usb: cdc-acm: send ZLP for Telit 3G Intel based modems
[linux/fpc-iii.git] / net / socket.c
blob390a8ecef4bf407a732820a70b7e0b891dd16a6f
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 * Support routines.
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
172 * move_addr_to_kernel - copy a socket address into kernel space
173 * @uaddr: Address in user space
174 * @kaddr: Address in kernel space
175 * @ulen: Length in user space
177 * The address is copied into kernel space. If the provided address is
178 * too long an error code of -EINVAL is returned. If the copy gives
179 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 return -EINVAL;
186 if (ulen == 0)
187 return 0;
188 if (copy_from_user(kaddr, uaddr, ulen))
189 return -EFAULT;
190 return audit_sockaddr(ulen, kaddr);
194 * move_addr_to_user - copy an address to user space
195 * @kaddr: kernel space address
196 * @klen: length of address in kernel
197 * @uaddr: user space address
198 * @ulen: pointer to user length field
200 * The value pointed to by ulen on entry is the buffer length available.
201 * This is overwritten with the buffer space used. -EINVAL is returned
202 * if an overlong buffer is specified or a negative buffer size. -EFAULT
203 * is returned if either the buffer or the length field are not
204 * accessible.
205 * After copying the data up to the limit the user specifies, the true
206 * length of the data is written over the length limit the user
207 * specified. Zero is returned for a success.
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 void __user *uaddr, int __user *ulen)
213 int err;
214 int len;
216 BUG_ON(klen > sizeof(struct sockaddr_storage));
217 err = get_user(len, ulen);
218 if (err)
219 return err;
220 if (len > klen)
221 len = klen;
222 if (len < 0)
223 return -EINVAL;
224 if (len) {
225 if (audit_sockaddr(klen, kaddr))
226 return -ENOMEM;
227 if (copy_to_user(uaddr, kaddr, len))
228 return -EFAULT;
231 * "fromlen shall refer to the value before truncation.."
232 * 1003.1g
234 return __put_user(klen, ulen);
237 static struct kmem_cache *sock_inode_cachep __ro_after_init;
239 static struct inode *sock_alloc_inode(struct super_block *sb)
241 struct socket_alloc *ei;
242 struct socket_wq *wq;
244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 if (!ei)
246 return NULL;
247 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 if (!wq) {
249 kmem_cache_free(sock_inode_cachep, ei);
250 return NULL;
252 init_waitqueue_head(&wq->wait);
253 wq->fasync_list = NULL;
254 wq->flags = 0;
255 ei->socket.wq = wq;
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
263 return &ei->vfs_inode;
266 static void sock_destroy_inode(struct inode *inode)
268 struct socket_alloc *ei;
270 ei = container_of(inode, struct socket_alloc, vfs_inode);
271 kfree_rcu(ei->socket.wq, rcu);
272 kmem_cache_free(sock_inode_cachep, ei);
275 static void init_once(void *foo)
277 struct socket_alloc *ei = (struct socket_alloc *)foo;
279 inode_init_once(&ei->vfs_inode);
282 static void init_inodecache(void)
284 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
285 sizeof(struct socket_alloc),
287 (SLAB_HWCACHE_ALIGN |
288 SLAB_RECLAIM_ACCOUNT |
289 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
290 init_once);
291 BUG_ON(sock_inode_cachep == NULL);
294 static const struct super_operations sockfs_ops = {
295 .alloc_inode = sock_alloc_inode,
296 .destroy_inode = sock_destroy_inode,
297 .statfs = simple_statfs,
301 * sockfs_dname() is called from d_path().
303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
305 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
306 d_inode(dentry)->i_ino);
309 static const struct dentry_operations sockfs_dentry_operations = {
310 .d_dname = sockfs_dname,
313 static int sockfs_xattr_get(const struct xattr_handler *handler,
314 struct dentry *dentry, struct inode *inode,
315 const char *suffix, void *value, size_t size)
317 if (value) {
318 if (dentry->d_name.len + 1 > size)
319 return -ERANGE;
320 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
322 return dentry->d_name.len + 1;
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
329 static const struct xattr_handler sockfs_xattr_handler = {
330 .name = XATTR_NAME_SOCKPROTONAME,
331 .get = sockfs_xattr_get,
334 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
335 struct dentry *dentry, struct inode *inode,
336 const char *suffix, const void *value,
337 size_t size, int flags)
339 /* Handled by LSM. */
340 return -EAGAIN;
343 static const struct xattr_handler sockfs_security_xattr_handler = {
344 .prefix = XATTR_SECURITY_PREFIX,
345 .set = sockfs_security_xattr_set,
348 static const struct xattr_handler *sockfs_xattr_handlers[] = {
349 &sockfs_xattr_handler,
350 &sockfs_security_xattr_handler,
351 NULL
354 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
355 int flags, const char *dev_name, void *data)
357 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
358 sockfs_xattr_handlers,
359 &sockfs_dentry_operations, SOCKFS_MAGIC);
362 static struct vfsmount *sock_mnt __read_mostly;
364 static struct file_system_type sock_fs_type = {
365 .name = "sockfs",
366 .mount = sockfs_mount,
367 .kill_sb = kill_anon_super,
371 * Obtains the first available file descriptor and sets it up for use.
373 * These functions create file structures and maps them to fd space
374 * of the current process. On success it returns file descriptor
375 * and file struct implicitly stored in sock->file.
376 * Note that another thread may close file descriptor before we return
377 * from this function. We use the fact that now we do not refer
378 * to socket after mapping. If one day we will need it, this
379 * function will increment ref. count on file by 1.
381 * In any case returned fd MAY BE not valid!
382 * This race condition is unavoidable
383 * with shared fd spaces, we cannot solve it inside kernel,
384 * but we take care of internal coherence yet.
387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
389 struct file *file;
391 if (!dname)
392 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
394 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
395 O_RDWR | (flags & O_NONBLOCK),
396 &socket_file_ops);
397 if (IS_ERR(file)) {
398 sock_release(sock);
399 return file;
402 sock->file = file;
403 file->private_data = sock;
404 return file;
406 EXPORT_SYMBOL(sock_alloc_file);
408 static int sock_map_fd(struct socket *sock, int flags)
410 struct file *newfile;
411 int fd = get_unused_fd_flags(flags);
412 if (unlikely(fd < 0)) {
413 sock_release(sock);
414 return fd;
417 newfile = sock_alloc_file(sock, flags, NULL);
418 if (likely(!IS_ERR(newfile))) {
419 fd_install(fd, newfile);
420 return fd;
423 put_unused_fd(fd);
424 return PTR_ERR(newfile);
427 struct socket *sock_from_file(struct file *file, int *err)
429 if (file->f_op == &socket_file_ops)
430 return file->private_data; /* set in sock_map_fd */
432 *err = -ENOTSOCK;
433 return NULL;
435 EXPORT_SYMBOL(sock_from_file);
438 * sockfd_lookup - Go from a file number to its socket slot
439 * @fd: file handle
440 * @err: pointer to an error code return
442 * The file handle passed in is locked and the socket it is bound
443 * to is returned. If an error occurs the err pointer is overwritten
444 * with a negative errno code and NULL is returned. The function checks
445 * for both invalid handles and passing a handle which is not a socket.
447 * On a success the socket object pointer is returned.
450 struct socket *sockfd_lookup(int fd, int *err)
452 struct file *file;
453 struct socket *sock;
455 file = fget(fd);
456 if (!file) {
457 *err = -EBADF;
458 return NULL;
461 sock = sock_from_file(file, err);
462 if (!sock)
463 fput(file);
464 return sock;
466 EXPORT_SYMBOL(sockfd_lookup);
468 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
470 struct fd f = fdget(fd);
471 struct socket *sock;
473 *err = -EBADF;
474 if (f.file) {
475 sock = sock_from_file(f.file, err);
476 if (likely(sock)) {
477 *fput_needed = f.flags;
478 return sock;
480 fdput(f);
482 return NULL;
485 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
486 size_t size)
488 ssize_t len;
489 ssize_t used = 0;
491 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
492 if (len < 0)
493 return len;
494 used += len;
495 if (buffer) {
496 if (size < used)
497 return -ERANGE;
498 buffer += len;
501 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
502 used += len;
503 if (buffer) {
504 if (size < used)
505 return -ERANGE;
506 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
507 buffer += len;
510 return used;
513 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
515 int err = simple_setattr(dentry, iattr);
517 if (!err && (iattr->ia_valid & ATTR_UID)) {
518 struct socket *sock = SOCKET_I(d_inode(dentry));
520 if (sock->sk)
521 sock->sk->sk_uid = iattr->ia_uid;
522 else
523 err = -ENOENT;
526 return err;
529 static const struct inode_operations sockfs_inode_ops = {
530 .listxattr = sockfs_listxattr,
531 .setattr = sockfs_setattr,
535 * sock_alloc - allocate a socket
537 * Allocate a new inode and socket object. The two are bound together
538 * and initialised. The socket is then returned. If we are out of inodes
539 * NULL is returned.
542 struct socket *sock_alloc(void)
544 struct inode *inode;
545 struct socket *sock;
547 inode = new_inode_pseudo(sock_mnt->mnt_sb);
548 if (!inode)
549 return NULL;
551 sock = SOCKET_I(inode);
553 inode->i_ino = get_next_ino();
554 inode->i_mode = S_IFSOCK | S_IRWXUGO;
555 inode->i_uid = current_fsuid();
556 inode->i_gid = current_fsgid();
557 inode->i_op = &sockfs_inode_ops;
559 return sock;
561 EXPORT_SYMBOL(sock_alloc);
564 * sock_release - close a socket
565 * @sock: socket to close
567 * The socket is released from the protocol stack if it has a release
568 * callback, and the inode is then released if the socket is bound to
569 * an inode not a file.
