2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
50 #include <asm/irq_regs.h>
52 static struct workqueue_struct
*perf_wq
;
54 typedef int (*remote_function_f
)(void *);
56 struct remote_function_call
{
57 struct task_struct
*p
;
58 remote_function_f func
;
63 static void remote_function(void *data
)
65 struct remote_function_call
*tfc
= data
;
66 struct task_struct
*p
= tfc
->p
;
70 if (task_cpu(p
) != smp_processor_id() || !task_curr(p
))
74 tfc
->ret
= tfc
->func(tfc
->info
);
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
91 task_function_call(struct task_struct
*p
, remote_function_f func
, void *info
)
93 struct remote_function_call data
= {
97 .ret
= -ESRCH
, /* No such (running) process */
101 smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
111 * Calls the function @func on the remote cpu.
113 * returns: @func return value or -ENXIO when the cpu is offline
115 static int cpu_function_call(int cpu
, remote_function_f func
, void *info
)
117 struct remote_function_call data
= {
121 .ret
= -ENXIO
, /* No such CPU */
124 smp_call_function_single(cpu
, remote_function
, &data
, 1);
129 static void event_function_call(struct perf_event
*event
,
130 int (*active
)(void *),
131 void (*inactive
)(void *),
134 struct perf_event_context
*ctx
= event
->ctx
;
135 struct task_struct
*task
= ctx
->task
;
138 cpu_function_call(event
->cpu
, active
, data
);
143 if (!task_function_call(task
, active
, data
))
146 raw_spin_lock_irq(&ctx
->lock
);
147 if (ctx
->is_active
) {
149 * Reload the task pointer, it might have been changed by
150 * a concurrent perf_event_context_sched_out().
153 raw_spin_unlock_irq(&ctx
->lock
);
157 raw_spin_unlock_irq(&ctx
->lock
);
160 #define EVENT_OWNER_KERNEL ((void *) -1)
162 static bool is_kernel_event(struct perf_event
*event
)
164 return event
->owner
== EVENT_OWNER_KERNEL
;
167 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
168 PERF_FLAG_FD_OUTPUT |\
169 PERF_FLAG_PID_CGROUP |\
170 PERF_FLAG_FD_CLOEXEC)
173 * branch priv levels that need permission checks
175 #define PERF_SAMPLE_BRANCH_PERM_PLM \
176 (PERF_SAMPLE_BRANCH_KERNEL |\
177 PERF_SAMPLE_BRANCH_HV)
180 EVENT_FLEXIBLE
= 0x1,
182 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
186 * perf_sched_events : >0 events exist
187 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
189 struct static_key_deferred perf_sched_events __read_mostly
;
190 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
191 static DEFINE_PER_CPU(int, perf_sched_cb_usages
);
193 static atomic_t nr_mmap_events __read_mostly
;
194 static atomic_t nr_comm_events __read_mostly
;
195 static atomic_t nr_task_events __read_mostly
;
196 static atomic_t nr_freq_events __read_mostly
;
197 static atomic_t nr_switch_events __read_mostly
;
199 static LIST_HEAD(pmus
);
200 static DEFINE_MUTEX(pmus_lock
);
201 static struct srcu_struct pmus_srcu
;
204 * perf event paranoia level:
205 * -1 - not paranoid at all
206 * 0 - disallow raw tracepoint access for unpriv
207 * 1 - disallow cpu events for unpriv
208 * 2 - disallow kernel profiling for unpriv
210 int sysctl_perf_event_paranoid __read_mostly
= 1;
212 /* Minimum for 512 kiB + 1 user control page */
213 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
216 * max perf event sample rate
218 #define DEFAULT_MAX_SAMPLE_RATE 100000
219 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
220 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
222 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
224 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
225 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
227 static int perf_sample_allowed_ns __read_mostly
=
228 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
230 static void update_perf_cpu_limits(void)
232 u64 tmp
= perf_sample_period_ns
;
234 tmp
*= sysctl_perf_cpu_time_max_percent
;
236 ACCESS_ONCE(perf_sample_allowed_ns
) = tmp
;
239 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
);
241 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
242 void __user
*buffer
, size_t *lenp
,
245 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
250 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
251 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
252 update_perf_cpu_limits();
257 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
259 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
260 void __user
*buffer
, size_t *lenp
,
263 int ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
268 update_perf_cpu_limits();
274 * perf samples are done in some very critical code paths (NMIs).
275 * If they take too much CPU time, the system can lock up and not
276 * get any real work done. This will drop the sample rate when
277 * we detect that events are taking too long.
279 #define NR_ACCUMULATED_SAMPLES 128
280 static DEFINE_PER_CPU(u64
, running_sample_length
);
282 static void perf_duration_warn(struct irq_work
*w
)
284 u64 allowed_ns
= ACCESS_ONCE(perf_sample_allowed_ns
);
285 u64 avg_local_sample_len
;
286 u64 local_samples_len
;
288 local_samples_len
= __this_cpu_read(running_sample_length
);
289 avg_local_sample_len
= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
291 printk_ratelimited(KERN_WARNING
292 "perf interrupt took too long (%lld > %lld), lowering "
293 "kernel.perf_event_max_sample_rate to %d\n",
294 avg_local_sample_len
, allowed_ns
>> 1,
295 sysctl_perf_event_sample_rate
);
298 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
300 void perf_sample_event_took(u64 sample_len_ns
)
302 u64 allowed_ns
= ACCESS_ONCE(perf_sample_allowed_ns
);
303 u64 avg_local_sample_len
;
304 u64 local_samples_len
;
309 /* decay the counter by 1 average sample */
310 local_samples_len
= __this_cpu_read(running_sample_length
);
311 local_samples_len
-= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
312 local_samples_len
+= sample_len_ns
;
313 __this_cpu_write(running_sample_length
, local_samples_len
);
316 * note: this will be biased artifically low until we have
317 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
318 * from having to maintain a count.
320 avg_local_sample_len
= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
322 if (avg_local_sample_len
<= allowed_ns
)
325 if (max_samples_per_tick
<= 1)
328 max_samples_per_tick
= DIV_ROUND_UP(max_samples_per_tick
, 2);
329 sysctl_perf_event_sample_rate
= max_samples_per_tick
* HZ
;
330 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
332 update_perf_cpu_limits();
334 if (!irq_work_queue(&perf_duration_work
)) {
335 early_printk("perf interrupt took too long (%lld > %lld), lowering "
336 "kernel.perf_event_max_sample_rate to %d\n",
337 avg_local_sample_len
, allowed_ns
>> 1,
338 sysctl_perf_event_sample_rate
);
342 static atomic64_t perf_event_id
;
344 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
345 enum event_type_t event_type
);
347 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
348 enum event_type_t event_type
,
349 struct task_struct
*task
);
351 static void update_context_time(struct perf_event_context
*ctx
);
352 static u64
perf_event_time(struct perf_event
*event
);
354 void __weak
perf_event_print_debug(void) { }
356 extern __weak
const char *perf_pmu_name(void)
361 static inline u64
perf_clock(void)
363 return local_clock();
366 static inline u64
perf_event_clock(struct perf_event
*event
)
368 return event
->clock();
371 static inline struct perf_cpu_context
*
372 __get_cpu_context(struct perf_event_context
*ctx
)
374 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
377 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
378 struct perf_event_context
*ctx
)
380 raw_spin_lock(&cpuctx
->ctx
.lock
);
382 raw_spin_lock(&ctx
->lock
);
385 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
386 struct perf_event_context
*ctx
)
389 raw_spin_unlock(&ctx
->lock
);
390 raw_spin_unlock(&cpuctx
->ctx
.lock
);
393 #ifdef CONFIG_CGROUP_PERF
396 perf_cgroup_match(struct perf_event
*event
)
398 struct perf_event_context
*ctx
= event
->ctx
;
399 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
401 /* @event doesn't care about cgroup */
405 /* wants specific cgroup scope but @cpuctx isn't associated with any */
410 * Cgroup scoping is recursive. An event enabled for a cgroup is
411 * also enabled for all its descendant cgroups. If @cpuctx's
412 * cgroup is a descendant of @event's (the test covers identity
413 * case), it's a match.
415 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
416 event
->cgrp
->css
.cgroup
);
419 static inline void perf_detach_cgroup(struct perf_event
*event
)
421 css_put(&event
->cgrp
->css
);
425 static inline int is_cgroup_event(struct perf_event
*event
)
427 return event
->cgrp
!= NULL
;
430 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
432 struct perf_cgroup_info
*t
;
434 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
438 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
440 struct perf_cgroup_info
*info
;
445 info
= this_cpu_ptr(cgrp
->info
);
447 info
->time
+= now
- info
->timestamp
;
448 info
->timestamp
= now
;
451 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
453 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
455 __update_cgrp_time(cgrp_out
);
458 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
460 struct perf_cgroup
*cgrp
;
463 * ensure we access cgroup data only when needed and
464 * when we know the cgroup is pinned (css_get)
466 if (!is_cgroup_event(event
))
469 cgrp
= perf_cgroup_from_task(current
, event
->ctx
);
471 * Do not update time when cgroup is not active
473 if (cgrp
== event
->cgrp
)
474 __update_cgrp_time(event
->cgrp
);
478 perf_cgroup_set_timestamp(struct task_struct
*task
,
479 struct perf_event_context
*ctx
)
481 struct perf_cgroup
*cgrp
;
482 struct perf_cgroup_info
*info
;
485 * ctx->lock held by caller
486 * ensure we do not access cgroup data
487 * unless we have the cgroup pinned (css_get)
489 if (!task
|| !ctx
->nr_cgroups
)
492 cgrp
= perf_cgroup_from_task(task
, ctx
);
493 info
= this_cpu_ptr(cgrp
->info
);
494 info
->timestamp
= ctx
->timestamp
;
497 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
498 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
501 * reschedule events based on the cgroup constraint of task.
503 * mode SWOUT : schedule out everything
504 * mode SWIN : schedule in based on cgroup for next
506 static void perf_cgroup_switch(struct task_struct
*task
, int mode
)
508 struct perf_cpu_context
*cpuctx
;
513 * disable interrupts to avoid geting nr_cgroup
514 * changes via __perf_event_disable(). Also
517 local_irq_save(flags
);
520 * we reschedule only in the presence of cgroup
521 * constrained events.
524 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
525 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
526 if (cpuctx
->unique_pmu
!= pmu
)
527 continue; /* ensure we process each cpuctx once */
530 * perf_cgroup_events says at least one
531 * context on this CPU has cgroup events.
533 * ctx->nr_cgroups reports the number of cgroup
534 * events for a context.
536 if (cpuctx
->ctx
.nr_cgroups
> 0) {
537 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
538 perf_pmu_disable(cpuctx
->ctx
.pmu
);
540 if (mode
& PERF_CGROUP_SWOUT
) {
541 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
543 * must not be done before ctxswout due
544 * to event_filter_match() in event_sched_out()
549 if (mode
& PERF_CGROUP_SWIN
) {
550 WARN_ON_ONCE(cpuctx
->cgrp
);
552 * set cgrp before ctxsw in to allow
553 * event_filter_match() to not have to pass
555 * we pass the cpuctx->ctx to perf_cgroup_from_task()
556 * because cgorup events are only per-cpu
558 cpuctx
->cgrp
= perf_cgroup_from_task(task
, &cpuctx
->ctx
);
559 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
561 perf_pmu_enable(cpuctx
->ctx
.pmu
);
562 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
566 local_irq_restore(flags
);
569 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
570 struct task_struct
*next
)
572 struct perf_cgroup
*cgrp1
;
573 struct perf_cgroup
*cgrp2
= NULL
;
577 * we come here when we know perf_cgroup_events > 0
578 * we do not need to pass the ctx here because we know
579 * we are holding the rcu lock
581 cgrp1
= perf_cgroup_from_task(task
, NULL
);
584 * next is NULL when called from perf_event_enable_on_exec()
585 * that will systematically cause a cgroup_switch()
588 cgrp2
= perf_cgroup_from_task(next
, NULL
);
591 * only schedule out current cgroup events if we know
592 * that we are switching to a different cgroup. Otherwise,
593 * do no touch the cgroup events.
596 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
601 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
602 struct task_struct
*task
)
604 struct perf_cgroup
*cgrp1
;
605 struct perf_cgroup
*cgrp2
= NULL
;
609 * we come here when we know perf_cgroup_events > 0
610 * we do not need to pass the ctx here because we know
611 * we are holding the rcu lock
613 cgrp1
= perf_cgroup_from_task(task
, NULL
);
615 /* prev can never be NULL */
616 cgrp2
= perf_cgroup_from_task(prev
, NULL
);
619 * only need to schedule in cgroup events if we are changing
620 * cgroup during ctxsw. Cgroup events were not scheduled
621 * out of ctxsw out if that was not the case.
624 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
629 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
630 struct perf_event_attr
*attr
,
631 struct perf_event
*group_leader
)
633 struct perf_cgroup
*cgrp
;
634 struct cgroup_subsys_state
*css
;
635 struct fd f
= fdget(fd
);
641 css
= css_tryget_online_from_dir(f
.file
->f_path
.dentry
,
642 &perf_event_cgrp_subsys
);
648 cgrp
= container_of(css
, struct perf_cgroup
, css
);
652 * all events in a group must monitor
653 * the same cgroup because a task belongs
654 * to only one perf cgroup at a time
656 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
657 perf_detach_cgroup(event
);
666 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
668 struct perf_cgroup_info
*t
;
669 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
670 event
->shadow_ctx_time
= now
- t
->timestamp
;
674 perf_cgroup_defer_enabled(struct perf_event
*event
)
677 * when the current task's perf cgroup does not match
678 * the event's, we need to remember to call the
679 * perf_mark_enable() function the first time a task with
680 * a matching perf cgroup is scheduled in.
682 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
683 event
->cgrp_defer_enabled
= 1;
687 perf_cgroup_mark_enabled(struct perf_event
*event
,
688 struct perf_event_context
*ctx
)
690 struct perf_event
*sub
;
691 u64 tstamp
= perf_event_time(event
);
693 if (!event
->cgrp_defer_enabled
)
696 event
->cgrp_defer_enabled
= 0;
698 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
699 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
700 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
701 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
702 sub
->cgrp_defer_enabled
= 0;
706 #else /* !CONFIG_CGROUP_PERF */
709 perf_cgroup_match(struct perf_event
*event
)
714 static inline void perf_detach_cgroup(struct perf_event
*event
)
717 static inline int is_cgroup_event(struct perf_event
*event
)
722 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
727 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
731 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
735 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
736 struct task_struct
*next
)
740 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
741 struct task_struct
*task
)
745 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
746 struct perf_event_attr
*attr
,
747 struct perf_event
*group_leader
)
753 perf_cgroup_set_timestamp(struct task_struct
*task
,
754 struct perf_event_context
*ctx
)
759 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
764 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
768 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
774 perf_cgroup_defer_enabled(struct perf_event
*event
)
779 perf_cgroup_mark_enabled(struct perf_event
*event
,
780 struct perf_event_context
*ctx
)
786 * set default to be dependent on timer tick just
789 #define PERF_CPU_HRTIMER (1000 / HZ)
791 * function must be called with interrupts disbled
793 static enum hrtimer_restart
perf_mux_hrtimer_handler(struct hrtimer
*hr
)
795 struct perf_cpu_context
*cpuctx
;
798 WARN_ON(!irqs_disabled());
800 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
801 rotations
= perf_rotate_context(cpuctx
);
803 raw_spin_lock(&cpuctx
->hrtimer_lock
);
805 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
807 cpuctx
->hrtimer_active
= 0;
808 raw_spin_unlock(&cpuctx
->hrtimer_lock
);
810 return rotations
? HRTIMER_RESTART
: HRTIMER_NORESTART
;
813 static void __perf_mux_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
815 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
816 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
819 /* no multiplexing needed for SW PMU */
820 if (pmu
->task_ctx_nr
== perf_sw_context
)
824 * check default is sane, if not set then force to
825 * default interval (1/tick)
827 interval
= pmu
->hrtimer_interval_ms
;
829 interval
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
831 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* interval
);
833 raw_spin_lock_init(&cpuctx
->hrtimer_lock
);
834 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
835 timer
->function
= perf_mux_hrtimer_handler
;
838 static int perf_mux_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
840 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
841 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
845 if (pmu
->task_ctx_nr
== perf_sw_context
)
848 raw_spin_lock_irqsave(&cpuctx
->hrtimer_lock
, flags
);
849 if (!cpuctx
->hrtimer_active
) {
850 cpuctx
->hrtimer_active
= 1;
851 hrtimer_forward_now(timer
, cpuctx
->hrtimer_interval
);
852 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
854 raw_spin_unlock_irqrestore(&cpuctx
->hrtimer_lock
, flags
);
859 void perf_pmu_disable(struct pmu
*pmu
)
861 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
863 pmu
->pmu_disable(pmu
);
866 void perf_pmu_enable(struct pmu
*pmu
)
868 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
870 pmu
->pmu_enable(pmu
);
873 static DEFINE_PER_CPU(struct list_head
, active_ctx_list
);
876 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
877 * perf_event_task_tick() are fully serialized because they're strictly cpu
878 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
879 * disabled, while perf_event_task_tick is called from IRQ context.
881 static void perf_event_ctx_activate(struct perf_event_context
*ctx
)
883 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
885 WARN_ON(!irqs_disabled());
887 WARN_ON(!list_empty(&ctx
->active_ctx_list
));
889 list_add(&ctx
->active_ctx_list
, head
);
892 static void perf_event_ctx_deactivate(struct perf_event_context
*ctx
)
894 WARN_ON(!irqs_disabled());
896 WARN_ON(list_empty(&ctx
->active_ctx_list
));
898 list_del_init(&ctx
->active_ctx_list
);
901 static void get_ctx(struct perf_event_context
*ctx
)
903 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
906 static void free_ctx(struct rcu_head
*head
)
908 struct perf_event_context
*ctx
;
910 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
911 kfree(ctx
->task_ctx_data
);
915 static void put_ctx(struct perf_event_context
*ctx
)
917 if (atomic_dec_and_test(&ctx
->refcount
)) {
919 put_ctx(ctx
->parent_ctx
);
921 put_task_struct(ctx
->task
);
922 call_rcu(&ctx
->rcu_head
, free_ctx
);
927 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
928 * perf_pmu_migrate_context() we need some magic.
930 * Those places that change perf_event::ctx will hold both
931 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
933 * Lock ordering is by mutex address. There are two other sites where
934 * perf_event_context::mutex nests and those are:
936 * - perf_event_exit_task_context() [ child , 0 ]
937 * __perf_event_exit_task()
939 * put_event() [ parent, 1 ]
941 * - perf_event_init_context() [ parent, 0 ]
942 * inherit_task_group()
947 * perf_try_init_event() [ child , 1 ]
949 * While it appears there is an obvious deadlock here -- the parent and child
950 * nesting levels are inverted between the two. This is in fact safe because
951 * life-time rules separate them. That is an exiting task cannot fork, and a
952 * spawning task cannot (yet) exit.
954 * But remember that that these are parent<->child context relations, and
955 * migration does not affect children, therefore these two orderings should not
958 * The change in perf_event::ctx does not affect children (as claimed above)
959 * because the sys_perf_event_open() case will install a new event and break
960 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
961 * concerned with cpuctx and that doesn't have children.
963 * The places that change perf_event::ctx will issue:
965 * perf_remove_from_context();
967 * perf_install_in_context();
969 * to affect the change. The remove_from_context() + synchronize_rcu() should
970 * quiesce the event, after which we can install it in the new location. This
971 * means that only external vectors (perf_fops, prctl) can perturb the event
972 * while in transit. Therefore all such accessors should also acquire
973 * perf_event_context::mutex to serialize against this.
975 * However; because event->ctx can change while we're waiting to acquire
976 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
980 * task_struct::perf_event_mutex
981 * perf_event_context::mutex
982 * perf_event_context::lock
983 * perf_event::child_mutex;
984 * perf_event::mmap_mutex
987 static struct perf_event_context
*
988 perf_event_ctx_lock_nested(struct perf_event
*event
, int nesting
)
990 struct perf_event_context
*ctx
;
994 ctx
= ACCESS_ONCE(event
->ctx
);
995 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
1001 mutex_lock_nested(&ctx
->mutex
, nesting
);
1002 if (event
->ctx
!= ctx
) {
1003 mutex_unlock(&ctx
->mutex
);
1011 static inline struct perf_event_context
*
1012 perf_event_ctx_lock(struct perf_event
*event
)
1014 return perf_event_ctx_lock_nested(event
, 0);
1017 static void perf_event_ctx_unlock(struct perf_event
*event
,
1018 struct perf_event_context
*ctx
)
1020 mutex_unlock(&ctx
->mutex
);
1025 * This must be done under the ctx->lock, such as to serialize against
1026 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1027 * calling scheduler related locks and ctx->lock nests inside those.
1029 static __must_check
struct perf_event_context
*
1030 unclone_ctx(struct perf_event_context
*ctx
)
1032 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
1034 lockdep_assert_held(&ctx
->lock
);
1037 ctx
->parent_ctx
= NULL
;
1043 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1046 * only top level events have the pid namespace they were created in
1049 event
= event
->parent
;
1051 return task_tgid_nr_ns(p
, event
->ns
);
1054 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1057 * only top level events have the pid namespace they were created in
1060 event
= event
->parent
;
1062 return task_pid_nr_ns(p
, event
->ns
);
1066 * If we inherit events we want to return the parent event id
1069 static u64
primary_event_id(struct perf_event
*event
)
1074 id
= event
->parent
->id
;
1080 * Get the perf_event_context for a task and lock it.
1081 * This has to cope with with the fact that until it is locked,
1082 * the context could get moved to another task.
1084 static struct perf_event_context
*
1085 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
1087 struct perf_event_context
*ctx
;
1091 * One of the few rules of preemptible RCU is that one cannot do
1092 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1093 * part of the read side critical section was irqs-enabled -- see
1094 * rcu_read_unlock_special().
1096 * Since ctx->lock nests under rq->lock we must ensure the entire read
1097 * side critical section has interrupts disabled.
1099 local_irq_save(*flags
);
1101 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
1104 * If this context is a clone of another, it might
1105 * get swapped for another underneath us by
1106 * perf_event_task_sched_out, though the
1107 * rcu_read_lock() protects us from any context
1108 * getting freed. Lock the context and check if it
1109 * got swapped before we could get the lock, and retry
1110 * if so. If we locked the right context, then it
1111 * can't get swapped on us any more.
1113 raw_spin_lock(&ctx
->lock
);
1114 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1115 raw_spin_unlock(&ctx
->lock
);
1117 local_irq_restore(*flags
);
1121 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
1122 raw_spin_unlock(&ctx
->lock
);
1128 local_irq_restore(*flags
);
1133 * Get the context for a task and increment its pin_count so it
1134 * can't get swapped to another task. This also increments its
1135 * reference count so that the context can't get freed.
1137 static struct perf_event_context
*
1138 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1140 struct perf_event_context
*ctx
;
1141 unsigned long flags
;
1143 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1146 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1151 static void perf_unpin_context(struct perf_event_context
*ctx
)
1153 unsigned long flags
;
1155 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1157 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1161 * Update the record of the current time in a context.
1163 static void update_context_time(struct perf_event_context
*ctx
)
1165 u64 now
= perf_clock();
1167 ctx
->time
+= now
- ctx
->timestamp
;
1168 ctx
->timestamp
= now
;
1171 static u64
perf_event_time(struct perf_event
*event
)
1173 struct perf_event_context
*ctx
= event
->ctx
;
1175 if (is_cgroup_event(event
))
1176 return perf_cgroup_event_time(event
);
1178 return ctx
? ctx
->time
: 0;
1182 * Update the total_time_enabled and total_time_running fields for a event.
1183 * The caller of this function needs to hold the ctx->lock.
1185 static void update_event_times(struct perf_event
*event
)
1187 struct perf_event_context
*ctx
= event
->ctx
;
1190 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
1191 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
1194 * in cgroup mode, time_enabled represents
1195 * the time the event was enabled AND active
1196 * tasks were in the monitored cgroup. This is
1197 * independent of the activity of the context as
1198 * there may be a mix of cgroup and non-cgroup events.
1200 * That is why we treat cgroup events differently
1203 if (is_cgroup_event(event
))
1204 run_end
= perf_cgroup_event_time(event
);
1205 else if (ctx
->is_active
)
1206 run_end
= ctx
->time
;
1208 run_end
= event
->tstamp_stopped
;
1210 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
1212 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
1213 run_end
= event
->tstamp_stopped
;
1215 run_end
= perf_event_time(event
);
1217 event
->total_time_running
= run_end
- event
->tstamp_running
;
1222 * Update total_time_enabled and total_time_running for all events in a group.
1224 static void update_group_times(struct perf_event
*leader
)
1226 struct perf_event
*event
;
1228 update_event_times(leader
);
1229 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
1230 update_event_times(event
);
1233 static struct list_head
*
1234 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
1236 if (event
->attr
.pinned
)
1237 return &ctx
->pinned_groups
;
1239 return &ctx
->flexible_groups
;
1243 * Add a event from the lists for its context.
1244 * Must be called with ctx->mutex and ctx->lock held.
1247 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1249 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1250 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1253 * If we're a stand alone event or group leader, we go to the context
1254 * list, group events are kept attached to the group so that
1255 * perf_group_detach can, at all times, locate all siblings.
1257 if (event
->group_leader
== event
) {
1258 struct list_head
*list
;
1260 if (is_software_event(event
))
1261 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
1263 list
= ctx_group_list(event
, ctx
);
1264 list_add_tail(&event
->group_entry
, list
);
1267 if (is_cgroup_event(event
))
1270 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1272 if (event
->attr
.inherit_stat
)
1279 * Initialize event state based on the perf_event_attr::disabled.
