uio, lib: Fix CONFIG_ARCH_HAS_UACCESS_MCSAFE compilation
[linux/fpc-iii.git] / mm / slub.c
blob44aa7847324ac4f8ea99cfe9e53834d56c4818de
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
39 #include <trace/events/kmem.h>
41 #include "internal.h"
44 * Lock order:
45 * 1. slab_mutex (Global Mutex)
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
49 * slab_mutex
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
96 * Overloading of page flags that are otherwise used for LRU management.
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
119 static inline int kmem_cache_debug(struct kmem_cache *s)
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 return 0;
125 #endif
128 void *fixup_red_left(struct kmem_cache *s, void *p)
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
133 return p;
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140 #else
141 return false;
142 #endif
146 * Issues still to be resolved:
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
150 * - Variable sizing of the per node arrays
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
163 #define MIN_PARTIAL 5
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
170 #define MAX_PARTIAL 10
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
190 #define OO_SHIFT 16
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
201 * Tracking user of a slab.
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 unsigned long addr; /* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208 #endif
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
231 #ifdef CONFIG_SLUB_STATS
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
236 raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
240 /********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
254 #else
255 return ptr;
256 #endif
259 /* Returns the freelist pointer recorded at location ptr_addr. */
260 static inline void *freelist_dereference(const struct kmem_cache *s,
261 void *ptr_addr)
263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 (unsigned long)ptr_addr);
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
269 return freelist_dereference(s, object + s->offset);
272 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274 if (object)
275 prefetch(freelist_dereference(s, object + s->offset));
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
280 unsigned long freepointer_addr;
281 void *p;
283 if (!debug_pagealloc_enabled())
284 return get_freepointer(s, object);
286 freepointer_addr = (unsigned long)object + s->offset;
287 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
288 return freelist_ptr(s, p, freepointer_addr);
291 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
293 unsigned long freeptr_addr = (unsigned long)object + s->offset;
295 #ifdef CONFIG_SLAB_FREELIST_HARDENED
296 BUG_ON(object == fp); /* naive detection of double free or corruption */
297 #endif
299 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
302 /* Loop over all objects in a slab */
303 #define for_each_object(__p, __s, __addr, __objects) \
304 for (__p = fixup_red_left(__s, __addr); \
305 __p < (__addr) + (__objects) * (__s)->size; \
306 __p += (__s)->size)
308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 __idx <= __objects; \
311 __p += (__s)->size, __idx++)
313 /* Determine object index from a given position */
314 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
316 return (p - addr) / s->size;
319 static inline unsigned int order_objects(unsigned int order, unsigned int size, unsigned int reserved)
321 return (((unsigned int)PAGE_SIZE << order) - reserved) / size;
324 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
325 unsigned int size, unsigned int reserved)
327 struct kmem_cache_order_objects x = {
328 (order << OO_SHIFT) + order_objects(order, size, reserved)
331 return x;
334 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
336 return x.x >> OO_SHIFT;
339 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
341 return x.x & OO_MASK;
345 * Per slab locking using the pagelock
347 static __always_inline void slab_lock(struct page *page)
349 VM_BUG_ON_PAGE(PageTail(page), page);
350 bit_spin_lock(PG_locked, &page->flags);
353 static __always_inline void slab_unlock(struct page *page)
355 VM_BUG_ON_PAGE(PageTail(page), page);
356 __bit_spin_unlock(PG_locked, &page->flags);
359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
361 struct page tmp;
362 tmp.counters = counters_new;
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_refcount. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_refcount, so
367 * be careful and only assign to the fields we need.
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
380 VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s->flags & __CMPXCHG_DOUBLE) {
384 if (cmpxchg_double(&page->freelist, &page->counters,
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return true;
388 } else
389 #endif
391 slab_lock(page);
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
394 page->freelist = freelist_new;
395 set_page_slub_counters(page, counters_new);
396 slab_unlock(page);
397 return true;
399 slab_unlock(page);
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
405 #ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 #endif
409 return false;
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s->flags & __CMPXCHG_DOUBLE) {
420 if (cmpxchg_double(&page->freelist, &page->counters,
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return true;
424 } else
425 #endif
427 unsigned long flags;
429 local_irq_save(flags);
430 slab_lock(page);
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
433 page->freelist = freelist_new;
434 set_page_slub_counters(page, counters_new);
435 slab_unlock(page);
436 local_irq_restore(flags);
437 return true;
439 slab_unlock(page);
440 local_irq_restore(flags);
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
446 #ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 #endif
450 return false;
453 #ifdef CONFIG_SLUB_DEBUG
455 * Determine a map of object in use on a page.
457 * Node listlock must be held to guarantee that the page does
458 * not vanish from under us.
460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
462 void *p;
463 void *addr = page_address(page);
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
469 static inline unsigned int size_from_object(struct kmem_cache *s)
471 if (s->flags & SLAB_RED_ZONE)
472 return s->size - s->red_left_pad;
474 return s->size;
477 static inline void *restore_red_left(struct kmem_cache *s, void *p)
479 if (s->flags & SLAB_RED_ZONE)
480 p -= s->red_left_pad;
482 return p;
486 * Debug settings:
488 #if defined(CONFIG_SLUB_DEBUG_ON)
489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
490 #else
491 static slab_flags_t slub_debug;
492 #endif
494 static char *slub_debug_slabs;
495 static int disable_higher_order_debug;
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
503 static inline void metadata_access_enable(void)
505 kasan_disable_current();
508 static inline void metadata_access_disable(void)
510 kasan_enable_current();
514 * Object debugging
517 /* Verify that a pointer has an address that is valid within a slab page */
518 static inline int check_valid_pointer(struct kmem_cache *s,
519 struct page *page, void *object)
521 void *base;
523 if (!object)
524 return 1;
526 base = page_address(page);
527 object = restore_red_left(s, object);
528 if (object < base || object >= base + page->objects * s->size ||
529 (object - base) % s->size) {
530 return 0;
533 return 1;
536 static void print_section(char *level, char *text, u8 *addr,
537 unsigned int length)
539 metadata_access_enable();
540 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
541 length, 1);
542 metadata_access_disable();
545 static struct track *get_track(struct kmem_cache *s, void *object,
546 enum track_item alloc)
548 struct track *p;
550 if (s->offset)
551 p = object + s->offset + sizeof(void *);
552 else
553 p = object + s->inuse;
555 return p + alloc;
558 static void set_track(struct kmem_cache *s, void *object,
559 enum track_item alloc, unsigned long addr)
561 struct track *p = get_track(s, object, alloc);
563 if (addr) {
564 #ifdef CONFIG_STACKTRACE
565 struct stack_trace trace;
566 int i;
568 trace.nr_entries = 0;
569 trace.max_entries = TRACK_ADDRS_COUNT;
570 trace.entries = p->addrs;
571 trace.skip = 3;
572 metadata_access_enable();
573 save_stack_trace(&trace);
574 metadata_access_disable();
576 /* See rant in lockdep.c */
577 if (trace.nr_entries != 0 &&
578 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
579 trace.nr_entries--;
581 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
582 p->addrs[i] = 0;
583 #endif
584 p->addr = addr;
585 p->cpu = smp_processor_id();
586 p->pid = current->pid;
587 p->when = jiffies;
588 } else
589 memset(p, 0, sizeof(struct track));
592 static void init_tracking(struct kmem_cache *s, void *object)
594 if (!(s->flags & SLAB_STORE_USER))
595 return;
597 set_track(s, object, TRACK_FREE, 0UL);
598 set_track(s, object, TRACK_ALLOC, 0UL);
601 static void print_track(const char *s, struct track *t, unsigned long pr_time)
603 if (!t->addr)
604 return;
606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
607 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
608 #ifdef CONFIG_STACKTRACE
610 int i;
611 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
612 if (t->addrs[i])
613 pr_err("\t%pS\n", (void *)t->addrs[i]);
614 else
615 break;
617 #endif
620 static void print_tracking(struct kmem_cache *s, void *object)
622 unsigned long pr_time = jiffies;
623 if (!(s->flags & SLAB_STORE_USER))
624 return;
626 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
627 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
630 static void print_page_info(struct page *page)
632 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
633 page, page->objects, page->inuse, page->freelist, page->flags);
637 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
639 struct va_format vaf;
640 va_list args;
642 va_start(args, fmt);
643 vaf.fmt = fmt;
644 vaf.va = &args;
645 pr_err("=============================================================================\n");
646 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
647 pr_err("-----------------------------------------------------------------------------\n\n");
649 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
650 va_end(args);
653 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
655 struct va_format vaf;
656 va_list args;
658 va_start(args, fmt);
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 pr_err("FIX %s: %pV\n", s->name, &vaf);
662 va_end(args);
665 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
667 unsigned int off; /* Offset of last byte */
668 u8 *addr = page_address(page);
670 print_tracking(s, p);
672 print_page_info(page);
674 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
675 p, p - addr, get_freepointer(s, p));
677 if (s->flags & SLAB_RED_ZONE)
678 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
679 s->red_left_pad);
680 else if (p > addr + 16)
681 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
683 print_section(KERN_ERR, "Object ", p,
684 min_t(unsigned int, s->object_size, PAGE_SIZE));
685 if (s->flags & SLAB_RED_ZONE)
686 print_section(KERN_ERR, "Redzone ", p + s->object_size,
687 s->inuse - s->object_size);
689 if (s->offset)
690 off = s->offset + sizeof(void *);
691 else
692 off = s->inuse;
694 if (s->flags & SLAB_STORE_USER)
695 off += 2 * sizeof(struct track);
697 off += kasan_metadata_size(s);
699 if (off != size_from_object(s))
700 /* Beginning of the filler is the free pointer */
701 print_section(KERN_ERR, "Padding ", p + off,
702 size_from_object(s) - off);
704 dump_stack();
707 void object_err(struct kmem_cache *s, struct page *page,
708 u8 *object, char *reason)
710 slab_bug(s, "%s", reason);
711 print_trailer(s, page, object);
714 static void slab_err(struct kmem_cache *s, struct page *page,
715 const char *fmt, ...)
717 va_list args;
718 char buf[100];
720 va_start(args, fmt);
721 vsnprintf(buf, sizeof(buf), fmt, args);
722 va_end(args);
723 slab_bug(s, "%s", buf);
724 print_page_info(page);
725 dump_stack();
728 static void init_object(struct kmem_cache *s, void *object, u8 val)
730 u8 *p = object;
732 if (s->flags & SLAB_RED_ZONE)
733 memset(p - s->red_left_pad, val, s->red_left_pad);
735 if (s->flags & __OBJECT_POISON) {
736 memset(p, POISON_FREE, s->object_size - 1);
737 p[s->object_size - 1] = POISON_END;
740 if (s->flags & SLAB_RED_ZONE)
741 memset(p + s->object_size, val, s->inuse - s->object_size);
744 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
745 void *from, void *to)
747 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
748 memset(from, data, to - from);
751 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
752 u8 *object, char *what,
753 u8 *start, unsigned int value, unsigned int bytes)
755 u8 *fault;
756 u8 *end;
758 metadata_access_enable();
759 fault = memchr_inv(start, value, bytes);
760 metadata_access_disable();
761 if (!fault)
762 return 1;
764 end = start + bytes;
765 while (end > fault && end[-1] == value)
766 end--;
768 slab_bug(s, "%s overwritten", what);
769 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
770 fault, end - 1, fault[0], value);
771 print_trailer(s, page, object);
773 restore_bytes(s, what, value, fault, end);
774 return 0;
778 * Object layout:
780 * object address
781 * Bytes of the object to be managed.
782 * If the freepointer may overlay the object then the free
783 * pointer is the first word of the object.
785 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
786 * 0xa5 (POISON_END)
788 * object + s->object_size
789 * Padding to reach word boundary. This is also used for Redzoning.
790 * Padding is extended by another word if Redzoning is enabled and
791 * object_size == inuse.
793 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
794 * 0xcc (RED_ACTIVE) for objects in use.
796 * object + s->inuse
797 * Meta data starts here.
799 * A. Free pointer (if we cannot overwrite object on free)
800 * B. Tracking data for SLAB_STORE_USER
801 * C. Padding to reach required alignment boundary or at mininum
802 * one word if debugging is on to be able to detect writes
803 * before the word boundary.
805 * Padding is done using 0x5a (POISON_INUSE)
807 * object + s->size
808 * Nothing is used beyond s->size.
810 * If slabcaches are merged then the object_size and inuse boundaries are mostly
811 * ignored. And therefore no slab options that rely on these boundaries
812 * may be used with merged slabcaches.
815 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
817 unsigned long off = s->inuse; /* The end of info */
819 if (s->offset)
820 /* Freepointer is placed after the object. */
821 off += sizeof(void *);
823 if (s->flags & SLAB_STORE_USER)
824 /* We also have user information there */
825 off += 2 * sizeof(struct track);
827 off += kasan_metadata_size(s);
829 if (size_from_object(s) == off)
830 return 1;
832 return check_bytes_and_report(s, page, p, "Object padding",
833 p + off, POISON_INUSE, size_from_object(s) - off);
836 /* Check the pad bytes at the end of a slab page */
837 static int slab_pad_check(struct kmem_cache *s, struct page *page)
839 u8 *start;
840 u8 *fault;
841 u8 *end;
842 u8 *pad;
843 int length;
844 int remainder;
846 if (!(s->flags & SLAB_POISON))
847 return 1;
849 start = page_address(page);
850 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
851 end = start + length;
852 remainder = length % s->size;
853 if (!remainder)
854 return 1;
856 pad = end - remainder;
857 metadata_access_enable();
858 fault = memchr_inv(pad, POISON_INUSE, remainder);
859 metadata_access_disable();
860 if (!fault)
861 return 1;
862 while (end > fault && end[-1] == POISON_INUSE)
863 end--;
865 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
866 print_section(KERN_ERR, "Padding ", pad, remainder);
868 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
869 return 0;
872 static int check_object(struct kmem_cache *s, struct page *page,
873 void *object, u8 val)
875 u8 *p = object;
876 u8 *endobject = object + s->object_size;
878 if (s->flags & SLAB_RED_ZONE) {
879 if (!check_bytes_and_report(s, page, object, "Redzone",
880 object - s->red_left_pad, val, s->red_left_pad))
881 return 0;
883 if (!check_bytes_and_report(s, page, object, "Redzone",
884 endobject, val, s->inuse - s->object_size))
885 return 0;
886 } else {
887 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
888 check_bytes_and_report(s, page, p, "Alignment padding",
889 endobject, POISON_INUSE,
890 s->inuse - s->object_size);
894 if (s->flags & SLAB_POISON) {
895 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
896 (!check_bytes_and_report(s, page, p, "Poison", p,
897 POISON_FREE, s->object_size - 1) ||
898 !check_bytes_and_report(s, page, p, "Poison",
899 p + s->object_size - 1, POISON_END, 1)))
900 return 0;
902 * check_pad_bytes cleans up on its own.
904 check_pad_bytes(s, page, p);
907 if (!s->offset && val == SLUB_RED_ACTIVE)
909 * Object and freepointer overlap. Cannot check
910 * freepointer while object is allocated.
912 return 1;
914 /* Check free pointer validity */
915 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
916 object_err(s, page, p, "Freepointer corrupt");
918 * No choice but to zap it and thus lose the remainder
919 * of the free objects in this slab. May cause
920 * another error because the object count is now wrong.
922 set_freepointer(s, p, NULL);
923 return 0;
925 return 1;
928 static int check_slab(struct kmem_cache *s, struct page *page)
930 int maxobj;
932 VM_BUG_ON(!irqs_disabled());
934 if (!PageSlab(page)) {
935 slab_err(s, page, "Not a valid slab page");
936 return 0;
939 maxobj = order_objects(compound_order(page), s->size, s->reserved);
940 if (page->objects > maxobj) {
941 slab_err(s, page, "objects %u > max %u",
942 page->objects, maxobj);
943 return 0;
945 if (page->inuse > page->objects) {
946 slab_err(s, page, "inuse %u > max %u",
947 page->inuse, page->objects);
948 return 0;
950 /* Slab_pad_check fixes things up after itself */
951 slab_pad_check(s, page);
952 return 1;
956 * Determine if a certain object on a page is on the freelist. Must hold the
957 * slab lock to guarantee that the chains are in a consistent state.
959 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
961 int nr = 0;
962 void *fp;
963 void *object = NULL;
964 int max_objects;
966 fp = page->freelist;
967 while (fp && nr <= page->objects) {
968 if (fp == search)
969 return 1;
970 if (!check_valid_pointer(s, page, fp)) {
971 if (object) {
972 object_err(s, page, object,
973 "Freechain corrupt");
974 set_freepointer(s, object, NULL);
975 } else {
976 slab_err(s, page, "Freepointer corrupt");
977 page->freelist = NULL;
978 page->inuse = page->objects;
979 slab_fix(s, "Freelist cleared");
980 return 0;
982 break;
984 object = fp;
985 fp = get_freepointer(s, object);
986 nr++;
989 max_objects = order_objects(compound_order(page), s->size, s->reserved);
990 if (max_objects > MAX_OBJS_PER_PAGE)
991 max_objects = MAX_OBJS_PER_PAGE;
993 if (page->objects != max_objects) {
994 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
995 page->objects, max_objects);
996 page->objects = max_objects;
997 slab_fix(s, "Number of objects adjusted.");
999 if (page->inuse != page->objects - nr) {
1000 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1001 page->inuse, page->objects - nr);
1002 page->inuse = page->objects - nr;
1003 slab_fix(s, "Object count adjusted.");
1005 return search == NULL;
1008 static void trace(struct kmem_cache *s, struct page *page, void *object,
1009 int alloc)
1011 if (s->flags & SLAB_TRACE) {
1012 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1013 s->name,
1014 alloc ? "alloc" : "free",
1015 object, page->inuse,
1016 page->freelist);
1018 if (!alloc)
1019 print_section(KERN_INFO, "Object ", (void *)object,
1020 s->object_size);
1022 dump_stack();
1027 * Tracking of fully allocated slabs for debugging purposes.