572 static void __sock_release(struct socket *sock, struct inode *inode)
574 if (sock->ops) {
575 struct module *owner = sock->ops->owner;
577 if (inode)
578 inode_lock(inode);
579 sock->ops->release(sock);
580 if (inode)
581 inode_unlock(inode);
582 sock->ops = NULL;
583 module_put(owner);
586 if (sock->wq->fasync_list)
587 pr_err("%s: fasync list not empty!\n", __func__);
589 if (!sock->file) {
590 iput(SOCK_INODE(sock));
591 return;
593 sock->file = NULL;
596 void sock_release(struct socket *sock)
598 __sock_release(sock, NULL);
600 EXPORT_SYMBOL(sock_release);
602 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
604 u8 flags = *tx_flags;
606 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
607 flags |= SKBTX_HW_TSTAMP;
609 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
610 flags |= SKBTX_SW_TSTAMP;
612 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
613 flags |= SKBTX_SCHED_TSTAMP;
615 *tx_flags = flags;
617 EXPORT_SYMBOL(__sock_tx_timestamp);
619 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
621 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
622 BUG_ON(ret == -EIOCBQUEUED);
623 return ret;
626 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
628 int err = security_socket_sendmsg(sock, msg,
629 msg_data_left(msg));
631 return err ?: sock_sendmsg_nosec(sock, msg);
633 EXPORT_SYMBOL(sock_sendmsg);
635 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
636 struct kvec *vec, size_t num, size_t size)
638 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
639 return sock_sendmsg(sock, msg);
641 EXPORT_SYMBOL(kernel_sendmsg);
643 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
644 struct kvec *vec, size_t num, size_t size)
646 struct socket *sock = sk->sk_socket;
648 if (!sock->ops->sendmsg_locked)
649 return sock_no_sendmsg_locked(sk, msg, size);
651 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
653 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
655 EXPORT_SYMBOL(kernel_sendmsg_locked);
657 static bool skb_is_err_queue(const struct sk_buff *skb)
659 /* pkt_type of skbs enqueued on the error queue are set to
660 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
661 * in recvmsg, since skbs received on a local socket will never
662 * have a pkt_type of PACKET_OUTGOING.
664 return skb->pkt_type == PACKET_OUTGOING;
667 /* On transmit, software and hardware timestamps are returned independently.
668 * As the two skb clones share the hardware timestamp, which may be updated
669 * before the software timestamp is received, a hardware TX timestamp may be
670 * returned only if there is no software TX timestamp. Ignore false software
671 * timestamps, which may be made in the __sock_recv_timestamp() call when the
672 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
673 * hardware timestamp.
675 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
677 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
680 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
682 struct scm_ts_pktinfo ts_pktinfo;
683 struct net_device *orig_dev;
685 if (!skb_mac_header_was_set(skb))
686 return;
688 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
690 rcu_read_lock();
691 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
692 if (orig_dev)
693 ts_pktinfo.if_index = orig_dev->ifindex;
694 rcu_read_unlock();
696 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
697 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
698 sizeof(ts_pktinfo), &ts_pktinfo);
702 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
704 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
705 struct sk_buff *skb)
707 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
708 struct scm_timestamping tss;
709 int empty = 1, false_tstamp = 0;
710 struct skb_shared_hwtstamps *shhwtstamps =
711 skb_hwtstamps(skb);
713 /* Race occurred between timestamp enabling and packet
714 receiving. Fill in the current time for now. */
715 if (need_software_tstamp && skb->tstamp == 0) {
716 __net_timestamp(skb);
717 false_tstamp = 1;
720 if (need_software_tstamp) {
721 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
722 struct timeval tv;
723 skb_get_timestamp(skb, &tv);
724 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
725 sizeof(tv), &tv);
726 } else {
727 struct timespec ts;
728 skb_get_timestampns(skb, &ts);
729 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
730 sizeof(ts), &ts);
734 memset(&tss, 0, sizeof(tss));
735 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
736 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
737 empty = 0;
738 if (shhwtstamps &&
739 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
740 !skb_is_swtx_tstamp(skb, false_tstamp) &&
741 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
742 empty = 0;
743 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
744 !skb_is_err_queue(skb))
745 put_ts_pktinfo(msg, skb);
747 if (!empty) {
748 put_cmsg(msg, SOL_SOCKET,
749 SCM_TIMESTAMPING, sizeof(tss), &tss);
751 if (skb_is_err_queue(skb) && skb->len &&
752 SKB_EXT_ERR(skb)->opt_stats)
753 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
754 skb->len, skb->data);
757 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
759 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
760 struct sk_buff *skb)
762 int ack;
764 if (!sock_flag(sk, SOCK_WIFI_STATUS))
765 return;
766 if (!skb->wifi_acked_valid)
767 return;
769 ack = skb->wifi_acked;
771 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
773 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
775 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
776 struct sk_buff *skb)
778 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
779 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
780 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
783 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
784 struct sk_buff *skb)
786 sock_recv_timestamp(msg, sk, skb);
787 sock_recv_drops(msg, sk, skb);
789 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
791 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
792 int flags)
794 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
797 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
799 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
801 return err ?: sock_recvmsg_nosec(sock, msg, flags);
803 EXPORT_SYMBOL(sock_recvmsg);
806 * kernel_recvmsg - Receive a message from a socket (kernel space)
807 * @sock: The socket to receive the message from
808 * @msg: Received message
809 * @vec: Input s/g array for message data
810 * @num: Size of input s/g array
811 * @size: Number of bytes to read
812 * @flags: Message flags (MSG_DONTWAIT, etc...)
814 * On return the msg structure contains the scatter/gather array passed in the
815 * vec argument. The array is modified so that it consists of the unfilled
816 * portion of the original array.
818 * The returned value is the total number of bytes received, or an error.
820 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
821 struct kvec *vec, size_t num, size_t size, int flags)
823 mm_segment_t oldfs = get_fs();
824 int result;
826 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
827 set_fs(KERNEL_DS);
828 result = sock_recvmsg(sock, msg, flags);
829 set_fs(oldfs);
830 return result;
832 EXPORT_SYMBOL(kernel_recvmsg);
834 static ssize_t sock_sendpage(struct file *file, struct page *page,
835 int offset, size_t size, loff_t *ppos, int more)
837 struct socket *sock;
838 int flags;
840 sock = file->private_data;
842 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
843 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
844 flags |= more;
846 return kernel_sendpage(sock, page, offset, size, flags);
849 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
850 struct pipe_inode_info *pipe, size_t len,
851 unsigned int flags)
853 struct socket *sock = file->private_data;
855 if (unlikely(!sock->ops->splice_read))
856 return -EINVAL;
858 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
861 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
863 struct file *file = iocb->ki_filp;
864 struct socket *sock = file->private_data;
865 struct msghdr msg = {.msg_iter = *to,
866 .msg_iocb = iocb};
867 ssize_t res;
869 if (file->f_flags & O_NONBLOCK)
870 msg.msg_flags = MSG_DONTWAIT;
872 if (iocb->ki_pos != 0)
873 return -ESPIPE;
875 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
876 return 0;
878 res = sock_recvmsg(sock, &msg, msg.msg_flags);
879 *to = msg.msg_iter;
880 return res;
883 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
885 struct file *file = iocb->ki_filp;
886 struct socket *sock = file->private_data;
887 struct msghdr msg = {.msg_iter = *from,
888 .msg_iocb = iocb};
889 ssize_t res;
891 if (iocb->ki_pos != 0)
892 return -ESPIPE;
894 if (file->f_flags & O_NONBLOCK)
895 msg.msg_flags = MSG_DONTWAIT;
897 if (sock->type == SOCK_SEQPACKET)
898 msg.msg_flags |= MSG_EOR;
900 res = sock_sendmsg(sock, &msg);
901 *from = msg.msg_iter;
902 return res;
906 * Atomic setting of ioctl hooks to avoid race
907 * with module unload.
910 static DEFINE_MUTEX(br_ioctl_mutex);
911 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
913 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
915 mutex_lock(&br_ioctl_mutex);
916 br_ioctl_hook = hook;
917 mutex_unlock(&br_ioctl_mutex);
919 EXPORT_SYMBOL(brioctl_set);
921 static DEFINE_MUTEX(vlan_ioctl_mutex);
922 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
924 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
926 mutex_lock(&vlan_ioctl_mutex);
927 vlan_ioctl_hook = hook;
928 mutex_unlock(&vlan_ioctl_mutex);
930 EXPORT_SYMBOL(vlan_ioctl_set);
932 static DEFINE_MUTEX(dlci_ioctl_mutex);
933 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
935 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
937 mutex_lock(&dlci_ioctl_mutex);
938 dlci_ioctl_hook = hook;
939 mutex_unlock(&dlci_ioctl_mutex);
941 EXPORT_SYMBOL(dlci_ioctl_set);
943 static long sock_do_ioctl(struct net *net, struct socket *sock,
944 unsigned int cmd, unsigned long arg,
945 unsigned int ifreq_size)
947 int err;
948 void __user *argp = (void __user *)arg;
950 err = sock->ops->ioctl(sock, cmd, arg);
953 * If this ioctl is unknown try to hand it down
954 * to the NIC driver.
956 if (err != -ENOIOCTLCMD)
957 return err;
959 if (cmd == SIOCGIFCONF) {
960 struct ifconf ifc;
961 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
962 return -EFAULT;
963 rtnl_lock();
964 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
965 rtnl_unlock();
966 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
967 err = -EFAULT;
968 } else {
969 struct ifreq ifr;
970 bool need_copyout;
971 if (copy_from_user(&ifr, argp, ifreq_size))
972 return -EFAULT;
973 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
974 if (!err && need_copyout)
975 if (copy_to_user(argp, &ifr, ifreq_size))
976 return -EFAULT;
978 return err;
982 * With an ioctl, arg may well be a user mode pointer, but we don't know
983 * what to do with it - that's up to the protocol still.