1281 static inline void perf_event__state_init(struct perf_event
*event
)
1283 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1284 PERF_EVENT_STATE_INACTIVE
;
1287 static void __perf_event_read_size(struct perf_event
*event
, int nr_siblings
)
1289 int entry
= sizeof(u64
); /* value */
1293 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1294 size
+= sizeof(u64
);
1296 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1297 size
+= sizeof(u64
);
1299 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1300 entry
+= sizeof(u64
);
1302 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1304 size
+= sizeof(u64
);
1308 event
->read_size
= size
;
1311 static void __perf_event_header_size(struct perf_event
*event
, u64 sample_type
)
1313 struct perf_sample_data
*data
;
1316 if (sample_type
& PERF_SAMPLE_IP
)
1317 size
+= sizeof(data
->ip
);
1319 if (sample_type
& PERF_SAMPLE_ADDR
)
1320 size
+= sizeof(data
->addr
);
1322 if (sample_type
& PERF_SAMPLE_PERIOD
)
1323 size
+= sizeof(data
->period
);
1325 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1326 size
+= sizeof(data
->weight
);
1328 if (sample_type
& PERF_SAMPLE_READ
)
1329 size
+= event
->read_size
;
1331 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1332 size
+= sizeof(data
->data_src
.val
);
1334 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1335 size
+= sizeof(data
->txn
);
1337 event
->header_size
= size
;
1341 * Called at perf_event creation and when events are attached/detached from a
1344 static void perf_event__header_size(struct perf_event
*event
)
1346 __perf_event_read_size(event
,
1347 event
->group_leader
->nr_siblings
);
1348 __perf_event_header_size(event
, event
->attr
.sample_type
);
1351 static void perf_event__id_header_size(struct perf_event
*event
)
1353 struct perf_sample_data
*data
;
1354 u64 sample_type
= event
->attr
.sample_type
;
1357 if (sample_type
& PERF_SAMPLE_TID
)
1358 size
+= sizeof(data
->tid_entry
);
1360 if (sample_type
& PERF_SAMPLE_TIME
)
1361 size
+= sizeof(data
->time
);
1363 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1364 size
+= sizeof(data
->id
);
1366 if (sample_type
& PERF_SAMPLE_ID
)
1367 size
+= sizeof(data
->id
);
1369 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1370 size
+= sizeof(data
->stream_id
);
1372 if (sample_type
& PERF_SAMPLE_CPU
)
1373 size
+= sizeof(data
->cpu_entry
);
1375 event
->id_header_size
= size
;
1378 static bool perf_event_validate_size(struct perf_event
*event
)
1381 * The values computed here will be over-written when we actually
1384 __perf_event_read_size(event
, event
->group_leader
->nr_siblings
+ 1);
1385 __perf_event_header_size(event
, event
->attr
.sample_type
& ~PERF_SAMPLE_READ
);
1386 perf_event__id_header_size(event
);
1389 * Sum the lot; should not exceed the 64k limit we have on records.
1390 * Conservative limit to allow for callchains and other variable fields.
1392 if (event
->read_size
+ event
->header_size
+
1393 event
->id_header_size
+ sizeof(struct perf_event_header
) >= 16*1024)
1399 static void perf_group_attach(struct perf_event
*event
)
1401 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1404 * We can have double attach due to group movement in perf_event_open.
1406 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1409 event
->attach_state
|= PERF_ATTACH_GROUP
;
1411 if (group_leader
== event
)
1414 WARN_ON_ONCE(group_leader
->ctx
!= event
->ctx
);
1416 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
1417 !is_software_event(event
))
1418 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
1420 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
1421 group_leader
->nr_siblings
++;
1423 perf_event__header_size(group_leader
);
1425 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
1426 perf_event__header_size(pos
);
1430 * Remove a event from the lists for its context.
1431 * Must be called with ctx->mutex and ctx->lock held.
1434 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1436 struct perf_cpu_context
*cpuctx
;
1438 WARN_ON_ONCE(event
->ctx
!= ctx
);
1439 lockdep_assert_held(&ctx
->lock
);
1442 * We can have double detach due to exit/hot-unplug + close.
1444 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1447 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1449 if (is_cgroup_event(event
)) {
1451 cpuctx
= __get_cpu_context(ctx
);
1453 * if there are no more cgroup events
1454 * then cler cgrp to avoid stale pointer
1455 * in update_cgrp_time_from_cpuctx()
1457 if (!ctx
->nr_cgroups
)
1458 cpuctx
->cgrp
= NULL
;
1462 if (event
->attr
.inherit_stat
)
1465 list_del_rcu(&event
->event_entry
);
1467 if (event
->group_leader
== event
)
1468 list_del_init(&event
->group_entry
);
1470 update_group_times(event
);
1473 * If event was in error state, then keep it
1474 * that way, otherwise bogus counts will be
1475 * returned on read(). The only way to get out
1476 * of error state is by explicit re-enabling
1479 if (event
->state
> PERF_EVENT_STATE_OFF
)
1480 event
->state
= PERF_EVENT_STATE_OFF
;
1485 static void perf_group_detach(struct perf_event
*event
)
1487 struct perf_event
*sibling
, *tmp
;
1488 struct list_head
*list
= NULL
;
1491 * We can have double detach due to exit/hot-unplug + close.
1493 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1496 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1499 * If this is a sibling, remove it from its group.
1501 if (event
->group_leader
!= event
) {
1502 list_del_init(&event
->group_entry
);
1503 event
->group_leader
->nr_siblings
--;
1507 if (!list_empty(&event
->group_entry
))
1508 list
= &event
->group_entry
;
1511 * If this was a group event with sibling events then
1512 * upgrade the siblings to singleton events by adding them
1513 * to whatever list we are on.
1515 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1517 list_move_tail(&sibling
->group_entry
, list
);
1518 sibling
->group_leader
= sibling
;
1520 /* Inherit group flags from the previous leader */
1521 sibling
->group_flags
= event
->group_flags
;
1523 WARN_ON_ONCE(sibling
->ctx
!= event
->ctx
);
1527 perf_event__header_size(event
->group_leader
);
1529 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1530 perf_event__header_size(tmp
);
1534 * User event without the task.
1536 static bool is_orphaned_event(struct perf_event
*event
)
1538 return event
&& !is_kernel_event(event
) && !event
->owner
;
1542 * Event has a parent but parent's task finished and it's
1543 * alive only because of children holding refference.
1545 static bool is_orphaned_child(struct perf_event
*event
)
1547 return is_orphaned_event(event
->parent
);
1550 static void orphans_remove_work(struct work_struct
*work
);
1552 static void schedule_orphans_remove(struct perf_event_context
*ctx
)
1554 if (!ctx
->task
|| ctx
->orphans_remove_sched
|| !perf_wq
)
1557 if (queue_delayed_work(perf_wq
, &ctx
->orphans_remove
, 1)) {
1559 ctx
->orphans_remove_sched
= true;
1563 static int __init
perf_workqueue_init(void)
1565 perf_wq
= create_singlethread_workqueue("perf");
1566 WARN(!perf_wq
, "failed to create perf workqueue\n");
1567 return perf_wq
? 0 : -1;
1570 core_initcall(perf_workqueue_init
);
1572 static inline int pmu_filter_match(struct perf_event
*event
)
1574 struct pmu
*pmu
= event
->pmu
;
1575 return pmu
->filter_match
? pmu
->filter_match(event
) : 1;
1579 event_filter_match(struct perf_event
*event
)
1581 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id())
1582 && perf_cgroup_match(event
) && pmu_filter_match(event
);
1586 event_sched_out(struct perf_event
*event
,
1587 struct perf_cpu_context
*cpuctx
,
1588 struct perf_event_context
*ctx
)
1590 u64 tstamp
= perf_event_time(event
);
1593 WARN_ON_ONCE(event
->ctx
!= ctx
);
1594 lockdep_assert_held(&ctx
->lock
);
1597 * An event which could not be activated because of
1598 * filter mismatch still needs to have its timings
1599 * maintained, otherwise bogus information is return
1600 * via read() for time_enabled, time_running:
1602 if (event
->state
== PERF_EVENT_STATE_INACTIVE
1603 && !event_filter_match(event
)) {
1604 delta
= tstamp
- event
->tstamp_stopped
;
1605 event
->tstamp_running
+= delta
;
1606 event
->tstamp_stopped
= tstamp
;
1609 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1612 perf_pmu_disable(event
->pmu
);
1614 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1615 if (event
->pending_disable
) {
1616 event
->pending_disable
= 0;
1617 event
->state
= PERF_EVENT_STATE_OFF
;
1619 event
->tstamp_stopped
= tstamp
;
1620 event
->pmu
->del(event
, 0);
1623 if (!is_software_event(event
))
1624 cpuctx
->active_oncpu
--;
1625 if (!--ctx
->nr_active
)
1626 perf_event_ctx_deactivate(ctx
);
1627 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1629 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1630 cpuctx
->exclusive
= 0;
1632 if (is_orphaned_child(event
))
1633 schedule_orphans_remove(ctx
);
1635 perf_pmu_enable(event
->pmu
);
1639 group_sched_out(struct perf_event
*group_event
,
1640 struct perf_cpu_context
*cpuctx
,
1641 struct perf_event_context
*ctx
)
1643 struct perf_event
*event
;
1644 int state
= group_event
->state
;
1646 event_sched_out(group_event
, cpuctx
, ctx
);
1649 * Schedule out siblings (if any):
1651 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1652 event_sched_out(event
, cpuctx
, ctx
);
1654 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1655 cpuctx
->exclusive
= 0;
1658 struct remove_event
{
1659 struct perf_event
*event
;
1663 static void ___perf_remove_from_context(void *info
)
1665 struct remove_event
*re
= info
;
1666 struct perf_event
*event
= re
->event
;
1667 struct perf_event_context
*ctx
= event
->ctx
;
1669 if (re
->detach_group
)
1670 perf_group_detach(event
);
1671 list_del_event(event
, ctx
);
1675 * Cross CPU call to remove a performance event
1677 * We disable the event on the hardware level first. After that we
1678 * remove it from the context list.
1680 static int __perf_remove_from_context(void *info
)
1682 struct remove_event
*re
= info
;
1683 struct perf_event
*event
= re
->event
;
1684 struct perf_event_context
*ctx
= event
->ctx
;
1685 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1687 raw_spin_lock(&ctx
->lock
);
1688 event_sched_out(event
, cpuctx
, ctx
);
1689 if (re
->detach_group
)
1690 perf_group_detach(event
);
1691 list_del_event(event
, ctx
);
1692 if (!ctx
->nr_events
&& cpuctx
->task_ctx
== ctx
) {
1694 cpuctx
->task_ctx
= NULL
;
1696 raw_spin_unlock(&ctx
->lock
);
1702 * Remove the event from a task's (or a CPU's) list of events.
1704 * CPU events are removed with a smp call. For task events we only
1705 * call when the task is on a CPU.
1707 * If event->ctx is a cloned context, callers must make sure that
1708 * every task struct that event->ctx->task could possibly point to
1709 * remains valid. This is OK when called from perf_release since
1710 * that only calls us on the top-level context, which can't be a clone.
1711 * When called from perf_event_exit_task, it's OK because the
1712 * context has been detached from its task.
1714 static void perf_remove_from_context(struct perf_event
*event
, bool detach_group
)
1716 struct perf_event_context
*ctx
= event
->ctx
;
1717 struct remove_event re
= {
1719 .detach_group
= detach_group
,
1722 lockdep_assert_held(&ctx
->mutex
);
1724 event_function_call(event
, __perf_remove_from_context
,
1725 ___perf_remove_from_context
, &re
);
1729 * Cross CPU call to disable a performance event
1731 int __perf_event_disable(void *info
)
1733 struct perf_event
*event
= info
;
1734 struct perf_event_context
*ctx
= event
->ctx
;
1735 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1738 * If this is a per-task event, need to check whether this
1739 * event's task is the current task on this cpu.
1741 * Can trigger due to concurrent perf_event_context_sched_out()
1742 * flipping contexts around.
1744 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1747 raw_spin_lock(&ctx
->lock
);
1750 * If the event is on, turn it off.
1751 * If it is in error state, leave it in error state.
1753 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
1754 update_context_time(ctx
);
1755 update_cgrp_time_from_event(event
);
1756 update_group_times(event
);
1757 if (event
== event
->group_leader
)
1758 group_sched_out(event
, cpuctx
, ctx
);
1760 event_sched_out(event
, cpuctx
, ctx
);
1761 event
->state
= PERF_EVENT_STATE_OFF
;
1764 raw_spin_unlock(&ctx
->lock
);
1769 void ___perf_event_disable(void *info
)
1771 struct perf_event
*event
= info
;
1774 * Since we have the lock this context can't be scheduled
1775 * in, so we can change the state safely.
1777 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1778 update_group_times(event
);
1779 event
->state
= PERF_EVENT_STATE_OFF
;
1786 * If event->ctx is a cloned context, callers must make sure that
1787 * every task struct that event->ctx->task could possibly point to
1788 * remains valid. This condition is satisifed when called through
1789 * perf_event_for_each_child or perf_event_for_each because they
1790 * hold the top-level event's child_mutex, so any descendant that
1791 * goes to exit will block in sync_child_event.
1792 * When called from perf_pending_event it's OK because event->ctx
1793 * is the current context on this CPU and preemption is disabled,
1794 * hence we can't get into perf_event_task_sched_out for this context.
1796 static void _perf_event_disable(struct perf_event
*event
)
1798 struct perf_event_context
*ctx
= event
->ctx
;
1800 raw_spin_lock_irq(&ctx
->lock
);
1801 if (event
->state
<= PERF_EVENT_STATE_OFF
) {
1802 raw_spin_unlock_irq(&ctx
->lock
);
1805 raw_spin_unlock_irq(&ctx
->lock
);
1807 event_function_call(event
, __perf_event_disable
,
1808 ___perf_event_disable
, event
);
1812 * Strictly speaking kernel users cannot create groups and therefore this
1813 * interface does not need the perf_event_ctx_lock() magic.
1815 void perf_event_disable(struct perf_event
*event
)
1817 struct perf_event_context
*ctx
;
1819 ctx
= perf_event_ctx_lock(event
);
1820 _perf_event_disable(event
);
1821 perf_event_ctx_unlock(event
, ctx
);
1823 EXPORT_SYMBOL_GPL(perf_event_disable
);
1825 static void perf_set_shadow_time(struct perf_event
*event
,
1826 struct perf_event_context
*ctx
,
1830 * use the correct time source for the time snapshot
1832 * We could get by without this by leveraging the
1833 * fact that to get to this function, the caller
1834 * has most likely already called update_context_time()
1835 * and update_cgrp_time_xx() and thus both timestamp
1836 * are identical (or very close). Given that tstamp is,
1837 * already adjusted for cgroup, we could say that:
1838 * tstamp - ctx->timestamp
1840 * tstamp - cgrp->timestamp.
1842 * Then, in perf_output_read(), the calculation would
1843 * work with no changes because:
1844 * - event is guaranteed scheduled in
1845 * - no scheduled out in between
1846 * - thus the timestamp would be the same
1848 * But this is a bit hairy.
1850 * So instead, we have an explicit cgroup call to remain
1851 * within the time time source all along. We believe it
1852 * is cleaner and simpler to understand.
1854 if (is_cgroup_event(event
))
1855 perf_cgroup_set_shadow_time(event
, tstamp
);
1857 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
1860 #define MAX_INTERRUPTS (~0ULL)
1862 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1863 static void perf_log_itrace_start(struct perf_event
*event
);
1866 event_sched_in(struct perf_event
*event
,
1867 struct perf_cpu_context
*cpuctx
,
1868 struct perf_event_context
*ctx
)
1870 u64 tstamp
= perf_event_time(event
);
1873 lockdep_assert_held(&ctx
->lock
);
1875 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1878 event
->state
= PERF_EVENT_STATE_ACTIVE
;
1879 event
->oncpu
= smp_processor_id();
1882 * Unthrottle events, since we scheduled we might have missed several
1883 * ticks already, also for a heavily scheduling task there is little
1884 * guarantee it'll get a tick in a timely manner.
1886 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
1887 perf_log_throttle(event
, 1);
1888 event
->hw
.interrupts
= 0;
1892 * The new state must be visible before we turn it on in the hardware:
1896 perf_pmu_disable(event
->pmu
);
1898 perf_set_shadow_time(event
, ctx
, tstamp
);
1900 perf_log_itrace_start(event
);
1902 if (event
->pmu
->add(event
, PERF_EF_START
)) {
1903 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1909 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
1911 if (!is_software_event(event
))
1912 cpuctx
->active_oncpu
++;
1913 if (!ctx
->nr_active
++)
1914 perf_event_ctx_activate(ctx
);
1915 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1918 if (event
->attr
.exclusive
)
1919 cpuctx
->exclusive
= 1;
1921 if (is_orphaned_child(event
))
1922 schedule_orphans_remove(ctx
);
1925 perf_pmu_enable(event
->pmu
);
1931 group_sched_in(struct perf_event
*group_event
,
1932 struct perf_cpu_context
*cpuctx
,
1933 struct perf_event_context
*ctx
)
1935 struct perf_event
*event
, *partial_group
= NULL
;
1936 struct pmu
*pmu
= ctx
->pmu
;
1937 u64 now
= ctx
->time
;
1938 bool simulate
= false;
1940 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
1943 pmu
->start_txn(pmu
, PERF_PMU_TXN_ADD
);
1945 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
1946 pmu
->cancel_txn(pmu
);
1947 perf_mux_hrtimer_restart(cpuctx
);
1952 * Schedule in siblings as one group (if any):
1954 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1955 if (event_sched_in(event
, cpuctx
, ctx
)) {
1956 partial_group
= event
;
1961 if (!pmu
->commit_txn(pmu
))
1966 * Groups can be scheduled in as one unit only, so undo any
1967 * partial group before returning:
1968 * The events up to the failed event are scheduled out normally,
1969 * tstamp_stopped will be updated.
1971 * The failed events and the remaining siblings need to have
1972 * their timings updated as if they had gone thru event_sched_in()
1973 * and event_sched_out(). This is required to get consistent timings
1974 * across the group. This also takes care of the case where the group
1975 * could never be scheduled by ensuring tstamp_stopped is set to mark
1976 * the time the event was actually stopped, such that time delta
1977 * calculation in update_event_times() is correct.
1979 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1980 if (event
== partial_group
)
1984 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
1985 event
->tstamp_stopped
= now
;
1987 event_sched_out(event
, cpuctx
, ctx
);
1990 event_sched_out(group_event
, cpuctx
, ctx
);
1992 pmu
->cancel_txn(pmu
);
1994 perf_mux_hrtimer_restart(cpuctx
);
2000 * Work out whether we can put this event group on the CPU now.
2002 static int group_can_go_on(struct perf_event
*event
,
2003 struct perf_cpu_context
*cpuctx
,
2007 * Groups consisting entirely of software events can always go on.
2009 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
2012 * If an exclusive group is already on, no other hardware
2015 if (cpuctx
->exclusive
)
2018 * If this group is exclusive and there are already
2019 * events on the CPU, it can't go on.
2021 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
2024 * Otherwise, try to add it if all previous groups were able
2030 static void add_event_to_ctx(struct perf_event
*event
,
2031 struct perf_event_context
*ctx
)
2033 u64 tstamp
= perf_event_time(event
);
2035 list_add_event(event
, ctx
);
2036 perf_group_attach(event
);
2037 event
->tstamp_enabled
= tstamp
;
2038 event
->tstamp_running
= tstamp
;
2039 event
->tstamp_stopped
= tstamp
;
2042 static void task_ctx_sched_out(struct perf_event_context
*ctx
);
2044 ctx_sched_in(struct perf_event_context
*ctx
,
2045 struct perf_cpu_context
*cpuctx
,
2046 enum event_type_t event_type
,
2047 struct task_struct
*task
);
2049 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2050 struct perf_event_context
*ctx
,
2051 struct task_struct
*task
)
2053 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
2055 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2056 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2058 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2061 static void ___perf_install_in_context(void *info
)
2063 struct perf_event
*event
= info
;
2064 struct perf_event_context
*ctx
= event
->ctx
;
2067 * Since the task isn't running, its safe to add the event, us holding
2068 * the ctx->lock ensures the task won't get scheduled in.
2070 add_event_to_ctx(event
, ctx
);
2074 * Cross CPU call to install and enable a performance event
2076 * Must be called with ctx->mutex held
2078 static int __perf_install_in_context(void *info
)
2080 struct perf_event
*event
= info
;
2081 struct perf_event_context
*ctx
= event
->ctx
;
2082 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2083 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2084 struct task_struct
*task
= current
;
2086 perf_ctx_lock(cpuctx
, task_ctx
);
2087 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2090 * If there was an active task_ctx schedule it out.
2093 task_ctx_sched_out(task_ctx
);
2096 * If the context we're installing events in is not the
2097 * active task_ctx, flip them.
2099 if (ctx
->task
&& task_ctx
!= ctx
) {
2101 raw_spin_unlock(&task_ctx
->lock
);
2102 raw_spin_lock(&ctx
->lock
);
2107 cpuctx
->task_ctx
= task_ctx
;
2108 task
= task_ctx
->task
;
2111 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
2113 update_context_time(ctx
);
2115 * update cgrp time only if current cgrp
2116 * matches event->cgrp. Must be done before
2117 * calling add_event_to_ctx()
2119 update_cgrp_time_from_event(event
);
2121 add_event_to_ctx(event
, ctx
);
2124 * Schedule everything back in
2126 perf_event_sched_in(cpuctx
, task_ctx
, task
);
2128 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2129 perf_ctx_unlock(cpuctx
, task_ctx
);
2135 * Attach a performance event to a context
2137 * First we add the event to the list with the hardware enable bit
2138 * in event->hw_config cleared.
2140 * If the event is attached to a task which is on a CPU we use a smp
2141 * call to enable it in the task context. The task might have been
2142 * scheduled away, but we check this in the smp call again.
2145 perf_install_in_context(struct perf_event_context
*ctx
,
2146 struct perf_event
*event
,
2149 lockdep_assert_held(&ctx
->mutex
);
2152 if (event
->cpu
!= -1)
2155 event_function_call(event
, __perf_install_in_context
,
2156 ___perf_install_in_context
, event
);
2160 * Put a event into inactive state and update time fields.
2161 * Enabling the leader of a group effectively enables all
2162 * the group members that aren't explicitly disabled, so we
2163 * have to update their ->tstamp_enabled also.
2164 * Note: this works for group members as well as group leaders
2165 * since the non-leader members' sibling_lists will be empty.
2167 static void __perf_event_mark_enabled(struct perf_event
*event
)
2169 struct perf_event
*sub
;
2170 u64 tstamp
= perf_event_time(event
);
2172 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2173 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
2174 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
2175 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
2176 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
2181 * Cross CPU call to enable a performance event
2183 static int __perf_event_enable(void *info
)
2185 struct perf_event
*event
= info
;
2186 struct perf_event_context
*ctx
= event
->ctx
;
2187 struct perf_event
*leader
= event
->group_leader
;
2188 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2192 * There's a time window between 'ctx->is_active' check
2193 * in perf_event_enable function and this place having:
2195 * - ctx->lock unlocked
2197 * where the task could be killed and 'ctx' deactivated
2198 * by perf_event_exit_task.
2200 if (!ctx
->is_active
)
2203 raw_spin_lock(&ctx
->lock
);
2204 update_context_time(ctx
);
2206 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2210 * set current task's cgroup time reference point
2212 perf_cgroup_set_timestamp(current
, ctx
);
2214 __perf_event_mark_enabled(event
);
2216 if (!event_filter_match(event
)) {
2217 if (is_cgroup_event(event
))
2218 perf_cgroup_defer_enabled(event
);
2223 * If the event is in a group and isn't the group leader,
2224 * then don't put it on unless the group is on.
2226 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
2229 if (!group_can_go_on(event
, cpuctx
, 1)) {
2232 if (event
== leader
)
2233 err
= group_sched_in(event
, cpuctx
, ctx
);
2235 err
= event_sched_in(event
, cpuctx
, ctx
);
2240 * If this event can't go on and it's part of a
2241 * group, then the whole group has to come off.
2243 if (leader
!= event
) {
2244 group_sched_out(leader
, cpuctx
, ctx
);
2245 perf_mux_hrtimer_restart(cpuctx
);
2247 if (leader
->attr
.pinned
) {
2248 update_group_times(leader
);
2249 leader
->state
= PERF_EVENT_STATE_ERROR
;
2254 raw_spin_unlock(&ctx
->lock
);
2259 void ___perf_event_enable(void *info
)
2261 __perf_event_mark_enabled((struct perf_event
*)info
);
2267 * If event->ctx is a cloned context, callers must make sure that
2268 * every task struct that event->ctx->task could possibly point to
2269 * remains valid. This condition is satisfied when called through
2270 * perf_event_for_each_child or perf_event_for_each as described
2271 * for perf_event_disable.
2273 static void _perf_event_enable(struct perf_event
*event
)
2275 struct perf_event_context
*ctx
= event
->ctx
;
2277 raw_spin_lock_irq(&ctx
->lock
);
2278 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
2279 raw_spin_unlock_irq(&ctx
->lock
);
2284 * If the event is in error state, clear that first.
2286 * That way, if we see the event in error state below, we know that it
2287 * has gone back into error state, as distinct from the task having
2288 * been scheduled away before the cross-call arrived.
2290 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2291 event
->state
= PERF_EVENT_STATE_OFF
;
2292 raw_spin_unlock_irq(&ctx
->lock
);
2294 event_function_call(event
, __perf_event_enable
,
2295 ___perf_event_enable
, event
);
2299 * See perf_event_disable();
2301 void perf_event_enable(struct perf_event
*event
)
2303 struct perf_event_context
*ctx
;
2305 ctx
= perf_event_ctx_lock(event
);
2306 _perf_event_enable(event
);
2307 perf_event_ctx_unlock(event
, ctx
);
2309 EXPORT_SYMBOL_GPL(perf_event_enable
);
2311 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
2314 * not supported on inherited events
2316 if (event
->attr
.inherit
|| !is_sampling_event(event
))
2319 atomic_add(refresh
, &event
->event_limit
);
2320 _perf_event_enable(event
);
2326 * See perf_event_disable()
2328 int perf_event_refresh(struct perf_event
*event
, int refresh
)
2330 struct perf_event_context
*ctx
;
2333 ctx
= perf_event_ctx_lock(event
);
2334 ret
= _perf_event_refresh(event
, refresh
);
2335 perf_event_ctx_unlock(event
, ctx
);
2339 EXPORT_SYMBOL_GPL(perf_event_refresh
);
2341 static void ctx_sched_out(struct perf_event_context
*ctx
,
2342 struct perf_cpu_context
*cpuctx
,
2343 enum event_type_t event_type
)
2345 struct perf_event
*event
;
2346 int is_active
= ctx
->is_active
;
2348 ctx
->is_active
&= ~event_type
;
2349 if (likely(!ctx
->nr_events
))
2352 update_context_time(ctx
);
2353 update_cgrp_time_from_cpuctx(cpuctx
);
2354 if (!ctx
->nr_active
)
2357 perf_pmu_disable(ctx
->pmu
);
2358 if ((is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
)) {
2359 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
2360 group_sched_out(event
, cpuctx
, ctx
);
2363 if ((is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
)) {
2364 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
2365 group_sched_out(event
, cpuctx
, ctx
);
2367 perf_pmu_enable(ctx
->pmu
);
2371 * Test whether two contexts are equivalent, i.e. whether they have both been
2372 * cloned from the same version of the same context.
