Linux 2.6.17.3
[linux/fpc-iii.git] / drivers / char / epca.c
blob9cad8501d62c9fca6a93656c204bb1dea1e09a15
1 /*
4 Copyright (C) 1996 Digi International.
6 For technical support please email digiLinux@dgii.com or
7 call Digi tech support at (612) 912-3456
9 ** This driver is no longer supported by Digi **
11 Much of this design and code came from epca.c which was
12 copyright (C) 1994, 1995 Troy De Jongh, and subsquently
13 modified by David Nugent, Christoph Lameter, Mike McLagan.
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or
18 (at your option) any later version.
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 --------------------------------------------------------------------------- */
30 /* See README.epca for change history --DAT*/
33 #include <linux/config.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/init.h>
38 #include <linux/serial.h>
39 #include <linux/delay.h>
40 #include <linux/ctype.h>
41 #include <linux/tty.h>
42 #include <linux/tty_flip.h>
43 #include <linux/slab.h>
44 #include <linux/ioport.h>
45 #include <linux/interrupt.h>
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include "digiPCI.h"
53 #include "digi1.h"
54 #include "digiFep1.h"
55 #include "epca.h"
56 #include "epcaconfig.h"
58 /* ---------------------- Begin defines ------------------------ */
60 #define VERSION "1.3.0.1-LK2.6"
62 /* This major needs to be submitted to Linux to join the majors list */
64 #define DIGIINFOMAJOR 35 /* For Digi specific ioctl */
67 #define MAXCARDS 7
68 #define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg)
70 #define PFX "epca: "
72 /* ----------------- Begin global definitions ------------------- */
74 static int nbdevs, num_cards, liloconfig;
75 static int digi_poller_inhibited = 1 ;
77 static int setup_error_code;
78 static int invalid_lilo_config;
80 /* The ISA boards do window flipping into the same spaces so its only sane
81 with a single lock. It's still pretty efficient */
83 static spinlock_t epca_lock = SPIN_LOCK_UNLOCKED;
85 /* -----------------------------------------------------------------------
86 MAXBOARDS is typically 12, but ISA and EISA cards are restricted to
87 7 below.
88 --------------------------------------------------------------------------*/
89 static struct board_info boards[MAXBOARDS];
92 /* ------------- Begin structures used for driver registeration ---------- */
94 static struct tty_driver *pc_driver;
95 static struct tty_driver *pc_info;
97 /* ------------------ Begin Digi specific structures -------------------- */
99 /* ------------------------------------------------------------------------
100 digi_channels represents an array of structures that keep track of
101 each channel of the Digi product. Information such as transmit and
102 receive pointers, termio data, and signal definitions (DTR, CTS, etc ...)
103 are stored here. This structure is NOT used to overlay the cards
104 physical channel structure.
105 -------------------------------------------------------------------------- */
107 static struct channel digi_channels[MAX_ALLOC];
109 /* ------------------------------------------------------------------------
110 card_ptr is an array used to hold the address of the
111 first channel structure of each card. This array will hold
112 the addresses of various channels located in digi_channels.
113 -------------------------------------------------------------------------- */
114 static struct channel *card_ptr[MAXCARDS];
116 static struct timer_list epca_timer;
118 /* ---------------------- Begin function prototypes --------------------- */
120 /* ----------------------------------------------------------------------
121 Begin generic memory functions. These functions will be alias
122 (point at) more specific functions dependent on the board being
123 configured.
124 ----------------------------------------------------------------------- */
126 static void memwinon(struct board_info *b, unsigned int win);
127 static void memwinoff(struct board_info *b, unsigned int win);
128 static void globalwinon(struct channel *ch);
129 static void rxwinon(struct channel *ch);
130 static void txwinon(struct channel *ch);
131 static void memoff(struct channel *ch);
132 static void assertgwinon(struct channel *ch);
133 static void assertmemoff(struct channel *ch);
135 /* ---- Begin more 'specific' memory functions for cx_like products --- */
137 static void pcxem_memwinon(struct board_info *b, unsigned int win);
138 static void pcxem_memwinoff(struct board_info *b, unsigned int win);
139 static void pcxem_globalwinon(struct channel *ch);
140 static void pcxem_rxwinon(struct channel *ch);
141 static void pcxem_txwinon(struct channel *ch);
142 static void pcxem_memoff(struct channel *ch);
144 /* ------ Begin more 'specific' memory functions for the pcxe ------- */
146 static void pcxe_memwinon(struct board_info *b, unsigned int win);
147 static void pcxe_memwinoff(struct board_info *b, unsigned int win);
148 static void pcxe_globalwinon(struct channel *ch);
149 static void pcxe_rxwinon(struct channel *ch);
150 static void pcxe_txwinon(struct channel *ch);
151 static void pcxe_memoff(struct channel *ch);
153 /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */
154 /* Note : pc64xe and pcxi share the same windowing routines */
156 static void pcxi_memwinon(struct board_info *b, unsigned int win);
157 static void pcxi_memwinoff(struct board_info *b, unsigned int win);
158 static void pcxi_globalwinon(struct channel *ch);
159 static void pcxi_rxwinon(struct channel *ch);
160 static void pcxi_txwinon(struct channel *ch);
161 static void pcxi_memoff(struct channel *ch);
163 /* - Begin 'specific' do nothing memory functions needed for some cards - */
165 static void dummy_memwinon(struct board_info *b, unsigned int win);
166 static void dummy_memwinoff(struct board_info *b, unsigned int win);
167 static void dummy_globalwinon(struct channel *ch);
168 static void dummy_rxwinon(struct channel *ch);
169 static void dummy_txwinon(struct channel *ch);
170 static void dummy_memoff(struct channel *ch);
171 static void dummy_assertgwinon(struct channel *ch);
172 static void dummy_assertmemoff(struct channel *ch);
174 /* ------------------- Begin declare functions ----------------------- */
176 static struct channel *verifyChannel(struct tty_struct *);
177 static void pc_sched_event(struct channel *, int);
178 static void epca_error(int, char *);
179 static void pc_close(struct tty_struct *, struct file *);
180 static void shutdown(struct channel *);
181 static void pc_hangup(struct tty_struct *);
182 static void pc_put_char(struct tty_struct *, unsigned char);
183 static int pc_write_room(struct tty_struct *);
184 static int pc_chars_in_buffer(struct tty_struct *);
185 static void pc_flush_buffer(struct tty_struct *);
186 static void pc_flush_chars(struct tty_struct *);
187 static int block_til_ready(struct tty_struct *, struct file *,
188 struct channel *);
189 static int pc_open(struct tty_struct *, struct file *);
190 static void post_fep_init(unsigned int crd);
191 static void epcapoll(unsigned long);
192 static void doevent(int);
193 static void fepcmd(struct channel *, int, int, int, int, int);
194 static unsigned termios2digi_h(struct channel *ch, unsigned);
195 static unsigned termios2digi_i(struct channel *ch, unsigned);
196 static unsigned termios2digi_c(struct channel *ch, unsigned);
197 static void epcaparam(struct tty_struct *, struct channel *);
198 static void receive_data(struct channel *);
199 static int pc_ioctl(struct tty_struct *, struct file *,
200 unsigned int, unsigned long);
201 static int info_ioctl(struct tty_struct *, struct file *,
202 unsigned int, unsigned long);
203 static void pc_set_termios(struct tty_struct *, struct termios *);
204 static void do_softint(void *);
205 static void pc_stop(struct tty_struct *);
206 static void pc_start(struct tty_struct *);
207 static void pc_throttle(struct tty_struct * tty);
208 static void pc_unthrottle(struct tty_struct *tty);
209 static void digi_send_break(struct channel *ch, int msec);
210 static void setup_empty_event(struct tty_struct *tty, struct channel *ch);
211 void epca_setup(char *, int *);
213 static int get_termio(struct tty_struct *, struct termio __user *);
214 static int pc_write(struct tty_struct *, const unsigned char *, int);
215 static int pc_init(void);
216 static int init_PCI(void);
219 /* ------------------------------------------------------------------
220 Table of functions for each board to handle memory. Mantaining
221 parallelism is a *very* good idea here. The idea is for the
222 runtime code to blindly call these functions, not knowing/caring
223 about the underlying hardware. This stuff should contain no
224 conditionals; if more functionality is needed a different entry
225 should be established. These calls are the interface calls and
226 are the only functions that should be accessed. Anyone caught
227 making direct calls deserves what they get.
228 -------------------------------------------------------------------- */
230 static void memwinon(struct board_info *b, unsigned int win)
232 (b->memwinon)(b, win);
235 static void memwinoff(struct board_info *b, unsigned int win)
237 (b->memwinoff)(b, win);
240 static void globalwinon(struct channel *ch)
242 (ch->board->globalwinon)(ch);
245 static void rxwinon(struct channel *ch)
247 (ch->board->rxwinon)(ch);
250 static void txwinon(struct channel *ch)
252 (ch->board->txwinon)(ch);
255 static void memoff(struct channel *ch)
257 (ch->board->memoff)(ch);
259 static void assertgwinon(struct channel *ch)
261 (ch->board->assertgwinon)(ch);
264 static void assertmemoff(struct channel *ch)
266 (ch->board->assertmemoff)(ch);
269 /* ---------------------------------------------------------
270 PCXEM windowing is the same as that used in the PCXR
271 and CX series cards.
272 ------------------------------------------------------------ */
274 static void pcxem_memwinon(struct board_info *b, unsigned int win)
276 outb_p(FEPWIN|win, b->port + 1);
279 static void pcxem_memwinoff(struct board_info *b, unsigned int win)
281 outb_p(0, b->port + 1);
284 static void pcxem_globalwinon(struct channel *ch)
286 outb_p( FEPWIN, (int)ch->board->port + 1);
289 static void pcxem_rxwinon(struct channel *ch)
291 outb_p(ch->rxwin, (int)ch->board->port + 1);
294 static void pcxem_txwinon(struct channel *ch)
296 outb_p(ch->txwin, (int)ch->board->port + 1);
299 static void pcxem_memoff(struct channel *ch)
301 outb_p(0, (int)ch->board->port + 1);
304 /* ----------------- Begin pcxe memory window stuff ------------------ */
306 static void pcxe_memwinon(struct board_info *b, unsigned int win)
308 outb_p(FEPWIN | win, b->port + 1);
311 static void pcxe_memwinoff(struct board_info *b, unsigned int win)
313 outb_p(inb(b->port) & ~FEPMEM,
314 b->port + 1);
315 outb_p(0, b->port + 1);
318 static void pcxe_globalwinon(struct channel *ch)
320 outb_p( FEPWIN, (int)ch->board->port + 1);
323 static void pcxe_rxwinon(struct channel *ch)
325 outb_p(ch->rxwin, (int)ch->board->port + 1);
328 static void pcxe_txwinon(struct channel *ch)
330 outb_p(ch->txwin, (int)ch->board->port + 1);
333 static void pcxe_memoff(struct channel *ch)
335 outb_p(0, (int)ch->board->port);
336 outb_p(0, (int)ch->board->port + 1);
339 /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */
341 static void pcxi_memwinon(struct board_info *b, unsigned int win)
343 outb_p(inb(b->port) | FEPMEM, b->port);
346 static void pcxi_memwinoff(struct board_info *b, unsigned int win)
348 outb_p(inb(b->port) & ~FEPMEM, b->port);
351 static void pcxi_globalwinon(struct channel *ch)
353 outb_p(FEPMEM, ch->board->port);
356 static void pcxi_rxwinon(struct channel *ch)
358 outb_p(FEPMEM, ch->board->port);
361 static void pcxi_txwinon(struct channel *ch)
363 outb_p(FEPMEM, ch->board->port);
366 static void pcxi_memoff(struct channel *ch)
368 outb_p(0, ch->board->port);
371 static void pcxi_assertgwinon(struct channel *ch)
373 epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off");
376 static void pcxi_assertmemoff(struct channel *ch)
378 epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on");
382 /* ----------------------------------------------------------------------
383 Not all of the cards need specific memory windowing routines. Some
384 cards (Such as PCI) needs no windowing routines at all. We provide
385 these do nothing routines so that the same code base can be used.
386 The driver will ALWAYS call a windowing routine if it thinks it needs
387 to; regardless of the card. However, dependent on the card the routine
388 may or may not do anything.
389 ---------------------------------------------------------------------------*/
391 static void dummy_memwinon(struct board_info *b, unsigned int win)
395 static void dummy_memwinoff(struct board_info *b, unsigned int win)
399 static void dummy_globalwinon(struct channel *ch)
403 static void dummy_rxwinon(struct channel *ch)
407 static void dummy_txwinon(struct channel *ch)
411 static void dummy_memoff(struct channel *ch)
415 static void dummy_assertgwinon(struct channel *ch)
419 static void dummy_assertmemoff(struct channel *ch)
423 /* ----------------- Begin verifyChannel function ----------------------- */
424 static struct channel *verifyChannel(struct tty_struct *tty)
425 { /* Begin verifyChannel */
426 /* --------------------------------------------------------------------
427 This routine basically provides a sanity check. It insures that
428 the channel returned is within the proper range of addresses as
429 well as properly initialized. If some bogus info gets passed in
430 through tty->driver_data this should catch it.
431 --------------------------------------------------------------------- */
432 if (tty) {
433 struct channel *ch = (struct channel *)tty->driver_data;
434 if ((ch >= &digi_channels[0]) && (ch < &digi_channels[nbdevs])) {
435 if (ch->magic == EPCA_MAGIC)
436 return ch;
439 return NULL;
441 } /* End verifyChannel */
443 /* ------------------ Begin pc_sched_event ------------------------- */
445 static void pc_sched_event(struct channel *ch, int event)
447 /* ----------------------------------------------------------------------
448 We call this to schedule interrupt processing on some event. The
449 kernel sees our request and calls the related routine in OUR driver.