1029 static void add_full(struct kmem_cache *s,
1030 struct kmem_cache_node *n, struct page *page)
1032 if (!(s->flags & SLAB_STORE_USER))
1033 return;
1035 lockdep_assert_held(&n->list_lock);
1036 list_add(&page->lru, &n->full);
1039 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1041 if (!(s->flags & SLAB_STORE_USER))
1042 return;
1044 lockdep_assert_held(&n->list_lock);
1045 list_del(&page->lru);
1048 /* Tracking of the number of slabs for debugging purposes */
1049 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1051 struct kmem_cache_node *n = get_node(s, node);
1053 return atomic_long_read(&n->nr_slabs);
1056 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1058 return atomic_long_read(&n->nr_slabs);
1061 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1063 struct kmem_cache_node *n = get_node(s, node);
1066 * May be called early in order to allocate a slab for the
1067 * kmem_cache_node structure. Solve the chicken-egg
1068 * dilemma by deferring the increment of the count during
1069 * bootstrap (see early_kmem_cache_node_alloc).
1071 if (likely(n)) {
1072 atomic_long_inc(&n->nr_slabs);
1073 atomic_long_add(objects, &n->total_objects);
1076 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1078 struct kmem_cache_node *n = get_node(s, node);
1080 atomic_long_dec(&n->nr_slabs);
1081 atomic_long_sub(objects, &n->total_objects);
1084 /* Object debug checks for alloc/free paths */
1085 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1086 void *object)
1088 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1089 return;
1091 init_object(s, object, SLUB_RED_INACTIVE);
1092 init_tracking(s, object);
1095 static inline int alloc_consistency_checks(struct kmem_cache *s,
1096 struct page *page,
1097 void *object, unsigned long addr)
1099 if (!check_slab(s, page))
1100 return 0;
1102 if (!check_valid_pointer(s, page, object)) {
1103 object_err(s, page, object, "Freelist Pointer check fails");
1104 return 0;
1107 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1108 return 0;
1110 return 1;
1113 static noinline int alloc_debug_processing(struct kmem_cache *s,
1114 struct page *page,
1115 void *object, unsigned long addr)
1117 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1118 if (!alloc_consistency_checks(s, page, object, addr))
1119 goto bad;
1122 /* Success perform special debug activities for allocs */
1123 if (s->flags & SLAB_STORE_USER)
1124 set_track(s, object, TRACK_ALLOC, addr);
1125 trace(s, page, object, 1);
1126 init_object(s, object, SLUB_RED_ACTIVE);
1127 return 1;
1129 bad:
1130 if (PageSlab(page)) {
1132 * If this is a slab page then lets do the best we can
1133 * to avoid issues in the future. Marking all objects
1134 * as used avoids touching the remaining objects.
1136 slab_fix(s, "Marking all objects used");
1137 page->inuse = page->objects;
1138 page->freelist = NULL;
1140 return 0;
1143 static inline int free_consistency_checks(struct kmem_cache *s,
1144 struct page *page, void *object, unsigned long addr)
1146 if (!check_valid_pointer(s, page, object)) {
1147 slab_err(s, page, "Invalid object pointer 0x%p", object);
1148 return 0;
1151 if (on_freelist(s, page, object)) {
1152 object_err(s, page, object, "Object already free");
1153 return 0;
1156 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1157 return 0;
1159 if (unlikely(s != page->slab_cache)) {
1160 if (!PageSlab(page)) {
1161 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1162 object);
1163 } else if (!page->slab_cache) {
1164 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1165 object);
1166 dump_stack();
1167 } else
1168 object_err(s, page, object,
1169 "page slab pointer corrupt.");
1170 return 0;
1172 return 1;
1175 /* Supports checking bulk free of a constructed freelist */
1176 static noinline int free_debug_processing(
1177 struct kmem_cache *s, struct page *page,
1178 void *head, void *tail, int bulk_cnt,
1179 unsigned long addr)
1181 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1182 void *object = head;
1183 int cnt = 0;
1184 unsigned long uninitialized_var(flags);
1185 int ret = 0;
1187 spin_lock_irqsave(&n->list_lock, flags);
1188 slab_lock(page);
1190 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191 if (!check_slab(s, page))
1192 goto out;
1195 next_object:
1196 cnt++;
1198 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1199 if (!free_consistency_checks(s, page, object, addr))
1200 goto out;
1203 if (s->flags & SLAB_STORE_USER)
1204 set_track(s, object, TRACK_FREE, addr);
1205 trace(s, page, object, 0);
1206 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1207 init_object(s, object, SLUB_RED_INACTIVE);
1209 /* Reached end of constructed freelist yet? */
1210 if (object != tail) {
1211 object = get_freepointer(s, object);
1212 goto next_object;
1214 ret = 1;
1216 out:
1217 if (cnt != bulk_cnt)
1218 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1219 bulk_cnt, cnt);
1221 slab_unlock(page);
1222 spin_unlock_irqrestore(&n->list_lock, flags);
1223 if (!ret)
1224 slab_fix(s, "Object at 0x%p not freed", object);
1225 return ret;
1228 static int __init setup_slub_debug(char *str)
1230 slub_debug = DEBUG_DEFAULT_FLAGS;
1231 if (*str++ != '=' || !*str)
1233 * No options specified. Switch on full debugging.
1235 goto out;
1237 if (*str == ',')
1239 * No options but restriction on slabs. This means full
1240 * debugging for slabs matching a pattern.
1242 goto check_slabs;
1244 slub_debug = 0;
1245 if (*str == '-')
1247 * Switch off all debugging measures.
1249 goto out;
1252 * Determine which debug features should be switched on
1254 for (; *str && *str != ','; str++) {
1255 switch (tolower(*str)) {
1256 case 'f':
1257 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1258 break;
1259 case 'z':
1260 slub_debug |= SLAB_RED_ZONE;
1261 break;
1262 case 'p':
1263 slub_debug |= SLAB_POISON;
1264 break;
1265 case 'u':
1266 slub_debug |= SLAB_STORE_USER;
1267 break;
1268 case 't':
1269 slub_debug |= SLAB_TRACE;
1270 break;
1271 case 'a':
1272 slub_debug |= SLAB_FAILSLAB;
1273 break;
1274 case 'o':
1276 * Avoid enabling debugging on caches if its minimum
1277 * order would increase as a result.
1279 disable_higher_order_debug = 1;
1280 break;
1281 default:
1282 pr_err("slub_debug option '%c' unknown. skipped\n",
1283 *str);
1287 check_slabs:
1288 if (*str == ',')
1289 slub_debug_slabs = str + 1;
1290 out:
1291 return 1;
1294 __setup("slub_debug", setup_slub_debug);
1296 slab_flags_t kmem_cache_flags(unsigned int object_size,
1297 slab_flags_t flags, const char *name,
1298 void (*ctor)(void *))
1301 * Enable debugging if selected on the kernel commandline.
1303 if (slub_debug && (!slub_debug_slabs || (name &&
1304 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1305 flags |= slub_debug;
1307 return flags;
1309 #else /* !CONFIG_SLUB_DEBUG */
1310 static inline void setup_object_debug(struct kmem_cache *s,
1311 struct page *page, void *object) {}
1313 static inline int alloc_debug_processing(struct kmem_cache *s,
1314 struct page *page, void *object, unsigned long addr) { return 0; }
1316 static inline int free_debug_processing(
1317 struct kmem_cache *s, struct page *page,
1318 void *head, void *tail, int bulk_cnt,
1319 unsigned long addr) { return 0; }
1321 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1322 { return 1; }
1323 static inline int check_object(struct kmem_cache *s, struct page *page,
1324 void *object, u8 val) { return 1; }
1325 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1326 struct page *page) {}
1327 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1328 struct page *page) {}
1329 slab_flags_t kmem_cache_flags(unsigned int object_size,
1330 slab_flags_t flags, const char *name,
1331 void (*ctor)(void *))
1333 return flags;
1335 #define slub_debug 0
1337 #define disable_higher_order_debug 0
1339 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1340 { return 0; }
1341 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1342 { return 0; }
1343 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1344 int objects) {}
1345 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1346 int objects) {}
1348 #endif /* CONFIG_SLUB_DEBUG */
1351 * Hooks for other subsystems that check memory allocations. In a typical
1352 * production configuration these hooks all should produce no code at all.
1354 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1356 kmemleak_alloc(ptr, size, 1, flags);
1357 kasan_kmalloc_large(ptr, size, flags);
1360 static __always_inline void kfree_hook(void *x)
1362 kmemleak_free(x);
1363 kasan_kfree_large(x, _RET_IP_);
1366 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1368 kmemleak_free_recursive(x, s->flags);
1371 * Trouble is that we may no longer disable interrupts in the fast path
1372 * So in order to make the debug calls that expect irqs to be
1373 * disabled we need to disable interrupts temporarily.
1375 #ifdef CONFIG_LOCKDEP
1377 unsigned long flags;
1379 local_irq_save(flags);
1380 debug_check_no_locks_freed(x, s->object_size);
1381 local_irq_restore(flags);
1383 #endif
1384 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1385 debug_check_no_obj_freed(x, s->object_size);
1387 /* KASAN might put x into memory quarantine, delaying its reuse */
1388 return kasan_slab_free(s, x, _RET_IP_);
1391 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1392 void **head, void **tail)
1395 * Compiler cannot detect this function can be removed if slab_free_hook()
1396 * evaluates to nothing. Thus, catch all relevant config debug options here.
1398 #if defined(CONFIG_LOCKDEP) || \
1399 defined(CONFIG_DEBUG_KMEMLEAK) || \
1400 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1401 defined(CONFIG_KASAN)
1403 void *object;
1404 void *next = *head;
1405 void *old_tail = *tail ? *tail : *head;
1407 /* Head and tail of the reconstructed freelist */
1408 *head = NULL;
1409 *tail = NULL;
1411 do {
1412 object = next;
1413 next = get_freepointer(s, object);
1414 /* If object's reuse doesn't have to be delayed */
1415 if (!slab_free_hook(s, object)) {
1416 /* Move object to the new freelist */
1417 set_freepointer(s, object, *head);
1418 *head = object;
1419 if (!*tail)
1420 *tail = object;
1422 } while (object != old_tail);
1424 if (*head == *tail)
1425 *tail = NULL;
1427 return *head != NULL;
1428 #else
1429 return true;
1430 #endif
1433 static void setup_object(struct kmem_cache *s, struct page *page,
1434 void *object)
1436 setup_object_debug(s, page, object);
1437 kasan_init_slab_obj(s, object);
1438 if (unlikely(s->ctor)) {
1439 kasan_unpoison_object_data(s, object);
1440 s->ctor(object);
1441 kasan_poison_object_data(s, object);
1446 * Slab allocation and freeing
1448 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1449 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1451 struct page *page;
1452 unsigned int order = oo_order(oo);
1454 if (node == NUMA_NO_NODE)
1455 page = alloc_pages(flags, order);
1456 else
1457 page = __alloc_pages_node(node, flags, order);
1459 if (page && memcg_charge_slab(page, flags, order, s)) {
1460 __free_pages(page, order);
1461 page = NULL;
1464 return page;
1467 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1468 /* Pre-initialize the random sequence cache */
1469 static int init_cache_random_seq(struct kmem_cache *s)
1471 unsigned int count = oo_objects(s->oo);
1472 int err;
1474 /* Bailout if already initialised */
1475 if (s->random_seq)
1476 return 0;
1478 err = cache_random_seq_create(s, count, GFP_KERNEL);
1479 if (err) {
1480 pr_err("SLUB: Unable to initialize free list for %s\n",
1481 s->name);
1482 return err;
1485 /* Transform to an offset on the set of pages */
1486 if (s->random_seq) {
1487 unsigned int i;
1489 for (i = 0; i < count; i++)
1490 s->random_seq[i] *= s->size;
1492 return 0;
1495 /* Initialize each random sequence freelist per cache */
1496 static void __init init_freelist_randomization(void)
1498 struct kmem_cache *s;
1500 mutex_lock(&slab_mutex);
1502 list_for_each_entry(s, &slab_caches, list)
1503 init_cache_random_seq(s);
1505 mutex_unlock(&slab_mutex);
1508 /* Get the next entry on the pre-computed freelist randomized */
1509 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1510 unsigned long *pos, void *start,
1511 unsigned long page_limit,
1512 unsigned long freelist_count)
1514 unsigned int idx;
1517 * If the target page allocation failed, the number of objects on the
1518 * page might be smaller than the usual size defined by the cache.
1520 do {
1521 idx = s->random_seq[*pos];
1522 *pos += 1;
1523 if (*pos >= freelist_count)
1524 *pos = 0;
1525 } while (unlikely(idx >= page_limit));
1527 return (char *)start + idx;
1530 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1531 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1533 void *start;
1534 void *cur;
1535 void *next;
1536 unsigned long idx, pos, page_limit, freelist_count;
1538 if (page->objects < 2 || !s->random_seq)
1539 return false;
1541 freelist_count = oo_objects(s->oo);
1542 pos = get_random_int() % freelist_count;
1544 page_limit = page->objects * s->size;
1545 start = fixup_red_left(s, page_address(page));
1547 /* First entry is used as the base of the freelist */
1548 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1549 freelist_count);
1550 page->freelist = cur;
1552 for (idx = 1; idx < page->objects; idx++) {
1553 setup_object(s, page, cur);
1554 next = next_freelist_entry(s, page, &pos, start, page_limit,
1555 freelist_count);
1556 set_freepointer(s, cur, next);
1557 cur = next;
1559 setup_object(s, page, cur);
1560 set_freepointer(s, cur, NULL);
1562 return true;
1564 #else
1565 static inline int init_cache_random_seq(struct kmem_cache *s)
1567 return 0;
1569 static inline void init_freelist_randomization(void) { }
1570 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1572 return false;
1574 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1576 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1578 struct page *page;
1579 struct kmem_cache_order_objects oo = s->oo;
1580 gfp_t alloc_gfp;
1581 void *start, *p;
1582 int idx, order;
1583 bool shuffle;
1585 flags &= gfp_allowed_mask;
1587 if (gfpflags_allow_blocking(flags))
1588 local_irq_enable();
1590 flags |= s->allocflags;
1593 * Let the initial higher-order allocation fail under memory pressure
1594 * so we fall-back to the minimum order allocation.
1596 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1597 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1598 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1600 page = alloc_slab_page(s, alloc_gfp, node, oo);
1601 if (unlikely(!page)) {
1602 oo = s->min;
1603 alloc_gfp = flags;
1605 * Allocation may have failed due to fragmentation.
1606 * Try a lower order alloc if possible
1608 page = alloc_slab_page(s, alloc_gfp, node, oo);
1609 if (unlikely(!page))
1610 goto out;
1611 stat(s, ORDER_FALLBACK);
1614 page->objects = oo_objects(oo);
1616 order = compound_order(page);
1617 page->slab_cache = s;
1618 __SetPageSlab(page);
1619 if (page_is_pfmemalloc(page))
1620 SetPageSlabPfmemalloc(page);
1622 start = page_address(page);
1624 if (unlikely(s->flags & SLAB_POISON))
1625 memset(start, POISON_INUSE, PAGE_SIZE << order);
1627 kasan_poison_slab(page);
1629 shuffle = shuffle_freelist(s, page);
1631 if (!shuffle) {
1632 for_each_object_idx(p, idx, s, start, page->objects) {
1633 setup_object(s, page, p);
1634 if (likely(idx < page->objects))
1635 set_freepointer(s, p, p + s->size);
1636 else
1637 set_freepointer(s, p, NULL);
1639 page->freelist = fixup_red_left(s, start);
1642 page->inuse = page->objects;
1643 page->frozen = 1;
1645 out:
1646 if (gfpflags_allow_blocking(flags))
1647 local_irq_disable();
1648 if (!page)
1649 return NULL;
1651 mod_lruvec_page_state(page,
1652 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1653 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1654 1 << oo_order(oo));
1656 inc_slabs_node(s, page_to_nid(page), page->objects);
1658 return page;
1661 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1663 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1664 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1665 flags &= ~GFP_SLAB_BUG_MASK;
1666 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1667 invalid_mask, &invalid_mask, flags, &flags);
1668 dump_stack();
1671 return allocate_slab(s,
1672 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1675 static void __free_slab(struct kmem_cache *s, struct page *page)
1677 int order = compound_order(page);
1678 int pages = 1 << order;
1680 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1681 void *p;
1683 slab_pad_check(s, page);
1684 for_each_object(p, s, page_address(page),
1685 page->objects)
1686 check_object(s, page, p, SLUB_RED_INACTIVE);
1689 mod_lruvec_page_state(page,
1690 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1691 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1692 -pages);
1694 __ClearPageSlabPfmemalloc(page);
1695 __ClearPageSlab(page);
1697 page_mapcount_reset(page);
1698 if (current->reclaim_state)
1699 current->reclaim_state->reclaimed_slab += pages;
1700 memcg_uncharge_slab(page, order, s);
1701 __free_pages(page, order);
1704 #define need_reserve_slab_rcu \
1705 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1707 static void rcu_free_slab(struct rcu_head *h)
1709 struct page *page;
1711 if (need_reserve_slab_rcu)
1712 page = virt_to_head_page(h);
1713 else
1714 page = container_of((struct list_head *)h, struct page, lru);
1716 __free_slab(page->slab_cache, page);
1719 static void free_slab(struct kmem_cache *s, struct page *page)
1721 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1722 struct rcu_head *head;
1724 if (need_reserve_slab_rcu) {
1725 int order = compound_order(page);
1726 int offset = (PAGE_SIZE << order) - s->reserved;
1728 VM_BUG_ON(s->reserved != sizeof(*head));
1729 head = page_address(page) + offset;
1730 } else {
1731 head = &page->rcu_head;
1734 call_rcu(head, rcu_free_slab);
1735 } else
1736 __free_slab(s, page);
1739 static void discard_slab(struct kmem_cache *s, struct page *page)
1741 dec_slabs_node(s, page_to_nid(page), page->objects);
1742 free_slab(s, page);
1746 * Management of partially allocated slabs.