2374 * Equivalence is measured using a generation number in the context that is
2375 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2376 * and list_del_event().
2378 static int context_equiv(struct perf_event_context
*ctx1
,
2379 struct perf_event_context
*ctx2
)
2381 lockdep_assert_held(&ctx1
->lock
);
2382 lockdep_assert_held(&ctx2
->lock
);
2384 /* Pinning disables the swap optimization */
2385 if (ctx1
->pin_count
|| ctx2
->pin_count
)
2388 /* If ctx1 is the parent of ctx2 */
2389 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
2392 /* If ctx2 is the parent of ctx1 */
2393 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
2397 * If ctx1 and ctx2 have the same parent; we flatten the parent
2398 * hierarchy, see perf_event_init_context().
2400 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
2401 ctx1
->parent_gen
== ctx2
->parent_gen
)
2408 static void __perf_event_sync_stat(struct perf_event
*event
,
2409 struct perf_event
*next_event
)
2413 if (!event
->attr
.inherit_stat
)
2417 * Update the event value, we cannot use perf_event_read()
2418 * because we're in the middle of a context switch and have IRQs
2419 * disabled, which upsets smp_call_function_single(), however
2420 * we know the event must be on the current CPU, therefore we
2421 * don't need to use it.
2423 switch (event
->state
) {
2424 case PERF_EVENT_STATE_ACTIVE
:
2425 event
->pmu
->read(event
);
2428 case PERF_EVENT_STATE_INACTIVE
:
2429 update_event_times(event
);
2437 * In order to keep per-task stats reliable we need to flip the event
2438 * values when we flip the contexts.
2440 value
= local64_read(&next_event
->count
);
2441 value
= local64_xchg(&event
->count
, value
);
2442 local64_set(&next_event
->count
, value
);
2444 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
2445 swap(event
->total_time_running
, next_event
->total_time_running
);
2448 * Since we swizzled the values, update the user visible data too.
2450 perf_event_update_userpage(event
);
2451 perf_event_update_userpage(next_event
);
2454 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
2455 struct perf_event_context
*next_ctx
)
2457 struct perf_event
*event
, *next_event
;
2462 update_context_time(ctx
);
2464 event
= list_first_entry(&ctx
->event_list
,
2465 struct perf_event
, event_entry
);
2467 next_event
= list_first_entry(&next_ctx
->event_list
,
2468 struct perf_event
, event_entry
);
2470 while (&event
->event_entry
!= &ctx
->event_list
&&
2471 &next_event
->event_entry
!= &next_ctx
->event_list
) {
2473 __perf_event_sync_stat(event
, next_event
);
2475 event
= list_next_entry(event
, event_entry
);
2476 next_event
= list_next_entry(next_event
, event_entry
);
2480 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
2481 struct task_struct
*next
)
2483 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
2484 struct perf_event_context
*next_ctx
;
2485 struct perf_event_context
*parent
, *next_parent
;
2486 struct perf_cpu_context
*cpuctx
;
2492 cpuctx
= __get_cpu_context(ctx
);
2493 if (!cpuctx
->task_ctx
)
2497 next_ctx
= next
->perf_event_ctxp
[ctxn
];
2501 parent
= rcu_dereference(ctx
->parent_ctx
);
2502 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
2504 /* If neither context have a parent context; they cannot be clones. */
2505 if (!parent
&& !next_parent
)
2508 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
2510 * Looks like the two contexts are clones, so we might be
2511 * able to optimize the context switch. We lock both
2512 * contexts and check that they are clones under the
2513 * lock (including re-checking that neither has been
2514 * uncloned in the meantime). It doesn't matter which
2515 * order we take the locks because no other cpu could
2516 * be trying to lock both of these tasks.
2518 raw_spin_lock(&ctx
->lock
);
2519 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
2520 if (context_equiv(ctx
, next_ctx
)) {
2522 * XXX do we need a memory barrier of sorts
2523 * wrt to rcu_dereference() of perf_event_ctxp
2525 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
2526 next
->perf_event_ctxp
[ctxn
] = ctx
;
2528 next_ctx
->task
= task
;
2530 swap(ctx
->task_ctx_data
, next_ctx
->task_ctx_data
);
2534 perf_event_sync_stat(ctx
, next_ctx
);
2536 raw_spin_unlock(&next_ctx
->lock
);
2537 raw_spin_unlock(&ctx
->lock
);
2543 raw_spin_lock(&ctx
->lock
);
2544 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2545 cpuctx
->task_ctx
= NULL
;
2546 raw_spin_unlock(&ctx
->lock
);
2550 void perf_sched_cb_dec(struct pmu
*pmu
)
2552 this_cpu_dec(perf_sched_cb_usages
);
2555 void perf_sched_cb_inc(struct pmu
*pmu
)
2557 this_cpu_inc(perf_sched_cb_usages
);
2561 * This function provides the context switch callback to the lower code
2562 * layer. It is invoked ONLY when the context switch callback is enabled.
2564 static void perf_pmu_sched_task(struct task_struct
*prev
,
2565 struct task_struct
*next
,
2568 struct perf_cpu_context
*cpuctx
;
2570 unsigned long flags
;
2575 local_irq_save(flags
);
2579 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
2580 if (pmu
->sched_task
) {
2581 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2583 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2585 perf_pmu_disable(pmu
);
2587 pmu
->sched_task(cpuctx
->task_ctx
, sched_in
);
2589 perf_pmu_enable(pmu
);
2591 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2597 local_irq_restore(flags
);
2600 static void perf_event_switch(struct task_struct
*task
,
2601 struct task_struct
*next_prev
, bool sched_in
);
2603 #define for_each_task_context_nr(ctxn) \
2604 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2607 * Called from scheduler to remove the events of the current task,
2608 * with interrupts disabled.
2610 * We stop each event and update the event value in event->count.
2612 * This does not protect us against NMI, but disable()
2613 * sets the disabled bit in the control field of event _before_
2614 * accessing the event control register. If a NMI hits, then it will
2615 * not restart the event.
2617 void __perf_event_task_sched_out(struct task_struct
*task
,
2618 struct task_struct
*next
)
2622 if (__this_cpu_read(perf_sched_cb_usages
))
2623 perf_pmu_sched_task(task
, next
, false);
2625 if (atomic_read(&nr_switch_events
))
2626 perf_event_switch(task
, next
, false);
2628 for_each_task_context_nr(ctxn
)
2629 perf_event_context_sched_out(task
, ctxn
, next
);
2632 * if cgroup events exist on this CPU, then we need
2633 * to check if we have to switch out PMU state.
2634 * cgroup event are system-wide mode only
2636 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
2637 perf_cgroup_sched_out(task
, next
);
2640 static void task_ctx_sched_out(struct perf_event_context
*ctx
)
2642 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2644 if (!cpuctx
->task_ctx
)
2647 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2650 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2651 cpuctx
->task_ctx
= NULL
;
2655 * Called with IRQs disabled
2657 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2658 enum event_type_t event_type
)
2660 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
2664 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
2665 struct perf_cpu_context
*cpuctx
)
2667 struct perf_event
*event
;
2669 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2670 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2672 if (!event_filter_match(event
))
2675 /* may need to reset tstamp_enabled */
2676 if (is_cgroup_event(event
))
2677 perf_cgroup_mark_enabled(event
, ctx
);
2679 if (group_can_go_on(event
, cpuctx
, 1))
2680 group_sched_in(event
, cpuctx
, ctx
);
2683 * If this pinned group hasn't been scheduled,
2684 * put it in error state.
2686 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2687 update_group_times(event
);
2688 event
->state
= PERF_EVENT_STATE_ERROR
;
2694 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
2695 struct perf_cpu_context
*cpuctx
)
2697 struct perf_event
*event
;
2700 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2701 /* Ignore events in OFF or ERROR state */
2702 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2705 * Listen to the 'cpu' scheduling filter constraint
2708 if (!event_filter_match(event
))
2711 /* may need to reset tstamp_enabled */
2712 if (is_cgroup_event(event
))
2713 perf_cgroup_mark_enabled(event
, ctx
);
2715 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
2716 if (group_sched_in(event
, cpuctx
, ctx
))
2723 ctx_sched_in(struct perf_event_context
*ctx
,
2724 struct perf_cpu_context
*cpuctx
,
2725 enum event_type_t event_type
,
2726 struct task_struct
*task
)
2729 int is_active
= ctx
->is_active
;
2731 ctx
->is_active
|= event_type
;
2732 if (likely(!ctx
->nr_events
))
2736 ctx
->timestamp
= now
;
2737 perf_cgroup_set_timestamp(task
, ctx
);
2739 * First go through the list and put on any pinned groups
2740 * in order to give them the best chance of going on.
2742 if (!(is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
))
2743 ctx_pinned_sched_in(ctx
, cpuctx
);
2745 /* Then walk through the lower prio flexible groups */
2746 if (!(is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
))
2747 ctx_flexible_sched_in(ctx
, cpuctx
);
2750 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
2751 enum event_type_t event_type
,
2752 struct task_struct
*task
)
2754 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
2756 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
2759 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
2760 struct task_struct
*task
)
2762 struct perf_cpu_context
*cpuctx
;
2764 cpuctx
= __get_cpu_context(ctx
);
2765 if (cpuctx
->task_ctx
== ctx
)
2768 perf_ctx_lock(cpuctx
, ctx
);
2769 perf_pmu_disable(ctx
->pmu
);
2771 * We want to keep the following priority order:
2772 * cpu pinned (that don't need to move), task pinned,
2773 * cpu flexible, task flexible.
2775 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2778 cpuctx
->task_ctx
= ctx
;
2780 perf_event_sched_in(cpuctx
, cpuctx
->task_ctx
, task
);
2782 perf_pmu_enable(ctx
->pmu
);
2783 perf_ctx_unlock(cpuctx
, ctx
);
2787 * Called from scheduler to add the events of the current task
2788 * with interrupts disabled.
2790 * We restore the event value and then enable it.
2792 * This does not protect us against NMI, but enable()
2793 * sets the enabled bit in the control field of event _before_
2794 * accessing the event control register. If a NMI hits, then it will
2795 * keep the event running.
2797 void __perf_event_task_sched_in(struct task_struct
*prev
,
2798 struct task_struct
*task
)
2800 struct perf_event_context
*ctx
;
2803 for_each_task_context_nr(ctxn
) {
2804 ctx
= task
->perf_event_ctxp
[ctxn
];
2808 perf_event_context_sched_in(ctx
, task
);
2811 * if cgroup events exist on this CPU, then we need
2812 * to check if we have to switch in PMU state.
2813 * cgroup event are system-wide mode only
2815 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
2816 perf_cgroup_sched_in(prev
, task
);
2818 if (atomic_read(&nr_switch_events
))
2819 perf_event_switch(task
, prev
, true);
2821 if (__this_cpu_read(perf_sched_cb_usages
))
2822 perf_pmu_sched_task(prev
, task
, true);
2825 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2827 u64 frequency
= event
->attr
.sample_freq
;
2828 u64 sec
= NSEC_PER_SEC
;
2829 u64 divisor
, dividend
;
2831 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
2833 count_fls
= fls64(count
);
2834 nsec_fls
= fls64(nsec
);
2835 frequency_fls
= fls64(frequency
);
2839 * We got @count in @nsec, with a target of sample_freq HZ
2840 * the target period becomes:
2843 * period = -------------------
2844 * @nsec * sample_freq
2849 * Reduce accuracy by one bit such that @a and @b converge
2850 * to a similar magnitude.
2852 #define REDUCE_FLS(a, b) \
2854 if (a##_fls > b##_fls) { \
2864 * Reduce accuracy until either term fits in a u64, then proceed with
2865 * the other, so that finally we can do a u64/u64 division.
2867 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
2868 REDUCE_FLS(nsec
, frequency
);
2869 REDUCE_FLS(sec
, count
);
2872 if (count_fls
+ sec_fls
> 64) {
2873 divisor
= nsec
* frequency
;
2875 while (count_fls
+ sec_fls
> 64) {
2876 REDUCE_FLS(count
, sec
);
2880 dividend
= count
* sec
;
2882 dividend
= count
* sec
;
2884 while (nsec_fls
+ frequency_fls
> 64) {
2885 REDUCE_FLS(nsec
, frequency
);
2889 divisor
= nsec
* frequency
;
2895 return div64_u64(dividend
, divisor
);
2898 static DEFINE_PER_CPU(int, perf_throttled_count
);
2899 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
2901 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
2903 struct hw_perf_event
*hwc
= &event
->hw
;
2904 s64 period
, sample_period
;
2907 period
= perf_calculate_period(event
, nsec
, count
);
2909 delta
= (s64
)(period
- hwc
->sample_period
);
2910 delta
= (delta
+ 7) / 8; /* low pass filter */
2912 sample_period
= hwc
->sample_period
+ delta
;
2917 hwc
->sample_period
= sample_period
;
2919 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
2921 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2923 local64_set(&hwc
->period_left
, 0);
2926 event
->pmu
->start(event
, PERF_EF_RELOAD
);
2931 * combine freq adjustment with unthrottling to avoid two passes over the
2932 * events. At the same time, make sure, having freq events does not change
2933 * the rate of unthrottling as that would introduce bias.
2935 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
2938 struct perf_event
*event
;
2939 struct hw_perf_event
*hwc
;
2940 u64 now
, period
= TICK_NSEC
;
2944 * only need to iterate over all events iff:
2945 * - context have events in frequency mode (needs freq adjust)
2946 * - there are events to unthrottle on this cpu
2948 if (!(ctx
->nr_freq
|| needs_unthr
))
2951 raw_spin_lock(&ctx
->lock
);
2952 perf_pmu_disable(ctx
->pmu
);
2954 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
2955 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2958 if (!event_filter_match(event
))
2961 perf_pmu_disable(event
->pmu
);
2965 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
2966 hwc
->interrupts
= 0;
2967 perf_log_throttle(event
, 1);
2968 event
->pmu
->start(event
, 0);
2971 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
2975 * stop the event and update event->count
2977 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2979 now
= local64_read(&event
->count
);
2980 delta
= now
- hwc
->freq_count_stamp
;
2981 hwc
->freq_count_stamp
= now
;
2985 * reload only if value has changed
2986 * we have stopped the event so tell that
2987 * to perf_adjust_period() to avoid stopping it
2991 perf_adjust_period(event
, period
, delta
, false);
2993 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
2995 perf_pmu_enable(event
->pmu
);
2998 perf_pmu_enable(ctx
->pmu
);
2999 raw_spin_unlock(&ctx
->lock
);
3003 * Round-robin a context's events:
3005 static void rotate_ctx(struct perf_event_context
*ctx
)
3008 * Rotate the first entry last of non-pinned groups. Rotation might be
3009 * disabled by the inheritance code.
3011 if (!ctx
->rotate_disable
)
3012 list_rotate_left(&ctx
->flexible_groups
);
3015 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
)
3017 struct perf_event_context
*ctx
= NULL
;
3020 if (cpuctx
->ctx
.nr_events
) {
3021 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
3025 ctx
= cpuctx
->task_ctx
;
3026 if (ctx
&& ctx
->nr_events
) {
3027 if (ctx
->nr_events
!= ctx
->nr_active
)
3034 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3035 perf_pmu_disable(cpuctx
->ctx
.pmu
);
3037 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3039 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
3041 rotate_ctx(&cpuctx
->ctx
);
3045 perf_event_sched_in(cpuctx
, ctx
, current
);
3047 perf_pmu_enable(cpuctx
->ctx
.pmu
);
3048 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3054 #ifdef CONFIG_NO_HZ_FULL
3055 bool perf_event_can_stop_tick(void)
3057 if (atomic_read(&nr_freq_events
) ||
3058 __this_cpu_read(perf_throttled_count
))
3065 void perf_event_task_tick(void)
3067 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
3068 struct perf_event_context
*ctx
, *tmp
;
3071 WARN_ON(!irqs_disabled());
3073 __this_cpu_inc(perf_throttled_seq
);
3074 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
3076 list_for_each_entry_safe(ctx
, tmp
, head
, active_ctx_list
)
3077 perf_adjust_freq_unthr_context(ctx
, throttled
);
3080 static int event_enable_on_exec(struct perf_event
*event
,
3081 struct perf_event_context
*ctx
)
3083 if (!event
->attr
.enable_on_exec
)
3086 event
->attr
.enable_on_exec
= 0;
3087 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
3090 __perf_event_mark_enabled(event
);
3096 * Enable all of a task's events that have been marked enable-on-exec.
3097 * This expects task == current.
3099 static void perf_event_enable_on_exec(int ctxn
)
3101 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3102 struct perf_event
*event
;
3103 unsigned long flags
;
3107 local_irq_save(flags
);
3108 ctx
= current
->perf_event_ctxp
[ctxn
];
3109 if (!ctx
|| !ctx
->nr_events
)
3113 * We must ctxsw out cgroup events to avoid conflict
3114 * when invoking perf_task_event_sched_in() later on
3115 * in this function. Otherwise we end up trying to
3116 * ctxswin cgroup events which are already scheduled
3119 perf_cgroup_sched_out(current
, NULL
);
3121 raw_spin_lock(&ctx
->lock
);
3122 task_ctx_sched_out(ctx
);
3124 list_for_each_entry(event
, &ctx
->event_list
, event_entry
) {
3125 ret
= event_enable_on_exec(event
, ctx
);
3131 * Unclone this context if we enabled any event.
3134 clone_ctx
= unclone_ctx(ctx
);
3136 raw_spin_unlock(&ctx
->lock
);
3139 * Also calls ctxswin for cgroup events, if any:
3141 perf_event_context_sched_in(ctx
, ctx
->task
);
3143 local_irq_restore(flags
);
3149 void perf_event_exec(void)
3154 for_each_task_context_nr(ctxn
)
3155 perf_event_enable_on_exec(ctxn
);
3159 struct perf_read_data
{
3160 struct perf_event
*event
;
3166 * Cross CPU call to read the hardware event
3168 static void __perf_event_read(void *info
)
3170 struct perf_read_data
*data
= info
;
3171 struct perf_event
*sub
, *event
= data
->event
;
3172 struct perf_event_context
*ctx
= event
->ctx
;
3173 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3174 struct pmu
*pmu
= event
->pmu
;
3177 * If this is a task context, we need to check whether it is
3178 * the current task context of this cpu. If not it has been
3179 * scheduled out before the smp call arrived. In that case
3180 * event->count would have been updated to a recent sample
3181 * when the event was scheduled out.
3183 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
3186 raw_spin_lock(&ctx
->lock
);
3187 if (ctx
->is_active
) {
3188 update_context_time(ctx
);
3189 update_cgrp_time_from_event(event
);
3192 update_event_times(event
);
3193 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3202 pmu
->start_txn(pmu
, PERF_PMU_TXN_READ
);
3206 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
3207 update_event_times(sub
);
3208 if (sub
->state
== PERF_EVENT_STATE_ACTIVE
) {
3210 * Use sibling's PMU rather than @event's since
3211 * sibling could be on different (eg: software) PMU.
3213 sub
->pmu
->read(sub
);
3217 data
->ret
= pmu
->commit_txn(pmu
);
3220 raw_spin_unlock(&ctx
->lock
);
3223 static inline u64
perf_event_count(struct perf_event
*event
)
3225 if (event
->pmu
->count
)
3226 return event
->pmu
->count(event
);
3228 return __perf_event_count(event
);
3232 * NMI-safe method to read a local event, that is an event that
3234 * - either for the current task, or for this CPU
3235 * - does not have inherit set, for inherited task events
3236 * will not be local and we cannot read them atomically
3237 * - must not have a pmu::count method
3239 u64
perf_event_read_local(struct perf_event
*event
)
3241 unsigned long flags
;
3245 * Disabling interrupts avoids all counter scheduling (context
3246 * switches, timer based rotation and IPIs).
3248 local_irq_save(flags
);
3250 /* If this is a per-task event, it must be for current */
3251 WARN_ON_ONCE((event
->attach_state
& PERF_ATTACH_TASK
) &&
3252 event
->hw
.target
!= current
);
3254 /* If this is a per-CPU event, it must be for this CPU */
3255 WARN_ON_ONCE(!(event
->attach_state
& PERF_ATTACH_TASK
) &&
3256 event
->cpu
!= smp_processor_id());
3259 * It must not be an event with inherit set, we cannot read
3260 * all child counters from atomic context.
3262 WARN_ON_ONCE(event
->attr
.inherit
);
3265 * It must not have a pmu::count method, those are not
3268 WARN_ON_ONCE(event
->pmu
->count
);
3271 * If the event is currently on this CPU, its either a per-task event,
3272 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3275 if (event
->oncpu
== smp_processor_id())
3276 event
->pmu
->read(event
);
3278 val
= local64_read(&event
->count
);
3279 local_irq_restore(flags
);
3284 static int perf_event_read(struct perf_event
*event
, bool group
)
3289 * If event is enabled and currently active on a CPU, update the
3290 * value in the event structure:
3292 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
3293 struct perf_read_data data
= {
3298 smp_call_function_single(event
->oncpu
,
3299 __perf_event_read
, &data
, 1);
3301 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3302 struct perf_event_context
*ctx
= event
->ctx
;
3303 unsigned long flags
;
3305 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
3307 * may read while context is not active
3308 * (e.g., thread is blocked), in that case
3309 * we cannot update context time
3311 if (ctx
->is_active
) {
3312 update_context_time(ctx
);
3313 update_cgrp_time_from_event(event
);
3316 update_group_times(event
);
3318 update_event_times(event
);
3319 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3326 * Initialize the perf_event context in a task_struct:
3328 static void __perf_event_init_context(struct perf_event_context
*ctx
)
3330 raw_spin_lock_init(&ctx
->lock
);
3331 mutex_init(&ctx
->mutex
);
3332 INIT_LIST_HEAD(&ctx
->active_ctx_list
);
3333 INIT_LIST_HEAD(&ctx
->pinned_groups
);
3334 INIT_LIST_HEAD(&ctx
->flexible_groups
);
3335 INIT_LIST_HEAD(&ctx
->event_list
);
3336 atomic_set(&ctx
->refcount
, 1);
3337 INIT_DELAYED_WORK(&ctx
->orphans_remove
, orphans_remove_work
);
3340 static struct perf_event_context
*
3341 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
3343 struct perf_event_context
*ctx
;
3345 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
3349 __perf_event_init_context(ctx
);
3352 get_task_struct(task
);
3359 static struct task_struct
*
3360 find_lively_task_by_vpid(pid_t vpid
)
3362 struct task_struct
*task
;
3369 task
= find_task_by_vpid(vpid
);
3371 get_task_struct(task
);
3375 return ERR_PTR(-ESRCH
);
3377 /* Reuse ptrace permission checks for now. */
3379 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
3384 put_task_struct(task
);
3385 return ERR_PTR(err
);
3390 * Returns a matching context with refcount and pincount.
3392 static struct perf_event_context
*
3393 find_get_context(struct pmu
*pmu
, struct task_struct
*task
,
3394 struct perf_event
*event
)
3396 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3397 struct perf_cpu_context
*cpuctx
;
3398 void *task_ctx_data
= NULL
;
3399 unsigned long flags
;
3401 int cpu
= event
->cpu
;
3404 /* Must be root to operate on a CPU event: */
3405 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
3406 return ERR_PTR(-EACCES
);
3409 * We could be clever and allow to attach a event to an
3410 * offline CPU and activate it when the CPU comes up, but
3413 if (!cpu_online(cpu
))
3414 return ERR_PTR(-ENODEV
);
3416 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
3425 ctxn
= pmu
->task_ctx_nr
;
3429 if (event
->attach_state
& PERF_ATTACH_TASK_DATA
) {
3430 task_ctx_data
= kzalloc(pmu
->task_ctx_size
, GFP_KERNEL
);
3431 if (!task_ctx_data
) {
3438 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
3440 clone_ctx
= unclone_ctx(ctx
);
3443 if (task_ctx_data
&& !ctx
->task_ctx_data
) {
3444 ctx
->task_ctx_data
= task_ctx_data
;
3445 task_ctx_data
= NULL
;
3447 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3452 ctx
= alloc_perf_context(pmu
, task
);
3457 if (task_ctx_data
) {
3458 ctx
->task_ctx_data
= task_ctx_data
;
3459 task_ctx_data
= NULL
;
3463 mutex_lock(&task
->perf_event_mutex
);
3465 * If it has already passed perf_event_exit_task().
3466 * we must see PF_EXITING, it takes this mutex too.
3468 if (task
->flags
& PF_EXITING
)
3470 else if (task
->perf_event_ctxp
[ctxn
])
3475 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
3477 mutex_unlock(&task
->perf_event_mutex
);
3479 if (unlikely(err
)) {
3488 kfree(task_ctx_data
);
3492 kfree(task_ctx_data
);
3493 return ERR_PTR(err
);
3496 static void perf_event_free_filter(struct perf_event
*event
);
3497 static void perf_event_free_bpf_prog(struct perf_event
*event
);
3499 static void free_event_rcu(struct rcu_head
*head
)
3501 struct perf_event
*event
;
3503 event
= container_of(head
, struct perf_event
, rcu_head
);
3505 put_pid_ns(event
->ns
);
3506 perf_event_free_filter(event
);
3510 static void ring_buffer_attach(struct perf_event
*event
,
3511 struct ring_buffer
*rb
);
3513 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
3518 if (is_cgroup_event(event
))
3519 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
3522 static void unaccount_event(struct perf_event
*event
)
3527 if (event
->attach_state
& PERF_ATTACH_TASK
)
3528 static_key_slow_dec_deferred(&perf_sched_events
);
3529 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
3530 atomic_dec(&nr_mmap_events
);
3531 if (event
->attr
.comm
)
3532 atomic_dec(&nr_comm_events
);
3533 if (event
->attr
.task
)
3534 atomic_dec(&nr_task_events
);
3535 if (event
->attr
.freq
)
3536 atomic_dec(&nr_freq_events
);
3537 if (event
->attr
.context_switch
) {
3538 static_key_slow_dec_deferred(&perf_sched_events
);
3539 atomic_dec(&nr_switch_events
);
3541 if (is_cgroup_event(event
))
3542 static_key_slow_dec_deferred(&perf_sched_events
);
3543 if (has_branch_stack(event
))
3544 static_key_slow_dec_deferred(&perf_sched_events
);
3546 unaccount_event_cpu(event
, event
->cpu
);
3550 * The following implement mutual exclusion of events on "exclusive" pmus
3551 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3552 * at a time, so we disallow creating events that might conflict, namely:
3554 * 1) cpu-wide events in the presence of per-task events,
3555 * 2) per-task events in the presence of cpu-wide events,
3556 * 3) two matching events on the same context.