450 -------------------------------------------------------------------------*/
451 ch->event |= 1 << event;
452 schedule_work(&ch->tqueue);
453 } /* End pc_sched_event */
455 /* ------------------ Begin epca_error ------------------------- */
457 static void epca_error(int line, char *msg)
459 printk(KERN_ERR "epca_error (Digi): line = %d %s\n",line,msg);
462 /* ------------------ Begin pc_close ------------------------- */
463 static void pc_close(struct tty_struct * tty, struct file * filp)
465 struct channel *ch;
466 unsigned long flags;
467 /* ---------------------------------------------------------
468 verifyChannel returns the channel from the tty struct
469 if it is valid. This serves as a sanity check.
470 ------------------------------------------------------------- */
471 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
472 spin_lock_irqsave(&epca_lock, flags);
473 if (tty_hung_up_p(filp)) {
474 spin_unlock_irqrestore(&epca_lock, flags);
475 return;
477 /* Check to see if the channel is open more than once */
478 if (ch->count-- > 1) {
479 /* Begin channel is open more than once */
480 /* -------------------------------------------------------------
481 Return without doing anything. Someone might still be using
482 the channel.
483 ---------------------------------------------------------------- */
484 spin_unlock_irqrestore(&epca_lock, flags);
485 return;
486 } /* End channel is open more than once */
488 /* Port open only once go ahead with shutdown & reset */
489 BUG_ON(ch->count < 0);
491 /* ---------------------------------------------------------------
492 Let the rest of the driver know the channel is being closed.
493 This becomes important if an open is attempted before close
494 is finished.
495 ------------------------------------------------------------------ */
496 ch->asyncflags |= ASYNC_CLOSING;
497 tty->closing = 1;
499 spin_unlock_irqrestore(&epca_lock, flags);
501 if (ch->asyncflags & ASYNC_INITIALIZED) {
502 /* Setup an event to indicate when the transmit buffer empties */
503 setup_empty_event(tty, ch);
504 tty_wait_until_sent(tty, 3000); /* 30 seconds timeout */
506 if (tty->driver->flush_buffer)
507 tty->driver->flush_buffer(tty);
509 tty_ldisc_flush(tty);
510 shutdown(ch);
512 spin_lock_irqsave(&epca_lock, flags);
513 tty->closing = 0;
514 ch->event = 0;
515 ch->tty = NULL;
516 spin_unlock_irqrestore(&epca_lock, flags);
518 if (ch->blocked_open) { /* Begin if blocked_open */
519 if (ch->close_delay)
520 msleep_interruptible(jiffies_to_msecs(ch->close_delay));
521 wake_up_interruptible(&ch->open_wait);
522 } /* End if blocked_open */
523 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED |
524 ASYNC_CLOSING);
525 wake_up_interruptible(&ch->close_wait);
526 } /* End if ch != NULL */
527 } /* End pc_close */
529 /* ------------------ Begin shutdown ------------------------- */
531 static void shutdown(struct channel *ch)
532 { /* Begin shutdown */
534 unsigned long flags;
535 struct tty_struct *tty;
536 struct board_chan __iomem *bc;
538 if (!(ch->asyncflags & ASYNC_INITIALIZED))
539 return;
541 spin_lock_irqsave(&epca_lock, flags);
543 globalwinon(ch);
544 bc = ch->brdchan;
546 /* ------------------------------------------------------------------
547 In order for an event to be generated on the receipt of data the
548 idata flag must be set. Since we are shutting down, this is not
549 necessary clear this flag.
550 --------------------------------------------------------------------- */
552 if (bc)
553 writeb(0, &bc->idata);
554 tty = ch->tty;
556 /* ----------------------------------------------------------------
557 If we're a modem control device and HUPCL is on, drop RTS & DTR.
558 ------------------------------------------------------------------ */
560 if (tty->termios->c_cflag & HUPCL) {
561 ch->omodem &= ~(ch->m_rts | ch->m_dtr);
562 fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1);
564 memoff(ch);
566 /* ------------------------------------------------------------------
567 The channel has officialy been closed. The next time it is opened
568 it will have to reinitialized. Set a flag to indicate this.
569 ---------------------------------------------------------------------- */
571 /* Prevent future Digi programmed interrupts from coming active */
573 ch->asyncflags &= ~ASYNC_INITIALIZED;
574 spin_unlock_irqrestore(&epca_lock, flags);
576 } /* End shutdown */
578 /* ------------------ Begin pc_hangup ------------------------- */
580 static void pc_hangup(struct tty_struct *tty)
581 { /* Begin pc_hangup */
582 struct channel *ch;
584 /* ---------------------------------------------------------
585 verifyChannel returns the channel from the tty struct
586 if it is valid. This serves as a sanity check.
587 ------------------------------------------------------------- */
589 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
590 unsigned long flags;
592 if (tty->driver->flush_buffer)
593 tty->driver->flush_buffer(tty);
594 tty_ldisc_flush(tty);
595 shutdown(ch);
597 spin_lock_irqsave(&epca_lock, flags);
598 ch->tty = NULL;
599 ch->event = 0;
600 ch->count = 0;
601 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED);
602 spin_unlock_irqrestore(&epca_lock, flags);
603 wake_up_interruptible(&ch->open_wait);
604 } /* End if ch != NULL */
606 } /* End pc_hangup */
608 /* ------------------ Begin pc_write ------------------------- */
610 static int pc_write(struct tty_struct * tty,
611 const unsigned char *buf, int bytesAvailable)
612 { /* Begin pc_write */
613 unsigned int head, tail;
614 int dataLen;
615 int size;
616 int amountCopied;
617 struct channel *ch;
618 unsigned long flags;
619 int remain;
620 struct board_chan __iomem *bc;
622 /* ----------------------------------------------------------------
623 pc_write is primarily called directly by the kernel routine
624 tty_write (Though it can also be called by put_char) found in
625 tty_io.c. pc_write is passed a line discipline buffer where
626 the data to be written out is stored. The line discipline
627 implementation itself is done at the kernel level and is not
628 brought into the driver.
629 ------------------------------------------------------------------- */
631 /* ---------------------------------------------------------
632 verifyChannel returns the channel from the tty struct
633 if it is valid. This serves as a sanity check.
634 ------------------------------------------------------------- */
636 if ((ch = verifyChannel(tty)) == NULL)
637 return 0;
639 /* Make a pointer to the channel data structure found on the board. */
641 bc = ch->brdchan;
642 size = ch->txbufsize;
643 amountCopied = 0;
645 spin_lock_irqsave(&epca_lock, flags);
646 globalwinon(ch);
648 head = readw(&bc->tin) & (size - 1);
649 tail = readw(&bc->tout);
651 if (tail != readw(&bc->tout))
652 tail = readw(&bc->tout);
653 tail &= (size - 1);
655 /* If head >= tail, head has not wrapped around. */
656 if (head >= tail) { /* Begin head has not wrapped */
657 /* ---------------------------------------------------------------
658 remain (much like dataLen above) represents the total amount of
659 space available on the card for data. Here dataLen represents
660 the space existing between the head pointer and the end of
661 buffer. This is important because a memcpy cannot be told to
662 automatically wrap around when it hits the buffer end.
663 ------------------------------------------------------------------ */
664 dataLen = size - head;
665 remain = size - (head - tail) - 1;
666 } else { /* Begin head has wrapped around */
668 remain = tail - head - 1;
669 dataLen = remain;
671 } /* End head has wrapped around */
672 /* -------------------------------------------------------------------
673 Check the space on the card. If we have more data than
674 space; reduce the amount of data to fit the space.
675 ---------------------------------------------------------------------- */
676 bytesAvailable = min(remain, bytesAvailable);
677 txwinon(ch);
678 while (bytesAvailable > 0)
679 { /* Begin while there is data to copy onto card */
681 /* -----------------------------------------------------------------
682 If head is not wrapped, the below will make sure the first
683 data copy fills to the end of card buffer.
684 ------------------------------------------------------------------- */
686 dataLen = min(bytesAvailable, dataLen);
687 memcpy_toio(ch->txptr + head, buf, dataLen);
688 buf += dataLen;
689 head += dataLen;
690 amountCopied += dataLen;
691 bytesAvailable -= dataLen;
693 if (head >= size) {
694 head = 0;
695 dataLen = tail;
697 } /* End while there is data to copy onto card */
698 ch->statusflags |= TXBUSY;
699 globalwinon(ch);
700 writew(head, &bc->tin);
702 if ((ch->statusflags & LOWWAIT) == 0) {
703 ch->statusflags |= LOWWAIT;
704 writeb(1, &bc->ilow);
706 memoff(ch);
707 spin_unlock_irqrestore(&epca_lock, flags);
708 return(amountCopied);
710 } /* End pc_write */
712 /* ------------------ Begin pc_put_char ------------------------- */
714 static void pc_put_char(struct tty_struct *tty, unsigned char c)
715 { /* Begin pc_put_char */
716 pc_write(tty, &c, 1);
717 } /* End pc_put_char */
719 /* ------------------ Begin pc_write_room ------------------------- */
721 static int pc_write_room(struct tty_struct *tty)
722 { /* Begin pc_write_room */
724 int remain;
725 struct channel *ch;
726 unsigned long flags;
727 unsigned int head, tail;
728 struct board_chan __iomem *bc;
730 remain = 0;
732 /* ---------------------------------------------------------
733 verifyChannel returns the channel from the tty struct
734 if it is valid. This serves as a sanity check.
735 ------------------------------------------------------------- */
737 if ((ch = verifyChannel(tty)) != NULL) {
738 spin_lock_irqsave(&epca_lock, flags);
739 globalwinon(ch);
741 bc = ch->brdchan;
742 head = readw(&bc->tin) & (ch->txbufsize - 1);
743 tail = readw(&bc->tout);
745 if (tail != readw(&bc->tout))
746 tail = readw(&bc->tout);
747 /* Wrap tail if necessary */
748 tail &= (ch->txbufsize - 1);
750 if ((remain = tail - head - 1) < 0 )
751 remain += ch->txbufsize;
753 if (remain && (ch->statusflags & LOWWAIT) == 0) {
754 ch->statusflags |= LOWWAIT;
755 writeb(1, &bc->ilow);
757 memoff(ch);
758 spin_unlock_irqrestore(&epca_lock, flags);
760 /* Return how much room is left on card */
761 return remain;
763 } /* End pc_write_room */
765 /* ------------------ Begin pc_chars_in_buffer ---------------------- */
767 static int pc_chars_in_buffer(struct tty_struct *tty)
768 { /* Begin pc_chars_in_buffer */
770 int chars;
771 unsigned int ctail, head, tail;
772 int remain;
773 unsigned long flags;
774 struct channel *ch;
775 struct board_chan __iomem *bc;
777 /* ---------------------------------------------------------
778 verifyChannel returns the channel from the tty struct
779 if it is valid. This serves as a sanity check.
780 ------------------------------------------------------------- */
782 if ((ch = verifyChannel(tty)) == NULL)
783 return(0);
785 spin_lock_irqsave(&epca_lock, flags);
786 globalwinon(ch);
788 bc = ch->brdchan;
789 tail = readw(&bc->tout);
790 head = readw(&bc->tin);
791 ctail = readw(&ch->mailbox->cout);
793 if (tail == head && readw(&ch->mailbox->cin) == ctail && readb(&bc->tbusy) == 0)
794 chars = 0;
795 else { /* Begin if some space on the card has been used */
796 head = readw(&bc->tin) & (ch->txbufsize - 1);
797 tail &= (ch->txbufsize - 1);
798 /* --------------------------------------------------------------
799 The logic here is basically opposite of the above pc_write_room
800 here we are finding the amount of bytes in the buffer filled.
801 Not the amount of bytes empty.
802 ------------------------------------------------------------------- */
803 if ((remain = tail - head - 1) < 0 )
804 remain += ch->txbufsize;
805 chars = (int)(ch->txbufsize - remain);
806 /* -------------------------------------------------------------
807 Make it possible to wakeup anything waiting for output
808 in tty_ioctl.c, etc.
810 If not already set. Setup an event to indicate when the
811 transmit buffer empties
812 ----------------------------------------------------------------- */
813 if (!(ch->statusflags & EMPTYWAIT))
814 setup_empty_event(tty,ch);
816 } /* End if some space on the card has been used */
817 memoff(ch);
818 spin_unlock_irqrestore(&epca_lock, flags);
819 /* Return number of characters residing on card. */
820 return(chars);
822 } /* End pc_chars_in_buffer */
824 /* ------------------ Begin pc_flush_buffer ---------------------- */
826 static void pc_flush_buffer(struct tty_struct *tty)
827 { /* Begin pc_flush_buffer */
829 unsigned int tail;
830 unsigned long flags;
831 struct channel *ch;
832 struct board_chan __iomem *bc;
833 /* ---------------------------------------------------------
834 verifyChannel returns the channel from the tty struct
835 if it is valid. This serves as a sanity check.
836 ------------------------------------------------------------- */
837 if ((ch = verifyChannel(tty)) == NULL)
838 return;
840 spin_lock_irqsave(&epca_lock, flags);
841 globalwinon(ch);
842 bc = ch->brdchan;
843 tail = readw(&bc->tout);
844 /* Have FEP move tout pointer; effectively flushing transmit buffer */
845 fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0);
846 memoff(ch);
847 spin_unlock_irqrestore(&epca_lock, flags);
848 wake_up_interruptible(&tty->write_wait);
849 tty_wakeup(tty);
850 } /* End pc_flush_buffer */
852 /* ------------------ Begin pc_flush_chars ---------------------- */
854 static void pc_flush_chars(struct tty_struct *tty)
855 { /* Begin pc_flush_chars */
856 struct channel * ch;
857 /* ---------------------------------------------------------
858 verifyChannel returns the channel from the tty struct
859 if it is valid. This serves as a sanity check.
