clocksource/drivers/rockchip: Add err handle for rk_timer_init
[linux/fpc-iii.git] / kernel / sched / fair.c
blob1926606ece807361ab02ef51f4864543640e8d8d
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
34 #include <trace/events/sched.h>
36 #include "sched.h"
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
75 static unsigned int sched_nr_latency = 8;
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
103 #ifdef CONFIG_CFS_BANDWIDTH
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
112 * default: 5 msec, units: microseconds
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
119 lw->weight += inc;
120 lw->inv_weight = 0;
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
125 lw->weight -= dec;
126 lw->inv_weight = 0;
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
131 lw->weight = w;
132 lw->inv_weight = 0;
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
142 * This idea comes from the SD scheduler of Con Kolivas:
144 static unsigned int get_update_sysctl_factor(void)
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 unsigned int factor;
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
162 return factor;
165 static void update_sysctl(void)
167 unsigned int factor = get_update_sysctl_factor();
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
177 void sched_init_granularity(void)
179 update_sysctl();
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
185 static void __update_inv_weight(struct load_weight *lw)
187 unsigned long w;
189 if (likely(lw->inv_weight))
190 return;
192 w = scale_load_down(lw->weight);
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
219 __update_inv_weight(lw);
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
236 return mul_u64_u32_shr(delta_exec, fact, shift);
240 const struct sched_class fair_sched_class;
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
246 #ifdef CONFIG_FAIR_GROUP_SCHED
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
251 return cfs_rq->rq;
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
257 static inline struct task_struct *task_of(struct sched_entity *se)
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
271 return p->se.cfs_rq;
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
277 return se->cfs_rq;
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
283 return grp->my_q;
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
288 if (!cfs_rq->on_list) {
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 cfs_rq->on_list = 1;
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
324 if (se->cfs_rq == pse->cfs_rq)
325 return se->cfs_rq;
327 return NULL;
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
332 return se->parent;
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
338 int se_depth, pse_depth;
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
347 /* First walk up until both entities are at same depth */
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
367 #else /* !CONFIG_FAIR_GROUP_SCHED */
369 static inline struct task_struct *task_of(struct sched_entity *se)
371 return container_of(se, struct task_struct, se);
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
376 return container_of(cfs_rq, struct rq, cfs);
379 #define entity_is_task(se) 1
381 #define for_each_sched_entity(se) \
382 for (; se; se = NULL)
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
386 return &task_rq(p)->cfs;
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
394 return &rq->cfs;
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
400 return NULL;
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
416 return NULL;
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
424 #endif /* CONFIG_FAIR_GROUP_SCHED */
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
429 /**************************************************************
430 * Scheduling class tree data structure manipulation methods:
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
435 s64 delta = (s64)(vruntime - max_vruntime);
436 if (delta > 0)
437 max_vruntime = vruntime;
439 return max_vruntime;
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
448 return min_vruntime;
451 static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
454 return (s64)(a->vruntime - b->vruntime) < 0;
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
459 u64 vruntime = cfs_rq->min_vruntime;
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
469 if (!cfs_rq->curr)
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
484 * Enqueue an entity into the rb-tree:
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
494 * Find the right place in the rbtree:
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
536 struct rb_node *left = cfs_rq->rb_leftmost;
538 if (!left)
539 return NULL;
541 return rb_entry(left, struct sched_entity, run_node);
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
546 struct rb_node *next = rb_next(&se->run_node);
548 if (!next)
549 return NULL;
551 return rb_entry(next, struct sched_entity, run_node);
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
559 if (!last)
560 return NULL;
562 return rb_entry(last, struct sched_entity, run_node);
565 /**************************************************************
566 * Scheduling class statistics methods:
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
576 if (ret || !write)
577 return ret;
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
589 return 0;
591 #endif
594 * delta /= w
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
601 return delta;
605 * The idea is to set a period in which each task runs once.
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
610 * p = (nr <= nl) ? l : l*nr/nl
612 static u64 __sched_period(unsigned long nr_running)
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
624 * s = p*P[w/rw]
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
637 if (unlikely(!se->on_rq)) {
638 lw = cfs_rq->load;
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
643 slice = __calc_delta(slice, se->load.weight, load);
645 return slice;
649 * We calculate the vruntime slice of a to-be-inserted task.
651 * vs = s/w
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
674 struct sched_avg *sa = &se->avg;
676 sa->last_update_time = 0;
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
682 sa->period_contrib = 1023;
683 sa->load_avg = scale_load_down(se->load.weight);
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
690 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
692 #else
693 void init_entity_runnable_average(struct sched_entity *se)
696 #endif
699 * Update the current task's runtime statistics.
701 static void update_curr(struct cfs_rq *cfs_rq)
703 struct sched_entity *curr = cfs_rq->curr;
704 u64 now = rq_clock_task(rq_of(cfs_rq));
705 u64 delta_exec;
707 if (unlikely(!curr))
708 return;
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
712 return;
714 curr->exec_start = now;
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
729 cpuacct_charge(curtask, delta_exec);
730 account_group_exec_runtime(curtask, delta_exec);
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
736 static void update_curr_fair(struct rq *rq)
738 update_curr(cfs_rq_of(&rq->curr->se));
741 #ifdef CONFIG_SCHEDSTATS
742 static inline void
743 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
745 u64 wait_start = rq_clock(rq_of(cfs_rq));
747 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
748 likely(wait_start > se->statistics.wait_start))
749 wait_start -= se->statistics.wait_start;
751 se->statistics.wait_start = wait_start;
754 static void
755 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
757 struct task_struct *p;
758 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
760 if (entity_is_task(se)) {
761 p = task_of(se);
762 if (task_on_rq_migrating(p)) {
764 * Preserve migrating task's wait time so wait_start
765 * time stamp can be adjusted to accumulate wait time
766 * prior to migration.
768 se->statistics.wait_start = delta;
769 return;
771 trace_sched_stat_wait(p, delta);
774 se->statistics.wait_max = max(se->statistics.wait_max, delta);
775 se->statistics.wait_count++;
776 se->statistics.wait_sum += delta;
777 se->statistics.wait_start = 0;
779 #else
780 static inline void
781 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
785 static inline void
786 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
789 #endif
792 * Task is being enqueued - update stats:
794 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
797 * Are we enqueueing a waiting task? (for current tasks
798 * a dequeue/enqueue event is a NOP)
800 if (se != cfs_rq->curr)
801 update_stats_wait_start(cfs_rq, se);
804 static inline void
805 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
808 * Mark the end of the wait period if dequeueing a
809 * waiting task:
811 if (se != cfs_rq->curr)
812 update_stats_wait_end(cfs_rq, se);
816 * We are picking a new current task - update its stats:
818 static inline void
819 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
822 * We are starting a new run period:
824 se->exec_start = rq_clock_task(rq_of(cfs_rq));
827 /**************************************************
828 * Scheduling class queueing methods:
831 #ifdef CONFIG_NUMA_BALANCING
833 * Approximate time to scan a full NUMA task in ms. The task scan period is
834 * calculated based on the tasks virtual memory size and
835 * numa_balancing_scan_size.
837 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
838 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
840 /* Portion of address space to scan in MB */
841 unsigned int sysctl_numa_balancing_scan_size = 256;
843 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
844 unsigned int sysctl_numa_balancing_scan_delay = 1000;
846 static unsigned int task_nr_scan_windows(struct task_struct *p)
848 unsigned long rss = 0;
849 unsigned long nr_scan_pages;
852 * Calculations based on RSS as non-present and empty pages are skipped
853 * by the PTE scanner and NUMA hinting faults should be trapped based
854 * on resident pages
856 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
857 rss = get_mm_rss(p->mm);
858 if (!rss)
859 rss = nr_scan_pages;
861 rss = round_up(rss, nr_scan_pages);
862 return rss / nr_scan_pages;
865 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
866 #define MAX_SCAN_WINDOW 2560
868 static unsigned int task_scan_min(struct task_struct *p)
870 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
871 unsigned int scan, floor;
872 unsigned int windows = 1;
874 if (scan_size < MAX_SCAN_WINDOW)
875 windows = MAX_SCAN_WINDOW / scan_size;
876 floor = 1000 / windows;
878 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
879 return max_t(unsigned int, floor, scan);
882 static unsigned int task_scan_max(struct task_struct *p)
884 unsigned int smin = task_scan_min(p);
885 unsigned int smax;
887 /* Watch for min being lower than max due to floor calculations */
888 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
889 return max(smin, smax);
892 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
894 rq->nr_numa_running += (p->numa_preferred_nid != -1);
895 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
898 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
900 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
904 struct numa_group {
905 atomic_t refcount;
907 spinlock_t lock; /* nr_tasks, tasks */
908 int nr_tasks;
909 pid_t gid;
911 struct rcu_head rcu;
912 nodemask_t active_nodes;
913 unsigned long total_faults;
915 * Faults_cpu is used to decide whether memory should move
916 * towards the CPU. As a consequence, these stats are weighted
917 * more by CPU use than by memory faults.
919 unsigned long *faults_cpu;
920 unsigned long faults[0];
923 /* Shared or private faults. */
924 #define NR_NUMA_HINT_FAULT_TYPES 2
926 /* Memory and CPU locality */
927 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
929 /* Averaged statistics, and temporary buffers. */
930 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
932 pid_t task_numa_group_id(struct task_struct *p)
934 return p->numa_group ? p->numa_group->gid : 0;
938 * The averaged statistics, shared & private, memory & cpu,
939 * occupy the first half of the array. The second half of the
940 * array is for current counters, which are averaged into the
941 * first set by task_numa_placement.
943 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
945 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
948 static inline unsigned long task_faults(struct task_struct *p, int nid)
950 if (!p->numa_faults)
951 return 0;
953 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
954 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
957 static inline unsigned long group_faults(struct task_struct *p, int nid)
959 if (!p->numa_group)
960 return 0;
962 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
963 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
966 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
968 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
969 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
972 /* Handle placement on systems where not all nodes are directly connected. */
973 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
974 int maxdist, bool task)
976 unsigned long score = 0;
977 int node;
980 * All nodes are directly connected, and the same distance
981 * from each other. No need for fancy placement algorithms.
983 if (sched_numa_topology_type == NUMA_DIRECT)
984 return 0;
987 * This code is called for each node, introducing N^2 complexity,
988 * which should be ok given the number of nodes rarely exceeds 8.
990 for_each_online_node(node) {
991 unsigned long faults;
992 int dist = node_distance(nid, node);
995 * The furthest away nodes in the system are not interesting
996 * for placement; nid was already counted.
998 if (dist == sched_max_numa_distance || node == nid)
999 continue;
1002 * On systems with a backplane NUMA topology, compare groups
1003 * of nodes, and move tasks towards the group with the most
1004 * memory accesses. When comparing two nodes at distance
1005 * "hoplimit", only nodes closer by than "hoplimit" are part
1006 * of each group. Skip other nodes.
1008 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1009 dist > maxdist)
1010 continue;
1012 /* Add up the faults from nearby nodes. */
1013 if (task)
1014 faults = task_faults(p, node);
1015 else
1016 faults = group_faults(p, node);
1019 * On systems with a glueless mesh NUMA topology, there are
1020 * no fixed "groups of nodes". Instead, nodes that are not
1021 * directly connected bounce traffic through intermediate
1022 * nodes; a numa_group can occupy any set of nodes.
1023 * The further away a node is, the less the faults count.
1024 * This seems to result in good task placement.
1026 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1027 faults *= (sched_max_numa_distance - dist);
1028 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1031 score += faults;
1034 return score;
1038 * These return the fraction of accesses done by a particular task, or
1039 * task group, on a particular numa node. The group weight is given a
1040 * larger multiplier, in order to group tasks together that are almost
1041 * evenly spread out between numa nodes.
1043 static inline unsigned long task_weight(struct task_struct *p, int nid,
1044 int dist)
1046 unsigned long faults, total_faults;
1048 if (!p->numa_faults)
1049 return 0;
1051 total_faults = p->total_numa_faults;
1053 if (!total_faults)
1054 return 0;
1056 faults = task_faults(p, nid);
1057 faults += score_nearby_nodes(p, nid, dist, true);
1059 return 1000 * faults / total_faults;
1062 static inline unsigned long group_weight(struct task_struct *p, int nid,
1063 int dist)
1065 unsigned long faults, total_faults;
1067 if (!p->numa_group)
1068 return 0;
1070 total_faults = p->numa_group->total_faults;
1072 if (!total_faults)
1073 return 0;
1075 faults = group_faults(p, nid);
1076 faults += score_nearby_nodes(p, nid, dist, false);
1078 return 1000 * faults / total_faults;
1081 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1082 int src_nid, int dst_cpu)
1084 struct numa_group *ng = p->numa_group;
1085 int dst_nid = cpu_to_node(dst_cpu);
1086 int last_cpupid, this_cpupid;
1088 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1091 * Multi-stage node selection is used in conjunction with a periodic
1092 * migration fault to build a temporal task<->page relation. By using
1093 * a two-stage filter we remove short/unlikely relations.
1095 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1096 * a task's usage of a particular page (n_p) per total usage of this
1097 * page (n_t) (in a given time-span) to a probability.
1099 * Our periodic faults will sample this probability and getting the
1100 * same result twice in a row, given these samples are fully
1101 * independent, is then given by P(n)^2, provided our sample period
1102 * is sufficiently short compared to the usage pattern.
1104 * This quadric squishes small probabilities, making it less likely we
1105 * act on an unlikely task<->page relation.
1107 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1108 if (!cpupid_pid_unset(last_cpupid) &&
1109 cpupid_to_nid(last_cpupid) != dst_nid)
1110 return false;
1112 /* Always allow migrate on private faults */
1113 if (cpupid_match_pid(p, last_cpupid))
1114 return true;
1116 /* A shared fault, but p->numa_group has not been set up yet. */
1117 if (!ng)
1118 return true;
1121 * Do not migrate if the destination is not a node that
1122 * is actively used by this numa group.
1124 if (!node_isset(dst_nid, ng->active_nodes))
1125 return false;
1128 * Source is a node that is not actively used by this
1129 * numa group, while the destination is. Migrate.
1131 if (!node_isset(src_nid, ng->active_nodes))
1132 return true;
1135 * Both source and destination are nodes in active
1136 * use by this numa group. Maximize memory bandwidth
1137 * by migrating from more heavily used groups, to less
1138 * heavily used ones, spreading the load around.
1139 * Use a 1/4 hysteresis to avoid spurious page movement.
1141 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1144 static unsigned long weighted_cpuload(const int cpu);
1145 static unsigned long source_load(int cpu, int type);
1146 static unsigned long target_load(int cpu, int type);
1147 static unsigned long capacity_of(int cpu);
1148 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1150 /* Cached statistics for all CPUs within a node */
1151 struct numa_stats {
1152 unsigned long nr_running;
1153 unsigned long load;
1155 /* Total compute capacity of CPUs on a node */
1156 unsigned long compute_capacity;
1158 /* Approximate capacity in terms of runnable tasks on a node */
1159 unsigned long task_capacity;
1160 int has_free_capacity;
1164 * XXX borrowed from update_sg_lb_stats
1166 static void update_numa_stats(struct numa_stats *ns, int nid)
1168 int smt, cpu, cpus = 0;
1169 unsigned long capacity;
1171 memset(ns, 0, sizeof(*ns));
1172 for_each_cpu(cpu, cpumask_of_node(nid)) {
1173 struct rq *rq = cpu_rq(cpu);
1175 ns->nr_running += rq->nr_running;
1176 ns->load += weighted_cpuload(cpu);
1177 ns->compute_capacity += capacity_of(cpu);
1179 cpus++;
1183 * If we raced with hotplug and there are no CPUs left in our mask
1184 * the @ns structure is NULL'ed and task_numa_compare() will
1185 * not find this node attractive.
1187 * We'll either bail at !has_free_capacity, or we'll detect a huge
1188 * imbalance and bail there.
1190 if (!cpus)
1191 return;
1193 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1194 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1195 capacity = cpus / smt; /* cores */
1197 ns->task_capacity = min_t(unsigned, capacity,
1198 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1199 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1202 struct task_numa_env {
1203 struct task_struct *p;
1205 int src_cpu, src_nid;
1206 int dst_cpu, dst_nid;
1208 struct numa_stats src_stats, dst_stats;
1210 int imbalance_pct;
1211 int dist;
1213 struct task_struct *best_task;
1214 long best_imp;
1215 int best_cpu;
1218 static void task_numa_assign(struct task_numa_env *env,
1219 struct task_struct *p, long imp)
1221 if (env->best_task)
1222 put_task_struct(env->best_task);
1223 if (p)
1224 get_task_struct(p);
1226 env->best_task = p;
1227 env->best_imp = imp;
1228 env->best_cpu = env->dst_cpu;
1231 static bool load_too_imbalanced(long src_load, long dst_load,
1232 struct task_numa_env *env)
1234 long imb, old_imb;
1235 long orig_src_load, orig_dst_load;
1236 long src_capacity, dst_capacity;
1239 * The load is corrected for the CPU capacity available on each node.
1241 * src_load dst_load
1242 * ------------ vs ---------
1243 * src_capacity dst_capacity
1245 src_capacity = env->src_stats.compute_capacity;
1246 dst_capacity = env->dst_stats.compute_capacity;
1248 /* We care about the slope of the imbalance, not the direction. */
1249 if (dst_load < src_load)
1250 swap(dst_load, src_load);
1252 /* Is the difference below the threshold? */
1253 imb = dst_load * src_capacity * 100 -
1254 src_load * dst_capacity * env->imbalance_pct;
1255 if (imb <= 0)
1256 return false;
1259 * The imbalance is above the allowed threshold.
1260 * Compare it with the old imbalance.
1262 orig_src_load = env->src_stats.load;
1263 orig_dst_load = env->dst_stats.load;
1265 if (orig_dst_load < orig_src_load)
1266 swap(orig_dst_load, orig_src_load);
1268 old_imb = orig_dst_load * src_capacity * 100 -
1269 orig_src_load * dst_capacity * env->imbalance_pct;
1271 /* Would this change make things worse? */
1272 return (imb > old_imb);
1276 * This checks if the overall compute and NUMA accesses of the system would
1277 * be improved if the source tasks was migrated to the target dst_cpu taking
1278 * into account that it might be best if task running on the dst_cpu should
1279 * be exchanged with the source task
1281 static void task_numa_compare(struct task_numa_env *env,
1282 long taskimp, long groupimp)
1284 struct rq *src_rq = cpu_rq(env->src_cpu);
1285 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1286 struct task_struct *cur;
1287 long src_load, dst_load;
1288 long load;
1289 long imp = env->p->numa_group ? groupimp : taskimp;
1290 long moveimp = imp;
1291 int dist = env->dist;
1293 rcu_read_lock();
1295 raw_spin_lock_irq(&dst_rq->lock);
1296 cur = dst_rq->curr;
1298 * No need to move the exiting task, and this ensures that ->curr
1299 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1300 * is safe under RCU read lock.
1301 * Note that rcu_read_lock() itself can't protect from the final
1302 * put_task_struct() after the last schedule().
1304 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1305 cur = NULL;
1306 raw_spin_unlock_irq(&dst_rq->lock);
1309 * Because we have preemption enabled we can get migrated around and
1310 * end try selecting ourselves (current == env->p) as a swap candidate.
1312 if (cur == env->p)
1313 goto unlock;
1316 * "imp" is the fault differential for the source task between the
1317 * source and destination node. Calculate the total differential for
1318 * the source task and potential destination task. The more negative
1319 * the value is, the more rmeote accesses that would be expected to
1320 * be incurred if the tasks were swapped.
1322 if (cur) {
1323 /* Skip this swap candidate if cannot move to the source cpu */
1324 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1325 goto unlock;
1328 * If dst and source tasks are in the same NUMA group, or not
1329 * in any group then look only at task weights.
1331 if (cur->numa_group == env->p->numa_group) {
1332 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1333 task_weight(cur, env->dst_nid, dist);
1335 * Add some hysteresis to prevent swapping the
1336 * tasks within a group over tiny differences.
1338 if (cur->numa_group)
1339 imp -= imp/16;
1340 } else {
1342 * Compare the group weights. If a task is all by
1343 * itself (not part of a group), use the task weight
1344 * instead.
1346 if (cur->numa_group)
1347 imp += group_weight(cur, env->src_nid, dist) -
1348 group_weight(cur, env->dst_nid, dist);
1349 else
1350 imp += task_weight(cur, env->src_nid, dist) -
1351 task_weight(cur, env->dst_nid, dist);
1355 if (imp <= env->best_imp && moveimp <= env->best_imp)
1356 goto unlock;
1358 if (!cur) {
1359 /* Is there capacity at our destination? */
1360 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1361 !env->dst_stats.has_free_capacity)
1362 goto unlock;
1364 goto balance;
1367 /* Balance doesn't matter much if we're running a task per cpu */
1368 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1369 dst_rq->nr_running == 1)
1370 goto assign;
1373 * In the overloaded case, try and keep the load balanced.
1375 balance:
1376 load = task_h_load(env->p);
1377 dst_load = env->dst_stats.load + load;
1378 src_load = env->src_stats.load - load;
1380 if (moveimp > imp && moveimp > env->best_imp) {
1382 * If the improvement from just moving env->p direction is
1383 * better than swapping tasks around, check if a move is
1384 * possible. Store a slightly smaller score than moveimp,
1385 * so an actually idle CPU will win.
1387 if (!load_too_imbalanced(src_load, dst_load, env)) {
1388 imp = moveimp - 1;
1389 cur = NULL;
1390 goto assign;
1394 if (imp <= env->best_imp)
1395 goto unlock;
1397 if (cur) {
1398 load = task_h_load(cur);
1399 dst_load -= load;
1400 src_load += load;
1403 if (load_too_imbalanced(src_load, dst_load, env))
1404 goto unlock;
1407 * One idle CPU per node is evaluated for a task numa move.
1408 * Call select_idle_sibling to maybe find a better one.
1410 if (!cur)
1411 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1413 assign:
1414 task_numa_assign(env, cur, imp);
1415 unlock:
1416 rcu_read_unlock();
1419 static void task_numa_find_cpu(struct task_numa_env *env,
1420 long taskimp, long groupimp)
1422 int cpu;
1424 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1425 /* Skip this CPU if the source task cannot migrate */
1426 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1427 continue;
1429 env->dst_cpu = cpu;
1430 task_numa_compare(env, taskimp, groupimp);
1434 /* Only move tasks to a NUMA node less busy than the current node. */
1435 static bool numa_has_capacity(struct task_numa_env *env)
1437 struct numa_stats *src = &env->src_stats;
1438 struct numa_stats *dst = &env->dst_stats;
1440 if (src->has_free_capacity && !dst->has_free_capacity)
1441 return false;
1444 * Only consider a task move if the source has a higher load
1445 * than the destination, corrected for CPU capacity on each node.
1447 * src->load dst->load
1448 * --------------------- vs ---------------------
1449 * src->compute_capacity dst->compute_capacity
1451 if (src->load * dst->compute_capacity * env->imbalance_pct >
1453 dst->load * src->compute_capacity * 100)
1454 return true;
1456 return false;
1459 static int task_numa_migrate(struct task_struct *p)
1461 struct task_numa_env env = {
1462 .p = p,
1464 .src_cpu = task_cpu(p),
1465 .src_nid = task_node(p),
1467 .imbalance_pct = 112,
1469 .best_task = NULL,
1470 .best_imp = 0,
1471 .best_cpu = -1
1473 struct sched_domain *sd;
1474 unsigned long taskweight, groupweight;
1475 int nid, ret, dist;
1476 long taskimp, groupimp;
1479 * Pick the lowest SD_NUMA domain, as that would have the smallest
1480 * imbalance and would be the first to start moving tasks about.
1482 * And we want to avoid any moving of tasks about, as that would create
1483 * random movement of tasks -- counter the numa conditions we're trying
1484 * to satisfy here.
1486 rcu_read_lock();
1487 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1488 if (sd)
1489 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1490 rcu_read_unlock();
1493 * Cpusets can break the scheduler domain tree into smaller
1494 * balance domains, some of which do not cross NUMA boundaries.
1495 * Tasks that are "trapped" in such domains cannot be migrated
1496 * elsewhere, so there is no point in (re)trying.
1498 if (unlikely(!sd)) {
1499 p->numa_preferred_nid = task_node(p);
1500 return -EINVAL;
1503 env.dst_nid = p->numa_preferred_nid;
1504 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1505 taskweight = task_weight(p, env.src_nid, dist);
1506 groupweight = group_weight(p, env.src_nid, dist);
1507 update_numa_stats(&env.src_stats, env.src_nid);
1508 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1509 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1510 update_numa_stats(&env.dst_stats, env.dst_nid);
1512 /* Try to find a spot on the preferred nid. */
1513 if (numa_has_capacity(&env))
1514 task_numa_find_cpu(&env, taskimp, groupimp);
1517 * Look at other nodes in these cases:
1518 * - there is no space available on the preferred_nid
1519 * - the task is part of a numa_group that is interleaved across
1520 * multiple NUMA nodes; in order to better consolidate the group,
1521 * we need to check other locations.
1523 if (env.best_cpu == -1 || (p->numa_group &&
1524 nodes_weight(p->numa_group->active_nodes) > 1)) {
1525 for_each_online_node(nid) {
1526 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1527 continue;
1529 dist = node_distance(env.src_nid, env.dst_nid);
1530 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1531 dist != env.dist) {
1532 taskweight = task_weight(p, env.src_nid, dist);
1533 groupweight = group_weight(p, env.src_nid, dist);
1536 /* Only consider nodes where both task and groups benefit */
1537 taskimp = task_weight(p, nid, dist) - taskweight;
1538 groupimp = group_weight(p, nid, dist) - groupweight;
1539 if (taskimp < 0 && groupimp < 0)
1540 continue;
1542 env.dist = dist;
1543 env.dst_nid = nid;
1544 update_numa_stats(&env.dst_stats, env.dst_nid);
1545 if (numa_has_capacity(&env))
1546 task_numa_find_cpu(&env, taskimp, groupimp);
1551 * If the task is part of a workload that spans multiple NUMA nodes,
1552 * and is migrating into one of the workload's active nodes, remember
1553 * this node as the task's preferred numa node, so the workload can
1554 * settle down.