3558 * The former two cases are handled in the allocation path (perf_event_alloc(),
3559 * __free_event()), the latter -- before the first perf_install_in_context().
3561 static int exclusive_event_init(struct perf_event
*event
)
3563 struct pmu
*pmu
= event
->pmu
;
3565 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3569 * Prevent co-existence of per-task and cpu-wide events on the
3570 * same exclusive pmu.
3572 * Negative pmu::exclusive_cnt means there are cpu-wide
3573 * events on this "exclusive" pmu, positive means there are
3576 * Since this is called in perf_event_alloc() path, event::ctx
3577 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3578 * to mean "per-task event", because unlike other attach states it
3579 * never gets cleared.
3581 if (event
->attach_state
& PERF_ATTACH_TASK
) {
3582 if (!atomic_inc_unless_negative(&pmu
->exclusive_cnt
))
3585 if (!atomic_dec_unless_positive(&pmu
->exclusive_cnt
))
3592 static void exclusive_event_destroy(struct perf_event
*event
)
3594 struct pmu
*pmu
= event
->pmu
;
3596 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3599 /* see comment in exclusive_event_init() */
3600 if (event
->attach_state
& PERF_ATTACH_TASK
)
3601 atomic_dec(&pmu
->exclusive_cnt
);
3603 atomic_inc(&pmu
->exclusive_cnt
);
3606 static bool exclusive_event_match(struct perf_event
*e1
, struct perf_event
*e2
)
3608 if ((e1
->pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
) &&
3609 (e1
->cpu
== e2
->cpu
||
3616 /* Called under the same ctx::mutex as perf_install_in_context() */
3617 static bool exclusive_event_installable(struct perf_event
*event
,
3618 struct perf_event_context
*ctx
)
3620 struct perf_event
*iter_event
;
3621 struct pmu
*pmu
= event
->pmu
;
3623 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3626 list_for_each_entry(iter_event
, &ctx
->event_list
, event_entry
) {
3627 if (exclusive_event_match(iter_event
, event
))
3634 static void __free_event(struct perf_event
*event
)
3636 if (!event
->parent
) {
3637 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
3638 put_callchain_buffers();
3641 perf_event_free_bpf_prog(event
);
3644 event
->destroy(event
);
3647 put_ctx(event
->ctx
);
3650 exclusive_event_destroy(event
);
3651 module_put(event
->pmu
->module
);
3654 call_rcu(&event
->rcu_head
, free_event_rcu
);
3657 static void _free_event(struct perf_event
*event
)
3659 irq_work_sync(&event
->pending
);
3661 unaccount_event(event
);
3665 * Can happen when we close an event with re-directed output.
3667 * Since we have a 0 refcount, perf_mmap_close() will skip
3668 * over us; possibly making our ring_buffer_put() the last.
3670 mutex_lock(&event
->mmap_mutex
);
3671 ring_buffer_attach(event
, NULL
);
3672 mutex_unlock(&event
->mmap_mutex
);
3675 if (is_cgroup_event(event
))
3676 perf_detach_cgroup(event
);
3678 __free_event(event
);
3682 * Used to free events which have a known refcount of 1, such as in error paths
3683 * where the event isn't exposed yet and inherited events.
3685 static void free_event(struct perf_event
*event
)
3687 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
3688 "unexpected event refcount: %ld; ptr=%p\n",
3689 atomic_long_read(&event
->refcount
), event
)) {
3690 /* leak to avoid use-after-free */
3698 * Remove user event from the owner task.
3700 static void perf_remove_from_owner(struct perf_event
*event
)
3702 struct task_struct
*owner
;
3705 owner
= ACCESS_ONCE(event
->owner
);
3707 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3708 * !owner it means the list deletion is complete and we can indeed
3709 * free this event, otherwise we need to serialize on
3710 * owner->perf_event_mutex.
3712 smp_read_barrier_depends();
3715 * Since delayed_put_task_struct() also drops the last
3716 * task reference we can safely take a new reference
3717 * while holding the rcu_read_lock().
3719 get_task_struct(owner
);
3725 * If we're here through perf_event_exit_task() we're already
3726 * holding ctx->mutex which would be an inversion wrt. the
3727 * normal lock order.
3729 * However we can safely take this lock because its the child
3732 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
3735 * We have to re-check the event->owner field, if it is cleared
3736 * we raced with perf_event_exit_task(), acquiring the mutex
3737 * ensured they're done, and we can proceed with freeing the
3741 list_del_init(&event
->owner_entry
);
3742 mutex_unlock(&owner
->perf_event_mutex
);
3743 put_task_struct(owner
);
3747 static void put_event(struct perf_event
*event
)
3749 struct perf_event_context
*ctx
;
3751 if (!atomic_long_dec_and_test(&event
->refcount
))
3754 if (!is_kernel_event(event
))
3755 perf_remove_from_owner(event
);
3758 * There are two ways this annotation is useful:
3760 * 1) there is a lock recursion from perf_event_exit_task
3761 * see the comment there.
3763 * 2) there is a lock-inversion with mmap_sem through
3764 * perf_read_group(), which takes faults while
3765 * holding ctx->mutex, however this is called after
3766 * the last filedesc died, so there is no possibility
3767 * to trigger the AB-BA case.
3769 ctx
= perf_event_ctx_lock_nested(event
, SINGLE_DEPTH_NESTING
);
3770 WARN_ON_ONCE(ctx
->parent_ctx
);
3771 perf_remove_from_context(event
, true);
3772 perf_event_ctx_unlock(event
, ctx
);
3777 int perf_event_release_kernel(struct perf_event
*event
)
3782 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
3785 * Called when the last reference to the file is gone.
3787 static int perf_release(struct inode
*inode
, struct file
*file
)
3789 put_event(file
->private_data
);
3794 * Remove all orphanes events from the context.
3796 static void orphans_remove_work(struct work_struct
*work
)
3798 struct perf_event_context
*ctx
;
3799 struct perf_event
*event
, *tmp
;
3801 ctx
= container_of(work
, struct perf_event_context
,
3802 orphans_remove
.work
);
3804 mutex_lock(&ctx
->mutex
);
3805 list_for_each_entry_safe(event
, tmp
, &ctx
->event_list
, event_entry
) {
3806 struct perf_event
*parent_event
= event
->parent
;
3808 if (!is_orphaned_child(event
))
3811 perf_remove_from_context(event
, true);
3813 mutex_lock(&parent_event
->child_mutex
);
3814 list_del_init(&event
->child_list
);
3815 mutex_unlock(&parent_event
->child_mutex
);
3818 put_event(parent_event
);
3821 raw_spin_lock_irq(&ctx
->lock
);
3822 ctx
->orphans_remove_sched
= false;
3823 raw_spin_unlock_irq(&ctx
->lock
);
3824 mutex_unlock(&ctx
->mutex
);
3829 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
3831 struct perf_event
*child
;
3837 mutex_lock(&event
->child_mutex
);
3839 (void)perf_event_read(event
, false);
3840 total
+= perf_event_count(event
);
3842 *enabled
+= event
->total_time_enabled
+
3843 atomic64_read(&event
->child_total_time_enabled
);
3844 *running
+= event
->total_time_running
+
3845 atomic64_read(&event
->child_total_time_running
);
3847 list_for_each_entry(child
, &event
->child_list
, child_list
) {
3848 (void)perf_event_read(child
, false);
3849 total
+= perf_event_count(child
);
3850 *enabled
+= child
->total_time_enabled
;
3851 *running
+= child
->total_time_running
;
3853 mutex_unlock(&event
->child_mutex
);
3857 EXPORT_SYMBOL_GPL(perf_event_read_value
);
3859 static int __perf_read_group_add(struct perf_event
*leader
,
3860 u64 read_format
, u64
*values
)
3862 struct perf_event
*sub
;
3863 int n
= 1; /* skip @nr */
3866 ret
= perf_event_read(leader
, true);
3871 * Since we co-schedule groups, {enabled,running} times of siblings
3872 * will be identical to those of the leader, so we only publish one
3875 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
3876 values
[n
++] += leader
->total_time_enabled
+
3877 atomic64_read(&leader
->child_total_time_enabled
);
3880 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
3881 values
[n
++] += leader
->total_time_running
+
3882 atomic64_read(&leader
->child_total_time_running
);
3886 * Write {count,id} tuples for every sibling.
3888 values
[n
++] += perf_event_count(leader
);
3889 if (read_format
& PERF_FORMAT_ID
)
3890 values
[n
++] = primary_event_id(leader
);
3892 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3893 values
[n
++] += perf_event_count(sub
);
3894 if (read_format
& PERF_FORMAT_ID
)
3895 values
[n
++] = primary_event_id(sub
);
3901 static int perf_read_group(struct perf_event
*event
,
3902 u64 read_format
, char __user
*buf
)
3904 struct perf_event
*leader
= event
->group_leader
, *child
;
3905 struct perf_event_context
*ctx
= leader
->ctx
;
3909 lockdep_assert_held(&ctx
->mutex
);
3911 values
= kzalloc(event
->read_size
, GFP_KERNEL
);
3915 values
[0] = 1 + leader
->nr_siblings
;
3918 * By locking the child_mutex of the leader we effectively
3919 * lock the child list of all siblings.. XXX explain how.
3921 mutex_lock(&leader
->child_mutex
);
3923 ret
= __perf_read_group_add(leader
, read_format
, values
);
3927 list_for_each_entry(child
, &leader
->child_list
, child_list
) {
3928 ret
= __perf_read_group_add(child
, read_format
, values
);
3933 mutex_unlock(&leader
->child_mutex
);
3935 ret
= event
->read_size
;
3936 if (copy_to_user(buf
, values
, event
->read_size
))
3941 mutex_unlock(&leader
->child_mutex
);
3947 static int perf_read_one(struct perf_event
*event
,
3948 u64 read_format
, char __user
*buf
)
3950 u64 enabled
, running
;
3954 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
3955 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3956 values
[n
++] = enabled
;
3957 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3958 values
[n
++] = running
;
3959 if (read_format
& PERF_FORMAT_ID
)
3960 values
[n
++] = primary_event_id(event
);
3962 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
3965 return n
* sizeof(u64
);
3968 static bool is_event_hup(struct perf_event
*event
)
3972 if (event
->state
!= PERF_EVENT_STATE_EXIT
)
3975 mutex_lock(&event
->child_mutex
);
3976 no_children
= list_empty(&event
->child_list
);
3977 mutex_unlock(&event
->child_mutex
);
3982 * Read the performance event - simple non blocking version for now
3985 __perf_read(struct perf_event
*event
, char __user
*buf
, size_t count
)
3987 u64 read_format
= event
->attr
.read_format
;
3991 * Return end-of-file for a read on a event that is in
3992 * error state (i.e. because it was pinned but it couldn't be
3993 * scheduled on to the CPU at some point).
3995 if (event
->state
== PERF_EVENT_STATE_ERROR
)
3998 if (count
< event
->read_size
)
4001 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4002 if (read_format
& PERF_FORMAT_GROUP
)
4003 ret
= perf_read_group(event
, read_format
, buf
);
4005 ret
= perf_read_one(event
, read_format
, buf
);
4011 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
4013 struct perf_event
*event
= file
->private_data
;
4014 struct perf_event_context
*ctx
;
4017 ctx
= perf_event_ctx_lock(event
);
4018 ret
= __perf_read(event
, buf
, count
);
4019 perf_event_ctx_unlock(event
, ctx
);
4024 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
4026 struct perf_event
*event
= file
->private_data
;
4027 struct ring_buffer
*rb
;
4028 unsigned int events
= POLLHUP
;
4030 poll_wait(file
, &event
->waitq
, wait
);
4032 if (is_event_hup(event
))
4036 * Pin the event->rb by taking event->mmap_mutex; otherwise
4037 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4039 mutex_lock(&event
->mmap_mutex
);
4042 events
= atomic_xchg(&rb
->poll
, 0);
4043 mutex_unlock(&event
->mmap_mutex
);
4047 static void _perf_event_reset(struct perf_event
*event
)
4049 (void)perf_event_read(event
, false);
4050 local64_set(&event
->count
, 0);
4051 perf_event_update_userpage(event
);
4055 * Holding the top-level event's child_mutex means that any
4056 * descendant process that has inherited this event will block
4057 * in sync_child_event if it goes to exit, thus satisfying the
4058 * task existence requirements of perf_event_enable/disable.
4060 static void perf_event_for_each_child(struct perf_event
*event
,
4061 void (*func
)(struct perf_event
*))
4063 struct perf_event
*child
;
4065 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4067 mutex_lock(&event
->child_mutex
);
4069 list_for_each_entry(child
, &event
->child_list
, child_list
)
4071 mutex_unlock(&event
->child_mutex
);
4074 static void perf_event_for_each(struct perf_event
*event
,
4075 void (*func
)(struct perf_event
*))
4077 struct perf_event_context
*ctx
= event
->ctx
;
4078 struct perf_event
*sibling
;
4080 lockdep_assert_held(&ctx
->mutex
);
4082 event
= event
->group_leader
;
4084 perf_event_for_each_child(event
, func
);
4085 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
4086 perf_event_for_each_child(sibling
, func
);
4089 struct period_event
{
4090 struct perf_event
*event
;
4094 static void ___perf_event_period(void *info
)
4096 struct period_event
*pe
= info
;
4097 struct perf_event
*event
= pe
->event
;
4098 u64 value
= pe
->value
;
4100 if (event
->attr
.freq
) {
4101 event
->attr
.sample_freq
= value
;
4103 event
->attr
.sample_period
= value
;
4104 event
->hw
.sample_period
= value
;
4107 local64_set(&event
->hw
.period_left
, 0);
4110 static int __perf_event_period(void *info
)
4112 struct period_event
*pe
= info
;
4113 struct perf_event
*event
= pe
->event
;
4114 struct perf_event_context
*ctx
= event
->ctx
;
4115 u64 value
= pe
->value
;
4118 raw_spin_lock(&ctx
->lock
);
4119 if (event
->attr
.freq
) {
4120 event
->attr
.sample_freq
= value
;
4122 event
->attr
.sample_period
= value
;
4123 event
->hw
.sample_period
= value
;
4126 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
4128 perf_pmu_disable(ctx
->pmu
);
4129 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
4132 local64_set(&event
->hw
.period_left
, 0);
4135 event
->pmu
->start(event
, PERF_EF_RELOAD
);
4136 perf_pmu_enable(ctx
->pmu
);
4138 raw_spin_unlock(&ctx
->lock
);
4143 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
4145 struct period_event pe
= { .event
= event
, };
4148 if (!is_sampling_event(event
))
4151 if (copy_from_user(&value
, arg
, sizeof(value
)))
4157 if (event
->attr
.freq
&& value
> sysctl_perf_event_sample_rate
)
4162 event_function_call(event
, __perf_event_period
,
4163 ___perf_event_period
, &pe
);
4168 static const struct file_operations perf_fops
;
4170 static inline int perf_fget_light(int fd
, struct fd
*p
)
4172 struct fd f
= fdget(fd
);
4176 if (f
.file
->f_op
!= &perf_fops
) {
4184 static int perf_event_set_output(struct perf_event
*event
,
4185 struct perf_event
*output_event
);
4186 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
4187 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
);
4189 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
4191 void (*func
)(struct perf_event
*);
4195 case PERF_EVENT_IOC_ENABLE
:
4196 func
= _perf_event_enable
;
4198 case PERF_EVENT_IOC_DISABLE
:
4199 func
= _perf_event_disable
;
4201 case PERF_EVENT_IOC_RESET
:
4202 func
= _perf_event_reset
;
4205 case PERF_EVENT_IOC_REFRESH
:
4206 return _perf_event_refresh(event
, arg
);
4208 case PERF_EVENT_IOC_PERIOD
:
4209 return perf_event_period(event
, (u64 __user
*)arg
);
4211 case PERF_EVENT_IOC_ID
:
4213 u64 id
= primary_event_id(event
);
4215 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
4220 case PERF_EVENT_IOC_SET_OUTPUT
:
4224 struct perf_event
*output_event
;
4226 ret
= perf_fget_light(arg
, &output
);
4229 output_event
= output
.file
->private_data
;
4230 ret
= perf_event_set_output(event
, output_event
);
4233 ret
= perf_event_set_output(event
, NULL
);
4238 case PERF_EVENT_IOC_SET_FILTER
:
4239 return perf_event_set_filter(event
, (void __user
*)arg
);
4241 case PERF_EVENT_IOC_SET_BPF
:
4242 return perf_event_set_bpf_prog(event
, arg
);
4248 if (flags
& PERF_IOC_FLAG_GROUP
)
4249 perf_event_for_each(event
, func
);
4251 perf_event_for_each_child(event
, func
);
4256 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
4258 struct perf_event
*event
= file
->private_data
;
4259 struct perf_event_context
*ctx
;
4262 ctx
= perf_event_ctx_lock(event
);
4263 ret
= _perf_ioctl(event
, cmd
, arg
);
4264 perf_event_ctx_unlock(event
, ctx
);
4269 #ifdef CONFIG_COMPAT
4270 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
4273 switch (_IOC_NR(cmd
)) {
4274 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
4275 case _IOC_NR(PERF_EVENT_IOC_ID
):
4276 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4277 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
4278 cmd
&= ~IOCSIZE_MASK
;
4279 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
4283 return perf_ioctl(file
, cmd
, arg
);
4286 # define perf_compat_ioctl NULL
4289 int perf_event_task_enable(void)
4291 struct perf_event_context
*ctx
;
4292 struct perf_event
*event
;
4294 mutex_lock(¤t
->perf_event_mutex
);
4295 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4296 ctx
= perf_event_ctx_lock(event
);
4297 perf_event_for_each_child(event
, _perf_event_enable
);
4298 perf_event_ctx_unlock(event
, ctx
);
4300 mutex_unlock(¤t
->perf_event_mutex
);
4305 int perf_event_task_disable(void)
4307 struct perf_event_context
*ctx
;
4308 struct perf_event
*event
;
4310 mutex_lock(¤t
->perf_event_mutex
);
4311 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4312 ctx
= perf_event_ctx_lock(event
);
4313 perf_event_for_each_child(event
, _perf_event_disable
);
4314 perf_event_ctx_unlock(event
, ctx
);
4316 mutex_unlock(¤t
->perf_event_mutex
);
4321 static int perf_event_index(struct perf_event
*event
)
4323 if (event
->hw
.state
& PERF_HES_STOPPED
)
4326 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
4329 return event
->pmu
->event_idx(event
);
4332 static void calc_timer_values(struct perf_event
*event
,
4339 *now
= perf_clock();
4340 ctx_time
= event
->shadow_ctx_time
+ *now
;
4341 *enabled
= ctx_time
- event
->tstamp_enabled
;
4342 *running
= ctx_time
- event
->tstamp_running
;
4345 static void perf_event_init_userpage(struct perf_event
*event
)
4347 struct perf_event_mmap_page
*userpg
;
4348 struct ring_buffer
*rb
;
4351 rb
= rcu_dereference(event
->rb
);
4355 userpg
= rb
->user_page
;
4357 /* Allow new userspace to detect that bit 0 is deprecated */
4358 userpg
->cap_bit0_is_deprecated
= 1;
4359 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
4360 userpg
->data_offset
= PAGE_SIZE
;
4361 userpg
->data_size
= perf_data_size(rb
);
4367 void __weak
arch_perf_update_userpage(
4368 struct perf_event
*event
, struct perf_event_mmap_page
*userpg
, u64 now
)
4373 * Callers need to ensure there can be no nesting of this function, otherwise
4374 * the seqlock logic goes bad. We can not serialize this because the arch
4375 * code calls this from NMI context.
4377 void perf_event_update_userpage(struct perf_event
*event
)
4379 struct perf_event_mmap_page
*userpg
;
4380 struct ring_buffer
*rb
;
4381 u64 enabled
, running
, now
;
4384 rb
= rcu_dereference(event
->rb
);
4389 * compute total_time_enabled, total_time_running
4390 * based on snapshot values taken when the event
4391 * was last scheduled in.
4393 * we cannot simply called update_context_time()
4394 * because of locking issue as we can be called in
4397 calc_timer_values(event
, &now
, &enabled
, &running
);
4399 userpg
= rb
->user_page
;
4401 * Disable preemption so as to not let the corresponding user-space
4402 * spin too long if we get preempted.
4407 userpg
->index
= perf_event_index(event
);
4408 userpg
->offset
= perf_event_count(event
);
4410 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
4412 userpg
->time_enabled
= enabled
+
4413 atomic64_read(&event
->child_total_time_enabled
);
4415 userpg
->time_running
= running
+
4416 atomic64_read(&event
->child_total_time_running
);
4418 arch_perf_update_userpage(event
, userpg
, now
);
4427 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4429 struct perf_event
*event
= vma
->vm_file
->private_data
;
4430 struct ring_buffer
*rb
;
4431 int ret
= VM_FAULT_SIGBUS
;
4433 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
4434 if (vmf
->pgoff
== 0)
4440 rb
= rcu_dereference(event
->rb
);
4444 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
4447 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
4451 get_page(vmf
->page
);
4452 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
4453 vmf
->page
->index
= vmf
->pgoff
;
4462 static void ring_buffer_attach(struct perf_event
*event
,
4463 struct ring_buffer
*rb
)
4465 struct ring_buffer
*old_rb
= NULL
;
4466 unsigned long flags
;
4470 * Should be impossible, we set this when removing
4471 * event->rb_entry and wait/clear when adding event->rb_entry.
4473 WARN_ON_ONCE(event
->rcu_pending
);
4476 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
4477 list_del_rcu(&event
->rb_entry
);
4478 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
4480 event
->rcu_batches
= get_state_synchronize_rcu();
4481 event
->rcu_pending
= 1;
4485 if (event
->rcu_pending
) {
4486 cond_synchronize_rcu(event
->rcu_batches
);
4487 event
->rcu_pending
= 0;
4490 spin_lock_irqsave(&rb
->event_lock
, flags
);
4491 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
4492 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
4495 rcu_assign_pointer(event
->rb
, rb
);
4498 ring_buffer_put(old_rb
);
4500 * Since we detached before setting the new rb, so that we
4501 * could attach the new rb, we could have missed a wakeup.
4504 wake_up_all(&event
->waitq
);
4508 static void ring_buffer_wakeup(struct perf_event
*event
)
4510 struct ring_buffer
*rb
;
4513 rb
= rcu_dereference(event
->rb
);
4515 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
4516 wake_up_all(&event
->waitq
);
4521 struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
4523 struct ring_buffer
*rb
;
4526 rb
= rcu_dereference(event
->rb
);
4528 if (!atomic_inc_not_zero(&rb
->refcount
))
4536 void ring_buffer_put(struct ring_buffer
*rb
)
4538 if (!atomic_dec_and_test(&rb
->refcount
))
4541 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
4543 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
4546 static void perf_mmap_open(struct vm_area_struct
*vma
)
4548 struct perf_event
*event
= vma
->vm_file
->private_data
;
4550 atomic_inc(&event
->mmap_count
);
4551 atomic_inc(&event
->rb
->mmap_count
);
4554 atomic_inc(&event
->rb
->aux_mmap_count
);
4556 if (event
->pmu
->event_mapped
)
4557 event
->pmu
->event_mapped(event
);
4561 * A buffer can be mmap()ed multiple times; either directly through the same
4562 * event, or through other events by use of perf_event_set_output().
4564 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4565 * the buffer here, where we still have a VM context. This means we need
4566 * to detach all events redirecting to us.
4568 static void perf_mmap_close(struct vm_area_struct
*vma
)
4570 struct perf_event
*event
= vma
->vm_file
->private_data
;
4572 struct ring_buffer
*rb
= ring_buffer_get(event
);
4573 struct user_struct
*mmap_user
= rb
->mmap_user
;
4574 int mmap_locked
= rb
->mmap_locked
;
4575 unsigned long size
= perf_data_size(rb
);
4577 if (event
->pmu
->event_unmapped
)
4578 event
->pmu
->event_unmapped(event
);
4581 * rb->aux_mmap_count will always drop before rb->mmap_count and
4582 * event->mmap_count, so it is ok to use event->mmap_mutex to
4583 * serialize with perf_mmap here.
4585 if (rb_has_aux(rb
) && vma
->vm_pgoff
== rb
->aux_pgoff
&&
4586 atomic_dec_and_mutex_lock(&rb
->aux_mmap_count
, &event
->mmap_mutex
)) {
4587 atomic_long_sub(rb
->aux_nr_pages
, &mmap_user
->locked_vm
);
4588 vma
->vm_mm
->pinned_vm
-= rb
->aux_mmap_locked
;
4591 mutex_unlock(&event
->mmap_mutex
);
4594 atomic_dec(&rb
->mmap_count
);
4596 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
4599 ring_buffer_attach(event
, NULL
);
4600 mutex_unlock(&event
->mmap_mutex
);
4602 /* If there's still other mmap()s of this buffer, we're done. */
4603 if (atomic_read(&rb
->mmap_count
))
4607 * No other mmap()s, detach from all other events that might redirect
4608 * into the now unreachable buffer. Somewhat complicated by the
4609 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4613 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
4614 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
4616 * This event is en-route to free_event() which will
4617 * detach it and remove it from the list.
4623 mutex_lock(&event
->mmap_mutex
);
4625 * Check we didn't race with perf_event_set_output() which can
4626 * swizzle the rb from under us while we were waiting to
4627 * acquire mmap_mutex.