860 ------------------------------------------------------------- */
861 if ((ch = verifyChannel(tty)) != NULL) {
862 unsigned long flags;
863 spin_lock_irqsave(&epca_lock, flags);
864 /* ----------------------------------------------------------------
865 If not already set and the transmitter is busy setup an event
866 to indicate when the transmit empties.
867 ------------------------------------------------------------------- */
868 if ((ch->statusflags & TXBUSY) && !(ch->statusflags & EMPTYWAIT))
869 setup_empty_event(tty,ch);
870 spin_unlock_irqrestore(&epca_lock, flags);
872 } /* End pc_flush_chars */
874 /* ------------------ Begin block_til_ready ---------------------- */
876 static int block_til_ready(struct tty_struct *tty,
877 struct file *filp, struct channel *ch)
878 { /* Begin block_til_ready */
879 DECLARE_WAITQUEUE(wait,current);
880 int retval, do_clocal = 0;
881 unsigned long flags;
883 if (tty_hung_up_p(filp)) {
884 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
885 retval = -EAGAIN;
886 else
887 retval = -ERESTARTSYS;
888 return(retval);
891 /* -----------------------------------------------------------------
892 If the device is in the middle of being closed, then block
893 until it's done, and then try again.
894 -------------------------------------------------------------------- */
895 if (ch->asyncflags & ASYNC_CLOSING) {
896 interruptible_sleep_on(&ch->close_wait);
898 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
899 return -EAGAIN;
900 else
901 return -ERESTARTSYS;
904 if (filp->f_flags & O_NONBLOCK) {
905 /* -----------------------------------------------------------------
906 If non-blocking mode is set, then make the check up front
907 and then exit.
908 -------------------------------------------------------------------- */
909 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
910 return 0;
912 if (tty->termios->c_cflag & CLOCAL)
913 do_clocal = 1;
914 /* Block waiting for the carrier detect and the line to become free */
916 retval = 0;
917 add_wait_queue(&ch->open_wait, &wait);
919 spin_lock_irqsave(&epca_lock, flags);
920 /* We dec count so that pc_close will know when to free things */
921 if (!tty_hung_up_p(filp))
922 ch->count--;
923 ch->blocked_open++;
924 while(1)
925 { /* Begin forever while */
926 set_current_state(TASK_INTERRUPTIBLE);
927 if (tty_hung_up_p(filp) ||
928 !(ch->asyncflags & ASYNC_INITIALIZED))
930 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
931 retval = -EAGAIN;
932 else
933 retval = -ERESTARTSYS;
934 break;
936 if (!(ch->asyncflags & ASYNC_CLOSING) &&
937 (do_clocal || (ch->imodem & ch->dcd)))
938 break;
939 if (signal_pending(current)) {
940 retval = -ERESTARTSYS;
941 break;
943 spin_unlock_irqrestore(&epca_lock, flags);
944 /* ---------------------------------------------------------------
945 Allow someone else to be scheduled. We will occasionally go
946 through this loop until one of the above conditions change.
947 The below schedule call will allow other processes to enter and
948 prevent this loop from hogging the cpu.
949 ------------------------------------------------------------------ */
950 schedule();
951 spin_lock_irqsave(&epca_lock, flags);
953 } /* End forever while */
955 current->state = TASK_RUNNING;
956 remove_wait_queue(&ch->open_wait, &wait);
957 if (!tty_hung_up_p(filp))
958 ch->count++;
959 ch->blocked_open--;
961 spin_unlock_irqrestore(&epca_lock, flags);
963 if (retval)
964 return retval;
966 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
967 return 0;
968 } /* End block_til_ready */
970 /* ------------------ Begin pc_open ---------------------- */
972 static int pc_open(struct tty_struct *tty, struct file * filp)
973 { /* Begin pc_open */
975 struct channel *ch;
976 unsigned long flags;
977 int line, retval, boardnum;
978 struct board_chan __iomem *bc;
979 unsigned int head;
981 line = tty->index;
982 if (line < 0 || line >= nbdevs)
983 return -ENODEV;
985 ch = &digi_channels[line];
986 boardnum = ch->boardnum;
988 /* Check status of board configured in system. */
990 /* -----------------------------------------------------------------
991 I check to see if the epca_setup routine detected an user error.
992 It might be better to put this in pc_init, but for the moment it
993 goes here.
994 ---------------------------------------------------------------------- */
996 if (invalid_lilo_config) {
997 if (setup_error_code & INVALID_BOARD_TYPE)
998 printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n");
999 if (setup_error_code & INVALID_NUM_PORTS)
1000 printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n");
1001 if (setup_error_code & INVALID_MEM_BASE)
1002 printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n");
1003 if (setup_error_code & INVALID_PORT_BASE)
1004 printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n");
1005 if (setup_error_code & INVALID_BOARD_STATUS)
1006 printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n");
1007 if (setup_error_code & INVALID_ALTPIN)
1008 printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n");
1009 tty->driver_data = NULL; /* Mark this device as 'down' */
1010 return -ENODEV;
1012 if (boardnum >= num_cards || boards[boardnum].status == DISABLED) {
1013 tty->driver_data = NULL; /* Mark this device as 'down' */
1014 return(-ENODEV);
1017 if ((bc = ch->brdchan) == 0) {
1018 tty->driver_data = NULL;
1019 return -ENODEV;
1022 spin_lock_irqsave(&epca_lock, flags);
1023 /* ------------------------------------------------------------------
1024 Every time a channel is opened, increment a counter. This is
1025 necessary because we do not wish to flush and shutdown the channel
1026 until the last app holding the channel open, closes it.
1027 --------------------------------------------------------------------- */
1028 ch->count++;
1029 /* ----------------------------------------------------------------
1030 Set a kernel structures pointer to our local channel
1031 structure. This way we can get to it when passed only
1032 a tty struct.
1033 ------------------------------------------------------------------ */
1034 tty->driver_data = ch;
1035 /* ----------------------------------------------------------------
1036 If this is the first time the channel has been opened, initialize
1037 the tty->termios struct otherwise let pc_close handle it.
1038 -------------------------------------------------------------------- */
1039 globalwinon(ch);
1040 ch->statusflags = 0;
1042 /* Save boards current modem status */
1043 ch->imodem = readb(&bc->mstat);
1045 /* ----------------------------------------------------------------
1046 Set receive head and tail ptrs to each other. This indicates
1047 no data available to read.
1048 ----------------------------------------------------------------- */
1049 head = readw(&bc->rin);
1050 writew(head, &bc->rout);
1052 /* Set the channels associated tty structure */
1053 ch->tty = tty;
1055 /* -----------------------------------------------------------------
1056 The below routine generally sets up parity, baud, flow control
1057 issues, etc.... It effect both control flags and input flags.
1058 -------------------------------------------------------------------- */
1059 epcaparam(tty,ch);
1060 ch->asyncflags |= ASYNC_INITIALIZED;
1061 memoff(ch);
1062 spin_unlock_irqrestore(&epca_lock, flags);
1064 retval = block_til_ready(tty, filp, ch);
1065 if (retval)
1066 return retval;
1067 /* -------------------------------------------------------------
1068 Set this again in case a hangup set it to zero while this
1069 open() was waiting for the line...
1070 --------------------------------------------------------------- */
1071 spin_lock_irqsave(&epca_lock, flags);
1072 ch->tty = tty;
1073 globalwinon(ch);
1074 /* Enable Digi Data events */
1075 writeb(1, &bc->idata);
1076 memoff(ch);
1077 spin_unlock_irqrestore(&epca_lock, flags);
1078 return 0;
1079 } /* End pc_open */
1081 static int __init epca_module_init(void)
1082 { /* Begin init_module */
1083 return pc_init();
1086 module_init(epca_module_init);
1088 static struct pci_driver epca_driver;
1090 static void __exit epca_module_exit(void)
1092 int count, crd;
1093 struct board_info *bd;
1094 struct channel *ch;
1096 del_timer_sync(&epca_timer);
1098 if ((tty_unregister_driver(pc_driver)) ||
1099 (tty_unregister_driver(pc_info)))
1101 printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n");
1102 return;
1104 put_tty_driver(pc_driver);
1105 put_tty_driver(pc_info);
1107 for (crd = 0; crd < num_cards; crd++) { /* Begin for each card */
1108 bd = &boards[crd];
1109 if (!bd)
1110 { /* Begin sanity check */
1111 printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n");
1112 return;
1113 } /* End sanity check */
1114 ch = card_ptr[crd];
1115 for (count = 0; count < bd->numports; count++, ch++)
1116 { /* Begin for each port */
1117 if (ch) {
1118 if (ch->tty)
1119 tty_hangup(ch->tty);
1120 kfree(ch->tmp_buf);
1122 } /* End for each port */
1123 } /* End for each card */
1124 pci_unregister_driver (&epca_driver);
1127 module_exit(epca_module_exit);
1129 static struct tty_operations pc_ops = {
1130 .open = pc_open,
1131 .close = pc_close,
1132 .write = pc_write,
1133 .write_room = pc_write_room,
1134 .flush_buffer = pc_flush_buffer,
1135 .chars_in_buffer = pc_chars_in_buffer,
1136 .flush_chars = pc_flush_chars,
1137 .put_char = pc_put_char,
1138 .ioctl = pc_ioctl,
1139 .set_termios = pc_set_termios,
1140 .stop = pc_stop,
1141 .start = pc_start,
1142 .throttle = pc_throttle,
1143 .unthrottle = pc_unthrottle,
1144 .hangup = pc_hangup,
1147 static int info_open(struct tty_struct *tty, struct file * filp)
1149 return 0;
1152 static struct tty_operations info_ops = {
1153 .open = info_open,
1154 .ioctl = info_ioctl,
1157 /* ------------------ Begin pc_init ---------------------- */
1159 static int __init pc_init(void)
1160 { /* Begin pc_init */
1161 int crd;
1162 struct board_info *bd;
1163 unsigned char board_id = 0;
1165 int pci_boards_found, pci_count;
1167 pci_count = 0;
1169 pc_driver = alloc_tty_driver(MAX_ALLOC);
1170 if (!pc_driver)
1171 return -ENOMEM;
1173 pc_info = alloc_tty_driver(MAX_ALLOC);
1174 if (!pc_info) {
1175 put_tty_driver(pc_driver);
1176 return -ENOMEM;
1179 /* -----------------------------------------------------------------------
1180 If epca_setup has not been ran by LILO set num_cards to defaults; copy
1181 board structure defined by digiConfig into drivers board structure.
1182 Note : If LILO has ran epca_setup then epca_setup will handle defining
1183 num_cards as well as copying the data into the board structure.
1184 -------------------------------------------------------------------------- */
1185 if (!liloconfig) { /* Begin driver has been configured via. epcaconfig */
1187 nbdevs = NBDEVS;
1188 num_cards = NUMCARDS;
1189 memcpy((void *)&boards, (void *)&static_boards,
1190 (sizeof(struct board_info) * NUMCARDS));
1191 } /* End driver has been configured via. epcaconfig */
1193 /* -----------------------------------------------------------------
1194 Note : If lilo was used to configure the driver and the
1195 ignore epcaconfig option was choosen (digiepca=2) then
1196 nbdevs and num_cards will equal 0 at this point. This is
1197 okay; PCI cards will still be picked up if detected.
1198 --------------------------------------------------------------------- */
1200 /* -----------------------------------------------------------
1201 Set up interrupt, we will worry about memory allocation in
1202 post_fep_init.
1203 --------------------------------------------------------------- */
1206 printk(KERN_INFO "DIGI epca driver version %s loaded.\n",VERSION);
1208 /* ------------------------------------------------------------------
1209 NOTE : This code assumes that the number of ports found in
1210 the boards array is correct. This could be wrong if
1211 the card in question is PCI (And therefore has no ports
1212 entry in the boards structure.) The rest of the
1213 information will be valid for PCI because the beginning
1214 of pc_init scans for PCI and determines i/o and base
1215 memory addresses. I am not sure if it is possible to
1216 read the number of ports supported by the card prior to
1217 it being booted (Since that is the state it is in when
1218 pc_init is run). Because it is not possible to query the
1219 number of supported ports until after the card has booted;
1220 we are required to calculate the card_ptrs as the card is
1221 is initialized (Inside post_fep_init). The negative thing
1222 about this approach is that digiDload's call to GET_INFO
1223 will have a bad port value. (Since this is called prior
1224 to post_fep_init.)
1226 --------------------------------------------------------------------- */
1228 pci_boards_found = 0;
1229 if(num_cards < MAXBOARDS)
1230 pci_boards_found += init_PCI();
1231 num_cards += pci_boards_found;
1233 pc_driver->owner = THIS_MODULE;
1234 pc_driver->name = "ttyD";
1235 pc_driver->devfs_name = "tts/D";
1236 pc_driver->major = DIGI_MAJOR;
1237 pc_driver->minor_start = 0;
1238 pc_driver->type = TTY_DRIVER_TYPE_SERIAL;
1239 pc_driver->subtype = SERIAL_TYPE_NORMAL;
1240 pc_driver->init_termios = tty_std_termios;
1241 pc_driver->init_termios.c_iflag = 0;
1242 pc_driver->init_termios.c_oflag = 0;
1243 pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL;
1244 pc_driver->init_termios.c_lflag = 0;
1245 pc_driver->flags = TTY_DRIVER_REAL_RAW;
1246 tty_set_operations(pc_driver, &pc_ops);
1248 pc_info->owner = THIS_MODULE;
1249 pc_info->name = "digi_ctl";
1250 pc_info->major = DIGIINFOMAJOR;
1251 pc_info->minor_start = 0;
1252 pc_info->type = TTY_DRIVER_TYPE_SERIAL;
1253 pc_info->subtype = SERIAL_TYPE_INFO;
1254 pc_info->init_termios = tty_std_termios;
1255 pc_info->init_termios.c_iflag = 0;
1256 pc_info->init_termios.c_oflag = 0;
1257 pc_info->init_termios.c_lflag = 0;
1258 pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL;
1259 pc_info->flags = TTY_DRIVER_REAL_RAW;
1260 tty_set_operations(pc_info, &info_ops);
1263 for (crd = 0; crd < num_cards; crd++)
1264 { /* Begin for each card */
1266 /* ------------------------------------------------------------------
1267 This is where the appropriate memory handlers for the hardware is
1268 set. Everything at runtime blindly jumps through these vectors.
