Linux 2.6.17.3
[linux/fpc-iii.git] / drivers / net / mace.c
blob77792b28602787e342f8b9e1ea7bfc1aed5f9db6
1 /*
2 * Network device driver for the MACE ethernet controller on
3 * Apple Powermacs. Assumes it's under a DBDMA controller.
5 * Copyright (C) 1996 Paul Mackerras.
6 */
8 #include <linux/config.h>
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/delay.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/init.h>
17 #include <linux/crc32.h>
18 #include <linux/spinlock.h>
19 #include <asm/prom.h>
20 #include <asm/dbdma.h>
21 #include <asm/io.h>
22 #include <asm/pgtable.h>
23 #include <asm/macio.h>
25 #include "mace.h"
27 static int port_aaui = -1;
29 #define N_RX_RING 8
30 #define N_TX_RING 6
31 #define MAX_TX_ACTIVE 1
32 #define NCMDS_TX 1 /* dma commands per element in tx ring */
33 #define RX_BUFLEN (ETH_FRAME_LEN + 8)
34 #define TX_TIMEOUT HZ /* 1 second */
36 /* Chip rev needs workaround on HW & multicast addr change */
37 #define BROKEN_ADDRCHG_REV 0x0941
39 /* Bits in transmit DMA status */
40 #define TX_DMA_ERR 0x80
42 struct mace_data {
43 volatile struct mace __iomem *mace;
44 volatile struct dbdma_regs __iomem *tx_dma;
45 int tx_dma_intr;
46 volatile struct dbdma_regs __iomem *rx_dma;
47 int rx_dma_intr;
48 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
49 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
50 struct sk_buff *rx_bufs[N_RX_RING];
51 int rx_fill;
52 int rx_empty;
53 struct sk_buff *tx_bufs[N_TX_RING];
54 int tx_fill;
55 int tx_empty;
56 unsigned char maccc;
57 unsigned char tx_fullup;
58 unsigned char tx_active;
59 unsigned char tx_bad_runt;
60 struct net_device_stats stats;
61 struct timer_list tx_timeout;
62 int timeout_active;
63 int port_aaui;
64 int chipid;
65 struct macio_dev *mdev;
66 spinlock_t lock;
70 * Number of bytes of private data per MACE: allow enough for
71 * the rx and tx dma commands plus a branch dma command each,
72 * and another 16 bytes to allow us to align the dma command
73 * buffers on a 16 byte boundary.
75 #define PRIV_BYTES (sizeof(struct mace_data) \
76 + (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd))
78 static int bitrev(int);
79 static int mace_open(struct net_device *dev);
80 static int mace_close(struct net_device *dev);
81 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
82 static struct net_device_stats *mace_stats(struct net_device *dev);
83 static void mace_set_multicast(struct net_device *dev);
84 static void mace_reset(struct net_device *dev);
85 static int mace_set_address(struct net_device *dev, void *addr);
86 static irqreturn_t mace_interrupt(int irq, void *dev_id, struct pt_regs *regs);
87 static irqreturn_t mace_txdma_intr(int irq, void *dev_id, struct pt_regs *regs);
88 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id, struct pt_regs *regs);
89 static void mace_set_timeout(struct net_device *dev);
90 static void mace_tx_timeout(unsigned long data);
91 static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma);
92 static inline void mace_clean_rings(struct mace_data *mp);
93 static void __mace_set_address(struct net_device *dev, void *addr);
96 * If we can't get a skbuff when we need it, we use this area for DMA.