986 struct ns_common *get_net_ns(struct ns_common *ns)
988 return &get_net(container_of(ns, struct net, ns))->ns;
990 EXPORT_SYMBOL_GPL(get_net_ns);
992 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
994 struct socket *sock;
995 struct sock *sk;
996 void __user *argp = (void __user *)arg;
997 int pid, err;
998 struct net *net;
1000 sock = file->private_data;
1001 sk = sock->sk;
1002 net = sock_net(sk);
1003 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1004 struct ifreq ifr;
1005 bool need_copyout;
1006 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1007 return -EFAULT;
1008 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1009 if (!err && need_copyout)
1010 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1011 return -EFAULT;
1012 } else
1013 #ifdef CONFIG_WEXT_CORE
1014 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1015 err = wext_handle_ioctl(net, cmd, argp);
1016 } else
1017 #endif
1018 switch (cmd) {
1019 case FIOSETOWN:
1020 case SIOCSPGRP:
1021 err = -EFAULT;
1022 if (get_user(pid, (int __user *)argp))
1023 break;
1024 err = f_setown(sock->file, pid, 1);
1025 break;
1026 case FIOGETOWN:
1027 case SIOCGPGRP:
1028 err = put_user(f_getown(sock->file),
1029 (int __user *)argp);
1030 break;
1031 case SIOCGIFBR:
1032 case SIOCSIFBR:
1033 case SIOCBRADDBR:
1034 case SIOCBRDELBR:
1035 err = -ENOPKG;
1036 if (!br_ioctl_hook)
1037 request_module("bridge");
1039 mutex_lock(&br_ioctl_mutex);
1040 if (br_ioctl_hook)
1041 err = br_ioctl_hook(net, cmd, argp);
1042 mutex_unlock(&br_ioctl_mutex);
1043 break;
1044 case SIOCGIFVLAN:
1045 case SIOCSIFVLAN:
1046 err = -ENOPKG;
1047 if (!vlan_ioctl_hook)
1048 request_module("8021q");
1050 mutex_lock(&vlan_ioctl_mutex);
1051 if (vlan_ioctl_hook)
1052 err = vlan_ioctl_hook(net, argp);
1053 mutex_unlock(&vlan_ioctl_mutex);
1054 break;
1055 case SIOCADDDLCI:
1056 case SIOCDELDLCI:
1057 err = -ENOPKG;
1058 if (!dlci_ioctl_hook)
1059 request_module("dlci");
1061 mutex_lock(&dlci_ioctl_mutex);
1062 if (dlci_ioctl_hook)
1063 err = dlci_ioctl_hook(cmd, argp);
1064 mutex_unlock(&dlci_ioctl_mutex);
1065 break;
1066 case SIOCGSKNS:
1067 err = -EPERM;
1068 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1069 break;
1071 err = open_related_ns(&net->ns, get_net_ns);
1072 break;
1073 default:
1074 err = sock_do_ioctl(net, sock, cmd, arg,
1075 sizeof(struct ifreq));
1076 break;
1078 return err;
1081 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1083 int err;
1084 struct socket *sock = NULL;
1086 err = security_socket_create(family, type, protocol, 1);
1087 if (err)
1088 goto out;
1090 sock = sock_alloc();
1091 if (!sock) {
1092 err = -ENOMEM;
1093 goto out;
1096 sock->type = type;
1097 err = security_socket_post_create(sock, family, type, protocol, 1);
1098 if (err)
1099 goto out_release;
1101 out:
1102 *res = sock;
1103 return err;
1104 out_release:
1105 sock_release(sock);
1106 sock = NULL;
1107 goto out;
1109 EXPORT_SYMBOL(sock_create_lite);
1111 /* No kernel lock held - perfect */
1112 static __poll_t sock_poll(struct file *file, poll_table *wait)
1114 struct socket *sock = file->private_data;
1115 __poll_t events = poll_requested_events(wait), flag = 0;
1117 if (!sock->ops->poll)
1118 return 0;
1120 if (sk_can_busy_loop(sock->sk)) {
1121 /* poll once if requested by the syscall */
1122 if (events & POLL_BUSY_LOOP)
1123 sk_busy_loop(sock->sk, 1);
1125 /* if this socket can poll_ll, tell the system call */
1126 flag = POLL_BUSY_LOOP;
1129 return sock->ops->poll(file, sock, wait) | flag;
1132 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1134 struct socket *sock = file->private_data;
1136 return sock->ops->mmap(file, sock, vma);
1139 static int sock_close(struct inode *inode, struct file *filp)
1141 __sock_release(SOCKET_I(inode), inode);
1142 return 0;
1146 * Update the socket async list
1148 * Fasync_list locking strategy.
1150 * 1. fasync_list is modified only under process context socket lock
1151 * i.e. under semaphore.
1152 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1153 * or under socket lock
1156 static int sock_fasync(int fd, struct file *filp, int on)
1158 struct socket *sock = filp->private_data;
1159 struct sock *sk = sock->sk;
1160 struct socket_wq *wq;
1162 if (sk == NULL)
1163 return -EINVAL;
1165 lock_sock(sk);
1166 wq = sock->wq;
1167 fasync_helper(fd, filp, on, &wq->fasync_list);
1169 if (!wq->fasync_list)
1170 sock_reset_flag(sk, SOCK_FASYNC);
1171 else
1172 sock_set_flag(sk, SOCK_FASYNC);
1174 release_sock(sk);
1175 return 0;
1178 /* This function may be called only under rcu_lock */
1180 int sock_wake_async(struct socket_wq *wq, int how, int band)
1182 if (!wq || !wq->fasync_list)
1183 return -1;
1185 switch (how) {
1186 case SOCK_WAKE_WAITD:
1187 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1188 break;
1189 goto call_kill;
1190 case SOCK_WAKE_SPACE:
1191 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1192 break;
1193 /* fall through */
1194 case SOCK_WAKE_IO:
1195 call_kill:
1196 kill_fasync(&wq->fasync_list, SIGIO, band);
1197 break;
1198 case SOCK_WAKE_URG:
1199 kill_fasync(&wq->fasync_list, SIGURG, band);
1202 return 0;
1204 EXPORT_SYMBOL(sock_wake_async);
1206 int __sock_create(struct net *net, int family, int type, int protocol,
1207 struct socket **res, int kern)
1209 int err;
1210 struct socket *sock;
1211 const struct net_proto_family *pf;
1214 * Check protocol is in range
1216 if (family < 0 || family >= NPROTO)
1217 return -EAFNOSUPPORT;
1218 if (type < 0 || type >= SOCK_MAX)
1219 return -EINVAL;
1221 /* Compatibility.
1223 This uglymoron is moved from INET layer to here to avoid
1224 deadlock in module load.
1226 if (family == PF_INET && type == SOCK_PACKET) {
1227 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1228 current->comm);
1229 family = PF_PACKET;
1232 err = security_socket_create(family, type, protocol, kern);
1233 if (err)
1234 return err;
1237 * Allocate the socket and allow the family to set things up. if
1238 * the protocol is 0, the family is instructed to select an appropriate
1239 * default.
1241 sock = sock_alloc();
1242 if (!sock) {
1243 net_warn_ratelimited("socket: no more sockets\n");
1244 return -ENFILE; /* Not exactly a match, but its the
1245 closest posix thing */
1248 sock->type = type;
1250 #ifdef CONFIG_MODULES
1251 /* Attempt to load a protocol module if the find failed.
1253 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1254 * requested real, full-featured networking support upon configuration.
1255 * Otherwise module support will break!
1257 if (rcu_access_pointer(net_families[family]) == NULL)
1258 request_module("net-pf-%d", family);
1259 #endif
1261 rcu_read_lock();
1262 pf = rcu_dereference(net_families[family]);
1263 err = -EAFNOSUPPORT;
1264 if (!pf)
1265 goto out_release;
1268 * We will call the ->create function, that possibly is in a loadable
1269 * module, so we have to bump that loadable module refcnt first.
1271 if (!try_module_get(pf->owner))
1272 goto out_release;
1274 /* Now protected by module ref count */
1275 rcu_read_unlock();
1277 err = pf->create(net, sock, protocol, kern);
1278 if (err < 0)
1279 goto out_module_put;
1282 * Now to bump the refcnt of the [loadable] module that owns this
1283 * socket at sock_release time we decrement its refcnt.
1285 if (!try_module_get(sock->ops->owner))
1286 goto out_module_busy;
1289 * Now that we're done with the ->create function, the [loadable]
1290 * module can have its refcnt decremented
1292 module_put(pf->owner);
1293 err = security_socket_post_create(sock, family, type, protocol, kern);
1294 if (err)
1295 goto out_sock_release;
1296 *res = sock;
1298 return 0;
1300 out_module_busy:
1301 err = -EAFNOSUPPORT;
1302 out_module_put:
1303 sock->ops = NULL;
1304 module_put(pf->owner);
1305 out_sock_release:
1306 sock_release(sock);
1307 return err;
1309 out_release:
1310 rcu_read_unlock();
1311 goto out_sock_release;
1313 EXPORT_SYMBOL(__sock_create);
1315 int sock_create(int family, int type, int protocol, struct socket **res)
1317 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1319 EXPORT_SYMBOL(sock_create);
1321 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1323 return __sock_create(net, family, type, protocol, res, 1);
1325 EXPORT_SYMBOL(sock_create_kern);
1327 int __sys_socket(int family, int type, int protocol)
1329 int retval;
1330 struct socket *sock;
1331 int flags;
1333 /* Check the SOCK_* constants for consistency. */
1334 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1335 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1336 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1337 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1339 flags = type & ~SOCK_TYPE_MASK;
1340 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1341 return -EINVAL;
1342 type &= SOCK_TYPE_MASK;
1344 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1345 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1347 retval = sock_create(family, type, protocol, &sock);
1348 if (retval < 0)
1349 return retval;
1351 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1354 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1356 return __sys_socket(family, type, protocol);
1360 * Create a pair of connected sockets.
1363 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1365 struct socket *sock1, *sock2;
1366 int fd1, fd2, err;
1367 struct file *newfile1, *newfile2;
1368 int flags;
1370 flags = type & ~SOCK_TYPE_MASK;
1371 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1372 return -EINVAL;
1373 type &= SOCK_TYPE_MASK;
1375 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1376 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1379 * reserve descriptors and make sure we won't fail
1380 * to return them to userland.
1382 fd1 = get_unused_fd_flags(flags);
1383 if (unlikely(fd1 < 0))
1384 return fd1;
1386 fd2 = get_unused_fd_flags(flags);
1387 if (unlikely(fd2 < 0)) {
1388 put_unused_fd(fd1);
1389 return fd2;
1392 err = put_user(fd1, &usockvec[0]);
1393 if (err)
1394 goto out;
1396 err = put_user(fd2, &usockvec[1]);
1397 if (err)
1398 goto out;
1401 * Obtain the first socket and check if the underlying protocol
1402 * supports the socketpair call.