1269 ---------------------------------------------------------------------- */
1271 /* defined in epcaconfig.h */
1272 bd = &boards[crd];
1274 switch (bd->type)
1275 { /* Begin switch on bd->type {board type} */
1276 case PCXEM:
1277 case EISAXEM:
1278 bd->memwinon = pcxem_memwinon ;
1279 bd->memwinoff = pcxem_memwinoff ;
1280 bd->globalwinon = pcxem_globalwinon ;
1281 bd->txwinon = pcxem_txwinon ;
1282 bd->rxwinon = pcxem_rxwinon ;
1283 bd->memoff = pcxem_memoff ;
1284 bd->assertgwinon = dummy_assertgwinon;
1285 bd->assertmemoff = dummy_assertmemoff;
1286 break;
1288 case PCIXEM:
1289 case PCIXRJ:
1290 case PCIXR:
1291 bd->memwinon = dummy_memwinon;
1292 bd->memwinoff = dummy_memwinoff;
1293 bd->globalwinon = dummy_globalwinon;
1294 bd->txwinon = dummy_txwinon;
1295 bd->rxwinon = dummy_rxwinon;
1296 bd->memoff = dummy_memoff;
1297 bd->assertgwinon = dummy_assertgwinon;
1298 bd->assertmemoff = dummy_assertmemoff;
1299 break;
1301 case PCXE:
1302 case PCXEVE:
1304 bd->memwinon = pcxe_memwinon;
1305 bd->memwinoff = pcxe_memwinoff;
1306 bd->globalwinon = pcxe_globalwinon;
1307 bd->txwinon = pcxe_txwinon;
1308 bd->rxwinon = pcxe_rxwinon;
1309 bd->memoff = pcxe_memoff;
1310 bd->assertgwinon = dummy_assertgwinon;
1311 bd->assertmemoff = dummy_assertmemoff;
1312 break;
1314 case PCXI:
1315 case PC64XE:
1317 bd->memwinon = pcxi_memwinon;
1318 bd->memwinoff = pcxi_memwinoff;
1319 bd->globalwinon = pcxi_globalwinon;
1320 bd->txwinon = pcxi_txwinon;
1321 bd->rxwinon = pcxi_rxwinon;
1322 bd->memoff = pcxi_memoff;
1323 bd->assertgwinon = pcxi_assertgwinon;
1324 bd->assertmemoff = pcxi_assertmemoff;
1325 break;
1327 default:
1328 break;
1330 } /* End switch on bd->type */
1332 /* ---------------------------------------------------------------
1333 Some cards need a memory segment to be defined for use in
1334 transmit and receive windowing operations. These boards
1335 are listed in the below switch. In the case of the XI the
1336 amount of memory on the board is variable so the memory_seg
1337 is also variable. This code determines what they segment
1338 should be.
1339 ----------------------------------------------------------------- */
1341 switch (bd->type)
1342 { /* Begin switch on bd->type {board type} */
1344 case PCXE:
1345 case PCXEVE:
1346 case PC64XE:
1347 bd->memory_seg = 0xf000;
1348 break;
1350 case PCXI:
1351 board_id = inb((int)bd->port);
1352 if ((board_id & 0x1) == 0x1)
1353 { /* Begin it's an XI card */
1355 /* Is it a 64K board */
1356 if ((board_id & 0x30) == 0)
1357 bd->memory_seg = 0xf000;
1359 /* Is it a 128K board */
1360 if ((board_id & 0x30) == 0x10)
1361 bd->memory_seg = 0xe000;
1363 /* Is is a 256K board */
1364 if ((board_id & 0x30) == 0x20)
1365 bd->memory_seg = 0xc000;
1367 /* Is it a 512K board */
1368 if ((board_id & 0x30) == 0x30)
1369 bd->memory_seg = 0x8000;
1371 } else printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n",(int)bd->port);
1372 break;
1374 } /* End switch on bd->type */
1376 } /* End for each card */
1378 if (tty_register_driver(pc_driver))
1379 panic("Couldn't register Digi PC/ driver");
1381 if (tty_register_driver(pc_info))
1382 panic("Couldn't register Digi PC/ info ");
1384 /* -------------------------------------------------------------------
1385 Start up the poller to check for events on all enabled boards
1386 ---------------------------------------------------------------------- */
1388 init_timer(&epca_timer);
1389 epca_timer.function = epcapoll;
1390 mod_timer(&epca_timer, jiffies + HZ/25);
1391 return 0;
1393 } /* End pc_init */
1395 /* ------------------ Begin post_fep_init ---------------------- */
1397 static void post_fep_init(unsigned int crd)
1398 { /* Begin post_fep_init */
1400 int i;
1401 void __iomem *memaddr;
1402 struct global_data __iomem *gd;
1403 struct board_info *bd;
1404 struct board_chan __iomem *bc;
1405 struct channel *ch;
1406 int shrinkmem = 0, lowwater ;
1408 /* -------------------------------------------------------------
1409 This call is made by the user via. the ioctl call DIGI_INIT.
1410 It is responsible for setting up all the card specific stuff.
1411 ---------------------------------------------------------------- */
1412 bd = &boards[crd];
1414 /* -----------------------------------------------------------------
1415 If this is a PCI board, get the port info. Remember PCI cards
1416 do not have entries into the epcaconfig.h file, so we can't get
1417 the number of ports from it. Unfortunetly, this means that anyone
1418 doing a DIGI_GETINFO before the board has booted will get an invalid
1419 number of ports returned (It should return 0). Calls to DIGI_GETINFO
1420 after DIGI_INIT has been called will return the proper values.
1421 ------------------------------------------------------------------- */
1423 if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */
1424 /* --------------------------------------------------------------------
1425 Below we use XEMPORTS as a memory offset regardless of which PCI
1426 card it is. This is because all of the supported PCI cards have
1427 the same memory offset for the channel data. This will have to be
1428 changed if we ever develop a PCI/XE card. NOTE : The FEP manual
1429 states that the port offset is 0xC22 as opposed to 0xC02. This is
1430 only true for PC/XE, and PC/XI cards; not for the XEM, or CX series.
1431 On the PCI cards the number of ports is determined by reading a
1432 ID PROM located in the box attached to the card. The card can then
1433 determine the index the id to determine the number of ports available.
1434 (FYI - The id should be located at 0x1ac (And may use up to 4 bytes
1435 if the box in question is a XEM or CX)).
1436 ------------------------------------------------------------------------ */
1437 /* PCI cards are already remapped at this point ISA are not */
1438 bd->numports = readw(bd->re_map_membase + XEMPORTS);
1439 epcaassert(bd->numports <= 64,"PCI returned a invalid number of ports");
1440 nbdevs += (bd->numports);
1441 } else {
1442 /* Fix up the mappings for ISA/EISA etc */
1443 /* FIXME: 64K - can we be smarter ? */
1444 bd->re_map_membase = ioremap(bd->membase, 0x10000);
1447 if (crd != 0)
1448 card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports;
1449 else
1450 card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */
1452 ch = card_ptr[crd];
1453 epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range");
1455 memaddr = bd->re_map_membase;
1457 /* -----------------------------------------------------------------
1458 The below assignment will set bc to point at the BEGINING of
1459 the cards channel structures. For 1 card there will be between
1460 8 and 64 of these structures.
1461 -------------------------------------------------------------------- */
1463 bc = memaddr + CHANSTRUCT;
1465 /* -------------------------------------------------------------------
1466 The below assignment will set gd to point at the BEGINING of
1467 global memory address 0xc00. The first data in that global
1468 memory actually starts at address 0xc1a. The command in
1469 pointer begins at 0xd10.
1470 ---------------------------------------------------------------------- */
1472 gd = memaddr + GLOBAL;
1474 /* --------------------------------------------------------------------
1475 XEPORTS (address 0xc22) points at the number of channels the
1476 card supports. (For 64XE, XI, XEM, and XR use 0xc02)
1477 ----------------------------------------------------------------------- */
1479 if ((bd->type == PCXEVE || bd->type == PCXE) && (readw(memaddr + XEPORTS) < 3))
1480 shrinkmem = 1;
1481 if (bd->type < PCIXEM)
1482 if (!request_region((int)bd->port, 4, board_desc[bd->type]))
1483 return;
1484 memwinon(bd, 0);
1486 /* --------------------------------------------------------------------
1487 Remember ch is the main drivers channels structure, while bc is
1488 the cards channel structure.
1489 ------------------------------------------------------------------------ */
1491 /* For every port on the card do ..... */
1493 for (i = 0; i < bd->numports; i++, ch++, bc++) { /* Begin for each port */
1494 unsigned long flags;
1495 u16 tseg, rseg;
1497 ch->brdchan = bc;
1498 ch->mailbox = gd;
1499 INIT_WORK(&ch->tqueue, do_softint, ch);
1500 ch->board = &boards[crd];
1502 spin_lock_irqsave(&epca_lock, flags);
1503 switch (bd->type) {
1504 /* ----------------------------------------------------------------
1505 Since some of the boards use different bitmaps for their
1506 control signals we cannot hard code these values and retain
1507 portability. We virtualize this data here.
1508 ------------------------------------------------------------------- */
1509 case EISAXEM:
1510 case PCXEM:
1511 case PCIXEM:
1512 case PCIXRJ:
1513 case PCIXR:
1514 ch->m_rts = 0x02 ;
1515 ch->m_dcd = 0x80 ;
1516 ch->m_dsr = 0x20 ;
1517 ch->m_cts = 0x10 ;
1518 ch->m_ri = 0x40 ;
1519 ch->m_dtr = 0x01 ;
1520 break;
1522 case PCXE:
1523 case PCXEVE:
1524 case PCXI:
1525 case PC64XE:
1526 ch->m_rts = 0x02 ;
1527 ch->m_dcd = 0x08 ;
1528 ch->m_dsr = 0x10 ;
1529 ch->m_cts = 0x20 ;
1530 ch->m_ri = 0x40 ;
1531 ch->m_dtr = 0x80 ;
1532 break;
1534 } /* End switch bd->type */
1536 if (boards[crd].altpin) {
1537 ch->dsr = ch->m_dcd;
1538 ch->dcd = ch->m_dsr;
1539 ch->digiext.digi_flags |= DIGI_ALTPIN;
1541 else {
1542 ch->dcd = ch->m_dcd;
1543 ch->dsr = ch->m_dsr;
1546 ch->boardnum = crd;
1547 ch->channelnum = i;
1548 ch->magic = EPCA_MAGIC;
1549 ch->tty = NULL;
1551 if (shrinkmem) {
1552 fepcmd(ch, SETBUFFER, 32, 0, 0, 0);
1553 shrinkmem = 0;
1556 tseg = readw(&bc->tseg);
1557 rseg = readw(&bc->rseg);
1559 switch (bd->type) {
1561 case PCIXEM:
1562 case PCIXRJ:
1563 case PCIXR:
1564 /* Cover all the 2MEG cards */
1565 ch->txptr = memaddr + ((tseg << 4) & 0x1fffff);
1566 ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff);
1567 ch->txwin = FEPWIN | (tseg >> 11);
1568 ch->rxwin = FEPWIN | (rseg >> 11);
1569 break;
1571 case PCXEM:
1572 case EISAXEM:
1573 /* Cover all the 32K windowed cards */
1574 /* Mask equal to window size - 1 */
1575 ch->txptr = memaddr + ((tseg << 4) & 0x7fff);
1576 ch->rxptr = memaddr + ((rseg << 4) & 0x7fff);
1577 ch->txwin = FEPWIN | (tseg >> 11);
1578 ch->rxwin = FEPWIN | (rseg >> 11);
1579 break;
1581 case PCXEVE:
1582 case PCXE:
1583 ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4) & 0x1fff);
1584 ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9);
1585 ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4) & 0x1fff);
1586 ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >>9 );
1587 break;
1589 case PCXI:
1590 case PC64XE:
1591 ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4);
1592 ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4);
1593 ch->txwin = ch->rxwin = 0;
1594 break;
1596 } /* End switch bd->type */
1598 ch->txbufhead = 0;
1599 ch->txbufsize = readw(&bc->tmax) + 1;
1601 ch->rxbufhead = 0;
1602 ch->rxbufsize = readw(&bc->rmax) + 1;
1604 lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2);
1606 /* Set transmitter low water mark */
1607 fepcmd(ch, STXLWATER, lowwater, 0, 10, 0);
1609 /* Set receiver low water mark */
1611 fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0);
1613 /* Set receiver high water mark */
1615 fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0);
1617 writew(100, &bc->edelay);
1618 writeb(1, &bc->idata);
1620 ch->startc = readb(&bc->startc);
1621 ch->stopc = readb(&bc->stopc);
1622 ch->startca = readb(&bc->startca);
1623 ch->stopca = readb(&bc->stopca);
1625 ch->fepcflag = 0;
1626 ch->fepiflag = 0;
1627 ch->fepoflag = 0;
1628 ch->fepstartc = 0;
1629 ch->fepstopc = 0;
1630 ch->fepstartca = 0;
1631 ch->fepstopca = 0;
1633 ch->close_delay = 50;
1634 ch->count = 0;
1635 ch->blocked_open = 0;
1636 init_waitqueue_head(&ch->open_wait);
1637 init_waitqueue_head(&ch->close_wait);
1639 spin_unlock_irqrestore(&epca_lock, flags);
1641 ch->tmp_buf = kmalloc(ch->txbufsize,GFP_KERNEL);
1642 if (!ch->tmp_buf) {
1643 printk(KERN_ERR "POST FEP INIT : kmalloc failed for port 0x%x\n",i);
1644 release_region((int)bd->port, 4);
1645 while(i-- > 0)
1646 kfree((ch--)->tmp_buf);
1647 return;
1648 } else
1649 memset((void *)ch->tmp_buf,0,ch->txbufsize);
1650 } /* End for each port */
1652 printk(KERN_INFO
1653 "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n",
1654 VERSION, board_desc[bd->type], (long)bd->port, (long)bd->membase, bd->numports);
1655 memwinoff(bd, 0);
1657 } /* End post_fep_init */
1659 /* --------------------- Begin epcapoll ------------------------ */
1661 static void epcapoll(unsigned long ignored)
1662 { /* Begin epcapoll */
1664 unsigned long flags;
1665 int crd;
1666 volatile unsigned int head, tail;
1667 struct channel *ch;
1668 struct board_info *bd;
1670 /* -------------------------------------------------------------------
1671 This routine is called upon every timer interrupt. Even though
1672 the Digi series cards are capable of generating interrupts this
1673 method of non-looping polling is more efficient. This routine
1674 checks for card generated events (Such as receive data, are transmit
1675 buffer empty) and acts on those events.