1748 static inline void
1749 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1751 n->nr_partial++;
1752 if (tail == DEACTIVATE_TO_TAIL)
1753 list_add_tail(&page->lru, &n->partial);
1754 else
1755 list_add(&page->lru, &n->partial);
1758 static inline void add_partial(struct kmem_cache_node *n,
1759 struct page *page, int tail)
1761 lockdep_assert_held(&n->list_lock);
1762 __add_partial(n, page, tail);
1765 static inline void remove_partial(struct kmem_cache_node *n,
1766 struct page *page)
1768 lockdep_assert_held(&n->list_lock);
1769 list_del(&page->lru);
1770 n->nr_partial--;
1774 * Remove slab from the partial list, freeze it and
1775 * return the pointer to the freelist.
1777 * Returns a list of objects or NULL if it fails.
1779 static inline void *acquire_slab(struct kmem_cache *s,
1780 struct kmem_cache_node *n, struct page *page,
1781 int mode, int *objects)
1783 void *freelist;
1784 unsigned long counters;
1785 struct page new;
1787 lockdep_assert_held(&n->list_lock);
1790 * Zap the freelist and set the frozen bit.
1791 * The old freelist is the list of objects for the
1792 * per cpu allocation list.
1794 freelist = page->freelist;
1795 counters = page->counters;
1796 new.counters = counters;
1797 *objects = new.objects - new.inuse;
1798 if (mode) {
1799 new.inuse = page->objects;
1800 new.freelist = NULL;
1801 } else {
1802 new.freelist = freelist;
1805 VM_BUG_ON(new.frozen);
1806 new.frozen = 1;
1808 if (!__cmpxchg_double_slab(s, page,
1809 freelist, counters,
1810 new.freelist, new.counters,
1811 "acquire_slab"))
1812 return NULL;
1814 remove_partial(n, page);
1815 WARN_ON(!freelist);
1816 return freelist;
1819 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1820 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1823 * Try to allocate a partial slab from a specific node.
1825 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1826 struct kmem_cache_cpu *c, gfp_t flags)
1828 struct page *page, *page2;
1829 void *object = NULL;
1830 unsigned int available = 0;
1831 int objects;
1834 * Racy check. If we mistakenly see no partial slabs then we
1835 * just allocate an empty slab. If we mistakenly try to get a
1836 * partial slab and there is none available then get_partials()
1837 * will return NULL.
1839 if (!n || !n->nr_partial)
1840 return NULL;
1842 spin_lock(&n->list_lock);
1843 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1844 void *t;
1846 if (!pfmemalloc_match(page, flags))
1847 continue;
1849 t = acquire_slab(s, n, page, object == NULL, &objects);
1850 if (!t)
1851 break;
1853 available += objects;
1854 if (!object) {
1855 c->page = page;
1856 stat(s, ALLOC_FROM_PARTIAL);
1857 object = t;
1858 } else {
1859 put_cpu_partial(s, page, 0);
1860 stat(s, CPU_PARTIAL_NODE);
1862 if (!kmem_cache_has_cpu_partial(s)
1863 || available > slub_cpu_partial(s) / 2)
1864 break;
1867 spin_unlock(&n->list_lock);
1868 return object;
1872 * Get a page from somewhere. Search in increasing NUMA distances.
1874 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1875 struct kmem_cache_cpu *c)
1877 #ifdef CONFIG_NUMA
1878 struct zonelist *zonelist;
1879 struct zoneref *z;
1880 struct zone *zone;
1881 enum zone_type high_zoneidx = gfp_zone(flags);
1882 void *object;
1883 unsigned int cpuset_mems_cookie;
1886 * The defrag ratio allows a configuration of the tradeoffs between
1887 * inter node defragmentation and node local allocations. A lower
1888 * defrag_ratio increases the tendency to do local allocations
1889 * instead of attempting to obtain partial slabs from other nodes.
1891 * If the defrag_ratio is set to 0 then kmalloc() always
1892 * returns node local objects. If the ratio is higher then kmalloc()
1893 * may return off node objects because partial slabs are obtained
1894 * from other nodes and filled up.
1896 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1897 * (which makes defrag_ratio = 1000) then every (well almost)
1898 * allocation will first attempt to defrag slab caches on other nodes.
1899 * This means scanning over all nodes to look for partial slabs which
1900 * may be expensive if we do it every time we are trying to find a slab
1901 * with available objects.
1903 if (!s->remote_node_defrag_ratio ||
1904 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1905 return NULL;
1907 do {
1908 cpuset_mems_cookie = read_mems_allowed_begin();
1909 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1910 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1911 struct kmem_cache_node *n;
1913 n = get_node(s, zone_to_nid(zone));
1915 if (n && cpuset_zone_allowed(zone, flags) &&
1916 n->nr_partial > s->min_partial) {
1917 object = get_partial_node(s, n, c, flags);
1918 if (object) {
1920 * Don't check read_mems_allowed_retry()
1921 * here - if mems_allowed was updated in
1922 * parallel, that was a harmless race
1923 * between allocation and the cpuset
1924 * update
1926 return object;
1930 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1931 #endif
1932 return NULL;
1936 * Get a partial page, lock it and return it.
1938 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1939 struct kmem_cache_cpu *c)
1941 void *object;
1942 int searchnode = node;
1944 if (node == NUMA_NO_NODE)
1945 searchnode = numa_mem_id();
1946 else if (!node_present_pages(node))
1947 searchnode = node_to_mem_node(node);
1949 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1950 if (object || node != NUMA_NO_NODE)
1951 return object;
1953 return get_any_partial(s, flags, c);
1956 #ifdef CONFIG_PREEMPT
1958 * Calculate the next globally unique transaction for disambiguiation
1959 * during cmpxchg. The transactions start with the cpu number and are then
1960 * incremented by CONFIG_NR_CPUS.
1962 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1963 #else
1965 * No preemption supported therefore also no need to check for
1966 * different cpus.
1968 #define TID_STEP 1
1969 #endif
1971 static inline unsigned long next_tid(unsigned long tid)
1973 return tid + TID_STEP;
1976 static inline unsigned int tid_to_cpu(unsigned long tid)
1978 return tid % TID_STEP;
1981 static inline unsigned long tid_to_event(unsigned long tid)
1983 return tid / TID_STEP;
1986 static inline unsigned int init_tid(int cpu)
1988 return cpu;
1991 static inline void note_cmpxchg_failure(const char *n,
1992 const struct kmem_cache *s, unsigned long tid)
1994 #ifdef SLUB_DEBUG_CMPXCHG
1995 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1997 pr_info("%s %s: cmpxchg redo ", n, s->name);
1999 #ifdef CONFIG_PREEMPT
2000 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2001 pr_warn("due to cpu change %d -> %d\n",
2002 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2003 else
2004 #endif
2005 if (tid_to_event(tid) != tid_to_event(actual_tid))
2006 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2007 tid_to_event(tid), tid_to_event(actual_tid));
2008 else
2009 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2010 actual_tid, tid, next_tid(tid));
2011 #endif
2012 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2015 static void init_kmem_cache_cpus(struct kmem_cache *s)
2017 int cpu;
2019 for_each_possible_cpu(cpu)
2020 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2024 * Remove the cpu slab
2026 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2027 void *freelist, struct kmem_cache_cpu *c)
2029 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2030 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2031 int lock = 0;
2032 enum slab_modes l = M_NONE, m = M_NONE;
2033 void *nextfree;
2034 int tail = DEACTIVATE_TO_HEAD;
2035 struct page new;
2036 struct page old;
2038 if (page->freelist) {
2039 stat(s, DEACTIVATE_REMOTE_FREES);
2040 tail = DEACTIVATE_TO_TAIL;
2044 * Stage one: Free all available per cpu objects back
2045 * to the page freelist while it is still frozen. Leave the
2046 * last one.
2048 * There is no need to take the list->lock because the page
2049 * is still frozen.
2051 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2052 void *prior;
2053 unsigned long counters;
2055 do {
2056 prior = page->freelist;
2057 counters = page->counters;
2058 set_freepointer(s, freelist, prior);
2059 new.counters = counters;
2060 new.inuse--;
2061 VM_BUG_ON(!new.frozen);
2063 } while (!__cmpxchg_double_slab(s, page,
2064 prior, counters,
2065 freelist, new.counters,
2066 "drain percpu freelist"));
2068 freelist = nextfree;
2072 * Stage two: Ensure that the page is unfrozen while the
2073 * list presence reflects the actual number of objects
2074 * during unfreeze.
2076 * We setup the list membership and then perform a cmpxchg
2077 * with the count. If there is a mismatch then the page
2078 * is not unfrozen but the page is on the wrong list.
2080 * Then we restart the process which may have to remove
2081 * the page from the list that we just put it on again
2082 * because the number of objects in the slab may have
2083 * changed.
2085 redo:
2087 old.freelist = page->freelist;
2088 old.counters = page->counters;
2089 VM_BUG_ON(!old.frozen);
2091 /* Determine target state of the slab */
2092 new.counters = old.counters;
2093 if (freelist) {
2094 new.inuse--;
2095 set_freepointer(s, freelist, old.freelist);
2096 new.freelist = freelist;
2097 } else
2098 new.freelist = old.freelist;
2100 new.frozen = 0;
2102 if (!new.inuse && n->nr_partial >= s->min_partial)
2103 m = M_FREE;
2104 else if (new.freelist) {
2105 m = M_PARTIAL;
2106 if (!lock) {
2107 lock = 1;
2109 * Taking the spinlock removes the possiblity
2110 * that acquire_slab() will see a slab page that
2111 * is frozen
2113 spin_lock(&n->list_lock);
2115 } else {
2116 m = M_FULL;
2117 if (kmem_cache_debug(s) && !lock) {
2118 lock = 1;
2120 * This also ensures that the scanning of full
2121 * slabs from diagnostic functions will not see
2122 * any frozen slabs.
2124 spin_lock(&n->list_lock);
2128 if (l != m) {
2130 if (l == M_PARTIAL)
2132 remove_partial(n, page);
2134 else if (l == M_FULL)
2136 remove_full(s, n, page);
2138 if (m == M_PARTIAL) {
2140 add_partial(n, page, tail);
2141 stat(s, tail);
2143 } else if (m == M_FULL) {
2145 stat(s, DEACTIVATE_FULL);
2146 add_full(s, n, page);
2151 l = m;
2152 if (!__cmpxchg_double_slab(s, page,
2153 old.freelist, old.counters,
2154 new.freelist, new.counters,
2155 "unfreezing slab"))
2156 goto redo;
2158 if (lock)
2159 spin_unlock(&n->list_lock);
2161 if (m == M_FREE) {
2162 stat(s, DEACTIVATE_EMPTY);
2163 discard_slab(s, page);
2164 stat(s, FREE_SLAB);
2167 c->page = NULL;
2168 c->freelist = NULL;
2172 * Unfreeze all the cpu partial slabs.
2174 * This function must be called with interrupts disabled
2175 * for the cpu using c (or some other guarantee must be there
2176 * to guarantee no concurrent accesses).
2178 static void unfreeze_partials(struct kmem_cache *s,
2179 struct kmem_cache_cpu *c)
2181 #ifdef CONFIG_SLUB_CPU_PARTIAL
2182 struct kmem_cache_node *n = NULL, *n2 = NULL;
2183 struct page *page, *discard_page = NULL;
2185 while ((page = c->partial)) {
2186 struct page new;
2187 struct page old;
2189 c->partial = page->next;
2191 n2 = get_node(s, page_to_nid(page));
2192 if (n != n2) {
2193 if (n)
2194 spin_unlock(&n->list_lock);
2196 n = n2;
2197 spin_lock(&n->list_lock);
2200 do {
2202 old.freelist = page->freelist;
2203 old.counters = page->counters;
2204 VM_BUG_ON(!old.frozen);
2206 new.counters = old.counters;
2207 new.freelist = old.freelist;
2209 new.frozen = 0;
2211 } while (!__cmpxchg_double_slab(s, page,
2212 old.freelist, old.counters,
2213 new.freelist, new.counters,
2214 "unfreezing slab"));
2216 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2217 page->next = discard_page;
2218 discard_page = page;
2219 } else {
2220 add_partial(n, page, DEACTIVATE_TO_TAIL);
2221 stat(s, FREE_ADD_PARTIAL);
2225 if (n)
2226 spin_unlock(&n->list_lock);
2228 while (discard_page) {
2229 page = discard_page;
2230 discard_page = discard_page->next;
2232 stat(s, DEACTIVATE_EMPTY);
2233 discard_slab(s, page);
2234 stat(s, FREE_SLAB);
2236 #endif
2240 * Put a page that was just frozen (in __slab_free) into a partial page
2241 * slot if available.
2243 * If we did not find a slot then simply move all the partials to the
2244 * per node partial list.
2246 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2248 #ifdef CONFIG_SLUB_CPU_PARTIAL
2249 struct page *oldpage;
2250 int pages;
2251 int pobjects;
2253 preempt_disable();
2254 do {
2255 pages = 0;
2256 pobjects = 0;
2257 oldpage = this_cpu_read(s->cpu_slab->partial);
2259 if (oldpage) {
2260 pobjects = oldpage->pobjects;
2261 pages = oldpage->pages;
2262 if (drain && pobjects > s->cpu_partial) {
2263 unsigned long flags;
2265 * partial array is full. Move the existing
2266 * set to the per node partial list.
2268 local_irq_save(flags);
2269 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2270 local_irq_restore(flags);
2271 oldpage = NULL;
2272 pobjects = 0;
2273 pages = 0;
2274 stat(s, CPU_PARTIAL_DRAIN);
2278 pages++;
2279 pobjects += page->objects - page->inuse;
2281 page->pages = pages;
2282 page->pobjects = pobjects;
2283 page->next = oldpage;
2285 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2286 != oldpage);
2287 if (unlikely(!s->cpu_partial)) {
2288 unsigned long flags;
2290 local_irq_save(flags);
2291 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2292 local_irq_restore(flags);
2294 preempt_enable();
2295 #endif
2298 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2300 stat(s, CPUSLAB_FLUSH);
2301 deactivate_slab(s, c->page, c->freelist, c);
2303 c->tid = next_tid(c->tid);
2307 * Flush cpu slab.
2309 * Called from IPI handler with interrupts disabled.
2311 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2313 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2315 if (likely(c)) {
2316 if (c->page)
2317 flush_slab(s, c);
2319 unfreeze_partials(s, c);
2323 static void flush_cpu_slab(void *d)
2325 struct kmem_cache *s = d;
2327 __flush_cpu_slab(s, smp_processor_id());
2330 static bool has_cpu_slab(int cpu, void *info)
2332 struct kmem_cache *s = info;
2333 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2335 return c->page || slub_percpu_partial(c);
2338 static void flush_all(struct kmem_cache *s)
2340 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2344 * Use the cpu notifier to insure that the cpu slabs are flushed when
2345 * necessary.
2347 static int slub_cpu_dead(unsigned int cpu)
2349 struct kmem_cache *s;
2350 unsigned long flags;
2352 mutex_lock(&slab_mutex);
2353 list_for_each_entry(s, &slab_caches, list) {
2354 local_irq_save(flags);
2355 __flush_cpu_slab(s, cpu);
2356 local_irq_restore(flags);
2358 mutex_unlock(&slab_mutex);
2359 return 0;
2363 * Check if the objects in a per cpu structure fit numa
2364 * locality expectations.
2366 static inline int node_match(struct page *page, int node)
2368 #ifdef CONFIG_NUMA
2369 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2370 return 0;
2371 #endif
2372 return 1;
2375 #ifdef CONFIG_SLUB_DEBUG
2376 static int count_free(struct page *page)
2378 return page->objects - page->inuse;
2381 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2383 return atomic_long_read(&n->total_objects);
2385 #endif /* CONFIG_SLUB_DEBUG */
2387 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2388 static unsigned long count_partial(struct kmem_cache_node *n,
2389 int (*get_count)(struct page *))
2391 unsigned long flags;
2392 unsigned long x = 0;
2393 struct page *page;
2395 spin_lock_irqsave(&n->list_lock, flags);
2396 list_for_each_entry(page, &n->partial, lru)
2397 x += get_count(page);
2398 spin_unlock_irqrestore(&n->list_lock, flags);
2399 return x;
2401 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2403 static noinline void
2404 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2406 #ifdef CONFIG_SLUB_DEBUG
2407 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2408 DEFAULT_RATELIMIT_BURST);
2409 int node;
2410 struct kmem_cache_node *n;
2412 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2413 return;
2415 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2416 nid, gfpflags, &gfpflags);
2417 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2418 s->name, s->object_size, s->size, oo_order(s->oo),
2419 oo_order(s->min));
2421 if (oo_order(s->min) > get_order(s->object_size))
2422 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2423 s->name);
2425 for_each_kmem_cache_node(s, node, n) {
2426 unsigned long nr_slabs;
2427 unsigned long nr_objs;
2428 unsigned long nr_free;
2430 nr_free = count_partial(n, count_free);
2431 nr_slabs = node_nr_slabs(n);
2432 nr_objs = node_nr_objs(n);
2434 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2435 node, nr_slabs, nr_objs, nr_free);
2437 #endif
2440 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2441 int node, struct kmem_cache_cpu **pc)
2443 void *freelist;
2444 struct kmem_cache_cpu *c = *pc;
2445 struct page *page;
2447 freelist = get_partial(s, flags, node, c);
2449 if (freelist)
2450 return freelist;
2452 page = new_slab(s, flags, node);
2453 if (page) {
2454 c = raw_cpu_ptr(s->cpu_slab);
2455 if (c->page)
2456 flush_slab(s, c);
2459 * No other reference to the page yet so we can
2460 * muck around with it freely without cmpxchg
2462 freelist = page->freelist;
2463 page->freelist = NULL;
2465 stat(s, ALLOC_SLAB);
2466 c->page = page;
2467 *pc = c;
2468 } else
2469 freelist = NULL;
2471 return freelist;
2474 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2476 if (unlikely(PageSlabPfmemalloc(page)))
2477 return gfp_pfmemalloc_allowed(gfpflags);
2479 return true;
2483 * Check the page->freelist of a page and either transfer the freelist to the
2484 * per cpu freelist or deactivate the page.