4629 * If we find a different rb; ignore this event, a next
4630 * iteration will no longer find it on the list. We have to
4631 * still restart the iteration to make sure we're not now
4632 * iterating the wrong list.
4634 if (event
->rb
== rb
)
4635 ring_buffer_attach(event
, NULL
);
4637 mutex_unlock(&event
->mmap_mutex
);
4641 * Restart the iteration; either we're on the wrong list or
4642 * destroyed its integrity by doing a deletion.
4649 * It could be there's still a few 0-ref events on the list; they'll
4650 * get cleaned up by free_event() -- they'll also still have their
4651 * ref on the rb and will free it whenever they are done with it.
4653 * Aside from that, this buffer is 'fully' detached and unmapped,
4654 * undo the VM accounting.
4657 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &mmap_user
->locked_vm
);
4658 vma
->vm_mm
->pinned_vm
-= mmap_locked
;
4659 free_uid(mmap_user
);
4662 ring_buffer_put(rb
); /* could be last */
4665 static const struct vm_operations_struct perf_mmap_vmops
= {
4666 .open
= perf_mmap_open
,
4667 .close
= perf_mmap_close
, /* non mergable */
4668 .fault
= perf_mmap_fault
,
4669 .page_mkwrite
= perf_mmap_fault
,
4672 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
4674 struct perf_event
*event
= file
->private_data
;
4675 unsigned long user_locked
, user_lock_limit
;
4676 struct user_struct
*user
= current_user();
4677 unsigned long locked
, lock_limit
;
4678 struct ring_buffer
*rb
= NULL
;
4679 unsigned long vma_size
;
4680 unsigned long nr_pages
;
4681 long user_extra
= 0, extra
= 0;
4682 int ret
= 0, flags
= 0;
4685 * Don't allow mmap() of inherited per-task counters. This would
4686 * create a performance issue due to all children writing to the
4689 if (event
->cpu
== -1 && event
->attr
.inherit
)
4692 if (!(vma
->vm_flags
& VM_SHARED
))
4695 vma_size
= vma
->vm_end
- vma
->vm_start
;
4697 if (vma
->vm_pgoff
== 0) {
4698 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
4701 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4702 * mapped, all subsequent mappings should have the same size
4703 * and offset. Must be above the normal perf buffer.
4705 u64 aux_offset
, aux_size
;
4710 nr_pages
= vma_size
/ PAGE_SIZE
;
4712 mutex_lock(&event
->mmap_mutex
);
4719 aux_offset
= ACCESS_ONCE(rb
->user_page
->aux_offset
);
4720 aux_size
= ACCESS_ONCE(rb
->user_page
->aux_size
);
4722 if (aux_offset
< perf_data_size(rb
) + PAGE_SIZE
)
4725 if (aux_offset
!= vma
->vm_pgoff
<< PAGE_SHIFT
)
4728 /* already mapped with a different offset */
4729 if (rb_has_aux(rb
) && rb
->aux_pgoff
!= vma
->vm_pgoff
)
4732 if (aux_size
!= vma_size
|| aux_size
!= nr_pages
* PAGE_SIZE
)
4735 /* already mapped with a different size */
4736 if (rb_has_aux(rb
) && rb
->aux_nr_pages
!= nr_pages
)
4739 if (!is_power_of_2(nr_pages
))
4742 if (!atomic_inc_not_zero(&rb
->mmap_count
))
4745 if (rb_has_aux(rb
)) {
4746 atomic_inc(&rb
->aux_mmap_count
);
4751 atomic_set(&rb
->aux_mmap_count
, 1);
4752 user_extra
= nr_pages
;
4758 * If we have rb pages ensure they're a power-of-two number, so we
4759 * can do bitmasks instead of modulo.
4761 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
4764 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
4767 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4769 mutex_lock(&event
->mmap_mutex
);
4771 if (event
->rb
->nr_pages
!= nr_pages
) {
4776 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
4778 * Raced against perf_mmap_close() through
4779 * perf_event_set_output(). Try again, hope for better
4782 mutex_unlock(&event
->mmap_mutex
);
4789 user_extra
= nr_pages
+ 1;
4792 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
4795 * Increase the limit linearly with more CPUs:
4797 user_lock_limit
*= num_online_cpus();
4799 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
4801 if (user_locked
> user_lock_limit
)
4802 extra
= user_locked
- user_lock_limit
;
4804 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
4805 lock_limit
>>= PAGE_SHIFT
;
4806 locked
= vma
->vm_mm
->pinned_vm
+ extra
;
4808 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
4809 !capable(CAP_IPC_LOCK
)) {
4814 WARN_ON(!rb
&& event
->rb
);
4816 if (vma
->vm_flags
& VM_WRITE
)
4817 flags
|= RING_BUFFER_WRITABLE
;
4820 rb
= rb_alloc(nr_pages
,
4821 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
4829 atomic_set(&rb
->mmap_count
, 1);
4830 rb
->mmap_user
= get_current_user();
4831 rb
->mmap_locked
= extra
;
4833 ring_buffer_attach(event
, rb
);
4835 perf_event_init_userpage(event
);
4836 perf_event_update_userpage(event
);
4838 ret
= rb_alloc_aux(rb
, event
, vma
->vm_pgoff
, nr_pages
,
4839 event
->attr
.aux_watermark
, flags
);
4841 rb
->aux_mmap_locked
= extra
;
4846 atomic_long_add(user_extra
, &user
->locked_vm
);
4847 vma
->vm_mm
->pinned_vm
+= extra
;
4849 atomic_inc(&event
->mmap_count
);
4851 atomic_dec(&rb
->mmap_count
);
4854 mutex_unlock(&event
->mmap_mutex
);
4857 * Since pinned accounting is per vm we cannot allow fork() to copy our
4860 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
4861 vma
->vm_ops
= &perf_mmap_vmops
;
4863 if (event
->pmu
->event_mapped
)
4864 event
->pmu
->event_mapped(event
);
4869 static int perf_fasync(int fd
, struct file
*filp
, int on
)
4871 struct inode
*inode
= file_inode(filp
);
4872 struct perf_event
*event
= filp
->private_data
;
4875 mutex_lock(&inode
->i_mutex
);
4876 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
4877 mutex_unlock(&inode
->i_mutex
);
4885 static const struct file_operations perf_fops
= {
4886 .llseek
= no_llseek
,
4887 .release
= perf_release
,
4890 .unlocked_ioctl
= perf_ioctl
,
4891 .compat_ioctl
= perf_compat_ioctl
,
4893 .fasync
= perf_fasync
,
4899 * If there's data, ensure we set the poll() state and publish everything
4900 * to user-space before waking everybody up.
4903 static inline struct fasync_struct
**perf_event_fasync(struct perf_event
*event
)
4905 /* only the parent has fasync state */
4907 event
= event
->parent
;
4908 return &event
->fasync
;
4911 void perf_event_wakeup(struct perf_event
*event
)
4913 ring_buffer_wakeup(event
);
4915 if (event
->pending_kill
) {
4916 kill_fasync(perf_event_fasync(event
), SIGIO
, event
->pending_kill
);
4917 event
->pending_kill
= 0;
4921 static void perf_pending_event(struct irq_work
*entry
)
4923 struct perf_event
*event
= container_of(entry
,
4924 struct perf_event
, pending
);
4927 rctx
= perf_swevent_get_recursion_context();
4929 * If we 'fail' here, that's OK, it means recursion is already disabled
4930 * and we won't recurse 'further'.
4933 if (event
->pending_disable
) {
4934 event
->pending_disable
= 0;
4935 __perf_event_disable(event
);
4938 if (event
->pending_wakeup
) {
4939 event
->pending_wakeup
= 0;
4940 perf_event_wakeup(event
);
4944 perf_swevent_put_recursion_context(rctx
);
4948 * We assume there is only KVM supporting the callbacks.
4949 * Later on, we might change it to a list if there is
4950 * another virtualization implementation supporting the callbacks.
4952 struct perf_guest_info_callbacks
*perf_guest_cbs
;
4954 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
4956 perf_guest_cbs
= cbs
;
4959 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
4961 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
4963 perf_guest_cbs
= NULL
;
4966 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
4969 perf_output_sample_regs(struct perf_output_handle
*handle
,
4970 struct pt_regs
*regs
, u64 mask
)
4974 for_each_set_bit(bit
, (const unsigned long *) &mask
,
4975 sizeof(mask
) * BITS_PER_BYTE
) {
4978 val
= perf_reg_value(regs
, bit
);
4979 perf_output_put(handle
, val
);
4983 static void perf_sample_regs_user(struct perf_regs
*regs_user
,
4984 struct pt_regs
*regs
,
4985 struct pt_regs
*regs_user_copy
)
4987 if (user_mode(regs
)) {
4988 regs_user
->abi
= perf_reg_abi(current
);
4989 regs_user
->regs
= regs
;
4990 } else if (current
->mm
) {
4991 perf_get_regs_user(regs_user
, regs
, regs_user_copy
);
4993 regs_user
->abi
= PERF_SAMPLE_REGS_ABI_NONE
;
4994 regs_user
->regs
= NULL
;
4998 static void perf_sample_regs_intr(struct perf_regs
*regs_intr
,
4999 struct pt_regs
*regs
)
5001 regs_intr
->regs
= regs
;
5002 regs_intr
->abi
= perf_reg_abi(current
);
5007 * Get remaining task size from user stack pointer.
5009 * It'd be better to take stack vma map and limit this more
5010 * precisly, but there's no way to get it safely under interrupt,
5011 * so using TASK_SIZE as limit.
5013 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
5015 unsigned long addr
= perf_user_stack_pointer(regs
);
5017 if (!addr
|| addr
>= TASK_SIZE
)
5020 return TASK_SIZE
- addr
;
5024 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
5025 struct pt_regs
*regs
)
5029 /* No regs, no stack pointer, no dump. */
5034 * Check if we fit in with the requested stack size into the:
5036 * If we don't, we limit the size to the TASK_SIZE.
5038 * - remaining sample size
5039 * If we don't, we customize the stack size to
5040 * fit in to the remaining sample size.
5043 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
5044 stack_size
= min(stack_size
, (u16
) task_size
);
5046 /* Current header size plus static size and dynamic size. */
5047 header_size
+= 2 * sizeof(u64
);
5049 /* Do we fit in with the current stack dump size? */
5050 if ((u16
) (header_size
+ stack_size
) < header_size
) {
5052 * If we overflow the maximum size for the sample,
5053 * we customize the stack dump size to fit in.
5055 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
5056 stack_size
= round_up(stack_size
, sizeof(u64
));
5063 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
5064 struct pt_regs
*regs
)
5066 /* Case of a kernel thread, nothing to dump */
5069 perf_output_put(handle
, size
);
5078 * - the size requested by user or the best one we can fit
5079 * in to the sample max size
5081 * - user stack dump data
5083 * - the actual dumped size
5087 perf_output_put(handle
, dump_size
);
5090 sp
= perf_user_stack_pointer(regs
);
5091 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
5092 dyn_size
= dump_size
- rem
;
5094 perf_output_skip(handle
, rem
);
5097 perf_output_put(handle
, dyn_size
);
5101 static void __perf_event_header__init_id(struct perf_event_header
*header
,
5102 struct perf_sample_data
*data
,
5103 struct perf_event
*event
)
5105 u64 sample_type
= event
->attr
.sample_type
;
5107 data
->type
= sample_type
;
5108 header
->size
+= event
->id_header_size
;
5110 if (sample_type
& PERF_SAMPLE_TID
) {
5111 /* namespace issues */
5112 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
5113 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
5116 if (sample_type
& PERF_SAMPLE_TIME
)
5117 data
->time
= perf_event_clock(event
);
5119 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
5120 data
->id
= primary_event_id(event
);
5122 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5123 data
->stream_id
= event
->id
;
5125 if (sample_type
& PERF_SAMPLE_CPU
) {
5126 data
->cpu_entry
.cpu
= raw_smp_processor_id();
5127 data
->cpu_entry
.reserved
= 0;
5131 void perf_event_header__init_id(struct perf_event_header
*header
,
5132 struct perf_sample_data
*data
,
5133 struct perf_event
*event
)
5135 if (event
->attr
.sample_id_all
)
5136 __perf_event_header__init_id(header
, data
, event
);
5139 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
5140 struct perf_sample_data
*data
)
5142 u64 sample_type
= data
->type
;
5144 if (sample_type
& PERF_SAMPLE_TID
)
5145 perf_output_put(handle
, data
->tid_entry
);
5147 if (sample_type
& PERF_SAMPLE_TIME
)
5148 perf_output_put(handle
, data
->time
);
5150 if (sample_type
& PERF_SAMPLE_ID
)
5151 perf_output_put(handle
, data
->id
);
5153 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5154 perf_output_put(handle
, data
->stream_id
);
5156 if (sample_type
& PERF_SAMPLE_CPU
)
5157 perf_output_put(handle
, data
->cpu_entry
);
5159 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5160 perf_output_put(handle
, data
->id
);
5163 void perf_event__output_id_sample(struct perf_event
*event
,
5164 struct perf_output_handle
*handle
,
5165 struct perf_sample_data
*sample
)
5167 if (event
->attr
.sample_id_all
)
5168 __perf_event__output_id_sample(handle
, sample
);
5171 static void perf_output_read_one(struct perf_output_handle
*handle
,
5172 struct perf_event
*event
,
5173 u64 enabled
, u64 running
)
5175 u64 read_format
= event
->attr
.read_format
;
5179 values
[n
++] = perf_event_count(event
);
5180 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
5181 values
[n
++] = enabled
+
5182 atomic64_read(&event
->child_total_time_enabled
);
5184 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
5185 values
[n
++] = running
+
5186 atomic64_read(&event
->child_total_time_running
);
5188 if (read_format
& PERF_FORMAT_ID
)
5189 values
[n
++] = primary_event_id(event
);
5191 __output_copy(handle
, values
, n
* sizeof(u64
));
5195 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5197 static void perf_output_read_group(struct perf_output_handle
*handle
,
5198 struct perf_event
*event
,
5199 u64 enabled
, u64 running
)
5201 struct perf_event
*leader
= event
->group_leader
, *sub
;
5202 u64 read_format
= event
->attr
.read_format
;
5206 values
[n
++] = 1 + leader
->nr_siblings
;
5208 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
5209 values
[n
++] = enabled
;
5211 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
5212 values
[n
++] = running
;
5214 if (leader
!= event
)
5215 leader
->pmu
->read(leader
);
5217 values
[n
++] = perf_event_count(leader
);
5218 if (read_format
& PERF_FORMAT_ID
)
5219 values
[n
++] = primary_event_id(leader
);
5221 __output_copy(handle
, values
, n
* sizeof(u64
));
5223 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
5226 if ((sub
!= event
) &&
5227 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
5228 sub
->pmu
->read(sub
);
5230 values
[n
++] = perf_event_count(sub
);
5231 if (read_format
& PERF_FORMAT_ID
)
5232 values
[n
++] = primary_event_id(sub
);
5234 __output_copy(handle
, values
, n
* sizeof(u64
));
5238 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5239 PERF_FORMAT_TOTAL_TIME_RUNNING)
5241 static void perf_output_read(struct perf_output_handle
*handle
,
5242 struct perf_event
*event
)
5244 u64 enabled
= 0, running
= 0, now
;
5245 u64 read_format
= event
->attr
.read_format
;
5248 * compute total_time_enabled, total_time_running
5249 * based on snapshot values taken when the event
5250 * was last scheduled in.
5252 * we cannot simply called update_context_time()
5253 * because of locking issue as we are called in
5256 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
5257 calc_timer_values(event
, &now
, &enabled
, &running
);
5259 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
5260 perf_output_read_group(handle
, event
, enabled
, running
);
5262 perf_output_read_one(handle
, event
, enabled
, running
);
5265 void perf_output_sample(struct perf_output_handle
*handle
,
5266 struct perf_event_header
*header
,
5267 struct perf_sample_data
*data
,
5268 struct perf_event
*event
)
5270 u64 sample_type
= data
->type
;
5272 perf_output_put(handle
, *header
);
5274 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5275 perf_output_put(handle
, data
->id
);
5277 if (sample_type
& PERF_SAMPLE_IP
)
5278 perf_output_put(handle
, data
->ip
);
5280 if (sample_type
& PERF_SAMPLE_TID
)
5281 perf_output_put(handle
, data
->tid_entry
);
5283 if (sample_type
& PERF_SAMPLE_TIME
)
5284 perf_output_put(handle
, data
->time
);
5286 if (sample_type
& PERF_SAMPLE_ADDR
)
5287 perf_output_put(handle
, data
->addr
);
5289 if (sample_type
& PERF_SAMPLE_ID
)
5290 perf_output_put(handle
, data
->id
);
5292 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5293 perf_output_put(handle
, data
->stream_id
);
5295 if (sample_type
& PERF_SAMPLE_CPU
)
5296 perf_output_put(handle
, data
->cpu_entry
);
5298 if (sample_type
& PERF_SAMPLE_PERIOD
)
5299 perf_output_put(handle
, data
->period
);
5301 if (sample_type
& PERF_SAMPLE_READ
)
5302 perf_output_read(handle
, event
);
5304 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5305 if (data
->callchain
) {
5308 if (data
->callchain
)
5309 size
+= data
->callchain
->nr
;
5311 size
*= sizeof(u64
);
5313 __output_copy(handle
, data
->callchain
, size
);
5316 perf_output_put(handle
, nr
);
5320 if (sample_type
& PERF_SAMPLE_RAW
) {
5322 u32 raw_size
= data
->raw
->size
;
5323 u32 real_size
= round_up(raw_size
+ sizeof(u32
),
5324 sizeof(u64
)) - sizeof(u32
);
5327 perf_output_put(handle
, real_size
);
5328 __output_copy(handle
, data
->raw
->data
, raw_size
);
5329 if (real_size
- raw_size
)
5330 __output_copy(handle
, &zero
, real_size
- raw_size
);
5336 .size
= sizeof(u32
),
5339 perf_output_put(handle
, raw
);
5343 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5344 if (data
->br_stack
) {
5347 size
= data
->br_stack
->nr
5348 * sizeof(struct perf_branch_entry
);
5350 perf_output_put(handle
, data
->br_stack
->nr
);
5351 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
5354 * we always store at least the value of nr
5357 perf_output_put(handle
, nr
);
5361 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5362 u64 abi
= data
->regs_user
.abi
;
5365 * If there are no regs to dump, notice it through
5366 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5368 perf_output_put(handle
, abi
);
5371 u64 mask
= event
->attr
.sample_regs_user
;
5372 perf_output_sample_regs(handle
,
5373 data
->regs_user
.regs
,
5378 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5379 perf_output_sample_ustack(handle
,
5380 data
->stack_user_size
,
5381 data
->regs_user
.regs
);
5384 if (sample_type
& PERF_SAMPLE_WEIGHT
)
5385 perf_output_put(handle
, data
->weight
);
5387 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
5388 perf_output_put(handle
, data
->data_src
.val
);
5390 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
5391 perf_output_put(handle
, data
->txn
);
5393 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5394 u64 abi
= data
->regs_intr
.abi
;
5396 * If there are no regs to dump, notice it through
5397 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5399 perf_output_put(handle
, abi
);
5402 u64 mask
= event
->attr
.sample_regs_intr
;
5404 perf_output_sample_regs(handle
,
5405 data
->regs_intr
.regs
,
5410 if (!event
->attr
.watermark
) {
5411 int wakeup_events
= event
->attr
.wakeup_events
;
5413 if (wakeup_events
) {
5414 struct ring_buffer
*rb
= handle
->rb
;
5415 int events
= local_inc_return(&rb
->events
);
5417 if (events
>= wakeup_events
) {
5418 local_sub(wakeup_events
, &rb
->events
);
5419 local_inc(&rb
->wakeup
);
5425 void perf_prepare_sample(struct perf_event_header
*header
,
5426 struct perf_sample_data
*data
,
5427 struct perf_event
*event
,
5428 struct pt_regs
*regs
)
5430 u64 sample_type
= event
->attr
.sample_type
;
5432 header
->type
= PERF_RECORD_SAMPLE
;
5433 header
->size
= sizeof(*header
) + event
->header_size
;
5436 header
->misc
|= perf_misc_flags(regs
);
5438 __perf_event_header__init_id(header
, data
, event
);
5440 if (sample_type
& PERF_SAMPLE_IP
)
5441 data
->ip
= perf_instruction_pointer(regs
);
5443 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5446 data
->callchain
= perf_callchain(event
, regs
);
5448 if (data
->callchain
)
5449 size
+= data
->callchain
->nr
;
5451 header
->size
+= size
* sizeof(u64
);
5454 if (sample_type
& PERF_SAMPLE_RAW
) {
5455 int size
= sizeof(u32
);
5458 size
+= data
->raw
->size
;
5460 size
+= sizeof(u32
);
5462 header
->size
+= round_up(size
, sizeof(u64
));
5465 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5466 int size
= sizeof(u64
); /* nr */
5467 if (data
->br_stack
) {
5468 size
+= data
->br_stack
->nr
5469 * sizeof(struct perf_branch_entry
);
5471 header
->size
+= size
;
5474 if (sample_type
& (PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_STACK_USER
))
5475 perf_sample_regs_user(&data
->regs_user
, regs
,
5476 &data
->regs_user_copy
);
5478 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5479 /* regs dump ABI info */
5480 int size
= sizeof(u64
);
5482 if (data
->regs_user
.regs
) {
5483 u64 mask
= event
->attr
.sample_regs_user
;
5484 size
+= hweight64(mask
) * sizeof(u64
);
5487 header
->size
+= size
;
5490 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5492 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5493 * processed as the last one or have additional check added
5494 * in case new sample type is added, because we could eat
5495 * up the rest of the sample size.
5497 u16 stack_size
= event
->attr
.sample_stack_user
;
5498 u16 size
= sizeof(u64
);
5500 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
5501 data
->regs_user
.regs
);
5504 * If there is something to dump, add space for the dump
5505 * itself and for the field that tells the dynamic size,
5506 * which is how many have been actually dumped.
