ~ESDHC_TB_EN;
602 sdhci_writel(host, val, ESDHC_TBCTL);
606 /* The SCFG, Supplemental Configuration Unit, provides SoC specific
607 * configuration and status registers for the device. There is a
608 * SDHC IO VSEL control register on SCFG for some platforms. It's
609 * used to support SDHC IO voltage switching.
611 static const struct of_device_id scfg_device_ids[] = {
612 { .compatible = "fsl,t1040-scfg", },
613 { .compatible = "fsl,ls1012a-scfg", },
614 { .compatible = "fsl,ls1046a-scfg", },
618 /* SDHC IO VSEL control register definition */
619 #define SCFG_SDHCIOVSELCR 0x408
620 #define SDHCIOVSELCR_TGLEN 0x80000000
621 #define SDHCIOVSELCR_VSELVAL 0x60000000
622 #define SDHCIOVSELCR_SDHC_VS 0x00000001
624 static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
625 struct mmc_ios *ios)
627 struct sdhci_host *host = mmc_priv(mmc);
628 struct device_node *scfg_node;
629 void __iomem *scfg_base = NULL;
630 u32 sdhciovselcr;
631 u32 val;
634 * Signal Voltage Switching is only applicable for Host Controllers
635 * v3.00 and above.
637 if (host->version < SDHCI_SPEC_300)
638 return 0;
640 val = sdhci_readl(host, ESDHC_PROCTL);
642 switch (ios->signal_voltage) {
643 case MMC_SIGNAL_VOLTAGE_330:
644 val &= ~ESDHC_VOLT_SEL;
645 sdhci_writel(host, val, ESDHC_PROCTL);
646 return 0;
647 case MMC_SIGNAL_VOLTAGE_180:
648 scfg_node = of_find_matching_node(NULL, scfg_device_ids);
649 if (scfg_node)
650 scfg_base = of_iomap(scfg_node, 0);
651 if (scfg_base) {
652 sdhciovselcr = SDHCIOVSELCR_TGLEN |
653 SDHCIOVSELCR_VSELVAL;
654 iowrite32be(sdhciovselcr,
655 scfg_base + SCFG_SDHCIOVSELCR);
657 val |= ESDHC_VOLT_SEL;
658 sdhci_writel(host, val, ESDHC_PROCTL);
659 mdelay(5);
661 sdhciovselcr = SDHCIOVSELCR_TGLEN |
662 SDHCIOVSELCR_SDHC_VS;
663 iowrite32be(sdhciovselcr,
664 scfg_base + SCFG_SDHCIOVSELCR);
665 iounmap(scfg_base);
666 } else {
667 val |= ESDHC_VOLT_SEL;
668 sdhci_writel(host, val, ESDHC_PROCTL);
670 return 0;
671 default:
672 return 0;
676 static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
678 struct sdhci_host *host = mmc_priv(mmc);
679 u32 val;
681 /* Use tuning block for tuning procedure */
682 esdhc_clock_enable(host, false);
683 val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
684 val |= ESDHC_FLUSH_ASYNC_FIFO;
685 sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
687 val = sdhci_readl(host, ESDHC_TBCTL);
688 val |= ESDHC_TB_EN;
689 sdhci_writel(host, val, ESDHC_TBCTL);
690 esdhc_clock_enable(host, true);
692 return sdhci_execute_tuning(mmc, opcode);
695 #ifdef CONFIG_PM_SLEEP
696 static u32 esdhc_proctl;
697 static int esdhc_of_suspend(struct device *dev)
699 struct sdhci_host *host = dev_get_drvdata(dev);
701 esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
703 if (host->tuning_mode != SDHCI_TUNING_MODE_3)
704 mmc_retune_needed(host->mmc);
706 return sdhci_suspend_host(host);
709 static int esdhc_of_resume(struct device *dev)
711 struct sdhci_host *host = dev_get_drvdata(dev);
712 int ret = sdhci_resume_host(host);
714 if (ret == 0) {
715 /* Isn't this already done by sdhci_resume_host() ? --rmk */
716 esdhc_of_enable_dma(host);
717 sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
719 return ret;
721 #endif
723 static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
724 esdhc_of_suspend,
725 esdhc_of_resume);
727 static const struct sdhci_ops sdhci_esdhc_be_ops = {
728 .read_l = esdhc_be_readl,
729 .read_w = esdhc_be_readw,
730 .read_b = esdhc_be_readb,
731 .write_l = esdhc_be_writel,
732 .write_w = esdhc_be_writew,
733 .write_b = esdhc_be_writeb,
734 .set_clock = esdhc_of_set_clock,
735 .enable_dma = esdhc_of_enable_dma,
736 .get_max_clock = esdhc_of_get_max_clock,
737 .get_min_clock = esdhc_of_get_min_clock,
738 .adma_workaround = esdhc_of_adma_workaround,
739 .set_bus_width = esdhc_pltfm_set_bus_width,
740 .reset = esdhc_reset,
741 .set_uhs_signaling = sdhci_set_uhs_signaling,
744 static const struct sdhci_ops sdhci_esdhc_le_ops = {
745 .read_l = esdhc_le_readl,
746 .read_w = esdhc_le_readw,
747 .read_b = esdhc_le_readb,
748 .write_l = esdhc_le_writel,
749 .write_w = esdhc_le_writew,
750 .write_b = esdhc_le_writeb,
751 .set_clock = esdhc_of_set_clock,
752 .enable_dma = esdhc_of_enable_dma,
753 .get_max_clock = esdhc_of_get_max_clock,
754 .get_min_clock = esdhc_of_get_min_clock,
755 .adma_workaround = esdhc_of_adma_workaround,
756 .set_bus_width = esdhc_pltfm_set_bus_width,
757 .reset = esdhc_reset,
758 .set_uhs_signaling = sdhci_set_uhs_signaling,
761 static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
762 .quirks = ESDHC_DEFAULT_QUIRKS |
763 #ifdef CONFIG_PPC
764 SDHCI_QUIRK_BROKEN_CARD_DETECTION |
765 #endif
766 SDHCI_QUIRK_NO_CARD_NO_RESET |