1405 err = sock_create(family, type, protocol, &sock1);
1406 if (unlikely(err < 0))
1407 goto out;
1409 err = sock_create(family, type, protocol, &sock2);
1410 if (unlikely(err < 0)) {
1411 sock_release(sock1);
1412 goto out;
1415 err = security_socket_socketpair(sock1, sock2);
1416 if (unlikely(err)) {
1417 sock_release(sock2);
1418 sock_release(sock1);
1419 goto out;
1422 err = sock1->ops->socketpair(sock1, sock2);
1423 if (unlikely(err < 0)) {
1424 sock_release(sock2);
1425 sock_release(sock1);
1426 goto out;
1429 newfile1 = sock_alloc_file(sock1, flags, NULL);
1430 if (IS_ERR(newfile1)) {
1431 err = PTR_ERR(newfile1);
1432 sock_release(sock2);
1433 goto out;
1436 newfile2 = sock_alloc_file(sock2, flags, NULL);
1437 if (IS_ERR(newfile2)) {
1438 err = PTR_ERR(newfile2);
1439 fput(newfile1);
1440 goto out;
1443 audit_fd_pair(fd1, fd2);
1445 fd_install(fd1, newfile1);
1446 fd_install(fd2, newfile2);
1447 return 0;
1449 out:
1450 put_unused_fd(fd2);
1451 put_unused_fd(fd1);
1452 return err;
1455 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1456 int __user *, usockvec)
1458 return __sys_socketpair(family, type, protocol, usockvec);
1462 * Bind a name to a socket. Nothing much to do here since it's
1463 * the protocol's responsibility to handle the local address.
1465 * We move the socket address to kernel space before we call
1466 * the protocol layer (having also checked the address is ok).
1469 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1471 struct socket *sock;
1472 struct sockaddr_storage address;
1473 int err, fput_needed;
1475 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1476 if (sock) {
1477 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1478 if (err >= 0) {
1479 err = security_socket_bind(sock,
1480 (struct sockaddr *)&address,
1481 addrlen);
1482 if (!err)
1483 err = sock->ops->bind(sock,
1484 (struct sockaddr *)
1485 &address, addrlen);
1487 fput_light(sock->file, fput_needed);
1489 return err;
1492 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1494 return __sys_bind(fd, umyaddr, addrlen);
1498 * Perform a listen. Basically, we allow the protocol to do anything
1499 * necessary for a listen, and if that works, we mark the socket as
1500 * ready for listening.
1503 int __sys_listen(int fd, int backlog)
1505 struct socket *sock;
1506 int err, fput_needed;
1507 int somaxconn;
1509 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1510 if (sock) {
1511 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1512 if ((unsigned int)backlog > somaxconn)
1513 backlog = somaxconn;
1515 err = security_socket_listen(sock, backlog);
1516 if (!err)
1517 err = sock->ops->listen(sock, backlog);
1519 fput_light(sock->file, fput_needed);
1521 return err;
1524 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1526 return __sys_listen(fd, backlog);
1530 * For accept, we attempt to create a new socket, set up the link
1531 * with the client, wake up the client, then return the new
1532 * connected fd. We collect the address of the connector in kernel
1533 * space and move it to user at the very end. This is unclean because
1534 * we open the socket then return an error.
1536 * 1003.1g adds the ability to recvmsg() to query connection pending
1537 * status to recvmsg. We need to add that support in a way thats
1538 * clean when we restructure accept also.
1541 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1542 int __user *upeer_addrlen, int flags)
1544 struct socket *sock, *newsock;
1545 struct file *newfile;
1546 int err, len, newfd, fput_needed;
1547 struct sockaddr_storage address;
1549 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1550 return -EINVAL;
1552 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1553 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1555 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1556 if (!sock)
1557 goto out;
1559 err = -ENFILE;
1560 newsock = sock_alloc();
1561 if (!newsock)
1562 goto out_put;
1564 newsock->type = sock->type;
1565 newsock->ops = sock->ops;
1568 * We don't need try_module_get here, as the listening socket (sock)
1569 * has the protocol module (sock->ops->owner) held.
1571 __module_get(newsock->ops->owner);
1573 newfd = get_unused_fd_flags(flags);
1574 if (unlikely(newfd < 0)) {
1575 err = newfd;
1576 sock_release(newsock);
1577 goto out_put;
1579 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1580 if (IS_ERR(newfile)) {
1581 err = PTR_ERR(newfile);
1582 put_unused_fd(newfd);
1583 goto out_put;
1586 err = security_socket_accept(sock, newsock);
1587 if (err)
1588 goto out_fd;
1590 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1591 if (err < 0)
1592 goto out_fd;
1594 if (upeer_sockaddr) {
1595 len = newsock->ops->getname(newsock,
1596 (struct sockaddr *)&address, 2);
1597 if (len < 0) {
1598 err = -ECONNABORTED;
1599 goto out_fd;
1601 err = move_addr_to_user(&address,
1602 len, upeer_sockaddr, upeer_addrlen);
1603 if (err < 0)
1604 goto out_fd;
1607 /* File flags are not inherited via accept() unlike another OSes. */
1609 fd_install(newfd, newfile);
1610 err = newfd;
1612 out_put:
1613 fput_light(sock->file, fput_needed);
1614 out:
1615 return err;
1616 out_fd:
1617 fput(newfile);
1618 put_unused_fd(newfd);
1619 goto out_put;
1622 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1623 int __user *, upeer_addrlen, int, flags)
1625 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1628 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1629 int __user *, upeer_addrlen)
1631 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1635 * Attempt to connect to a socket with the server address. The address
1636 * is in user space so we verify it is OK and move it to kernel space.
1638 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1639 * break bindings
1641 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1642 * other SEQPACKET protocols that take time to connect() as it doesn't
1643 * include the -EINPROGRESS status for such sockets.
1646 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1648 struct socket *sock;
1649 struct sockaddr_storage address;
1650 int err, fput_needed;
1652 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1653 if (!sock)
1654 goto out;
1655 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1656 if (err < 0)
1657 goto out_put;
1659 err =
1660 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1661 if (err)
1662 goto out_put;
1664 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1665 sock->file->f_flags);
1666 out_put:
1667 fput_light(sock->file, fput_needed);
1668 out:
1669 return err;
1672 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1673 int, addrlen)
1675 return __sys_connect(fd, uservaddr, addrlen);
1679 * Get the local address ('name') of a socket object. Move the obtained
1680 * name to user space.
1683 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1684 int __user *usockaddr_len)
1686 struct socket *sock;
1687 struct sockaddr_storage address;
1688 int err, fput_needed;
1690 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1691 if (!sock)
1692 goto out;
1694 err = security_socket_getsockname(sock);
1695 if (err)
1696 goto out_put;
1698 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1699 if (err < 0)
1700 goto out_put;
1701 /* "err" is actually length in this case */
1702 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1704 out_put:
1705 fput_light(sock->file, fput_needed);
1706 out:
1707 return err;
1710 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1711 int __user *, usockaddr_len)
1713 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1717 * Get the remote address ('name') of a socket object. Move the obtained
1718 * name to user space.
1721 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1722 int __user *usockaddr_len)
1724 struct socket *sock;
1725 struct sockaddr_storage address;
1726 int err, fput_needed;
1728 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1729 if (sock != NULL) {
1730 err = security_socket_getpeername(sock);
1731 if (err) {
1732 fput_light(sock->file, fput_needed);
1733 return err;
1736 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1737 if (err >= 0)
1738 /* "err" is actually length in this case */
1739 err = move_addr_to_user(&address, err, usockaddr,
1740 usockaddr_len);
1741 fput_light(sock->file, fput_needed);
1743 return err;
1746 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1747 int __user *, usockaddr_len)
1749 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1753 * Send a datagram to a given address. We move the address into kernel
1754 * space and check the user space data area is readable before invoking
1755 * the protocol.
1757 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1758 struct sockaddr __user *addr, int addr_len)
1760 struct socket *sock;
1761 struct sockaddr_storage address;
1762 int err;
1763 struct msghdr msg;
1764 struct iovec iov;
1765 int fput_needed;
1767 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1768 if (unlikely(err))
1769 return err;
1770 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1771 if (!sock)
1772 goto out;
1774 msg.msg_name = NULL;
1775 msg.msg_control = NULL;
1776 msg.msg_controllen = 0;
1777 msg.msg_namelen = 0;
1778 if (addr) {
1779 err = move_addr_to_kernel(addr, addr_len, &address);
1780 if (err < 0)
1781 goto out_put;
1782 msg.msg_name = (struct sockaddr *)&address;
1783 msg.msg_namelen = addr_len;
1785 if (sock->file->f_flags & O_NONBLOCK)
1786 flags |= MSG_DONTWAIT;
1787 msg.msg_flags = flags;
1788 err = sock_sendmsg(sock, &msg);
1790 out_put:
1791 fput_light(sock->file, fput_needed);
1792 out:
1793 return err;
1796 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1797 unsigned int, flags, struct sockaddr __user *, addr,
1798 int, addr_len)
1800 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1804 * Send a datagram down a socket.
1807 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1808 unsigned int, flags)
1810 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1814 * Receive a frame from the socket and optionally record the address of the
1815 * sender. We verify the buffers are writable and if needed move the
1816 * sender address from kernel to user space.
1818 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1819 struct sockaddr __user *addr, int __user *addr_len)
1821 struct socket *sock;
1822 struct iovec iov;
1823 struct msghdr msg;
1824 struct sockaddr_storage address;
1825 int err, err2;
1826 int fput_needed;
1828 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1829 if (unlikely(err))
1830 return err;
1831 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1832 if (!sock)
1833 goto out;
1835 msg.msg_control = NULL;
1836 msg.msg_controllen = 0;
1837 /* Save some cycles and don't copy the address if not needed */
1838 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1839 /* We assume all kernel code knows the size of sockaddr_storage */
1840 msg.msg_namelen = 0;
1841 msg.msg_iocb = NULL;
1842 msg.msg_flags = 0;
1843 if (sock->file->f_flags & O_NONBLOCK)
1844 flags |= MSG_DONTWAIT;
1845 err = sock_recvmsg(sock, &msg, flags);
1847 if (err >= 0 && addr != NULL) {
1848 err2 = move_addr_to_user(&address,
1849 msg.msg_namelen, addr, addr_len);
1850 if (err2 < 0)
1851 err = err2;
1854 fput_light(sock->file, fput_needed);
1855 out:
1856 return err;
1859 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1860 unsigned int, flags, struct sockaddr __user *, addr,
1861 int __user *, addr_len)
1863 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1867 * Receive a datagram from a socket.