98 static unsigned char *dummy_buf;
100 /* Bit-reverse one byte of an ethernet hardware address. */
101 static inline int
102 bitrev(int b)
104 int d = 0, i;
106 for (i = 0; i < 8; ++i, b >>= 1)
107 d = (d << 1) | (b & 1);
108 return d;
112 static int __devinit mace_probe(struct macio_dev *mdev, const struct of_device_id *match)
114 struct device_node *mace = macio_get_of_node(mdev);
115 struct net_device *dev;
116 struct mace_data *mp;
117 unsigned char *addr;
118 int j, rev, rc = -EBUSY;
120 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
121 printk(KERN_ERR "can't use MACE %s: need 3 addrs and 3 irqs\n",
122 mace->full_name);
123 return -ENODEV;
126 addr = get_property(mace, "mac-address", NULL);
127 if (addr == NULL) {
128 addr = get_property(mace, "local-mac-address", NULL);
129 if (addr == NULL) {
130 printk(KERN_ERR "Can't get mac-address for MACE %s\n",
131 mace->full_name);
132 return -ENODEV;
137 * lazy allocate the driver-wide dummy buffer. (Note that we
138 * never have more than one MACE in the system anyway)
140 if (dummy_buf == NULL) {
141 dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL);
142 if (dummy_buf == NULL) {
143 printk(KERN_ERR "MACE: couldn't allocate dummy buffer\n");
144 return -ENOMEM;
148 if (macio_request_resources(mdev, "mace")) {
149 printk(KERN_ERR "MACE: can't request IO resources !\n");
150 return -EBUSY;
153 dev = alloc_etherdev(PRIV_BYTES);
154 if (!dev) {
155 printk(KERN_ERR "MACE: can't allocate ethernet device !\n");
156 rc = -ENOMEM;
157 goto err_release;
159 SET_MODULE_OWNER(dev);
160 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
162 mp = dev->priv;
163 mp->mdev = mdev;
164 macio_set_drvdata(mdev, dev);
166 dev->base_addr = macio_resource_start(mdev, 0);
167 mp->mace = ioremap(dev->base_addr, 0x1000);
168 if (mp->mace == NULL) {
169 printk(KERN_ERR "MACE: can't map IO resources !\n");
170 rc = -ENOMEM;
171 goto err_free;
173 dev->irq = macio_irq(mdev, 0);
175 rev = addr[0] == 0 && addr[1] == 0xA0;
176 for (j = 0; j < 6; ++j) {
177 dev->dev_addr[j] = rev? bitrev(addr[j]): addr[j];
179 mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) |
180 in_8(&mp->mace->chipid_lo);
183 mp = (struct mace_data *) dev->priv;
184 mp->maccc = ENXMT | ENRCV;
186 mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000);
187 if (mp->tx_dma == NULL) {
188 printk(KERN_ERR "MACE: can't map TX DMA resources !\n");
189 rc = -ENOMEM;
190 goto err_unmap_io;
192 mp->tx_dma_intr = macio_irq(mdev, 1);
194 mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000);
195 if (mp->rx_dma == NULL) {
196 printk(KERN_ERR "MACE: can't map RX DMA resources !\n");
197 rc = -ENOMEM;
198 goto err_unmap_tx_dma;
200 mp->rx_dma_intr = macio_irq(mdev, 2);
202 mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1);
203 mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1;
205 memset(&mp->stats, 0, sizeof(mp->stats));
206 memset((char *) mp->tx_cmds, 0,
207 (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd));
208 init_timer(&mp->tx_timeout);
209 spin_lock_init(&mp->lock);
210 mp->timeout_active = 0;
212 if (port_aaui >= 0)
213 mp->port_aaui = port_aaui;
214 else {
215 /* Apple Network Server uses the AAUI port */
216 if (machine_is_compatible("AAPL,ShinerESB"))
217 mp->port_aaui = 1;
218 else {
219 #ifdef CONFIG_MACE_AAUI_PORT
220 mp->port_aaui = 1;
221 #else
222 mp->port_aaui = 0;
223 #endif
227 dev->open = mace_open;
228 dev->stop = mace_close;
229 dev->hard_start_xmit = mace_xmit_start;
230 dev->get_stats = mace_stats;
231 dev->set_multicast_list = mace_set_multicast;
232 dev->set_mac_address = mace_set_address;
235 * Most of what is below could be moved to mace_open()
237 mace_reset(dev);