1555 * A task that migrated to a second choice node will be better off
1556 * trying for a better one later. Do not set the preferred node here.
1558 if (p->numa_group) {
1559 if (env.best_cpu == -1)
1560 nid = env.src_nid;
1561 else
1562 nid = env.dst_nid;
1564 if (node_isset(nid, p->numa_group->active_nodes))
1565 sched_setnuma(p, env.dst_nid);
1568 /* No better CPU than the current one was found. */
1569 if (env.best_cpu == -1)
1570 return -EAGAIN;
1573 * Reset the scan period if the task is being rescheduled on an
1574 * alternative node to recheck if the tasks is now properly placed.
1576 p->numa_scan_period = task_scan_min(p);
1578 if (env.best_task == NULL) {
1579 ret = migrate_task_to(p, env.best_cpu);
1580 if (ret != 0)
1581 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1582 return ret;
1585 ret = migrate_swap(p, env.best_task);
1586 if (ret != 0)
1587 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1588 put_task_struct(env.best_task);
1589 return ret;
1592 /* Attempt to migrate a task to a CPU on the preferred node. */
1593 static void numa_migrate_preferred(struct task_struct *p)
1595 unsigned long interval = HZ;
1597 /* This task has no NUMA fault statistics yet */
1598 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1599 return;
1601 /* Periodically retry migrating the task to the preferred node */
1602 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1603 p->numa_migrate_retry = jiffies + interval;
1605 /* Success if task is already running on preferred CPU */
1606 if (task_node(p) == p->numa_preferred_nid)
1607 return;
1609 /* Otherwise, try migrate to a CPU on the preferred node */
1610 task_numa_migrate(p);
1614 * Find the nodes on which the workload is actively running. We do this by
1615 * tracking the nodes from which NUMA hinting faults are triggered. This can
1616 * be different from the set of nodes where the workload's memory is currently
1617 * located.
1619 * The bitmask is used to make smarter decisions on when to do NUMA page
1620 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1621 * are added when they cause over 6/16 of the maximum number of faults, but
1622 * only removed when they drop below 3/16.
1624 static void update_numa_active_node_mask(struct numa_group *numa_group)
1626 unsigned long faults, max_faults = 0;
1627 int nid;
1629 for_each_online_node(nid) {
1630 faults = group_faults_cpu(numa_group, nid);
1631 if (faults > max_faults)
1632 max_faults = faults;
1635 for_each_online_node(nid) {
1636 faults = group_faults_cpu(numa_group, nid);
1637 if (!node_isset(nid, numa_group->active_nodes)) {
1638 if (faults > max_faults * 6 / 16)
1639 node_set(nid, numa_group->active_nodes);
1640 } else if (faults < max_faults * 3 / 16)
1641 node_clear(nid, numa_group->active_nodes);
1646 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1647 * increments. The more local the fault statistics are, the higher the scan
1648 * period will be for the next scan window. If local/(local+remote) ratio is
1649 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1650 * the scan period will decrease. Aim for 70% local accesses.
1652 #define NUMA_PERIOD_SLOTS 10
1653 #define NUMA_PERIOD_THRESHOLD 7
1656 * Increase the scan period (slow down scanning) if the majority of
1657 * our memory is already on our local node, or if the majority of
1658 * the page accesses are shared with other processes.
1659 * Otherwise, decrease the scan period.
1661 static void update_task_scan_period(struct task_struct *p,
1662 unsigned long shared, unsigned long private)
1664 unsigned int period_slot;
1665 int ratio;
1666 int diff;
1668 unsigned long remote = p->numa_faults_locality[0];
1669 unsigned long local = p->numa_faults_locality[1];
1672 * If there were no record hinting faults then either the task is
1673 * completely idle or all activity is areas that are not of interest
1674 * to automatic numa balancing. Related to that, if there were failed
1675 * migration then it implies we are migrating too quickly or the local
1676 * node is overloaded. In either case, scan slower
1678 if (local + shared == 0 || p->numa_faults_locality[2]) {
1679 p->numa_scan_period = min(p->numa_scan_period_max,
1680 p->numa_scan_period << 1);
1682 p->mm->numa_next_scan = jiffies +
1683 msecs_to_jiffies(p->numa_scan_period);
1685 return;
1689 * Prepare to scale scan period relative to the current period.
1690 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1691 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1692 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1694 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1695 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1696 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1697 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1698 if (!slot)
1699 slot = 1;
1700 diff = slot * period_slot;
1701 } else {
1702 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1705 * Scale scan rate increases based on sharing. There is an
1706 * inverse relationship between the degree of sharing and
1707 * the adjustment made to the scanning period. Broadly
1708 * speaking the intent is that there is little point
1709 * scanning faster if shared accesses dominate as it may
1710 * simply bounce migrations uselessly
1712 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1713 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1716 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1717 task_scan_min(p), task_scan_max(p));
1718 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1722 * Get the fraction of time the task has been running since the last
1723 * NUMA placement cycle. The scheduler keeps similar statistics, but
1724 * decays those on a 32ms period, which is orders of magnitude off
1725 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1726 * stats only if the task is so new there are no NUMA statistics yet.
1728 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1730 u64 runtime, delta, now;
1731 /* Use the start of this time slice to avoid calculations. */
1732 now = p->se.exec_start;
1733 runtime = p->se.sum_exec_runtime;
1735 if (p->last_task_numa_placement) {
1736 delta = runtime - p->last_sum_exec_runtime;
1737 *period = now - p->last_task_numa_placement;
1738 } else {
1739 delta = p->se.avg.load_sum / p->se.load.weight;
1740 *period = LOAD_AVG_MAX;
1743 p->last_sum_exec_runtime = runtime;
1744 p->last_task_numa_placement = now;
1746 return delta;
1750 * Determine the preferred nid for a task in a numa_group. This needs to
1751 * be done in a way that produces consistent results with group_weight,
1752 * otherwise workloads might not converge.
1754 static int preferred_group_nid(struct task_struct *p, int nid)
1756 nodemask_t nodes;
1757 int dist;
1759 /* Direct connections between all NUMA nodes. */
1760 if (sched_numa_topology_type == NUMA_DIRECT)
1761 return nid;
1764 * On a system with glueless mesh NUMA topology, group_weight
1765 * scores nodes according to the number of NUMA hinting faults on
1766 * both the node itself, and on nearby nodes.
1768 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1769 unsigned long score, max_score = 0;
1770 int node, max_node = nid;
1772 dist = sched_max_numa_distance;
1774 for_each_online_node(node) {
1775 score = group_weight(p, node, dist);
1776 if (score > max_score) {
1777 max_score = score;
1778 max_node = node;
1781 return max_node;
1785 * Finding the preferred nid in a system with NUMA backplane
1786 * interconnect topology is more involved. The goal is to locate
1787 * tasks from numa_groups near each other in the system, and
1788 * untangle workloads from different sides of the system. This requires
1789 * searching down the hierarchy of node groups, recursively searching
1790 * inside the highest scoring group of nodes. The nodemask tricks
1791 * keep the complexity of the search down.
1793 nodes = node_online_map;
1794 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1795 unsigned long max_faults = 0;
1796 nodemask_t max_group = NODE_MASK_NONE;
1797 int a, b;
1799 /* Are there nodes at this distance from each other? */
1800 if (!find_numa_distance(dist))
1801 continue;
1803 for_each_node_mask(a, nodes) {
1804 unsigned long faults = 0;
1805 nodemask_t this_group;
1806 nodes_clear(this_group);
1808 /* Sum group's NUMA faults; includes a==b case. */
1809 for_each_node_mask(b, nodes) {
1810 if (node_distance(a, b) < dist) {
1811 faults += group_faults(p, b);
1812 node_set(b, this_group);
1813 node_clear(b, nodes);
1817 /* Remember the top group. */
1818 if (faults > max_faults) {
1819 max_faults = faults;
1820 max_group = this_group;
1822 * subtle: at the smallest distance there is
1823 * just one node left in each "group", the
1824 * winner is the preferred nid.
1826 nid = a;
1829 /* Next round, evaluate the nodes within max_group. */
1830 if (!max_faults)
1831 break;
1832 nodes = max_group;
1834 return nid;
1837 static void task_numa_placement(struct task_struct *p)
1839 int seq, nid, max_nid = -1, max_group_nid = -1;
1840 unsigned long max_faults = 0, max_group_faults = 0;
1841 unsigned long fault_types[2] = { 0, 0 };
1842 unsigned long total_faults;
1843 u64 runtime, period;
1844 spinlock_t *group_lock = NULL;
1847 * The p->mm->numa_scan_seq field gets updated without
1848 * exclusive access. Use READ_ONCE() here to ensure
1849 * that the field is read in a single access:
1851 seq = READ_ONCE(p->mm->numa_scan_seq);
1852 if (p->numa_scan_seq == seq)
1853 return;
1854 p->numa_scan_seq = seq;
1855 p->numa_scan_period_max = task_scan_max(p);
1857 total_faults = p->numa_faults_locality[0] +
1858 p->numa_faults_locality[1];
1859 runtime = numa_get_avg_runtime(p, &period);
1861 /* If the task is part of a group prevent parallel updates to group stats */
1862 if (p->numa_group) {
1863 group_lock = &p->numa_group->lock;
1864 spin_lock_irq(group_lock);
1867 /* Find the node with the highest number of faults */
1868 for_each_online_node(nid) {
1869 /* Keep track of the offsets in numa_faults array */
1870 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1871 unsigned long faults = 0, group_faults = 0;
1872 int priv;
1874 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1875 long diff, f_diff, f_weight;
1877 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1878 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1879 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1880 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1882 /* Decay existing window, copy faults since last scan */
1883 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1884 fault_types[priv] += p->numa_faults[membuf_idx];
1885 p->numa_faults[membuf_idx] = 0;
1888 * Normalize the faults_from, so all tasks in a group
1889 * count according to CPU use, instead of by the raw
1890 * number of faults. Tasks with little runtime have
1891 * little over-all impact on throughput, and thus their
1892 * faults are less important.
1894 f_weight = div64_u64(runtime << 16, period + 1);
1895 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1896 (total_faults + 1);
1897 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1898 p->numa_faults[cpubuf_idx] = 0;
1900 p->numa_faults[mem_idx] += diff;
1901 p->numa_faults[cpu_idx] += f_diff;
1902 faults += p->numa_faults[mem_idx];
1903 p->total_numa_faults += diff;
1904 if (p->numa_group) {
1906 * safe because we can only change our own group
1908 * mem_idx represents the offset for a given
1909 * nid and priv in a specific region because it
1910 * is at the beginning of the numa_faults array.
1912 p->numa_group->faults[mem_idx] += diff;
1913 p->numa_group->faults_cpu[mem_idx] += f_diff;
1914 p->numa_group->total_faults += diff;
1915 group_faults += p->numa_group->faults[mem_idx];
1919 if (faults > max_faults) {
1920 max_faults = faults;
1921 max_nid = nid;
1924 if (group_faults > max_group_faults) {
1925 max_group_faults = group_faults;
1926 max_group_nid = nid;
1930 update_task_scan_period(p, fault_types[0], fault_types[1]);
1932 if (p->numa_group) {
1933 update_numa_active_node_mask(p->numa_group);
1934 spin_unlock_irq(group_lock);
1935 max_nid = preferred_group_nid(p, max_group_nid);
1938 if (max_faults) {
1939 /* Set the new preferred node */
1940 if (max_nid != p->numa_preferred_nid)
1941 sched_setnuma(p, max_nid);
1943 if (task_node(p) != p->numa_preferred_nid)
1944 numa_migrate_preferred(p);
1948 static inline int get_numa_group(struct numa_group *grp)
1950 return atomic_inc_not_zero(&grp->refcount);
1953 static inline void put_numa_group(struct numa_group *grp)
1955 if (atomic_dec_and_test(&grp->refcount))
1956 kfree_rcu(grp, rcu);
1959 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1960 int *priv)
1962 struct numa_group *grp, *my_grp;
1963 struct task_struct *tsk;
1964 bool join = false;
1965 int cpu = cpupid_to_cpu(cpupid);
1966 int i;
1968 if (unlikely(!p->numa_group)) {
1969 unsigned int size = sizeof(struct numa_group) +
1970 4*nr_node_ids*sizeof(unsigned long);
1972 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1973 if (!grp)
1974 return;
1976 atomic_set(&grp->refcount, 1);
1977 spin_lock_init(&grp->lock);
1978 grp->gid = p->pid;
1979 /* Second half of the array tracks nids where faults happen */
1980 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1981 nr_node_ids;
1983 node_set(task_node(current), grp->active_nodes);
1985 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1986 grp->faults[i] = p->numa_faults[i];
1988 grp->total_faults = p->total_numa_faults;
1990 grp->nr_tasks++;
1991 rcu_assign_pointer(p->numa_group, grp);
1994 rcu_read_lock();
1995 tsk = READ_ONCE(cpu_rq(cpu)->curr);
1997 if (!cpupid_match_pid(tsk, cpupid))
1998 goto no_join;
2000 grp = rcu_dereference(tsk->numa_group);
2001 if (!grp)
2002 goto no_join;
2004 my_grp = p->numa_group;
2005 if (grp == my_grp)
2006 goto no_join;
2009 * Only join the other group if its bigger; if we're the bigger group,
2010 * the other task will join us.
2012 if (my_grp->nr_tasks > grp->nr_tasks)
2013 goto no_join;
2016 * Tie-break on the grp address.
2018 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2019 goto no_join;
2021 /* Always join threads in the same process. */
2022 if (tsk->mm == current->mm)
2023 join = true;
2025 /* Simple filter to avoid false positives due to PID collisions */
2026 if (flags & TNF_SHARED)
2027 join = true;
2029 /* Update priv based on whether false sharing was detected */
2030 *priv = !join;
2032 if (join && !get_numa_group(grp))
2033 goto no_join;
2035 rcu_read_unlock();
2037 if (!join)
2038 return;
2040 BUG_ON(irqs_disabled());
2041 double_lock_irq(&my_grp->lock, &grp->lock);
2043 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2044 my_grp->faults[i] -= p->numa_faults[i];
2045 grp->faults[i] += p->numa_faults[i];
2047 my_grp->total_faults -= p->total_numa_faults;
2048 grp->total_faults += p->total_numa_faults;
2050 my_grp->nr_tasks--;
2051 grp->nr_tasks++;
2053 spin_unlock(&my_grp->lock);
2054 spin_unlock_irq(&grp->lock);
2056 rcu_assign_pointer(p->numa_group, grp);
2058 put_numa_group(my_grp);
2059 return;
2061 no_join:
2062 rcu_read_unlock();
2063 return;
2066 void task_numa_free(struct task_struct *p)
2068 struct numa_group *grp = p->numa_group;
2069 void *numa_faults = p->numa_faults;
2070 unsigned long flags;
2071 int i;
2073 if (grp) {
2074 spin_lock_irqsave(&grp->lock, flags);
2075 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2076 grp->faults[i] -= p->numa_faults[i];
2077 grp->total_faults -= p->total_numa_faults;
2079 grp->nr_tasks--;
2080 spin_unlock_irqrestore(&grp->lock, flags);
2081 RCU_INIT_POINTER(p->numa_group, NULL);
2082 put_numa_group(grp);
2085 p->numa_faults = NULL;
2086 kfree(numa_faults);
2090 * Got a PROT_NONE fault for a page on @node.
2092 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2094 struct task_struct *p = current;
2095 bool migrated = flags & TNF_MIGRATED;
2096 int cpu_node = task_node(current);
2097 int local = !!(flags & TNF_FAULT_LOCAL);
2098 int priv;
2100 if (!static_branch_likely(&sched_numa_balancing))
2101 return;
2103 /* for example, ksmd faulting in a user's mm */
2104 if (!p->mm)
2105 return;
2107 /* Allocate buffer to track faults on a per-node basis */
2108 if (unlikely(!p->numa_faults)) {
2109 int size = sizeof(*p->numa_faults) *
2110 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2112 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2113 if (!p->numa_faults)
2114 return;
2116 p->total_numa_faults = 0;
2117 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2121 * First accesses are treated as private, otherwise consider accesses
2122 * to be private if the accessing pid has not changed
2124 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2125 priv = 1;
2126 } else {
2127 priv = cpupid_match_pid(p, last_cpupid);
2128 if (!priv && !(flags & TNF_NO_GROUP))
2129 task_numa_group(p, last_cpupid, flags, &priv);
2133 * If a workload spans multiple NUMA nodes, a shared fault that
2134 * occurs wholly within the set of nodes that the workload is
2135 * actively using should be counted as local. This allows the
2136 * scan rate to slow down when a workload has settled down.
2138 if (!priv && !local && p->numa_group &&
2139 node_isset(cpu_node, p->numa_group->active_nodes) &&
2140 node_isset(mem_node, p->numa_group->active_nodes))
2141 local = 1;
2143 task_numa_placement(p);
2146 * Retry task to preferred node migration periodically, in case it
2147 * case it previously failed, or the scheduler moved us.
2149 if (time_after(jiffies, p->numa_migrate_retry))
2150 numa_migrate_preferred(p);
2152 if (migrated)
2153 p->numa_pages_migrated += pages;
2154 if (flags & TNF_MIGRATE_FAIL)
2155 p->numa_faults_locality[2] += pages;
2157 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2158 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2159 p->numa_faults_locality[local] += pages;
2162 static void reset_ptenuma_scan(struct task_struct *p)
2165 * We only did a read acquisition of the mmap sem, so
2166 * p->mm->numa_scan_seq is written to without exclusive access
2167 * and the update is not guaranteed to be atomic. That's not
2168 * much of an issue though, since this is just used for
2169 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2170 * expensive, to avoid any form of compiler optimizations:
2172 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2173 p->mm->numa_scan_offset = 0;
2177 * The expensive part of numa migration is done from task_work context.
2178 * Triggered from task_tick_numa().
2180 void task_numa_work(struct callback_head *work)
2182 unsigned long migrate, next_scan, now = jiffies;
2183 struct task_struct *p = current;
2184 struct mm_struct *mm = p->mm;
2185 u64 runtime = p->se.sum_exec_runtime;
2186 struct vm_area_struct *vma;
2187 unsigned long start, end;
2188 unsigned long nr_pte_updates = 0;
2189 long pages, virtpages;
2191 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2193 work->next = work; /* protect against double add */
2195 * Who cares about NUMA placement when they're dying.
2197 * NOTE: make sure not to dereference p->mm before this check,
2198 * exit_task_work() happens _after_ exit_mm() so we could be called
2199 * without p->mm even though we still had it when we enqueued this
2200 * work.
2202 if (p->flags & PF_EXITING)
2203 return;
2205 if (!mm->numa_next_scan) {
2206 mm->numa_next_scan = now +
2207 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2211 * Enforce maximal scan/migration frequency..
2213 migrate = mm->numa_next_scan;
2214 if (time_before(now, migrate))
2215 return;
2217 if (p->numa_scan_period == 0) {
2218 p->numa_scan_period_max = task_scan_max(p);
2219 p->numa_scan_period = task_scan_min(p);
2222 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2223 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2224 return;
2227 * Delay this task enough that another task of this mm will likely win
2228 * the next time around.
2230 p->node_stamp += 2 * TICK_NSEC;
2232 start = mm->numa_scan_offset;
2233 pages = sysctl_numa_balancing_scan_size;
2234 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2235 virtpages = pages * 8; /* Scan up to this much virtual space */
2236 if (!pages)
2237 return;
2240 down_read(&mm->mmap_sem);
2241 vma = find_vma(mm, start);
2242 if (!vma) {
2243 reset_ptenuma_scan(p);
2244 start = 0;
2245 vma = mm->mmap;
2247 for (; vma; vma = vma->vm_next) {
2248 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2249 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2250 continue;
2254 * Shared library pages mapped by multiple processes are not
2255 * migrated as it is expected they are cache replicated. Avoid
2256 * hinting faults in read-only file-backed mappings or the vdso
2257 * as migrating the pages will be of marginal benefit.
2259 if (!vma->vm_mm ||
2260 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2261 continue;
2264 * Skip inaccessible VMAs to avoid any confusion between
2265 * PROT_NONE and NUMA hinting ptes
2267 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2268 continue;
2270 do {
2271 start = max(start, vma->vm_start);
2272 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2273 end = min(end, vma->vm_end);
2274 nr_pte_updates = change_prot_numa(vma, start, end);
2277 * Try to scan sysctl_numa_balancing_size worth of
2278 * hpages that have at least one present PTE that
2279 * is not already pte-numa. If the VMA contains
2280 * areas that are unused or already full of prot_numa
2281 * PTEs, scan up to virtpages, to skip through those
2282 * areas faster.
2284 if (nr_pte_updates)
2285 pages -= (end - start) >> PAGE_SHIFT;
2286 virtpages -= (end - start) >> PAGE_SHIFT;
2288 start = end;
2289 if (pages <= 0 || virtpages <= 0)
2290 goto out;
2292 cond_resched();
2293 } while (end != vma->vm_end);
2296 out:
2298 * It is possible to reach the end of the VMA list but the last few
2299 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2300 * would find the !migratable VMA on the next scan but not reset the
2301 * scanner to the start so check it now.
2303 if (vma)
2304 mm->numa_scan_offset = start;
2305 else
2306 reset_ptenuma_scan(p);
2307 up_read(&mm->mmap_sem);
2310 * Make sure tasks use at least 32x as much time to run other code
2311 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2312 * Usually update_task_scan_period slows down scanning enough; on an
2313 * overloaded system we need to limit overhead on a per task basis.
2315 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2316 u64 diff = p->se.sum_exec_runtime - runtime;
2317 p->node_stamp += 32 * diff;
2322 * Drive the periodic memory faults..
2324 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2326 struct callback_head *work = &curr->numa_work;
2327 u64 period, now;
2330 * We don't care about NUMA placement if we don't have memory.
2332 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2333 return;
2336 * Using runtime rather than walltime has the dual advantage that
2337 * we (mostly) drive the selection from busy threads and that the
2338 * task needs to have done some actual work before we bother with
2339 * NUMA placement.
2341 now = curr->se.sum_exec_runtime;
2342 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2344 if (now > curr->node_stamp + period) {
2345 if (!curr->node_stamp)
2346 curr->numa_scan_period = task_scan_min(curr);
2347 curr->node_stamp += period;
2349 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2350 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2351 task_work_add(curr, work, true);
2355 #else
2356 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2360 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2364 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2367 #endif /* CONFIG_NUMA_BALANCING */
2369 static void
2370 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2372 update_load_add(&cfs_rq->load, se->load.weight);
2373 if (!parent_entity(se))
2374 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2375 #ifdef CONFIG_SMP
2376 if (entity_is_task(se)) {
2377 struct rq *rq = rq_of(cfs_rq);
2379 account_numa_enqueue(rq, task_of(se));
2380 list_add(&se->group_node, &rq->cfs_tasks);
2382 #endif
2383 cfs_rq->nr_running++;
2386 static void
2387 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2389 update_load_sub(&cfs_rq->load, se->load.weight);
2390 if (!parent_entity(se))
2391 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2392 if (entity_is_task(se)) {
2393 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2394 list_del_init(&se->group_node);
2396 cfs_rq->nr_running--;
2399 #ifdef CONFIG_FAIR_GROUP_SCHED
2400 # ifdef CONFIG_SMP
2401 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2403 long tg_weight;
2406 * Use this CPU's real-time load instead of the last load contribution
2407 * as the updating of the contribution is delayed, and we will use the
2408 * the real-time load to calc the share. See update_tg_load_avg().
2410 tg_weight = atomic_long_read(&tg->load_avg);
2411 tg_weight -= cfs_rq->tg_load_avg_contrib;
2412 tg_weight += cfs_rq->load.weight;
2414 return tg_weight;
2417 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2419 long tg_weight, load, shares;
2421 tg_weight = calc_tg_weight(tg, cfs_rq);
2422 load = cfs_rq->load.weight;
2424 shares = (tg->shares * load);
2425 if (tg_weight)
2426 shares /= tg_weight;
2428 if (shares < MIN_SHARES)
2429 shares = MIN_SHARES;
2430 if (shares > tg->shares)
2431 shares = tg->shares;
2433 return shares;
2435 # else /* CONFIG_SMP */
2436 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2438 return tg->shares;
2440 # endif /* CONFIG_SMP */
2441 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2442 unsigned long weight)
2444 if (se->on_rq) {
2445 /* commit outstanding execution time */
2446 if (cfs_rq->curr == se)
2447 update_curr(cfs_rq);
2448 account_entity_dequeue(cfs_rq, se);
2451 update_load_set(&se->load, weight);
2453 if (se->on_rq)
2454 account_entity_enqueue(cfs_rq, se);
2457 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2459 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2461 struct task_group *tg;
2462 struct sched_entity *se;
2463 long shares;
2465 tg = cfs_rq->tg;
2466 se = tg->se[cpu_of(rq_of(cfs_rq))];
2467 if (!se || throttled_hierarchy(cfs_rq))
2468 return;
2469 #ifndef CONFIG_SMP
2470 if (likely(se->load.weight == tg->shares))
2471 return;
2472 #endif
2473 shares = calc_cfs_shares(cfs_rq, tg);
2475 reweight_entity(cfs_rq_of(se), se, shares);
2477 #else /* CONFIG_FAIR_GROUP_SCHED */
2478 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2481 #endif /* CONFIG_FAIR_GROUP_SCHED */
2483 #ifdef CONFIG_SMP
2484 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2485 static const u32 runnable_avg_yN_inv[] = {
2486 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2487 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2488 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2489 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2490 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2491 0x85aac367, 0x82cd8698,
2495 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2496 * over-estimates when re-combining.