1676 ----------------------------------------------------------------------- */
1678 for (crd = 0; crd < num_cards; crd++)
1679 { /* Begin for each card */
1681 bd = &boards[crd];
1682 ch = card_ptr[crd];
1684 if ((bd->status == DISABLED) || digi_poller_inhibited)
1685 continue; /* Begin loop next interation */
1687 /* -----------------------------------------------------------
1688 assertmemoff is not needed here; indeed it is an empty subroutine.
1689 It is being kept because future boards may need this as well as
1690 some legacy boards.
1691 ---------------------------------------------------------------- */
1693 spin_lock_irqsave(&epca_lock, flags);
1695 assertmemoff(ch);
1697 globalwinon(ch);
1699 /* ---------------------------------------------------------------
1700 In this case head and tail actually refer to the event queue not
1701 the transmit or receive queue.
1702 ------------------------------------------------------------------- */
1704 head = readw(&ch->mailbox->ein);
1705 tail = readw(&ch->mailbox->eout);
1707 /* If head isn't equal to tail we have an event */
1709 if (head != tail)
1710 doevent(crd);
1711 memoff(ch);
1713 spin_unlock_irqrestore(&epca_lock, flags);
1715 } /* End for each card */
1716 mod_timer(&epca_timer, jiffies + (HZ / 25));
1717 } /* End epcapoll */
1719 /* --------------------- Begin doevent ------------------------ */
1721 static void doevent(int crd)
1722 { /* Begin doevent */
1724 void __iomem *eventbuf;
1725 struct channel *ch, *chan0;
1726 static struct tty_struct *tty;
1727 struct board_info *bd;
1728 struct board_chan __iomem *bc;
1729 unsigned int tail, head;
1730 int event, channel;
1731 int mstat, lstat;
1733 /* -------------------------------------------------------------------
1734 This subroutine is called by epcapoll when an event is detected
1735 in the event queue. This routine responds to those events.
1736 --------------------------------------------------------------------- */
1737 bd = &boards[crd];
1739 chan0 = card_ptr[crd];
1740 epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range");
1741 assertgwinon(chan0);
1742 while ((tail = readw(&chan0->mailbox->eout)) != (head = readw(&chan0->mailbox->ein)))
1743 { /* Begin while something in event queue */
1744 assertgwinon(chan0);
1745 eventbuf = bd->re_map_membase + tail + ISTART;
1746 /* Get the channel the event occurred on */
1747 channel = readb(eventbuf);
1748 /* Get the actual event code that occurred */
1749 event = readb(eventbuf + 1);
1750 /* ----------------------------------------------------------------
1751 The two assignments below get the current modem status (mstat)
1752 and the previous modem status (lstat). These are useful becuase
1753 an event could signal a change in modem signals itself.
1754 ------------------------------------------------------------------- */
1755 mstat = readb(eventbuf + 2);
1756 lstat = readb(eventbuf + 3);
1758 ch = chan0 + channel;
1759 if ((unsigned)channel >= bd->numports || !ch) {
1760 if (channel >= bd->numports)
1761 ch = chan0;
1762 bc = ch->brdchan;
1763 goto next;
1766 if ((bc = ch->brdchan) == NULL)
1767 goto next;
1769 if (event & DATA_IND) { /* Begin DATA_IND */
1770 receive_data(ch);
1771 assertgwinon(ch);
1772 } /* End DATA_IND */
1773 /* else *//* Fix for DCD transition missed bug */
1774 if (event & MODEMCHG_IND) { /* Begin MODEMCHG_IND */
1775 /* A modem signal change has been indicated */
1776 ch->imodem = mstat;
1777 if (ch->asyncflags & ASYNC_CHECK_CD) {
1778 if (mstat & ch->dcd) /* We are now receiving dcd */
1779 wake_up_interruptible(&ch->open_wait);
1780 else
1781 pc_sched_event(ch, EPCA_EVENT_HANGUP); /* No dcd; hangup */
1783 } /* End MODEMCHG_IND */
1784 tty = ch->tty;
1785 if (tty) { /* Begin if valid tty */
1786 if (event & BREAK_IND) { /* Begin if BREAK_IND */
1787 /* A break has been indicated */
1788 tty_insert_flip_char(tty, 0, TTY_BREAK);
1789 tty_schedule_flip(tty);
1790 } else if (event & LOWTX_IND) { /* Begin LOWTX_IND */
1791 if (ch->statusflags & LOWWAIT)
1792 { /* Begin if LOWWAIT */
1793 ch->statusflags &= ~LOWWAIT;
1794 tty_wakeup(tty);
1795 wake_up_interruptible(&tty->write_wait);
1796 } /* End if LOWWAIT */
1797 } else if (event & EMPTYTX_IND) { /* Begin EMPTYTX_IND */
1798 /* This event is generated by setup_empty_event */
1799 ch->statusflags &= ~TXBUSY;
1800 if (ch->statusflags & EMPTYWAIT) { /* Begin if EMPTYWAIT */
1801 ch->statusflags &= ~EMPTYWAIT;
1802 tty_wakeup(tty);
1803 wake_up_interruptible(&tty->write_wait);
1804 } /* End if EMPTYWAIT */
1805 } /* End EMPTYTX_IND */
1806 } /* End if valid tty */
1807 next:
1808 globalwinon(ch);
1809 BUG_ON(!bc);
1810 writew(1, &bc->idata);
1811 writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout);
1812 globalwinon(chan0);
1813 } /* End while something in event queue */
1814 } /* End doevent */
1816 /* --------------------- Begin fepcmd ------------------------ */
1818 static void fepcmd(struct channel *ch, int cmd, int word_or_byte,
1819 int byte2, int ncmds, int bytecmd)
1820 { /* Begin fepcmd */
1821 unchar __iomem *memaddr;
1822 unsigned int head, cmdTail, cmdStart, cmdMax;
1823 long count;
1824 int n;
1826 /* This is the routine in which commands may be passed to the card. */
1828 if (ch->board->status == DISABLED)
1829 return;
1830 assertgwinon(ch);
1831 /* Remember head (As well as max) is just an offset not a base addr */
1832 head = readw(&ch->mailbox->cin);
1833 /* cmdStart is a base address */
1834 cmdStart = readw(&ch->mailbox->cstart);
1835 /* ------------------------------------------------------------------
1836 We do the addition below because we do not want a max pointer
1837 relative to cmdStart. We want a max pointer that points at the
1838 physical end of the command queue.
1839 -------------------------------------------------------------------- */
1840 cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax));
1841 memaddr = ch->board->re_map_membase;
1843 if (head >= (cmdMax - cmdStart) || (head & 03)) {
1844 printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n", __LINE__, cmd, head);
1845 printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n", __LINE__, cmdMax, cmdStart);
1846 return;
1848 if (bytecmd) {
1849 writeb(cmd, memaddr + head + cmdStart + 0);
1850 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1851 /* Below word_or_byte is bits to set */
1852 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1853 /* Below byte2 is bits to reset */
1854 writeb(byte2, memaddr + head + cmdStart + 3);
1855 } else {
1856 writeb(cmd, memaddr + head + cmdStart + 0);
1857 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1858 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1860 head = (head + 4) & (cmdMax - cmdStart - 4);
1861 writew(head, &ch->mailbox->cin);
1862 count = FEPTIMEOUT;
1864 for (;;) { /* Begin forever loop */
1865 count--;
1866 if (count == 0) {
1867 printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n");
1868 return;
1870 head = readw(&ch->mailbox->cin);
1871 cmdTail = readw(&ch->mailbox->cout);
1872 n = (head - cmdTail) & (cmdMax - cmdStart - 4);
1873 /* ----------------------------------------------------------
1874 Basically this will break when the FEP acknowledges the
1875 command by incrementing cmdTail (Making it equal to head).
1876 ------------------------------------------------------------- */
1877 if (n <= ncmds * (sizeof(short) * 4))
1878 break; /* Well nearly forever :-) */
1879 } /* End forever loop */
1880 } /* End fepcmd */
1882 /* ---------------------------------------------------------------------
1883 Digi products use fields in their channels structures that are very
1884 similar to the c_cflag and c_iflag fields typically found in UNIX
1885 termios structures. The below three routines allow mappings
1886 between these hardware "flags" and their respective Linux flags.
1887 ------------------------------------------------------------------------- */
1889 /* --------------------- Begin termios2digi_h -------------------- */
1891 static unsigned termios2digi_h(struct channel *ch, unsigned cflag)
1892 { /* Begin termios2digi_h */
1893 unsigned res = 0;
1895 if (cflag & CRTSCTS) {
1896 ch->digiext.digi_flags |= (RTSPACE | CTSPACE);
1897 res |= ((ch->m_cts) | (ch->m_rts));
1900 if (ch->digiext.digi_flags & RTSPACE)
1901 res |= ch->m_rts;
1903 if (ch->digiext.digi_flags & DTRPACE)
1904 res |= ch->m_dtr;
1906 if (ch->digiext.digi_flags & CTSPACE)
1907 res |= ch->m_cts;
1909 if (ch->digiext.digi_flags & DSRPACE)
1910 res |= ch->dsr;
1912 if (ch->digiext.digi_flags & DCDPACE)
1913 res |= ch->dcd;
1915 if (res & (ch->m_rts))
1916 ch->digiext.digi_flags |= RTSPACE;
1918 if (res & (ch->m_cts))
1919 ch->digiext.digi_flags |= CTSPACE;
1921 return res;
1923 } /* End termios2digi_h */
1925 /* --------------------- Begin termios2digi_i -------------------- */
1926 static unsigned termios2digi_i(struct channel *ch, unsigned iflag)
1927 { /* Begin termios2digi_i */
1929 unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK |
1930 INPCK | ISTRIP|IXON|IXANY|IXOFF);
1931 if (ch->digiext.digi_flags & DIGI_AIXON)
1932 res |= IAIXON;
1933 return res;
1935 } /* End termios2digi_i */
1937 /* --------------------- Begin termios2digi_c -------------------- */
1939 static unsigned termios2digi_c(struct channel *ch, unsigned cflag)
1940 { /* Begin termios2digi_c */
1942 unsigned res = 0;
1943 if (cflag & CBAUDEX) { /* Begin detected CBAUDEX */
1944 ch->digiext.digi_flags |= DIGI_FAST;
1945 /* -------------------------------------------------------------
1946 HUPCL bit is used by FEP to indicate fast baud
1947 table is to be used.
1948 ----------------------------------------------------------------- */
1949 res |= FEP_HUPCL;
1950 } /* End detected CBAUDEX */
1951 else ch->digiext.digi_flags &= ~DIGI_FAST;
1952 /* -------------------------------------------------------------------
1953 CBAUD has bit position 0x1000 set these days to indicate Linux
1954 baud rate remap. Digi hardware can't handle the bit assignment.
1955 (We use a different bit assignment for high speed.). Clear this
1956 bit out.
1957 ---------------------------------------------------------------------- */
1958 res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE);
1959 /* -------------------------------------------------------------
1960 This gets a little confusing. The Digi cards have their own
1961 representation of c_cflags controling baud rate. For the most
1962 part this is identical to the Linux implementation. However;
1963 Digi supports one rate (76800) that Linux doesn't. This means
1964 that the c_cflag entry that would normally mean 76800 for Digi
1965 actually means 115200 under Linux. Without the below mapping,
1966 a stty 115200 would only drive the board at 76800. Since
1967 the rate 230400 is also found after 76800, the same problem afflicts
1968 us when we choose a rate of 230400. Without the below modificiation
1969 stty 230400 would actually give us 115200.
1971 There are two additional differences. The Linux value for CLOCAL
1972 (0x800; 0004000) has no meaning to the Digi hardware. Also in
1973 later releases of Linux; the CBAUD define has CBAUDEX (0x1000;
1974 0010000) ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX
1975 should be checked for a screened out prior to termios2digi_c
1976 returning. Since CLOCAL isn't used by the board this can be
1977 ignored as long as the returned value is used only by Digi hardware.