239 rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev);
240 if (rc) {
241 printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
242 goto err_unmap_rx_dma;
244 rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev);
245 if (rc) {
246 printk(KERN_ERR "MACE: can't get irq %d\n", mace->intrs[1].line);
247 goto err_free_irq;
249 rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev);
250 if (rc) {
251 printk(KERN_ERR "MACE: can't get irq %d\n", mace->intrs[2].line);
252 goto err_free_tx_irq;
255 rc = register_netdev(dev);
256 if (rc) {
257 printk(KERN_ERR "MACE: Cannot register net device, aborting.\n");
258 goto err_free_rx_irq;
261 printk(KERN_INFO "%s: MACE at", dev->name);
262 for (j = 0; j < 6; ++j) {
263 printk("%c%.2x", (j? ':': ' '), dev->dev_addr[j]);
265 printk(", chip revision %d.%d\n", mp->chipid >> 8, mp->chipid & 0xff);
267 return 0;
269 err_free_rx_irq:
270 free_irq(macio_irq(mdev, 2), dev);
271 err_free_tx_irq:
272 free_irq(macio_irq(mdev, 1), dev);
273 err_free_irq:
274 free_irq(macio_irq(mdev, 0), dev);
275 err_unmap_rx_dma:
276 iounmap(mp->rx_dma);
277 err_unmap_tx_dma:
278 iounmap(mp->tx_dma);
279 err_unmap_io:
280 iounmap(mp->mace);
281 err_free:
282 free_netdev(dev);
283 err_release:
284 macio_release_resources(mdev);
286 return rc;
289 static int __devexit mace_remove(struct macio_dev *mdev)
291 struct net_device *dev = macio_get_drvdata(mdev);
292 struct mace_data *mp;
294 BUG_ON(dev == NULL);
296 macio_set_drvdata(mdev, NULL);
298 mp = dev->priv;
300 unregister_netdev(dev);
302 free_irq(dev->irq, dev);
303 free_irq(mp->tx_dma_intr, dev);
304 free_irq(mp->rx_dma_intr, dev);
306 iounmap(mp->rx_dma);
307 iounmap(mp->tx_dma);
308 iounmap(mp->mace);
310 free_netdev(dev);
312 macio_release_resources(mdev);
314 return 0;
317 static void dbdma_reset(volatile struct dbdma_regs __iomem *dma)
319 int i;
321 out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
324 * Yes this looks peculiar, but apparently it needs to be this
325 * way on some machines.
327 for (i = 200; i > 0; --i)
328 if (ld_le32(&dma->control) & RUN)
329 udelay(1);
332 static void mace_reset(struct net_device *dev)
334 struct mace_data *mp = (struct mace_data *) dev->priv;
335 volatile struct mace __iomem *mb = mp->mace;
336 int i;
338 /* soft-reset the chip */
339 i = 200;
340 while (--i) {
341 out_8(&mb->biucc, SWRST);
342 if (in_8(&mb->biucc) & SWRST) {
343 udelay(10);
344 continue;
346 break;
348 if (!i) {
349 printk(KERN_ERR "mace: cannot reset chip!\n");
350 return;
353 out_8(&mb->imr, 0xff); /* disable all intrs for now */
354 i = in_8(&mb->ir);
355 out_8(&mb->maccc, 0); /* turn off tx, rx */
357 out_8(&mb->biucc, XMTSP_64);
358 out_8(&mb->utr, RTRD);
359 out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST);
360 out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */
361 out_8(&mb->rcvfc, 0);
363 /* load up the hardware address */
364 __mace_set_address(dev, dev->dev_addr);
366 /* clear the multicast filter */
367 if (mp->chipid == BROKEN_ADDRCHG_REV)
368 out_8(&mb->iac, LOGADDR);
369 else {
370 out_8(&mb->iac, ADDRCHG | LOGADDR);
371 while ((in_8(&mb->iac) & ADDRCHG) != 0)
374 for (i = 0; i < 8; ++i)
375 out_8(&mb->ladrf, 0);
377 /* done changing address */
378 if (mp->chipid != BROKEN_ADDRCHG_REV)
379 out_8(&mb->iac, 0);
381 if (mp->port_aaui)
382 out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO);
383 else
384 out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO);
387 static void __mace_set_address(struct net_device *dev, void *addr)
389 struct mace_data *mp = (struct mace_data *) dev->priv;
390 volatile struct mace __iomem *mb = mp->mace;
391 unsigned char *p = addr;