2498 static const u32 runnable_avg_yN_sum[] = {
2499 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2500 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2501 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2505 * Approximate:
2506 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2508 static __always_inline u64 decay_load(u64 val, u64 n)
2510 unsigned int local_n;
2512 if (!n)
2513 return val;
2514 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2515 return 0;
2517 /* after bounds checking we can collapse to 32-bit */
2518 local_n = n;
2521 * As y^PERIOD = 1/2, we can combine
2522 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2523 * With a look-up table which covers y^n (n<PERIOD)
2525 * To achieve constant time decay_load.
2527 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2528 val >>= local_n / LOAD_AVG_PERIOD;
2529 local_n %= LOAD_AVG_PERIOD;
2532 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2533 return val;
2537 * For updates fully spanning n periods, the contribution to runnable
2538 * average will be: \Sum 1024*y^n
2540 * We can compute this reasonably efficiently by combining:
2541 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2543 static u32 __compute_runnable_contrib(u64 n)
2545 u32 contrib = 0;
2547 if (likely(n <= LOAD_AVG_PERIOD))
2548 return runnable_avg_yN_sum[n];
2549 else if (unlikely(n >= LOAD_AVG_MAX_N))
2550 return LOAD_AVG_MAX;
2552 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2553 do {
2554 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2555 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2557 n -= LOAD_AVG_PERIOD;
2558 } while (n > LOAD_AVG_PERIOD);
2560 contrib = decay_load(contrib, n);
2561 return contrib + runnable_avg_yN_sum[n];
2564 #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2565 #error "load tracking assumes 2^10 as unit"
2566 #endif
2568 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2571 * We can represent the historical contribution to runnable average as the
2572 * coefficients of a geometric series. To do this we sub-divide our runnable
2573 * history into segments of approximately 1ms (1024us); label the segment that
2574 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2576 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2577 * p0 p1 p2
2578 * (now) (~1ms ago) (~2ms ago)
2580 * Let u_i denote the fraction of p_i that the entity was runnable.
2582 * We then designate the fractions u_i as our co-efficients, yielding the
2583 * following representation of historical load:
2584 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2586 * We choose y based on the with of a reasonably scheduling period, fixing:
2587 * y^32 = 0.5
2589 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2590 * approximately half as much as the contribution to load within the last ms
2591 * (u_0).
2593 * When a period "rolls over" and we have new u_0`, multiplying the previous
2594 * sum again by y is sufficient to update:
2595 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2596 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2598 static __always_inline int
2599 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2600 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2602 u64 delta, scaled_delta, periods;
2603 u32 contrib;
2604 unsigned int delta_w, scaled_delta_w, decayed = 0;
2605 unsigned long scale_freq, scale_cpu;
2607 delta = now - sa->last_update_time;
2609 * This should only happen when time goes backwards, which it
2610 * unfortunately does during sched clock init when we swap over to TSC.
2612 if ((s64)delta < 0) {
2613 sa->last_update_time = now;
2614 return 0;
2618 * Use 1024ns as the unit of measurement since it's a reasonable
2619 * approximation of 1us and fast to compute.
2621 delta >>= 10;
2622 if (!delta)
2623 return 0;
2624 sa->last_update_time = now;
2626 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2627 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2629 /* delta_w is the amount already accumulated against our next period */
2630 delta_w = sa->period_contrib;
2631 if (delta + delta_w >= 1024) {
2632 decayed = 1;
2634 /* how much left for next period will start over, we don't know yet */
2635 sa->period_contrib = 0;
2638 * Now that we know we're crossing a period boundary, figure
2639 * out how much from delta we need to complete the current
2640 * period and accrue it.
2642 delta_w = 1024 - delta_w;
2643 scaled_delta_w = cap_scale(delta_w, scale_freq);
2644 if (weight) {
2645 sa->load_sum += weight * scaled_delta_w;
2646 if (cfs_rq) {
2647 cfs_rq->runnable_load_sum +=
2648 weight * scaled_delta_w;
2651 if (running)
2652 sa->util_sum += scaled_delta_w * scale_cpu;
2654 delta -= delta_w;
2656 /* Figure out how many additional periods this update spans */
2657 periods = delta / 1024;
2658 delta %= 1024;
2660 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2661 if (cfs_rq) {
2662 cfs_rq->runnable_load_sum =
2663 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2665 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2667 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2668 contrib = __compute_runnable_contrib(periods);
2669 contrib = cap_scale(contrib, scale_freq);
2670 if (weight) {
2671 sa->load_sum += weight * contrib;
2672 if (cfs_rq)
2673 cfs_rq->runnable_load_sum += weight * contrib;
2675 if (running)
2676 sa->util_sum += contrib * scale_cpu;
2679 /* Remainder of delta accrued against u_0` */
2680 scaled_delta = cap_scale(delta, scale_freq);
2681 if (weight) {
2682 sa->load_sum += weight * scaled_delta;
2683 if (cfs_rq)
2684 cfs_rq->runnable_load_sum += weight * scaled_delta;
2686 if (running)
2687 sa->util_sum += scaled_delta * scale_cpu;
2689 sa->period_contrib += delta;
2691 if (decayed) {
2692 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2693 if (cfs_rq) {
2694 cfs_rq->runnable_load_avg =
2695 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2697 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2700 return decayed;
2703 #ifdef CONFIG_FAIR_GROUP_SCHED
2705 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2706 * and effective_load (which is not done because it is too costly).
2708 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2710 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2713 * No need to update load_avg for root_task_group as it is not used.
2715 if (cfs_rq->tg == &root_task_group)
2716 return;
2718 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2719 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2720 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2725 * Called within set_task_rq() right before setting a task's cpu. The
2726 * caller only guarantees p->pi_lock is held; no other assumptions,
2727 * including the state of rq->lock, should be made.
2729 void set_task_rq_fair(struct sched_entity *se,
2730 struct cfs_rq *prev, struct cfs_rq *next)
2732 if (!sched_feat(ATTACH_AGE_LOAD))
2733 return;
2736 * We are supposed to update the task to "current" time, then its up to
2737 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2738 * getting what current time is, so simply throw away the out-of-date
2739 * time. This will result in the wakee task is less decayed, but giving
2740 * the wakee more load sounds not bad.
2742 if (se->avg.last_update_time && prev) {
2743 u64 p_last_update_time;
2744 u64 n_last_update_time;
2746 #ifndef CONFIG_64BIT
2747 u64 p_last_update_time_copy;
2748 u64 n_last_update_time_copy;
2750 do {
2751 p_last_update_time_copy = prev->load_last_update_time_copy;
2752 n_last_update_time_copy = next->load_last_update_time_copy;
2754 smp_rmb();
2756 p_last_update_time = prev->avg.last_update_time;
2757 n_last_update_time = next->avg.last_update_time;
2759 } while (p_last_update_time != p_last_update_time_copy ||
2760 n_last_update_time != n_last_update_time_copy);
2761 #else
2762 p_last_update_time = prev->avg.last_update_time;
2763 n_last_update_time = next->avg.last_update_time;
2764 #endif
2765 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2766 &se->avg, 0, 0, NULL);
2767 se->avg.last_update_time = n_last_update_time;
2770 #else /* CONFIG_FAIR_GROUP_SCHED */
2771 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2772 #endif /* CONFIG_FAIR_GROUP_SCHED */
2774 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2776 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2777 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2779 struct sched_avg *sa = &cfs_rq->avg;
2780 int decayed, removed = 0;
2782 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2783 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2784 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2785 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2786 removed = 1;
2789 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2790 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2791 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2792 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2795 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2796 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2798 #ifndef CONFIG_64BIT
2799 smp_wmb();
2800 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2801 #endif
2803 return decayed || removed;
2806 /* Update task and its cfs_rq load average */
2807 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2809 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2810 u64 now = cfs_rq_clock_task(cfs_rq);
2811 int cpu = cpu_of(rq_of(cfs_rq));
2814 * Track task load average for carrying it to new CPU after migrated, and
2815 * track group sched_entity load average for task_h_load calc in migration
2817 __update_load_avg(now, cpu, &se->avg,
2818 se->on_rq * scale_load_down(se->load.weight),
2819 cfs_rq->curr == se, NULL);
2821 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2822 update_tg_load_avg(cfs_rq, 0);
2825 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2827 if (!sched_feat(ATTACH_AGE_LOAD))
2828 goto skip_aging;
2831 * If we got migrated (either between CPUs or between cgroups) we'll
2832 * have aged the average right before clearing @last_update_time.
2834 if (se->avg.last_update_time) {
2835 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2836 &se->avg, 0, 0, NULL);
2839 * XXX: we could have just aged the entire load away if we've been
2840 * absent from the fair class for too long.
2844 skip_aging:
2845 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2846 cfs_rq->avg.load_avg += se->avg.load_avg;
2847 cfs_rq->avg.load_sum += se->avg.load_sum;
2848 cfs_rq->avg.util_avg += se->avg.util_avg;
2849 cfs_rq->avg.util_sum += se->avg.util_sum;
2852 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2854 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2855 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2856 cfs_rq->curr == se, NULL);
2858 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2859 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2860 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2861 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2864 /* Add the load generated by se into cfs_rq's load average */
2865 static inline void
2866 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2868 struct sched_avg *sa = &se->avg;
2869 u64 now = cfs_rq_clock_task(cfs_rq);
2870 int migrated, decayed;
2872 migrated = !sa->last_update_time;
2873 if (!migrated) {
2874 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2875 se->on_rq * scale_load_down(se->load.weight),
2876 cfs_rq->curr == se, NULL);
2879 decayed = update_cfs_rq_load_avg(now, cfs_rq);
2881 cfs_rq->runnable_load_avg += sa->load_avg;
2882 cfs_rq->runnable_load_sum += sa->load_sum;
2884 if (migrated)
2885 attach_entity_load_avg(cfs_rq, se);
2887 if (decayed || migrated)
2888 update_tg_load_avg(cfs_rq, 0);
2891 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
2892 static inline void
2893 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2895 update_load_avg(se, 1);
2897 cfs_rq->runnable_load_avg =
2898 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2899 cfs_rq->runnable_load_sum =
2900 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2903 #ifndef CONFIG_64BIT
2904 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2906 u64 last_update_time_copy;
2907 u64 last_update_time;
2909 do {
2910 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2911 smp_rmb();
2912 last_update_time = cfs_rq->avg.last_update_time;
2913 } while (last_update_time != last_update_time_copy);
2915 return last_update_time;
2917 #else
2918 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2920 return cfs_rq->avg.last_update_time;
2922 #endif
2925 * Task first catches up with cfs_rq, and then subtract
2926 * itself from the cfs_rq (task must be off the queue now).
2928 void remove_entity_load_avg(struct sched_entity *se)
2930 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2931 u64 last_update_time;
2934 * Newly created task or never used group entity should not be removed
2935 * from its (source) cfs_rq
2937 if (se->avg.last_update_time == 0)
2938 return;
2940 last_update_time = cfs_rq_last_update_time(cfs_rq);
2942 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2943 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2944 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2947 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2949 return cfs_rq->runnable_load_avg;
2952 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2954 return cfs_rq->avg.load_avg;
2957 static int idle_balance(struct rq *this_rq);
2959 #else /* CONFIG_SMP */
2961 static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2962 static inline void
2963 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2964 static inline void
2965 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2966 static inline void remove_entity_load_avg(struct sched_entity *se) {}
2968 static inline void
2969 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2970 static inline void
2971 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2973 static inline int idle_balance(struct rq *rq)
2975 return 0;
2978 #endif /* CONFIG_SMP */
2980 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2982 #ifdef CONFIG_SCHEDSTATS
2983 struct task_struct *tsk = NULL;
2985 if (entity_is_task(se))
2986 tsk = task_of(se);
2988 if (se->statistics.sleep_start) {
2989 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2991 if ((s64)delta < 0)
2992 delta = 0;
2994 if (unlikely(delta > se->statistics.sleep_max))
2995 se->statistics.sleep_max = delta;
2997 se->statistics.sleep_start = 0;
2998 se->statistics.sum_sleep_runtime += delta;
3000 if (tsk) {
3001 account_scheduler_latency(tsk, delta >> 10, 1);
3002 trace_sched_stat_sleep(tsk, delta);
3005 if (se->statistics.block_start) {
3006 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3008 if ((s64)delta < 0)
3009 delta = 0;
3011 if (unlikely(delta > se->statistics.block_max))
3012 se->statistics.block_max = delta;
3014 se->statistics.block_start = 0;
3015 se->statistics.sum_sleep_runtime += delta;
3017 if (tsk) {
3018 if (tsk->in_iowait) {
3019 se->statistics.iowait_sum += delta;
3020 se->statistics.iowait_count++;
3021 trace_sched_stat_iowait(tsk, delta);
3024 trace_sched_stat_blocked(tsk, delta);
3027 * Blocking time is in units of nanosecs, so shift by
3028 * 20 to get a milliseconds-range estimation of the
3029 * amount of time that the task spent sleeping:
3031 if (unlikely(prof_on == SLEEP_PROFILING)) {
3032 profile_hits(SLEEP_PROFILING,
3033 (void *)get_wchan(tsk),
3034 delta >> 20);
3036 account_scheduler_latency(tsk, delta >> 10, 0);
3039 #endif
3042 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3044 #ifdef CONFIG_SCHED_DEBUG
3045 s64 d = se->vruntime - cfs_rq->min_vruntime;
3047 if (d < 0)
3048 d = -d;
3050 if (d > 3*sysctl_sched_latency)
3051 schedstat_inc(cfs_rq, nr_spread_over);
3052 #endif
3055 static void
3056 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3058 u64 vruntime = cfs_rq->min_vruntime;
3061 * The 'current' period is already promised to the current tasks,
3062 * however the extra weight of the new task will slow them down a
3063 * little, place the new task so that it fits in the slot that
3064 * stays open at the end.
3066 if (initial && sched_feat(START_DEBIT))
3067 vruntime += sched_vslice(cfs_rq, se);
3069 /* sleeps up to a single latency don't count. */
3070 if (!initial) {
3071 unsigned long thresh = sysctl_sched_latency;
3074 * Halve their sleep time's effect, to allow
3075 * for a gentler effect of sleepers:
3077 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3078 thresh >>= 1;
3080 vruntime -= thresh;
3083 /* ensure we never gain time by being placed backwards. */
3084 se->vruntime = max_vruntime(se->vruntime, vruntime);
3087 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3089 static void
3090 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3093 * Update the normalized vruntime before updating min_vruntime
3094 * through calling update_curr().
3096 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3097 se->vruntime += cfs_rq->min_vruntime;
3100 * Update run-time statistics of the 'current'.
3102 update_curr(cfs_rq);
3103 enqueue_entity_load_avg(cfs_rq, se);
3104 account_entity_enqueue(cfs_rq, se);
3105 update_cfs_shares(cfs_rq);
3107 if (flags & ENQUEUE_WAKEUP) {
3108 place_entity(cfs_rq, se, 0);
3109 enqueue_sleeper(cfs_rq, se);
3112 update_stats_enqueue(cfs_rq, se);
3113 check_spread(cfs_rq, se);
3114 if (se != cfs_rq->curr)
3115 __enqueue_entity(cfs_rq, se);
3116 se->on_rq = 1;
3118 if (cfs_rq->nr_running == 1) {
3119 list_add_leaf_cfs_rq(cfs_rq);
3120 check_enqueue_throttle(cfs_rq);
3124 static void __clear_buddies_last(struct sched_entity *se)
3126 for_each_sched_entity(se) {
3127 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3128 if (cfs_rq->last != se)
3129 break;
3131 cfs_rq->last = NULL;
3135 static void __clear_buddies_next(struct sched_entity *se)
3137 for_each_sched_entity(se) {
3138 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3139 if (cfs_rq->next != se)
3140 break;
3142 cfs_rq->next = NULL;
3146 static void __clear_buddies_skip(struct sched_entity *se)
3148 for_each_sched_entity(se) {
3149 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3150 if (cfs_rq->skip != se)
3151 break;
3153 cfs_rq->skip = NULL;
3157 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3159 if (cfs_rq->last == se)
3160 __clear_buddies_last(se);
3162 if (cfs_rq->next == se)
3163 __clear_buddies_next(se);
3165 if (cfs_rq->skip == se)
3166 __clear_buddies_skip(se);
3169 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3171 static void
3172 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3175 * Update run-time statistics of the 'current'.
3177 update_curr(cfs_rq);
3178 dequeue_entity_load_avg(cfs_rq, se);
3180 update_stats_dequeue(cfs_rq, se);
3181 if (flags & DEQUEUE_SLEEP) {
3182 #ifdef CONFIG_SCHEDSTATS
3183 if (entity_is_task(se)) {
3184 struct task_struct *tsk = task_of(se);
3186 if (tsk->state & TASK_INTERRUPTIBLE)
3187 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3188 if (tsk->state & TASK_UNINTERRUPTIBLE)
3189 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3191 #endif
3194 clear_buddies(cfs_rq, se);
3196 if (se != cfs_rq->curr)
3197 __dequeue_entity(cfs_rq, se);
3198 se->on_rq = 0;
3199 account_entity_dequeue(cfs_rq, se);
3202 * Normalize the entity after updating the min_vruntime because the
3203 * update can refer to the ->curr item and we need to reflect this
3204 * movement in our normalized position.
3206 if (!(flags & DEQUEUE_SLEEP))
3207 se->vruntime -= cfs_rq->min_vruntime;
3209 /* return excess runtime on last dequeue */
3210 return_cfs_rq_runtime(cfs_rq);
3212 update_min_vruntime(cfs_rq);
3213 update_cfs_shares(cfs_rq);
3217 * Preempt the current task with a newly woken task if needed:
3219 static void
3220 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3222 unsigned long ideal_runtime, delta_exec;
3223 struct sched_entity *se;
3224 s64 delta;
3226 ideal_runtime = sched_slice(cfs_rq, curr);
3227 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3228 if (delta_exec > ideal_runtime) {
3229 resched_curr(rq_of(cfs_rq));
3231 * The current task ran long enough, ensure it doesn't get
3232 * re-elected due to buddy favours.
3234 clear_buddies(cfs_rq, curr);
3235 return;
3239 * Ensure that a task that missed wakeup preemption by a
3240 * narrow margin doesn't have to wait for a full slice.
3241 * This also mitigates buddy induced latencies under load.
3243 if (delta_exec < sysctl_sched_min_granularity)
3244 return;
3246 se = __pick_first_entity(cfs_rq);
3247 delta = curr->vruntime - se->vruntime;
3249 if (delta < 0)
3250 return;
3252 if (delta > ideal_runtime)
3253 resched_curr(rq_of(cfs_rq));
3256 static void
3257 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3259 /* 'current' is not kept within the tree. */
3260 if (se->on_rq) {
3262 * Any task has to be enqueued before it get to execute on
3263 * a CPU. So account for the time it spent waiting on the
3264 * runqueue.
3266 update_stats_wait_end(cfs_rq, se);
3267 __dequeue_entity(cfs_rq, se);
3268 update_load_avg(se, 1);
3271 update_stats_curr_start(cfs_rq, se);
3272 cfs_rq->curr = se;
3273 #ifdef CONFIG_SCHEDSTATS
3275 * Track our maximum slice length, if the CPU's load is at
3276 * least twice that of our own weight (i.e. dont track it
3277 * when there are only lesser-weight tasks around):
3279 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3280 se->statistics.slice_max = max(se->statistics.slice_max,
3281 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3283 #endif
3284 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3287 static int
3288 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3291 * Pick the next process, keeping these things in mind, in this order:
3292 * 1) keep things fair between processes/task groups
3293 * 2) pick the "next" process, since someone really wants that to run
3294 * 3) pick the "last" process, for cache locality
3295 * 4) do not run the "skip" process, if something else is available
3297 static struct sched_entity *
3298 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3300 struct sched_entity *left = __pick_first_entity(cfs_rq);
3301 struct sched_entity *se;
3304 * If curr is set we have to see if its left of the leftmost entity
3305 * still in the tree, provided there was anything in the tree at all.
3307 if (!left || (curr && entity_before(curr, left)))
3308 left = curr;
3310 se = left; /* ideally we run the leftmost entity */
3313 * Avoid running the skip buddy, if running something else can
3314 * be done without getting too unfair.
3316 if (cfs_rq->skip == se) {
3317 struct sched_entity *second;
3319 if (se == curr) {
3320 second = __pick_first_entity(cfs_rq);
3321 } else {
3322 second = __pick_next_entity(se);
3323 if (!second || (curr && entity_before(curr, second)))
3324 second = curr;
3327 if (second && wakeup_preempt_entity(second, left) < 1)
3328 se = second;
3332 * Prefer last buddy, try to return the CPU to a preempted task.
3334 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3335 se = cfs_rq->last;
3338 * Someone really wants this to run. If it's not unfair, run it.
3340 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3341 se = cfs_rq->next;
3343 clear_buddies(cfs_rq, se);
3345 return se;
3348 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3350 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3353 * If still on the runqueue then deactivate_task()
3354 * was not called and update_curr() has to be done:
3356 if (prev->on_rq)
3357 update_curr(cfs_rq);
3359 /* throttle cfs_rqs exceeding runtime */
3360 check_cfs_rq_runtime(cfs_rq);
3362 check_spread(cfs_rq, prev);
3363 if (prev->on_rq) {
3364 update_stats_wait_start(cfs_rq, prev);
3365 /* Put 'current' back into the tree. */
3366 __enqueue_entity(cfs_rq, prev);
3367 /* in !on_rq case, update occurred at dequeue */
3368 update_load_avg(prev, 0);
3370 cfs_rq->curr = NULL;
3373 static void
3374 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3377 * Update run-time statistics of the 'current'.
3379 update_curr(cfs_rq);
3382 * Ensure that runnable average is periodically updated.
3384 update_load_avg(curr, 1);
3385 update_cfs_shares(cfs_rq);
3387 #ifdef CONFIG_SCHED_HRTICK
3389 * queued ticks are scheduled to match the slice, so don't bother
3390 * validating it and just reschedule.
3392 if (queued) {
3393 resched_curr(rq_of(cfs_rq));
3394 return;
3397 * don't let the period tick interfere with the hrtick preemption
3399 if (!sched_feat(DOUBLE_TICK) &&
3400 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3401 return;
3402 #endif
3404 if (cfs_rq->nr_running > 1)
3405 check_preempt_tick(cfs_rq, curr);
3409 /**************************************************
3410 * CFS bandwidth control machinery
3413 #ifdef CONFIG_CFS_BANDWIDTH
3415 #ifdef HAVE_JUMP_LABEL
3416 static struct static_key __cfs_bandwidth_used;
3418 static inline bool cfs_bandwidth_used(void)
3420 return static_key_false(&__cfs_bandwidth_used);
3423 void cfs_bandwidth_usage_inc(void)
3425 static_key_slow_inc(&__cfs_bandwidth_used);
3428 void cfs_bandwidth_usage_dec(void)
3430 static_key_slow_dec(&__cfs_bandwidth_used);
3432 #else /* HAVE_JUMP_LABEL */
3433 static bool cfs_bandwidth_used(void)
3435 return true;
3438 void cfs_bandwidth_usage_inc(void) {}
3439 void cfs_bandwidth_usage_dec(void) {}
3440 #endif /* HAVE_JUMP_LABEL */
3443 * default period for cfs group bandwidth.
3444 * default: 0.1s, units: nanoseconds
3446 static inline u64 default_cfs_period(void)
3448 return 100000000ULL;
3451 static inline u64 sched_cfs_bandwidth_slice(void)
3453 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3457 * Replenish runtime according to assigned quota and update expiration time.
3458 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3459 * additional synchronization around rq->lock.
3461 * requires cfs_b->lock
3463 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3465 u64 now;
3467 if (cfs_b->quota == RUNTIME_INF)
3468 return;
3470 now = sched_clock_cpu(smp_processor_id());
3471 cfs_b->runtime = cfs_b->quota;
3472 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3475 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3477 return &tg->cfs_bandwidth;
3480 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3481 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3483 if (unlikely(cfs_rq->throttle_count))
3484 return cfs_rq->throttled_clock_task;
3486 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3489 /* returns 0 on failure to allocate runtime */
3490 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3492 struct task_group *tg = cfs_rq->tg;
3493 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3494 u64 amount = 0, min_amount, expires;
3496 /* note: this is a positive sum as runtime_remaining <= 0 */
3497 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3499 raw_spin_lock(&cfs_b->lock);
3500 if (cfs_b->quota == RUNTIME_INF)
3501 amount = min_amount;
3502 else {
3503 start_cfs_bandwidth(cfs_b);
3505 if (cfs_b->runtime > 0) {
3506 amount = min(cfs_b->runtime, min_amount);
3507 cfs_b->runtime -= amount;
3508 cfs_b->idle = 0;
3511 expires = cfs_b->runtime_expires;
3512 raw_spin_unlock(&cfs_b->lock);
3514 cfs_rq->runtime_remaining += amount;
3516 * we may have advanced our local expiration to account for allowed
3517 * spread between our sched_clock and the one on which runtime was
3518 * issued.
3520 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3521 cfs_rq->runtime_expires = expires;
3523 return cfs_rq->runtime_remaining > 0;
3527 * Note: This depends on the synchronization provided by sched_clock and the
3528 * fact that rq->clock snapshots this value.