767 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
768 .ops = &sdhci_esdhc_be_ops,
771 static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
772 .quirks = ESDHC_DEFAULT_QUIRKS |
773 SDHCI_QUIRK_NO_CARD_NO_RESET |
774 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
775 .ops = &sdhci_esdhc_le_ops,
778 static struct soc_device_attribute soc_incorrect_hostver[] = {
779 { .family = "QorIQ T4240", .revision = "1.0", },
780 { .family = "QorIQ T4240", .revision = "2.0", },
781 { },
784 static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
786 struct sdhci_pltfm_host *pltfm_host;
787 struct sdhci_esdhc *esdhc;
788 struct device_node *np;
789 struct clk *clk;
790 u32 val;
791 u16 host_ver;
793 pltfm_host = sdhci_priv(host);
794 esdhc = sdhci_pltfm_priv(pltfm_host);
796 host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
797 esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
798 SDHCI_VENDOR_VER_SHIFT;
799 esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
800 if (soc_device_match(soc_incorrect_hostver))
801 esdhc->quirk_incorrect_hostver = true;
802 else
803 esdhc->quirk_incorrect_hostver = false;
805 np = pdev->dev.of_node;
806 clk = of_clk_get(np, 0);
807 if (!IS_ERR(clk)) {
809 * esdhc->peripheral_clock would be assigned with a value
810 * which is eSDHC base clock when use periperal clock.
811 * For ls1046a, the clock value got by common clk API is
812 * peripheral clock while the eSDHC base clock is 1/2
813 * peripheral clock.
815 if (of_device_is_compatible(np, "fsl,ls1046a-esdhc"))
816 esdhc->peripheral_clock = clk_get_rate(clk) / 2;
817 else
818 esdhc->peripheral_clock = clk_get_rate(clk);
820 clk_put(clk);
823 if (esdhc->peripheral_clock) {
824 esdhc_clock_enable(host, false);
825 val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
826 val |= ESDHC_PERIPHERAL_CLK_SEL;
827 sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
828 esdhc_clock_enable(host, true);
832 static int sdhci_esdhc_probe(struct platform_device *pdev)
834 struct sdhci_host *host;
835 struct device_node *np;
836 struct sdhci_pltfm_host *pltfm_host;
837 struct sdhci_esdhc *esdhc;
838 int ret;
840 np = pdev->dev.of_node;
842 if (of_property_read_bool(np, "little-endian"))
843 host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
844 sizeof(struct sdhci_esdhc));
845 else
846 host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
847 sizeof(struct sdhci_esdhc));
849 if (IS_ERR(host))
850 return PTR_ERR(host);
852 host->mmc_host_ops.start_signal_voltage_switch =
853 esdhc_signal_voltage_switch;
854 host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
855 host->tuning_delay = 1;
857 esdhc_init(pdev, host);
859 sdhci_get_of_property(pdev);
861 pltfm_host = sdhci_priv(host);
862 esdhc = sdhci_pltfm_priv(pltfm_host);
863 if (esdhc->vendor_ver == VENDOR_V_22)
864 host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
866 if (esdhc->vendor_ver > VENDOR_V_22)
867 host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
869 if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
870 of_device_is_compatible(np, "fsl,p5020-esdhc") ||
871 of_device_is_compatible(np, "fsl,p4080-esdhc") ||
872 of_device_is_compatible(np, "fsl,p1020-esdhc") ||
873 of_device_is_compatible(np, "fsl,t1040-esdhc"))
874 host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
876 if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
877 host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
879 if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
881 * Freescale messed up with P2020 as it has a non-standard
882 * host control register
884 host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
887 /* call to generic mmc_of_parse to support additional capabilities */
888 ret = mmc_of_parse(host->mmc);
889 if (ret)
890 goto err;
892 mmc_of_parse_voltage(np, &host->ocr_mask);
894 ret = sdhci_add_host(host);
895 if (ret)
896 goto err;
898 return 0;
899 err:
900 sdhci_pltfm_free(pdev);
901 return ret;
904 static const struct of_device_id sdhci_esdhc_of_match[] = {
905 { .compatible = "fsl,mpc8379-esdhc" },
906 { .compatible = "fsl,mpc8536-esdhc" },
907 { .compatible = "fsl,esdhc" },
910 MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
912 static struct platform_driver sdhci_esdhc_driver = {
913 .driver = {
914 .name = "sdhci-esdhc",
915 .of_match_table = sdhci_esdhc_of_match,
916 .pm = &esdhc_of_dev_pm_ops,
918 .probe = sdhci_esdhc_probe,
919 .remove = sdhci_pltfm_unregister,
922 module_platform_driver(sdhci_esdhc_driver);
924 MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
925 MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
926 "Anton Vorontsov <avorontsov@ru.mvista.com>");
927 MODULE_LICENSE("GPL v2");