392 int i;
394 /* load up the hardware address */
395 if (mp->chipid == BROKEN_ADDRCHG_REV)
396 out_8(&mb->iac, PHYADDR);
397 else {
398 out_8(&mb->iac, ADDRCHG | PHYADDR);
399 while ((in_8(&mb->iac) & ADDRCHG) != 0)
402 for (i = 0; i < 6; ++i)
403 out_8(&mb->padr, dev->dev_addr[i] = p[i]);
404 if (mp->chipid != BROKEN_ADDRCHG_REV)
405 out_8(&mb->iac, 0);
408 static int mace_set_address(struct net_device *dev, void *addr)
410 struct mace_data *mp = (struct mace_data *) dev->priv;
411 volatile struct mace __iomem *mb = mp->mace;
412 unsigned long flags;
414 spin_lock_irqsave(&mp->lock, flags);
416 __mace_set_address(dev, addr);
418 /* note: setting ADDRCHG clears ENRCV */
419 out_8(&mb->maccc, mp->maccc);
421 spin_unlock_irqrestore(&mp->lock, flags);
422 return 0;
425 static inline void mace_clean_rings(struct mace_data *mp)
427 int i;
429 /* free some skb's */
430 for (i = 0; i < N_RX_RING; ++i) {
431 if (mp->rx_bufs[i] != 0) {
432 dev_kfree_skb(mp->rx_bufs[i]);
433 mp->rx_bufs[i] = NULL;
436 for (i = mp->tx_empty; i != mp->tx_fill; ) {
437 dev_kfree_skb(mp->tx_bufs[i]);
438 if (++i >= N_TX_RING)
439 i = 0;
443 static int mace_open(struct net_device *dev)
445 struct mace_data *mp = (struct mace_data *) dev->priv;
446 volatile struct mace __iomem *mb = mp->mace;
447 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
448 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
449 volatile struct dbdma_cmd *cp;
450 int i;
451 struct sk_buff *skb;
452 unsigned char *data;
454 /* reset the chip */
455 mace_reset(dev);
457 /* initialize list of sk_buffs for receiving and set up recv dma */
458 mace_clean_rings(mp);
459 memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd));
460 cp = mp->rx_cmds;
461 for (i = 0; i < N_RX_RING - 1; ++i) {
462 skb = dev_alloc_skb(RX_BUFLEN + 2);
463 if (skb == 0) {
464 data = dummy_buf;
465 } else {
466 skb_reserve(skb, 2); /* so IP header lands on 4-byte bdry */
467 data = skb->data;
469 mp->rx_bufs[i] = skb;
470 st_le16(&cp->req_count, RX_BUFLEN);
471 st_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
472 st_le32(&cp->phy_addr, virt_to_bus(data));
473 cp->xfer_status = 0;
474 ++cp;
476 mp->rx_bufs[i] = NULL;
477 st_le16(&cp->command, DBDMA_STOP);
478 mp->rx_fill = i;
479 mp->rx_empty = 0;
481 /* Put a branch back to the beginning of the receive command list */
482 ++cp;
483 st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
484 st_le32(&cp->cmd_dep, virt_to_bus(mp->rx_cmds));
486 /* start rx dma */
487 out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
488 out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds));
489 out_le32(&rd->control, (RUN << 16) | RUN);
491 /* put a branch at the end of the tx command list */
492 cp = mp->tx_cmds + NCMDS_TX * N_TX_RING;
493 st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
494 st_le32(&cp->cmd_dep, virt_to_bus(mp->tx_cmds));
496 /* reset tx dma */
497 out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
498 out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds));
499 mp->tx_fill = 0;
500 mp->tx_empty = 0;
501 mp->tx_fullup = 0;
502 mp->tx_active = 0;
503 mp->tx_bad_runt = 0;
505 /* turn it on! */
506 out_8(&mb->maccc, mp->maccc);
507 /* enable all interrupts except receive interrupts */
508 out_8(&mb->imr, RCVINT);
510 return 0;
513 static int mace_close(struct net_device *dev)
515 struct mace_data *mp = (struct mace_data *) dev->priv;
516 volatile struct mace __iomem *mb = mp->mace;
517 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
518 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
520 /* disable rx and tx */
521 out_8(&mb->maccc, 0);
522 out_8(&mb->imr, 0xff); /* disable all intrs */