3530 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3532 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3534 /* if the deadline is ahead of our clock, nothing to do */
3535 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3536 return;
3538 if (cfs_rq->runtime_remaining < 0)
3539 return;
3542 * If the local deadline has passed we have to consider the
3543 * possibility that our sched_clock is 'fast' and the global deadline
3544 * has not truly expired.
3546 * Fortunately we can check determine whether this the case by checking
3547 * whether the global deadline has advanced. It is valid to compare
3548 * cfs_b->runtime_expires without any locks since we only care about
3549 * exact equality, so a partial write will still work.
3552 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3553 /* extend local deadline, drift is bounded above by 2 ticks */
3554 cfs_rq->runtime_expires += TICK_NSEC;
3555 } else {
3556 /* global deadline is ahead, expiration has passed */
3557 cfs_rq->runtime_remaining = 0;
3561 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3563 /* dock delta_exec before expiring quota (as it could span periods) */
3564 cfs_rq->runtime_remaining -= delta_exec;
3565 expire_cfs_rq_runtime(cfs_rq);
3567 if (likely(cfs_rq->runtime_remaining > 0))
3568 return;
3571 * if we're unable to extend our runtime we resched so that the active
3572 * hierarchy can be throttled
3574 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3575 resched_curr(rq_of(cfs_rq));
3578 static __always_inline
3579 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3581 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3582 return;
3584 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3587 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3589 return cfs_bandwidth_used() && cfs_rq->throttled;
3592 /* check whether cfs_rq, or any parent, is throttled */
3593 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3595 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3599 * Ensure that neither of the group entities corresponding to src_cpu or
3600 * dest_cpu are members of a throttled hierarchy when performing group
3601 * load-balance operations.
3603 static inline int throttled_lb_pair(struct task_group *tg,
3604 int src_cpu, int dest_cpu)
3606 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3608 src_cfs_rq = tg->cfs_rq[src_cpu];
3609 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3611 return throttled_hierarchy(src_cfs_rq) ||
3612 throttled_hierarchy(dest_cfs_rq);
3615 /* updated child weight may affect parent so we have to do this bottom up */
3616 static int tg_unthrottle_up(struct task_group *tg, void *data)
3618 struct rq *rq = data;
3619 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3621 cfs_rq->throttle_count--;
3622 #ifdef CONFIG_SMP
3623 if (!cfs_rq->throttle_count) {
3624 /* adjust cfs_rq_clock_task() */
3625 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3626 cfs_rq->throttled_clock_task;
3628 #endif
3630 return 0;
3633 static int tg_throttle_down(struct task_group *tg, void *data)
3635 struct rq *rq = data;
3636 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3638 /* group is entering throttled state, stop time */
3639 if (!cfs_rq->throttle_count)
3640 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3641 cfs_rq->throttle_count++;
3643 return 0;
3646 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3648 struct rq *rq = rq_of(cfs_rq);
3649 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3650 struct sched_entity *se;
3651 long task_delta, dequeue = 1;
3652 bool empty;
3654 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3656 /* freeze hierarchy runnable averages while throttled */
3657 rcu_read_lock();
3658 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3659 rcu_read_unlock();
3661 task_delta = cfs_rq->h_nr_running;
3662 for_each_sched_entity(se) {
3663 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3664 /* throttled entity or throttle-on-deactivate */
3665 if (!se->on_rq)
3666 break;
3668 if (dequeue)
3669 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3670 qcfs_rq->h_nr_running -= task_delta;
3672 if (qcfs_rq->load.weight)
3673 dequeue = 0;
3676 if (!se)
3677 sub_nr_running(rq, task_delta);
3679 cfs_rq->throttled = 1;
3680 cfs_rq->throttled_clock = rq_clock(rq);
3681 raw_spin_lock(&cfs_b->lock);
3682 empty = list_empty(&cfs_b->throttled_cfs_rq);
3685 * Add to the _head_ of the list, so that an already-started
3686 * distribute_cfs_runtime will not see us
3688 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3691 * If we're the first throttled task, make sure the bandwidth
3692 * timer is running.
3694 if (empty)
3695 start_cfs_bandwidth(cfs_b);
3697 raw_spin_unlock(&cfs_b->lock);
3700 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3702 struct rq *rq = rq_of(cfs_rq);
3703 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3704 struct sched_entity *se;
3705 int enqueue = 1;
3706 long task_delta;
3708 se = cfs_rq->tg->se[cpu_of(rq)];
3710 cfs_rq->throttled = 0;
3712 update_rq_clock(rq);
3714 raw_spin_lock(&cfs_b->lock);
3715 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3716 list_del_rcu(&cfs_rq->throttled_list);
3717 raw_spin_unlock(&cfs_b->lock);
3719 /* update hierarchical throttle state */
3720 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3722 if (!cfs_rq->load.weight)
3723 return;
3725 task_delta = cfs_rq->h_nr_running;
3726 for_each_sched_entity(se) {
3727 if (se->on_rq)
3728 enqueue = 0;
3730 cfs_rq = cfs_rq_of(se);
3731 if (enqueue)
3732 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3733 cfs_rq->h_nr_running += task_delta;
3735 if (cfs_rq_throttled(cfs_rq))
3736 break;
3739 if (!se)
3740 add_nr_running(rq, task_delta);
3742 /* determine whether we need to wake up potentially idle cpu */
3743 if (rq->curr == rq->idle && rq->cfs.nr_running)
3744 resched_curr(rq);
3747 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3748 u64 remaining, u64 expires)
3750 struct cfs_rq *cfs_rq;
3751 u64 runtime;
3752 u64 starting_runtime = remaining;
3754 rcu_read_lock();
3755 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3756 throttled_list) {
3757 struct rq *rq = rq_of(cfs_rq);
3759 raw_spin_lock(&rq->lock);
3760 if (!cfs_rq_throttled(cfs_rq))
3761 goto next;
3763 runtime = -cfs_rq->runtime_remaining + 1;
3764 if (runtime > remaining)
3765 runtime = remaining;
3766 remaining -= runtime;
3768 cfs_rq->runtime_remaining += runtime;
3769 cfs_rq->runtime_expires = expires;
3771 /* we check whether we're throttled above */
3772 if (cfs_rq->runtime_remaining > 0)
3773 unthrottle_cfs_rq(cfs_rq);
3775 next:
3776 raw_spin_unlock(&rq->lock);
3778 if (!remaining)
3779 break;
3781 rcu_read_unlock();
3783 return starting_runtime - remaining;
3787 * Responsible for refilling a task_group's bandwidth and unthrottling its
3788 * cfs_rqs as appropriate. If there has been no activity within the last
3789 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3790 * used to track this state.
3792 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3794 u64 runtime, runtime_expires;
3795 int throttled;
3797 /* no need to continue the timer with no bandwidth constraint */
3798 if (cfs_b->quota == RUNTIME_INF)
3799 goto out_deactivate;
3801 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3802 cfs_b->nr_periods += overrun;
3805 * idle depends on !throttled (for the case of a large deficit), and if
3806 * we're going inactive then everything else can be deferred
3808 if (cfs_b->idle && !throttled)
3809 goto out_deactivate;
3811 __refill_cfs_bandwidth_runtime(cfs_b);
3813 if (!throttled) {
3814 /* mark as potentially idle for the upcoming period */
3815 cfs_b->idle = 1;
3816 return 0;
3819 /* account preceding periods in which throttling occurred */
3820 cfs_b->nr_throttled += overrun;
3822 runtime_expires = cfs_b->runtime_expires;
3825 * This check is repeated as we are holding onto the new bandwidth while
3826 * we unthrottle. This can potentially race with an unthrottled group
3827 * trying to acquire new bandwidth from the global pool. This can result
3828 * in us over-using our runtime if it is all used during this loop, but
3829 * only by limited amounts in that extreme case.
3831 while (throttled && cfs_b->runtime > 0) {
3832 runtime = cfs_b->runtime;
3833 raw_spin_unlock(&cfs_b->lock);
3834 /* we can't nest cfs_b->lock while distributing bandwidth */
3835 runtime = distribute_cfs_runtime(cfs_b, runtime,
3836 runtime_expires);
3837 raw_spin_lock(&cfs_b->lock);
3839 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3841 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3845 * While we are ensured activity in the period following an
3846 * unthrottle, this also covers the case in which the new bandwidth is
3847 * insufficient to cover the existing bandwidth deficit. (Forcing the
3848 * timer to remain active while there are any throttled entities.)
3850 cfs_b->idle = 0;
3852 return 0;
3854 out_deactivate:
3855 return 1;
3858 /* a cfs_rq won't donate quota below this amount */
3859 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3860 /* minimum remaining period time to redistribute slack quota */
3861 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3862 /* how long we wait to gather additional slack before distributing */
3863 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3866 * Are we near the end of the current quota period?
3868 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3869 * hrtimer base being cleared by hrtimer_start. In the case of
3870 * migrate_hrtimers, base is never cleared, so we are fine.
3872 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3874 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3875 u64 remaining;
3877 /* if the call-back is running a quota refresh is already occurring */
3878 if (hrtimer_callback_running(refresh_timer))
3879 return 1;
3881 /* is a quota refresh about to occur? */
3882 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3883 if (remaining < min_expire)
3884 return 1;
3886 return 0;
3889 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3891 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3893 /* if there's a quota refresh soon don't bother with slack */
3894 if (runtime_refresh_within(cfs_b, min_left))
3895 return;
3897 hrtimer_start(&cfs_b->slack_timer,
3898 ns_to_ktime(cfs_bandwidth_slack_period),
3899 HRTIMER_MODE_REL);
3902 /* we know any runtime found here is valid as update_curr() precedes return */
3903 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3905 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3906 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3908 if (slack_runtime <= 0)
3909 return;
3911 raw_spin_lock(&cfs_b->lock);
3912 if (cfs_b->quota != RUNTIME_INF &&
3913 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3914 cfs_b->runtime += slack_runtime;
3916 /* we are under rq->lock, defer unthrottling using a timer */
3917 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3918 !list_empty(&cfs_b->throttled_cfs_rq))
3919 start_cfs_slack_bandwidth(cfs_b);
3921 raw_spin_unlock(&cfs_b->lock);
3923 /* even if it's not valid for return we don't want to try again */
3924 cfs_rq->runtime_remaining -= slack_runtime;
3927 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3929 if (!cfs_bandwidth_used())
3930 return;
3932 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3933 return;
3935 __return_cfs_rq_runtime(cfs_rq);
3939 * This is done with a timer (instead of inline with bandwidth return) since
3940 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3942 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3944 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3945 u64 expires;
3947 /* confirm we're still not at a refresh boundary */
3948 raw_spin_lock(&cfs_b->lock);
3949 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3950 raw_spin_unlock(&cfs_b->lock);
3951 return;
3954 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3955 runtime = cfs_b->runtime;
3957 expires = cfs_b->runtime_expires;
3958 raw_spin_unlock(&cfs_b->lock);
3960 if (!runtime)
3961 return;
3963 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3965 raw_spin_lock(&cfs_b->lock);
3966 if (expires == cfs_b->runtime_expires)
3967 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3968 raw_spin_unlock(&cfs_b->lock);
3972 * When a group wakes up we want to make sure that its quota is not already
3973 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3974 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3976 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3978 if (!cfs_bandwidth_used())
3979 return;
3981 /* an active group must be handled by the update_curr()->put() path */
3982 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3983 return;
3985 /* ensure the group is not already throttled */
3986 if (cfs_rq_throttled(cfs_rq))
3987 return;
3989 /* update runtime allocation */
3990 account_cfs_rq_runtime(cfs_rq, 0);
3991 if (cfs_rq->runtime_remaining <= 0)
3992 throttle_cfs_rq(cfs_rq);
3995 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3996 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3998 if (!cfs_bandwidth_used())
3999 return false;
4001 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4002 return false;
4005 * it's possible for a throttled entity to be forced into a running
4006 * state (e.g. set_curr_task), in this case we're finished.
4008 if (cfs_rq_throttled(cfs_rq))
4009 return true;
4011 throttle_cfs_rq(cfs_rq);
4012 return true;
4015 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4017 struct cfs_bandwidth *cfs_b =
4018 container_of(timer, struct cfs_bandwidth, slack_timer);
4020 do_sched_cfs_slack_timer(cfs_b);
4022 return HRTIMER_NORESTART;
4025 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4027 struct cfs_bandwidth *cfs_b =
4028 container_of(timer, struct cfs_bandwidth, period_timer);
4029 int overrun;
4030 int idle = 0;
4032 raw_spin_lock(&cfs_b->lock);
4033 for (;;) {
4034 overrun = hrtimer_forward_now(timer, cfs_b->period);
4035 if (!overrun)
4036 break;
4038 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4040 if (idle)
4041 cfs_b->period_active = 0;
4042 raw_spin_unlock(&cfs_b->lock);
4044 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4047 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4049 raw_spin_lock_init(&cfs_b->lock);
4050 cfs_b->runtime = 0;
4051 cfs_b->quota = RUNTIME_INF;
4052 cfs_b->period = ns_to_ktime(default_cfs_period());
4054 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4055 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4056 cfs_b->period_timer.function = sched_cfs_period_timer;
4057 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4058 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4061 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4063 cfs_rq->runtime_enabled = 0;
4064 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4067 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4069 lockdep_assert_held(&cfs_b->lock);
4071 if (!cfs_b->period_active) {
4072 cfs_b->period_active = 1;
4073 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4074 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4078 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4080 /* init_cfs_bandwidth() was not called */
4081 if (!cfs_b->throttled_cfs_rq.next)
4082 return;
4084 hrtimer_cancel(&cfs_b->period_timer);
4085 hrtimer_cancel(&cfs_b->slack_timer);
4088 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4090 struct cfs_rq *cfs_rq;
4092 for_each_leaf_cfs_rq(rq, cfs_rq) {
4093 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4095 raw_spin_lock(&cfs_b->lock);
4096 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4097 raw_spin_unlock(&cfs_b->lock);
4101 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4103 struct cfs_rq *cfs_rq;
4105 for_each_leaf_cfs_rq(rq, cfs_rq) {
4106 if (!cfs_rq->runtime_enabled)
4107 continue;
4110 * clock_task is not advancing so we just need to make sure
4111 * there's some valid quota amount
4113 cfs_rq->runtime_remaining = 1;
4115 * Offline rq is schedulable till cpu is completely disabled
4116 * in take_cpu_down(), so we prevent new cfs throttling here.
4118 cfs_rq->runtime_enabled = 0;
4120 if (cfs_rq_throttled(cfs_rq))
4121 unthrottle_cfs_rq(cfs_rq);
4125 #else /* CONFIG_CFS_BANDWIDTH */
4126 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4128 return rq_clock_task(rq_of(cfs_rq));
4131 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4132 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4133 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4134 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4136 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4138 return 0;
4141 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4143 return 0;
4146 static inline int throttled_lb_pair(struct task_group *tg,
4147 int src_cpu, int dest_cpu)
4149 return 0;
4152 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4154 #ifdef CONFIG_FAIR_GROUP_SCHED
4155 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4156 #endif
4158 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4160 return NULL;
4162 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4163 static inline void update_runtime_enabled(struct rq *rq) {}
4164 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4166 #endif /* CONFIG_CFS_BANDWIDTH */
4168 /**************************************************
4169 * CFS operations on tasks:
4172 #ifdef CONFIG_SCHED_HRTICK
4173 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4175 struct sched_entity *se = &p->se;
4176 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4178 WARN_ON(task_rq(p) != rq);
4180 if (cfs_rq->nr_running > 1) {
4181 u64 slice = sched_slice(cfs_rq, se);
4182 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4183 s64 delta = slice - ran;
4185 if (delta < 0) {
4186 if (rq->curr == p)
4187 resched_curr(rq);
4188 return;
4190 hrtick_start(rq, delta);
4195 * called from enqueue/dequeue and updates the hrtick when the
4196 * current task is from our class and nr_running is low enough
4197 * to matter.
4199 static void hrtick_update(struct rq *rq)
4201 struct task_struct *curr = rq->curr;
4203 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4204 return;
4206 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4207 hrtick_start_fair(rq, curr);
4209 #else /* !CONFIG_SCHED_HRTICK */
4210 static inline void
4211 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4215 static inline void hrtick_update(struct rq *rq)
4218 #endif
4221 * The enqueue_task method is called before nr_running is
4222 * increased. Here we update the fair scheduling stats and
4223 * then put the task into the rbtree:
4225 static void
4226 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4228 struct cfs_rq *cfs_rq;
4229 struct sched_entity *se = &p->se;
4231 for_each_sched_entity(se) {
4232 if (se->on_rq)
4233 break;
4234 cfs_rq = cfs_rq_of(se);
4235 enqueue_entity(cfs_rq, se, flags);
4238 * end evaluation on encountering a throttled cfs_rq
4240 * note: in the case of encountering a throttled cfs_rq we will
4241 * post the final h_nr_running increment below.
4243 if (cfs_rq_throttled(cfs_rq))
4244 break;
4245 cfs_rq->h_nr_running++;
4247 flags = ENQUEUE_WAKEUP;
4250 for_each_sched_entity(se) {
4251 cfs_rq = cfs_rq_of(se);
4252 cfs_rq->h_nr_running++;
4254 if (cfs_rq_throttled(cfs_rq))
4255 break;
4257 update_load_avg(se, 1);
4258 update_cfs_shares(cfs_rq);
4261 if (!se)
4262 add_nr_running(rq, 1);
4264 hrtick_update(rq);
4267 static void set_next_buddy(struct sched_entity *se);
4270 * The dequeue_task method is called before nr_running is
4271 * decreased. We remove the task from the rbtree and
4272 * update the fair scheduling stats:
4274 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4276 struct cfs_rq *cfs_rq;
4277 struct sched_entity *se = &p->se;
4278 int task_sleep = flags & DEQUEUE_SLEEP;
4280 for_each_sched_entity(se) {
4281 cfs_rq = cfs_rq_of(se);
4282 dequeue_entity(cfs_rq, se, flags);
4285 * end evaluation on encountering a throttled cfs_rq
4287 * note: in the case of encountering a throttled cfs_rq we will
4288 * post the final h_nr_running decrement below.
4290 if (cfs_rq_throttled(cfs_rq))
4291 break;
4292 cfs_rq->h_nr_running--;
4294 /* Don't dequeue parent if it has other entities besides us */
4295 if (cfs_rq->load.weight) {
4297 * Bias pick_next to pick a task from this cfs_rq, as
4298 * p is sleeping when it is within its sched_slice.
4300 if (task_sleep && parent_entity(se))
4301 set_next_buddy(parent_entity(se));
4303 /* avoid re-evaluating load for this entity */
4304 se = parent_entity(se);
4305 break;
4307 flags |= DEQUEUE_SLEEP;
4310 for_each_sched_entity(se) {
4311 cfs_rq = cfs_rq_of(se);
4312 cfs_rq->h_nr_running--;
4314 if (cfs_rq_throttled(cfs_rq))
4315 break;
4317 update_load_avg(se, 1);
4318 update_cfs_shares(cfs_rq);
4321 if (!se)
4322 sub_nr_running(rq, 1);
4324 hrtick_update(rq);
4327 #ifdef CONFIG_SMP
4330 * per rq 'load' arrray crap; XXX kill this.
4334 * The exact cpuload calculated at every tick would be:
4336 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4338 * If a cpu misses updates for n ticks (as it was idle) and update gets
4339 * called on the n+1-th tick when cpu may be busy, then we have:
4341 * load_n = (1 - 1/2^i)^n * load_0
4342 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4344 * decay_load_missed() below does efficient calculation of
4346 * load' = (1 - 1/2^i)^n * load
4348 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4349 * This allows us to precompute the above in said factors, thereby allowing the
4350 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4351 * fixed_power_int())
4353 * The calculation is approximated on a 128 point scale.
4355 #define DEGRADE_SHIFT 7
4357 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4358 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4359 { 0, 0, 0, 0, 0, 0, 0, 0 },
4360 { 64, 32, 8, 0, 0, 0, 0, 0 },
4361 { 96, 72, 40, 12, 1, 0, 0, 0 },
4362 { 112, 98, 75, 43, 15, 1, 0, 0 },
4363 { 120, 112, 98, 76, 45, 16, 2, 0 }
4367 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4368 * would be when CPU is idle and so we just decay the old load without
4369 * adding any new load.
4371 static unsigned long
4372 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4374 int j = 0;
4376 if (!missed_updates)
4377 return load;
4379 if (missed_updates >= degrade_zero_ticks[idx])
4380 return 0;
4382 if (idx == 1)
4383 return load >> missed_updates;
4385 while (missed_updates) {
4386 if (missed_updates % 2)
4387 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4389 missed_updates >>= 1;
4390 j++;
4392 return load;
4396 * __update_cpu_load - update the rq->cpu_load[] statistics
4397 * @this_rq: The rq to update statistics for
4398 * @this_load: The current load
4399 * @pending_updates: The number of missed updates
4400 * @active: !0 for NOHZ_FULL
4402 * Update rq->cpu_load[] statistics. This function is usually called every
4403 * scheduler tick (TICK_NSEC).
4405 * This function computes a decaying average:
4407 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4409 * Because of NOHZ it might not get called on every tick which gives need for
4410 * the @pending_updates argument.
4412 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4413 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4414 * = A * (A * load[i]_n-2 + B) + B
4415 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4416 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4417 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4418 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4419 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4421 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4422 * any change in load would have resulted in the tick being turned back on.
4424 * For regular NOHZ, this reduces to:
4426 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4428 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4429 * term. See the @active paramter.
4431 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4432 unsigned long pending_updates, int active)
4434 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
4435 int i, scale;
4437 this_rq->nr_load_updates++;
4439 /* Update our load: */
4440 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4441 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4442 unsigned long old_load, new_load;
4444 /* scale is effectively 1 << i now, and >> i divides by scale */
4446 old_load = this_rq->cpu_load[i] - tickless_load;
4447 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4448 old_load += tickless_load;
4449 new_load = this_load;
4451 * Round up the averaging division if load is increasing. This
4452 * prevents us from getting stuck on 9 if the load is 10, for
4453 * example.
4455 if (new_load > old_load)
4456 new_load += scale - 1;
4458 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4461 sched_avg_update(this_rq);
4464 /* Used instead of source_load when we know the type == 0 */
4465 static unsigned long weighted_cpuload(const int cpu)
4467 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4470 #ifdef CONFIG_NO_HZ_COMMON
4472 * There is no sane way to deal with nohz on smp when using jiffies because the
4473 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4474 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4476 * Therefore we cannot use the delta approach from the regular tick since that
4477 * would seriously skew the load calculation. However we'll make do for those
4478 * updates happening while idle (nohz_idle_balance) or coming out of idle
4479 * (tick_nohz_idle_exit).
4481 * This means we might still be one tick off for nohz periods.
4485 * Called from nohz_idle_balance() to update the load ratings before doing the
4486 * idle balance.
4488 static void update_idle_cpu_load(struct rq *this_rq)
4490 unsigned long curr_jiffies = READ_ONCE(jiffies);
4491 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4492 unsigned long pending_updates;
4495 * bail if there's load or we're actually up-to-date.
4497 if (load || curr_jiffies == this_rq->last_load_update_tick)
4498 return;
4500 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4501 this_rq->last_load_update_tick = curr_jiffies;
4503 __update_cpu_load(this_rq, load, pending_updates, 0);
4507 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4509 void update_cpu_load_nohz(int active)
4511 struct rq *this_rq = this_rq();
4512 unsigned long curr_jiffies = READ_ONCE(jiffies);
4513 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
4514 unsigned long pending_updates;
4516 if (curr_jiffies == this_rq->last_load_update_tick)
4517 return;
4519 raw_spin_lock(&this_rq->lock);
4520 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4521 if (pending_updates) {
4522 this_rq->last_load_update_tick = curr_jiffies;
4524 * In the regular NOHZ case, we were idle, this means load 0.
4525 * In the NOHZ_FULL case, we were non-idle, we should consider
4526 * its weighted load.
4528 __update_cpu_load(this_rq, load, pending_updates, active);
4530 raw_spin_unlock(&this_rq->lock);
4532 #endif /* CONFIG_NO_HZ */
4535 * Called from scheduler_tick()
4537 void update_cpu_load_active(struct rq *this_rq)
4539 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4541 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4543 this_rq->last_load_update_tick = jiffies;
4544 __update_cpu_load(this_rq, load, 1, 1);
4548 * Return a low guess at the load of a migration-source cpu weighted
4549 * according to the scheduling class and "nice" value.
4551 * We want to under-estimate the load of migration sources, to
4552 * balance conservatively.
4554 static unsigned long source_load(int cpu, int type)
4556 struct rq *rq = cpu_rq(cpu);
4557 unsigned long total = weighted_cpuload(cpu);
4559 if (type == 0 || !sched_feat(LB_BIAS))
4560 return total;
4562 return min(rq->cpu_load[type-1], total);
4566 * Return a high guess at the load of a migration-target cpu weighted
4567 * according to the scheduling class and "nice" value.
4569 static unsigned long target_load(int cpu, int type)
4571 struct rq *rq = cpu_rq(cpu);
4572 unsigned long total = weighted_cpuload(cpu);
4574 if (type == 0 || !sched_feat(LB_BIAS))
4575 return total;
4577 return max(rq->cpu_load[type-1], total);
4580 static unsigned long capacity_of(int cpu)
4582 return cpu_rq(cpu)->cpu_capacity;
4585 static unsigned long capacity_orig_of(int cpu)
4587 return cpu_rq(cpu)->cpu_capacity_orig;
4590 static unsigned long cpu_avg_load_per_task(int cpu)
4592 struct rq *rq = cpu_rq(cpu);
4593 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4594 unsigned long load_avg = weighted_cpuload(cpu);
4596 if (nr_running)
4597 return load_avg / nr_running;
4599 return 0;
4602 static void record_wakee(struct task_struct *p)
4605 * Rough decay (wiping) for cost saving, don't worry
4606 * about the boundary, really active task won't care
4607 * about the loss.