1870 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1871 unsigned int, flags)
1873 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1877 * Set a socket option. Because we don't know the option lengths we have
1878 * to pass the user mode parameter for the protocols to sort out.
1881 static int __sys_setsockopt(int fd, int level, int optname,
1882 char __user *optval, int optlen)
1884 int err, fput_needed;
1885 struct socket *sock;
1887 if (optlen < 0)
1888 return -EINVAL;
1890 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1891 if (sock != NULL) {
1892 err = security_socket_setsockopt(sock, level, optname);
1893 if (err)
1894 goto out_put;
1896 if (level == SOL_SOCKET)
1897 err =
1898 sock_setsockopt(sock, level, optname, optval,
1899 optlen);
1900 else
1901 err =
1902 sock->ops->setsockopt(sock, level, optname, optval,
1903 optlen);
1904 out_put:
1905 fput_light(sock->file, fput_needed);
1907 return err;
1910 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1911 char __user *, optval, int, optlen)
1913 return __sys_setsockopt(fd, level, optname, optval, optlen);
1917 * Get a socket option. Because we don't know the option lengths we have
1918 * to pass a user mode parameter for the protocols to sort out.
1921 static int __sys_getsockopt(int fd, int level, int optname,
1922 char __user *optval, int __user *optlen)
1924 int err, fput_needed;
1925 struct socket *sock;
1927 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1928 if (sock != NULL) {
1929 err = security_socket_getsockopt(sock, level, optname);
1930 if (err)
1931 goto out_put;
1933 if (level == SOL_SOCKET)
1934 err =
1935 sock_getsockopt(sock, level, optname, optval,
1936 optlen);
1937 else
1938 err =
1939 sock->ops->getsockopt(sock, level, optname, optval,
1940 optlen);
1941 out_put:
1942 fput_light(sock->file, fput_needed);
1944 return err;
1947 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1948 char __user *, optval, int __user *, optlen)
1950 return __sys_getsockopt(fd, level, optname, optval, optlen);
1954 * Shutdown a socket.
1957 int __sys_shutdown(int fd, int how)
1959 int err, fput_needed;
1960 struct socket *sock;
1962 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1963 if (sock != NULL) {
1964 err = security_socket_shutdown(sock, how);
1965 if (!err)
1966 err = sock->ops->shutdown(sock, how);
1967 fput_light(sock->file, fput_needed);
1969 return err;
1972 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1974 return __sys_shutdown(fd, how);
1977 /* A couple of helpful macros for getting the address of the 32/64 bit
1978 * fields which are the same type (int / unsigned) on our platforms.
1980 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1981 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1982 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1984 struct used_address {
1985 struct sockaddr_storage name;
1986 unsigned int name_len;
1989 static int copy_msghdr_from_user(struct msghdr *kmsg,
1990 struct user_msghdr __user *umsg,
1991 struct sockaddr __user **save_addr,
1992 struct iovec **iov)
1994 struct user_msghdr msg;
1995 ssize_t err;
1997 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1998 return -EFAULT;
2000 kmsg->msg_control = (void __force *)msg.msg_control;
2001 kmsg->msg_controllen = msg.msg_controllen;
2002 kmsg->msg_flags = msg.msg_flags;
2004 kmsg->msg_namelen = msg.msg_namelen;
2005 if (!msg.msg_name)
2006 kmsg->msg_namelen = 0;
2008 if (kmsg->msg_namelen < 0)
2009 return -EINVAL;
2011 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2012 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2014 if (save_addr)
2015 *save_addr = msg.msg_name;
2017 if (msg.msg_name && kmsg->msg_namelen) {
2018 if (!save_addr) {
2019 err = move_addr_to_kernel(msg.msg_name,
2020 kmsg->msg_namelen,
2021 kmsg->msg_name);
2022 if (err < 0)
2023 return err;
2025 } else {
2026 kmsg->msg_name = NULL;
2027 kmsg->msg_namelen = 0;
2030 if (msg.msg_iovlen > UIO_MAXIOV)
2031 return -EMSGSIZE;
2033 kmsg->msg_iocb = NULL;
2035 return import_iovec(save_addr ? READ : WRITE,
2036 msg.msg_iov, msg.msg_iovlen,
2037 UIO_FASTIOV, iov, &kmsg->msg_iter);
2040 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2041 struct msghdr *msg_sys, unsigned int flags,
2042 struct used_address *used_address,
2043 unsigned int allowed_msghdr_flags)
2045 struct compat_msghdr __user *msg_compat =
2046 (struct compat_msghdr __user *)msg;
2047 struct sockaddr_storage address;
2048 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2049 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2050 __aligned(sizeof(__kernel_size_t));
2051 /* 20 is size of ipv6_pktinfo */
2052 unsigned char *ctl_buf = ctl;
2053 int ctl_len;
2054 ssize_t err;
2056 msg_sys->msg_name = &address;
2058 if (MSG_CMSG_COMPAT & flags)
2059 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2060 else
2061 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2062 if (err < 0)
2063 return err;
2065 err = -ENOBUFS;
2067 if (msg_sys->msg_controllen > INT_MAX)
2068 goto out_freeiov;
2069 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2070 ctl_len = msg_sys->msg_controllen;
2071 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2072 err =
2073 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2074 sizeof(ctl));
2075 if (err)
2076 goto out_freeiov;
2077 ctl_buf = msg_sys->msg_control;
2078 ctl_len = msg_sys->msg_controllen;
2079 } else if (ctl_len) {
2080 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2081 CMSG_ALIGN(sizeof(struct cmsghdr)));
2082 if (ctl_len > sizeof(ctl)) {
2083 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2084 if (ctl_buf == NULL)
2085 goto out_freeiov;
2087 err = -EFAULT;
2089 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2090 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2091 * checking falls down on this.
2093 if (copy_from_user(ctl_buf,
2094 (void __user __force *)msg_sys->msg_control,
2095 ctl_len))
2096 goto out_freectl;
2097 msg_sys->msg_control = ctl_buf;
2099 msg_sys->msg_flags = flags;
2101 if (sock->file->f_flags & O_NONBLOCK)
2102 msg_sys->msg_flags |= MSG_DONTWAIT;
2104 * If this is sendmmsg() and current destination address is same as
2105 * previously succeeded address, omit asking LSM's decision.
2106 * used_address->name_len is initialized to UINT_MAX so that the first
2107 * destination address never matches.
2109 if (used_address && msg_sys->msg_name &&
2110 used_address->name_len == msg_sys->msg_namelen &&
2111 !memcmp(&used_address->name, msg_sys->msg_name,
2112 used_address->name_len)) {
2113 err = sock_sendmsg_nosec(sock, msg_sys);
2114 goto out_freectl;
2116 err = sock_sendmsg(sock, msg_sys);
2118 * If this is sendmmsg() and sending to current destination address was
2119 * successful, remember it.
2121 if (used_address && err >= 0) {
2122 used_address->name_len = msg_sys->msg_namelen;
2123 if (msg_sys->msg_name)
2124 memcpy(&used_address->name, msg_sys->msg_name,
2125 used_address->name_len);
2128 out_freectl:
2129 if (ctl_buf != ctl)
2130 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2131 out_freeiov:
2132 kfree(iov);
2133 return err;
2137 * BSD sendmsg interface
2140 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2141 bool forbid_cmsg_compat)
2143 int fput_needed, err;
2144 struct msghdr msg_sys;
2145 struct socket *sock;
2147 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2148 return -EINVAL;
2150 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2151 if (!sock)
2152 goto out;
2154 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2156 fput_light(sock->file, fput_needed);
2157 out:
2158 return err;
2161 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2163 return __sys_sendmsg(fd, msg, flags, true);
2167 * Linux sendmmsg interface
2170 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2171 unsigned int flags, bool forbid_cmsg_compat)
2173 int fput_needed, err, datagrams;
2174 struct socket *sock;
2175 struct mmsghdr __user *entry;
2176 struct compat_mmsghdr __user *compat_entry;
2177 struct msghdr msg_sys;
2178 struct used_address used_address;
2179 unsigned int oflags = flags;
2181 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2182 return -EINVAL;
2184 if (vlen > UIO_MAXIOV)
2185 vlen = UIO_MAXIOV;
2187 datagrams = 0;
2189 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190 if (!sock)
2191 return err;
2193 used_address.name_len = UINT_MAX;
2194 entry = mmsg;
2195 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2196 err = 0;
2197 flags |= MSG_BATCH;
2199 while (datagrams < vlen) {
2200 if (datagrams == vlen - 1)
2201 flags = oflags;
2203 if (MSG_CMSG_COMPAT & flags) {
2204 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2205 &msg_sys, flags, &used_address, MSG_EOR);
2206 if (err < 0)
2207 break;
2208 err = __put_user(err, &compat_entry->msg_len);
2209 ++compat_entry;
2210 } else {
2211 err = ___sys_sendmsg(sock,
2212 (struct user_msghdr __user *)entry,
2213 &msg_sys, flags, &used_address, MSG_EOR);
2214 if (err < 0)
2215 break;
2216 err = put_user(err, &entry->msg_len);
2217 ++entry;
2220 if (err)
2221 break;
2222 ++datagrams;
2223 if (msg_data_left(&msg_sys))
2224 break;
2225 cond_resched();
2228 fput_light(sock->file, fput_needed);
2230 /* We only return an error if no datagrams were able to be sent */
2231 if (datagrams != 0)
2232 return datagrams;
2234 return err;
2237 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2238 unsigned int, vlen, unsigned int, flags)
2240 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2243 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2244 struct msghdr *msg_sys, unsigned int flags, int nosec)
2246 struct compat_msghdr __user *msg_compat =
2247 (struct compat_msghdr __user *)msg;
2248 struct iovec iovstack[UIO_FASTIOV];
2249 struct iovec *iov = iovstack;
2250 unsigned long cmsg_ptr;
2251 int len;
2252 ssize_t err;
2254 /* kernel mode address */
2255 struct sockaddr_storage addr;
2257 /* user mode address pointers */
2258 struct sockaddr __user *uaddr;
2259 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2261 msg_sys->msg_name = &addr;
2263 if (MSG_CMSG_COMPAT & flags)
2264 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2265 else
2266 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2267 if (err < 0)
2268 return err;
2270 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2271 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2273 /* We assume all kernel code knows the size of sockaddr_storage */
2274 msg_sys->msg_namelen = 0;
2276 if (sock->file->f_flags & O_NONBLOCK)
2277 flags |= MSG_DONTWAIT;
2278 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2279 if (err < 0)
2280 goto out_freeiov;
2281 len = err;
2283 if (uaddr != NULL) {
2284 err = move_addr_to_user(&addr,
2285 msg_sys->msg_namelen, uaddr,
2286 uaddr_len);
2287 if (err < 0)
2288 goto out_freeiov;
2290 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2291 COMPAT_FLAGS(msg));
2292 if (err)
2293 goto out_freeiov;
2294 if (MSG_CMSG_COMPAT & flags)
2295 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2296 &msg_compat->msg_controllen);
2297 else
2298 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2299 &msg->msg_controllen);
2300 if (err)
2301 goto out_freeiov;
2302 err = len;
2304 out_freeiov:
2305 kfree(iov);
2306 return err;
2310 * BSD recvmsg interface
2313 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2314 bool forbid_cmsg_compat)
2316 int fput_needed, err;
2317 struct msghdr msg_sys;
2318 struct socket *sock;
2320 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2321 return -EINVAL;
2323 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2324 if (!sock)
2325 goto out;
2327 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2329 fput_light(sock->file, fput_needed);
2330 out:
2331 return err;
2334 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2335 unsigned int, flags)
2337 return __sys_recvmsg(fd, msg, flags, true);
2341 * Linux recvmmsg interface
2344 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2345 unsigned int flags, struct timespec *timeout)
2347 int fput_needed, err, datagrams;
2348 struct socket *sock;
2349 struct mmsghdr __user *entry;
2350 struct compat_mmsghdr __user *compat_entry;
2351 struct msghdr msg_sys;
2352 struct timespec64 end_time;
2353 struct timespec64 timeout64;
2355 if (timeout &&
2356 poll_select_set_timeout(&end_time, timeout->tv_sec,
2357 timeout->tv_nsec))
2358 return -EINVAL;
2360 datagrams = 0;
2362 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2363 if (!sock)
2364 return err;
2366 if (likely(!(flags & MSG_ERRQUEUE))) {
2367 err = sock_error(sock->sk);
2368 if (err) {
2369 datagrams = err;
2370 goto out_put;
2374 entry = mmsg;
2375 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2377 while (datagrams < vlen) {
2379 * No need to ask LSM for more than the first datagram.