524 /* disable rx and tx dma */
525 st_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
526 st_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
528 mace_clean_rings(mp);
530 return 0;
533 static inline void mace_set_timeout(struct net_device *dev)
535 struct mace_data *mp = (struct mace_data *) dev->priv;
537 if (mp->timeout_active)
538 del_timer(&mp->tx_timeout);
539 mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
540 mp->tx_timeout.function = mace_tx_timeout;
541 mp->tx_timeout.data = (unsigned long) dev;
542 add_timer(&mp->tx_timeout);
543 mp->timeout_active = 1;
546 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
548 struct mace_data *mp = (struct mace_data *) dev->priv;
549 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
550 volatile struct dbdma_cmd *cp, *np;
551 unsigned long flags;
552 int fill, next, len;
554 /* see if there's a free slot in the tx ring */
555 spin_lock_irqsave(&mp->lock, flags);
556 fill = mp->tx_fill;
557 next = fill + 1;
558 if (next >= N_TX_RING)
559 next = 0;
560 if (next == mp->tx_empty) {
561 netif_stop_queue(dev);
562 mp->tx_fullup = 1;
563 spin_unlock_irqrestore(&mp->lock, flags);
564 return 1; /* can't take it at the moment */
566 spin_unlock_irqrestore(&mp->lock, flags);
568 /* partially fill in the dma command block */
569 len = skb->len;
570 if (len > ETH_FRAME_LEN) {
571 printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len);
572 len = ETH_FRAME_LEN;
574 mp->tx_bufs[fill] = skb;
575 cp = mp->tx_cmds + NCMDS_TX * fill;
576 st_le16(&cp->req_count, len);
577 st_le32(&cp->phy_addr, virt_to_bus(skb->data));
579 np = mp->tx_cmds + NCMDS_TX * next;
580 out_le16(&np->command, DBDMA_STOP);
582 /* poke the tx dma channel */
583 spin_lock_irqsave(&mp->lock, flags);
584 mp->tx_fill = next;
585 if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) {
586 out_le16(&cp->xfer_status, 0);
587 out_le16(&cp->command, OUTPUT_LAST);
588 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
589 ++mp->tx_active;
590 mace_set_timeout(dev);
592 if (++next >= N_TX_RING)
593 next = 0;
594 if (next == mp->tx_empty)
595 netif_stop_queue(dev);
596 spin_unlock_irqrestore(&mp->lock, flags);
598 return 0;
601 static struct net_device_stats *mace_stats(struct net_device *dev)
603 struct mace_data *p = (struct mace_data *) dev->priv;
605 return &p->stats;
608 static void mace_set_multicast(struct net_device *dev)
610 struct mace_data *mp = (struct mace_data *) dev->priv;
611 volatile struct mace __iomem *mb = mp->mace;
612 int i, j;
613 u32 crc;
614 unsigned long flags;
616 spin_lock_irqsave(&mp->lock, flags);
617 mp->maccc &= ~PROM;
618 if (dev->flags & IFF_PROMISC) {
619 mp->maccc |= PROM;
620 } else {
621 unsigned char multicast_filter[8];
622 struct dev_mc_list *dmi = dev->mc_list;
624 if (dev->flags & IFF_ALLMULTI) {
625 for (i = 0; i < 8; i++)
626 multicast_filter[i] = 0xff;
627 } else {
628 for (i = 0; i < 8; i++)
629 multicast_filter[i] = 0;
630 for (i = 0; i < dev->mc_count; i++) {
631 crc = ether_crc_le(6, dmi->dmi_addr);
632 j = crc >> 26; /* bit number in multicast_filter */
633 multicast_filter[j >> 3] |= 1 << (j & 7);
634 dmi = dmi->next;
637 #if 0
638 printk("Multicast filter :");
639 for (i = 0; i < 8; i++)
640 printk("%02x ", multicast_filter[i]);
641 printk("\n");
642 #endif
644 if (mp->chipid == BROKEN_ADDRCHG_REV)
645 out_8(&mb->iac, LOGADDR);
646 else {
647 out_8(&mb->iac, ADDRCHG | LOGADDR);
648 while ((in_8(&mb->iac) & ADDRCHG) != 0)
651 for (i = 0; i < 8; ++i)
652 out_8(&mb->ladrf, multicast_filter[i]);
653 if (mp->chipid != BROKEN_ADDRCHG_REV)
654 out_8(&mb->iac, 0);
656 /* reset maccc */
657 out_8(&mb->maccc, mp->maccc);
658 spin_unlock_irqrestore(&mp->lock, flags);