4609 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4610 current->wakee_flips >>= 1;
4611 current->wakee_flip_decay_ts = jiffies;
4614 if (current->last_wakee != p) {
4615 current->last_wakee = p;
4616 current->wakee_flips++;
4620 static void task_waking_fair(struct task_struct *p)
4622 struct sched_entity *se = &p->se;
4623 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4624 u64 min_vruntime;
4626 #ifndef CONFIG_64BIT
4627 u64 min_vruntime_copy;
4629 do {
4630 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4631 smp_rmb();
4632 min_vruntime = cfs_rq->min_vruntime;
4633 } while (min_vruntime != min_vruntime_copy);
4634 #else
4635 min_vruntime = cfs_rq->min_vruntime;
4636 #endif
4638 se->vruntime -= min_vruntime;
4639 record_wakee(p);
4642 #ifdef CONFIG_FAIR_GROUP_SCHED
4644 * effective_load() calculates the load change as seen from the root_task_group
4646 * Adding load to a group doesn't make a group heavier, but can cause movement
4647 * of group shares between cpus. Assuming the shares were perfectly aligned one
4648 * can calculate the shift in shares.
4650 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4651 * on this @cpu and results in a total addition (subtraction) of @wg to the
4652 * total group weight.
4654 * Given a runqueue weight distribution (rw_i) we can compute a shares
4655 * distribution (s_i) using:
4657 * s_i = rw_i / \Sum rw_j (1)
4659 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4660 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4661 * shares distribution (s_i):
4663 * rw_i = { 2, 4, 1, 0 }
4664 * s_i = { 2/7, 4/7, 1/7, 0 }
4666 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4667 * task used to run on and the CPU the waker is running on), we need to
4668 * compute the effect of waking a task on either CPU and, in case of a sync
4669 * wakeup, compute the effect of the current task going to sleep.
4671 * So for a change of @wl to the local @cpu with an overall group weight change
4672 * of @wl we can compute the new shares distribution (s'_i) using:
4674 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4676 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4677 * differences in waking a task to CPU 0. The additional task changes the
4678 * weight and shares distributions like:
4680 * rw'_i = { 3, 4, 1, 0 }
4681 * s'_i = { 3/8, 4/8, 1/8, 0 }
4683 * We can then compute the difference in effective weight by using:
4685 * dw_i = S * (s'_i - s_i) (3)
4687 * Where 'S' is the group weight as seen by its parent.
4689 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4690 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4691 * 4/7) times the weight of the group.
4693 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4695 struct sched_entity *se = tg->se[cpu];
4697 if (!tg->parent) /* the trivial, non-cgroup case */
4698 return wl;
4700 for_each_sched_entity(se) {
4701 long w, W;
4703 tg = se->my_q->tg;
4706 * W = @wg + \Sum rw_j
4708 W = wg + calc_tg_weight(tg, se->my_q);
4711 * w = rw_i + @wl
4713 w = cfs_rq_load_avg(se->my_q) + wl;
4716 * wl = S * s'_i; see (2)
4718 if (W > 0 && w < W)
4719 wl = (w * (long)tg->shares) / W;
4720 else
4721 wl = tg->shares;
4724 * Per the above, wl is the new se->load.weight value; since
4725 * those are clipped to [MIN_SHARES, ...) do so now. See
4726 * calc_cfs_shares().
4728 if (wl < MIN_SHARES)
4729 wl = MIN_SHARES;
4732 * wl = dw_i = S * (s'_i - s_i); see (3)
4734 wl -= se->avg.load_avg;
4737 * Recursively apply this logic to all parent groups to compute
4738 * the final effective load change on the root group. Since
4739 * only the @tg group gets extra weight, all parent groups can
4740 * only redistribute existing shares. @wl is the shift in shares
4741 * resulting from this level per the above.
4743 wg = 0;
4746 return wl;
4748 #else
4750 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4752 return wl;
4755 #endif
4758 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4759 * A waker of many should wake a different task than the one last awakened
4760 * at a frequency roughly N times higher than one of its wakees. In order
4761 * to determine whether we should let the load spread vs consolodating to
4762 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4763 * partner, and a factor of lls_size higher frequency in the other. With
4764 * both conditions met, we can be relatively sure that the relationship is
4765 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4766 * being client/server, worker/dispatcher, interrupt source or whatever is
4767 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4769 static int wake_wide(struct task_struct *p)
4771 unsigned int master = current->wakee_flips;
4772 unsigned int slave = p->wakee_flips;
4773 int factor = this_cpu_read(sd_llc_size);
4775 if (master < slave)
4776 swap(master, slave);
4777 if (slave < factor || master < slave * factor)
4778 return 0;
4779 return 1;
4782 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4784 s64 this_load, load;
4785 s64 this_eff_load, prev_eff_load;
4786 int idx, this_cpu, prev_cpu;
4787 struct task_group *tg;
4788 unsigned long weight;
4789 int balanced;
4791 idx = sd->wake_idx;
4792 this_cpu = smp_processor_id();
4793 prev_cpu = task_cpu(p);
4794 load = source_load(prev_cpu, idx);
4795 this_load = target_load(this_cpu, idx);
4798 * If sync wakeup then subtract the (maximum possible)
4799 * effect of the currently running task from the load
4800 * of the current CPU:
4802 if (sync) {
4803 tg = task_group(current);
4804 weight = current->se.avg.load_avg;
4806 this_load += effective_load(tg, this_cpu, -weight, -weight);
4807 load += effective_load(tg, prev_cpu, 0, -weight);
4810 tg = task_group(p);
4811 weight = p->se.avg.load_avg;
4814 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4815 * due to the sync cause above having dropped this_load to 0, we'll
4816 * always have an imbalance, but there's really nothing you can do
4817 * about that, so that's good too.
4819 * Otherwise check if either cpus are near enough in load to allow this
4820 * task to be woken on this_cpu.
4822 this_eff_load = 100;
4823 this_eff_load *= capacity_of(prev_cpu);
4825 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4826 prev_eff_load *= capacity_of(this_cpu);
4828 if (this_load > 0) {
4829 this_eff_load *= this_load +
4830 effective_load(tg, this_cpu, weight, weight);
4832 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4835 balanced = this_eff_load <= prev_eff_load;
4837 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4839 if (!balanced)
4840 return 0;
4842 schedstat_inc(sd, ttwu_move_affine);
4843 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4845 return 1;
4849 * find_idlest_group finds and returns the least busy CPU group within the
4850 * domain.
4852 static struct sched_group *
4853 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4854 int this_cpu, int sd_flag)
4856 struct sched_group *idlest = NULL, *group = sd->groups;
4857 unsigned long min_load = ULONG_MAX, this_load = 0;
4858 int load_idx = sd->forkexec_idx;
4859 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4861 if (sd_flag & SD_BALANCE_WAKE)
4862 load_idx = sd->wake_idx;
4864 do {
4865 unsigned long load, avg_load;
4866 int local_group;
4867 int i;
4869 /* Skip over this group if it has no CPUs allowed */
4870 if (!cpumask_intersects(sched_group_cpus(group),
4871 tsk_cpus_allowed(p)))
4872 continue;
4874 local_group = cpumask_test_cpu(this_cpu,
4875 sched_group_cpus(group));
4877 /* Tally up the load of all CPUs in the group */
4878 avg_load = 0;
4880 for_each_cpu(i, sched_group_cpus(group)) {
4881 /* Bias balancing toward cpus of our domain */
4882 if (local_group)
4883 load = source_load(i, load_idx);
4884 else
4885 load = target_load(i, load_idx);
4887 avg_load += load;
4890 /* Adjust by relative CPU capacity of the group */
4891 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4893 if (local_group) {
4894 this_load = avg_load;
4895 } else if (avg_load < min_load) {
4896 min_load = avg_load;
4897 idlest = group;
4899 } while (group = group->next, group != sd->groups);
4901 if (!idlest || 100*this_load < imbalance*min_load)
4902 return NULL;
4903 return idlest;
4907 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4909 static int
4910 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4912 unsigned long load, min_load = ULONG_MAX;
4913 unsigned int min_exit_latency = UINT_MAX;
4914 u64 latest_idle_timestamp = 0;
4915 int least_loaded_cpu = this_cpu;
4916 int shallowest_idle_cpu = -1;
4917 int i;
4919 /* Traverse only the allowed CPUs */
4920 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4921 if (idle_cpu(i)) {
4922 struct rq *rq = cpu_rq(i);
4923 struct cpuidle_state *idle = idle_get_state(rq);
4924 if (idle && idle->exit_latency < min_exit_latency) {
4926 * We give priority to a CPU whose idle state
4927 * has the smallest exit latency irrespective
4928 * of any idle timestamp.
4930 min_exit_latency = idle->exit_latency;
4931 latest_idle_timestamp = rq->idle_stamp;
4932 shallowest_idle_cpu = i;
4933 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4934 rq->idle_stamp > latest_idle_timestamp) {
4936 * If equal or no active idle state, then
4937 * the most recently idled CPU might have
4938 * a warmer cache.
4940 latest_idle_timestamp = rq->idle_stamp;
4941 shallowest_idle_cpu = i;
4943 } else if (shallowest_idle_cpu == -1) {
4944 load = weighted_cpuload(i);
4945 if (load < min_load || (load == min_load && i == this_cpu)) {
4946 min_load = load;
4947 least_loaded_cpu = i;
4952 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4956 * Try and locate an idle CPU in the sched_domain.
4958 static int select_idle_sibling(struct task_struct *p, int target)
4960 struct sched_domain *sd;
4961 struct sched_group *sg;
4962 int i = task_cpu(p);
4964 if (idle_cpu(target))
4965 return target;
4968 * If the prevous cpu is cache affine and idle, don't be stupid.
4970 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4971 return i;
4974 * Otherwise, iterate the domains and find an elegible idle cpu.
4976 sd = rcu_dereference(per_cpu(sd_llc, target));
4977 for_each_lower_domain(sd) {
4978 sg = sd->groups;
4979 do {
4980 if (!cpumask_intersects(sched_group_cpus(sg),
4981 tsk_cpus_allowed(p)))
4982 goto next;
4984 for_each_cpu(i, sched_group_cpus(sg)) {
4985 if (i == target || !idle_cpu(i))
4986 goto next;
4989 target = cpumask_first_and(sched_group_cpus(sg),
4990 tsk_cpus_allowed(p));
4991 goto done;
4992 next:
4993 sg = sg->next;
4994 } while (sg != sd->groups);
4996 done:
4997 return target;
5001 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5002 * tasks. The unit of the return value must be the one of capacity so we can
5003 * compare the utilization with the capacity of the CPU that is available for
5004 * CFS task (ie cpu_capacity).
5006 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5007 * recent utilization of currently non-runnable tasks on a CPU. It represents
5008 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5009 * capacity_orig is the cpu_capacity available at the highest frequency
5010 * (arch_scale_freq_capacity()).
5011 * The utilization of a CPU converges towards a sum equal to or less than the
5012 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5013 * the running time on this CPU scaled by capacity_curr.
5015 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5016 * higher than capacity_orig because of unfortunate rounding in
5017 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5018 * the average stabilizes with the new running time. We need to check that the
5019 * utilization stays within the range of [0..capacity_orig] and cap it if
5020 * necessary. Without utilization capping, a group could be seen as overloaded
5021 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5022 * available capacity. We allow utilization to overshoot capacity_curr (but not
5023 * capacity_orig) as it useful for predicting the capacity required after task
5024 * migrations (scheduler-driven DVFS).
5026 static int cpu_util(int cpu)
5028 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5029 unsigned long capacity = capacity_orig_of(cpu);
5031 return (util >= capacity) ? capacity : util;
5035 * select_task_rq_fair: Select target runqueue for the waking task in domains
5036 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5037 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5039 * Balances load by selecting the idlest cpu in the idlest group, or under
5040 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5042 * Returns the target cpu number.
5044 * preempt must be disabled.
5046 static int
5047 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5049 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5050 int cpu = smp_processor_id();
5051 int new_cpu = prev_cpu;
5052 int want_affine = 0;
5053 int sync = wake_flags & WF_SYNC;
5055 if (sd_flag & SD_BALANCE_WAKE)
5056 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5058 rcu_read_lock();
5059 for_each_domain(cpu, tmp) {
5060 if (!(tmp->flags & SD_LOAD_BALANCE))
5061 break;
5064 * If both cpu and prev_cpu are part of this domain,
5065 * cpu is a valid SD_WAKE_AFFINE target.
5067 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5068 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5069 affine_sd = tmp;
5070 break;
5073 if (tmp->flags & sd_flag)
5074 sd = tmp;
5075 else if (!want_affine)
5076 break;
5079 if (affine_sd) {
5080 sd = NULL; /* Prefer wake_affine over balance flags */
5081 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5082 new_cpu = cpu;
5085 if (!sd) {
5086 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5087 new_cpu = select_idle_sibling(p, new_cpu);
5089 } else while (sd) {
5090 struct sched_group *group;
5091 int weight;
5093 if (!(sd->flags & sd_flag)) {
5094 sd = sd->child;
5095 continue;
5098 group = find_idlest_group(sd, p, cpu, sd_flag);
5099 if (!group) {
5100 sd = sd->child;
5101 continue;
5104 new_cpu = find_idlest_cpu(group, p, cpu);
5105 if (new_cpu == -1 || new_cpu == cpu) {
5106 /* Now try balancing at a lower domain level of cpu */
5107 sd = sd->child;
5108 continue;
5111 /* Now try balancing at a lower domain level of new_cpu */
5112 cpu = new_cpu;
5113 weight = sd->span_weight;
5114 sd = NULL;
5115 for_each_domain(cpu, tmp) {
5116 if (weight <= tmp->span_weight)
5117 break;
5118 if (tmp->flags & sd_flag)
5119 sd = tmp;
5121 /* while loop will break here if sd == NULL */
5123 rcu_read_unlock();
5125 return new_cpu;
5129 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5130 * cfs_rq_of(p) references at time of call are still valid and identify the
5131 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5133 static void migrate_task_rq_fair(struct task_struct *p)
5136 * We are supposed to update the task to "current" time, then its up to date
5137 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5138 * what current time is, so simply throw away the out-of-date time. This
5139 * will result in the wakee task is less decayed, but giving the wakee more
5140 * load sounds not bad.
5142 remove_entity_load_avg(&p->se);
5144 /* Tell new CPU we are migrated */
5145 p->se.avg.last_update_time = 0;
5147 /* We have migrated, no longer consider this task hot */
5148 p->se.exec_start = 0;
5151 static void task_dead_fair(struct task_struct *p)
5153 remove_entity_load_avg(&p->se);
5155 #endif /* CONFIG_SMP */
5157 static unsigned long
5158 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5160 unsigned long gran = sysctl_sched_wakeup_granularity;
5163 * Since its curr running now, convert the gran from real-time
5164 * to virtual-time in his units.
5166 * By using 'se' instead of 'curr' we penalize light tasks, so
5167 * they get preempted easier. That is, if 'se' < 'curr' then
5168 * the resulting gran will be larger, therefore penalizing the
5169 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5170 * be smaller, again penalizing the lighter task.
5172 * This is especially important for buddies when the leftmost
5173 * task is higher priority than the buddy.
5175 return calc_delta_fair(gran, se);
5179 * Should 'se' preempt 'curr'.
5181 * |s1
5182 * |s2
5183 * |s3
5185 * |<--->|c
5187 * w(c, s1) = -1
5188 * w(c, s2) = 0
5189 * w(c, s3) = 1
5192 static int
5193 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5195 s64 gran, vdiff = curr->vruntime - se->vruntime;
5197 if (vdiff <= 0)
5198 return -1;
5200 gran = wakeup_gran(curr, se);
5201 if (vdiff > gran)
5202 return 1;
5204 return 0;
5207 static void set_last_buddy(struct sched_entity *se)
5209 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5210 return;
5212 for_each_sched_entity(se)
5213 cfs_rq_of(se)->last = se;
5216 static void set_next_buddy(struct sched_entity *se)
5218 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5219 return;
5221 for_each_sched_entity(se)
5222 cfs_rq_of(se)->next = se;
5225 static void set_skip_buddy(struct sched_entity *se)
5227 for_each_sched_entity(se)
5228 cfs_rq_of(se)->skip = se;
5232 * Preempt the current task with a newly woken task if needed:
5234 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5236 struct task_struct *curr = rq->curr;
5237 struct sched_entity *se = &curr->se, *pse = &p->se;
5238 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5239 int scale = cfs_rq->nr_running >= sched_nr_latency;
5240 int next_buddy_marked = 0;
5242 if (unlikely(se == pse))
5243 return;
5246 * This is possible from callers such as attach_tasks(), in which we
5247 * unconditionally check_prempt_curr() after an enqueue (which may have
5248 * lead to a throttle). This both saves work and prevents false
5249 * next-buddy nomination below.
5251 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5252 return;
5254 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5255 set_next_buddy(pse);
5256 next_buddy_marked = 1;
5260 * We can come here with TIF_NEED_RESCHED already set from new task
5261 * wake up path.
5263 * Note: this also catches the edge-case of curr being in a throttled
5264 * group (e.g. via set_curr_task), since update_curr() (in the
5265 * enqueue of curr) will have resulted in resched being set. This
5266 * prevents us from potentially nominating it as a false LAST_BUDDY
5267 * below.
5269 if (test_tsk_need_resched(curr))
5270 return;
5272 /* Idle tasks are by definition preempted by non-idle tasks. */
5273 if (unlikely(curr->policy == SCHED_IDLE) &&
5274 likely(p->policy != SCHED_IDLE))
5275 goto preempt;
5278 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5279 * is driven by the tick):
5281 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5282 return;
5284 find_matching_se(&se, &pse);
5285 update_curr(cfs_rq_of(se));
5286 BUG_ON(!pse);
5287 if (wakeup_preempt_entity(se, pse) == 1) {
5289 * Bias pick_next to pick the sched entity that is
5290 * triggering this preemption.
5292 if (!next_buddy_marked)
5293 set_next_buddy(pse);
5294 goto preempt;
5297 return;
5299 preempt:
5300 resched_curr(rq);
5302 * Only set the backward buddy when the current task is still
5303 * on the rq. This can happen when a wakeup gets interleaved
5304 * with schedule on the ->pre_schedule() or idle_balance()
5305 * point, either of which can * drop the rq lock.
5307 * Also, during early boot the idle thread is in the fair class,
5308 * for obvious reasons its a bad idea to schedule back to it.
5310 if (unlikely(!se->on_rq || curr == rq->idle))
5311 return;
5313 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5314 set_last_buddy(se);
5317 static struct task_struct *
5318 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5320 struct cfs_rq *cfs_rq = &rq->cfs;
5321 struct sched_entity *se;
5322 struct task_struct *p;
5323 int new_tasks;
5325 again:
5326 #ifdef CONFIG_FAIR_GROUP_SCHED
5327 if (!cfs_rq->nr_running)
5328 goto idle;
5330 if (prev->sched_class != &fair_sched_class)
5331 goto simple;
5334 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5335 * likely that a next task is from the same cgroup as the current.
5337 * Therefore attempt to avoid putting and setting the entire cgroup
5338 * hierarchy, only change the part that actually changes.
5341 do {
5342 struct sched_entity *curr = cfs_rq->curr;
5345 * Since we got here without doing put_prev_entity() we also
5346 * have to consider cfs_rq->curr. If it is still a runnable
5347 * entity, update_curr() will update its vruntime, otherwise
5348 * forget we've ever seen it.
5350 if (curr) {
5351 if (curr->on_rq)
5352 update_curr(cfs_rq);
5353 else
5354 curr = NULL;
5357 * This call to check_cfs_rq_runtime() will do the
5358 * throttle and dequeue its entity in the parent(s).
5359 * Therefore the 'simple' nr_running test will indeed
5360 * be correct.
5362 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5363 goto simple;
5366 se = pick_next_entity(cfs_rq, curr);
5367 cfs_rq = group_cfs_rq(se);
5368 } while (cfs_rq);
5370 p = task_of(se);
5373 * Since we haven't yet done put_prev_entity and if the selected task
5374 * is a different task than we started out with, try and touch the
5375 * least amount of cfs_rqs.
5377 if (prev != p) {
5378 struct sched_entity *pse = &prev->se;
5380 while (!(cfs_rq = is_same_group(se, pse))) {
5381 int se_depth = se->depth;
5382 int pse_depth = pse->depth;
5384 if (se_depth <= pse_depth) {
5385 put_prev_entity(cfs_rq_of(pse), pse);
5386 pse = parent_entity(pse);
5388 if (se_depth >= pse_depth) {
5389 set_next_entity(cfs_rq_of(se), se);
5390 se = parent_entity(se);
5394 put_prev_entity(cfs_rq, pse);
5395 set_next_entity(cfs_rq, se);
5398 if (hrtick_enabled(rq))
5399 hrtick_start_fair(rq, p);
5401 return p;
5402 simple:
5403 cfs_rq = &rq->cfs;
5404 #endif
5406 if (!cfs_rq->nr_running)
5407 goto idle;
5409 put_prev_task(rq, prev);
5411 do {
5412 se = pick_next_entity(cfs_rq, NULL);
5413 set_next_entity(cfs_rq, se);
5414 cfs_rq = group_cfs_rq(se);
5415 } while (cfs_rq);
5417 p = task_of(se);
5419 if (hrtick_enabled(rq))
5420 hrtick_start_fair(rq, p);
5422 return p;
5424 idle:
5426 * This is OK, because current is on_cpu, which avoids it being picked
5427 * for load-balance and preemption/IRQs are still disabled avoiding
5428 * further scheduler activity on it and we're being very careful to
5429 * re-start the picking loop.
5431 lockdep_unpin_lock(&rq->lock);
5432 new_tasks = idle_balance(rq);
5433 lockdep_pin_lock(&rq->lock);
5435 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5436 * possible for any higher priority task to appear. In that case we
5437 * must re-start the pick_next_entity() loop.
5439 if (new_tasks < 0)
5440 return RETRY_TASK;
5442 if (new_tasks > 0)
5443 goto again;
5445 return NULL;
5449 * Account for a descheduled task:
5451 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5453 struct sched_entity *se = &prev->se;
5454 struct cfs_rq *cfs_rq;
5456 for_each_sched_entity(se) {
5457 cfs_rq = cfs_rq_of(se);
5458 put_prev_entity(cfs_rq, se);
5463 * sched_yield() is very simple
5465 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5467 static void yield_task_fair(struct rq *rq)
5469 struct task_struct *curr = rq->curr;
5470 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5471 struct sched_entity *se = &curr->se;
5474 * Are we the only task in the tree?
5476 if (unlikely(rq->nr_running == 1))
5477 return;
5479 clear_buddies(cfs_rq, se);
5481 if (curr->policy != SCHED_BATCH) {
5482 update_rq_clock(rq);
5484 * Update run-time statistics of the 'current'.
5486 update_curr(cfs_rq);
5488 * Tell update_rq_clock() that we've just updated,
5489 * so we don't do microscopic update in schedule()
5490 * and double the fastpath cost.
5492 rq_clock_skip_update(rq, true);
5495 set_skip_buddy(se);
5498 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5500 struct sched_entity *se = &p->se;
5502 /* throttled hierarchies are not runnable */
5503 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5504 return false;
5506 /* Tell the scheduler that we'd really like pse to run next. */
5507 set_next_buddy(se);
5509 yield_task_fair(rq);
5511 return true;
5514 #ifdef CONFIG_SMP
5515 /**************************************************
5516 * Fair scheduling class load-balancing methods.
5518 * BASICS
5520 * The purpose of load-balancing is to achieve the same basic fairness the
5521 * per-cpu scheduler provides, namely provide a proportional amount of compute
5522 * time to each task. This is expressed in the following equation:
5524 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5526 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5527 * W_i,0 is defined as:
5529 * W_i,0 = \Sum_j w_i,j (2)
5531 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5532 * is derived from the nice value as per prio_to_weight[].
5534 * The weight average is an exponential decay average of the instantaneous
5535 * weight:
5537 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5539 * C_i is the compute capacity of cpu i, typically it is the
5540 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5541 * can also include other factors [XXX].
5543 * To achieve this balance we define a measure of imbalance which follows
5544 * directly from (1):
5546 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5548 * We them move tasks around to minimize the imbalance. In the continuous
5549 * function space it is obvious this converges, in the discrete case we get
5550 * a few fun cases generally called infeasible weight scenarios.
5552 * [XXX expand on:
5553 * - infeasible weights;
5554 * - local vs global optima in the discrete case. ]
5557 * SCHED DOMAINS
5559 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5560 * for all i,j solution, we create a tree of cpus that follows the hardware
5561 * topology where each level pairs two lower groups (or better). This results
5562 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5563 * tree to only the first of the previous level and we decrease the frequency
5564 * of load-balance at each level inv. proportional to the number of cpus in
5565 * the groups.
5567 * This yields:
5569 * log_2 n 1 n
5570 * \Sum { --- * --- * 2^i } = O(n) (5)
5571 * i = 0 2^i 2^i
5572 * `- size of each group
5573 * | | `- number of cpus doing load-balance
5574 * | `- freq
5575 * `- sum over all levels
5577 * Coupled with a limit on how many tasks we can migrate every balance pass,
5578 * this makes (5) the runtime complexity of the balancer.