1978 ----------------------------------------------------------------- */
1979 if (cflag & CBAUDEX) {
1980 /* -------------------------------------------------------------
1981 The below code is trying to guarantee that only baud rates
1982 115200 and 230400 are remapped. We use exclusive or because
1983 the various baud rates share common bit positions and therefore
1984 can't be tested for easily.
1985 ----------------------------------------------------------------- */
1988 if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) ||
1989 (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX))))
1990 res += 1;
1992 return res;
1994 } /* End termios2digi_c */
1996 /* --------------------- Begin epcaparam ----------------------- */
1998 /* Caller must hold the locks */
1999 static void epcaparam(struct tty_struct *tty, struct channel *ch)
2000 { /* Begin epcaparam */
2002 unsigned int cmdHead;
2003 struct termios *ts;
2004 struct board_chan __iomem *bc;
2005 unsigned mval, hflow, cflag, iflag;
2007 bc = ch->brdchan;
2008 epcaassert(bc !=0, "bc out of range");
2010 assertgwinon(ch);
2011 ts = tty->termios;
2012 if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */
2013 cmdHead = readw(&bc->rin);
2014 writew(cmdHead, &bc->rout);
2015 cmdHead = readw(&bc->tin);
2016 /* Changing baud in mid-stream transmission can be wonderful */
2017 /* ---------------------------------------------------------------
2018 Flush current transmit buffer by setting cmdTail pointer (tout)
2019 to cmdHead pointer (tin). Hopefully the transmit buffer is empty.
2020 ----------------------------------------------------------------- */
2021 fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0);
2022 mval = 0;
2023 } else { /* Begin CBAUD not detected */
2024 /* -------------------------------------------------------------------
2025 c_cflags have changed but that change had nothing to do with BAUD.
2026 Propagate the change to the card.
2027 ---------------------------------------------------------------------- */
2028 cflag = termios2digi_c(ch, ts->c_cflag);
2029 if (cflag != ch->fepcflag) {
2030 ch->fepcflag = cflag;
2031 /* Set baud rate, char size, stop bits, parity */
2032 fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0);
2034 /* ----------------------------------------------------------------
2035 If the user has not forced CLOCAL and if the device is not a
2036 CALLOUT device (Which is always CLOCAL) we set flags such that
2037 the driver will wait on carrier detect.
2038 ------------------------------------------------------------------- */
2039 if (ts->c_cflag & CLOCAL)
2040 ch->asyncflags &= ~ASYNC_CHECK_CD;
2041 else
2042 ch->asyncflags |= ASYNC_CHECK_CD;
2043 mval = ch->m_dtr | ch->m_rts;
2044 } /* End CBAUD not detected */
2045 iflag = termios2digi_i(ch, ts->c_iflag);
2046 /* Check input mode flags */
2047 if (iflag != ch->fepiflag) {
2048 ch->fepiflag = iflag;
2049 /* ---------------------------------------------------------------
2050 Command sets channels iflag structure on the board. Such things
2051 as input soft flow control, handling of parity errors, and
2052 break handling are all set here.
2053 ------------------------------------------------------------------- */
2054 /* break handling, parity handling, input stripping, flow control chars */
2055 fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0);
2057 /* ---------------------------------------------------------------
2058 Set the board mint value for this channel. This will cause hardware
2059 events to be generated each time the DCD signal (Described in mint)
2060 changes.
2061 ------------------------------------------------------------------- */
2062 writeb(ch->dcd, &bc->mint);
2063 if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD))
2064 if (ch->digiext.digi_flags & DIGI_FORCEDCD)
2065 writeb(0, &bc->mint);
2066 ch->imodem = readb(&bc->mstat);
2067 hflow = termios2digi_h(ch, ts->c_cflag);
2068 if (hflow != ch->hflow) {
2069 ch->hflow = hflow;
2070 /* --------------------------------------------------------------
2071 Hard flow control has been selected but the board is not
2072 using it. Activate hard flow control now.
2073 ----------------------------------------------------------------- */
2074 fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1);
2076 mval ^= ch->modemfake & (mval ^ ch->modem);
2078 if (ch->omodem ^ mval) {
2079 ch->omodem = mval;
2080 /* --------------------------------------------------------------
2081 The below command sets the DTR and RTS mstat structure. If
2082 hard flow control is NOT active these changes will drive the
2083 output of the actual DTR and RTS lines. If hard flow control
2084 is active, the changes will be saved in the mstat structure and
2085 only asserted when hard flow control is turned off.
2086 ----------------------------------------------------------------- */
2088 /* First reset DTR & RTS; then set them */
2089 fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1);
2090 fepcmd(ch, SETMODEM, mval, 0, 0, 1);
2092 if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) {
2093 ch->fepstartc = ch->startc;
2094 ch->fepstopc = ch->stopc;
2095 /* ------------------------------------------------------------
2096 The XON / XOFF characters have changed; propagate these
2097 changes to the card.
2098 --------------------------------------------------------------- */
2099 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2101 if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) {
2102 ch->fepstartca = ch->startca;
2103 ch->fepstopca = ch->stopca;
2104 /* ---------------------------------------------------------------
2105 Similar to the above, this time the auxilarly XON / XOFF
2106 characters have changed; propagate these changes to the card.
2107 ------------------------------------------------------------------ */
2108 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2110 } /* End epcaparam */
2112 /* --------------------- Begin receive_data ----------------------- */
2113 /* Caller holds lock */
2114 static void receive_data(struct channel *ch)
2115 { /* Begin receive_data */
2117 unchar *rptr;
2118 struct termios *ts = NULL;
2119 struct tty_struct *tty;
2120 struct board_chan __iomem *bc;
2121 int dataToRead, wrapgap, bytesAvailable;
2122 unsigned int tail, head;
2123 unsigned int wrapmask;
2125 /* ---------------------------------------------------------------
2126 This routine is called by doint when a receive data event
2127 has taken place.
2128 ------------------------------------------------------------------- */
2130 globalwinon(ch);
2131 if (ch->statusflags & RXSTOPPED)
2132 return;
2133 tty = ch->tty;
2134 if (tty)
2135 ts = tty->termios;
2136 bc = ch->brdchan;
2137 BUG_ON(!bc);
2138 wrapmask = ch->rxbufsize - 1;
2140 /* ---------------------------------------------------------------------
2141 Get the head and tail pointers to the receiver queue. Wrap the
2142 head pointer if it has reached the end of the buffer.
2143 ------------------------------------------------------------------------ */
2144 head = readw(&bc->rin);
2145 head &= wrapmask;
2146 tail = readw(&bc->rout) & wrapmask;
2148 bytesAvailable = (head - tail) & wrapmask;
2149 if (bytesAvailable == 0)
2150 return;
2152 /* ------------------------------------------------------------------
2153 If CREAD bit is off or device not open, set TX tail to head
2154 --------------------------------------------------------------------- */
2156 if (!tty || !ts || !(ts->c_cflag & CREAD)) {
2157 writew(head, &bc->rout);
2158 return;
2161 if (tty_buffer_request_room(tty, bytesAvailable + 1) == 0)
2162 return;
2164 if (readb(&bc->orun)) {
2165 writeb(0, &bc->orun);
2166 printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",tty->name);
2167 tty_insert_flip_char(tty, 0, TTY_OVERRUN);
2169 rxwinon(ch);
2170 while (bytesAvailable > 0) { /* Begin while there is data on the card */
2171 wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail;
2172 /* ---------------------------------------------------------------
2173 Even if head has wrapped around only report the amount of
2174 data to be equal to the size - tail. Remember memcpy can't
2175 automaticly wrap around the receive buffer.
2176 ----------------------------------------------------------------- */
2177 dataToRead = (wrapgap < bytesAvailable) ? wrapgap : bytesAvailable;
2178 /* --------------------------------------------------------------
2179 Make sure we don't overflow the buffer
2180 ----------------------------------------------------------------- */
2181 dataToRead = tty_prepare_flip_string(tty, &rptr, dataToRead);
2182 if (dataToRead == 0)
2183 break;
2184 /* ---------------------------------------------------------------
2185 Move data read from our card into the line disciplines buffer
2186 for translation if necessary.
2187 ------------------------------------------------------------------ */
2188 memcpy_fromio(rptr, ch->rxptr + tail, dataToRead);
2189 tail = (tail + dataToRead) & wrapmask;
2190 bytesAvailable -= dataToRead;
2191 } /* End while there is data on the card */
2192 globalwinon(ch);
2193 writew(tail, &bc->rout);
2194 /* Must be called with global data */
2195 tty_schedule_flip(ch->tty);
2196 return;
2197 } /* End receive_data */
2199 static int info_ioctl(struct tty_struct *tty, struct file * file,
2200 unsigned int cmd, unsigned long arg)
2202 switch (cmd)
2203 { /* Begin switch cmd */
2204 case DIGI_GETINFO:
2205 { /* Begin case DIGI_GETINFO */
2206 struct digi_info di ;
2207 int brd;
2209 if(get_user(brd, (unsigned int __user *)arg))
2210 return -EFAULT;
2211 if (brd < 0 || brd >= num_cards || num_cards == 0)
2212 return -ENODEV;
2214 memset(&di, 0, sizeof(di));
2216 di.board = brd ;
2217 di.status = boards[brd].status;
2218 di.type = boards[brd].type ;
2219 di.numports = boards[brd].numports ;
2220 /* Legacy fixups - just move along nothing to see */
2221 di.port = (unsigned char *)boards[brd].port ;
2222 di.membase = (unsigned char *)boards[brd].membase ;
2224 if (copy_to_user((void __user *)arg, &di, sizeof (di)))
2225 return -EFAULT;
2226 break;
2228 } /* End case DIGI_GETINFO */
2230 case DIGI_POLLER:
2231 { /* Begin case DIGI_POLLER */
2233 int brd = arg & 0xff000000 >> 16 ;
2234 unsigned char state = arg & 0xff ;
2236 if (brd < 0 || brd >= num_cards) {
2237 printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n");
2238 return (-ENODEV);
2240 digi_poller_inhibited = state ;
2241 break ;
2242 } /* End case DIGI_POLLER */
2244 case DIGI_INIT:
2245 { /* Begin case DIGI_INIT */
2246 /* ------------------------------------------------------------
2247 This call is made by the apps to complete the initilization
2248 of the board(s). This routine is responsible for setting
2249 the card to its initial state and setting the drivers control
2250 fields to the sutianle settings for the card in question.
2251 ---------------------------------------------------------------- */
2252 int crd ;
2253 for (crd = 0; crd < num_cards; crd++)
2254 post_fep_init (crd);
2255 break ;
2256 } /* End case DIGI_INIT */
2257 default:
2258 return -ENOTTY;
2259 } /* End switch cmd */
2260 return (0) ;
2262 /* --------------------- Begin pc_ioctl ----------------------- */
2264 static int pc_tiocmget(struct tty_struct *tty, struct file *file)
2266 struct channel *ch = (struct channel *) tty->driver_data;
2267 struct board_chan __iomem *bc;
2268 unsigned int mstat, mflag = 0;
2269 unsigned long flags;
2271 if (ch)
2272 bc = ch->brdchan;
2273 else
2274 return -EINVAL;
2276 spin_lock_irqsave(&epca_lock, flags);
2277 globalwinon(ch);
2278 mstat = readb(&bc->mstat);
2279 memoff(ch);
2280 spin_unlock_irqrestore(&epca_lock, flags);
2282 if (mstat & ch->m_dtr)
2283 mflag |= TIOCM_DTR;
2284 if (mstat & ch->m_rts)
2285 mflag |= TIOCM_RTS;
2286 if (mstat & ch->m_cts)
2287 mflag |= TIOCM_CTS;
2288 if (mstat & ch->dsr)
2289 mflag |= TIOCM_DSR;
2290 if (mstat & ch->m_ri)
2291 mflag |= TIOCM_RI;
2292 if (mstat & ch->dcd)
2293 mflag |= TIOCM_CD;
2294 return mflag;
2297 static int pc_tiocmset(struct tty_struct *tty, struct file *file,
2298 unsigned int set, unsigned int clear)
2300 struct channel *ch = (struct channel *) tty->driver_data;
2301 unsigned long flags;
2303 if (!ch)
2304 return -EINVAL;
2306 spin_lock_irqsave(&epca_lock, flags);
2308 * I think this modemfake stuff is broken. It doesn't
2309 * correctly reflect the behaviour desired by the TIOCM*
2310 * ioctls. Therefore this is probably broken.
2312 if (set & TIOCM_RTS) {
2313 ch->modemfake |= ch->m_rts;
2314 ch->modem |= ch->m_rts;
2316 if (set & TIOCM_DTR) {
2317 ch->modemfake |= ch->m_dtr;
2318 ch->modem |= ch->m_dtr;
2320 if (clear & TIOCM_RTS) {
2321 ch->modemfake |= ch->m_rts;
2322 ch->modem &= ~ch->m_rts;
2324 if (clear & TIOCM_DTR) {
2325 ch->modemfake |= ch->m_dtr;
2326 ch->modem &= ~ch->m_dtr;
2328 globalwinon(ch);
2329 /* --------------------------------------------------------------
2330 The below routine generally sets up parity, baud, flow control
2331 issues, etc.... It effect both control flags and input flags.