661 static void mace_handle_misc_intrs(struct mace_data *mp, int intr)
663 volatile struct mace __iomem *mb = mp->mace;
664 static int mace_babbles, mace_jabbers;
666 if (intr & MPCO)
667 mp->stats.rx_missed_errors += 256;
668 mp->stats.rx_missed_errors += in_8(&mb->mpc); /* reading clears it */
669 if (intr & RNTPCO)
670 mp->stats.rx_length_errors += 256;
671 mp->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */
672 if (intr & CERR)
673 ++mp->stats.tx_heartbeat_errors;
674 if (intr & BABBLE)
675 if (mace_babbles++ < 4)
676 printk(KERN_DEBUG "mace: babbling transmitter\n");
677 if (intr & JABBER)
678 if (mace_jabbers++ < 4)
679 printk(KERN_DEBUG "mace: jabbering transceiver\n");
682 static irqreturn_t mace_interrupt(int irq, void *dev_id, struct pt_regs *regs)
684 struct net_device *dev = (struct net_device *) dev_id;
685 struct mace_data *mp = (struct mace_data *) dev->priv;
686 volatile struct mace __iomem *mb = mp->mace;
687 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
688 volatile struct dbdma_cmd *cp;
689 int intr, fs, i, stat, x;
690 int xcount, dstat;
691 unsigned long flags;
692 /* static int mace_last_fs, mace_last_xcount; */
694 spin_lock_irqsave(&mp->lock, flags);
695 intr = in_8(&mb->ir); /* read interrupt register */
696 in_8(&mb->xmtrc); /* get retries */
697 mace_handle_misc_intrs(mp, intr);
699 i = mp->tx_empty;
700 while (in_8(&mb->pr) & XMTSV) {
701 del_timer(&mp->tx_timeout);
702 mp->timeout_active = 0;
704 * Clear any interrupt indication associated with this status
705 * word. This appears to unlatch any error indication from
706 * the DMA controller.
708 intr = in_8(&mb->ir);
709 if (intr != 0)
710 mace_handle_misc_intrs(mp, intr);
711 if (mp->tx_bad_runt) {
712 fs = in_8(&mb->xmtfs);
713 mp->tx_bad_runt = 0;
714 out_8(&mb->xmtfc, AUTO_PAD_XMIT);
715 continue;
717 dstat = ld_le32(&td->status);
718 /* stop DMA controller */
719 out_le32(&td->control, RUN << 16);
721 * xcount is the number of complete frames which have been
722 * written to the fifo but for which status has not been read.
724 xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
725 if (xcount == 0 || (dstat & DEAD)) {
727 * If a packet was aborted before the DMA controller has
728 * finished transferring it, it seems that there are 2 bytes
729 * which are stuck in some buffer somewhere. These will get
730 * transmitted as soon as we read the frame status (which
731 * reenables the transmit data transfer request). Turning
732 * off the DMA controller and/or resetting the MACE doesn't
733 * help. So we disable auto-padding and FCS transmission
734 * so the two bytes will only be a runt packet which should
735 * be ignored by other stations.
737 out_8(&mb->xmtfc, DXMTFCS);
739 fs = in_8(&mb->xmtfs);
740 if ((fs & XMTSV) == 0) {
741 printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n",
742 fs, xcount, dstat);
743 mace_reset(dev);
745 * XXX mace likes to hang the machine after a xmtfs error.
746 * This is hard to reproduce, reseting *may* help
749 cp = mp->tx_cmds + NCMDS_TX * i;
750 stat = ld_le16(&cp->xfer_status);
751 if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) {
753 * Check whether there were in fact 2 bytes written to
754 * the transmit FIFO.
756 udelay(1);
757 x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
758 if (x != 0) {
759 /* there were two bytes with an end-of-packet indication */
760 mp->tx_bad_runt = 1;
761 mace_set_timeout(dev);
762 } else {
764 * Either there weren't the two bytes buffered up, or they
765 * didn't have an end-of-packet indication.
766 * We flush the transmit FIFO just in case (by setting the
767 * XMTFWU bit with the transmitter disabled).