2486 * The page is still frozen if the return value is not NULL.
2488 * If this function returns NULL then the page has been unfrozen.
2490 * This function must be called with interrupt disabled.
2492 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2494 struct page new;
2495 unsigned long counters;
2496 void *freelist;
2498 do {
2499 freelist = page->freelist;
2500 counters = page->counters;
2502 new.counters = counters;
2503 VM_BUG_ON(!new.frozen);
2505 new.inuse = page->objects;
2506 new.frozen = freelist != NULL;
2508 } while (!__cmpxchg_double_slab(s, page,
2509 freelist, counters,
2510 NULL, new.counters,
2511 "get_freelist"));
2513 return freelist;
2517 * Slow path. The lockless freelist is empty or we need to perform
2518 * debugging duties.
2520 * Processing is still very fast if new objects have been freed to the
2521 * regular freelist. In that case we simply take over the regular freelist
2522 * as the lockless freelist and zap the regular freelist.
2524 * If that is not working then we fall back to the partial lists. We take the
2525 * first element of the freelist as the object to allocate now and move the
2526 * rest of the freelist to the lockless freelist.
2528 * And if we were unable to get a new slab from the partial slab lists then
2529 * we need to allocate a new slab. This is the slowest path since it involves
2530 * a call to the page allocator and the setup of a new slab.
2532 * Version of __slab_alloc to use when we know that interrupts are
2533 * already disabled (which is the case for bulk allocation).
2535 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2536 unsigned long addr, struct kmem_cache_cpu *c)
2538 void *freelist;
2539 struct page *page;
2541 page = c->page;
2542 if (!page)
2543 goto new_slab;
2544 redo:
2546 if (unlikely(!node_match(page, node))) {
2547 int searchnode = node;
2549 if (node != NUMA_NO_NODE && !node_present_pages(node))
2550 searchnode = node_to_mem_node(node);
2552 if (unlikely(!node_match(page, searchnode))) {
2553 stat(s, ALLOC_NODE_MISMATCH);
2554 deactivate_slab(s, page, c->freelist, c);
2555 goto new_slab;
2560 * By rights, we should be searching for a slab page that was
2561 * PFMEMALLOC but right now, we are losing the pfmemalloc
2562 * information when the page leaves the per-cpu allocator
2564 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2565 deactivate_slab(s, page, c->freelist, c);
2566 goto new_slab;
2569 /* must check again c->freelist in case of cpu migration or IRQ */
2570 freelist = c->freelist;
2571 if (freelist)
2572 goto load_freelist;
2574 freelist = get_freelist(s, page);
2576 if (!freelist) {
2577 c->page = NULL;
2578 stat(s, DEACTIVATE_BYPASS);
2579 goto new_slab;
2582 stat(s, ALLOC_REFILL);
2584 load_freelist:
2586 * freelist is pointing to the list of objects to be used.
2587 * page is pointing to the page from which the objects are obtained.
2588 * That page must be frozen for per cpu allocations to work.
2590 VM_BUG_ON(!c->page->frozen);
2591 c->freelist = get_freepointer(s, freelist);
2592 c->tid = next_tid(c->tid);
2593 return freelist;
2595 new_slab:
2597 if (slub_percpu_partial(c)) {
2598 page = c->page = slub_percpu_partial(c);
2599 slub_set_percpu_partial(c, page);
2600 stat(s, CPU_PARTIAL_ALLOC);
2601 goto redo;
2604 freelist = new_slab_objects(s, gfpflags, node, &c);
2606 if (unlikely(!freelist)) {
2607 slab_out_of_memory(s, gfpflags, node);
2608 return NULL;
2611 page = c->page;
2612 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2613 goto load_freelist;
2615 /* Only entered in the debug case */
2616 if (kmem_cache_debug(s) &&
2617 !alloc_debug_processing(s, page, freelist, addr))
2618 goto new_slab; /* Slab failed checks. Next slab needed */
2620 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2621 return freelist;
2625 * Another one that disabled interrupt and compensates for possible
2626 * cpu changes by refetching the per cpu area pointer.
2628 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2629 unsigned long addr, struct kmem_cache_cpu *c)
2631 void *p;
2632 unsigned long flags;
2634 local_irq_save(flags);
2635 #ifdef CONFIG_PREEMPT
2637 * We may have been preempted and rescheduled on a different
2638 * cpu before disabling interrupts. Need to reload cpu area
2639 * pointer.
2641 c = this_cpu_ptr(s->cpu_slab);
2642 #endif
2644 p = ___slab_alloc(s, gfpflags, node, addr, c);
2645 local_irq_restore(flags);
2646 return p;
2650 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2651 * have the fastpath folded into their functions. So no function call
2652 * overhead for requests that can be satisfied on the fastpath.
2654 * The fastpath works by first checking if the lockless freelist can be used.
2655 * If not then __slab_alloc is called for slow processing.
2657 * Otherwise we can simply pick the next object from the lockless free list.
2659 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2660 gfp_t gfpflags, int node, unsigned long addr)
2662 void *object;
2663 struct kmem_cache_cpu *c;
2664 struct page *page;
2665 unsigned long tid;
2667 s = slab_pre_alloc_hook(s, gfpflags);
2668 if (!s)
2669 return NULL;
2670 redo:
2672 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2673 * enabled. We may switch back and forth between cpus while
2674 * reading from one cpu area. That does not matter as long
2675 * as we end up on the original cpu again when doing the cmpxchg.
2677 * We should guarantee that tid and kmem_cache are retrieved on
2678 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2679 * to check if it is matched or not.
2681 do {
2682 tid = this_cpu_read(s->cpu_slab->tid);
2683 c = raw_cpu_ptr(s->cpu_slab);
2684 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2685 unlikely(tid != READ_ONCE(c->tid)));
2688 * Irqless object alloc/free algorithm used here depends on sequence
2689 * of fetching cpu_slab's data. tid should be fetched before anything
2690 * on c to guarantee that object and page associated with previous tid
2691 * won't be used with current tid. If we fetch tid first, object and
2692 * page could be one associated with next tid and our alloc/free
2693 * request will be failed. In this case, we will retry. So, no problem.
2695 barrier();
2698 * The transaction ids are globally unique per cpu and per operation on
2699 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2700 * occurs on the right processor and that there was no operation on the
2701 * linked list in between.
2704 object = c->freelist;
2705 page = c->page;
2706 if (unlikely(!object || !node_match(page, node))) {
2707 object = __slab_alloc(s, gfpflags, node, addr, c);
2708 stat(s, ALLOC_SLOWPATH);
2709 } else {
2710 void *next_object = get_freepointer_safe(s, object);
2713 * The cmpxchg will only match if there was no additional
2714 * operation and if we are on the right processor.
2716 * The cmpxchg does the following atomically (without lock
2717 * semantics!)
2718 * 1. Relocate first pointer to the current per cpu area.
2719 * 2. Verify that tid and freelist have not been changed
2720 * 3. If they were not changed replace tid and freelist
2722 * Since this is without lock semantics the protection is only
2723 * against code executing on this cpu *not* from access by
2724 * other cpus.
2726 if (unlikely(!this_cpu_cmpxchg_double(
2727 s->cpu_slab->freelist, s->cpu_slab->tid,
2728 object, tid,
2729 next_object, next_tid(tid)))) {
2731 note_cmpxchg_failure("slab_alloc", s, tid);
2732 goto redo;
2734 prefetch_freepointer(s, next_object);
2735 stat(s, ALLOC_FASTPATH);
2738 if (unlikely(gfpflags & __GFP_ZERO) && object)
2739 memset(object, 0, s->object_size);
2741 slab_post_alloc_hook(s, gfpflags, 1, &object);
2743 return object;
2746 static __always_inline void *slab_alloc(struct kmem_cache *s,
2747 gfp_t gfpflags, unsigned long addr)
2749 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2752 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2754 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2756 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2757 s->size, gfpflags);
2759 return ret;
2761 EXPORT_SYMBOL(kmem_cache_alloc);
2763 #ifdef CONFIG_TRACING
2764 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2766 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2767 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2768 kasan_kmalloc(s, ret, size, gfpflags);
2769 return ret;
2771 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2772 #endif
2774 #ifdef CONFIG_NUMA
2775 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2777 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2779 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2780 s->object_size, s->size, gfpflags, node);
2782 return ret;
2784 EXPORT_SYMBOL(kmem_cache_alloc_node);
2786 #ifdef CONFIG_TRACING
2787 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2788 gfp_t gfpflags,
2789 int node, size_t size)
2791 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2793 trace_kmalloc_node(_RET_IP_, ret,
2794 size, s->size, gfpflags, node);
2796 kasan_kmalloc(s, ret, size, gfpflags);
2797 return ret;
2799 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2800 #endif
2801 #endif
2804 * Slow path handling. This may still be called frequently since objects
2805 * have a longer lifetime than the cpu slabs in most processing loads.
2807 * So we still attempt to reduce cache line usage. Just take the slab
2808 * lock and free the item. If there is no additional partial page
2809 * handling required then we can return immediately.
2811 static void __slab_free(struct kmem_cache *s, struct page *page,
2812 void *head, void *tail, int cnt,
2813 unsigned long addr)
2816 void *prior;
2817 int was_frozen;
2818 struct page new;
2819 unsigned long counters;
2820 struct kmem_cache_node *n = NULL;
2821 unsigned long uninitialized_var(flags);
2823 stat(s, FREE_SLOWPATH);
2825 if (kmem_cache_debug(s) &&
2826 !free_debug_processing(s, page, head, tail, cnt, addr))
2827 return;
2829 do {
2830 if (unlikely(n)) {
2831 spin_unlock_irqrestore(&n->list_lock, flags);
2832 n = NULL;
2834 prior = page->freelist;
2835 counters = page->counters;
2836 set_freepointer(s, tail, prior);
2837 new.counters = counters;
2838 was_frozen = new.frozen;
2839 new.inuse -= cnt;
2840 if ((!new.inuse || !prior) && !was_frozen) {
2842 if (kmem_cache_has_cpu_partial(s) && !prior) {
2845 * Slab was on no list before and will be
2846 * partially empty
2847 * We can defer the list move and instead
2848 * freeze it.
2850 new.frozen = 1;
2852 } else { /* Needs to be taken off a list */
2854 n = get_node(s, page_to_nid(page));
2856 * Speculatively acquire the list_lock.
2857 * If the cmpxchg does not succeed then we may
2858 * drop the list_lock without any processing.
2860 * Otherwise the list_lock will synchronize with
2861 * other processors updating the list of slabs.
2863 spin_lock_irqsave(&n->list_lock, flags);
2868 } while (!cmpxchg_double_slab(s, page,
2869 prior, counters,
2870 head, new.counters,
2871 "__slab_free"));
2873 if (likely(!n)) {
2876 * If we just froze the page then put it onto the
2877 * per cpu partial list.
2879 if (new.frozen && !was_frozen) {
2880 put_cpu_partial(s, page, 1);
2881 stat(s, CPU_PARTIAL_FREE);
2884 * The list lock was not taken therefore no list
2885 * activity can be necessary.
2887 if (was_frozen)
2888 stat(s, FREE_FROZEN);
2889 return;
2892 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2893 goto slab_empty;
2896 * Objects left in the slab. If it was not on the partial list before
2897 * then add it.
2899 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2900 if (kmem_cache_debug(s))
2901 remove_full(s, n, page);
2902 add_partial(n, page, DEACTIVATE_TO_TAIL);
2903 stat(s, FREE_ADD_PARTIAL);
2905 spin_unlock_irqrestore(&n->list_lock, flags);
2906 return;
2908 slab_empty:
2909 if (prior) {
2911 * Slab on the partial list.
2913 remove_partial(n, page);
2914 stat(s, FREE_REMOVE_PARTIAL);
2915 } else {
2916 /* Slab must be on the full list */
2917 remove_full(s, n, page);
2920 spin_unlock_irqrestore(&n->list_lock, flags);
2921 stat(s, FREE_SLAB);
2922 discard_slab(s, page);
2926 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2927 * can perform fastpath freeing without additional function calls.
2929 * The fastpath is only possible if we are freeing to the current cpu slab
2930 * of this processor. This typically the case if we have just allocated
2931 * the item before.
2933 * If fastpath is not possible then fall back to __slab_free where we deal
2934 * with all sorts of special processing.
2936 * Bulk free of a freelist with several objects (all pointing to the
2937 * same page) possible by specifying head and tail ptr, plus objects
2938 * count (cnt). Bulk free indicated by tail pointer being set.
2940 static __always_inline void do_slab_free(struct kmem_cache *s,
2941 struct page *page, void *head, void *tail,
2942 int cnt, unsigned long addr)
2944 void *tail_obj = tail ? : head;
2945 struct kmem_cache_cpu *c;
2946 unsigned long tid;
2947 redo:
2949 * Determine the currently cpus per cpu slab.
2950 * The cpu may change afterward. However that does not matter since
2951 * data is retrieved via this pointer. If we are on the same cpu
2952 * during the cmpxchg then the free will succeed.
2954 do {
2955 tid = this_cpu_read(s->cpu_slab->tid);
2956 c = raw_cpu_ptr(s->cpu_slab);
2957 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2958 unlikely(tid != READ_ONCE(c->tid)));
2960 /* Same with comment on barrier() in slab_alloc_node() */
2961 barrier();
2963 if (likely(page == c->page)) {
2964 set_freepointer(s, tail_obj, c->freelist);
2966 if (unlikely(!this_cpu_cmpxchg_double(
2967 s->cpu_slab->freelist, s->cpu_slab->tid,
2968 c->freelist, tid,
2969 head, next_tid(tid)))) {
2971 note_cmpxchg_failure("slab_free", s, tid);
2972 goto redo;
2974 stat(s, FREE_FASTPATH);
2975 } else
2976 __slab_free(s, page, head, tail_obj, cnt, addr);
2980 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2981 void *head, void *tail, int cnt,
2982 unsigned long addr)
2985 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2986 * to remove objects, whose reuse must be delayed.
2988 if (slab_free_freelist_hook(s, &head, &tail))
2989 do_slab_free(s, page, head, tail, cnt, addr);
2992 #ifdef CONFIG_KASAN
2993 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2995 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2997 #endif
2999 void kmem_cache_free(struct kmem_cache *s, void *x)
3001 s = cache_from_obj(s, x);
3002 if (!s)
3003 return;
3004 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3005 trace_kmem_cache_free(_RET_IP_, x);
3007 EXPORT_SYMBOL(kmem_cache_free);
3009 struct detached_freelist {
3010 struct page *page;
3011 void *tail;
3012 void *freelist;
3013 int cnt;
3014 struct kmem_cache *s;
3018 * This function progressively scans the array with free objects (with
3019 * a limited look ahead) and extract objects belonging to the same
3020 * page. It builds a detached freelist directly within the given
3021 * page/objects. This can happen without any need for
3022 * synchronization, because the objects are owned by running process.
3023 * The freelist is build up as a single linked list in the objects.
3024 * The idea is, that this detached freelist can then be bulk
3025 * transferred to the real freelist(s), but only requiring a single
3026 * synchronization primitive. Look ahead in the array is limited due
3027 * to performance reasons.
3029 static inline
3030 int build_detached_freelist(struct kmem_cache *s, size_t size,
3031 void **p, struct detached_freelist *df)
3033 size_t first_skipped_index = 0;
3034 int lookahead = 3;
3035 void *object;
3036 struct page *page;
3038 /* Always re-init detached_freelist */
3039 df->page = NULL;
3041 do {
3042 object = p[--size];
3043 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3044 } while (!object && size);
3046 if (!object)
3047 return 0;
3049 page = virt_to_head_page(object);
3050 if (!s) {
3051 /* Handle kalloc'ed objects */
3052 if (unlikely(!PageSlab(page))) {
3053 BUG_ON(!PageCompound(page));
3054 kfree_hook(object);
3055 __free_pages(page, compound_order(page));
3056 p[size] = NULL; /* mark object processed */
3057 return size;
3059 /* Derive kmem_cache from object */
3060 df->s = page->slab_cache;
3061 } else {
3062 df->s = cache_from_obj(s, object); /* Support for memcg */
3065 /* Start new detached freelist */
3066 df->page = page;
3067 set_freepointer(df->s, object, NULL);
3068 df->tail = object;
3069 df->freelist = object;
3070 p[size] = NULL; /* mark object processed */
3071 df->cnt = 1;
3073 while (size) {
3074 object = p[--size];
3075 if (!object)
3076 continue; /* Skip processed objects */
3078 /* df->page is always set at this point */
3079 if (df->page == virt_to_head_page(object)) {
3080 /* Opportunity build freelist */
3081 set_freepointer(df->s, object, df->freelist);
3082 df->freelist = object;
3083 df->cnt++;
3084 p[size] = NULL; /* mark object processed */
3086 continue;
3089 /* Limit look ahead search */
3090 if (!--lookahead)
3091 break;
3093 if (!first_skipped_index)
3094 first_skipped_index = size + 1;
3097 return first_skipped_index;
3100 /* Note that interrupts must be enabled when calling this function. */
3101 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3103 if (WARN_ON(!size))
3104 return;
3106 do {
3107 struct detached_freelist df;
3109 size = build_detached_freelist(s, size, p, &df);
3110 if (!df.page)
3111 continue;
3113 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3114 } while (likely(size));
3116 EXPORT_SYMBOL(kmem_cache_free_bulk);
3118 /* Note that interrupts must be enabled when calling this function. */
3119 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3120 void **p)
3122 struct kmem_cache_cpu *c;
3123 int i;
3125 /* memcg and kmem_cache debug support */
3126 s = slab_pre_alloc_hook(s, flags);
3127 if (unlikely(!s))
3128 return false;
3130 * Drain objects in the per cpu slab, while disabling local
3131 * IRQs, which protects against PREEMPT and interrupts
3132 * handlers invoking normal fastpath.