5509 size
+= sizeof(u64
) + stack_size
;
5511 data
->stack_user_size
= stack_size
;
5512 header
->size
+= size
;
5515 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5516 /* regs dump ABI info */
5517 int size
= sizeof(u64
);
5519 perf_sample_regs_intr(&data
->regs_intr
, regs
);
5521 if (data
->regs_intr
.regs
) {
5522 u64 mask
= event
->attr
.sample_regs_intr
;
5524 size
+= hweight64(mask
) * sizeof(u64
);
5527 header
->size
+= size
;
5531 void perf_event_output(struct perf_event
*event
,
5532 struct perf_sample_data
*data
,
5533 struct pt_regs
*regs
)
5535 struct perf_output_handle handle
;
5536 struct perf_event_header header
;
5538 /* protect the callchain buffers */
5541 perf_prepare_sample(&header
, data
, event
, regs
);
5543 if (perf_output_begin(&handle
, event
, header
.size
))
5546 perf_output_sample(&handle
, &header
, data
, event
);
5548 perf_output_end(&handle
);
5558 struct perf_read_event
{
5559 struct perf_event_header header
;
5566 perf_event_read_event(struct perf_event
*event
,
5567 struct task_struct
*task
)
5569 struct perf_output_handle handle
;
5570 struct perf_sample_data sample
;
5571 struct perf_read_event read_event
= {
5573 .type
= PERF_RECORD_READ
,
5575 .size
= sizeof(read_event
) + event
->read_size
,
5577 .pid
= perf_event_pid(event
, task
),
5578 .tid
= perf_event_tid(event
, task
),
5582 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
5583 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
5587 perf_output_put(&handle
, read_event
);
5588 perf_output_read(&handle
, event
);
5589 perf_event__output_id_sample(event
, &handle
, &sample
);
5591 perf_output_end(&handle
);
5594 typedef void (perf_event_aux_output_cb
)(struct perf_event
*event
, void *data
);
5597 perf_event_aux_ctx(struct perf_event_context
*ctx
,
5598 perf_event_aux_output_cb output
,
5601 struct perf_event
*event
;
5603 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
5604 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
5606 if (!event_filter_match(event
))
5608 output(event
, data
);
5613 perf_event_aux_task_ctx(perf_event_aux_output_cb output
, void *data
,
5614 struct perf_event_context
*task_ctx
)
5618 perf_event_aux_ctx(task_ctx
, output
, data
);
5624 perf_event_aux(perf_event_aux_output_cb output
, void *data
,
5625 struct perf_event_context
*task_ctx
)
5627 struct perf_cpu_context
*cpuctx
;
5628 struct perf_event_context
*ctx
;
5633 * If we have task_ctx != NULL we only notify
5634 * the task context itself. The task_ctx is set
5635 * only for EXIT events before releasing task
5639 perf_event_aux_task_ctx(output
, data
, task_ctx
);
5644 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
5645 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
5646 if (cpuctx
->unique_pmu
!= pmu
)
5648 perf_event_aux_ctx(&cpuctx
->ctx
, output
, data
);
5649 ctxn
= pmu
->task_ctx_nr
;
5652 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
5654 perf_event_aux_ctx(ctx
, output
, data
);
5656 put_cpu_ptr(pmu
->pmu_cpu_context
);
5662 * task tracking -- fork/exit
5664 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5667 struct perf_task_event
{
5668 struct task_struct
*task
;
5669 struct perf_event_context
*task_ctx
;
5672 struct perf_event_header header
;
5682 static int perf_event_task_match(struct perf_event
*event
)
5684 return event
->attr
.comm
|| event
->attr
.mmap
||
5685 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
5689 static void perf_event_task_output(struct perf_event
*event
,
5692 struct perf_task_event
*task_event
= data
;
5693 struct perf_output_handle handle
;
5694 struct perf_sample_data sample
;
5695 struct task_struct
*task
= task_event
->task
;
5696 int ret
, size
= task_event
->event_id
.header
.size
;
5698 if (!perf_event_task_match(event
))
5701 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
5703 ret
= perf_output_begin(&handle
, event
,
5704 task_event
->event_id
.header
.size
);
5708 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
5709 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
5711 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
5712 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
5714 task_event
->event_id
.time
= perf_event_clock(event
);
5716 perf_output_put(&handle
, task_event
->event_id
);
5718 perf_event__output_id_sample(event
, &handle
, &sample
);
5720 perf_output_end(&handle
);
5722 task_event
->event_id
.header
.size
= size
;
5725 static void perf_event_task(struct task_struct
*task
,
5726 struct perf_event_context
*task_ctx
,
5729 struct perf_task_event task_event
;
5731 if (!atomic_read(&nr_comm_events
) &&
5732 !atomic_read(&nr_mmap_events
) &&
5733 !atomic_read(&nr_task_events
))
5736 task_event
= (struct perf_task_event
){
5738 .task_ctx
= task_ctx
,
5741 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
5743 .size
= sizeof(task_event
.event_id
),
5753 perf_event_aux(perf_event_task_output
,
5758 void perf_event_fork(struct task_struct
*task
)
5760 perf_event_task(task
, NULL
, 1);
5767 struct perf_comm_event
{
5768 struct task_struct
*task
;
5773 struct perf_event_header header
;
5780 static int perf_event_comm_match(struct perf_event
*event
)
5782 return event
->attr
.comm
;
5785 static void perf_event_comm_output(struct perf_event
*event
,
5788 struct perf_comm_event
*comm_event
= data
;
5789 struct perf_output_handle handle
;
5790 struct perf_sample_data sample
;
5791 int size
= comm_event
->event_id
.header
.size
;
5794 if (!perf_event_comm_match(event
))
5797 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
5798 ret
= perf_output_begin(&handle
, event
,
5799 comm_event
->event_id
.header
.size
);
5804 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
5805 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
5807 perf_output_put(&handle
, comm_event
->event_id
);
5808 __output_copy(&handle
, comm_event
->comm
,
5809 comm_event
->comm_size
);
5811 perf_event__output_id_sample(event
, &handle
, &sample
);
5813 perf_output_end(&handle
);
5815 comm_event
->event_id
.header
.size
= size
;
5818 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
5820 char comm
[TASK_COMM_LEN
];
5823 memset(comm
, 0, sizeof(comm
));
5824 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
5825 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
5827 comm_event
->comm
= comm
;
5828 comm_event
->comm_size
= size
;
5830 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
5832 perf_event_aux(perf_event_comm_output
,
5837 void perf_event_comm(struct task_struct
*task
, bool exec
)
5839 struct perf_comm_event comm_event
;
5841 if (!atomic_read(&nr_comm_events
))
5844 comm_event
= (struct perf_comm_event
){
5850 .type
= PERF_RECORD_COMM
,
5851 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
5859 perf_event_comm_event(&comm_event
);
5866 struct perf_mmap_event
{
5867 struct vm_area_struct
*vma
;
5869 const char *file_name
;
5877 struct perf_event_header header
;
5887 static int perf_event_mmap_match(struct perf_event
*event
,
5890 struct perf_mmap_event
*mmap_event
= data
;
5891 struct vm_area_struct
*vma
= mmap_event
->vma
;
5892 int executable
= vma
->vm_flags
& VM_EXEC
;
5894 return (!executable
&& event
->attr
.mmap_data
) ||
5895 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
5898 static void perf_event_mmap_output(struct perf_event
*event
,
5901 struct perf_mmap_event
*mmap_event
= data
;
5902 struct perf_output_handle handle
;
5903 struct perf_sample_data sample
;
5904 int size
= mmap_event
->event_id
.header
.size
;
5907 if (!perf_event_mmap_match(event
, data
))
5910 if (event
->attr
.mmap2
) {
5911 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
5912 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
5913 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
5914 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
5915 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
5916 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
5917 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
5920 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
5921 ret
= perf_output_begin(&handle
, event
,
5922 mmap_event
->event_id
.header
.size
);
5926 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
5927 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
5929 perf_output_put(&handle
, mmap_event
->event_id
);
5931 if (event
->attr
.mmap2
) {
5932 perf_output_put(&handle
, mmap_event
->maj
);
5933 perf_output_put(&handle
, mmap_event
->min
);
5934 perf_output_put(&handle
, mmap_event
->ino
);
5935 perf_output_put(&handle
, mmap_event
->ino_generation
);
5936 perf_output_put(&handle
, mmap_event
->prot
);
5937 perf_output_put(&handle
, mmap_event
->flags
);
5940 __output_copy(&handle
, mmap_event
->file_name
,
5941 mmap_event
->file_size
);
5943 perf_event__output_id_sample(event
, &handle
, &sample
);
5945 perf_output_end(&handle
);
5947 mmap_event
->event_id
.header
.size
= size
;
5950 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
5952 struct vm_area_struct
*vma
= mmap_event
->vma
;
5953 struct file
*file
= vma
->vm_file
;
5954 int maj
= 0, min
= 0;
5955 u64 ino
= 0, gen
= 0;
5956 u32 prot
= 0, flags
= 0;
5963 struct inode
*inode
;
5966 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5972 * d_path() works from the end of the rb backwards, so we
5973 * need to add enough zero bytes after the string to handle
5974 * the 64bit alignment we do later.
5976 name
= file_path(file
, buf
, PATH_MAX
- sizeof(u64
));
5981 inode
= file_inode(vma
->vm_file
);
5982 dev
= inode
->i_sb
->s_dev
;
5984 gen
= inode
->i_generation
;
5988 if (vma
->vm_flags
& VM_READ
)
5990 if (vma
->vm_flags
& VM_WRITE
)
5992 if (vma
->vm_flags
& VM_EXEC
)
5995 if (vma
->vm_flags
& VM_MAYSHARE
)
5998 flags
= MAP_PRIVATE
;
6000 if (vma
->vm_flags
& VM_DENYWRITE
)
6001 flags
|= MAP_DENYWRITE
;
6002 if (vma
->vm_flags
& VM_MAYEXEC
)
6003 flags
|= MAP_EXECUTABLE
;
6004 if (vma
->vm_flags
& VM_LOCKED
)
6005 flags
|= MAP_LOCKED
;
6006 if (vma
->vm_flags
& VM_HUGETLB
)
6007 flags
|= MAP_HUGETLB
;
6011 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
6012 name
= (char *) vma
->vm_ops
->name(vma
);
6017 name
= (char *)arch_vma_name(vma
);
6021 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
6022 vma
->vm_end
>= vma
->vm_mm
->brk
) {
6026 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
6027 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
6037 strlcpy(tmp
, name
, sizeof(tmp
));
6041 * Since our buffer works in 8 byte units we need to align our string
6042 * size to a multiple of 8. However, we must guarantee the tail end is
6043 * zero'd out to avoid leaking random bits to userspace.
6045 size
= strlen(name
)+1;
6046 while (!IS_ALIGNED(size
, sizeof(u64
)))
6047 name
[size
++] = '\0';
6049 mmap_event
->file_name
= name
;
6050 mmap_event
->file_size
= size
;
6051 mmap_event
->maj
= maj
;
6052 mmap_event
->min
= min
;
6053 mmap_event
->ino
= ino
;
6054 mmap_event
->ino_generation
= gen
;
6055 mmap_event
->prot
= prot
;
6056 mmap_event
->flags
= flags
;
6058 if (!(vma
->vm_flags
& VM_EXEC
))
6059 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
6061 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
6063 perf_event_aux(perf_event_mmap_output
,
6070 void perf_event_mmap(struct vm_area_struct
*vma
)
6072 struct perf_mmap_event mmap_event
;
6074 if (!atomic_read(&nr_mmap_events
))
6077 mmap_event
= (struct perf_mmap_event
){
6083 .type
= PERF_RECORD_MMAP
,
6084 .misc
= PERF_RECORD_MISC_USER
,
6089 .start
= vma
->vm_start
,
6090 .len
= vma
->vm_end
- vma
->vm_start
,
6091 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
6093 /* .maj (attr_mmap2 only) */
6094 /* .min (attr_mmap2 only) */
6095 /* .ino (attr_mmap2 only) */
6096 /* .ino_generation (attr_mmap2 only) */
6097 /* .prot (attr_mmap2 only) */
6098 /* .flags (attr_mmap2 only) */
6101 perf_event_mmap_event(&mmap_event
);
6104 void perf_event_aux_event(struct perf_event
*event
, unsigned long head
,
6105 unsigned long size
, u64 flags
)
6107 struct perf_output_handle handle
;
6108 struct perf_sample_data sample
;
6109 struct perf_aux_event
{
6110 struct perf_event_header header
;
6116 .type
= PERF_RECORD_AUX
,
6118 .size
= sizeof(rec
),
6126 perf_event_header__init_id(&rec
.header
, &sample
, event
);
6127 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
6132 perf_output_put(&handle
, rec
);
6133 perf_event__output_id_sample(event
, &handle
, &sample
);
6135 perf_output_end(&handle
);
6139 * Lost/dropped samples logging
6141 void perf_log_lost_samples(struct perf_event
*event
, u64 lost
)
6143 struct perf_output_handle handle
;
6144 struct perf_sample_data sample
;
6148 struct perf_event_header header
;
6150 } lost_samples_event
= {
6152 .type
= PERF_RECORD_LOST_SAMPLES
,
6154 .size
= sizeof(lost_samples_event
),
6159 perf_event_header__init_id(&lost_samples_event
.header
, &sample
, event
);
6161 ret
= perf_output_begin(&handle
, event
,
6162 lost_samples_event
.header
.size
);
6166 perf_output_put(&handle
, lost_samples_event
);
6167 perf_event__output_id_sample(event
, &handle
, &sample
);
6168 perf_output_end(&handle
);
6172 * context_switch tracking
6175 struct perf_switch_event
{
6176 struct task_struct
*task
;
6177 struct task_struct
*next_prev
;
6180 struct perf_event_header header
;
6186 static int perf_event_switch_match(struct perf_event
*event
)
6188 return event
->attr
.context_switch
;
6191 static void perf_event_switch_output(struct perf_event
*event
, void *data
)
6193 struct perf_switch_event
*se
= data
;
6194 struct perf_output_handle handle
;
6195 struct perf_sample_data sample
;
6198 if (!perf_event_switch_match(event
))
6201 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6202 if (event
->ctx
->task
) {
6203 se
->event_id
.header
.type
= PERF_RECORD_SWITCH
;
6204 se
->event_id
.header
.size
= sizeof(se
->event_id
.header
);
6206 se
->event_id
.header
.type
= PERF_RECORD_SWITCH_CPU_WIDE
;
6207 se
->event_id
.header
.size
= sizeof(se
->event_id
);
6208 se
->event_id
.next_prev_pid
=
6209 perf_event_pid(event
, se
->next_prev
);
6210 se
->event_id
.next_prev_tid
=
6211 perf_event_tid(event
, se
->next_prev
);
6214 perf_event_header__init_id(&se
->event_id
.header
, &sample
, event
);
6216 ret
= perf_output_begin(&handle
, event
, se
->event_id
.header
.size
);
6220 if (event
->ctx
->task
)
6221 perf_output_put(&handle
, se
->event_id
.header
);
6223 perf_output_put(&handle
, se
->event_id
);
6225 perf_event__output_id_sample(event
, &handle
, &sample
);
6227 perf_output_end(&handle
);
6230 static void perf_event_switch(struct task_struct
*task
,
6231 struct task_struct
*next_prev
, bool sched_in
)
6233 struct perf_switch_event switch_event
;
6235 /* N.B. caller checks nr_switch_events != 0 */
6237 switch_event
= (struct perf_switch_event
){
6239 .next_prev
= next_prev
,
6243 .misc
= sched_in
? 0 : PERF_RECORD_MISC_SWITCH_OUT
,
6246 /* .next_prev_pid */
6247 /* .next_prev_tid */
6251 perf_event_aux(perf_event_switch_output
,
6257 * IRQ throttle logging
6260 static void perf_log_throttle(struct perf_event
*event
, int enable
)
6262 struct perf_output_handle handle
;
6263 struct perf_sample_data sample
;
6267 struct perf_event_header header
;
6271 } throttle_event
= {
6273 .type
= PERF_RECORD_THROTTLE
,
6275 .size
= sizeof(throttle_event
),
6277 .time
= perf_event_clock(event
),
6278 .id
= primary_event_id(event
),
6279 .stream_id
= event
->id
,
6283 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
6285 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
6287 ret
= perf_output_begin(&handle
, event
,
6288 throttle_event
.header
.size
);
6292 perf_output_put(&handle
, throttle_event
);
6293 perf_event__output_id_sample(event
, &handle
, &sample
);
6294 perf_output_end(&handle
);
6297 static void perf_log_itrace_start(struct perf_event
*event
)
6299 struct perf_output_handle handle
;
6300 struct perf_sample_data sample
;
6301 struct perf_aux_event
{
6302 struct perf_event_header header
;
6309 event
= event
->parent
;
6311 if (!(event
->pmu
->capabilities
& PERF_PMU_CAP_ITRACE
) ||
6312 event
->hw
.itrace_started
)
6315 rec
.header
.type
= PERF_RECORD_ITRACE_START
;
6316 rec
.header
.misc
= 0;
6317 rec
.header
.size
= sizeof(rec
);
6318 rec
.pid
= perf_event_pid(event
, current
);
6319 rec
.tid
= perf_event_tid(event
, current
);
6321 perf_event_header__init_id(&rec
.header
, &sample
, event
);
6322 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
6327 perf_output_put(&handle
, rec
);
6328 perf_event__output_id_sample(event
, &handle
, &sample
);
6330 perf_output_end(&handle
);
6334 * Generic event overflow handling, sampling.
6337 static int __perf_event_overflow(struct perf_event
*event
,
6338 int throttle
, struct perf_sample_data
*data
,
6339 struct pt_regs
*regs
)
6341 int events
= atomic_read(&event
->event_limit
);
6342 struct hw_perf_event
*hwc
= &event
->hw
;
6347 * Non-sampling counters might still use the PMI to fold short
6348 * hardware counters, ignore those.
6350 if (unlikely(!is_sampling_event(event
)))
6353 seq
= __this_cpu_read(perf_throttled_seq
);
6354 if (seq
!= hwc
->interrupts_seq
) {
6355 hwc
->interrupts_seq
= seq
;
6356 hwc
->interrupts
= 1;
6359 if (unlikely(throttle
6360 && hwc
->interrupts
>= max_samples_per_tick
)) {
6361 __this_cpu_inc(perf_throttled_count
);
6362 hwc
->interrupts
= MAX_INTERRUPTS
;
6363 perf_log_throttle(event
, 0);
6364 tick_nohz_full_kick();
6369 if (event
->attr
.freq
) {
6370 u64 now
= perf_clock();
6371 s64 delta
= now
- hwc
->freq_time_stamp
;
6373 hwc
->freq_time_stamp
= now
;
6375 if (delta
> 0 && delta
< 2*TICK_NSEC
)
6376 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
6380 * XXX event_limit might not quite work as expected on inherited
6384 event
->pending_kill
= POLL_IN
;
6385 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
6387 event
->pending_kill
= POLL_HUP
;
6388 event
->pending_disable
= 1;
6389 irq_work_queue(&event
->pending
);
6392 if (event
->overflow_handler
)
6393 event
->overflow_handler(event
, data
, regs
);
6395 perf_event_output(event
, data
, regs
);
6397 if (*perf_event_fasync(event
) && event
->pending_kill
) {
6398 event
->pending_wakeup
= 1;
6399 irq_work_queue(&event
->pending
);
6405 int perf_event_overflow(struct perf_event
*event
,
6406 struct perf_sample_data
*data
,
6407 struct pt_regs
*regs
)
6409 return __perf_event_overflow(event
, 1, data
, regs
);
6413 * Generic software event infrastructure
6416 struct swevent_htable
{
6417 struct swevent_hlist
*swevent_hlist
;
6418 struct mutex hlist_mutex
;
6421 /* Recursion avoidance in each contexts */
6422 int recursion
[PERF_NR_CONTEXTS
];
6425 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
6428 * We directly increment event->count and keep a second value in
6429 * event->hw.period_left to count intervals. This period event
6430 * is kept in the range [-sample_period, 0] so that we can use the
6434 u64
perf_swevent_set_period(struct perf_event
*event
)
6436 struct hw_perf_event
*hwc
= &event
->hw
;
6437 u64 period
= hwc
->last_period
;
6441 hwc
->last_period
= hwc
->sample_period
;
6444 old
= val
= local64_read(&hwc
->period_left
);
6448 nr
= div64_u64(period
+ val
, period
);
6449 offset
= nr
* period
;
6451 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
6457 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
6458 struct perf_sample_data
*data
,
6459 struct pt_regs
*regs
)
6461 struct hw_perf_event
*hwc
= &event
->hw
;
6465 overflow
= perf_swevent_set_period(event
);
6467 if (hwc
->interrupts
== MAX_INTERRUPTS
)
6470 for (; overflow
; overflow
--) {
6471 if (__perf_event_overflow(event
, throttle
,
6474 * We inhibit the overflow from happening when
6475 * hwc->interrupts == MAX_INTERRUPTS.
6483 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
6484 struct perf_sample_data
*data
,
6485 struct pt_regs
*regs
)
6487 struct hw_perf_event
*hwc
= &event
->hw
;
6489 local64_add(nr
, &event
->count
);
6494 if (!is_sampling_event(event
))
6497 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
6499 return perf_swevent_overflow(event
, 1, data
, regs
);
6501 data
->period
= event
->hw
.last_period
;
6503 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
6504 return perf_swevent_overflow(event
, 1, data
, regs
);
6506 if (local64_add_negative(nr
, &hwc
->period_left
))
6509 perf_swevent_overflow(event
, 0, data
, regs
);
6512 static int perf_exclude_event(struct perf_event
*event
,
6513 struct pt_regs
*regs
)
6515 if (event
->hw
.state
& PERF_HES_STOPPED
)
6519 if (event
->attr
.exclude_user
&& user_mode(regs
))
6522 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
6529 static int perf_swevent_match(struct perf_event
*event
,
6530 enum perf_type_id type
,
6532 struct perf_sample_data
*data
,
6533 struct pt_regs
*regs
)
6535 if (event
->attr
.type
!= type
)
6538 if (event
->attr
.config
!= event_id
)
6541 if (perf_exclude_event(event
, regs
))
6547 static inline u64
swevent_hash(u64 type
, u32 event_id
)
6549 u64 val
= event_id
| (type
<< 32);
6551 return hash_64(val
, SWEVENT_HLIST_BITS
);
6554 static inline struct hlist_head
*
6555 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
6557 u64 hash
= swevent_hash(type
, event_id
);
6559 return &hlist
->heads
[hash
];
6562 /* For the read side: events when they trigger */
6563 static inline struct hlist_head
*
6564 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
6566 struct swevent_hlist
*hlist
;
6568 hlist
= rcu_dereference(swhash
->swevent_hlist
);
6572 return __find_swevent_head(hlist
, type
, event_id
);
6575 /* For the event head insertion and removal in the hlist */
6576 static inline struct hlist_head
*
6577 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
6579 struct swevent_hlist
*hlist
;
6580 u32 event_id
= event
->attr
.config
;
6581 u64 type
= event
->attr
.type
;
6584 * Event scheduling is always serialized against hlist allocation
6585 * and release. Which makes the protected version suitable here.
6586 * The context lock guarantees that.
6588 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
6589 lockdep_is_held(&event
->ctx
->lock
));
6593 return __find_swevent_head(hlist
, type
, event_id
);
6596 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
6598 struct perf_sample_data
*data
,
6599 struct pt_regs
*regs
)
6601 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6602 struct perf_event
*event
;
6603 struct hlist_head
*head
;
6606 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
6610 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
6611 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
6612 perf_swevent_event(event
, nr
, data
, regs
);
6618 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
6620 int perf_swevent_get_recursion_context(void)
6622 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6624 return get_recursion_context(swhash
->recursion
);
6626 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
6628 inline void perf_swevent_put_recursion_context(int rctx
)
6630 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6632 put_recursion_context(swhash
->recursion
, rctx
);
6635 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
6637 struct perf_sample_data data
;
6639 if (WARN_ON_ONCE(!regs
))
6642 perf_sample_data_init(&data
, addr
, 0);
6643 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
6646 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
6650 preempt_disable_notrace();
6651 rctx
= perf_swevent_get_recursion_context();
6652 if (unlikely(rctx
< 0))
6655 ___perf_sw_event(event_id
, nr
, regs
, addr
);
6657 perf_swevent_put_recursion_context(rctx
);
6659 preempt_enable_notrace();
6662 static void perf_swevent_read(struct perf_event
*event
)
6666 static int perf_swevent_add(struct perf_event
*event
, int flags
)
6668 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6669 struct hw_perf_event
*hwc
= &event
->hw
;
6670 struct hlist_head
*head
;
6672 if (is_sampling_event(event
)) {
6673 hwc
->last_period
= hwc
->sample_period
;
6674 perf_swevent_set_period(event
);
6677 hwc
->state
= !(flags
& PERF_EF_START
);
6679 head
= find_swevent_head(swhash
, event
);
6680 if (WARN_ON_ONCE(!head
))
6683 hlist_add_head_rcu(&event
->hlist_entry
, head
);
6684 perf_event_update_userpage(event
);
6689 static void perf_swevent_del(struct perf_event
*event
, int flags
)
6691 hlist_del_rcu(&event
->hlist_entry
);
6694 static void perf_swevent_start(struct perf_event
*event
, int flags
)
6696 event
->hw
.state
= 0;
6699 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
6701 event
->hw
.state
= PERF_HES_STOPPED
;
6704 /* Deref the hlist from the update side */
6705 static inline struct swevent_hlist
*
6706 swevent_hlist_deref(struct swevent_htable
*swhash
)
6708 return rcu_dereference_protected(swhash
->swevent_hlist
,
6709 lockdep_is_held(&swhash
->hlist_mutex
));
6712 static void swevent_hlist_release(struct swevent_htable
*swhash
)
6714 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
6719 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
6720 kfree_rcu(hlist
, rcu_head
);
6723 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
6725 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6727 mutex_lock(&swhash
->hlist_mutex
);
6729 if (!--swhash
->hlist_refcount
)
6730 swevent_hlist_release(swhash
);
6732 mutex_unlock(&swhash
->hlist_mutex
);
6735 static void swevent_hlist_put(struct perf_event
*event
)
6739 for_each_possible_cpu(cpu
)
6740 swevent_hlist_put_cpu(event
, cpu
);
6743 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
6745 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6748 mutex_lock(&swhash
->hlist_mutex
);
6749 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
6750 struct swevent_hlist
*hlist
;
6752 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
6757 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
6759 swhash
->hlist_refcount
++;
6761 mutex_unlock(&swhash
->hlist_mutex
);
6766 static int swevent_hlist_get(struct perf_event
*event
)
6769 int cpu
, failed_cpu
;
6772 for_each_possible_cpu(cpu
) {
6773 err
= swevent_hlist_get_cpu(event
, cpu
);
6783 for_each_possible_cpu(cpu
) {
6784 if (cpu
== failed_cpu
)
6786 swevent_hlist_put_cpu(event
, cpu
);
6793 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
6795 static void sw_perf_event_destroy(struct perf_event
*event
)
6797 u64 event_id
= event
->attr
.config
;
6799 WARN_ON(event
->parent
);
6801 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
6802 swevent_hlist_put(event
);
6805 static int perf_swevent_init(struct perf_event
*event
)
6807 u64 event_id
= event
->attr
.config
;
6809 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
6813 * no branch sampling for software events
6815 if (has_branch_stack(event
))
6819 case PERF_COUNT_SW_CPU_CLOCK
:
6820 case PERF_COUNT_SW_TASK_CLOCK
:
6827 if (event_id
>= PERF_COUNT_SW_MAX
)
6830 if (!event
->parent
) {
6833 err
= swevent_hlist_get(event
);
6837 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
6838 event
->destroy
= sw_perf_event_destroy
;
6844 static struct pmu perf_swevent
= {
6845 .task_ctx_nr
= perf_sw_context
,
6847 .capabilities
= PERF_PMU_CAP_NO_NMI
,
6849 .event_init
= perf_swevent_init
,
6850 .add
= perf_swevent_add
,
6851 .del
= perf_swevent_del
,
6852 .start
= perf_swevent_start
,
6853 .stop
= perf_swevent_stop
,
6854 .read
= perf_swevent_read
,
6857 #ifdef CONFIG_EVENT_TRACING
6859 static int perf_tp_filter_match(struct perf_event
*event
,
6860 struct perf_sample_data
*data
)
6862 void *record
= data
->raw
->data
;
6864 /* only top level events have filters set */
6866 event
= event
->parent
;
6868 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
6873 static int perf_tp_event_match(struct perf_event
*event
,
6874 struct perf_sample_data
*data
,
6875 struct pt_regs
*regs
)
6877 if (event
->hw
.state
& PERF_HES_STOPPED
)
6880 * All tracepoints are from kernel-space.
6882 if (event
->attr
.exclude_kernel
)
6885 if (!perf_tp_filter_match(event
, data
))
6891 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
6892 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
6893 struct task_struct
*task
)
6895 struct perf_sample_data data
;
6896 struct perf_event
*event
;
6898 struct perf_raw_record raw
= {
6903 perf_sample_data_init(&data
, addr
, 0);
6906 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
6907 if (perf_tp_event_match(event
, &data
, regs
))
6908 perf_swevent_event(event
, count
, &data
, regs
);
6912 * If we got specified a target task, also iterate its context and
6913 * deliver this event there too.