5580 * An important property here is that each CPU is still (indirectly) connected
5581 * to every other cpu in at most O(log n) steps:
5583 * The adjacency matrix of the resulting graph is given by:
5585 * log_2 n
5586 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5587 * k = 0
5589 * And you'll find that:
5591 * A^(log_2 n)_i,j != 0 for all i,j (7)
5593 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5594 * The task movement gives a factor of O(m), giving a convergence complexity
5595 * of:
5597 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5600 * WORK CONSERVING
5602 * In order to avoid CPUs going idle while there's still work to do, new idle
5603 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5604 * tree itself instead of relying on other CPUs to bring it work.
5606 * This adds some complexity to both (5) and (8) but it reduces the total idle
5607 * time.
5609 * [XXX more?]
5612 * CGROUPS
5614 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5616 * s_k,i
5617 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5618 * S_k
5620 * Where
5622 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5624 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5626 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5627 * property.
5629 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5630 * rewrite all of this once again.]
5633 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5635 enum fbq_type { regular, remote, all };
5637 #define LBF_ALL_PINNED 0x01
5638 #define LBF_NEED_BREAK 0x02
5639 #define LBF_DST_PINNED 0x04
5640 #define LBF_SOME_PINNED 0x08
5642 struct lb_env {
5643 struct sched_domain *sd;
5645 struct rq *src_rq;
5646 int src_cpu;
5648 int dst_cpu;
5649 struct rq *dst_rq;
5651 struct cpumask *dst_grpmask;
5652 int new_dst_cpu;
5653 enum cpu_idle_type idle;
5654 long imbalance;
5655 /* The set of CPUs under consideration for load-balancing */
5656 struct cpumask *cpus;
5658 unsigned int flags;
5660 unsigned int loop;
5661 unsigned int loop_break;
5662 unsigned int loop_max;
5664 enum fbq_type fbq_type;
5665 struct list_head tasks;
5669 * Is this task likely cache-hot:
5671 static int task_hot(struct task_struct *p, struct lb_env *env)
5673 s64 delta;
5675 lockdep_assert_held(&env->src_rq->lock);
5677 if (p->sched_class != &fair_sched_class)
5678 return 0;
5680 if (unlikely(p->policy == SCHED_IDLE))
5681 return 0;
5684 * Buddy candidates are cache hot:
5686 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5687 (&p->se == cfs_rq_of(&p->se)->next ||
5688 &p->se == cfs_rq_of(&p->se)->last))
5689 return 1;
5691 if (sysctl_sched_migration_cost == -1)
5692 return 1;
5693 if (sysctl_sched_migration_cost == 0)
5694 return 0;
5696 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5698 return delta < (s64)sysctl_sched_migration_cost;
5701 #ifdef CONFIG_NUMA_BALANCING
5703 * Returns 1, if task migration degrades locality
5704 * Returns 0, if task migration improves locality i.e migration preferred.
5705 * Returns -1, if task migration is not affected by locality.
5707 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5709 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5710 unsigned long src_faults, dst_faults;
5711 int src_nid, dst_nid;
5713 if (!static_branch_likely(&sched_numa_balancing))
5714 return -1;
5716 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5717 return -1;
5719 src_nid = cpu_to_node(env->src_cpu);
5720 dst_nid = cpu_to_node(env->dst_cpu);
5722 if (src_nid == dst_nid)
5723 return -1;
5725 /* Migrating away from the preferred node is always bad. */
5726 if (src_nid == p->numa_preferred_nid) {
5727 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5728 return 1;
5729 else
5730 return -1;
5733 /* Encourage migration to the preferred node. */
5734 if (dst_nid == p->numa_preferred_nid)
5735 return 0;
5737 if (numa_group) {
5738 src_faults = group_faults(p, src_nid);
5739 dst_faults = group_faults(p, dst_nid);
5740 } else {
5741 src_faults = task_faults(p, src_nid);
5742 dst_faults = task_faults(p, dst_nid);
5745 return dst_faults < src_faults;
5748 #else
5749 static inline int migrate_degrades_locality(struct task_struct *p,
5750 struct lb_env *env)
5752 return -1;
5754 #endif
5757 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5759 static
5760 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5762 int tsk_cache_hot;
5764 lockdep_assert_held(&env->src_rq->lock);
5767 * We do not migrate tasks that are:
5768 * 1) throttled_lb_pair, or
5769 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5770 * 3) running (obviously), or
5771 * 4) are cache-hot on their current CPU.
5773 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5774 return 0;
5776 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5777 int cpu;
5779 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5781 env->flags |= LBF_SOME_PINNED;
5784 * Remember if this task can be migrated to any other cpu in
5785 * our sched_group. We may want to revisit it if we couldn't
5786 * meet load balance goals by pulling other tasks on src_cpu.
5788 * Also avoid computing new_dst_cpu if we have already computed
5789 * one in current iteration.
5791 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5792 return 0;
5794 /* Prevent to re-select dst_cpu via env's cpus */
5795 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5796 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5797 env->flags |= LBF_DST_PINNED;
5798 env->new_dst_cpu = cpu;
5799 break;
5803 return 0;
5806 /* Record that we found atleast one task that could run on dst_cpu */
5807 env->flags &= ~LBF_ALL_PINNED;
5809 if (task_running(env->src_rq, p)) {
5810 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5811 return 0;
5815 * Aggressive migration if:
5816 * 1) destination numa is preferred
5817 * 2) task is cache cold, or
5818 * 3) too many balance attempts have failed.
5820 tsk_cache_hot = migrate_degrades_locality(p, env);
5821 if (tsk_cache_hot == -1)
5822 tsk_cache_hot = task_hot(p, env);
5824 if (tsk_cache_hot <= 0 ||
5825 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5826 if (tsk_cache_hot == 1) {
5827 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5828 schedstat_inc(p, se.statistics.nr_forced_migrations);
5830 return 1;
5833 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5834 return 0;
5838 * detach_task() -- detach the task for the migration specified in env
5840 static void detach_task(struct task_struct *p, struct lb_env *env)
5842 lockdep_assert_held(&env->src_rq->lock);
5844 p->on_rq = TASK_ON_RQ_MIGRATING;
5845 deactivate_task(env->src_rq, p, 0);
5846 set_task_cpu(p, env->dst_cpu);
5850 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5851 * part of active balancing operations within "domain".
5853 * Returns a task if successful and NULL otherwise.
5855 static struct task_struct *detach_one_task(struct lb_env *env)
5857 struct task_struct *p, *n;
5859 lockdep_assert_held(&env->src_rq->lock);
5861 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5862 if (!can_migrate_task(p, env))
5863 continue;
5865 detach_task(p, env);
5868 * Right now, this is only the second place where
5869 * lb_gained[env->idle] is updated (other is detach_tasks)
5870 * so we can safely collect stats here rather than
5871 * inside detach_tasks().
5873 schedstat_inc(env->sd, lb_gained[env->idle]);
5874 return p;
5876 return NULL;
5879 static const unsigned int sched_nr_migrate_break = 32;
5882 * detach_tasks() -- tries to detach up to imbalance weighted load from
5883 * busiest_rq, as part of a balancing operation within domain "sd".
5885 * Returns number of detached tasks if successful and 0 otherwise.
5887 static int detach_tasks(struct lb_env *env)
5889 struct list_head *tasks = &env->src_rq->cfs_tasks;
5890 struct task_struct *p;
5891 unsigned long load;
5892 int detached = 0;
5894 lockdep_assert_held(&env->src_rq->lock);
5896 if (env->imbalance <= 0)
5897 return 0;
5899 while (!list_empty(tasks)) {
5901 * We don't want to steal all, otherwise we may be treated likewise,
5902 * which could at worst lead to a livelock crash.
5904 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5905 break;
5907 p = list_first_entry(tasks, struct task_struct, se.group_node);
5909 env->loop++;
5910 /* We've more or less seen every task there is, call it quits */
5911 if (env->loop > env->loop_max)
5912 break;
5914 /* take a breather every nr_migrate tasks */
5915 if (env->loop > env->loop_break) {
5916 env->loop_break += sched_nr_migrate_break;
5917 env->flags |= LBF_NEED_BREAK;
5918 break;
5921 if (!can_migrate_task(p, env))
5922 goto next;
5924 load = task_h_load(p);
5926 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5927 goto next;
5929 if ((load / 2) > env->imbalance)
5930 goto next;
5932 detach_task(p, env);
5933 list_add(&p->se.group_node, &env->tasks);
5935 detached++;
5936 env->imbalance -= load;
5938 #ifdef CONFIG_PREEMPT
5940 * NEWIDLE balancing is a source of latency, so preemptible
5941 * kernels will stop after the first task is detached to minimize
5942 * the critical section.
5944 if (env->idle == CPU_NEWLY_IDLE)
5945 break;
5946 #endif
5949 * We only want to steal up to the prescribed amount of
5950 * weighted load.
5952 if (env->imbalance <= 0)
5953 break;
5955 continue;
5956 next:
5957 list_move_tail(&p->se.group_node, tasks);
5961 * Right now, this is one of only two places we collect this stat
5962 * so we can safely collect detach_one_task() stats here rather
5963 * than inside detach_one_task().
5965 schedstat_add(env->sd, lb_gained[env->idle], detached);
5967 return detached;
5971 * attach_task() -- attach the task detached by detach_task() to its new rq.
5973 static void attach_task(struct rq *rq, struct task_struct *p)
5975 lockdep_assert_held(&rq->lock);
5977 BUG_ON(task_rq(p) != rq);
5978 activate_task(rq, p, 0);
5979 p->on_rq = TASK_ON_RQ_QUEUED;
5980 check_preempt_curr(rq, p, 0);
5984 * attach_one_task() -- attaches the task returned from detach_one_task() to
5985 * its new rq.
5987 static void attach_one_task(struct rq *rq, struct task_struct *p)
5989 raw_spin_lock(&rq->lock);
5990 attach_task(rq, p);
5991 raw_spin_unlock(&rq->lock);
5995 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5996 * new rq.
5998 static void attach_tasks(struct lb_env *env)
6000 struct list_head *tasks = &env->tasks;
6001 struct task_struct *p;
6003 raw_spin_lock(&env->dst_rq->lock);
6005 while (!list_empty(tasks)) {
6006 p = list_first_entry(tasks, struct task_struct, se.group_node);
6007 list_del_init(&p->se.group_node);
6009 attach_task(env->dst_rq, p);
6012 raw_spin_unlock(&env->dst_rq->lock);
6015 #ifdef CONFIG_FAIR_GROUP_SCHED
6016 static void update_blocked_averages(int cpu)
6018 struct rq *rq = cpu_rq(cpu);
6019 struct cfs_rq *cfs_rq;
6020 unsigned long flags;
6022 raw_spin_lock_irqsave(&rq->lock, flags);
6023 update_rq_clock(rq);
6026 * Iterates the task_group tree in a bottom up fashion, see
6027 * list_add_leaf_cfs_rq() for details.
6029 for_each_leaf_cfs_rq(rq, cfs_rq) {
6030 /* throttled entities do not contribute to load */
6031 if (throttled_hierarchy(cfs_rq))
6032 continue;
6034 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6035 update_tg_load_avg(cfs_rq, 0);
6037 raw_spin_unlock_irqrestore(&rq->lock, flags);
6041 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6042 * This needs to be done in a top-down fashion because the load of a child
6043 * group is a fraction of its parents load.
6045 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6047 struct rq *rq = rq_of(cfs_rq);
6048 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6049 unsigned long now = jiffies;
6050 unsigned long load;
6052 if (cfs_rq->last_h_load_update == now)
6053 return;
6055 cfs_rq->h_load_next = NULL;
6056 for_each_sched_entity(se) {
6057 cfs_rq = cfs_rq_of(se);
6058 cfs_rq->h_load_next = se;
6059 if (cfs_rq->last_h_load_update == now)
6060 break;
6063 if (!se) {
6064 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6065 cfs_rq->last_h_load_update = now;
6068 while ((se = cfs_rq->h_load_next) != NULL) {
6069 load = cfs_rq->h_load;
6070 load = div64_ul(load * se->avg.load_avg,
6071 cfs_rq_load_avg(cfs_rq) + 1);
6072 cfs_rq = group_cfs_rq(se);
6073 cfs_rq->h_load = load;
6074 cfs_rq->last_h_load_update = now;
6078 static unsigned long task_h_load(struct task_struct *p)
6080 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6082 update_cfs_rq_h_load(cfs_rq);
6083 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6084 cfs_rq_load_avg(cfs_rq) + 1);
6086 #else
6087 static inline void update_blocked_averages(int cpu)
6089 struct rq *rq = cpu_rq(cpu);
6090 struct cfs_rq *cfs_rq = &rq->cfs;
6091 unsigned long flags;
6093 raw_spin_lock_irqsave(&rq->lock, flags);
6094 update_rq_clock(rq);
6095 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6096 raw_spin_unlock_irqrestore(&rq->lock, flags);
6099 static unsigned long task_h_load(struct task_struct *p)
6101 return p->se.avg.load_avg;
6103 #endif
6105 /********** Helpers for find_busiest_group ************************/
6107 enum group_type {
6108 group_other = 0,
6109 group_imbalanced,
6110 group_overloaded,
6114 * sg_lb_stats - stats of a sched_group required for load_balancing
6116 struct sg_lb_stats {
6117 unsigned long avg_load; /*Avg load across the CPUs of the group */
6118 unsigned long group_load; /* Total load over the CPUs of the group */
6119 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6120 unsigned long load_per_task;
6121 unsigned long group_capacity;
6122 unsigned long group_util; /* Total utilization of the group */
6123 unsigned int sum_nr_running; /* Nr tasks running in the group */
6124 unsigned int idle_cpus;
6125 unsigned int group_weight;
6126 enum group_type group_type;
6127 int group_no_capacity;
6128 #ifdef CONFIG_NUMA_BALANCING
6129 unsigned int nr_numa_running;
6130 unsigned int nr_preferred_running;
6131 #endif
6135 * sd_lb_stats - Structure to store the statistics of a sched_domain
6136 * during load balancing.
6138 struct sd_lb_stats {
6139 struct sched_group *busiest; /* Busiest group in this sd */
6140 struct sched_group *local; /* Local group in this sd */
6141 unsigned long total_load; /* Total load of all groups in sd */
6142 unsigned long total_capacity; /* Total capacity of all groups in sd */
6143 unsigned long avg_load; /* Average load across all groups in sd */
6145 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6146 struct sg_lb_stats local_stat; /* Statistics of the local group */
6149 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6152 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6153 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6154 * We must however clear busiest_stat::avg_load because
6155 * update_sd_pick_busiest() reads this before assignment.
6157 *sds = (struct sd_lb_stats){
6158 .busiest = NULL,
6159 .local = NULL,
6160 .total_load = 0UL,
6161 .total_capacity = 0UL,
6162 .busiest_stat = {
6163 .avg_load = 0UL,
6164 .sum_nr_running = 0,
6165 .group_type = group_other,
6171 * get_sd_load_idx - Obtain the load index for a given sched domain.
6172 * @sd: The sched_domain whose load_idx is to be obtained.
6173 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6175 * Return: The load index.
6177 static inline int get_sd_load_idx(struct sched_domain *sd,
6178 enum cpu_idle_type idle)
6180 int load_idx;
6182 switch (idle) {
6183 case CPU_NOT_IDLE:
6184 load_idx = sd->busy_idx;
6185 break;
6187 case CPU_NEWLY_IDLE:
6188 load_idx = sd->newidle_idx;
6189 break;
6190 default:
6191 load_idx = sd->idle_idx;
6192 break;
6195 return load_idx;
6198 static unsigned long scale_rt_capacity(int cpu)
6200 struct rq *rq = cpu_rq(cpu);
6201 u64 total, used, age_stamp, avg;
6202 s64 delta;
6205 * Since we're reading these variables without serialization make sure
6206 * we read them once before doing sanity checks on them.
6208 age_stamp = READ_ONCE(rq->age_stamp);
6209 avg = READ_ONCE(rq->rt_avg);
6210 delta = __rq_clock_broken(rq) - age_stamp;
6212 if (unlikely(delta < 0))
6213 delta = 0;
6215 total = sched_avg_period() + delta;
6217 used = div_u64(avg, total);
6219 if (likely(used < SCHED_CAPACITY_SCALE))
6220 return SCHED_CAPACITY_SCALE - used;
6222 return 1;
6225 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6227 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6228 struct sched_group *sdg = sd->groups;
6230 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6232 capacity *= scale_rt_capacity(cpu);
6233 capacity >>= SCHED_CAPACITY_SHIFT;
6235 if (!capacity)
6236 capacity = 1;
6238 cpu_rq(cpu)->cpu_capacity = capacity;
6239 sdg->sgc->capacity = capacity;
6242 void update_group_capacity(struct sched_domain *sd, int cpu)
6244 struct sched_domain *child = sd->child;
6245 struct sched_group *group, *sdg = sd->groups;
6246 unsigned long capacity;
6247 unsigned long interval;
6249 interval = msecs_to_jiffies(sd->balance_interval);
6250 interval = clamp(interval, 1UL, max_load_balance_interval);
6251 sdg->sgc->next_update = jiffies + interval;
6253 if (!child) {
6254 update_cpu_capacity(sd, cpu);
6255 return;
6258 capacity = 0;
6260 if (child->flags & SD_OVERLAP) {
6262 * SD_OVERLAP domains cannot assume that child groups
6263 * span the current group.
6266 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6267 struct sched_group_capacity *sgc;
6268 struct rq *rq = cpu_rq(cpu);
6271 * build_sched_domains() -> init_sched_groups_capacity()
6272 * gets here before we've attached the domains to the
6273 * runqueues.
6275 * Use capacity_of(), which is set irrespective of domains
6276 * in update_cpu_capacity().
6278 * This avoids capacity from being 0 and
6279 * causing divide-by-zero issues on boot.
6281 if (unlikely(!rq->sd)) {
6282 capacity += capacity_of(cpu);
6283 continue;
6286 sgc = rq->sd->groups->sgc;
6287 capacity += sgc->capacity;
6289 } else {
6291 * !SD_OVERLAP domains can assume that child groups
6292 * span the current group.
6295 group = child->groups;
6296 do {
6297 capacity += group->sgc->capacity;
6298 group = group->next;
6299 } while (group != child->groups);
6302 sdg->sgc->capacity = capacity;
6306 * Check whether the capacity of the rq has been noticeably reduced by side
6307 * activity. The imbalance_pct is used for the threshold.
6308 * Return true is the capacity is reduced
6310 static inline int
6311 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6313 return ((rq->cpu_capacity * sd->imbalance_pct) <
6314 (rq->cpu_capacity_orig * 100));
6318 * Group imbalance indicates (and tries to solve) the problem where balancing
6319 * groups is inadequate due to tsk_cpus_allowed() constraints.
6321 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6322 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6323 * Something like:
6325 * { 0 1 2 3 } { 4 5 6 7 }
6326 * * * * *
6328 * If we were to balance group-wise we'd place two tasks in the first group and
6329 * two tasks in the second group. Clearly this is undesired as it will overload
6330 * cpu 3 and leave one of the cpus in the second group unused.
6332 * The current solution to this issue is detecting the skew in the first group
6333 * by noticing the lower domain failed to reach balance and had difficulty
6334 * moving tasks due to affinity constraints.
6336 * When this is so detected; this group becomes a candidate for busiest; see
6337 * update_sd_pick_busiest(). And calculate_imbalance() and
6338 * find_busiest_group() avoid some of the usual balance conditions to allow it
6339 * to create an effective group imbalance.
6341 * This is a somewhat tricky proposition since the next run might not find the
6342 * group imbalance and decide the groups need to be balanced again. A most
6343 * subtle and fragile situation.
6346 static inline int sg_imbalanced(struct sched_group *group)
6348 return group->sgc->imbalance;
6352 * group_has_capacity returns true if the group has spare capacity that could
6353 * be used by some tasks.
6354 * We consider that a group has spare capacity if the * number of task is
6355 * smaller than the number of CPUs or if the utilization is lower than the
6356 * available capacity for CFS tasks.
6357 * For the latter, we use a threshold to stabilize the state, to take into
6358 * account the variance of the tasks' load and to return true if the available
6359 * capacity in meaningful for the load balancer.
6360 * As an example, an available capacity of 1% can appear but it doesn't make
6361 * any benefit for the load balance.
6363 static inline bool
6364 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6366 if (sgs->sum_nr_running < sgs->group_weight)
6367 return true;
6369 if ((sgs->group_capacity * 100) >
6370 (sgs->group_util * env->sd->imbalance_pct))
6371 return true;
6373 return false;
6377 * group_is_overloaded returns true if the group has more tasks than it can
6378 * handle.
6379 * group_is_overloaded is not equals to !group_has_capacity because a group
6380 * with the exact right number of tasks, has no more spare capacity but is not
6381 * overloaded so both group_has_capacity and group_is_overloaded return
6382 * false.
6384 static inline bool
6385 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6387 if (sgs->sum_nr_running <= sgs->group_weight)
6388 return false;
6390 if ((sgs->group_capacity * 100) <
6391 (sgs->group_util * env->sd->imbalance_pct))
6392 return true;
6394 return false;
6397 static inline enum
6398 group_type group_classify(struct sched_group *group,
6399 struct sg_lb_stats *sgs)
6401 if (sgs->group_no_capacity)
6402 return group_overloaded;
6404 if (sg_imbalanced(group))
6405 return group_imbalanced;
6407 return group_other;
6411 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6412 * @env: The load balancing environment.
6413 * @group: sched_group whose statistics are to be updated.
6414 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6415 * @local_group: Does group contain this_cpu.
6416 * @sgs: variable to hold the statistics for this group.
6417 * @overload: Indicate more than one runnable task for any CPU.
6419 static inline void update_sg_lb_stats(struct lb_env *env,
6420 struct sched_group *group, int load_idx,
6421 int local_group, struct sg_lb_stats *sgs,
6422 bool *overload)
6424 unsigned long load;
6425 int i, nr_running;
6427 memset(sgs, 0, sizeof(*sgs));
6429 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6430 struct rq *rq = cpu_rq(i);
6432 /* Bias balancing toward cpus of our domain */
6433 if (local_group)
6434 load = target_load(i, load_idx);
6435 else
6436 load = source_load(i, load_idx);
6438 sgs->group_load += load;
6439 sgs->group_util += cpu_util(i);
6440 sgs->sum_nr_running += rq->cfs.h_nr_running;
6442 nr_running = rq->nr_running;
6443 if (nr_running > 1)
6444 *overload = true;
6446 #ifdef CONFIG_NUMA_BALANCING
6447 sgs->nr_numa_running += rq->nr_numa_running;
6448 sgs->nr_preferred_running += rq->nr_preferred_running;
6449 #endif
6450 sgs->sum_weighted_load += weighted_cpuload(i);
6452 * No need to call idle_cpu() if nr_running is not 0
6454 if (!nr_running && idle_cpu(i))
6455 sgs->idle_cpus++;
6458 /* Adjust by relative CPU capacity of the group */
6459 sgs->group_capacity = group->sgc->capacity;
6460 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6462 if (sgs->sum_nr_running)
6463 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6465 sgs->group_weight = group->group_weight;
6467 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6468 sgs->group_type = group_classify(group, sgs);
6472 * update_sd_pick_busiest - return 1 on busiest group
6473 * @env: The load balancing environment.
6474 * @sds: sched_domain statistics
6475 * @sg: sched_group candidate to be checked for being the busiest
6476 * @sgs: sched_group statistics
6478 * Determine if @sg is a busier group than the previously selected
6479 * busiest group.
6481 * Return: %true if @sg is a busier group than the previously selected
6482 * busiest group. %false otherwise.
6484 static bool update_sd_pick_busiest(struct lb_env *env,
6485 struct sd_lb_stats *sds,
6486 struct sched_group *sg,
6487 struct sg_lb_stats *sgs)
6489 struct sg_lb_stats *busiest = &sds->busiest_stat;
6491 if (sgs->group_type > busiest->group_type)
6492 return true;
6494 if (sgs->group_type < busiest->group_type)
6495 return false;
6497 if (sgs->avg_load <= busiest->avg_load)
6498 return false;
6500 /* This is the busiest node in its class. */
6501 if (!(env->sd->flags & SD_ASYM_PACKING))
6502 return true;
6505 * ASYM_PACKING needs to move all the work to the lowest
6506 * numbered CPUs in the group, therefore mark all groups
6507 * higher than ourself as busy.
6509 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6510 if (!sds->busiest)
6511 return true;
6513 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6514 return true;
6517 return false;
6520 #ifdef CONFIG_NUMA_BALANCING
6521 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6523 if (sgs->sum_nr_running > sgs->nr_numa_running)
6524 return regular;
6525 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6526 return remote;
6527 return all;
6530 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6532 if (rq->nr_running > rq->nr_numa_running)
6533 return regular;
6534 if (rq->nr_running > rq->nr_preferred_running)
6535 return remote;
6536 return all;
6538 #else
6539 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6541 return all;
6544 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6546 return regular;
6548 #endif /* CONFIG_NUMA_BALANCING */
6551 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6552 * @env: The load balancing environment.
6553 * @sds: variable to hold the statistics for this sched_domain.