3134 local_irq_disable();
3135 c = this_cpu_ptr(s->cpu_slab);
3137 for (i = 0; i < size; i++) {
3138 void *object = c->freelist;
3140 if (unlikely(!object)) {
3142 * Invoking slow path likely have side-effect
3143 * of re-populating per CPU c->freelist
3145 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3146 _RET_IP_, c);
3147 if (unlikely(!p[i]))
3148 goto error;
3150 c = this_cpu_ptr(s->cpu_slab);
3151 continue; /* goto for-loop */
3153 c->freelist = get_freepointer(s, object);
3154 p[i] = object;
3156 c->tid = next_tid(c->tid);
3157 local_irq_enable();
3159 /* Clear memory outside IRQ disabled fastpath loop */
3160 if (unlikely(flags & __GFP_ZERO)) {
3161 int j;
3163 for (j = 0; j < i; j++)
3164 memset(p[j], 0, s->object_size);
3167 /* memcg and kmem_cache debug support */
3168 slab_post_alloc_hook(s, flags, size, p);
3169 return i;
3170 error:
3171 local_irq_enable();
3172 slab_post_alloc_hook(s, flags, i, p);
3173 __kmem_cache_free_bulk(s, i, p);
3174 return 0;
3176 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3180 * Object placement in a slab is made very easy because we always start at
3181 * offset 0. If we tune the size of the object to the alignment then we can
3182 * get the required alignment by putting one properly sized object after
3183 * another.
3185 * Notice that the allocation order determines the sizes of the per cpu
3186 * caches. Each processor has always one slab available for allocations.
3187 * Increasing the allocation order reduces the number of times that slabs
3188 * must be moved on and off the partial lists and is therefore a factor in
3189 * locking overhead.
3193 * Mininum / Maximum order of slab pages. This influences locking overhead
3194 * and slab fragmentation. A higher order reduces the number of partial slabs
3195 * and increases the number of allocations possible without having to
3196 * take the list_lock.
3198 static unsigned int slub_min_order;
3199 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3200 static unsigned int slub_min_objects;
3203 * Calculate the order of allocation given an slab object size.
3205 * The order of allocation has significant impact on performance and other
3206 * system components. Generally order 0 allocations should be preferred since
3207 * order 0 does not cause fragmentation in the page allocator. Larger objects
3208 * be problematic to put into order 0 slabs because there may be too much
3209 * unused space left. We go to a higher order if more than 1/16th of the slab
3210 * would be wasted.
3212 * In order to reach satisfactory performance we must ensure that a minimum
3213 * number of objects is in one slab. Otherwise we may generate too much
3214 * activity on the partial lists which requires taking the list_lock. This is
3215 * less a concern for large slabs though which are rarely used.
3217 * slub_max_order specifies the order where we begin to stop considering the
3218 * number of objects in a slab as critical. If we reach slub_max_order then
3219 * we try to keep the page order as low as possible. So we accept more waste
3220 * of space in favor of a small page order.
3222 * Higher order allocations also allow the placement of more objects in a
3223 * slab and thereby reduce object handling overhead. If the user has
3224 * requested a higher mininum order then we start with that one instead of
3225 * the smallest order which will fit the object.
3227 static inline unsigned int slab_order(unsigned int size,
3228 unsigned int min_objects, unsigned int max_order,
3229 unsigned int fract_leftover, unsigned int reserved)
3231 unsigned int min_order = slub_min_order;
3232 unsigned int order;
3234 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3235 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3237 for (order = max(min_order, (unsigned int)get_order(min_objects * size + reserved));
3238 order <= max_order; order++) {
3240 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3241 unsigned int rem;
3243 rem = (slab_size - reserved) % size;
3245 if (rem <= slab_size / fract_leftover)
3246 break;
3249 return order;
3252 static inline int calculate_order(unsigned int size, unsigned int reserved)
3254 unsigned int order;
3255 unsigned int min_objects;
3256 unsigned int max_objects;
3259 * Attempt to find best configuration for a slab. This
3260 * works by first attempting to generate a layout with
3261 * the best configuration and backing off gradually.
3263 * First we increase the acceptable waste in a slab. Then
3264 * we reduce the minimum objects required in a slab.
3266 min_objects = slub_min_objects;
3267 if (!min_objects)
3268 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3269 max_objects = order_objects(slub_max_order, size, reserved);
3270 min_objects = min(min_objects, max_objects);
3272 while (min_objects > 1) {
3273 unsigned int fraction;
3275 fraction = 16;
3276 while (fraction >= 4) {
3277 order = slab_order(size, min_objects,
3278 slub_max_order, fraction, reserved);
3279 if (order <= slub_max_order)
3280 return order;
3281 fraction /= 2;
3283 min_objects--;
3287 * We were unable to place multiple objects in a slab. Now
3288 * lets see if we can place a single object there.
3290 order = slab_order(size, 1, slub_max_order, 1, reserved);
3291 if (order <= slub_max_order)
3292 return order;
3295 * Doh this slab cannot be placed using slub_max_order.
3297 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3298 if (order < MAX_ORDER)
3299 return order;
3300 return -ENOSYS;
3303 static void
3304 init_kmem_cache_node(struct kmem_cache_node *n)
3306 n->nr_partial = 0;
3307 spin_lock_init(&n->list_lock);
3308 INIT_LIST_HEAD(&n->partial);
3309 #ifdef CONFIG_SLUB_DEBUG
3310 atomic_long_set(&n->nr_slabs, 0);
3311 atomic_long_set(&n->total_objects, 0);
3312 INIT_LIST_HEAD(&n->full);
3313 #endif
3316 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3318 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3319 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3322 * Must align to double word boundary for the double cmpxchg
3323 * instructions to work; see __pcpu_double_call_return_bool().
3325 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3326 2 * sizeof(void *));
3328 if (!s->cpu_slab)
3329 return 0;
3331 init_kmem_cache_cpus(s);
3333 return 1;
3336 static struct kmem_cache *kmem_cache_node;
3339 * No kmalloc_node yet so do it by hand. We know that this is the first
3340 * slab on the node for this slabcache. There are no concurrent accesses
3341 * possible.
3343 * Note that this function only works on the kmem_cache_node
3344 * when allocating for the kmem_cache_node. This is used for bootstrapping
3345 * memory on a fresh node that has no slab structures yet.
3347 static void early_kmem_cache_node_alloc(int node)
3349 struct page *page;
3350 struct kmem_cache_node *n;
3352 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3354 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3356 BUG_ON(!page);
3357 if (page_to_nid(page) != node) {
3358 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3359 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3362 n = page->freelist;
3363 BUG_ON(!n);
3364 page->freelist = get_freepointer(kmem_cache_node, n);
3365 page->inuse = 1;
3366 page->frozen = 0;
3367 kmem_cache_node->node[node] = n;
3368 #ifdef CONFIG_SLUB_DEBUG
3369 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3370 init_tracking(kmem_cache_node, n);
3371 #endif
3372 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3373 GFP_KERNEL);
3374 init_kmem_cache_node(n);
3375 inc_slabs_node(kmem_cache_node, node, page->objects);
3378 * No locks need to be taken here as it has just been
3379 * initialized and there is no concurrent access.
3381 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3384 static void free_kmem_cache_nodes(struct kmem_cache *s)
3386 int node;
3387 struct kmem_cache_node *n;
3389 for_each_kmem_cache_node(s, node, n) {
3390 s->node[node] = NULL;
3391 kmem_cache_free(kmem_cache_node, n);
3395 void __kmem_cache_release(struct kmem_cache *s)
3397 cache_random_seq_destroy(s);
3398 free_percpu(s->cpu_slab);
3399 free_kmem_cache_nodes(s);
3402 static int init_kmem_cache_nodes(struct kmem_cache *s)
3404 int node;
3406 for_each_node_state(node, N_NORMAL_MEMORY) {
3407 struct kmem_cache_node *n;
3409 if (slab_state == DOWN) {
3410 early_kmem_cache_node_alloc(node);
3411 continue;
3413 n = kmem_cache_alloc_node(kmem_cache_node,
3414 GFP_KERNEL, node);
3416 if (!n) {
3417 free_kmem_cache_nodes(s);
3418 return 0;
3421 init_kmem_cache_node(n);
3422 s->node[node] = n;
3424 return 1;
3427 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3429 if (min < MIN_PARTIAL)
3430 min = MIN_PARTIAL;
3431 else if (min > MAX_PARTIAL)
3432 min = MAX_PARTIAL;
3433 s->min_partial = min;
3436 static void set_cpu_partial(struct kmem_cache *s)
3438 #ifdef CONFIG_SLUB_CPU_PARTIAL
3440 * cpu_partial determined the maximum number of objects kept in the
3441 * per cpu partial lists of a processor.
3443 * Per cpu partial lists mainly contain slabs that just have one
3444 * object freed. If they are used for allocation then they can be
3445 * filled up again with minimal effort. The slab will never hit the
3446 * per node partial lists and therefore no locking will be required.
3448 * This setting also determines
3450 * A) The number of objects from per cpu partial slabs dumped to the
3451 * per node list when we reach the limit.
3452 * B) The number of objects in cpu partial slabs to extract from the
3453 * per node list when we run out of per cpu objects. We only fetch
3454 * 50% to keep some capacity around for frees.
3456 if (!kmem_cache_has_cpu_partial(s))
3457 s->cpu_partial = 0;
3458 else if (s->size >= PAGE_SIZE)
3459 s->cpu_partial = 2;
3460 else if (s->size >= 1024)
3461 s->cpu_partial = 6;
3462 else if (s->size >= 256)
3463 s->cpu_partial = 13;
3464 else
3465 s->cpu_partial = 30;
3466 #endif
3470 * calculate_sizes() determines the order and the distribution of data within
3471 * a slab object.
3473 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3475 slab_flags_t flags = s->flags;
3476 unsigned int size = s->object_size;
3477 unsigned int order;
3480 * Round up object size to the next word boundary. We can only
3481 * place the free pointer at word boundaries and this determines
3482 * the possible location of the free pointer.
3484 size = ALIGN(size, sizeof(void *));
3486 #ifdef CONFIG_SLUB_DEBUG
3488 * Determine if we can poison the object itself. If the user of
3489 * the slab may touch the object after free or before allocation
3490 * then we should never poison the object itself.
3492 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3493 !s->ctor)
3494 s->flags |= __OBJECT_POISON;
3495 else
3496 s->flags &= ~__OBJECT_POISON;
3500 * If we are Redzoning then check if there is some space between the
3501 * end of the object and the free pointer. If not then add an
3502 * additional word to have some bytes to store Redzone information.
3504 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3505 size += sizeof(void *);
3506 #endif
3509 * With that we have determined the number of bytes in actual use
3510 * by the object. This is the potential offset to the free pointer.
3512 s->inuse = size;
3514 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3515 s->ctor)) {
3517 * Relocate free pointer after the object if it is not
3518 * permitted to overwrite the first word of the object on
3519 * kmem_cache_free.
3521 * This is the case if we do RCU, have a constructor or
3522 * destructor or are poisoning the objects.
3524 s->offset = size;
3525 size += sizeof(void *);
3528 #ifdef CONFIG_SLUB_DEBUG
3529 if (flags & SLAB_STORE_USER)
3531 * Need to store information about allocs and frees after
3532 * the object.
3534 size += 2 * sizeof(struct track);
3535 #endif
3537 kasan_cache_create(s, &size, &s->flags);
3538 #ifdef CONFIG_SLUB_DEBUG
3539 if (flags & SLAB_RED_ZONE) {
3541 * Add some empty padding so that we can catch
3542 * overwrites from earlier objects rather than let
3543 * tracking information or the free pointer be
3544 * corrupted if a user writes before the start
3545 * of the object.
3547 size += sizeof(void *);
3549 s->red_left_pad = sizeof(void *);
3550 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3551 size += s->red_left_pad;
3553 #endif
3556 * SLUB stores one object immediately after another beginning from
3557 * offset 0. In order to align the objects we have to simply size
3558 * each object to conform to the alignment.
3560 size = ALIGN(size, s->align);
3561 s->size = size;
3562 if (forced_order >= 0)
3563 order = forced_order;
3564 else
3565 order = calculate_order(size, s->reserved);
3567 if ((int)order < 0)
3568 return 0;
3570 s->allocflags = 0;
3571 if (order)
3572 s->allocflags |= __GFP_COMP;
3574 if (s->flags & SLAB_CACHE_DMA)
3575 s->allocflags |= GFP_DMA;
3577 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3578 s->allocflags |= __GFP_RECLAIMABLE;
3581 * Determine the number of objects per slab
3583 s->oo = oo_make(order, size, s->reserved);
3584 s->min = oo_make(get_order(size), size, s->reserved);
3585 if (oo_objects(s->oo) > oo_objects(s->max))
3586 s->max = s->oo;
3588 return !!oo_objects(s->oo);
3591 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3593 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3594 s->reserved = 0;
3595 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3596 s->random = get_random_long();
3597 #endif
3599 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3600 s->reserved = sizeof(struct rcu_head);
3602 if (!calculate_sizes(s, -1))
3603 goto error;
3604 if (disable_higher_order_debug) {
3606 * Disable debugging flags that store metadata if the min slab
3607 * order increased.
3609 if (get_order(s->size) > get_order(s->object_size)) {
3610 s->flags &= ~DEBUG_METADATA_FLAGS;
3611 s->offset = 0;
3612 if (!calculate_sizes(s, -1))
3613 goto error;
3617 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3618 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3619 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3620 /* Enable fast mode */
3621 s->flags |= __CMPXCHG_DOUBLE;
3622 #endif
3625 * The larger the object size is, the more pages we want on the partial
3626 * list to avoid pounding the page allocator excessively.
3628 set_min_partial(s, ilog2(s->size) / 2);
3630 set_cpu_partial(s);
3632 #ifdef CONFIG_NUMA
3633 s->remote_node_defrag_ratio = 1000;
3634 #endif
3636 /* Initialize the pre-computed randomized freelist if slab is up */
3637 if (slab_state >= UP) {
3638 if (init_cache_random_seq(s))
3639 goto error;
3642 if (!init_kmem_cache_nodes(s))
3643 goto error;
3645 if (alloc_kmem_cache_cpus(s))
3646 return 0;
3648 free_kmem_cache_nodes(s);
3649 error:
3650 if (flags & SLAB_PANIC)
3651 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3652 s->name, s->size, s->size,
3653 oo_order(s->oo), s->offset, (unsigned long)flags);
3654 return -EINVAL;
3657 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3658 const char *text)
3660 #ifdef CONFIG_SLUB_DEBUG
3661 void *addr = page_address(page);
3662 void *p;
3663 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3664 sizeof(long), GFP_ATOMIC);
3665 if (!map)
3666 return;
3667 slab_err(s, page, text, s->name);
3668 slab_lock(page);
3670 get_map(s, page, map);
3671 for_each_object(p, s, addr, page->objects) {
3673 if (!test_bit(slab_index(p, s, addr), map)) {
3674 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3675 print_tracking(s, p);
3678 slab_unlock(page);
3679 kfree(map);
3680 #endif
3684 * Attempt to free all partial slabs on a node.
3685 * This is called from __kmem_cache_shutdown(). We must take list_lock
3686 * because sysfs file might still access partial list after the shutdowning.
3688 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3690 LIST_HEAD(discard);
3691 struct page *page, *h;
3693 BUG_ON(irqs_disabled());
3694 spin_lock_irq(&n->list_lock);
3695 list_for_each_entry_safe(page, h, &n->partial, lru) {
3696 if (!page->inuse) {
3697 remove_partial(n, page);
3698 list_add(&page->lru, &discard);
3699 } else {
3700 list_slab_objects(s, page,
3701 "Objects remaining in %s on __kmem_cache_shutdown()");
3704 spin_unlock_irq(&n->list_lock);
3706 list_for_each_entry_safe(page, h, &discard, lru)
3707 discard_slab(s, page);
3710 bool __kmem_cache_empty(struct kmem_cache *s)
3712 int node;
3713 struct kmem_cache_node *n;
3715 for_each_kmem_cache_node(s, node, n)
3716 if (n->nr_partial || slabs_node(s, node))
3717 return false;
3718 return true;
3722 * Release all resources used by a slab cache.