769 out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT);
770 out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU);
771 udelay(1);
772 out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT);
773 out_8(&mb->xmtfc, AUTO_PAD_XMIT);
776 /* dma should have finished */
777 if (i == mp->tx_fill) {
778 printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n",
779 fs, xcount, dstat);
780 continue;
782 /* Update stats */
783 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
784 ++mp->stats.tx_errors;
785 if (fs & LCAR)
786 ++mp->stats.tx_carrier_errors;
787 if (fs & (UFLO|LCOL|RTRY))
788 ++mp->stats.tx_aborted_errors;
789 } else {
790 mp->stats.tx_bytes += mp->tx_bufs[i]->len;
791 ++mp->stats.tx_packets;
793 dev_kfree_skb_irq(mp->tx_bufs[i]);
794 --mp->tx_active;
795 if (++i >= N_TX_RING)
796 i = 0;
797 #if 0
798 mace_last_fs = fs;
799 mace_last_xcount = xcount;
800 #endif
803 if (i != mp->tx_empty) {
804 mp->tx_fullup = 0;
805 netif_wake_queue(dev);
807 mp->tx_empty = i;
808 i += mp->tx_active;
809 if (i >= N_TX_RING)
810 i -= N_TX_RING;
811 if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) {
812 do {
813 /* set up the next one */
814 cp = mp->tx_cmds + NCMDS_TX * i;
815 out_le16(&cp->xfer_status, 0);
816 out_le16(&cp->command, OUTPUT_LAST);
817 ++mp->tx_active;
818 if (++i >= N_TX_RING)
819 i = 0;
820 } while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE);
821 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
822 mace_set_timeout(dev);
824 spin_unlock_irqrestore(&mp->lock, flags);
825 return IRQ_HANDLED;
828 static void mace_tx_timeout(unsigned long data)
830 struct net_device *dev = (struct net_device *) data;
831 struct mace_data *mp = (struct mace_data *) dev->priv;
832 volatile struct mace __iomem *mb = mp->mace;
833 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
834 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
835 volatile struct dbdma_cmd *cp;
836 unsigned long flags;
837 int i;
839 spin_lock_irqsave(&mp->lock, flags);
840 mp->timeout_active = 0;
841 if (mp->tx_active == 0 && !mp->tx_bad_runt)
842 goto out;
844 /* update various counters */
845 mace_handle_misc_intrs(mp, in_8(&mb->ir));
847 cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty;
849 /* turn off both tx and rx and reset the chip */
850 out_8(&mb->maccc, 0);
851 printk(KERN_ERR "mace: transmit timeout - resetting\n");
852 dbdma_reset(td);
853 mace_reset(dev);
855 /* restart rx dma */
856 cp = bus_to_virt(ld_le32(&rd->cmdptr));
857 dbdma_reset(rd);
858 out_le16(&cp->xfer_status, 0);
859 out_le32(&rd->cmdptr, virt_to_bus(cp));
860 out_le32(&rd->control, (RUN << 16) | RUN);
862 /* fix up the transmit side */
863 i = mp->tx_empty;
864 mp->tx_active = 0;
865 ++mp->stats.tx_errors;
866 if (mp->tx_bad_runt) {
867 mp->tx_bad_runt = 0;
868 } else if (i != mp->tx_fill) {
869 dev_kfree_skb(mp->tx_bufs[i]);
870 if (++i >= N_TX_RING)
871 i = 0;
872 mp->tx_empty = i;
874 mp->tx_fullup = 0;
875 netif_wake_queue(dev);
876 if (i != mp->tx_fill) {
877 cp = mp->tx_cmds + NCMDS_TX * i;
878 out_le16(&cp->xfer_status, 0);
879 out_le16(&cp->command, OUTPUT_LAST);
880 out_le32(&td->cmdptr, virt_to_bus(cp));
881 out_le32(&td->control, (RUN << 16) | RUN);
882 ++mp->tx_active;
883 mace_set_timeout(dev);
886 /* turn it back on */
887 out_8(&mb->imr, RCVINT);
888 out_8(&mb->maccc, mp->maccc);
890 out:
891 spin_unlock_irqrestore(&mp->lock, flags);
894 static irqreturn_t mace_txdma_intr(int irq, void *dev_id, struct pt_regs *regs)
896 return IRQ_HANDLED;
899 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id, struct pt_regs *regs)
901 struct net_device *dev = (struct net_device *) dev_id;
902 struct mace_data *mp = (struct mace_data *) dev->priv;
903 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