6915 if (task
&& task
!= current
) {
6916 struct perf_event_context
*ctx
;
6917 struct trace_entry
*entry
= record
;
6920 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
6924 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
6925 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
6927 if (event
->attr
.config
!= entry
->type
)
6929 if (perf_tp_event_match(event
, &data
, regs
))
6930 perf_swevent_event(event
, count
, &data
, regs
);
6936 perf_swevent_put_recursion_context(rctx
);
6938 EXPORT_SYMBOL_GPL(perf_tp_event
);
6940 static void tp_perf_event_destroy(struct perf_event
*event
)
6942 perf_trace_destroy(event
);
6945 static int perf_tp_event_init(struct perf_event
*event
)
6949 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
6953 * no branch sampling for tracepoint events
6955 if (has_branch_stack(event
))
6958 err
= perf_trace_init(event
);
6962 event
->destroy
= tp_perf_event_destroy
;
6967 static struct pmu perf_tracepoint
= {
6968 .task_ctx_nr
= perf_sw_context
,
6970 .event_init
= perf_tp_event_init
,
6971 .add
= perf_trace_add
,
6972 .del
= perf_trace_del
,
6973 .start
= perf_swevent_start
,
6974 .stop
= perf_swevent_stop
,
6975 .read
= perf_swevent_read
,
6978 static inline void perf_tp_register(void)
6980 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
6983 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
6988 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
6991 filter_str
= strndup_user(arg
, PAGE_SIZE
);
6992 if (IS_ERR(filter_str
))
6993 return PTR_ERR(filter_str
);
6995 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
7001 static void perf_event_free_filter(struct perf_event
*event
)
7003 ftrace_profile_free_filter(event
);
7006 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
7008 struct bpf_prog
*prog
;
7010 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7013 if (event
->tp_event
->prog
)
7016 if (!(event
->tp_event
->flags
& TRACE_EVENT_FL_UKPROBE
))
7017 /* bpf programs can only be attached to u/kprobes */
7020 prog
= bpf_prog_get(prog_fd
);
7022 return PTR_ERR(prog
);
7024 if (prog
->type
!= BPF_PROG_TYPE_KPROBE
) {
7025 /* valid fd, but invalid bpf program type */
7030 event
->tp_event
->prog
= prog
;
7035 static void perf_event_free_bpf_prog(struct perf_event
*event
)
7037 struct bpf_prog
*prog
;
7039 if (!event
->tp_event
)
7042 prog
= event
->tp_event
->prog
;
7044 event
->tp_event
->prog
= NULL
;
7051 static inline void perf_tp_register(void)
7055 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
7060 static void perf_event_free_filter(struct perf_event
*event
)
7064 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
7069 static void perf_event_free_bpf_prog(struct perf_event
*event
)
7072 #endif /* CONFIG_EVENT_TRACING */
7074 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7075 void perf_bp_event(struct perf_event
*bp
, void *data
)
7077 struct perf_sample_data sample
;
7078 struct pt_regs
*regs
= data
;
7080 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
7082 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
7083 perf_swevent_event(bp
, 1, &sample
, regs
);
7088 * hrtimer based swevent callback
7091 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
7093 enum hrtimer_restart ret
= HRTIMER_RESTART
;
7094 struct perf_sample_data data
;
7095 struct pt_regs
*regs
;
7096 struct perf_event
*event
;
7099 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
7101 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
7102 return HRTIMER_NORESTART
;
7104 event
->pmu
->read(event
);
7106 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
7107 regs
= get_irq_regs();
7109 if (regs
&& !perf_exclude_event(event
, regs
)) {
7110 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
7111 if (__perf_event_overflow(event
, 1, &data
, regs
))
7112 ret
= HRTIMER_NORESTART
;
7115 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
7116 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
7121 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
7123 struct hw_perf_event
*hwc
= &event
->hw
;
7126 if (!is_sampling_event(event
))
7129 period
= local64_read(&hwc
->period_left
);
7134 local64_set(&hwc
->period_left
, 0);
7136 period
= max_t(u64
, 10000, hwc
->sample_period
);
7138 hrtimer_start(&hwc
->hrtimer
, ns_to_ktime(period
),
7139 HRTIMER_MODE_REL_PINNED
);
7142 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
7144 struct hw_perf_event
*hwc
= &event
->hw
;
7146 if (is_sampling_event(event
)) {
7147 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
7148 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
7150 hrtimer_cancel(&hwc
->hrtimer
);
7154 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
7156 struct hw_perf_event
*hwc
= &event
->hw
;
7158 if (!is_sampling_event(event
))
7161 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
7162 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
7165 * Since hrtimers have a fixed rate, we can do a static freq->period
7166 * mapping and avoid the whole period adjust feedback stuff.
7168 if (event
->attr
.freq
) {
7169 long freq
= event
->attr
.sample_freq
;
7171 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
7172 hwc
->sample_period
= event
->attr
.sample_period
;
7173 local64_set(&hwc
->period_left
, hwc
->sample_period
);
7174 hwc
->last_period
= hwc
->sample_period
;
7175 event
->attr
.freq
= 0;
7180 * Software event: cpu wall time clock
7183 static void cpu_clock_event_update(struct perf_event
*event
)
7188 now
= local_clock();
7189 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
7190 local64_add(now
- prev
, &event
->count
);
7193 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
7195 local64_set(&event
->hw
.prev_count
, local_clock());
7196 perf_swevent_start_hrtimer(event
);
7199 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
7201 perf_swevent_cancel_hrtimer(event
);
7202 cpu_clock_event_update(event
);
7205 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
7207 if (flags
& PERF_EF_START
)
7208 cpu_clock_event_start(event
, flags
);
7209 perf_event_update_userpage(event
);
7214 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
7216 cpu_clock_event_stop(event
, flags
);
7219 static void cpu_clock_event_read(struct perf_event
*event
)
7221 cpu_clock_event_update(event
);
7224 static int cpu_clock_event_init(struct perf_event
*event
)
7226 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
7229 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
7233 * no branch sampling for software events
7235 if (has_branch_stack(event
))
7238 perf_swevent_init_hrtimer(event
);
7243 static struct pmu perf_cpu_clock
= {
7244 .task_ctx_nr
= perf_sw_context
,
7246 .capabilities
= PERF_PMU_CAP_NO_NMI
,
7248 .event_init
= cpu_clock_event_init
,
7249 .add
= cpu_clock_event_add
,
7250 .del
= cpu_clock_event_del
,
7251 .start
= cpu_clock_event_start
,
7252 .stop
= cpu_clock_event_stop
,
7253 .read
= cpu_clock_event_read
,
7257 * Software event: task time clock
7260 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
7265 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
7267 local64_add(delta
, &event
->count
);
7270 static void task_clock_event_start(struct perf_event
*event
, int flags
)
7272 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
7273 perf_swevent_start_hrtimer(event
);
7276 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
7278 perf_swevent_cancel_hrtimer(event
);
7279 task_clock_event_update(event
, event
->ctx
->time
);
7282 static int task_clock_event_add(struct perf_event
*event
, int flags
)
7284 if (flags
& PERF_EF_START
)
7285 task_clock_event_start(event
, flags
);
7286 perf_event_update_userpage(event
);
7291 static void task_clock_event_del(struct perf_event
*event
, int flags
)
7293 task_clock_event_stop(event
, PERF_EF_UPDATE
);
7296 static void task_clock_event_read(struct perf_event
*event
)
7298 u64 now
= perf_clock();
7299 u64 delta
= now
- event
->ctx
->timestamp
;
7300 u64 time
= event
->ctx
->time
+ delta
;
7302 task_clock_event_update(event
, time
);
7305 static int task_clock_event_init(struct perf_event
*event
)
7307 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
7310 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
7314 * no branch sampling for software events
7316 if (has_branch_stack(event
))
7319 perf_swevent_init_hrtimer(event
);
7324 static struct pmu perf_task_clock
= {
7325 .task_ctx_nr
= perf_sw_context
,
7327 .capabilities
= PERF_PMU_CAP_NO_NMI
,
7329 .event_init
= task_clock_event_init
,
7330 .add
= task_clock_event_add
,
7331 .del
= task_clock_event_del
,
7332 .start
= task_clock_event_start
,
7333 .stop
= task_clock_event_stop
,
7334 .read
= task_clock_event_read
,
7337 static void perf_pmu_nop_void(struct pmu
*pmu
)
7341 static void perf_pmu_nop_txn(struct pmu
*pmu
, unsigned int flags
)
7345 static int perf_pmu_nop_int(struct pmu
*pmu
)
7350 static DEFINE_PER_CPU(unsigned int, nop_txn_flags
);
7352 static void perf_pmu_start_txn(struct pmu
*pmu
, unsigned int flags
)
7354 __this_cpu_write(nop_txn_flags
, flags
);
7356 if (flags
& ~PERF_PMU_TXN_ADD
)
7359 perf_pmu_disable(pmu
);
7362 static int perf_pmu_commit_txn(struct pmu
*pmu
)
7364 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
7366 __this_cpu_write(nop_txn_flags
, 0);
7368 if (flags
& ~PERF_PMU_TXN_ADD
)
7371 perf_pmu_enable(pmu
);
7375 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
7377 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
7379 __this_cpu_write(nop_txn_flags
, 0);
7381 if (flags
& ~PERF_PMU_TXN_ADD
)
7384 perf_pmu_enable(pmu
);
7387 static int perf_event_idx_default(struct perf_event
*event
)
7393 * Ensures all contexts with the same task_ctx_nr have the same
7394 * pmu_cpu_context too.
7396 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
7403 list_for_each_entry(pmu
, &pmus
, entry
) {
7404 if (pmu
->task_ctx_nr
== ctxn
)
7405 return pmu
->pmu_cpu_context
;
7411 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
7415 for_each_possible_cpu(cpu
) {
7416 struct perf_cpu_context
*cpuctx
;
7418 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
7420 if (cpuctx
->unique_pmu
== old_pmu
)
7421 cpuctx
->unique_pmu
= pmu
;
7425 static void free_pmu_context(struct pmu
*pmu
)
7429 mutex_lock(&pmus_lock
);
7431 * Like a real lame refcount.
7433 list_for_each_entry(i
, &pmus
, entry
) {
7434 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
7435 update_pmu_context(i
, pmu
);
7440 free_percpu(pmu
->pmu_cpu_context
);
7442 mutex_unlock(&pmus_lock
);
7444 static struct idr pmu_idr
;
7447 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
7449 struct pmu
*pmu
= dev_get_drvdata(dev
);
7451 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
7453 static DEVICE_ATTR_RO(type
);
7456 perf_event_mux_interval_ms_show(struct device
*dev
,
7457 struct device_attribute
*attr
,
7460 struct pmu
*pmu
= dev_get_drvdata(dev
);
7462 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
7465 static DEFINE_MUTEX(mux_interval_mutex
);
7468 perf_event_mux_interval_ms_store(struct device
*dev
,
7469 struct device_attribute
*attr
,
7470 const char *buf
, size_t count
)
7472 struct pmu
*pmu
= dev_get_drvdata(dev
);
7473 int timer
, cpu
, ret
;
7475 ret
= kstrtoint(buf
, 0, &timer
);
7482 /* same value, noting to do */
7483 if (timer
== pmu
->hrtimer_interval_ms
)
7486 mutex_lock(&mux_interval_mutex
);
7487 pmu
->hrtimer_interval_ms
= timer
;
7489 /* update all cpuctx for this PMU */
7491 for_each_online_cpu(cpu
) {
7492 struct perf_cpu_context
*cpuctx
;
7493 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
7494 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
7496 cpu_function_call(cpu
,
7497 (remote_function_f
)perf_mux_hrtimer_restart
, cpuctx
);
7500 mutex_unlock(&mux_interval_mutex
);
7504 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
7506 static struct attribute
*pmu_dev_attrs
[] = {
7507 &dev_attr_type
.attr
,
7508 &dev_attr_perf_event_mux_interval_ms
.attr
,
7511 ATTRIBUTE_GROUPS(pmu_dev
);
7513 static int pmu_bus_running
;
7514 static struct bus_type pmu_bus
= {
7515 .name
= "event_source",
7516 .dev_groups
= pmu_dev_groups
,
7519 static void pmu_dev_release(struct device
*dev
)
7524 static int pmu_dev_alloc(struct pmu
*pmu
)
7528 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
7532 pmu
->dev
->groups
= pmu
->attr_groups
;
7533 device_initialize(pmu
->dev
);
7534 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
7538 dev_set_drvdata(pmu
->dev
, pmu
);
7539 pmu
->dev
->bus
= &pmu_bus
;
7540 pmu
->dev
->release
= pmu_dev_release
;
7541 ret
= device_add(pmu
->dev
);
7549 put_device(pmu
->dev
);
7553 static struct lock_class_key cpuctx_mutex
;
7554 static struct lock_class_key cpuctx_lock
;
7556 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
7560 mutex_lock(&pmus_lock
);
7562 pmu
->pmu_disable_count
= alloc_percpu(int);
7563 if (!pmu
->pmu_disable_count
)
7572 type
= idr_alloc(&pmu_idr
, pmu
, PERF_TYPE_MAX
, 0, GFP_KERNEL
);
7580 if (pmu_bus_running
) {
7581 ret
= pmu_dev_alloc(pmu
);
7587 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
7588 if (pmu
->pmu_cpu_context
)
7589 goto got_cpu_context
;
7592 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
7593 if (!pmu
->pmu_cpu_context
)
7596 for_each_possible_cpu(cpu
) {
7597 struct perf_cpu_context
*cpuctx
;
7599 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
7600 __perf_event_init_context(&cpuctx
->ctx
);
7601 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
7602 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
7603 cpuctx
->ctx
.pmu
= pmu
;
7605 __perf_mux_hrtimer_init(cpuctx
, cpu
);
7607 cpuctx
->unique_pmu
= pmu
;
7611 if (!pmu
->start_txn
) {
7612 if (pmu
->pmu_enable
) {
7614 * If we have pmu_enable/pmu_disable calls, install
7615 * transaction stubs that use that to try and batch
7616 * hardware accesses.
7618 pmu
->start_txn
= perf_pmu_start_txn
;
7619 pmu
->commit_txn
= perf_pmu_commit_txn
;
7620 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
7622 pmu
->start_txn
= perf_pmu_nop_txn
;
7623 pmu
->commit_txn
= perf_pmu_nop_int
;
7624 pmu
->cancel_txn
= perf_pmu_nop_void
;
7628 if (!pmu
->pmu_enable
) {
7629 pmu
->pmu_enable
= perf_pmu_nop_void
;
7630 pmu
->pmu_disable
= perf_pmu_nop_void
;
7633 if (!pmu
->event_idx
)
7634 pmu
->event_idx
= perf_event_idx_default
;
7636 list_add_rcu(&pmu
->entry
, &pmus
);
7637 atomic_set(&pmu
->exclusive_cnt
, 0);
7640 mutex_unlock(&pmus_lock
);
7645 device_del(pmu
->dev
);
7646 put_device(pmu
->dev
);
7649 if (pmu
->type
>= PERF_TYPE_MAX
)
7650 idr_remove(&pmu_idr
, pmu
->type
);
7653 free_percpu(pmu
->pmu_disable_count
);
7656 EXPORT_SYMBOL_GPL(perf_pmu_register
);
7658 void perf_pmu_unregister(struct pmu
*pmu
)
7660 mutex_lock(&pmus_lock
);
7661 list_del_rcu(&pmu
->entry
);
7662 mutex_unlock(&pmus_lock
);
7665 * We dereference the pmu list under both SRCU and regular RCU, so
7666 * synchronize against both of those.
7668 synchronize_srcu(&pmus_srcu
);
7671 free_percpu(pmu
->pmu_disable_count
);
7672 if (pmu
->type
>= PERF_TYPE_MAX
)
7673 idr_remove(&pmu_idr
, pmu
->type
);
7674 device_del(pmu
->dev
);
7675 put_device(pmu
->dev
);
7676 free_pmu_context(pmu
);
7678 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
7680 static int perf_try_init_event(struct pmu
*pmu
, struct perf_event
*event
)
7682 struct perf_event_context
*ctx
= NULL
;
7685 if (!try_module_get(pmu
->module
))
7688 if (event
->group_leader
!= event
) {
7690 * This ctx->mutex can nest when we're called through
7691 * inheritance. See the perf_event_ctx_lock_nested() comment.
7693 ctx
= perf_event_ctx_lock_nested(event
->group_leader
,
7694 SINGLE_DEPTH_NESTING
);
7699 ret
= pmu
->event_init(event
);
7702 perf_event_ctx_unlock(event
->group_leader
, ctx
);
7705 module_put(pmu
->module
);
7710 static struct pmu
*perf_init_event(struct perf_event
*event
)
7712 struct pmu
*pmu
= NULL
;
7716 idx
= srcu_read_lock(&pmus_srcu
);
7719 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
7722 ret
= perf_try_init_event(pmu
, event
);
7728 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
7729 ret
= perf_try_init_event(pmu
, event
);
7733 if (ret
!= -ENOENT
) {
7738 pmu
= ERR_PTR(-ENOENT
);
7740 srcu_read_unlock(&pmus_srcu
, idx
);
7745 static void account_event_cpu(struct perf_event
*event
, int cpu
)
7750 if (is_cgroup_event(event
))
7751 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
7754 static void account_event(struct perf_event
*event
)
7759 if (event
->attach_state
& PERF_ATTACH_TASK
)
7760 static_key_slow_inc(&perf_sched_events
.key
);
7761 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
7762 atomic_inc(&nr_mmap_events
);
7763 if (event
->attr
.comm
)
7764 atomic_inc(&nr_comm_events
);
7765 if (event
->attr
.task
)
7766 atomic_inc(&nr_task_events
);
7767 if (event
->attr
.freq
) {
7768 if (atomic_inc_return(&nr_freq_events
) == 1)
7769 tick_nohz_full_kick_all();
7771 if (event
->attr
.context_switch
) {
7772 atomic_inc(&nr_switch_events
);
7773 static_key_slow_inc(&perf_sched_events
.key
);
7775 if (has_branch_stack(event
))
7776 static_key_slow_inc(&perf_sched_events
.key
);
7777 if (is_cgroup_event(event
))
7778 static_key_slow_inc(&perf_sched_events
.key
);
7780 account_event_cpu(event
, event
->cpu
);
7784 * Allocate and initialize a event structure
7786 static struct perf_event
*
7787 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
7788 struct task_struct
*task
,
7789 struct perf_event
*group_leader
,
7790 struct perf_event
*parent_event
,
7791 perf_overflow_handler_t overflow_handler
,
7792 void *context
, int cgroup_fd
)
7795 struct perf_event
*event
;
7796 struct hw_perf_event
*hwc
;
7799 if ((unsigned)cpu
>= nr_cpu_ids
) {
7800 if (!task
|| cpu
!= -1)
7801 return ERR_PTR(-EINVAL
);
7804 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
7806 return ERR_PTR(-ENOMEM
);
7809 * Single events are their own group leaders, with an
7810 * empty sibling list:
7813 group_leader
= event
;
7815 mutex_init(&event
->child_mutex
);
7816 INIT_LIST_HEAD(&event
->child_list
);
7818 INIT_LIST_HEAD(&event
->group_entry
);
7819 INIT_LIST_HEAD(&event
->event_entry
);
7820 INIT_LIST_HEAD(&event
->sibling_list
);
7821 INIT_LIST_HEAD(&event
->rb_entry
);
7822 INIT_LIST_HEAD(&event
->active_entry
);
7823 INIT_HLIST_NODE(&event
->hlist_entry
);
7826 init_waitqueue_head(&event
->waitq
);
7827 init_irq_work(&event
->pending
, perf_pending_event
);
7829 mutex_init(&event
->mmap_mutex
);
7831 atomic_long_set(&event
->refcount
, 1);
7833 event
->attr
= *attr
;
7834 event
->group_leader
= group_leader
;
7838 event
->parent
= parent_event
;
7840 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
7841 event
->id
= atomic64_inc_return(&perf_event_id
);
7843 event
->state
= PERF_EVENT_STATE_INACTIVE
;
7846 event
->attach_state
= PERF_ATTACH_TASK
;
7848 * XXX pmu::event_init needs to know what task to account to
7849 * and we cannot use the ctx information because we need the
7850 * pmu before we get a ctx.
7852 event
->hw
.target
= task
;
7855 event
->clock
= &local_clock
;
7857 event
->clock
= parent_event
->clock
;
7859 if (!overflow_handler
&& parent_event
) {
7860 overflow_handler
= parent_event
->overflow_handler
;
7861 context
= parent_event
->overflow_handler_context
;
7864 event
->overflow_handler
= overflow_handler
;
7865 event
->overflow_handler_context
= context
;
7867 perf_event__state_init(event
);
7872 hwc
->sample_period
= attr
->sample_period
;
7873 if (attr
->freq
&& attr
->sample_freq
)
7874 hwc
->sample_period
= 1;
7875 hwc
->last_period
= hwc
->sample_period
;
7877 local64_set(&hwc
->period_left
, hwc
->sample_period
);
7880 * we currently do not support PERF_FORMAT_GROUP on inherited events
7882 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
7885 if (!has_branch_stack(event
))
7886 event
->attr
.branch_sample_type
= 0;
7888 if (cgroup_fd
!= -1) {
7889 err
= perf_cgroup_connect(cgroup_fd
, event
, attr
, group_leader
);
7894 pmu
= perf_init_event(event
);
7897 else if (IS_ERR(pmu
)) {
7902 err
= exclusive_event_init(event
);
7906 if (!event
->parent
) {
7907 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
7908 err
= get_callchain_buffers();
7917 exclusive_event_destroy(event
);
7921 event
->destroy(event
);
7922 module_put(pmu
->module
);
7924 if (is_cgroup_event(event
))
7925 perf_detach_cgroup(event
);
7927 put_pid_ns(event
->ns
);
7930 return ERR_PTR(err
);
7933 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
7934 struct perf_event_attr
*attr
)
7939 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
7943 * zero the full structure, so that a short copy will be nice.
7945 memset(attr
, 0, sizeof(*attr
));
7947 ret
= get_user(size
, &uattr
->size
);
7951 if (size
> PAGE_SIZE
) /* silly large */
7954 if (!size
) /* abi compat */
7955 size
= PERF_ATTR_SIZE_VER0
;
7957 if (size
< PERF_ATTR_SIZE_VER0
)
7961 * If we're handed a bigger struct than we know of,
7962 * ensure all the unknown bits are 0 - i.e. new
7963 * user-space does not rely on any kernel feature
7964 * extensions we dont know about yet.
7966 if (size
> sizeof(*attr
)) {
7967 unsigned char __user
*addr
;
7968 unsigned char __user
*end
;
7971 addr
= (void __user
*)uattr
+ sizeof(*attr
);
7972 end
= (void __user
*)uattr
+ size
;
7974 for (; addr
< end
; addr
++) {
7975 ret
= get_user(val
, addr
);
7981 size
= sizeof(*attr
);
7984 ret
= copy_from_user(attr
, uattr
, size
);
7988 if (attr
->__reserved_1
)
7991 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
7994 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
7997 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
7998 u64 mask
= attr
->branch_sample_type
;
8000 /* only using defined bits */
8001 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
8004 /* at least one branch bit must be set */
8005 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
8008 /* propagate priv level, when not set for branch */
8009 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
8011 /* exclude_kernel checked on syscall entry */
8012 if (!attr
->exclude_kernel
)
8013 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
8015 if (!attr
->exclude_user
)
8016 mask
|= PERF_SAMPLE_BRANCH_USER
;
8018 if (!attr
->exclude_hv
)
8019 mask
|= PERF_SAMPLE_BRANCH_HV
;
8021 * adjust user setting (for HW filter setup)
8023 attr
->branch_sample_type
= mask
;
8025 /* privileged levels capture (kernel, hv): check permissions */
8026 if ((mask
& PERF_SAMPLE_BRANCH_PERM_PLM
)
8027 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
8031 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
8032 ret
= perf_reg_validate(attr
->sample_regs_user
);
8037 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
8038 if (!arch_perf_have_user_stack_dump())
8042 * We have __u32 type for the size, but so far
8043 * we can only use __u16 as maximum due to the
8044 * __u16 sample size limit.
8046 if (attr
->sample_stack_user
>= USHRT_MAX
)
8048 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
8052 if (attr
->sample_type
& PERF_SAMPLE_REGS_INTR
)
8053 ret
= perf_reg_validate(attr
->sample_regs_intr
);
8058 put_user(sizeof(*attr
), &uattr
->size
);
8064 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
8066 struct ring_buffer
*rb
= NULL
;
8072 /* don't allow circular references */
8073 if (event
== output_event
)
8077 * Don't allow cross-cpu buffers
8079 if (output_event
->cpu
!= event
->cpu
)
8083 * If its not a per-cpu rb, it must be the same task.
8085 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
8089 * Mixing clocks in the same buffer is trouble you don't need.
8091 if (output_event
->clock
!= event
->clock
)
8095 * If both events generate aux data, they must be on the same PMU
8097 if (has_aux(event
) && has_aux(output_event
) &&
8098 event
->pmu
!= output_event
->pmu
)
8102 mutex_lock(&event
->mmap_mutex
);
8103 /* Can't redirect output if we've got an active mmap() */
8104 if (atomic_read(&event
->mmap_count
))
8108 /* get the rb we want to redirect to */
8109 rb
= ring_buffer_get(output_event
);
8114 ring_buffer_attach(event
, rb
);
8118 mutex_unlock(&event
->mmap_mutex
);
8124 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
8130 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
8133 static int perf_event_set_clock(struct perf_event
*event
, clockid_t clk_id
)
8135 bool nmi_safe
= false;
8138 case CLOCK_MONOTONIC
:
8139 event
->clock
= &ktime_get_mono_fast_ns
;
8143 case CLOCK_MONOTONIC_RAW
:
8144 event
->clock
= &ktime_get_raw_fast_ns
;
8148 case CLOCK_REALTIME
:
8149 event
->clock
= &ktime_get_real_ns
;
8152 case CLOCK_BOOTTIME
:
8153 event
->clock
= &ktime_get_boot_ns
;
8157 event
->clock
= &ktime_get_tai_ns
;
8164 if (!nmi_safe
&& !(event
->pmu
->capabilities
& PERF_PMU_CAP_NO_NMI
))
8171 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8173 * @attr_uptr: event_id type attributes for monitoring/sampling
8176 * @group_fd: group leader event fd
8178 SYSCALL_DEFINE5(perf_event_open
,
8179 struct perf_event_attr __user
*, attr_uptr
,
8180 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
8182 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
8183 struct perf_event
*event
, *sibling
;
8184 struct perf_event_attr attr
;
8185 struct perf_event_context
*ctx
, *uninitialized_var(gctx
);
8186 struct file
*event_file
= NULL
;
8187 struct fd group
= {NULL
, 0};
8188 struct task_struct
*task
= NULL
;
8193 int f_flags
= O_RDWR
;
8196 /* for future expandability... */
8197 if (flags
& ~PERF_FLAG_ALL
)
8200 err
= perf_copy_attr(attr_uptr
, &attr
);
8204 if (!attr
.exclude_kernel
) {
8205 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
8210 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
8213 if (attr
.sample_period
& (1ULL << 63))
8218 * In cgroup mode, the pid argument is used to pass the fd
8219 * opened to the cgroup directory in cgroupfs. The cpu argument
8220 * designates the cpu on which to monitor threads from that
8223 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
8226 if (flags
& PERF_FLAG_FD_CLOEXEC
)
8227 f_flags
|= O_CLOEXEC
;
8229 event_fd
= get_unused_fd_flags(f_flags
);
8233 if (group_fd
!= -1) {
8234 err
= perf_fget_light(group_fd
, &group
);
8237 group_leader
= group
.file
->private_data
;
8238 if (flags
& PERF_FLAG_FD_OUTPUT
)
8239 output_event
= group_leader
;
8240 if (flags
& PERF_FLAG_FD_NO_GROUP
)
8241 group_leader
= NULL
;
8244 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
8245 task
= find_lively_task_by_vpid(pid
);
8247 err
= PTR_ERR(task
);
8252 if (task
&& group_leader
&&
8253 group_leader
->attr
.inherit
!= attr
.inherit
) {
8260 if (flags
& PERF_FLAG_PID_CGROUP
)
8263 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
8264 NULL
, NULL
, cgroup_fd
);
8265 if (IS_ERR(event
)) {
8266 err
= PTR_ERR(event
);
8270 if (is_sampling_event(event
)) {
8271 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
8277 account_event(event
);
8280 * Special case software events and allow them to be part of
8281 * any hardware group.