3724 int __kmem_cache_shutdown(struct kmem_cache *s)
3726 int node;
3727 struct kmem_cache_node *n;
3729 flush_all(s);
3730 /* Attempt to free all objects */
3731 for_each_kmem_cache_node(s, node, n) {
3732 free_partial(s, n);
3733 if (n->nr_partial || slabs_node(s, node))
3734 return 1;
3736 sysfs_slab_remove(s);
3737 return 0;
3740 /********************************************************************
3741 * Kmalloc subsystem
3742 *******************************************************************/
3744 static int __init setup_slub_min_order(char *str)
3746 get_option(&str, (int *)&slub_min_order);
3748 return 1;
3751 __setup("slub_min_order=", setup_slub_min_order);
3753 static int __init setup_slub_max_order(char *str)
3755 get_option(&str, (int *)&slub_max_order);
3756 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3758 return 1;
3761 __setup("slub_max_order=", setup_slub_max_order);
3763 static int __init setup_slub_min_objects(char *str)
3765 get_option(&str, (int *)&slub_min_objects);
3767 return 1;
3770 __setup("slub_min_objects=", setup_slub_min_objects);
3772 void *__kmalloc(size_t size, gfp_t flags)
3774 struct kmem_cache *s;
3775 void *ret;
3777 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3778 return kmalloc_large(size, flags);
3780 s = kmalloc_slab(size, flags);
3782 if (unlikely(ZERO_OR_NULL_PTR(s)))
3783 return s;
3785 ret = slab_alloc(s, flags, _RET_IP_);
3787 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3789 kasan_kmalloc(s, ret, size, flags);
3791 return ret;
3793 EXPORT_SYMBOL(__kmalloc);
3795 #ifdef CONFIG_NUMA
3796 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3798 struct page *page;
3799 void *ptr = NULL;
3801 flags |= __GFP_COMP;
3802 page = alloc_pages_node(node, flags, get_order(size));
3803 if (page)
3804 ptr = page_address(page);
3806 kmalloc_large_node_hook(ptr, size, flags);
3807 return ptr;
3810 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3812 struct kmem_cache *s;
3813 void *ret;
3815 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3816 ret = kmalloc_large_node(size, flags, node);
3818 trace_kmalloc_node(_RET_IP_, ret,
3819 size, PAGE_SIZE << get_order(size),
3820 flags, node);
3822 return ret;
3825 s = kmalloc_slab(size, flags);
3827 if (unlikely(ZERO_OR_NULL_PTR(s)))
3828 return s;
3830 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3832 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3834 kasan_kmalloc(s, ret, size, flags);
3836 return ret;
3838 EXPORT_SYMBOL(__kmalloc_node);
3839 #endif
3841 #ifdef CONFIG_HARDENED_USERCOPY
3843 * Rejects incorrectly sized objects and objects that are to be copied
3844 * to/from userspace but do not fall entirely within the containing slab
3845 * cache's usercopy region.
3847 * Returns NULL if check passes, otherwise const char * to name of cache
3848 * to indicate an error.
3850 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3851 bool to_user)
3853 struct kmem_cache *s;
3854 unsigned int offset;
3855 size_t object_size;
3857 /* Find object and usable object size. */
3858 s = page->slab_cache;
3860 /* Reject impossible pointers. */
3861 if (ptr < page_address(page))
3862 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3863 to_user, 0, n);
3865 /* Find offset within object. */
3866 offset = (ptr - page_address(page)) % s->size;
3868 /* Adjust for redzone and reject if within the redzone. */
3869 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3870 if (offset < s->red_left_pad)
3871 usercopy_abort("SLUB object in left red zone",
3872 s->name, to_user, offset, n);
3873 offset -= s->red_left_pad;
3876 /* Allow address range falling entirely within usercopy region. */
3877 if (offset >= s->useroffset &&
3878 offset - s->useroffset <= s->usersize &&
3879 n <= s->useroffset - offset + s->usersize)
3880 return;
3883 * If the copy is still within the allocated object, produce
3884 * a warning instead of rejecting the copy. This is intended
3885 * to be a temporary method to find any missing usercopy
3886 * whitelists.
3888 object_size = slab_ksize(s);
3889 if (usercopy_fallback &&
3890 offset <= object_size && n <= object_size - offset) {
3891 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3892 return;
3895 usercopy_abort("SLUB object", s->name, to_user, offset, n);
3897 #endif /* CONFIG_HARDENED_USERCOPY */
3899 static size_t __ksize(const void *object)
3901 struct page *page;
3903 if (unlikely(object == ZERO_SIZE_PTR))
3904 return 0;
3906 page = virt_to_head_page(object);
3908 if (unlikely(!PageSlab(page))) {
3909 WARN_ON(!PageCompound(page));
3910 return PAGE_SIZE << compound_order(page);
3913 return slab_ksize(page->slab_cache);
3916 size_t ksize(const void *object)
3918 size_t size = __ksize(object);
3919 /* We assume that ksize callers could use whole allocated area,
3920 * so we need to unpoison this area.
3922 kasan_unpoison_shadow(object, size);
3923 return size;
3925 EXPORT_SYMBOL(ksize);
3927 void kfree(const void *x)
3929 struct page *page;
3930 void *object = (void *)x;
3932 trace_kfree(_RET_IP_, x);
3934 if (unlikely(ZERO_OR_NULL_PTR(x)))
3935 return;
3937 page = virt_to_head_page(x);
3938 if (unlikely(!PageSlab(page))) {
3939 BUG_ON(!PageCompound(page));
3940 kfree_hook(object);
3941 __free_pages(page, compound_order(page));
3942 return;
3944 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3946 EXPORT_SYMBOL(kfree);
3948 #define SHRINK_PROMOTE_MAX 32
3951 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3952 * up most to the head of the partial lists. New allocations will then
3953 * fill those up and thus they can be removed from the partial lists.
3955 * The slabs with the least items are placed last. This results in them
3956 * being allocated from last increasing the chance that the last objects
3957 * are freed in them.
3959 int __kmem_cache_shrink(struct kmem_cache *s)
3961 int node;
3962 int i;
3963 struct kmem_cache_node *n;
3964 struct page *page;
3965 struct page *t;
3966 struct list_head discard;
3967 struct list_head promote[SHRINK_PROMOTE_MAX];
3968 unsigned long flags;
3969 int ret = 0;
3971 flush_all(s);
3972 for_each_kmem_cache_node(s, node, n) {
3973 INIT_LIST_HEAD(&discard);
3974 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3975 INIT_LIST_HEAD(promote + i);
3977 spin_lock_irqsave(&n->list_lock, flags);
3980 * Build lists of slabs to discard or promote.
3982 * Note that concurrent frees may occur while we hold the
3983 * list_lock. page->inuse here is the upper limit.
3985 list_for_each_entry_safe(page, t, &n->partial, lru) {
3986 int free = page->objects - page->inuse;
3988 /* Do not reread page->inuse */
3989 barrier();
3991 /* We do not keep full slabs on the list */
3992 BUG_ON(free <= 0);
3994 if (free == page->objects) {
3995 list_move(&page->lru, &discard);
3996 n->nr_partial--;
3997 } else if (free <= SHRINK_PROMOTE_MAX)
3998 list_move(&page->lru, promote + free - 1);
4002 * Promote the slabs filled up most to the head of the
4003 * partial list.
4005 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4006 list_splice(promote + i, &n->partial);
4008 spin_unlock_irqrestore(&n->list_lock, flags);
4010 /* Release empty slabs */
4011 list_for_each_entry_safe(page, t, &discard, lru)
4012 discard_slab(s, page);
4014 if (slabs_node(s, node))
4015 ret = 1;
4018 return ret;
4021 #ifdef CONFIG_MEMCG
4022 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4025 * Called with all the locks held after a sched RCU grace period.
4026 * Even if @s becomes empty after shrinking, we can't know that @s
4027 * doesn't have allocations already in-flight and thus can't
4028 * destroy @s until the associated memcg is released.
4030 * However, let's remove the sysfs files for empty caches here.
4031 * Each cache has a lot of interface files which aren't
4032 * particularly useful for empty draining caches; otherwise, we can
4033 * easily end up with millions of unnecessary sysfs files on
4034 * systems which have a lot of memory and transient cgroups.
4036 if (!__kmem_cache_shrink(s))
4037 sysfs_slab_remove(s);
4040 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4043 * Disable empty slabs caching. Used to avoid pinning offline
4044 * memory cgroups by kmem pages that can be freed.
4046 slub_set_cpu_partial(s, 0);
4047 s->min_partial = 0;
4050 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4051 * we have to make sure the change is visible before shrinking.
4053 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4055 #endif
4057 static int slab_mem_going_offline_callback(void *arg)
4059 struct kmem_cache *s;
4061 mutex_lock(&slab_mutex);
4062 list_for_each_entry(s, &slab_caches, list)
4063 __kmem_cache_shrink(s);
4064 mutex_unlock(&slab_mutex);
4066 return 0;
4069 static void slab_mem_offline_callback(void *arg)
4071 struct kmem_cache_node *n;
4072 struct kmem_cache *s;
4073 struct memory_notify *marg = arg;
4074 int offline_node;
4076 offline_node = marg->status_change_nid_normal;
4079 * If the node still has available memory. we need kmem_cache_node
4080 * for it yet.
4082 if (offline_node < 0)
4083 return;
4085 mutex_lock(&slab_mutex);
4086 list_for_each_entry(s, &slab_caches, list) {
4087 n = get_node(s, offline_node);
4088 if (n) {
4090 * if n->nr_slabs > 0, slabs still exist on the node
4091 * that is going down. We were unable to free them,
4092 * and offline_pages() function shouldn't call this
4093 * callback. So, we must fail.
4095 BUG_ON(slabs_node(s, offline_node));
4097 s->node[offline_node] = NULL;
4098 kmem_cache_free(kmem_cache_node, n);
4101 mutex_unlock(&slab_mutex);
4104 static int slab_mem_going_online_callback(void *arg)
4106 struct kmem_cache_node *n;
4107 struct kmem_cache *s;
4108 struct memory_notify *marg = arg;
4109 int nid = marg->status_change_nid_normal;
4110 int ret = 0;
4113 * If the node's memory is already available, then kmem_cache_node is
4114 * already created. Nothing to do.
4116 if (nid < 0)
4117 return 0;
4120 * We are bringing a node online. No memory is available yet. We must
4121 * allocate a kmem_cache_node structure in order to bring the node
4122 * online.
4124 mutex_lock(&slab_mutex);
4125 list_for_each_entry(s, &slab_caches, list) {
4127 * XXX: kmem_cache_alloc_node will fallback to other nodes
4128 * since memory is not yet available from the node that
4129 * is brought up.
4131 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4132 if (!n) {
4133 ret = -ENOMEM;
4134 goto out;
4136 init_kmem_cache_node(n);
4137 s->node[nid] = n;
4139 out:
4140 mutex_unlock(&slab_mutex);
4141 return ret;
4144 static int slab_memory_callback(struct notifier_block *self,
4145 unsigned long action, void *arg)
4147 int ret = 0;
4149 switch (action) {
4150 case MEM_GOING_ONLINE:
4151 ret = slab_mem_going_online_callback(arg);
4152 break;
4153 case MEM_GOING_OFFLINE:
4154 ret = slab_mem_going_offline_callback(arg);
4155 break;
4156 case MEM_OFFLINE:
4157 case MEM_CANCEL_ONLINE:
4158 slab_mem_offline_callback(arg);
4159 break;
4160 case MEM_ONLINE:
4161 case MEM_CANCEL_OFFLINE:
4162 break;
4164 if (ret)
4165 ret = notifier_from_errno(ret);
4166 else
4167 ret = NOTIFY_OK;
4168 return ret;
4171 static struct notifier_block slab_memory_callback_nb = {
4172 .notifier_call = slab_memory_callback,
4173 .priority = SLAB_CALLBACK_PRI,
4176 /********************************************************************
4177 * Basic setup of slabs
4178 *******************************************************************/
4181 * Used for early kmem_cache structures that were allocated using
4182 * the page allocator. Allocate them properly then fix up the pointers
4183 * that may be pointing to the wrong kmem_cache structure.
4186 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4188 int node;
4189 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4190 struct kmem_cache_node *n;
4192 memcpy(s, static_cache, kmem_cache->object_size);
4195 * This runs very early, and only the boot processor is supposed to be
4196 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4197 * IPIs around.
4199 __flush_cpu_slab(s, smp_processor_id());
4200 for_each_kmem_cache_node(s, node, n) {
4201 struct page *p;
4203 list_for_each_entry(p, &n->partial, lru)
4204 p->slab_cache = s;
4206 #ifdef CONFIG_SLUB_DEBUG
4207 list_for_each_entry(p, &n->full, lru)
4208 p->slab_cache = s;
4209 #endif
4211 slab_init_memcg_params(s);
4212 list_add(&s->list, &slab_caches);
4213 memcg_link_cache(s);
4214 return s;
4217 void __init kmem_cache_init(void)
4219 static __initdata struct kmem_cache boot_kmem_cache,
4220 boot_kmem_cache_node;
4222 if (debug_guardpage_minorder())
4223 slub_max_order = 0;
4225 kmem_cache_node = &boot_kmem_cache_node;
4226 kmem_cache = &boot_kmem_cache;
4228 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4229 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4231 register_hotmemory_notifier(&slab_memory_callback_nb);
4233 /* Able to allocate the per node structures */
4234 slab_state = PARTIAL;
4236 create_boot_cache(kmem_cache, "kmem_cache",
4237 offsetof(struct kmem_cache, node) +
4238 nr_node_ids * sizeof(struct kmem_cache_node *),
4239 SLAB_HWCACHE_ALIGN, 0, 0);
4241 kmem_cache = bootstrap(&boot_kmem_cache);
4244 * Allocate kmem_cache_node properly from the kmem_cache slab.
4245 * kmem_cache_node is separately allocated so no need to
4246 * update any list pointers.
4248 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4250 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4251 setup_kmalloc_cache_index_table();
4252 create_kmalloc_caches(0);
4254 /* Setup random freelists for each cache */
4255 init_freelist_randomization();
4257 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4258 slub_cpu_dead);
4260 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4261 cache_line_size(),
4262 slub_min_order, slub_max_order, slub_min_objects,
4263 nr_cpu_ids, nr_node_ids);
4266 void __init kmem_cache_init_late(void)
4270 struct kmem_cache *
4271 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4272 slab_flags_t flags, void (*ctor)(void *))
4274 struct kmem_cache *s, *c;
4276 s = find_mergeable(size, align, flags, name, ctor);
4277 if (s) {
4278 s->refcount++;
4281 * Adjust the object sizes so that we clear
4282 * the complete object on kzalloc.
4284 s->object_size = max(s->object_size, size);
4285 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4287 for_each_memcg_cache(c, s) {
4288 c->object_size = s->object_size;
4289 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4292 if (sysfs_slab_alias(s, name)) {
4293 s->refcount--;
4294 s = NULL;
4298 return s;
4301 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4303 int err;
4305 err = kmem_cache_open(s, flags);
4306 if (err)
4307 return err;
4309 /* Mutex is not taken during early boot */
4310 if (slab_state <= UP)
4311 return 0;
4313 memcg_propagate_slab_attrs(s);
4314 err = sysfs_slab_add(s);
4315 if (err)
4316 __kmem_cache_release(s);
4318 return err;
4321 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4323 struct kmem_cache *s;
4324 void *ret;
4326 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4327 return kmalloc_large(size, gfpflags);
4329 s = kmalloc_slab(size, gfpflags);
4331 if (unlikely(ZERO_OR_NULL_PTR(s)))
4332 return s;
4334 ret = slab_alloc(s, gfpflags, caller);
4336 /* Honor the call site pointer we received. */
4337 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4339 return ret;
4342 #ifdef CONFIG_NUMA
4343 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4344 int node, unsigned long caller)
4346 struct kmem_cache *s;
4347 void *ret;
4349 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4350 ret = kmalloc_large_node(size, gfpflags, node);
4352 trace_kmalloc_node(caller, ret,
4353 size, PAGE_SIZE << get_order(size),
4354 gfpflags, node);
4356 return ret;
4359 s = kmalloc_slab(size, gfpflags);
4361 if (unlikely(ZERO_OR_NULL_PTR(s)))
4362 return s;
4364 ret = slab_alloc_node(s, gfpflags, node, caller);
4366 /* Honor the call site pointer we received. */
4367 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4369 return ret;
4371 #endif
4373 #ifdef CONFIG_SYSFS
4374 static int count_inuse(struct page *page)
4376 return page->inuse;
4379 static int count_total(struct page *page)
4381 return page->objects;
4383 #endif
4385 #ifdef CONFIG_SLUB_DEBUG
4386 static int validate_slab(struct kmem_cache *s, struct page *page,
4387 unsigned long *map)
4389 void *p;
4390 void *addr = page_address(page);
4392 if (!check_slab(s, page) ||
4393 !on_freelist(s, page, NULL))
4394 return 0;
4396 /* Now we know that a valid freelist exists */
4397 bitmap_zero(map, page->objects);
4399 get_map(s, page, map);
4400 for_each_object(p, s, addr, page->objects) {
4401 if (test_bit(slab_index(p, s, addr), map))
4402 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4403 return 0;
4406 for_each_object(p, s, addr, page->objects)
4407 if (!test_bit(slab_index(p, s, addr), map))
4408 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4409 return 0;
4410 return 1;
4413 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4414 unsigned long *map)
4416 slab_lock(page);
4417 validate_slab(s, page, map);
4418 slab_unlock(page);
4421 static int validate_slab_node(struct kmem_cache *s,
4422 struct kmem_cache_node *n, unsigned long *map)
4424 unsigned long count = 0;
4425 struct page *page;
4426 unsigned long flags;
4428 spin_lock_irqsave(&n->list_lock, flags);
4430 list_for_each_entry(page, &n->partial, lru) {
4431 validate_slab_slab(s, page, map);
4432 count++;
4434 if (count != n->nr_partial)
4435 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4436 s->name, count, n->nr_partial);
4438 if (!(s->flags & SLAB_STORE_USER))
4439 goto out;
4441 list_for_each_entry(page, &n->full, lru) {
4442 validate_slab_slab(s, page, map);
4443 count++;
4445 if (count != atomic_long_read(&n->nr_slabs))
4446 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4447 s->name, count, atomic_long_read(&n->nr_slabs));
4449 out:
4450 spin_unlock_irqrestore(&n->list_lock, flags);
4451 return count;
4454 static long validate_slab_cache(struct kmem_cache *s)
4456 int node;
4457 unsigned long count = 0;
4458 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4459 sizeof(unsigned long), GFP_KERNEL);
4460 struct kmem_cache_node *n;
4462 if (!map)
4463 return -ENOMEM;
4465 flush_all(s);
4466 for_each_kmem_cache_node(s, node, n)
4467 count += validate_slab_node(s, n, map);
4468 kfree(map);
4469 return count;
4472 * Generate lists of code addresses where slabcache objects are allocated
4473 * and freed.