2332 ------------------------------------------------------------------ */
2333 epcaparam(tty,ch);
2334 memoff(ch);
2335 spin_unlock_irqrestore(&epca_lock, flags);
2336 return 0;
2339 static int pc_ioctl(struct tty_struct *tty, struct file * file,
2340 unsigned int cmd, unsigned long arg)
2341 { /* Begin pc_ioctl */
2343 digiflow_t dflow;
2344 int retval;
2345 unsigned long flags;
2346 unsigned int mflag, mstat;
2347 unsigned char startc, stopc;
2348 struct board_chan __iomem *bc;
2349 struct channel *ch = (struct channel *) tty->driver_data;
2350 void __user *argp = (void __user *)arg;
2352 if (ch)
2353 bc = ch->brdchan;
2354 else
2355 return -EINVAL;
2357 /* -------------------------------------------------------------------
2358 For POSIX compliance we need to add more ioctls. See tty_ioctl.c
2359 in /usr/src/linux/drivers/char for a good example. In particular
2360 think about adding TCSETAF, TCSETAW, TCSETA, TCSETSF, TCSETSW, TCSETS.
2361 ---------------------------------------------------------------------- */
2363 switch (cmd)
2364 { /* Begin switch cmd */
2366 case TCGETS:
2367 if (copy_to_user(argp, tty->termios, sizeof(struct termios)))
2368 return -EFAULT;
2369 return 0;
2370 case TCGETA:
2371 return get_termio(tty, argp);
2372 case TCSBRK: /* SVID version: non-zero arg --> no break */
2373 retval = tty_check_change(tty);
2374 if (retval)
2375 return retval;
2376 /* Setup an event to indicate when the transmit buffer empties */
2377 spin_lock_irqsave(&epca_lock, flags);
2378 setup_empty_event(tty,ch);
2379 spin_unlock_irqrestore(&epca_lock, flags);
2380 tty_wait_until_sent(tty, 0);
2381 if (!arg)
2382 digi_send_break(ch, HZ/4); /* 1/4 second */
2383 return 0;
2384 case TCSBRKP: /* support for POSIX tcsendbreak() */
2385 retval = tty_check_change(tty);
2386 if (retval)
2387 return retval;
2389 /* Setup an event to indicate when the transmit buffer empties */
2390 spin_lock_irqsave(&epca_lock, flags);
2391 setup_empty_event(tty,ch);
2392 spin_unlock_irqrestore(&epca_lock, flags);
2393 tty_wait_until_sent(tty, 0);
2394 digi_send_break(ch, arg ? arg*(HZ/10) : HZ/4);
2395 return 0;
2396 case TIOCGSOFTCAR:
2397 if (put_user(C_CLOCAL(tty)?1:0, (unsigned long __user *)arg))
2398 return -EFAULT;
2399 return 0;
2400 case TIOCSSOFTCAR:
2402 unsigned int value;
2404 if (get_user(value, (unsigned __user *)argp))
2405 return -EFAULT;
2406 tty->termios->c_cflag =
2407 ((tty->termios->c_cflag & ~CLOCAL) |
2408 (value ? CLOCAL : 0));
2409 return 0;
2411 case TIOCMODG:
2412 mflag = pc_tiocmget(tty, file);
2413 if (put_user(mflag, (unsigned long __user *)argp))
2414 return -EFAULT;
2415 break;
2416 case TIOCMODS:
2417 if (get_user(mstat, (unsigned __user *)argp))
2418 return -EFAULT;
2419 return pc_tiocmset(tty, file, mstat, ~mstat);
2420 case TIOCSDTR:
2421 spin_lock_irqsave(&epca_lock, flags);
2422 ch->omodem |= ch->m_dtr;
2423 globalwinon(ch);
2424 fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1);
2425 memoff(ch);
2426 spin_unlock_irqrestore(&epca_lock, flags);
2427 break;
2429 case TIOCCDTR:
2430 spin_lock_irqsave(&epca_lock, flags);
2431 ch->omodem &= ~ch->m_dtr;
2432 globalwinon(ch);
2433 fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1);
2434 memoff(ch);
2435 spin_unlock_irqrestore(&epca_lock, flags);
2436 break;
2437 case DIGI_GETA:
2438 if (copy_to_user(argp, &ch->digiext, sizeof(digi_t)))
2439 return -EFAULT;
2440 break;
2441 case DIGI_SETAW:
2442 case DIGI_SETAF:
2443 if (cmd == DIGI_SETAW) {
2444 /* Setup an event to indicate when the transmit buffer empties */
2445 spin_lock_irqsave(&epca_lock, flags);
2446 setup_empty_event(tty,ch);
2447 spin_unlock_irqrestore(&epca_lock, flags);
2448 tty_wait_until_sent(tty, 0);
2449 } else {
2450 /* ldisc lock already held in ioctl */
2451 if (tty->ldisc.flush_buffer)
2452 tty->ldisc.flush_buffer(tty);
2454 /* Fall Thru */
2455 case DIGI_SETA:
2456 if (copy_from_user(&ch->digiext, argp, sizeof(digi_t)))
2457 return -EFAULT;
2459 if (ch->digiext.digi_flags & DIGI_ALTPIN) {
2460 ch->dcd = ch->m_dsr;
2461 ch->dsr = ch->m_dcd;
2462 } else {
2463 ch->dcd = ch->m_dcd;
2464 ch->dsr = ch->m_dsr;
2467 spin_lock_irqsave(&epca_lock, flags);
2468 globalwinon(ch);
2470 /* -----------------------------------------------------------------
2471 The below routine generally sets up parity, baud, flow control
2472 issues, etc.... It effect both control flags and input flags.
2473 ------------------------------------------------------------------- */
2475 epcaparam(tty,ch);
2476 memoff(ch);
2477 spin_unlock_irqrestore(&epca_lock, flags);
2478 break;
2480 case DIGI_GETFLOW:
2481 case DIGI_GETAFLOW:
2482 spin_lock_irqsave(&epca_lock, flags);
2483 globalwinon(ch);
2484 if (cmd == DIGI_GETFLOW) {
2485 dflow.startc = readb(&bc->startc);
2486 dflow.stopc = readb(&bc->stopc);
2487 } else {
2488 dflow.startc = readb(&bc->startca);
2489 dflow.stopc = readb(&bc->stopca);
2491 memoff(ch);
2492 spin_unlock_irqrestore(&epca_lock, flags);
2494 if (copy_to_user(argp, &dflow, sizeof(dflow)))
2495 return -EFAULT;
2496 break;
2498 case DIGI_SETAFLOW:
2499 case DIGI_SETFLOW:
2500 if (cmd == DIGI_SETFLOW) {
2501 startc = ch->startc;
2502 stopc = ch->stopc;
2503 } else {
2504 startc = ch->startca;
2505 stopc = ch->stopca;
2508 if (copy_from_user(&dflow, argp, sizeof(dflow)))
2509 return -EFAULT;
2511 if (dflow.startc != startc || dflow.stopc != stopc) { /* Begin if setflow toggled */
2512 spin_lock_irqsave(&epca_lock, flags);
2513 globalwinon(ch);
2515 if (cmd == DIGI_SETFLOW) {
2516 ch->fepstartc = ch->startc = dflow.startc;
2517 ch->fepstopc = ch->stopc = dflow.stopc;
2518 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2519 } else {
2520 ch->fepstartca = ch->startca = dflow.startc;
2521 ch->fepstopca = ch->stopca = dflow.stopc;
2522 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2525 if (ch->statusflags & TXSTOPPED)
2526 pc_start(tty);
2528 memoff(ch);
2529 spin_unlock_irqrestore(&epca_lock, flags);
2530 } /* End if setflow toggled */
2531 break;
2532 default:
2533 return -ENOIOCTLCMD;
2534 } /* End switch cmd */
2535 return 0;
2536 } /* End pc_ioctl */
2538 /* --------------------- Begin pc_set_termios ----------------------- */
2540 static void pc_set_termios(struct tty_struct *tty, struct termios *old_termios)
2541 { /* Begin pc_set_termios */
2543 struct channel *ch;
2544 unsigned long flags;
2545 /* ---------------------------------------------------------
2546 verifyChannel returns the channel from the tty struct
2547 if it is valid. This serves as a sanity check.
2548 ------------------------------------------------------------- */
2549 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2550 spin_lock_irqsave(&epca_lock, flags);
2551 globalwinon(ch);
2552 epcaparam(tty, ch);
2553 memoff(ch);
2554 spin_unlock_irqrestore(&epca_lock, flags);
2556 if ((old_termios->c_cflag & CRTSCTS) &&
2557 ((tty->termios->c_cflag & CRTSCTS) == 0))
2558 tty->hw_stopped = 0;
2560 if (!(old_termios->c_cflag & CLOCAL) &&
2561 (tty->termios->c_cflag & CLOCAL))
2562 wake_up_interruptible(&ch->open_wait);
2564 } /* End if channel valid */
2566 } /* End pc_set_termios */
2568 /* --------------------- Begin do_softint ----------------------- */
2570 static void do_softint(void *private_)
2571 { /* Begin do_softint */
2572 struct channel *ch = (struct channel *) private_;
2573 /* Called in response to a modem change event */
2574 if (ch && ch->magic == EPCA_MAGIC) { /* Begin EPCA_MAGIC */
2575 struct tty_struct *tty = ch->tty;
2577 if (tty && tty->driver_data) {
2578 if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) { /* Begin if clear_bit */
2579 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2580 wake_up_interruptible(&ch->open_wait);
2581 ch->asyncflags &= ~ASYNC_NORMAL_ACTIVE;
2582 } /* End if clear_bit */
2584 } /* End EPCA_MAGIC */
2585 } /* End do_softint */
2587 /* ------------------------------------------------------------
2588 pc_stop and pc_start provide software flow control to the
2589 routine and the pc_ioctl routine.
2590 ---------------------------------------------------------------- */
2592 /* --------------------- Begin pc_stop ----------------------- */
2594 static void pc_stop(struct tty_struct *tty)
2595 { /* Begin pc_stop */
2597 struct channel *ch;
2598 unsigned long flags;
2599 /* ---------------------------------------------------------
2600 verifyChannel returns the channel from the tty struct
2601 if it is valid. This serves as a sanity check.
2602 ------------------------------------------------------------- */
2603 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if valid channel */
2604 spin_lock_irqsave(&epca_lock, flags);
2605 if ((ch->statusflags & TXSTOPPED) == 0) { /* Begin if transmit stop requested */
2606 globalwinon(ch);
2607 /* STOP transmitting now !! */
2608 fepcmd(ch, PAUSETX, 0, 0, 0, 0);
2609 ch->statusflags |= TXSTOPPED;
2610 memoff(ch);
2611 } /* End if transmit stop requested */
2612 spin_unlock_irqrestore(&epca_lock, flags);
2613 } /* End if valid channel */
2614 } /* End pc_stop */
2616 /* --------------------- Begin pc_start ----------------------- */
2618 static void pc_start(struct tty_struct *tty)
2619 { /* Begin pc_start */
2620 struct channel *ch;
2621 /* ---------------------------------------------------------
2622 verifyChannel returns the channel from the tty struct
2623 if it is valid. This serves as a sanity check.
2624 ------------------------------------------------------------- */
2625 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2626 unsigned long flags;
2627 spin_lock_irqsave(&epca_lock, flags);
2628 /* Just in case output was resumed because of a change in Digi-flow */
2629 if (ch->statusflags & TXSTOPPED) { /* Begin transmit resume requested */
2630 struct board_chan __iomem *bc;
2631 globalwinon(ch);
2632 bc = ch->brdchan;
2633 if (ch->statusflags & LOWWAIT)
2634 writeb(1, &bc->ilow);
2635 /* Okay, you can start transmitting again... */
2636 fepcmd(ch, RESUMETX, 0, 0, 0, 0);
2637 ch->statusflags &= ~TXSTOPPED;
2638 memoff(ch);
2639 } /* End transmit resume requested */
2640 spin_unlock_irqrestore(&epca_lock, flags);
2641 } /* End if channel valid */
2642 } /* End pc_start */
2644 /* ------------------------------------------------------------------
2645 The below routines pc_throttle and pc_unthrottle are used
2646 to slow (And resume) the receipt of data into the kernels
2647 receive buffers. The exact occurrence of this depends on the
2648 size of the kernels receive buffer and what the 'watermarks'
2649 are set to for that buffer. See the n_ttys.c file for more
2650 details.
2651 ______________________________________________________________________ */
2652 /* --------------------- Begin throttle ----------------------- */
2654 static void pc_throttle(struct tty_struct * tty)
2655 { /* Begin pc_throttle */
2656 struct channel *ch;
2657 unsigned long flags;
2658 /* ---------------------------------------------------------
2659 verifyChannel returns the channel from the tty struct
2660 if it is valid. This serves as a sanity check.
2661 ------------------------------------------------------------- */
2662 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2663 spin_lock_irqsave(&epca_lock, flags);
2664 if ((ch->statusflags & RXSTOPPED) == 0) {
2665 globalwinon(ch);
2666 fepcmd(ch, PAUSERX, 0, 0, 0, 0);
2667 ch->statusflags |= RXSTOPPED;
2668 memoff(ch);
2670 spin_unlock_irqrestore(&epca_lock, flags);
2671 } /* End if channel valid */
2672 } /* End pc_throttle */
2674 /* --------------------- Begin unthrottle ----------------------- */
2676 static void pc_unthrottle(struct tty_struct *tty)
2677 { /* Begin pc_unthrottle */
2678 struct channel *ch;
2679 unsigned long flags;
2680 /* ---------------------------------------------------------
2681 verifyChannel returns the channel from the tty struct
2682 if it is valid. This serves as a sanity check.