8285 if (attr
.use_clockid
) {
8286 err
= perf_event_set_clock(event
, attr
.clockid
);
8292 (is_software_event(event
) != is_software_event(group_leader
))) {
8293 if (is_software_event(event
)) {
8295 * If event and group_leader are not both a software
8296 * event, and event is, then group leader is not.
8298 * Allow the addition of software events to !software
8299 * groups, this is safe because software events never
8302 pmu
= group_leader
->pmu
;
8303 } else if (is_software_event(group_leader
) &&
8304 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
8306 * In case the group is a pure software group, and we
8307 * try to add a hardware event, move the whole group to
8308 * the hardware context.
8315 * Get the target context (task or percpu):
8317 ctx
= find_get_context(pmu
, task
, event
);
8323 if ((pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
) && group_leader
) {
8329 put_task_struct(task
);
8334 * Look up the group leader (we will attach this event to it):
8340 * Do not allow a recursive hierarchy (this new sibling
8341 * becoming part of another group-sibling):
8343 if (group_leader
->group_leader
!= group_leader
)
8346 /* All events in a group should have the same clock */
8347 if (group_leader
->clock
!= event
->clock
)
8351 * Do not allow to attach to a group in a different
8352 * task or CPU context:
8356 * Make sure we're both on the same task, or both
8359 if (group_leader
->ctx
->task
!= ctx
->task
)
8363 * Make sure we're both events for the same CPU;
8364 * grouping events for different CPUs is broken; since
8365 * you can never concurrently schedule them anyhow.
8367 if (group_leader
->cpu
!= event
->cpu
)
8370 if (group_leader
->ctx
!= ctx
)
8375 * Only a group leader can be exclusive or pinned
8377 if (attr
.exclusive
|| attr
.pinned
)
8382 err
= perf_event_set_output(event
, output_event
);
8387 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
8389 if (IS_ERR(event_file
)) {
8390 err
= PTR_ERR(event_file
);
8395 gctx
= group_leader
->ctx
;
8396 mutex_lock_double(&gctx
->mutex
, &ctx
->mutex
);
8398 mutex_lock(&ctx
->mutex
);
8401 if (!perf_event_validate_size(event
)) {
8407 * Must be under the same ctx::mutex as perf_install_in_context(),
8408 * because we need to serialize with concurrent event creation.
8410 if (!exclusive_event_installable(event
, ctx
)) {
8411 /* exclusive and group stuff are assumed mutually exclusive */
8412 WARN_ON_ONCE(move_group
);
8418 WARN_ON_ONCE(ctx
->parent_ctx
);
8422 * See perf_event_ctx_lock() for comments on the details
8423 * of swizzling perf_event::ctx.
8425 perf_remove_from_context(group_leader
, false);
8427 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
8429 perf_remove_from_context(sibling
, false);
8434 * Wait for everybody to stop referencing the events through
8435 * the old lists, before installing it on new lists.
8440 * Install the group siblings before the group leader.
8442 * Because a group leader will try and install the entire group
8443 * (through the sibling list, which is still in-tact), we can
8444 * end up with siblings installed in the wrong context.
8446 * By installing siblings first we NO-OP because they're not
8447 * reachable through the group lists.
8449 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
8451 perf_event__state_init(sibling
);
8452 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
8457 * Removing from the context ends up with disabled
8458 * event. What we want here is event in the initial
8459 * startup state, ready to be add into new context.
8461 perf_event__state_init(group_leader
);
8462 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
8466 * Now that all events are installed in @ctx, nothing
8467 * references @gctx anymore, so drop the last reference we have
8474 * Precalculate sample_data sizes; do while holding ctx::mutex such
8475 * that we're serialized against further additions and before
8476 * perf_install_in_context() which is the point the event is active and
8477 * can use these values.
8479 perf_event__header_size(event
);
8480 perf_event__id_header_size(event
);
8482 perf_install_in_context(ctx
, event
, event
->cpu
);
8483 perf_unpin_context(ctx
);
8486 mutex_unlock(&gctx
->mutex
);
8487 mutex_unlock(&ctx
->mutex
);
8491 event
->owner
= current
;
8493 mutex_lock(¤t
->perf_event_mutex
);
8494 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
8495 mutex_unlock(¤t
->perf_event_mutex
);
8498 * Drop the reference on the group_event after placing the
8499 * new event on the sibling_list. This ensures destruction
8500 * of the group leader will find the pointer to itself in
8501 * perf_group_detach().
8504 fd_install(event_fd
, event_file
);
8509 mutex_unlock(&gctx
->mutex
);
8510 mutex_unlock(&ctx
->mutex
);
8514 perf_unpin_context(ctx
);
8522 put_task_struct(task
);
8526 put_unused_fd(event_fd
);
8531 * perf_event_create_kernel_counter
8533 * @attr: attributes of the counter to create
8534 * @cpu: cpu in which the counter is bound
8535 * @task: task to profile (NULL for percpu)
8538 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
8539 struct task_struct
*task
,
8540 perf_overflow_handler_t overflow_handler
,
8543 struct perf_event_context
*ctx
;
8544 struct perf_event
*event
;
8548 * Get the target context (task or percpu):
8551 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
8552 overflow_handler
, context
, -1);
8553 if (IS_ERR(event
)) {
8554 err
= PTR_ERR(event
);
8558 /* Mark owner so we could distinguish it from user events. */
8559 event
->owner
= EVENT_OWNER_KERNEL
;
8561 account_event(event
);
8563 ctx
= find_get_context(event
->pmu
, task
, event
);
8569 WARN_ON_ONCE(ctx
->parent_ctx
);
8570 mutex_lock(&ctx
->mutex
);
8571 if (!exclusive_event_installable(event
, ctx
)) {
8572 mutex_unlock(&ctx
->mutex
);
8573 perf_unpin_context(ctx
);
8579 perf_install_in_context(ctx
, event
, cpu
);
8580 perf_unpin_context(ctx
);
8581 mutex_unlock(&ctx
->mutex
);
8588 return ERR_PTR(err
);
8590 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
8592 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
8594 struct perf_event_context
*src_ctx
;
8595 struct perf_event_context
*dst_ctx
;
8596 struct perf_event
*event
, *tmp
;
8599 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
8600 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
8603 * See perf_event_ctx_lock() for comments on the details
8604 * of swizzling perf_event::ctx.
8606 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
8607 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
8609 perf_remove_from_context(event
, false);
8610 unaccount_event_cpu(event
, src_cpu
);
8612 list_add(&event
->migrate_entry
, &events
);
8616 * Wait for the events to quiesce before re-instating them.
8621 * Re-instate events in 2 passes.
8623 * Skip over group leaders and only install siblings on this first
8624 * pass, siblings will not get enabled without a leader, however a
8625 * leader will enable its siblings, even if those are still on the old
8628 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
8629 if (event
->group_leader
== event
)
8632 list_del(&event
->migrate_entry
);
8633 if (event
->state
>= PERF_EVENT_STATE_OFF
)
8634 event
->state
= PERF_EVENT_STATE_INACTIVE
;
8635 account_event_cpu(event
, dst_cpu
);
8636 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
8641 * Once all the siblings are setup properly, install the group leaders
8644 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
8645 list_del(&event
->migrate_entry
);
8646 if (event
->state
>= PERF_EVENT_STATE_OFF
)
8647 event
->state
= PERF_EVENT_STATE_INACTIVE
;
8648 account_event_cpu(event
, dst_cpu
);
8649 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
8652 mutex_unlock(&dst_ctx
->mutex
);
8653 mutex_unlock(&src_ctx
->mutex
);
8655 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
8657 static void sync_child_event(struct perf_event
*child_event
,
8658 struct task_struct
*child
)
8660 struct perf_event
*parent_event
= child_event
->parent
;
8663 if (child_event
->attr
.inherit_stat
)
8664 perf_event_read_event(child_event
, child
);
8666 child_val
= perf_event_count(child_event
);
8669 * Add back the child's count to the parent's count:
8671 atomic64_add(child_val
, &parent_event
->child_count
);
8672 atomic64_add(child_event
->total_time_enabled
,
8673 &parent_event
->child_total_time_enabled
);
8674 atomic64_add(child_event
->total_time_running
,
8675 &parent_event
->child_total_time_running
);
8678 * Remove this event from the parent's list
8680 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
8681 mutex_lock(&parent_event
->child_mutex
);
8682 list_del_init(&child_event
->child_list
);
8683 mutex_unlock(&parent_event
->child_mutex
);
8686 * Make sure user/parent get notified, that we just
8689 perf_event_wakeup(parent_event
);
8692 * Release the parent event, if this was the last
8695 put_event(parent_event
);
8699 __perf_event_exit_task(struct perf_event
*child_event
,
8700 struct perf_event_context
*child_ctx
,
8701 struct task_struct
*child
)
8704 * Do not destroy the 'original' grouping; because of the context
8705 * switch optimization the original events could've ended up in a
8706 * random child task.
8708 * If we were to destroy the original group, all group related
8709 * operations would cease to function properly after this random
8712 * Do destroy all inherited groups, we don't care about those
8713 * and being thorough is better.
8715 perf_remove_from_context(child_event
, !!child_event
->parent
);
8718 * It can happen that the parent exits first, and has events
8719 * that are still around due to the child reference. These
8720 * events need to be zapped.
8722 if (child_event
->parent
) {
8723 sync_child_event(child_event
, child
);
8724 free_event(child_event
);
8726 child_event
->state
= PERF_EVENT_STATE_EXIT
;
8727 perf_event_wakeup(child_event
);
8731 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
8733 struct perf_event
*child_event
, *next
;
8734 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
8735 unsigned long flags
;
8737 if (likely(!child
->perf_event_ctxp
[ctxn
]))
8740 local_irq_save(flags
);
8742 * We can't reschedule here because interrupts are disabled,
8743 * and either child is current or it is a task that can't be
8744 * scheduled, so we are now safe from rescheduling changing
8747 child_ctx
= rcu_dereference_raw(child
->perf_event_ctxp
[ctxn
]);
8750 * Take the context lock here so that if find_get_context is
8751 * reading child->perf_event_ctxp, we wait until it has
8752 * incremented the context's refcount before we do put_ctx below.
8754 raw_spin_lock(&child_ctx
->lock
);
8755 task_ctx_sched_out(child_ctx
);
8756 child
->perf_event_ctxp
[ctxn
] = NULL
;
8759 * If this context is a clone; unclone it so it can't get
8760 * swapped to another process while we're removing all
8761 * the events from it.
8763 clone_ctx
= unclone_ctx(child_ctx
);
8764 update_context_time(child_ctx
);
8765 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
8771 * Report the task dead after unscheduling the events so that we
8772 * won't get any samples after PERF_RECORD_EXIT. We can however still
8773 * get a few PERF_RECORD_READ events.
8775 perf_event_task(child
, child_ctx
, 0);
8778 * We can recurse on the same lock type through:
8780 * __perf_event_exit_task()
8781 * sync_child_event()
8783 * mutex_lock(&ctx->mutex)
8785 * But since its the parent context it won't be the same instance.
8787 mutex_lock(&child_ctx
->mutex
);
8789 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
8790 __perf_event_exit_task(child_event
, child_ctx
, child
);
8792 mutex_unlock(&child_ctx
->mutex
);
8798 * When a child task exits, feed back event values to parent events.
8800 void perf_event_exit_task(struct task_struct
*child
)
8802 struct perf_event
*event
, *tmp
;
8805 mutex_lock(&child
->perf_event_mutex
);
8806 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
8808 list_del_init(&event
->owner_entry
);
8811 * Ensure the list deletion is visible before we clear
8812 * the owner, closes a race against perf_release() where
8813 * we need to serialize on the owner->perf_event_mutex.
8816 event
->owner
= NULL
;
8818 mutex_unlock(&child
->perf_event_mutex
);
8820 for_each_task_context_nr(ctxn
)
8821 perf_event_exit_task_context(child
, ctxn
);
8824 * The perf_event_exit_task_context calls perf_event_task
8825 * with child's task_ctx, which generates EXIT events for
8826 * child contexts and sets child->perf_event_ctxp[] to NULL.
8827 * At this point we need to send EXIT events to cpu contexts.
8829 perf_event_task(child
, NULL
, 0);
8832 static void perf_free_event(struct perf_event
*event
,
8833 struct perf_event_context
*ctx
)
8835 struct perf_event
*parent
= event
->parent
;
8837 if (WARN_ON_ONCE(!parent
))
8840 mutex_lock(&parent
->child_mutex
);
8841 list_del_init(&event
->child_list
);
8842 mutex_unlock(&parent
->child_mutex
);
8846 raw_spin_lock_irq(&ctx
->lock
);
8847 perf_group_detach(event
);
8848 list_del_event(event
, ctx
);
8849 raw_spin_unlock_irq(&ctx
->lock
);
8854 * Free an unexposed, unused context as created by inheritance by
8855 * perf_event_init_task below, used by fork() in case of fail.
8857 * Not all locks are strictly required, but take them anyway to be nice and
8858 * help out with the lockdep assertions.
8860 void perf_event_free_task(struct task_struct
*task
)
8862 struct perf_event_context
*ctx
;
8863 struct perf_event
*event
, *tmp
;
8866 for_each_task_context_nr(ctxn
) {
8867 ctx
= task
->perf_event_ctxp
[ctxn
];
8871 mutex_lock(&ctx
->mutex
);
8873 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
8875 perf_free_event(event
, ctx
);
8877 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
8879 perf_free_event(event
, ctx
);
8881 if (!list_empty(&ctx
->pinned_groups
) ||
8882 !list_empty(&ctx
->flexible_groups
))
8885 mutex_unlock(&ctx
->mutex
);
8891 void perf_event_delayed_put(struct task_struct
*task
)
8895 for_each_task_context_nr(ctxn
)
8896 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
8899 struct perf_event
*perf_event_get(unsigned int fd
)
8903 struct perf_event
*event
;
8905 err
= perf_fget_light(fd
, &f
);
8907 return ERR_PTR(err
);
8909 event
= f
.file
->private_data
;
8910 atomic_long_inc(&event
->refcount
);
8916 const struct perf_event_attr
*perf_event_attrs(struct perf_event
*event
)
8919 return ERR_PTR(-EINVAL
);
8921 return &event
->attr
;
8925 * inherit a event from parent task to child task:
8927 static struct perf_event
*
8928 inherit_event(struct perf_event
*parent_event
,
8929 struct task_struct
*parent
,
8930 struct perf_event_context
*parent_ctx
,
8931 struct task_struct
*child
,
8932 struct perf_event
*group_leader
,
8933 struct perf_event_context
*child_ctx
)
8935 enum perf_event_active_state parent_state
= parent_event
->state
;
8936 struct perf_event
*child_event
;
8937 unsigned long flags
;
8940 * Instead of creating recursive hierarchies of events,
8941 * we link inherited events back to the original parent,
8942 * which has a filp for sure, which we use as the reference
8945 if (parent_event
->parent
)
8946 parent_event
= parent_event
->parent
;
8948 child_event
= perf_event_alloc(&parent_event
->attr
,
8951 group_leader
, parent_event
,
8953 if (IS_ERR(child_event
))
8956 if (is_orphaned_event(parent_event
) ||
8957 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
8958 free_event(child_event
);
8965 * Make the child state follow the state of the parent event,
8966 * not its attr.disabled bit. We hold the parent's mutex,
8967 * so we won't race with perf_event_{en, dis}able_family.
8969 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
8970 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
8972 child_event
->state
= PERF_EVENT_STATE_OFF
;
8974 if (parent_event
->attr
.freq
) {
8975 u64 sample_period
= parent_event
->hw
.sample_period
;
8976 struct hw_perf_event
*hwc
= &child_event
->hw
;
8978 hwc
->sample_period
= sample_period
;
8979 hwc
->last_period
= sample_period
;
8981 local64_set(&hwc
->period_left
, sample_period
);
8984 child_event
->ctx
= child_ctx
;
8985 child_event
->overflow_handler
= parent_event
->overflow_handler
;
8986 child_event
->overflow_handler_context
8987 = parent_event
->overflow_handler_context
;
8990 * Precalculate sample_data sizes
8992 perf_event__header_size(child_event
);
8993 perf_event__id_header_size(child_event
);
8996 * Link it up in the child's context:
8998 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
8999 add_event_to_ctx(child_event
, child_ctx
);
9000 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
9003 * Link this into the parent event's child list
9005 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
9006 mutex_lock(&parent_event
->child_mutex
);
9007 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
9008 mutex_unlock(&parent_event
->child_mutex
);
9013 static int inherit_group(struct perf_event
*parent_event
,
9014 struct task_struct
*parent
,
9015 struct perf_event_context
*parent_ctx
,
9016 struct task_struct
*child
,
9017 struct perf_event_context
*child_ctx
)
9019 struct perf_event
*leader
;
9020 struct perf_event
*sub
;
9021 struct perf_event
*child_ctr
;
9023 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
9024 child
, NULL
, child_ctx
);
9026 return PTR_ERR(leader
);
9027 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
9028 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
9029 child
, leader
, child_ctx
);
9030 if (IS_ERR(child_ctr
))
9031 return PTR_ERR(child_ctr
);
9037 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
9038 struct perf_event_context
*parent_ctx
,
9039 struct task_struct
*child
, int ctxn
,
9043 struct perf_event_context
*child_ctx
;
9045 if (!event
->attr
.inherit
) {
9050 child_ctx
= child
->perf_event_ctxp
[ctxn
];
9053 * This is executed from the parent task context, so
9054 * inherit events that have been marked for cloning.
9055 * First allocate and initialize a context for the
9059 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
9063 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
9066 ret
= inherit_group(event
, parent
, parent_ctx
,
9076 * Initialize the perf_event context in task_struct
9078 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
9080 struct perf_event_context
*child_ctx
, *parent_ctx
;
9081 struct perf_event_context
*cloned_ctx
;
9082 struct perf_event
*event
;
9083 struct task_struct
*parent
= current
;
9084 int inherited_all
= 1;
9085 unsigned long flags
;
9088 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
9092 * If the parent's context is a clone, pin it so it won't get
9095 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
9100 * No need to check if parent_ctx != NULL here; since we saw
9101 * it non-NULL earlier, the only reason for it to become NULL
9102 * is if we exit, and since we're currently in the middle of
9103 * a fork we can't be exiting at the same time.
9107 * Lock the parent list. No need to lock the child - not PID
9108 * hashed yet and not running, so nobody can access it.
9110 mutex_lock(&parent_ctx
->mutex
);
9113 * We dont have to disable NMIs - we are only looking at
9114 * the list, not manipulating it:
9116 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
9117 ret
= inherit_task_group(event
, parent
, parent_ctx
,
9118 child
, ctxn
, &inherited_all
);
9124 * We can't hold ctx->lock when iterating the ->flexible_group list due
9125 * to allocations, but we need to prevent rotation because
9126 * rotate_ctx() will change the list from interrupt context.
9128 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
9129 parent_ctx
->rotate_disable
= 1;
9130 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
9132 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
9133 ret
= inherit_task_group(event
, parent
, parent_ctx
,
9134 child
, ctxn
, &inherited_all
);
9139 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
9140 parent_ctx
->rotate_disable
= 0;
9142 child_ctx
= child
->perf_event_ctxp
[ctxn
];
9144 if (child_ctx
&& inherited_all
) {
9146 * Mark the child context as a clone of the parent
9147 * context, or of whatever the parent is a clone of.
9149 * Note that if the parent is a clone, the holding of
9150 * parent_ctx->lock avoids it from being uncloned.
9152 cloned_ctx
= parent_ctx
->parent_ctx
;
9154 child_ctx
->parent_ctx
= cloned_ctx
;
9155 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
9157 child_ctx
->parent_ctx
= parent_ctx
;
9158 child_ctx
->parent_gen
= parent_ctx
->generation
;
9160 get_ctx(child_ctx
->parent_ctx
);
9163 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
9164 mutex_unlock(&parent_ctx
->mutex
);
9166 perf_unpin_context(parent_ctx
);
9167 put_ctx(parent_ctx
);
9173 * Initialize the perf_event context in task_struct
9175 int perf_event_init_task(struct task_struct
*child
)
9179 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
9180 mutex_init(&child
->perf_event_mutex
);
9181 INIT_LIST_HEAD(&child
->perf_event_list
);
9183 for_each_task_context_nr(ctxn
) {
9184 ret
= perf_event_init_context(child
, ctxn
);
9186 perf_event_free_task(child
);
9194 static void __init
perf_event_init_all_cpus(void)
9196 struct swevent_htable
*swhash
;
9199 for_each_possible_cpu(cpu
) {
9200 swhash
= &per_cpu(swevent_htable
, cpu
);
9201 mutex_init(&swhash
->hlist_mutex
);
9202 INIT_LIST_HEAD(&per_cpu(active_ctx_list
, cpu
));
9206 static void perf_event_init_cpu(int cpu
)
9208 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
9210 mutex_lock(&swhash
->hlist_mutex
);
9211 if (swhash
->hlist_refcount
> 0) {
9212 struct swevent_hlist
*hlist
;
9214 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
9216 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
9218 mutex_unlock(&swhash
->hlist_mutex
);
9221 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9222 static void __perf_event_exit_context(void *__info
)
9224 struct remove_event re
= { .detach_group
= true };
9225 struct perf_event_context
*ctx
= __info
;
9228 list_for_each_entry_rcu(re
.event
, &ctx
->event_list
, event_entry
)
9229 __perf_remove_from_context(&re
);
9233 static void perf_event_exit_cpu_context(int cpu
)
9235 struct perf_event_context
*ctx
;
9239 idx
= srcu_read_lock(&pmus_srcu
);
9240 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
9241 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
9243 mutex_lock(&ctx
->mutex
);
9244 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
9245 mutex_unlock(&ctx
->mutex
);
9247 srcu_read_unlock(&pmus_srcu
, idx
);
9250 static void perf_event_exit_cpu(int cpu
)
9252 perf_event_exit_cpu_context(cpu
);
9255 static inline void perf_event_exit_cpu(int cpu
) { }
9259 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
9263 for_each_online_cpu(cpu
)
9264 perf_event_exit_cpu(cpu
);
9270 * Run the perf reboot notifier at the very last possible moment so that
9271 * the generic watchdog code runs as long as possible.
9273 static struct notifier_block perf_reboot_notifier
= {
9274 .notifier_call
= perf_reboot
,
9275 .priority
= INT_MIN
,
9279 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
9281 unsigned int cpu
= (long)hcpu
;
9283 switch (action
& ~CPU_TASKS_FROZEN
) {
9285 case CPU_UP_PREPARE
:
9286 case CPU_DOWN_FAILED
:
9287 perf_event_init_cpu(cpu
);
9290 case CPU_UP_CANCELED
:
9291 case CPU_DOWN_PREPARE
:
9292 perf_event_exit_cpu(cpu
);
9301 void __init
perf_event_init(void)
9307 perf_event_init_all_cpus();
9308 init_srcu_struct(&pmus_srcu
);
9309 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
9310 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
9311 perf_pmu_register(&perf_task_clock
, NULL
, -1);
9313 perf_cpu_notifier(perf_cpu_notify
);
9314 register_reboot_notifier(&perf_reboot_notifier
);
9316 ret
= init_hw_breakpoint();
9317 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
9319 /* do not patch jump label more than once per second */
9320 jump_label_rate_limit(&perf_sched_events
, HZ
);
9323 * Build time assertion that we keep the data_head at the intended
9324 * location. IOW, validation we got the __reserved[] size right.
9326 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
9330 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
9333 struct perf_pmu_events_attr
*pmu_attr
=
9334 container_of(attr
, struct perf_pmu_events_attr
, attr
);
9336 if (pmu_attr
->event_str
)
9337 return sprintf(page
, "%s\n", pmu_attr
->event_str
);
9342 static int __init
perf_event_sysfs_init(void)
9347 mutex_lock(&pmus_lock
);
9349 ret
= bus_register(&pmu_bus
);
9353 list_for_each_entry(pmu
, &pmus
, entry
) {
9354 if (!pmu
->name
|| pmu
->type
< 0)
9357 ret
= pmu_dev_alloc(pmu
);
9358 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
9360 pmu_bus_running
= 1;
9364 mutex_unlock(&pmus_lock
);
9368 device_initcall(perf_event_sysfs_init
);
9370 #ifdef CONFIG_CGROUP_PERF
9371 static struct cgroup_subsys_state
*
9372 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
9374 struct perf_cgroup
*jc
;
9376 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
9378 return ERR_PTR(-ENOMEM
);
9380 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
9383 return ERR_PTR(-ENOMEM
);
9389 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
9391 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
9393 free_percpu(jc
->info
);
9397 static int __perf_cgroup_move(void *info
)
9399 struct task_struct
*task
= info
;
9401 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
9406 static void perf_cgroup_attach(struct cgroup_taskset
*tset
)
9408 struct task_struct
*task
;
9409 struct cgroup_subsys_state
*css
;
9411 cgroup_taskset_for_each(task
, css
, tset
)
9412 task_function_call(task
, __perf_cgroup_move
, task
);
9415 struct cgroup_subsys perf_event_cgrp_subsys
= {
9416 .css_alloc
= perf_cgroup_css_alloc
,
9417 .css_free
= perf_cgroup_css_free
,
9418 .attach
= perf_cgroup_attach
,
9420 #endif /* CONFIG_CGROUP_PERF */