4476 struct location {
4477 unsigned long count;
4478 unsigned long addr;
4479 long long sum_time;
4480 long min_time;
4481 long max_time;
4482 long min_pid;
4483 long max_pid;
4484 DECLARE_BITMAP(cpus, NR_CPUS);
4485 nodemask_t nodes;
4488 struct loc_track {
4489 unsigned long max;
4490 unsigned long count;
4491 struct location *loc;
4494 static void free_loc_track(struct loc_track *t)
4496 if (t->max)
4497 free_pages((unsigned long)t->loc,
4498 get_order(sizeof(struct location) * t->max));
4501 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4503 struct location *l;
4504 int order;
4506 order = get_order(sizeof(struct location) * max);
4508 l = (void *)__get_free_pages(flags, order);
4509 if (!l)
4510 return 0;
4512 if (t->count) {
4513 memcpy(l, t->loc, sizeof(struct location) * t->count);
4514 free_loc_track(t);
4516 t->max = max;
4517 t->loc = l;
4518 return 1;
4521 static int add_location(struct loc_track *t, struct kmem_cache *s,
4522 const struct track *track)
4524 long start, end, pos;
4525 struct location *l;
4526 unsigned long caddr;
4527 unsigned long age = jiffies - track->when;
4529 start = -1;
4530 end = t->count;
4532 for ( ; ; ) {
4533 pos = start + (end - start + 1) / 2;
4536 * There is nothing at "end". If we end up there
4537 * we need to add something to before end.
4539 if (pos == end)
4540 break;
4542 caddr = t->loc[pos].addr;
4543 if (track->addr == caddr) {
4545 l = &t->loc[pos];
4546 l->count++;
4547 if (track->when) {
4548 l->sum_time += age;
4549 if (age < l->min_time)
4550 l->min_time = age;
4551 if (age > l->max_time)
4552 l->max_time = age;
4554 if (track->pid < l->min_pid)
4555 l->min_pid = track->pid;
4556 if (track->pid > l->max_pid)
4557 l->max_pid = track->pid;
4559 cpumask_set_cpu(track->cpu,
4560 to_cpumask(l->cpus));
4562 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4563 return 1;
4566 if (track->addr < caddr)
4567 end = pos;
4568 else
4569 start = pos;
4573 * Not found. Insert new tracking element.
4575 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4576 return 0;
4578 l = t->loc + pos;
4579 if (pos < t->count)
4580 memmove(l + 1, l,
4581 (t->count - pos) * sizeof(struct location));
4582 t->count++;
4583 l->count = 1;
4584 l->addr = track->addr;
4585 l->sum_time = age;
4586 l->min_time = age;
4587 l->max_time = age;
4588 l->min_pid = track->pid;
4589 l->max_pid = track->pid;
4590 cpumask_clear(to_cpumask(l->cpus));
4591 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4592 nodes_clear(l->nodes);
4593 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4594 return 1;
4597 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4598 struct page *page, enum track_item alloc,
4599 unsigned long *map)
4601 void *addr = page_address(page);
4602 void *p;
4604 bitmap_zero(map, page->objects);
4605 get_map(s, page, map);
4607 for_each_object(p, s, addr, page->objects)
4608 if (!test_bit(slab_index(p, s, addr), map))
4609 add_location(t, s, get_track(s, p, alloc));
4612 static int list_locations(struct kmem_cache *s, char *buf,
4613 enum track_item alloc)
4615 int len = 0;
4616 unsigned long i;
4617 struct loc_track t = { 0, 0, NULL };
4618 int node;
4619 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4620 sizeof(unsigned long), GFP_KERNEL);
4621 struct kmem_cache_node *n;
4623 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4624 GFP_KERNEL)) {
4625 kfree(map);
4626 return sprintf(buf, "Out of memory\n");
4628 /* Push back cpu slabs */
4629 flush_all(s);
4631 for_each_kmem_cache_node(s, node, n) {
4632 unsigned long flags;
4633 struct page *page;
4635 if (!atomic_long_read(&n->nr_slabs))
4636 continue;
4638 spin_lock_irqsave(&n->list_lock, flags);
4639 list_for_each_entry(page, &n->partial, lru)
4640 process_slab(&t, s, page, alloc, map);
4641 list_for_each_entry(page, &n->full, lru)
4642 process_slab(&t, s, page, alloc, map);
4643 spin_unlock_irqrestore(&n->list_lock, flags);
4646 for (i = 0; i < t.count; i++) {
4647 struct location *l = &t.loc[i];
4649 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4650 break;
4651 len += sprintf(buf + len, "%7ld ", l->count);
4653 if (l->addr)
4654 len += sprintf(buf + len, "%pS", (void *)l->addr);
4655 else
4656 len += sprintf(buf + len, "<not-available>");
4658 if (l->sum_time != l->min_time) {
4659 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4660 l->min_time,
4661 (long)div_u64(l->sum_time, l->count),
4662 l->max_time);
4663 } else
4664 len += sprintf(buf + len, " age=%ld",
4665 l->min_time);
4667 if (l->min_pid != l->max_pid)
4668 len += sprintf(buf + len, " pid=%ld-%ld",
4669 l->min_pid, l->max_pid);
4670 else
4671 len += sprintf(buf + len, " pid=%ld",
4672 l->min_pid);
4674 if (num_online_cpus() > 1 &&
4675 !cpumask_empty(to_cpumask(l->cpus)) &&
4676 len < PAGE_SIZE - 60)
4677 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4678 " cpus=%*pbl",
4679 cpumask_pr_args(to_cpumask(l->cpus)));
4681 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4682 len < PAGE_SIZE - 60)
4683 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4684 " nodes=%*pbl",
4685 nodemask_pr_args(&l->nodes));
4687 len += sprintf(buf + len, "\n");
4690 free_loc_track(&t);
4691 kfree(map);
4692 if (!t.count)
4693 len += sprintf(buf, "No data\n");
4694 return len;
4696 #endif
4698 #ifdef SLUB_RESILIENCY_TEST
4699 static void __init resiliency_test(void)
4701 u8 *p;
4703 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4705 pr_err("SLUB resiliency testing\n");
4706 pr_err("-----------------------\n");
4707 pr_err("A. Corruption after allocation\n");
4709 p = kzalloc(16, GFP_KERNEL);
4710 p[16] = 0x12;
4711 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4712 p + 16);
4714 validate_slab_cache(kmalloc_caches[4]);
4716 /* Hmmm... The next two are dangerous */
4717 p = kzalloc(32, GFP_KERNEL);
4718 p[32 + sizeof(void *)] = 0x34;
4719 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4721 pr_err("If allocated object is overwritten then not detectable\n\n");
4723 validate_slab_cache(kmalloc_caches[5]);
4724 p = kzalloc(64, GFP_KERNEL);
4725 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4726 *p = 0x56;
4727 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4729 pr_err("If allocated object is overwritten then not detectable\n\n");
4730 validate_slab_cache(kmalloc_caches[6]);
4732 pr_err("\nB. Corruption after free\n");
4733 p = kzalloc(128, GFP_KERNEL);
4734 kfree(p);
4735 *p = 0x78;
4736 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4737 validate_slab_cache(kmalloc_caches[7]);
4739 p = kzalloc(256, GFP_KERNEL);
4740 kfree(p);
4741 p[50] = 0x9a;
4742 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4743 validate_slab_cache(kmalloc_caches[8]);
4745 p = kzalloc(512, GFP_KERNEL);
4746 kfree(p);
4747 p[512] = 0xab;
4748 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4749 validate_slab_cache(kmalloc_caches[9]);
4751 #else
4752 #ifdef CONFIG_SYSFS
4753 static void resiliency_test(void) {};
4754 #endif
4755 #endif
4757 #ifdef CONFIG_SYSFS
4758 enum slab_stat_type {
4759 SL_ALL, /* All slabs */
4760 SL_PARTIAL, /* Only partially allocated slabs */
4761 SL_CPU, /* Only slabs used for cpu caches */
4762 SL_OBJECTS, /* Determine allocated objects not slabs */
4763 SL_TOTAL /* Determine object capacity not slabs */
4766 #define SO_ALL (1 << SL_ALL)
4767 #define SO_PARTIAL (1 << SL_PARTIAL)
4768 #define SO_CPU (1 << SL_CPU)
4769 #define SO_OBJECTS (1 << SL_OBJECTS)
4770 #define SO_TOTAL (1 << SL_TOTAL)
4772 #ifdef CONFIG_MEMCG
4773 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4775 static int __init setup_slub_memcg_sysfs(char *str)
4777 int v;
4779 if (get_option(&str, &v) > 0)
4780 memcg_sysfs_enabled = v;
4782 return 1;
4785 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4786 #endif
4788 static ssize_t show_slab_objects(struct kmem_cache *s,
4789 char *buf, unsigned long flags)
4791 unsigned long total = 0;
4792 int node;
4793 int x;
4794 unsigned long *nodes;
4796 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4797 if (!nodes)
4798 return -ENOMEM;
4800 if (flags & SO_CPU) {
4801 int cpu;
4803 for_each_possible_cpu(cpu) {
4804 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4805 cpu);
4806 int node;
4807 struct page *page;
4809 page = READ_ONCE(c->page);
4810 if (!page)
4811 continue;
4813 node = page_to_nid(page);
4814 if (flags & SO_TOTAL)
4815 x = page->objects;
4816 else if (flags & SO_OBJECTS)
4817 x = page->inuse;
4818 else
4819 x = 1;
4821 total += x;
4822 nodes[node] += x;
4824 page = slub_percpu_partial_read_once(c);
4825 if (page) {
4826 node = page_to_nid(page);
4827 if (flags & SO_TOTAL)
4828 WARN_ON_ONCE(1);
4829 else if (flags & SO_OBJECTS)
4830 WARN_ON_ONCE(1);
4831 else
4832 x = page->pages;
4833 total += x;
4834 nodes[node] += x;
4839 get_online_mems();
4840 #ifdef CONFIG_SLUB_DEBUG
4841 if (flags & SO_ALL) {
4842 struct kmem_cache_node *n;
4844 for_each_kmem_cache_node(s, node, n) {
4846 if (flags & SO_TOTAL)
4847 x = atomic_long_read(&n->total_objects);
4848 else if (flags & SO_OBJECTS)
4849 x = atomic_long_read(&n->total_objects) -
4850 count_partial(n, count_free);
4851 else
4852 x = atomic_long_read(&n->nr_slabs);
4853 total += x;
4854 nodes[node] += x;
4857 } else
4858 #endif
4859 if (flags & SO_PARTIAL) {
4860 struct kmem_cache_node *n;
4862 for_each_kmem_cache_node(s, node, n) {
4863 if (flags & SO_TOTAL)
4864 x = count_partial(n, count_total);
4865 else if (flags & SO_OBJECTS)
4866 x = count_partial(n, count_inuse);
4867 else
4868 x = n->nr_partial;
4869 total += x;
4870 nodes[node] += x;
4873 x = sprintf(buf, "%lu", total);
4874 #ifdef CONFIG_NUMA
4875 for (node = 0; node < nr_node_ids; node++)
4876 if (nodes[node])
4877 x += sprintf(buf + x, " N%d=%lu",
4878 node, nodes[node]);
4879 #endif
4880 put_online_mems();
4881 kfree(nodes);
4882 return x + sprintf(buf + x, "\n");
4885 #ifdef CONFIG_SLUB_DEBUG
4886 static int any_slab_objects(struct kmem_cache *s)
4888 int node;
4889 struct kmem_cache_node *n;
4891 for_each_kmem_cache_node(s, node, n)
4892 if (atomic_long_read(&n->total_objects))
4893 return 1;
4895 return 0;
4897 #endif
4899 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4900 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4902 struct slab_attribute {
4903 struct attribute attr;
4904 ssize_t (*show)(struct kmem_cache *s, char *buf);
4905 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4908 #define SLAB_ATTR_RO(_name) \
4909 static struct slab_attribute _name##_attr = \
4910 __ATTR(_name, 0400, _name##_show, NULL)
4912 #define SLAB_ATTR(_name) \
4913 static struct slab_attribute _name##_attr = \
4914 __ATTR(_name, 0600, _name##_show, _name##_store)
4916 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4918 return sprintf(buf, "%u\n", s->size);
4920 SLAB_ATTR_RO(slab_size);
4922 static ssize_t align_show(struct kmem_cache *s, char *buf)
4924 return sprintf(buf, "%u\n", s->align);
4926 SLAB_ATTR_RO(align);
4928 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4930 return sprintf(buf, "%u\n", s->object_size);
4932 SLAB_ATTR_RO(object_size);
4934 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4936 return sprintf(buf, "%u\n", oo_objects(s->oo));
4938 SLAB_ATTR_RO(objs_per_slab);
4940 static ssize_t order_store(struct kmem_cache *s,
4941 const char *buf, size_t length)
4943 unsigned int order;
4944 int err;
4946 err = kstrtouint(buf, 10, &order);
4947 if (err)
4948 return err;
4950 if (order > slub_max_order || order < slub_min_order)
4951 return -EINVAL;
4953 calculate_sizes(s, order);
4954 return length;
4957 static ssize_t order_show(struct kmem_cache *s, char *buf)
4959 return sprintf(buf, "%u\n", oo_order(s->oo));
4961 SLAB_ATTR(order);
4963 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4965 return sprintf(buf, "%lu\n", s->min_partial);
4968 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4969 size_t length)
4971 unsigned long min;
4972 int err;
4974 err = kstrtoul(buf, 10, &min);
4975 if (err)
4976 return err;
4978 set_min_partial(s, min);
4979 return length;
4981 SLAB_ATTR(min_partial);
4983 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4985 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4988 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4989 size_t length)
4991 unsigned int objects;
4992 int err;
4994 err = kstrtouint(buf, 10, &objects);
4995 if (err)
4996 return err;
4997 if (objects && !kmem_cache_has_cpu_partial(s))
4998 return -EINVAL;
5000 slub_set_cpu_partial(s, objects);
5001 flush_all(s);
5002 return length;
5004 SLAB_ATTR(cpu_partial);
5006 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5008 if (!s->ctor)
5009 return 0;
5010 return sprintf(buf, "%pS\n", s->ctor);
5012 SLAB_ATTR_RO(ctor);
5014 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5016 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5018 SLAB_ATTR_RO(aliases);
5020 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5022 return show_slab_objects(s, buf, SO_PARTIAL);
5024 SLAB_ATTR_RO(partial);
5026 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5028 return show_slab_objects(s, buf, SO_CPU);
5030 SLAB_ATTR_RO(cpu_slabs);
5032 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5034 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5036 SLAB_ATTR_RO(objects);
5038 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5040 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5042 SLAB_ATTR_RO(objects_partial);
5044 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5046 int objects = 0;
5047 int pages = 0;
5048 int cpu;
5049 int len;
5051 for_each_online_cpu(cpu) {
5052 struct page *page;
5054 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5056 if (page) {
5057 pages += page->pages;
5058 objects += page->pobjects;
5062 len = sprintf(buf, "%d(%d)", objects, pages);
5064 #ifdef CONFIG_SMP
5065 for_each_online_cpu(cpu) {
5066 struct page *page;
5068 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5070 if (page && len < PAGE_SIZE - 20)
5071 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5072 page->pobjects, page->pages);
5074 #endif
5075 return len + sprintf(buf + len, "\n");
5077 SLAB_ATTR_RO(slabs_cpu_partial);
5079 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5081 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5084 static ssize_t reclaim_account_store(struct kmem_cache *s,
5085 const char *buf, size_t length)
5087 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5088 if (buf[0] == '1')
5089 s->flags |= SLAB_RECLAIM_ACCOUNT;
5090 return length;
5092 SLAB_ATTR(reclaim_account);
5094 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5096 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5098 SLAB_ATTR_RO(hwcache_align);
5100 #ifdef CONFIG_ZONE_DMA
5101 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5103 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5105 SLAB_ATTR_RO(cache_dma);
5106 #endif
5108 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5110 return sprintf(buf, "%u\n", s->usersize);
5112 SLAB_ATTR_RO(usersize);
5114 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5116 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5118 SLAB_ATTR_RO(destroy_by_rcu);
5120 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5122 return sprintf(buf, "%u\n", s->reserved);
5124 SLAB_ATTR_RO(reserved);
5126 #ifdef CONFIG_SLUB_DEBUG
5127 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5129 return show_slab_objects(s, buf, SO_ALL);
5131 SLAB_ATTR_RO(slabs);
5133 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5135 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5137 SLAB_ATTR_RO(total_objects);
5139 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5141 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5144 static ssize_t sanity_checks_store(struct kmem_cache *s,
5145 const char *buf, size_t length)
5147 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5148 if (buf[0] == '1') {
5149 s->flags &= ~__CMPXCHG_DOUBLE;
5150 s->flags |= SLAB_CONSISTENCY_CHECKS;
5152 return length;
5154 SLAB_ATTR(sanity_checks);
5156 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5158 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5161 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5162 size_t length)
5165 * Tracing a merged cache is going to give confusing results
5166 * as well as cause other issues like converting a mergeable
5167 * cache into an umergeable one.