904 volatile struct dbdma_cmd *cp, *np;
905 int i, nb, stat, next;
906 struct sk_buff *skb;
907 unsigned frame_status;
908 static int mace_lost_status;
909 unsigned char *data;
910 unsigned long flags;
912 spin_lock_irqsave(&mp->lock, flags);
913 for (i = mp->rx_empty; i != mp->rx_fill; ) {
914 cp = mp->rx_cmds + i;
915 stat = ld_le16(&cp->xfer_status);
916 if ((stat & ACTIVE) == 0) {
917 next = i + 1;
918 if (next >= N_RX_RING)
919 next = 0;
920 np = mp->rx_cmds + next;
921 if (next != mp->rx_fill
922 && (ld_le16(&np->xfer_status) & ACTIVE) != 0) {
923 printk(KERN_DEBUG "mace: lost a status word\n");
924 ++mace_lost_status;
925 } else
926 break;
928 nb = ld_le16(&cp->req_count) - ld_le16(&cp->res_count);
929 out_le16(&cp->command, DBDMA_STOP);
930 /* got a packet, have a look at it */
931 skb = mp->rx_bufs[i];
932 if (skb == 0) {
933 ++mp->stats.rx_dropped;
934 } else if (nb > 8) {
935 data = skb->data;
936 frame_status = (data[nb-3] << 8) + data[nb-4];
937 if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) {
938 ++mp->stats.rx_errors;
939 if (frame_status & RS_OFLO)
940 ++mp->stats.rx_over_errors;
941 if (frame_status & RS_FRAMERR)
942 ++mp->stats.rx_frame_errors;
943 if (frame_status & RS_FCSERR)
944 ++mp->stats.rx_crc_errors;
945 } else {
946 /* Mace feature AUTO_STRIP_RCV is on by default, dropping the
947 * FCS on frames with 802.3 headers. This means that Ethernet
948 * frames have 8 extra octets at the end, while 802.3 frames
949 * have only 4. We need to correctly account for this. */
950 if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */
951 nb -= 4;
952 else /* Ethernet header; mace includes FCS */
953 nb -= 8;
954 skb_put(skb, nb);
955 skb->dev = dev;
956 skb->protocol = eth_type_trans(skb, dev);
957 mp->stats.rx_bytes += skb->len;
958 netif_rx(skb);
959 dev->last_rx = jiffies;
960 mp->rx_bufs[i] = NULL;
961 ++mp->stats.rx_packets;
963 } else {
964 ++mp->stats.rx_errors;
965 ++mp->stats.rx_length_errors;
968 /* advance to next */
969 if (++i >= N_RX_RING)
970 i = 0;
972 mp->rx_empty = i;
974 i = mp->rx_fill;
975 for (;;) {
976 next = i + 1;
977 if (next >= N_RX_RING)
978 next = 0;
979 if (next == mp->rx_empty)
980 break;
981 cp = mp->rx_cmds + i;
982 skb = mp->rx_bufs[i];
983 if (skb == 0) {
984 skb = dev_alloc_skb(RX_BUFLEN + 2);
985 if (skb != 0) {
986 skb_reserve(skb, 2);
987 mp->rx_bufs[i] = skb;
990 st_le16(&cp->req_count, RX_BUFLEN);
991 data = skb? skb->data: dummy_buf;
992 st_le32(&cp->phy_addr, virt_to_bus(data));
993 out_le16(&cp->xfer_status, 0);
994 out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
995 #if 0
996 if ((ld_le32(&rd->status) & ACTIVE) != 0) {
997 out_le32(&rd->control, (PAUSE << 16) | PAUSE);
998 while ((in_le32(&rd->status) & ACTIVE) != 0)
1001 #endif
1002 i = next;
1004 if (i != mp->rx_fill) {
1005 out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE));
1006 mp->rx_fill = i;
1008 spin_unlock_irqrestore(&mp->lock, flags);
1009 return IRQ_HANDLED;
1012 static struct of_device_id mace_match[] =
1015 .name = "mace",
1019 MODULE_DEVICE_TABLE (of, mace_match);
1021 static struct macio_driver mace_driver =
1023 .name = "mace",
1024 .match_table = mace_match,
1025 .probe = mace_probe,
1026 .remove = mace_remove,
1030 static int __init mace_init(void)
1032 return macio_register_driver(&mace_driver);
1035 static void __exit mace_cleanup(void)
1037 macio_unregister_driver(&mace_driver);
1039 kfree(dummy_buf);
1040 dummy_buf = NULL;
1043 MODULE_AUTHOR("Paul Mackerras");
1044 MODULE_DESCRIPTION("PowerMac MACE driver.");
1045 module_param(port_aaui, int, 0);
1046 MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
1047 MODULE_LICENSE("GPL");
1049 module_init(mace_init);
1050 module_exit(mace_cleanup);