2381 if (MSG_CMSG_COMPAT & flags) {
2382 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2383 &msg_sys, flags & ~MSG_WAITFORONE,
2384 datagrams);
2385 if (err < 0)
2386 break;
2387 err = __put_user(err, &compat_entry->msg_len);
2388 ++compat_entry;
2389 } else {
2390 err = ___sys_recvmsg(sock,
2391 (struct user_msghdr __user *)entry,
2392 &msg_sys, flags & ~MSG_WAITFORONE,
2393 datagrams);
2394 if (err < 0)
2395 break;
2396 err = put_user(err, &entry->msg_len);
2397 ++entry;
2400 if (err)
2401 break;
2402 ++datagrams;
2404 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2405 if (flags & MSG_WAITFORONE)
2406 flags |= MSG_DONTWAIT;
2408 if (timeout) {
2409 ktime_get_ts64(&timeout64);
2410 *timeout = timespec64_to_timespec(
2411 timespec64_sub(end_time, timeout64));
2412 if (timeout->tv_sec < 0) {
2413 timeout->tv_sec = timeout->tv_nsec = 0;
2414 break;
2417 /* Timeout, return less than vlen datagrams */
2418 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2419 break;
2422 /* Out of band data, return right away */
2423 if (msg_sys.msg_flags & MSG_OOB)
2424 break;
2425 cond_resched();
2428 if (err == 0)
2429 goto out_put;
2431 if (datagrams == 0) {
2432 datagrams = err;
2433 goto out_put;
2437 * We may return less entries than requested (vlen) if the
2438 * sock is non block and there aren't enough datagrams...
2440 if (err != -EAGAIN) {
2442 * ... or if recvmsg returns an error after we
2443 * received some datagrams, where we record the
2444 * error to return on the next call or if the
2445 * app asks about it using getsockopt(SO_ERROR).
2447 sock->sk->sk_err = -err;
2449 out_put:
2450 fput_light(sock->file, fput_needed);
2452 return datagrams;
2455 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2456 unsigned int vlen, unsigned int flags,
2457 struct timespec __user *timeout)
2459 int datagrams;
2460 struct timespec timeout_sys;
2462 if (flags & MSG_CMSG_COMPAT)
2463 return -EINVAL;
2465 if (!timeout)
2466 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2468 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2469 return -EFAULT;
2471 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2473 if (datagrams > 0 &&
2474 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2475 datagrams = -EFAULT;
2477 return datagrams;
2480 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2481 unsigned int, vlen, unsigned int, flags,
2482 struct timespec __user *, timeout)
2484 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2487 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2488 /* Argument list sizes for sys_socketcall */
2489 #define AL(x) ((x) * sizeof(unsigned long))
2490 static const unsigned char nargs[21] = {
2491 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2492 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2493 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2494 AL(4), AL(5), AL(4)
2497 #undef AL
2500 * System call vectors.
2502 * Argument checking cleaned up. Saved 20% in size.
2503 * This function doesn't need to set the kernel lock because
2504 * it is set by the callees.
2507 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2509 unsigned long a[AUDITSC_ARGS];
2510 unsigned long a0, a1;
2511 int err;
2512 unsigned int len;
2514 if (call < 1 || call > SYS_SENDMMSG)
2515 return -EINVAL;
2516 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2518 len = nargs[call];
2519 if (len > sizeof(a))
2520 return -EINVAL;
2522 /* copy_from_user should be SMP safe. */
2523 if (copy_from_user(a, args, len))
2524 return -EFAULT;
2526 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2527 if (err)
2528 return err;
2530 a0 = a[0];
2531 a1 = a[1];
2533 switch (call) {
2534 case SYS_SOCKET:
2535 err = __sys_socket(a0, a1, a[2]);
2536 break;
2537 case SYS_BIND:
2538 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2539 break;
2540 case SYS_CONNECT:
2541 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2542 break;
2543 case SYS_LISTEN:
2544 err = __sys_listen(a0, a1);
2545 break;
2546 case SYS_ACCEPT:
2547 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2548 (int __user *)a[2], 0);
2549 break;
2550 case SYS_GETSOCKNAME:
2551 err =
2552 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2553 (int __user *)a[2]);
2554 break;
2555 case SYS_GETPEERNAME:
2556 err =
2557 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2558 (int __user *)a[2]);
2559 break;
2560 case SYS_SOCKETPAIR:
2561 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2562 break;
2563 case SYS_SEND:
2564 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2565 NULL, 0);
2566 break;
2567 case SYS_SENDTO:
2568 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2569 (struct sockaddr __user *)a[4], a[5]);
2570 break;
2571 case SYS_RECV:
2572 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2573 NULL, NULL);
2574 break;
2575 case SYS_RECVFROM:
2576 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2577 (struct sockaddr __user *)a[4],
2578 (int __user *)a[5]);
2579 break;
2580 case SYS_SHUTDOWN:
2581 err = __sys_shutdown(a0, a1);
2582 break;
2583 case SYS_SETSOCKOPT:
2584 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2585 a[4]);
2586 break;
2587 case SYS_GETSOCKOPT:
2588 err =
2589 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2590 (int __user *)a[4]);
2591 break;
2592 case SYS_SENDMSG:
2593 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2594 a[2], true);
2595 break;
2596 case SYS_SENDMMSG:
2597 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2598 a[3], true);
2599 break;
2600 case SYS_RECVMSG:
2601 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2602 a[2], true);
2603 break;
2604 case SYS_RECVMMSG:
2605 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2606 a[3], (struct timespec __user *)a[4]);
2607 break;
2608 case SYS_ACCEPT4:
2609 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2610 (int __user *)a[2], a[3]);
2611 break;
2612 default:
2613 err = -EINVAL;
2614 break;
2616 return err;
2619 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2622 * sock_register - add a socket protocol handler
2623 * @ops: description of protocol
2625 * This function is called by a protocol handler that wants to
2626 * advertise its address family, and have it linked into the
2627 * socket interface. The value ops->family corresponds to the
2628 * socket system call protocol family.
2630 int sock_register(const struct net_proto_family *ops)
2632 int err;
2634 if (ops->family >= NPROTO) {
2635 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2636 return -ENOBUFS;
2639 spin_lock(&net_family_lock);
2640 if (rcu_dereference_protected(net_families[ops->family],
2641 lockdep_is_held(&net_family_lock)))
2642 err = -EEXIST;
2643 else {
2644 rcu_assign_pointer(net_families[ops->family], ops);
2645 err = 0;
2647 spin_unlock(&net_family_lock);
2649 pr_info("NET: Registered protocol family %d\n", ops->family);
2650 return err;
2652 EXPORT_SYMBOL(sock_register);
2655 * sock_unregister - remove a protocol handler
2656 * @family: protocol family to remove
2658 * This function is called by a protocol handler that wants to
2659 * remove its address family, and have it unlinked from the
2660 * new socket creation.
2662 * If protocol handler is a module, then it can use module reference
2663 * counts to protect against new references. If protocol handler is not
2664 * a module then it needs to provide its own protection in
2665 * the ops->create routine.