5169 if (s->refcount > 1)
5170 return -EINVAL;
5172 s->flags &= ~SLAB_TRACE;
5173 if (buf[0] == '1') {
5174 s->flags &= ~__CMPXCHG_DOUBLE;
5175 s->flags |= SLAB_TRACE;
5177 return length;
5179 SLAB_ATTR(trace);
5181 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5183 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5186 static ssize_t red_zone_store(struct kmem_cache *s,
5187 const char *buf, size_t length)
5189 if (any_slab_objects(s))
5190 return -EBUSY;
5192 s->flags &= ~SLAB_RED_ZONE;
5193 if (buf[0] == '1') {
5194 s->flags |= SLAB_RED_ZONE;
5196 calculate_sizes(s, -1);
5197 return length;
5199 SLAB_ATTR(red_zone);
5201 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5203 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5206 static ssize_t poison_store(struct kmem_cache *s,
5207 const char *buf, size_t length)
5209 if (any_slab_objects(s))
5210 return -EBUSY;
5212 s->flags &= ~SLAB_POISON;
5213 if (buf[0] == '1') {
5214 s->flags |= SLAB_POISON;
5216 calculate_sizes(s, -1);
5217 return length;
5219 SLAB_ATTR(poison);
5221 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5223 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5226 static ssize_t store_user_store(struct kmem_cache *s,
5227 const char *buf, size_t length)
5229 if (any_slab_objects(s))
5230 return -EBUSY;
5232 s->flags &= ~SLAB_STORE_USER;
5233 if (buf[0] == '1') {
5234 s->flags &= ~__CMPXCHG_DOUBLE;
5235 s->flags |= SLAB_STORE_USER;
5237 calculate_sizes(s, -1);
5238 return length;
5240 SLAB_ATTR(store_user);
5242 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5244 return 0;
5247 static ssize_t validate_store(struct kmem_cache *s,
5248 const char *buf, size_t length)
5250 int ret = -EINVAL;
5252 if (buf[0] == '1') {
5253 ret = validate_slab_cache(s);
5254 if (ret >= 0)
5255 ret = length;
5257 return ret;
5259 SLAB_ATTR(validate);
5261 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5263 if (!(s->flags & SLAB_STORE_USER))
5264 return -ENOSYS;
5265 return list_locations(s, buf, TRACK_ALLOC);
5267 SLAB_ATTR_RO(alloc_calls);
5269 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5271 if (!(s->flags & SLAB_STORE_USER))
5272 return -ENOSYS;
5273 return list_locations(s, buf, TRACK_FREE);
5275 SLAB_ATTR_RO(free_calls);
5276 #endif /* CONFIG_SLUB_DEBUG */
5278 #ifdef CONFIG_FAILSLAB
5279 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5281 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5284 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5285 size_t length)
5287 if (s->refcount > 1)
5288 return -EINVAL;
5290 s->flags &= ~SLAB_FAILSLAB;
5291 if (buf[0] == '1')
5292 s->flags |= SLAB_FAILSLAB;
5293 return length;
5295 SLAB_ATTR(failslab);
5296 #endif
5298 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5300 return 0;
5303 static ssize_t shrink_store(struct kmem_cache *s,
5304 const char *buf, size_t length)
5306 if (buf[0] == '1')
5307 kmem_cache_shrink(s);
5308 else
5309 return -EINVAL;
5310 return length;
5312 SLAB_ATTR(shrink);
5314 #ifdef CONFIG_NUMA
5315 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5317 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5320 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5321 const char *buf, size_t length)
5323 unsigned int ratio;
5324 int err;
5326 err = kstrtouint(buf, 10, &ratio);
5327 if (err)
5328 return err;
5329 if (ratio > 100)
5330 return -ERANGE;
5332 s->remote_node_defrag_ratio = ratio * 10;
5334 return length;
5336 SLAB_ATTR(remote_node_defrag_ratio);
5337 #endif
5339 #ifdef CONFIG_SLUB_STATS
5340 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5342 unsigned long sum = 0;
5343 int cpu;
5344 int len;
5345 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5347 if (!data)
5348 return -ENOMEM;
5350 for_each_online_cpu(cpu) {
5351 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5353 data[cpu] = x;
5354 sum += x;
5357 len = sprintf(buf, "%lu", sum);
5359 #ifdef CONFIG_SMP
5360 for_each_online_cpu(cpu) {
5361 if (data[cpu] && len < PAGE_SIZE - 20)
5362 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5364 #endif
5365 kfree(data);
5366 return len + sprintf(buf + len, "\n");
5369 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5371 int cpu;
5373 for_each_online_cpu(cpu)
5374 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5377 #define STAT_ATTR(si, text) \
5378 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5380 return show_stat(s, buf, si); \
5382 static ssize_t text##_store(struct kmem_cache *s, \
5383 const char *buf, size_t length) \
5385 if (buf[0] != '0') \
5386 return -EINVAL; \
5387 clear_stat(s, si); \
5388 return length; \
5390 SLAB_ATTR(text); \
5392 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5393 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5394 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5395 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5396 STAT_ATTR(FREE_FROZEN, free_frozen);
5397 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5398 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5399 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5400 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5401 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5402 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5403 STAT_ATTR(FREE_SLAB, free_slab);
5404 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5405 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5406 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5407 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5408 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5409 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5410 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5411 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5412 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5413 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5414 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5415 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5416 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5417 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5418 #endif
5420 static struct attribute *slab_attrs[] = {
5421 &slab_size_attr.attr,
5422 &object_size_attr.attr,
5423 &objs_per_slab_attr.attr,
5424 &order_attr.attr,
5425 &min_partial_attr.attr,
5426 &cpu_partial_attr.attr,
5427 &objects_attr.attr,
5428 &objects_partial_attr.attr,
5429 &partial_attr.attr,
5430 &cpu_slabs_attr.attr,
5431 &ctor_attr.attr,
5432 &aliases_attr.attr,
5433 &align_attr.attr,
5434 &hwcache_align_attr.attr,
5435 &reclaim_account_attr.attr,
5436 &destroy_by_rcu_attr.attr,
5437 &shrink_attr.attr,
5438 &reserved_attr.attr,
5439 &slabs_cpu_partial_attr.attr,
5440 #ifdef CONFIG_SLUB_DEBUG
5441 &total_objects_attr.attr,
5442 &slabs_attr.attr,
5443 &sanity_checks_attr.attr,
5444 &trace_attr.attr,
5445 &red_zone_attr.attr,
5446 &poison_attr.attr,
5447 &store_user_attr.attr,
5448 &validate_attr.attr,
5449 &alloc_calls_attr.attr,
5450 &free_calls_attr.attr,
5451 #endif
5452 #ifdef CONFIG_ZONE_DMA
5453 &cache_dma_attr.attr,
5454 #endif
5455 #ifdef CONFIG_NUMA
5456 &remote_node_defrag_ratio_attr.attr,
5457 #endif
5458 #ifdef CONFIG_SLUB_STATS
5459 &alloc_fastpath_attr.attr,
5460 &alloc_slowpath_attr.attr,
5461 &free_fastpath_attr.attr,
5462 &free_slowpath_attr.attr,
5463 &free_frozen_attr.attr,
5464 &free_add_partial_attr.attr,
5465 &free_remove_partial_attr.attr,
5466 &alloc_from_partial_attr.attr,
5467 &alloc_slab_attr.attr,
5468 &alloc_refill_attr.attr,
5469 &alloc_node_mismatch_attr.attr,
5470 &free_slab_attr.attr,
5471 &cpuslab_flush_attr.attr,
5472 &deactivate_full_attr.attr,
5473 &deactivate_empty_attr.attr,
5474 &deactivate_to_head_attr.attr,
5475 &deactivate_to_tail_attr.attr,
5476 &deactivate_remote_frees_attr.attr,
5477 &deactivate_bypass_attr.attr,
5478 &order_fallback_attr.attr,
5479 &cmpxchg_double_fail_attr.attr,
5480 &cmpxchg_double_cpu_fail_attr.attr,
5481 &cpu_partial_alloc_attr.attr,
5482 &cpu_partial_free_attr.attr,
5483 &cpu_partial_node_attr.attr,
5484 &cpu_partial_drain_attr.attr,
5485 #endif
5486 #ifdef CONFIG_FAILSLAB
5487 &failslab_attr.attr,
5488 #endif
5489 &usersize_attr.attr,
5491 NULL
5494 static const struct attribute_group slab_attr_group = {
5495 .attrs = slab_attrs,
5498 static ssize_t slab_attr_show(struct kobject *kobj,
5499 struct attribute *attr,
5500 char *buf)
5502 struct slab_attribute *attribute;
5503 struct kmem_cache *s;
5504 int err;
5506 attribute = to_slab_attr(attr);
5507 s = to_slab(kobj);
5509 if (!attribute->show)
5510 return -EIO;
5512 err = attribute->show(s, buf);
5514 return err;
5517 static ssize_t slab_attr_store(struct kobject *kobj,
5518 struct attribute *attr,
5519 const char *buf, size_t len)
5521 struct slab_attribute *attribute;
5522 struct kmem_cache *s;
5523 int err;
5525 attribute = to_slab_attr(attr);
5526 s = to_slab(kobj);
5528 if (!attribute->store)
5529 return -EIO;
5531 err = attribute->store(s, buf, len);
5532 #ifdef CONFIG_MEMCG
5533 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5534 struct kmem_cache *c;
5536 mutex_lock(&slab_mutex);
5537 if (s->max_attr_size < len)
5538 s->max_attr_size = len;
5541 * This is a best effort propagation, so this function's return
5542 * value will be determined by the parent cache only. This is
5543 * basically because not all attributes will have a well
5544 * defined semantics for rollbacks - most of the actions will
5545 * have permanent effects.
5547 * Returning the error value of any of the children that fail
5548 * is not 100 % defined, in the sense that users seeing the
5549 * error code won't be able to know anything about the state of
5550 * the cache.
5552 * Only returning the error code for the parent cache at least
5553 * has well defined semantics. The cache being written to
5554 * directly either failed or succeeded, in which case we loop
5555 * through the descendants with best-effort propagation.
5557 for_each_memcg_cache(c, s)
5558 attribute->store(c, buf, len);
5559 mutex_unlock(&slab_mutex);
5561 #endif
5562 return err;
5565 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5567 #ifdef CONFIG_MEMCG
5568 int i;
5569 char *buffer = NULL;
5570 struct kmem_cache *root_cache;
5572 if (is_root_cache(s))
5573 return;
5575 root_cache = s->memcg_params.root_cache;
5578 * This mean this cache had no attribute written. Therefore, no point
5579 * in copying default values around
5581 if (!root_cache->max_attr_size)
5582 return;
5584 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5585 char mbuf[64];
5586 char *buf;
5587 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5588 ssize_t len;
5590 if (!attr || !attr->store || !attr->show)
5591 continue;
5594 * It is really bad that we have to allocate here, so we will
5595 * do it only as a fallback. If we actually allocate, though,
5596 * we can just use the allocated buffer until the end.
5598 * Most of the slub attributes will tend to be very small in
5599 * size, but sysfs allows buffers up to a page, so they can
5600 * theoretically happen.
5602 if (buffer)
5603 buf = buffer;
5604 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5605 buf = mbuf;
5606 else {
5607 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5608 if (WARN_ON(!buffer))
5609 continue;
5610 buf = buffer;
5613 len = attr->show(root_cache, buf);
5614 if (len > 0)
5615 attr->store(s, buf, len);
5618 if (buffer)
5619 free_page((unsigned long)buffer);
5620 #endif
5623 static void kmem_cache_release(struct kobject *k)
5625 slab_kmem_cache_release(to_slab(k));
5628 static const struct sysfs_ops slab_sysfs_ops = {
5629 .show = slab_attr_show,
5630 .store = slab_attr_store,
5633 static struct kobj_type slab_ktype = {
5634 .sysfs_ops = &slab_sysfs_ops,
5635 .release = kmem_cache_release,
5638 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5640 struct kobj_type *ktype = get_ktype(kobj);
5642 if (ktype == &slab_ktype)
5643 return 1;
5644 return 0;
5647 static const struct kset_uevent_ops slab_uevent_ops = {
5648 .filter = uevent_filter,
5651 static struct kset *slab_kset;
5653 static inline struct kset *cache_kset(struct kmem_cache *s)
5655 #ifdef CONFIG_MEMCG
5656 if (!is_root_cache(s))
5657 return s->memcg_params.root_cache->memcg_kset;
5658 #endif
5659 return slab_kset;
5662 #define ID_STR_LENGTH 64
5664 /* Create a unique string id for a slab cache:
5666 * Format :[flags-]size
5668 static char *create_unique_id(struct kmem_cache *s)
5670 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5671 char *p = name;
5673 BUG_ON(!name);
5675 *p++ = ':';
5677 * First flags affecting slabcache operations. We will only
5678 * get here for aliasable slabs so we do not need to support
5679 * too many flags. The flags here must cover all flags that
5680 * are matched during merging to guarantee that the id is
5681 * unique.
5683 if (s->flags & SLAB_CACHE_DMA)
5684 *p++ = 'd';
5685 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5686 *p++ = 'a';
5687 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5688 *p++ = 'F';
5689 if (s->flags & SLAB_ACCOUNT)
5690 *p++ = 'A';
5691 if (p != name + 1)
5692 *p++ = '-';
5693 p += sprintf(p, "%07u", s->size);
5695 BUG_ON(p > name + ID_STR_LENGTH - 1);
5696 return name;
5699 static void sysfs_slab_remove_workfn(struct work_struct *work)
5701 struct kmem_cache *s =
5702 container_of(work, struct kmem_cache, kobj_remove_work);
5704 if (!s->kobj.state_in_sysfs)
5706 * For a memcg cache, this may be called during
5707 * deactivation and again on shutdown. Remove only once.
5708 * A cache is never shut down before deactivation is
5709 * complete, so no need to worry about synchronization.
5711 goto out;
5713 #ifdef CONFIG_MEMCG
5714 kset_unregister(s->memcg_kset);
5715 #endif
5716 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5717 kobject_del(&s->kobj);
5718 out:
5719 kobject_put(&s->kobj);
5722 static int sysfs_slab_add(struct kmem_cache *s)
5724 int err;
5725 const char *name;
5726 struct kset *kset = cache_kset(s);
5727 int unmergeable = slab_unmergeable(s);
5729 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5731 if (!kset) {
5732 kobject_init(&s->kobj, &slab_ktype);
5733 return 0;
5736 if (!unmergeable && disable_higher_order_debug &&
5737 (slub_debug & DEBUG_METADATA_FLAGS))
5738 unmergeable = 1;
5740 if (unmergeable) {
5742 * Slabcache can never be merged so we can use the name proper.
5743 * This is typically the case for debug situations. In that
5744 * case we can catch duplicate names easily.
5746 sysfs_remove_link(&slab_kset->kobj, s->name);
5747 name = s->name;
5748 } else {
5750 * Create a unique name for the slab as a target
5751 * for the symlinks.
5753 name = create_unique_id(s);
5756 s->kobj.kset = kset;
5757 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5758 if (err)
5759 goto out;
5761 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5762 if (err)
5763 goto out_del_kobj;
5765 #ifdef CONFIG_MEMCG
5766 if (is_root_cache(s) && memcg_sysfs_enabled) {
5767 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5768 if (!s->memcg_kset) {
5769 err = -ENOMEM;
5770 goto out_del_kobj;
5773 #endif
5775 kobject_uevent(&s->kobj, KOBJ_ADD);
5776 if (!unmergeable) {
5777 /* Setup first alias */
5778 sysfs_slab_alias(s, s->name);
5780 out:
5781 if (!unmergeable)
5782 kfree(name);
5783 return err;
5784 out_del_kobj:
5785 kobject_del(&s->kobj);
5786 goto out;
5789 static void sysfs_slab_remove(struct kmem_cache *s)
5791 if (slab_state < FULL)
5793 * Sysfs has not been setup yet so no need to remove the
5794 * cache from sysfs.
5796 return;
5798 kobject_get(&s->kobj);
5799 schedule_work(&s->kobj_remove_work);
5802 void sysfs_slab_release(struct kmem_cache *s)
5804 if (slab_state >= FULL)
5805 kobject_put(&s->kobj);
5809 * Need to buffer aliases during bootup until sysfs becomes
5810 * available lest we lose that information.
5812 struct saved_alias {
5813 struct kmem_cache *s;
5814 const char *name;
5815 struct saved_alias *next;
5818 static struct saved_alias *alias_list;
5820 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5822 struct saved_alias *al;
5824 if (slab_state == FULL) {
5826 * If we have a leftover link then remove it.
5828 sysfs_remove_link(&slab_kset->kobj, name);
5829 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5832 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5833 if (!al)
5834 return -ENOMEM;
5836 al->s = s;
5837 al->name = name;
5838 al->next = alias_list;
5839 alias_list = al;
5840 return 0;
5843 static int __init slab_sysfs_init(void)
5845 struct kmem_cache *s;
5846 int err;
5848 mutex_lock(&slab_mutex);
5850 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5851 if (!slab_kset) {
5852 mutex_unlock(&slab_mutex);
5853 pr_err("Cannot register slab subsystem.\n");
5854 return -ENOSYS;
5857 slab_state = FULL;
5859 list_for_each_entry(s, &slab_caches, list) {
5860 err = sysfs_slab_add(s);
5861 if (err)
5862 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5863 s->name);
5866 while (alias_list) {
5867 struct saved_alias *al = alias_list;
5869 alias_list = alias_list->next;
5870 err = sysfs_slab_alias(al->s, al->name);
5871 if (err)
5872 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5873 al->name);
5874 kfree(al);
5877 mutex_unlock(&slab_mutex);
5878 resiliency_test();
5879 return 0;
5882 __initcall(slab_sysfs_init);
5883 #endif /* CONFIG_SYSFS */
5886 * The /proc/slabinfo ABI
5888 #ifdef CONFIG_SLUB_DEBUG
5889 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5891 unsigned long nr_slabs = 0;
5892 unsigned long nr_objs = 0;
5893 unsigned long nr_free = 0;
5894 int node;
5895 struct kmem_cache_node *n;
5897 for_each_kmem_cache_node(s, node, n) {
5898 nr_slabs += node_nr_slabs(n);
5899 nr_objs += node_nr_objs(n);
5900 nr_free += count_partial(n, count_free);
5903 sinfo->active_objs = nr_objs - nr_free;
5904 sinfo->num_objs = nr_objs;
5905 sinfo->active_slabs = nr_slabs;
5906 sinfo->num_slabs = nr_slabs;
5907 sinfo->objects_per_slab = oo_objects(s->oo);
5908 sinfo->cache_order = oo_order(s->oo);
5911 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5915 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5916 size_t count, loff_t *ppos)
5918 return -EIO;
5920 #endif /* CONFIG_SLUB_DEBUG */