6555 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6557 struct sched_domain *child = env->sd->child;
6558 struct sched_group *sg = env->sd->groups;
6559 struct sg_lb_stats tmp_sgs;
6560 int load_idx, prefer_sibling = 0;
6561 bool overload = false;
6563 if (child && child->flags & SD_PREFER_SIBLING)
6564 prefer_sibling = 1;
6566 load_idx = get_sd_load_idx(env->sd, env->idle);
6568 do {
6569 struct sg_lb_stats *sgs = &tmp_sgs;
6570 int local_group;
6572 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6573 if (local_group) {
6574 sds->local = sg;
6575 sgs = &sds->local_stat;
6577 if (env->idle != CPU_NEWLY_IDLE ||
6578 time_after_eq(jiffies, sg->sgc->next_update))
6579 update_group_capacity(env->sd, env->dst_cpu);
6582 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6583 &overload);
6585 if (local_group)
6586 goto next_group;
6589 * In case the child domain prefers tasks go to siblings
6590 * first, lower the sg capacity so that we'll try
6591 * and move all the excess tasks away. We lower the capacity
6592 * of a group only if the local group has the capacity to fit
6593 * these excess tasks. The extra check prevents the case where
6594 * you always pull from the heaviest group when it is already
6595 * under-utilized (possible with a large weight task outweighs
6596 * the tasks on the system).
6598 if (prefer_sibling && sds->local &&
6599 group_has_capacity(env, &sds->local_stat) &&
6600 (sgs->sum_nr_running > 1)) {
6601 sgs->group_no_capacity = 1;
6602 sgs->group_type = group_classify(sg, sgs);
6605 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6606 sds->busiest = sg;
6607 sds->busiest_stat = *sgs;
6610 next_group:
6611 /* Now, start updating sd_lb_stats */
6612 sds->total_load += sgs->group_load;
6613 sds->total_capacity += sgs->group_capacity;
6615 sg = sg->next;
6616 } while (sg != env->sd->groups);
6618 if (env->sd->flags & SD_NUMA)
6619 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6621 if (!env->sd->parent) {
6622 /* update overload indicator if we are at root domain */
6623 if (env->dst_rq->rd->overload != overload)
6624 env->dst_rq->rd->overload = overload;
6630 * check_asym_packing - Check to see if the group is packed into the
6631 * sched doman.
6633 * This is primarily intended to used at the sibling level. Some
6634 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6635 * case of POWER7, it can move to lower SMT modes only when higher
6636 * threads are idle. When in lower SMT modes, the threads will
6637 * perform better since they share less core resources. Hence when we
6638 * have idle threads, we want them to be the higher ones.
6640 * This packing function is run on idle threads. It checks to see if
6641 * the busiest CPU in this domain (core in the P7 case) has a higher
6642 * CPU number than the packing function is being run on. Here we are
6643 * assuming lower CPU number will be equivalent to lower a SMT thread
6644 * number.
6646 * Return: 1 when packing is required and a task should be moved to
6647 * this CPU. The amount of the imbalance is returned in *imbalance.
6649 * @env: The load balancing environment.
6650 * @sds: Statistics of the sched_domain which is to be packed
6652 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6654 int busiest_cpu;
6656 if (!(env->sd->flags & SD_ASYM_PACKING))
6657 return 0;
6659 if (!sds->busiest)
6660 return 0;
6662 busiest_cpu = group_first_cpu(sds->busiest);
6663 if (env->dst_cpu > busiest_cpu)
6664 return 0;
6666 env->imbalance = DIV_ROUND_CLOSEST(
6667 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6668 SCHED_CAPACITY_SCALE);
6670 return 1;
6674 * fix_small_imbalance - Calculate the minor imbalance that exists
6675 * amongst the groups of a sched_domain, during
6676 * load balancing.
6677 * @env: The load balancing environment.
6678 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6680 static inline
6681 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6683 unsigned long tmp, capa_now = 0, capa_move = 0;
6684 unsigned int imbn = 2;
6685 unsigned long scaled_busy_load_per_task;
6686 struct sg_lb_stats *local, *busiest;
6688 local = &sds->local_stat;
6689 busiest = &sds->busiest_stat;
6691 if (!local->sum_nr_running)
6692 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6693 else if (busiest->load_per_task > local->load_per_task)
6694 imbn = 1;
6696 scaled_busy_load_per_task =
6697 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6698 busiest->group_capacity;
6700 if (busiest->avg_load + scaled_busy_load_per_task >=
6701 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6702 env->imbalance = busiest->load_per_task;
6703 return;
6707 * OK, we don't have enough imbalance to justify moving tasks,
6708 * however we may be able to increase total CPU capacity used by
6709 * moving them.
6712 capa_now += busiest->group_capacity *
6713 min(busiest->load_per_task, busiest->avg_load);
6714 capa_now += local->group_capacity *
6715 min(local->load_per_task, local->avg_load);
6716 capa_now /= SCHED_CAPACITY_SCALE;
6718 /* Amount of load we'd subtract */
6719 if (busiest->avg_load > scaled_busy_load_per_task) {
6720 capa_move += busiest->group_capacity *
6721 min(busiest->load_per_task,
6722 busiest->avg_load - scaled_busy_load_per_task);
6725 /* Amount of load we'd add */
6726 if (busiest->avg_load * busiest->group_capacity <
6727 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6728 tmp = (busiest->avg_load * busiest->group_capacity) /
6729 local->group_capacity;
6730 } else {
6731 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6732 local->group_capacity;
6734 capa_move += local->group_capacity *
6735 min(local->load_per_task, local->avg_load + tmp);
6736 capa_move /= SCHED_CAPACITY_SCALE;
6738 /* Move if we gain throughput */
6739 if (capa_move > capa_now)
6740 env->imbalance = busiest->load_per_task;
6744 * calculate_imbalance - Calculate the amount of imbalance present within the
6745 * groups of a given sched_domain during load balance.
6746 * @env: load balance environment
6747 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6749 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6751 unsigned long max_pull, load_above_capacity = ~0UL;
6752 struct sg_lb_stats *local, *busiest;
6754 local = &sds->local_stat;
6755 busiest = &sds->busiest_stat;
6757 if (busiest->group_type == group_imbalanced) {
6759 * In the group_imb case we cannot rely on group-wide averages
6760 * to ensure cpu-load equilibrium, look at wider averages. XXX
6762 busiest->load_per_task =
6763 min(busiest->load_per_task, sds->avg_load);
6767 * In the presence of smp nice balancing, certain scenarios can have
6768 * max load less than avg load(as we skip the groups at or below
6769 * its cpu_capacity, while calculating max_load..)
6771 if (busiest->avg_load <= sds->avg_load ||
6772 local->avg_load >= sds->avg_load) {
6773 env->imbalance = 0;
6774 return fix_small_imbalance(env, sds);
6778 * If there aren't any idle cpus, avoid creating some.
6780 if (busiest->group_type == group_overloaded &&
6781 local->group_type == group_overloaded) {
6782 load_above_capacity = busiest->sum_nr_running *
6783 SCHED_LOAD_SCALE;
6784 if (load_above_capacity > busiest->group_capacity)
6785 load_above_capacity -= busiest->group_capacity;
6786 else
6787 load_above_capacity = ~0UL;
6791 * We're trying to get all the cpus to the average_load, so we don't
6792 * want to push ourselves above the average load, nor do we wish to
6793 * reduce the max loaded cpu below the average load. At the same time,
6794 * we also don't want to reduce the group load below the group capacity
6795 * (so that we can implement power-savings policies etc). Thus we look
6796 * for the minimum possible imbalance.
6798 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6800 /* How much load to actually move to equalise the imbalance */
6801 env->imbalance = min(
6802 max_pull * busiest->group_capacity,
6803 (sds->avg_load - local->avg_load) * local->group_capacity
6804 ) / SCHED_CAPACITY_SCALE;
6807 * if *imbalance is less than the average load per runnable task
6808 * there is no guarantee that any tasks will be moved so we'll have
6809 * a think about bumping its value to force at least one task to be
6810 * moved
6812 if (env->imbalance < busiest->load_per_task)
6813 return fix_small_imbalance(env, sds);
6816 /******* find_busiest_group() helpers end here *********************/
6819 * find_busiest_group - Returns the busiest group within the sched_domain
6820 * if there is an imbalance. If there isn't an imbalance, and
6821 * the user has opted for power-savings, it returns a group whose
6822 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6823 * such a group exists.
6825 * Also calculates the amount of weighted load which should be moved
6826 * to restore balance.
6828 * @env: The load balancing environment.
6830 * Return: - The busiest group if imbalance exists.
6831 * - If no imbalance and user has opted for power-savings balance,
6832 * return the least loaded group whose CPUs can be
6833 * put to idle by rebalancing its tasks onto our group.
6835 static struct sched_group *find_busiest_group(struct lb_env *env)
6837 struct sg_lb_stats *local, *busiest;
6838 struct sd_lb_stats sds;
6840 init_sd_lb_stats(&sds);
6843 * Compute the various statistics relavent for load balancing at
6844 * this level.
6846 update_sd_lb_stats(env, &sds);
6847 local = &sds.local_stat;
6848 busiest = &sds.busiest_stat;
6850 /* ASYM feature bypasses nice load balance check */
6851 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6852 check_asym_packing(env, &sds))
6853 return sds.busiest;
6855 /* There is no busy sibling group to pull tasks from */
6856 if (!sds.busiest || busiest->sum_nr_running == 0)
6857 goto out_balanced;
6859 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6860 / sds.total_capacity;
6863 * If the busiest group is imbalanced the below checks don't
6864 * work because they assume all things are equal, which typically
6865 * isn't true due to cpus_allowed constraints and the like.
6867 if (busiest->group_type == group_imbalanced)
6868 goto force_balance;
6870 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6871 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6872 busiest->group_no_capacity)
6873 goto force_balance;
6876 * If the local group is busier than the selected busiest group
6877 * don't try and pull any tasks.
6879 if (local->avg_load >= busiest->avg_load)
6880 goto out_balanced;
6883 * Don't pull any tasks if this group is already above the domain
6884 * average load.
6886 if (local->avg_load >= sds.avg_load)
6887 goto out_balanced;
6889 if (env->idle == CPU_IDLE) {
6891 * This cpu is idle. If the busiest group is not overloaded
6892 * and there is no imbalance between this and busiest group
6893 * wrt idle cpus, it is balanced. The imbalance becomes
6894 * significant if the diff is greater than 1 otherwise we
6895 * might end up to just move the imbalance on another group
6897 if ((busiest->group_type != group_overloaded) &&
6898 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6899 goto out_balanced;
6900 } else {
6902 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6903 * imbalance_pct to be conservative.
6905 if (100 * busiest->avg_load <=
6906 env->sd->imbalance_pct * local->avg_load)
6907 goto out_balanced;
6910 force_balance:
6911 /* Looks like there is an imbalance. Compute it */
6912 calculate_imbalance(env, &sds);
6913 return sds.busiest;
6915 out_balanced:
6916 env->imbalance = 0;
6917 return NULL;
6921 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6923 static struct rq *find_busiest_queue(struct lb_env *env,
6924 struct sched_group *group)
6926 struct rq *busiest = NULL, *rq;
6927 unsigned long busiest_load = 0, busiest_capacity = 1;
6928 int i;
6930 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6931 unsigned long capacity, wl;
6932 enum fbq_type rt;
6934 rq = cpu_rq(i);
6935 rt = fbq_classify_rq(rq);
6938 * We classify groups/runqueues into three groups:
6939 * - regular: there are !numa tasks
6940 * - remote: there are numa tasks that run on the 'wrong' node
6941 * - all: there is no distinction
6943 * In order to avoid migrating ideally placed numa tasks,
6944 * ignore those when there's better options.
6946 * If we ignore the actual busiest queue to migrate another
6947 * task, the next balance pass can still reduce the busiest
6948 * queue by moving tasks around inside the node.
6950 * If we cannot move enough load due to this classification
6951 * the next pass will adjust the group classification and
6952 * allow migration of more tasks.
6954 * Both cases only affect the total convergence complexity.
6956 if (rt > env->fbq_type)
6957 continue;
6959 capacity = capacity_of(i);
6961 wl = weighted_cpuload(i);
6964 * When comparing with imbalance, use weighted_cpuload()
6965 * which is not scaled with the cpu capacity.
6968 if (rq->nr_running == 1 && wl > env->imbalance &&
6969 !check_cpu_capacity(rq, env->sd))
6970 continue;
6973 * For the load comparisons with the other cpu's, consider
6974 * the weighted_cpuload() scaled with the cpu capacity, so
6975 * that the load can be moved away from the cpu that is
6976 * potentially running at a lower capacity.
6978 * Thus we're looking for max(wl_i / capacity_i), crosswise
6979 * multiplication to rid ourselves of the division works out
6980 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6981 * our previous maximum.
6983 if (wl * busiest_capacity > busiest_load * capacity) {
6984 busiest_load = wl;
6985 busiest_capacity = capacity;
6986 busiest = rq;
6990 return busiest;
6994 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6995 * so long as it is large enough.
6997 #define MAX_PINNED_INTERVAL 512
6999 /* Working cpumask for load_balance and load_balance_newidle. */
7000 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7002 static int need_active_balance(struct lb_env *env)
7004 struct sched_domain *sd = env->sd;
7006 if (env->idle == CPU_NEWLY_IDLE) {
7009 * ASYM_PACKING needs to force migrate tasks from busy but
7010 * higher numbered CPUs in order to pack all tasks in the
7011 * lowest numbered CPUs.
7013 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7014 return 1;
7018 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7019 * It's worth migrating the task if the src_cpu's capacity is reduced
7020 * because of other sched_class or IRQs if more capacity stays
7021 * available on dst_cpu.
7023 if ((env->idle != CPU_NOT_IDLE) &&
7024 (env->src_rq->cfs.h_nr_running == 1)) {
7025 if ((check_cpu_capacity(env->src_rq, sd)) &&
7026 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7027 return 1;
7030 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7033 static int active_load_balance_cpu_stop(void *data);
7035 static int should_we_balance(struct lb_env *env)
7037 struct sched_group *sg = env->sd->groups;
7038 struct cpumask *sg_cpus, *sg_mask;
7039 int cpu, balance_cpu = -1;
7042 * In the newly idle case, we will allow all the cpu's
7043 * to do the newly idle load balance.
7045 if (env->idle == CPU_NEWLY_IDLE)
7046 return 1;
7048 sg_cpus = sched_group_cpus(sg);
7049 sg_mask = sched_group_mask(sg);
7050 /* Try to find first idle cpu */
7051 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7052 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7053 continue;
7055 balance_cpu = cpu;
7056 break;
7059 if (balance_cpu == -1)
7060 balance_cpu = group_balance_cpu(sg);
7063 * First idle cpu or the first cpu(busiest) in this sched group
7064 * is eligible for doing load balancing at this and above domains.
7066 return balance_cpu == env->dst_cpu;
7070 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7071 * tasks if there is an imbalance.
7073 static int load_balance(int this_cpu, struct rq *this_rq,
7074 struct sched_domain *sd, enum cpu_idle_type idle,
7075 int *continue_balancing)
7077 int ld_moved, cur_ld_moved, active_balance = 0;
7078 struct sched_domain *sd_parent = sd->parent;
7079 struct sched_group *group;
7080 struct rq *busiest;
7081 unsigned long flags;
7082 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7084 struct lb_env env = {
7085 .sd = sd,
7086 .dst_cpu = this_cpu,
7087 .dst_rq = this_rq,
7088 .dst_grpmask = sched_group_cpus(sd->groups),
7089 .idle = idle,
7090 .loop_break = sched_nr_migrate_break,
7091 .cpus = cpus,
7092 .fbq_type = all,
7093 .tasks = LIST_HEAD_INIT(env.tasks),
7097 * For NEWLY_IDLE load_balancing, we don't need to consider
7098 * other cpus in our group
7100 if (idle == CPU_NEWLY_IDLE)
7101 env.dst_grpmask = NULL;
7103 cpumask_copy(cpus, cpu_active_mask);
7105 schedstat_inc(sd, lb_count[idle]);
7107 redo:
7108 if (!should_we_balance(&env)) {
7109 *continue_balancing = 0;
7110 goto out_balanced;
7113 group = find_busiest_group(&env);
7114 if (!group) {
7115 schedstat_inc(sd, lb_nobusyg[idle]);
7116 goto out_balanced;
7119 busiest = find_busiest_queue(&env, group);
7120 if (!busiest) {
7121 schedstat_inc(sd, lb_nobusyq[idle]);
7122 goto out_balanced;
7125 BUG_ON(busiest == env.dst_rq);
7127 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7129 env.src_cpu = busiest->cpu;
7130 env.src_rq = busiest;
7132 ld_moved = 0;
7133 if (busiest->nr_running > 1) {
7135 * Attempt to move tasks. If find_busiest_group has found
7136 * an imbalance but busiest->nr_running <= 1, the group is
7137 * still unbalanced. ld_moved simply stays zero, so it is
7138 * correctly treated as an imbalance.
7140 env.flags |= LBF_ALL_PINNED;
7141 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7143 more_balance:
7144 raw_spin_lock_irqsave(&busiest->lock, flags);
7147 * cur_ld_moved - load moved in current iteration
7148 * ld_moved - cumulative load moved across iterations
7150 cur_ld_moved = detach_tasks(&env);
7153 * We've detached some tasks from busiest_rq. Every
7154 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7155 * unlock busiest->lock, and we are able to be sure
7156 * that nobody can manipulate the tasks in parallel.
7157 * See task_rq_lock() family for the details.
7160 raw_spin_unlock(&busiest->lock);
7162 if (cur_ld_moved) {
7163 attach_tasks(&env);
7164 ld_moved += cur_ld_moved;
7167 local_irq_restore(flags);
7169 if (env.flags & LBF_NEED_BREAK) {
7170 env.flags &= ~LBF_NEED_BREAK;
7171 goto more_balance;
7175 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7176 * us and move them to an alternate dst_cpu in our sched_group
7177 * where they can run. The upper limit on how many times we
7178 * iterate on same src_cpu is dependent on number of cpus in our
7179 * sched_group.
7181 * This changes load balance semantics a bit on who can move
7182 * load to a given_cpu. In addition to the given_cpu itself
7183 * (or a ilb_cpu acting on its behalf where given_cpu is
7184 * nohz-idle), we now have balance_cpu in a position to move
7185 * load to given_cpu. In rare situations, this may cause
7186 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7187 * _independently_ and at _same_ time to move some load to
7188 * given_cpu) causing exceess load to be moved to given_cpu.
7189 * This however should not happen so much in practice and
7190 * moreover subsequent load balance cycles should correct the
7191 * excess load moved.
7193 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7195 /* Prevent to re-select dst_cpu via env's cpus */
7196 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7198 env.dst_rq = cpu_rq(env.new_dst_cpu);
7199 env.dst_cpu = env.new_dst_cpu;
7200 env.flags &= ~LBF_DST_PINNED;
7201 env.loop = 0;
7202 env.loop_break = sched_nr_migrate_break;
7205 * Go back to "more_balance" rather than "redo" since we
7206 * need to continue with same src_cpu.
7208 goto more_balance;
7212 * We failed to reach balance because of affinity.
7214 if (sd_parent) {
7215 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7217 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7218 *group_imbalance = 1;
7221 /* All tasks on this runqueue were pinned by CPU affinity */
7222 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7223 cpumask_clear_cpu(cpu_of(busiest), cpus);
7224 if (!cpumask_empty(cpus)) {
7225 env.loop = 0;
7226 env.loop_break = sched_nr_migrate_break;
7227 goto redo;
7229 goto out_all_pinned;
7233 if (!ld_moved) {
7234 schedstat_inc(sd, lb_failed[idle]);
7236 * Increment the failure counter only on periodic balance.
7237 * We do not want newidle balance, which can be very
7238 * frequent, pollute the failure counter causing
7239 * excessive cache_hot migrations and active balances.
7241 if (idle != CPU_NEWLY_IDLE)
7242 sd->nr_balance_failed++;
7244 if (need_active_balance(&env)) {
7245 raw_spin_lock_irqsave(&busiest->lock, flags);
7247 /* don't kick the active_load_balance_cpu_stop,
7248 * if the curr task on busiest cpu can't be
7249 * moved to this_cpu
7251 if (!cpumask_test_cpu(this_cpu,
7252 tsk_cpus_allowed(busiest->curr))) {
7253 raw_spin_unlock_irqrestore(&busiest->lock,
7254 flags);
7255 env.flags |= LBF_ALL_PINNED;
7256 goto out_one_pinned;
7260 * ->active_balance synchronizes accesses to
7261 * ->active_balance_work. Once set, it's cleared
7262 * only after active load balance is finished.
7264 if (!busiest->active_balance) {
7265 busiest->active_balance = 1;
7266 busiest->push_cpu = this_cpu;
7267 active_balance = 1;
7269 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7271 if (active_balance) {
7272 stop_one_cpu_nowait(cpu_of(busiest),
7273 active_load_balance_cpu_stop, busiest,
7274 &busiest->active_balance_work);
7278 * We've kicked active balancing, reset the failure
7279 * counter.
7281 sd->nr_balance_failed = sd->cache_nice_tries+1;
7283 } else
7284 sd->nr_balance_failed = 0;
7286 if (likely(!active_balance)) {
7287 /* We were unbalanced, so reset the balancing interval */
7288 sd->balance_interval = sd->min_interval;
7289 } else {
7291 * If we've begun active balancing, start to back off. This
7292 * case may not be covered by the all_pinned logic if there
7293 * is only 1 task on the busy runqueue (because we don't call
7294 * detach_tasks).
7296 if (sd->balance_interval < sd->max_interval)
7297 sd->balance_interval *= 2;
7300 goto out;
7302 out_balanced:
7304 * We reach balance although we may have faced some affinity
7305 * constraints. Clear the imbalance flag if it was set.
7307 if (sd_parent) {
7308 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7310 if (*group_imbalance)
7311 *group_imbalance = 0;
7314 out_all_pinned:
7316 * We reach balance because all tasks are pinned at this level so
7317 * we can't migrate them. Let the imbalance flag set so parent level
7318 * can try to migrate them.
7320 schedstat_inc(sd, lb_balanced[idle]);
7322 sd->nr_balance_failed = 0;
7324 out_one_pinned:
7325 /* tune up the balancing interval */
7326 if (((env.flags & LBF_ALL_PINNED) &&
7327 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7328 (sd->balance_interval < sd->max_interval))
7329 sd->balance_interval *= 2;
7331 ld_moved = 0;
7332 out:
7333 return ld_moved;
7336 static inline unsigned long
7337 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7339 unsigned long interval = sd->balance_interval;
7341 if (cpu_busy)
7342 interval *= sd->busy_factor;
7344 /* scale ms to jiffies */
7345 interval = msecs_to_jiffies(interval);
7346 interval = clamp(interval, 1UL, max_load_balance_interval);
7348 return interval;
7351 static inline void
7352 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7354 unsigned long interval, next;
7356 interval = get_sd_balance_interval(sd, cpu_busy);
7357 next = sd->last_balance + interval;
7359 if (time_after(*next_balance, next))
7360 *next_balance = next;
7364 * idle_balance is called by schedule() if this_cpu is about to become
7365 * idle. Attempts to pull tasks from other CPUs.
7367 static int idle_balance(struct rq *this_rq)
7369 unsigned long next_balance = jiffies + HZ;
7370 int this_cpu = this_rq->cpu;
7371 struct sched_domain *sd;
7372 int pulled_task = 0;
7373 u64 curr_cost = 0;
7376 * We must set idle_stamp _before_ calling idle_balance(), such that we
7377 * measure the duration of idle_balance() as idle time.
7379 this_rq->idle_stamp = rq_clock(this_rq);
7381 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7382 !this_rq->rd->overload) {
7383 rcu_read_lock();
7384 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7385 if (sd)
7386 update_next_balance(sd, 0, &next_balance);
7387 rcu_read_unlock();
7389 goto out;
7392 raw_spin_unlock(&this_rq->lock);
7394 update_blocked_averages(this_cpu);
7395 rcu_read_lock();
7396 for_each_domain(this_cpu, sd) {
7397 int continue_balancing = 1;
7398 u64 t0, domain_cost;
7400 if (!(sd->flags & SD_LOAD_BALANCE))
7401 continue;
7403 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7404 update_next_balance(sd, 0, &next_balance);
7405 break;
7408 if (sd->flags & SD_BALANCE_NEWIDLE) {
7409 t0 = sched_clock_cpu(this_cpu);
7411 pulled_task = load_balance(this_cpu, this_rq,
7412 sd, CPU_NEWLY_IDLE,
7413 &continue_balancing);
7415 domain_cost = sched_clock_cpu(this_cpu) - t0;
7416 if (domain_cost > sd->max_newidle_lb_cost)
7417 sd->max_newidle_lb_cost = domain_cost;
7419 curr_cost += domain_cost;
7422 update_next_balance(sd, 0, &next_balance);
7425 * Stop searching for tasks to pull if there are
7426 * now runnable tasks on this rq.
7428 if (pulled_task || this_rq->nr_running > 0)
7429 break;
7431 rcu_read_unlock();
7433 raw_spin_lock(&this_rq->lock);
7435 if (curr_cost > this_rq->max_idle_balance_cost)
7436 this_rq->max_idle_balance_cost = curr_cost;
7439 * While browsing the domains, we released the rq lock, a task could
7440 * have been enqueued in the meantime. Since we're not going idle,
7441 * pretend we pulled a task.
7443 if (this_rq->cfs.h_nr_running && !pulled_task)
7444 pulled_task = 1;
7446 out:
7447 /* Move the next balance forward */
7448 if (time_after(this_rq->next_balance, next_balance))
7449 this_rq->next_balance = next_balance;
7451 /* Is there a task of a high priority class? */
7452 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7453 pulled_task = -1;
7455 if (pulled_task)
7456 this_rq->idle_stamp = 0;
7458 return pulled_task;
7462 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7463 * running tasks off the busiest CPU onto idle CPUs. It requires at
7464 * least 1 task to be running on each physical CPU where possible, and
7465 * avoids physical / logical imbalances.