2683 ------------------------------------------------------------- */
2684 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2685 /* Just in case output was resumed because of a change in Digi-flow */
2686 spin_lock_irqsave(&epca_lock, flags);
2687 if (ch->statusflags & RXSTOPPED) {
2688 globalwinon(ch);
2689 fepcmd(ch, RESUMERX, 0, 0, 0, 0);
2690 ch->statusflags &= ~RXSTOPPED;
2691 memoff(ch);
2693 spin_unlock_irqrestore(&epca_lock, flags);
2694 } /* End if channel valid */
2695 } /* End pc_unthrottle */
2697 /* --------------------- Begin digi_send_break ----------------------- */
2699 void digi_send_break(struct channel *ch, int msec)
2700 { /* Begin digi_send_break */
2701 unsigned long flags;
2703 spin_lock_irqsave(&epca_lock, flags);
2704 globalwinon(ch);
2705 /* --------------------------------------------------------------------
2706 Maybe I should send an infinite break here, schedule() for
2707 msec amount of time, and then stop the break. This way,
2708 the user can't screw up the FEP by causing digi_send_break()
2709 to be called (i.e. via an ioctl()) more than once in msec amount
2710 of time. Try this for now...
2711 ------------------------------------------------------------------------ */
2712 fepcmd(ch, SENDBREAK, msec, 0, 10, 0);
2713 memoff(ch);
2714 spin_unlock_irqrestore(&epca_lock, flags);
2715 } /* End digi_send_break */
2717 /* --------------------- Begin setup_empty_event ----------------------- */
2719 /* Caller MUST hold the lock */
2721 static void setup_empty_event(struct tty_struct *tty, struct channel *ch)
2722 { /* Begin setup_empty_event */
2724 struct board_chan __iomem *bc = ch->brdchan;
2726 globalwinon(ch);
2727 ch->statusflags |= EMPTYWAIT;
2728 /* ------------------------------------------------------------------
2729 When set the iempty flag request a event to be generated when the
2730 transmit buffer is empty (If there is no BREAK in progress).
2731 --------------------------------------------------------------------- */
2732 writeb(1, &bc->iempty);
2733 memoff(ch);
2734 } /* End setup_empty_event */
2736 /* --------------------- Begin get_termio ----------------------- */
2738 static int get_termio(struct tty_struct * tty, struct termio __user * termio)
2739 { /* Begin get_termio */
2740 return kernel_termios_to_user_termio(termio, tty->termios);
2741 } /* End get_termio */
2743 /* ---------------------- Begin epca_setup -------------------------- */
2744 void epca_setup(char *str, int *ints)
2745 { /* Begin epca_setup */
2746 struct board_info board;
2747 int index, loop, last;
2748 char *temp, *t2;
2749 unsigned len;
2751 /* ----------------------------------------------------------------------
2752 If this routine looks a little strange it is because it is only called
2753 if a LILO append command is given to boot the kernel with parameters.
2754 In this way, we can provide the user a method of changing his board
2755 configuration without rebuilding the kernel.
2756 ----------------------------------------------------------------------- */
2757 if (!liloconfig)
2758 liloconfig = 1;
2760 memset(&board, 0, sizeof(board));
2762 /* Assume the data is int first, later we can change it */
2763 /* I think that array position 0 of ints holds the number of args */
2764 for (last = 0, index = 1; index <= ints[0]; index++)
2765 switch(index)
2766 { /* Begin parse switch */
2767 case 1:
2768 board.status = ints[index];
2769 /* ---------------------------------------------------------
2770 We check for 2 (As opposed to 1; because 2 is a flag
2771 instructing the driver to ignore epcaconfig.) For this
2772 reason we check for 2.
2773 ------------------------------------------------------------ */
2774 if (board.status == 2) { /* Begin ignore epcaconfig as well as lilo cmd line */
2775 nbdevs = 0;
2776 num_cards = 0;
2777 return;
2778 } /* End ignore epcaconfig as well as lilo cmd line */
2780 if (board.status > 2) {
2781 printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n", board.status);
2782 invalid_lilo_config = 1;
2783 setup_error_code |= INVALID_BOARD_STATUS;
2784 return;
2786 last = index;
2787 break;
2788 case 2:
2789 board.type = ints[index];
2790 if (board.type >= PCIXEM) {
2791 printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type);
2792 invalid_lilo_config = 1;
2793 setup_error_code |= INVALID_BOARD_TYPE;
2794 return;
2796 last = index;
2797 break;
2798 case 3:
2799 board.altpin = ints[index];
2800 if (board.altpin > 1) {
2801 printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin);
2802 invalid_lilo_config = 1;
2803 setup_error_code |= INVALID_ALTPIN;
2804 return;
2806 last = index;
2807 break;
2809 case 4:
2810 board.numports = ints[index];
2811 if (board.numports < 2 || board.numports > 256) {
2812 printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports);
2813 invalid_lilo_config = 1;
2814 setup_error_code |= INVALID_NUM_PORTS;
2815 return;
2817 nbdevs += board.numports;
2818 last = index;
2819 break;
2821 case 5:
2822 board.port = ints[index];
2823 if (ints[index] <= 0) {
2824 printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port);
2825 invalid_lilo_config = 1;
2826 setup_error_code |= INVALID_PORT_BASE;
2827 return;
2829 last = index;
2830 break;
2832 case 6:
2833 board.membase = ints[index];
2834 if (ints[index] <= 0) {
2835 printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",(unsigned int)board.membase);
2836 invalid_lilo_config = 1;
2837 setup_error_code |= INVALID_MEM_BASE;
2838 return;
2840 last = index;
2841 break;
2843 default:
2844 printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n");
2845 return;
2847 } /* End parse switch */
2849 while (str && *str) { /* Begin while there is a string arg */
2850 /* find the next comma or terminator */
2851 temp = str;
2852 /* While string is not null, and a comma hasn't been found */
2853 while (*temp && (*temp != ','))
2854 temp++;
2855 if (!*temp)
2856 temp = NULL;
2857 else
2858 *temp++ = 0;
2859 /* Set index to the number of args + 1 */
2860 index = last + 1;
2862 switch(index)
2864 case 1:
2865 len = strlen(str);
2866 if (strncmp("Disable", str, len) == 0)
2867 board.status = 0;
2868 else if (strncmp("Enable", str, len) == 0)
2869 board.status = 1;
2870 else {
2871 printk(KERN_ERR "epca_setup: Invalid status %s\n", str);
2872 invalid_lilo_config = 1;
2873 setup_error_code |= INVALID_BOARD_STATUS;
2874 return;
2876 last = index;
2877 break;
2879 case 2:
2880 for(loop = 0; loop < EPCA_NUM_TYPES; loop++)
2881 if (strcmp(board_desc[loop], str) == 0)
2882 break;
2883 /* ---------------------------------------------------------------
2884 If the index incremented above refers to a legitamate board
2885 type set it here.
2886 ------------------------------------------------------------------*/
2887 if (index < EPCA_NUM_TYPES)
2888 board.type = loop;
2889 else {
2890 printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str);
2891 invalid_lilo_config = 1;
2892 setup_error_code |= INVALID_BOARD_TYPE;
2893 return;
2895 last = index;
2896 break;
2898 case 3:
2899 len = strlen(str);
2900 if (strncmp("Disable", str, len) == 0)
2901 board.altpin = 0;
2902 else if (strncmp("Enable", str, len) == 0)
2903 board.altpin = 1;
2904 else {
2905 printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str);
2906 invalid_lilo_config = 1;
2907 setup_error_code |= INVALID_ALTPIN;
2908 return;
2910 last = index;
2911 break;
2913 case 4:
2914 t2 = str;
2915 while (isdigit(*t2))
2916 t2++;
2918 if (*t2) {
2919 printk(KERN_ERR "epca_setup: Invalid port count %s\n", str);
2920 invalid_lilo_config = 1;
2921 setup_error_code |= INVALID_NUM_PORTS;
2922 return;
2925 /* ------------------------------------------------------------
2926 There is not a man page for simple_strtoul but the code can be
2927 found in vsprintf.c. The first argument is the string to
2928 translate (To an unsigned long obviously), the second argument
2929 can be the address of any character variable or a NULL. If a
2930 variable is given, the end pointer of the string will be stored
2931 in that variable; if a NULL is given the end pointer will
2932 not be returned. The last argument is the base to use. If
2933 a 0 is indicated, the routine will attempt to determine the
2934 proper base by looking at the values prefix (A '0' for octal,
2935 a 'x' for hex, etc ... If a value is given it will use that
2936 value as the base.
2937 ---------------------------------------------------------------- */
2938 board.numports = simple_strtoul(str, NULL, 0);
2939 nbdevs += board.numports;
2940 last = index;
2941 break;
2943 case 5:
2944 t2 = str;
2945 while (isxdigit(*t2))
2946 t2++;
2948 if (*t2) {
2949 printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str);
2950 invalid_lilo_config = 1;
2951 setup_error_code |= INVALID_PORT_BASE;
2952 return;
2955 board.port = simple_strtoul(str, NULL, 16);
2956 last = index;
2957 break;
2959 case 6:
2960 t2 = str;
2961 while (isxdigit(*t2))
2962 t2++;
2964 if (*t2) {
2965 printk(KERN_ERR "epca_setup: Invalid memory base %s\n",str);
2966 invalid_lilo_config = 1;
2967 setup_error_code |= INVALID_MEM_BASE;
2968 return;
2970 board.membase = simple_strtoul(str, NULL, 16);
2971 last = index;
2972 break;
2973 default:
2974 printk(KERN_ERR "epca: Too many string parms\n");
2975 return;
2977 str = temp;
2978 } /* End while there is a string arg */
2980 if (last < 6) {
2981 printk(KERN_ERR "epca: Insufficient parms specified\n");
2982 return;
2985 /* I should REALLY validate the stuff here */
2986 /* Copies our local copy of board into boards */
2987 memcpy((void *)&boards[num_cards],(void *)&board, sizeof(board));
2988 /* Does this get called once per lilo arg are what ? */
2989 printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n",
2990 num_cards, board_desc[board.type],
2991 board.numports, (int)board.port, (unsigned int) board.membase);
2992 num_cards++;
2993 } /* End epca_setup */
2996 /* ------------------------ Begin init_PCI --------------------------- */
2998 enum epic_board_types {
2999 brd_xr = 0,
3000 brd_xem,
3001 brd_cx,
3002 brd_xrj,
3006 /* indexed directly by epic_board_types enum */
3007 static struct {
3008 unsigned char board_type;
3009 unsigned bar_idx; /* PCI base address region */
3010 } epca_info_tbl[] = {
3011 { PCIXR, 0, },
3012 { PCIXEM, 0, },
3013 { PCICX, 0, },
3014 { PCIXRJ, 2, },
3017 static int __devinit epca_init_one (struct pci_dev *pdev,
3018 const struct pci_device_id *ent)
3020 static int board_num = -1;
3021 int board_idx, info_idx = ent->driver_data;
3022 unsigned long addr;
3024 if (pci_enable_device(pdev))
3025 return -EIO;
3027 board_num++;
3028 board_idx = board_num + num_cards;
3029 if (board_idx >= MAXBOARDS)
3030 goto err_out;
3032 addr = pci_resource_start (pdev, epca_info_tbl[info_idx].bar_idx);
3033 if (!addr) {
3034 printk (KERN_ERR PFX "PCI region #%d not available (size 0)\n",
3035 epca_info_tbl[info_idx].bar_idx);
3036 goto err_out;
3039 boards[board_idx].status = ENABLED;
3040 boards[board_idx].type = epca_info_tbl[info_idx].board_type;
3041 boards[board_idx].numports = 0x0;
3042 boards[board_idx].port = addr + PCI_IO_OFFSET;
3043 boards[board_idx].membase = addr;
3045 if (!request_mem_region (addr + PCI_IO_OFFSET, 0x200000, "epca")) {
3046 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3047 0x200000, addr + PCI_IO_OFFSET);
3048 goto err_out;
3051 boards[board_idx].re_map_port = ioremap(addr + PCI_IO_OFFSET, 0x200000);
3052 if (!boards[board_idx].re_map_port) {
3053 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3054 0x200000, addr + PCI_IO_OFFSET);
3055 goto err_out_free_pciio;
3058 if (!request_mem_region (addr, 0x200000, "epca")) {
3059 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3060 0x200000, addr);
3061 goto err_out_free_iounmap;
3064 boards[board_idx].re_map_membase = ioremap(addr, 0x200000);
3065 if (!boards[board_idx].re_map_membase) {
3066 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3067 0x200000, addr + PCI_IO_OFFSET);
3068 goto err_out_free_memregion;
3071 /* --------------------------------------------------------------
3072 I don't know what the below does, but the hardware guys say
3073 its required on everything except PLX (In this case XRJ).
3074 ---------------------------------------------------------------- */
3075 if (info_idx != brd_xrj) {
3076 pci_write_config_byte(pdev, 0x40, 0);
3077 pci_write_config_byte(pdev, 0x46, 0);
3080 return 0;
3082 err_out_free_memregion:
3083 release_mem_region (addr, 0x200000);
3084 err_out_free_iounmap:
3085 iounmap (boards[board_idx].re_map_port);
3086 err_out_free_pciio:
3087 release_mem_region (addr + PCI_IO_OFFSET, 0x200000);
3088 err_out:
3089 return -ENODEV;
3093 static struct pci_device_id epca_pci_tbl[] = {
3094 { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr },
3095 { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem },
3096 { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx },
3097 { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj },
3098 { 0, }
3101 MODULE_DEVICE_TABLE(pci, epca_pci_tbl);
3103 int __init init_PCI (void)
3104 { /* Begin init_PCI */
3105 memset (&epca_driver, 0, sizeof (epca_driver));
3106 epca_driver.name = "epca";
3107 epca_driver.id_table = epca_pci_tbl;
3108 epca_driver.probe = epca_init_one;
3110 return pci_register_driver(&epca_driver);
3113 MODULE_LICENSE("GPL");