2667 void sock_unregister(int family)
2669 BUG_ON(family < 0 || family >= NPROTO);
2671 spin_lock(&net_family_lock);
2672 RCU_INIT_POINTER(net_families[family], NULL);
2673 spin_unlock(&net_family_lock);
2675 synchronize_rcu();
2677 pr_info("NET: Unregistered protocol family %d\n", family);
2679 EXPORT_SYMBOL(sock_unregister);
2681 bool sock_is_registered(int family)
2683 return family < NPROTO && rcu_access_pointer(net_families[family]);
2686 static int __init sock_init(void)
2688 int err;
2690 * Initialize the network sysctl infrastructure.
2692 err = net_sysctl_init();
2693 if (err)
2694 goto out;
2697 * Initialize skbuff SLAB cache
2699 skb_init();
2702 * Initialize the protocols module.
2705 init_inodecache();
2707 err = register_filesystem(&sock_fs_type);
2708 if (err)
2709 goto out_fs;
2710 sock_mnt = kern_mount(&sock_fs_type);
2711 if (IS_ERR(sock_mnt)) {
2712 err = PTR_ERR(sock_mnt);
2713 goto out_mount;
2716 /* The real protocol initialization is performed in later initcalls.
2719 #ifdef CONFIG_NETFILTER
2720 err = netfilter_init();
2721 if (err)
2722 goto out;
2723 #endif
2725 ptp_classifier_init();
2727 out:
2728 return err;
2730 out_mount:
2731 unregister_filesystem(&sock_fs_type);
2732 out_fs:
2733 goto out;
2736 core_initcall(sock_init); /* early initcall */
2738 #ifdef CONFIG_PROC_FS
2739 void socket_seq_show(struct seq_file *seq)
2741 seq_printf(seq, "sockets: used %d\n",
2742 sock_inuse_get(seq->private));
2744 #endif /* CONFIG_PROC_FS */
2746 #ifdef CONFIG_COMPAT
2747 static int do_siocgstamp(struct net *net, struct socket *sock,
2748 unsigned int cmd, void __user *up)
2750 mm_segment_t old_fs = get_fs();
2751 struct timeval ktv;
2752 int err;
2754 set_fs(KERNEL_DS);
2755 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv,
2756 sizeof(struct compat_ifreq));
2757 set_fs(old_fs);
2758 if (!err)
2759 err = compat_put_timeval(&ktv, up);
2761 return err;
2764 static int do_siocgstampns(struct net *net, struct socket *sock,
2765 unsigned int cmd, void __user *up)
2767 mm_segment_t old_fs = get_fs();
2768 struct timespec kts;
2769 int err;
2771 set_fs(KERNEL_DS);
2772 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts,
2773 sizeof(struct compat_ifreq));
2774 set_fs(old_fs);
2775 if (!err)
2776 err = compat_put_timespec(&kts, up);
2778 return err;
2781 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2783 struct compat_ifconf ifc32;
2784 struct ifconf ifc;
2785 int err;
2787 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2788 return -EFAULT;
2790 ifc.ifc_len = ifc32.ifc_len;
2791 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2793 rtnl_lock();
2794 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2795 rtnl_unlock();
2796 if (err)
2797 return err;
2799 ifc32.ifc_len = ifc.ifc_len;
2800 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2801 return -EFAULT;
2803 return 0;
2806 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2808 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2809 bool convert_in = false, convert_out = false;
2810 size_t buf_size = 0;
2811 struct ethtool_rxnfc __user *rxnfc = NULL;
2812 struct ifreq ifr;
2813 u32 rule_cnt = 0, actual_rule_cnt;
2814 u32 ethcmd;
2815 u32 data;
2816 int ret;
2818 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2819 return -EFAULT;
2821 compat_rxnfc = compat_ptr(data);
2823 if (get_user(ethcmd, &compat_rxnfc->cmd))
2824 return -EFAULT;
2826 /* Most ethtool structures are defined without padding.
2827 * Unfortunately struct ethtool_rxnfc is an exception.
2829 switch (ethcmd) {
2830 default:
2831 break;
2832 case ETHTOOL_GRXCLSRLALL:
2833 /* Buffer size is variable */
2834 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2835 return -EFAULT;
2836 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2837 return -ENOMEM;
2838 buf_size += rule_cnt * sizeof(u32);
2839 /* fall through */
2840 case ETHTOOL_GRXRINGS:
2841 case ETHTOOL_GRXCLSRLCNT:
2842 case ETHTOOL_GRXCLSRULE:
2843 case ETHTOOL_SRXCLSRLINS:
2844 convert_out = true;
2845 /* fall through */
2846 case ETHTOOL_SRXCLSRLDEL:
2847 buf_size += sizeof(struct ethtool_rxnfc);
2848 convert_in = true;
2849 rxnfc = compat_alloc_user_space(buf_size);
2850 break;
2853 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2854 return -EFAULT;
2856 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2858 if (convert_in) {
2859 /* We expect there to be holes between fs.m_ext and
2860 * fs.ring_cookie and at the end of fs, but nowhere else.
2862 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2863 sizeof(compat_rxnfc->fs.m_ext) !=
2864 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2865 sizeof(rxnfc->fs.m_ext));
2866 BUILD_BUG_ON(
2867 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2868 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2869 offsetof(struct ethtool_rxnfc, fs.location) -
2870 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2872 if (copy_in_user(rxnfc, compat_rxnfc,
2873 (void __user *)(&rxnfc->fs.m_ext + 1) -
2874 (void __user *)rxnfc) ||
2875 copy_in_user(&rxnfc->fs.ring_cookie,
2876 &compat_rxnfc->fs.ring_cookie,
2877 (void __user *)(&rxnfc->fs.location + 1) -
2878 (void __user *)&rxnfc->fs.ring_cookie))
2879 return -EFAULT;
2880 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2881 if (put_user(rule_cnt, &rxnfc->rule_cnt))
2882 return -EFAULT;
2883 } else if (copy_in_user(&rxnfc->rule_cnt,
2884 &compat_rxnfc->rule_cnt,
2885 sizeof(rxnfc->rule_cnt)))
2886 return -EFAULT;
2889 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2890 if (ret)
2891 return ret;
2893 if (convert_out) {
2894 if (copy_in_user(compat_rxnfc, rxnfc,
2895 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2896 (const void __user *)rxnfc) ||
2897 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2898 &rxnfc->fs.ring_cookie,
2899 (const void __user *)(&rxnfc->fs.location + 1) -
2900 (const void __user *)&rxnfc->fs.ring_cookie) ||
2901 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2902 sizeof(rxnfc->rule_cnt)))
2903 return -EFAULT;
2905 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2906 /* As an optimisation, we only copy the actual
2907 * number of rules that the underlying
2908 * function returned. Since Mallory might
2909 * change the rule count in user memory, we
2910 * check that it is less than the rule count
2911 * originally given (as the user buffer size),
2912 * which has been range-checked.
2914 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2915 return -EFAULT;
2916 if (actual_rule_cnt < rule_cnt)
2917 rule_cnt = actual_rule_cnt;
2918 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2919 &rxnfc->rule_locs[0],
2920 rule_cnt * sizeof(u32)))
2921 return -EFAULT;
2925 return 0;
2928 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2930 compat_uptr_t uptr32;
2931 struct ifreq ifr;
2932 void __user *saved;
2933 int err;
2935 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2936 return -EFAULT;
2938 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2939 return -EFAULT;
2941 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2942 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2944 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2945 if (!err) {
2946 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2947 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2948 err = -EFAULT;
2950 return err;
2953 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2954 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2955 struct compat_ifreq __user *u_ifreq32)
2957 struct ifreq ifreq;
2958 u32 data32;
2960 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2961 return -EFAULT;
2962 if (get_user(data32, &u_ifreq32->ifr_data))
2963 return -EFAULT;
2964 ifreq.ifr_data = compat_ptr(data32);
2966 return dev_ioctl(net, cmd, &ifreq, NULL);
2969 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2970 struct compat_ifreq __user *uifr32)
2972 struct ifreq ifr;
2973 struct compat_ifmap __user *uifmap32;
2974 int err;
2976 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2977 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2978 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2979 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2980 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2981 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2982 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2983 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2984 if (err)
2985 return -EFAULT;
2987 err = dev_ioctl(net, cmd, &ifr, NULL);
2989 if (cmd == SIOCGIFMAP && !err) {
2990 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2991 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2992 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2993 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2994 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2995 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2996 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2997 if (err)
2998 err = -EFAULT;
3000 return err;
3003 struct rtentry32 {
3004 u32 rt_pad1;
3005 struct sockaddr rt_dst; /* target address */
3006 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3007 struct sockaddr rt_genmask; /* target network mask (IP) */
3008 unsigned short rt_flags;
3009 short rt_pad2;
3010 u32 rt_pad3;
3011 unsigned char rt_tos;
3012 unsigned char rt_class;
3013 short rt_pad4;
3014 short rt_metric; /* +1 for binary compatibility! */
3015 /* char * */ u32 rt_dev; /* forcing the device at add */
3016 u32 rt_mtu; /* per route MTU/Window */
3017 u32 rt_window; /* Window clamping */
3018 unsigned short rt_irtt; /* Initial RTT */
3021 struct in6_rtmsg32 {
3022 struct in6_addr rtmsg_dst;
3023 struct in6_addr rtmsg_src;
3024 struct in6_addr rtmsg_gateway;
3025 u32 rtmsg_type;
3026 u16 rtmsg_dst_len;
3027 u16 rtmsg_src_len;