7467 static int active_load_balance_cpu_stop(void *data)
7469 struct rq *busiest_rq = data;
7470 int busiest_cpu = cpu_of(busiest_rq);
7471 int target_cpu = busiest_rq->push_cpu;
7472 struct rq *target_rq = cpu_rq(target_cpu);
7473 struct sched_domain *sd;
7474 struct task_struct *p = NULL;
7476 raw_spin_lock_irq(&busiest_rq->lock);
7478 /* make sure the requested cpu hasn't gone down in the meantime */
7479 if (unlikely(busiest_cpu != smp_processor_id() ||
7480 !busiest_rq->active_balance))
7481 goto out_unlock;
7483 /* Is there any task to move? */
7484 if (busiest_rq->nr_running <= 1)
7485 goto out_unlock;
7488 * This condition is "impossible", if it occurs
7489 * we need to fix it. Originally reported by
7490 * Bjorn Helgaas on a 128-cpu setup.
7492 BUG_ON(busiest_rq == target_rq);
7494 /* Search for an sd spanning us and the target CPU. */
7495 rcu_read_lock();
7496 for_each_domain(target_cpu, sd) {
7497 if ((sd->flags & SD_LOAD_BALANCE) &&
7498 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7499 break;
7502 if (likely(sd)) {
7503 struct lb_env env = {
7504 .sd = sd,
7505 .dst_cpu = target_cpu,
7506 .dst_rq = target_rq,
7507 .src_cpu = busiest_rq->cpu,
7508 .src_rq = busiest_rq,
7509 .idle = CPU_IDLE,
7512 schedstat_inc(sd, alb_count);
7514 p = detach_one_task(&env);
7515 if (p)
7516 schedstat_inc(sd, alb_pushed);
7517 else
7518 schedstat_inc(sd, alb_failed);
7520 rcu_read_unlock();
7521 out_unlock:
7522 busiest_rq->active_balance = 0;
7523 raw_spin_unlock(&busiest_rq->lock);
7525 if (p)
7526 attach_one_task(target_rq, p);
7528 local_irq_enable();
7530 return 0;
7533 static inline int on_null_domain(struct rq *rq)
7535 return unlikely(!rcu_dereference_sched(rq->sd));
7538 #ifdef CONFIG_NO_HZ_COMMON
7540 * idle load balancing details
7541 * - When one of the busy CPUs notice that there may be an idle rebalancing
7542 * needed, they will kick the idle load balancer, which then does idle
7543 * load balancing for all the idle CPUs.
7545 static struct {
7546 cpumask_var_t idle_cpus_mask;
7547 atomic_t nr_cpus;
7548 unsigned long next_balance; /* in jiffy units */
7549 } nohz ____cacheline_aligned;
7551 static inline int find_new_ilb(void)
7553 int ilb = cpumask_first(nohz.idle_cpus_mask);
7555 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7556 return ilb;
7558 return nr_cpu_ids;
7562 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7563 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7564 * CPU (if there is one).
7566 static void nohz_balancer_kick(void)
7568 int ilb_cpu;
7570 nohz.next_balance++;
7572 ilb_cpu = find_new_ilb();
7574 if (ilb_cpu >= nr_cpu_ids)
7575 return;
7577 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7578 return;
7580 * Use smp_send_reschedule() instead of resched_cpu().
7581 * This way we generate a sched IPI on the target cpu which
7582 * is idle. And the softirq performing nohz idle load balance
7583 * will be run before returning from the IPI.
7585 smp_send_reschedule(ilb_cpu);
7586 return;
7589 static inline void nohz_balance_exit_idle(int cpu)
7591 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7593 * Completely isolated CPUs don't ever set, so we must test.
7595 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7596 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7597 atomic_dec(&nohz.nr_cpus);
7599 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7603 static inline void set_cpu_sd_state_busy(void)
7605 struct sched_domain *sd;
7606 int cpu = smp_processor_id();
7608 rcu_read_lock();
7609 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7611 if (!sd || !sd->nohz_idle)
7612 goto unlock;
7613 sd->nohz_idle = 0;
7615 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7616 unlock:
7617 rcu_read_unlock();
7620 void set_cpu_sd_state_idle(void)
7622 struct sched_domain *sd;
7623 int cpu = smp_processor_id();
7625 rcu_read_lock();
7626 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7628 if (!sd || sd->nohz_idle)
7629 goto unlock;
7630 sd->nohz_idle = 1;
7632 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7633 unlock:
7634 rcu_read_unlock();
7638 * This routine will record that the cpu is going idle with tick stopped.
7639 * This info will be used in performing idle load balancing in the future.
7641 void nohz_balance_enter_idle(int cpu)
7644 * If this cpu is going down, then nothing needs to be done.
7646 if (!cpu_active(cpu))
7647 return;
7649 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7650 return;
7653 * If we're a completely isolated CPU, we don't play.
7655 if (on_null_domain(cpu_rq(cpu)))
7656 return;
7658 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7659 atomic_inc(&nohz.nr_cpus);
7660 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7663 static int sched_ilb_notifier(struct notifier_block *nfb,
7664 unsigned long action, void *hcpu)
7666 switch (action & ~CPU_TASKS_FROZEN) {
7667 case CPU_DYING:
7668 nohz_balance_exit_idle(smp_processor_id());
7669 return NOTIFY_OK;
7670 default:
7671 return NOTIFY_DONE;
7674 #endif
7676 static DEFINE_SPINLOCK(balancing);
7679 * Scale the max load_balance interval with the number of CPUs in the system.
7680 * This trades load-balance latency on larger machines for less cross talk.
7682 void update_max_interval(void)
7684 max_load_balance_interval = HZ*num_online_cpus()/10;
7688 * It checks each scheduling domain to see if it is due to be balanced,
7689 * and initiates a balancing operation if so.
7691 * Balancing parameters are set up in init_sched_domains.
7693 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7695 int continue_balancing = 1;
7696 int cpu = rq->cpu;
7697 unsigned long interval;
7698 struct sched_domain *sd;
7699 /* Earliest time when we have to do rebalance again */
7700 unsigned long next_balance = jiffies + 60*HZ;
7701 int update_next_balance = 0;
7702 int need_serialize, need_decay = 0;
7703 u64 max_cost = 0;
7705 update_blocked_averages(cpu);
7707 rcu_read_lock();
7708 for_each_domain(cpu, sd) {
7710 * Decay the newidle max times here because this is a regular
7711 * visit to all the domains. Decay ~1% per second.
7713 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7714 sd->max_newidle_lb_cost =
7715 (sd->max_newidle_lb_cost * 253) / 256;
7716 sd->next_decay_max_lb_cost = jiffies + HZ;
7717 need_decay = 1;
7719 max_cost += sd->max_newidle_lb_cost;
7721 if (!(sd->flags & SD_LOAD_BALANCE))
7722 continue;
7725 * Stop the load balance at this level. There is another
7726 * CPU in our sched group which is doing load balancing more
7727 * actively.
7729 if (!continue_balancing) {
7730 if (need_decay)
7731 continue;
7732 break;
7735 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7737 need_serialize = sd->flags & SD_SERIALIZE;
7738 if (need_serialize) {
7739 if (!spin_trylock(&balancing))
7740 goto out;
7743 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7744 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7746 * The LBF_DST_PINNED logic could have changed
7747 * env->dst_cpu, so we can't know our idle
7748 * state even if we migrated tasks. Update it.
7750 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7752 sd->last_balance = jiffies;
7753 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7755 if (need_serialize)
7756 spin_unlock(&balancing);
7757 out:
7758 if (time_after(next_balance, sd->last_balance + interval)) {
7759 next_balance = sd->last_balance + interval;
7760 update_next_balance = 1;
7763 if (need_decay) {
7765 * Ensure the rq-wide value also decays but keep it at a
7766 * reasonable floor to avoid funnies with rq->avg_idle.
7768 rq->max_idle_balance_cost =
7769 max((u64)sysctl_sched_migration_cost, max_cost);
7771 rcu_read_unlock();
7774 * next_balance will be updated only when there is a need.
7775 * When the cpu is attached to null domain for ex, it will not be
7776 * updated.
7778 if (likely(update_next_balance)) {
7779 rq->next_balance = next_balance;
7781 #ifdef CONFIG_NO_HZ_COMMON
7783 * If this CPU has been elected to perform the nohz idle
7784 * balance. Other idle CPUs have already rebalanced with
7785 * nohz_idle_balance() and nohz.next_balance has been
7786 * updated accordingly. This CPU is now running the idle load
7787 * balance for itself and we need to update the
7788 * nohz.next_balance accordingly.
7790 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7791 nohz.next_balance = rq->next_balance;
7792 #endif
7796 #ifdef CONFIG_NO_HZ_COMMON
7798 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7799 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7801 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7803 int this_cpu = this_rq->cpu;
7804 struct rq *rq;
7805 int balance_cpu;
7806 /* Earliest time when we have to do rebalance again */
7807 unsigned long next_balance = jiffies + 60*HZ;
7808 int update_next_balance = 0;
7810 if (idle != CPU_IDLE ||
7811 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7812 goto end;
7814 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7815 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7816 continue;
7819 * If this cpu gets work to do, stop the load balancing
7820 * work being done for other cpus. Next load
7821 * balancing owner will pick it up.
7823 if (need_resched())
7824 break;
7826 rq = cpu_rq(balance_cpu);
7829 * If time for next balance is due,
7830 * do the balance.
7832 if (time_after_eq(jiffies, rq->next_balance)) {
7833 raw_spin_lock_irq(&rq->lock);
7834 update_rq_clock(rq);
7835 update_idle_cpu_load(rq);
7836 raw_spin_unlock_irq(&rq->lock);
7837 rebalance_domains(rq, CPU_IDLE);
7840 if (time_after(next_balance, rq->next_balance)) {
7841 next_balance = rq->next_balance;
7842 update_next_balance = 1;
7847 * next_balance will be updated only when there is a need.
7848 * When the CPU is attached to null domain for ex, it will not be
7849 * updated.
7851 if (likely(update_next_balance))
7852 nohz.next_balance = next_balance;
7853 end:
7854 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7858 * Current heuristic for kicking the idle load balancer in the presence
7859 * of an idle cpu in the system.
7860 * - This rq has more than one task.
7861 * - This rq has at least one CFS task and the capacity of the CPU is
7862 * significantly reduced because of RT tasks or IRQs.
7863 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7864 * multiple busy cpu.
7865 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7866 * domain span are idle.
7868 static inline bool nohz_kick_needed(struct rq *rq)
7870 unsigned long now = jiffies;
7871 struct sched_domain *sd;
7872 struct sched_group_capacity *sgc;
7873 int nr_busy, cpu = rq->cpu;
7874 bool kick = false;
7876 if (unlikely(rq->idle_balance))
7877 return false;
7880 * We may be recently in ticked or tickless idle mode. At the first
7881 * busy tick after returning from idle, we will update the busy stats.
7883 set_cpu_sd_state_busy();
7884 nohz_balance_exit_idle(cpu);
7887 * None are in tickless mode and hence no need for NOHZ idle load
7888 * balancing.
7890 if (likely(!atomic_read(&nohz.nr_cpus)))
7891 return false;
7893 if (time_before(now, nohz.next_balance))
7894 return false;
7896 if (rq->nr_running >= 2)
7897 return true;
7899 rcu_read_lock();
7900 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7901 if (sd) {
7902 sgc = sd->groups->sgc;
7903 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7905 if (nr_busy > 1) {
7906 kick = true;
7907 goto unlock;
7912 sd = rcu_dereference(rq->sd);
7913 if (sd) {
7914 if ((rq->cfs.h_nr_running >= 1) &&
7915 check_cpu_capacity(rq, sd)) {
7916 kick = true;
7917 goto unlock;
7921 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7922 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7923 sched_domain_span(sd)) < cpu)) {
7924 kick = true;
7925 goto unlock;
7928 unlock:
7929 rcu_read_unlock();
7930 return kick;
7932 #else
7933 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7934 #endif
7937 * run_rebalance_domains is triggered when needed from the scheduler tick.
7938 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7940 static void run_rebalance_domains(struct softirq_action *h)
7942 struct rq *this_rq = this_rq();
7943 enum cpu_idle_type idle = this_rq->idle_balance ?
7944 CPU_IDLE : CPU_NOT_IDLE;
7947 * If this cpu has a pending nohz_balance_kick, then do the
7948 * balancing on behalf of the other idle cpus whose ticks are
7949 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7950 * give the idle cpus a chance to load balance. Else we may
7951 * load balance only within the local sched_domain hierarchy
7952 * and abort nohz_idle_balance altogether if we pull some load.
7954 nohz_idle_balance(this_rq, idle);
7955 rebalance_domains(this_rq, idle);
7959 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7961 void trigger_load_balance(struct rq *rq)
7963 /* Don't need to rebalance while attached to NULL domain */
7964 if (unlikely(on_null_domain(rq)))
7965 return;
7967 if (time_after_eq(jiffies, rq->next_balance))
7968 raise_softirq(SCHED_SOFTIRQ);
7969 #ifdef CONFIG_NO_HZ_COMMON
7970 if (nohz_kick_needed(rq))
7971 nohz_balancer_kick();
7972 #endif
7975 static void rq_online_fair(struct rq *rq)
7977 update_sysctl();
7979 update_runtime_enabled(rq);
7982 static void rq_offline_fair(struct rq *rq)
7984 update_sysctl();
7986 /* Ensure any throttled groups are reachable by pick_next_task */
7987 unthrottle_offline_cfs_rqs(rq);
7990 #endif /* CONFIG_SMP */
7993 * scheduler tick hitting a task of our scheduling class:
7995 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7997 struct cfs_rq *cfs_rq;
7998 struct sched_entity *se = &curr->se;
8000 for_each_sched_entity(se) {
8001 cfs_rq = cfs_rq_of(se);
8002 entity_tick(cfs_rq, se, queued);
8005 if (static_branch_unlikely(&sched_numa_balancing))
8006 task_tick_numa(rq, curr);
8010 * called on fork with the child task as argument from the parent's context
8011 * - child not yet on the tasklist
8012 * - preemption disabled
8014 static void task_fork_fair(struct task_struct *p)
8016 struct cfs_rq *cfs_rq;
8017 struct sched_entity *se = &p->se, *curr;
8018 int this_cpu = smp_processor_id();
8019 struct rq *rq = this_rq();
8020 unsigned long flags;
8022 raw_spin_lock_irqsave(&rq->lock, flags);
8024 update_rq_clock(rq);
8026 cfs_rq = task_cfs_rq(current);
8027 curr = cfs_rq->curr;
8030 * Not only the cpu but also the task_group of the parent might have
8031 * been changed after parent->se.parent,cfs_rq were copied to
8032 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8033 * of child point to valid ones.
8035 rcu_read_lock();
8036 __set_task_cpu(p, this_cpu);
8037 rcu_read_unlock();
8039 update_curr(cfs_rq);
8041 if (curr)
8042 se->vruntime = curr->vruntime;
8043 place_entity(cfs_rq, se, 1);
8045 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8047 * Upon rescheduling, sched_class::put_prev_task() will place
8048 * 'current' within the tree based on its new key value.
8050 swap(curr->vruntime, se->vruntime);
8051 resched_curr(rq);
8054 se->vruntime -= cfs_rq->min_vruntime;
8056 raw_spin_unlock_irqrestore(&rq->lock, flags);
8060 * Priority of the task has changed. Check to see if we preempt
8061 * the current task.
8063 static void
8064 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8066 if (!task_on_rq_queued(p))
8067 return;
8070 * Reschedule if we are currently running on this runqueue and
8071 * our priority decreased, or if we are not currently running on
8072 * this runqueue and our priority is higher than the current's
8074 if (rq->curr == p) {
8075 if (p->prio > oldprio)
8076 resched_curr(rq);
8077 } else
8078 check_preempt_curr(rq, p, 0);
8081 static inline bool vruntime_normalized(struct task_struct *p)
8083 struct sched_entity *se = &p->se;
8086 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8087 * the dequeue_entity(.flags=0) will already have normalized the
8088 * vruntime.
8090 if (p->on_rq)
8091 return true;
8094 * When !on_rq, vruntime of the task has usually NOT been normalized.
8095 * But there are some cases where it has already been normalized:
8097 * - A forked child which is waiting for being woken up by
8098 * wake_up_new_task().
8099 * - A task which has been woken up by try_to_wake_up() and
8100 * waiting for actually being woken up by sched_ttwu_pending().
8102 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8103 return true;
8105 return false;
8108 static void detach_task_cfs_rq(struct task_struct *p)
8110 struct sched_entity *se = &p->se;
8111 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8113 if (!vruntime_normalized(p)) {
8115 * Fix up our vruntime so that the current sleep doesn't
8116 * cause 'unlimited' sleep bonus.
8118 place_entity(cfs_rq, se, 0);
8119 se->vruntime -= cfs_rq->min_vruntime;
8122 /* Catch up with the cfs_rq and remove our load when we leave */
8123 detach_entity_load_avg(cfs_rq, se);
8126 static void attach_task_cfs_rq(struct task_struct *p)
8128 struct sched_entity *se = &p->se;
8129 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8131 #ifdef CONFIG_FAIR_GROUP_SCHED
8133 * Since the real-depth could have been changed (only FAIR
8134 * class maintain depth value), reset depth properly.
8136 se->depth = se->parent ? se->parent->depth + 1 : 0;
8137 #endif
8139 /* Synchronize task with its cfs_rq */
8140 attach_entity_load_avg(cfs_rq, se);
8142 if (!vruntime_normalized(p))
8143 se->vruntime += cfs_rq->min_vruntime;
8146 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8148 detach_task_cfs_rq(p);
8151 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8153 attach_task_cfs_rq(p);
8155 if (task_on_rq_queued(p)) {
8157 * We were most likely switched from sched_rt, so
8158 * kick off the schedule if running, otherwise just see
8159 * if we can still preempt the current task.
8161 if (rq->curr == p)
8162 resched_curr(rq);
8163 else
8164 check_preempt_curr(rq, p, 0);
8168 /* Account for a task changing its policy or group.
8170 * This routine is mostly called to set cfs_rq->curr field when a task
8171 * migrates between groups/classes.
8173 static void set_curr_task_fair(struct rq *rq)
8175 struct sched_entity *se = &rq->curr->se;
8177 for_each_sched_entity(se) {
8178 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8180 set_next_entity(cfs_rq, se);
8181 /* ensure bandwidth has been allocated on our new cfs_rq */
8182 account_cfs_rq_runtime(cfs_rq, 0);
8186 void init_cfs_rq(struct cfs_rq *cfs_rq)
8188 cfs_rq->tasks_timeline = RB_ROOT;
8189 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8190 #ifndef CONFIG_64BIT
8191 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8192 #endif
8193 #ifdef CONFIG_SMP
8194 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8195 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8196 #endif
8199 #ifdef CONFIG_FAIR_GROUP_SCHED
8200 static void task_move_group_fair(struct task_struct *p)
8202 detach_task_cfs_rq(p);
8203 set_task_rq(p, task_cpu(p));
8205 #ifdef CONFIG_SMP
8206 /* Tell se's cfs_rq has been changed -- migrated */
8207 p->se.avg.last_update_time = 0;
8208 #endif
8209 attach_task_cfs_rq(p);
8212 void free_fair_sched_group(struct task_group *tg)
8214 int i;
8216 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8218 for_each_possible_cpu(i) {
8219 if (tg->cfs_rq)
8220 kfree(tg->cfs_rq[i]);
8221 if (tg->se) {
8222 if (tg->se[i])
8223 remove_entity_load_avg(tg->se[i]);
8224 kfree(tg->se[i]);
8228 kfree(tg->cfs_rq);
8229 kfree(tg->se);
8232 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8234 struct cfs_rq *cfs_rq;
8235 struct sched_entity *se;
8236 int i;
8238 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8239 if (!tg->cfs_rq)
8240 goto err;
8241 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8242 if (!tg->se)
8243 goto err;
8245 tg->shares = NICE_0_LOAD;
8247 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8249 for_each_possible_cpu(i) {
8250 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8251 GFP_KERNEL, cpu_to_node(i));
8252 if (!cfs_rq)
8253 goto err;
8255 se = kzalloc_node(sizeof(struct sched_entity),
8256 GFP_KERNEL, cpu_to_node(i));
8257 if (!se)
8258 goto err_free_rq;
8260 init_cfs_rq(cfs_rq);
8261 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8262 init_entity_runnable_average(se);
8265 return 1;
8267 err_free_rq:
8268 kfree(cfs_rq);
8269 err:
8270 return 0;
8273 void unregister_fair_sched_group(struct task_group *tg, int cpu)
8275 struct rq *rq = cpu_rq(cpu);
8276 unsigned long flags;
8279 * Only empty task groups can be destroyed; so we can speculatively
8280 * check on_list without danger of it being re-added.
8282 if (!tg->cfs_rq[cpu]->on_list)
8283 return;
8285 raw_spin_lock_irqsave(&rq->lock, flags);
8286 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8287 raw_spin_unlock_irqrestore(&rq->lock, flags);
8290 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8291 struct sched_entity *se, int cpu,
8292 struct sched_entity *parent)
8294 struct rq *rq = cpu_rq(cpu);
8296 cfs_rq->tg = tg;
8297 cfs_rq->rq = rq;
8298 init_cfs_rq_runtime(cfs_rq);
8300 tg->cfs_rq[cpu] = cfs_rq;
8301 tg->se[cpu] = se;
8303 /* se could be NULL for root_task_group */
8304 if (!se)
8305 return;
8307 if (!parent) {
8308 se->cfs_rq = &rq->cfs;
8309 se->depth = 0;
8310 } else {
8311 se->cfs_rq = parent->my_q;
8312 se->depth = parent->depth + 1;
8315 se->my_q = cfs_rq;
8316 /* guarantee group entities always have weight */
8317 update_load_set(&se->load, NICE_0_LOAD);
8318 se->parent = parent;
8321 static DEFINE_MUTEX(shares_mutex);
8323 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8325 int i;
8326 unsigned long flags;
8329 * We can't change the weight of the root cgroup.
8331 if (!tg->se[0])
8332 return -EINVAL;
8334 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8336 mutex_lock(&shares_mutex);
8337 if (tg->shares == shares)
8338 goto done;
8340 tg->shares = shares;
8341 for_each_possible_cpu(i) {
8342 struct rq *rq = cpu_rq(i);
8343 struct sched_entity *se;
8345 se = tg->se[i];
8346 /* Propagate contribution to hierarchy */
8347 raw_spin_lock_irqsave(&rq->lock, flags);
8349 /* Possible calls to update_curr() need rq clock */
8350 update_rq_clock(rq);
8351 for_each_sched_entity(se)
8352 update_cfs_shares(group_cfs_rq(se));
8353 raw_spin_unlock_irqrestore(&rq->lock, flags);
8356 done:
8357 mutex_unlock(&shares_mutex);
8358 return 0;
8360 #else /* CONFIG_FAIR_GROUP_SCHED */
8362 void free_fair_sched_group(struct task_group *tg) { }
8364 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8366 return 1;
8369 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8371 #endif /* CONFIG_FAIR_GROUP_SCHED */
8374 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8376 struct sched_entity *se = &task->se;
8377 unsigned int rr_interval = 0;
8380 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8381 * idle runqueue:
8383 if (rq->cfs.load.weight)
8384 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8386 return rr_interval;
8390 * All the scheduling class methods:
8392 const struct sched_class fair_sched_class = {
8393 .next = &idle_sched_class,
8394 .enqueue_task = enqueue_task_fair,
8395 .dequeue_task = dequeue_task_fair,
8396 .yield_task = yield_task_fair,
8397 .yield_to_task = yield_to_task_fair,
8399 .check_preempt_curr = check_preempt_wakeup,
8401 .pick_next_task = pick_next_task_fair,
8402 .put_prev_task = put_prev_task_fair,
8404 #ifdef CONFIG_SMP
8405 .select_task_rq = select_task_rq_fair,
8406 .migrate_task_rq = migrate_task_rq_fair,
8408 .rq_online = rq_online_fair,
8409 .rq_offline = rq_offline_fair,
8411 .task_waking = task_waking_fair,
8412 .task_dead = task_dead_fair,
8413 .set_cpus_allowed = set_cpus_allowed_common,
8414 #endif
8416 .set_curr_task = set_curr_task_fair,
8417 .task_tick = task_tick_fair,
8418 .task_fork = task_fork_fair,
8420 .prio_changed = prio_changed_fair,
8421 .switched_from = switched_from_fair,
8422 .switched_to = switched_to_fair,
8424 .get_rr_interval = get_rr_interval_fair,
8426 .update_curr = update_curr_fair,
8428 #ifdef CONFIG_FAIR_GROUP_SCHED
8429 .task_move_group = task_move_group_fair,
8430 #endif
8433 #ifdef CONFIG_SCHED_DEBUG
8434 void print_cfs_stats(struct seq_file *m, int cpu)
8436 struct cfs_rq *cfs_rq;
8438 rcu_read_lock();
8439 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8440 print_cfs_rq(m, cpu, cfs_rq);
8441 rcu_read_unlock();
8444 #ifdef CONFIG_NUMA_BALANCING
8445 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8447 int node;
8448 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8450 for_each_online_node(node) {
8451 if (p->numa_faults) {
8452 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8453 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8455 if (p->numa_group) {
8456 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8457 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8459 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8462 #endif /* CONFIG_NUMA_BALANCING */
8463 #endif /* CONFIG_SCHED_DEBUG */
8465 __init void init_sched_fair_class(void)
8467 #ifdef CONFIG_SMP
8468 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8470 #ifdef CONFIG_NO_HZ_COMMON
8471 nohz.next_balance = jiffies;
8472 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8473 cpu_notifier(sched_ilb_notifier, 0);
8474 #endif
8475 #endif /* SMP */