3028 u32 rtmsg_metric;
3029 u32 rtmsg_info;
3030 u32 rtmsg_flags;
3031 s32 rtmsg_ifindex;
3034 static int routing_ioctl(struct net *net, struct socket *sock,
3035 unsigned int cmd, void __user *argp)
3037 int ret;
3038 void *r = NULL;
3039 struct in6_rtmsg r6;
3040 struct rtentry r4;
3041 char devname[16];
3042 u32 rtdev;
3043 mm_segment_t old_fs = get_fs();
3045 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3046 struct in6_rtmsg32 __user *ur6 = argp;
3047 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3048 3 * sizeof(struct in6_addr));
3049 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3050 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3051 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3052 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3053 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3054 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3055 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3057 r = (void *) &r6;
3058 } else { /* ipv4 */
3059 struct rtentry32 __user *ur4 = argp;
3060 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3061 3 * sizeof(struct sockaddr));
3062 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3063 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3064 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3065 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3066 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3067 ret |= get_user(rtdev, &(ur4->rt_dev));
3068 if (rtdev) {
3069 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3070 r4.rt_dev = (char __user __force *)devname;
3071 devname[15] = 0;
3072 } else
3073 r4.rt_dev = NULL;
3075 r = (void *) &r4;
3078 if (ret) {
3079 ret = -EFAULT;
3080 goto out;
3083 set_fs(KERNEL_DS);
3084 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r,
3085 sizeof(struct compat_ifreq));
3086 set_fs(old_fs);
3088 out:
3089 return ret;
3092 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3093 * for some operations; this forces use of the newer bridge-utils that
3094 * use compatible ioctls
3096 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3098 compat_ulong_t tmp;
3100 if (get_user(tmp, argp))
3101 return -EFAULT;
3102 if (tmp == BRCTL_GET_VERSION)
3103 return BRCTL_VERSION + 1;
3104 return -EINVAL;
3107 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3108 unsigned int cmd, unsigned long arg)
3110 void __user *argp = compat_ptr(arg);
3111 struct sock *sk = sock->sk;
3112 struct net *net = sock_net(sk);
3114 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3115 return compat_ifr_data_ioctl(net, cmd, argp);
3117 switch (cmd) {
3118 case SIOCSIFBR:
3119 case SIOCGIFBR:
3120 return old_bridge_ioctl(argp);
3121 case SIOCGIFCONF:
3122 return compat_dev_ifconf(net, argp);
3123 case SIOCETHTOOL:
3124 return ethtool_ioctl(net, argp);
3125 case SIOCWANDEV:
3126 return compat_siocwandev(net, argp);
3127 case SIOCGIFMAP:
3128 case SIOCSIFMAP:
3129 return compat_sioc_ifmap(net, cmd, argp);
3130 case SIOCADDRT:
3131 case SIOCDELRT:
3132 return routing_ioctl(net, sock, cmd, argp);
3133 case SIOCGSTAMP:
3134 return do_siocgstamp(net, sock, cmd, argp);
3135 case SIOCGSTAMPNS:
3136 return do_siocgstampns(net, sock, cmd, argp);
3137 case SIOCBONDSLAVEINFOQUERY:
3138 case SIOCBONDINFOQUERY:
3139 case SIOCSHWTSTAMP:
3140 case SIOCGHWTSTAMP:
3141 return compat_ifr_data_ioctl(net, cmd, argp);
3143 case FIOSETOWN:
3144 case SIOCSPGRP:
3145 case FIOGETOWN:
3146 case SIOCGPGRP:
3147 case SIOCBRADDBR:
3148 case SIOCBRDELBR:
3149 case SIOCGIFVLAN:
3150 case SIOCSIFVLAN:
3151 case SIOCADDDLCI:
3152 case SIOCDELDLCI:
3153 case SIOCGSKNS:
3154 return sock_ioctl(file, cmd, arg);
3156 case SIOCGIFFLAGS:
3157 case SIOCSIFFLAGS:
3158 case SIOCGIFMETRIC:
3159 case SIOCSIFMETRIC:
3160 case SIOCGIFMTU:
3161 case SIOCSIFMTU:
3162 case SIOCGIFMEM:
3163 case SIOCSIFMEM:
3164 case SIOCGIFHWADDR:
3165 case SIOCSIFHWADDR:
3166 case SIOCADDMULTI:
3167 case SIOCDELMULTI:
3168 case SIOCGIFINDEX:
3169 case SIOCGIFADDR:
3170 case SIOCSIFADDR:
3171 case SIOCSIFHWBROADCAST:
3172 case SIOCDIFADDR:
3173 case SIOCGIFBRDADDR:
3174 case SIOCSIFBRDADDR:
3175 case SIOCGIFDSTADDR:
3176 case SIOCSIFDSTADDR:
3177 case SIOCGIFNETMASK:
3178 case SIOCSIFNETMASK:
3179 case SIOCSIFPFLAGS:
3180 case SIOCGIFPFLAGS:
3181 case SIOCGIFTXQLEN:
3182 case SIOCSIFTXQLEN:
3183 case SIOCBRADDIF:
3184 case SIOCBRDELIF:
3185 case SIOCSIFNAME:
3186 case SIOCGMIIPHY:
3187 case SIOCGMIIREG:
3188 case SIOCSMIIREG:
3189 case SIOCSARP:
3190 case SIOCGARP:
3191 case SIOCDARP:
3192 case SIOCATMARK:
3193 case SIOCBONDENSLAVE:
3194 case SIOCBONDRELEASE:
3195 case SIOCBONDSETHWADDR:
3196 case SIOCBONDCHANGEACTIVE:
3197 case SIOCGIFNAME:
3198 return sock_do_ioctl(net, sock, cmd, arg,
3199 sizeof(struct compat_ifreq));
3202 return -ENOIOCTLCMD;
3205 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3206 unsigned long arg)
3208 struct socket *sock = file->private_data;
3209 int ret = -ENOIOCTLCMD;
3210 struct sock *sk;
3211 struct net *net;
3213 sk = sock->sk;
3214 net = sock_net(sk);
3216 if (sock->ops->compat_ioctl)
3217 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3219 if (ret == -ENOIOCTLCMD &&
3220 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3221 ret = compat_wext_handle_ioctl(net, cmd, arg);
3223 if (ret == -ENOIOCTLCMD)
3224 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3226 return ret;
3228 #endif
3230 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3232 return sock->ops->bind(sock, addr, addrlen);
3234 EXPORT_SYMBOL(kernel_bind);
3236 int kernel_listen(struct socket *sock, int backlog)
3238 return sock->ops->listen(sock, backlog);
3240 EXPORT_SYMBOL(kernel_listen);
3242 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3244 struct sock *sk = sock->sk;
3245 int err;
3247 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3248 newsock);
3249 if (err < 0)
3250 goto done;
3252 err = sock->ops->accept(sock, *newsock, flags, true);
3253 if (err < 0) {
3254 sock_release(*newsock);
3255 *newsock = NULL;
3256 goto done;
3259 (*newsock)->ops = sock->ops;
3260 __module_get((*newsock)->ops->owner);
3262 done:
3263 return err;
3265 EXPORT_SYMBOL(kernel_accept);
3267 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3268 int flags)
3270 return sock->ops->connect(sock, addr, addrlen, flags);
3272 EXPORT_SYMBOL(kernel_connect);
3274 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3276 return sock->ops->getname(sock, addr, 0);
3278 EXPORT_SYMBOL(kernel_getsockname);
3280 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3282 return sock->ops->getname(sock, addr, 1);
3284 EXPORT_SYMBOL(kernel_getpeername);
3286 int kernel_getsockopt(struct socket *sock, int level, int optname,
3287 char *optval, int *optlen)
3289 mm_segment_t oldfs = get_fs();
3290 char __user *uoptval;
3291 int __user *uoptlen;
3292 int err;
3294 uoptval = (char __user __force *) optval;
3295 uoptlen = (int __user __force *) optlen;
3297 set_fs(KERNEL_DS);
3298 if (level == SOL_SOCKET)
3299 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3300 else
3301 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3302 uoptlen);
3303 set_fs(oldfs);
3304 return err;
3306 EXPORT_SYMBOL(kernel_getsockopt);
3308 int kernel_setsockopt(struct socket *sock, int level, int optname,
3309 char *optval, unsigned int optlen)
3311 mm_segment_t oldfs = get_fs();
3312 char __user *uoptval;
3313 int err;
3315 uoptval = (char __user __force *) optval;
3317 set_fs(KERNEL_DS);
3318 if (level == SOL_SOCKET)
3319 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3320 else
3321 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3322 optlen);
3323 set_fs(oldfs);
3324 return err;
3326 EXPORT_SYMBOL(kernel_setsockopt);
3328 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3329 size_t size, int flags)
3331 if (sock->ops->sendpage)
3332 return sock->ops->sendpage(sock, page, offset, size, flags);
3334 return sock_no_sendpage(sock, page, offset, size, flags);
3336 EXPORT_SYMBOL(kernel_sendpage);
3338 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3339 size_t size, int flags)
3341 struct socket *sock = sk->sk_socket;
3343 if (sock->ops->sendpage_locked)
3344 return sock->ops->sendpage_locked(sk, page, offset, size,
3345 flags);
3347 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3349 EXPORT_SYMBOL(kernel_sendpage_locked);
3351 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3353 return sock->ops->shutdown(sock, how);
3355 EXPORT_SYMBOL(kernel_sock_shutdown);
3357 /* This routine returns the IP overhead imposed by a socket i.e.
3358 * the length of the underlying IP header, depending on whether
3359 * this is an IPv4 or IPv6 socket and the length from IP options turned
3360 * on at the socket. Assumes that the caller has a lock on the socket.
3362 u32 kernel_sock_ip_overhead(struct sock *sk)
3364 struct inet_sock *inet;
3365 struct ip_options_rcu *opt;
3366 u32 overhead = 0;
3367 #if IS_ENABLED(CONFIG_IPV6)
3368 struct ipv6_pinfo *np;
3369 struct ipv6_txoptions *optv6 = NULL;
3370 #endif /* IS_ENABLED(CONFIG_IPV6) */
3372 if (!sk)
3373 return overhead;
3375 switch (sk->sk_family) {
3376 case AF_INET:
3377 inet = inet_sk(sk);
3378 overhead += sizeof(struct iphdr);
3379 opt = rcu_dereference_protected(inet->inet_opt,
3380 sock_owned_by_user(sk));
3381 if (opt)
3382 overhead += opt->opt.optlen;
3383 return overhead;
3384 #if IS_ENABLED(CONFIG_IPV6)
3385 case AF_INET6:
3386 np = inet6_sk(sk);
3387 overhead += sizeof(struct ipv6hdr);
3388 if (np)
3389 optv6 = rcu_dereference_protected(np->opt,
3390 sock_owned_by_user(sk));
3391 if (optv6)
3392 overhead += (optv6->opt_flen + optv6->opt_nflen);
3393 return overhead;
3394 #endif /* IS_ENABLED(CONFIG_IPV6) */
3395 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3396 return overhead;
3399 EXPORT_SYMBOL(kernel_sock_ip_overhead);