irqdomain: Allow domain lookup with DOMAIN_BUS_WIRED token
[linux/fpc-iii.git] / kernel / kexec_core.c
blobc823f3001e121d0c51352befe941271c803cb108
1 /*
2 * kexec.c - kexec system call core code.
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
42 #include <asm/page.h>
43 #include <asm/sections.h>
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
47 #include "kexec_internal.h"
49 DEFINE_MUTEX(kexec_mutex);
51 /* Per cpu memory for storing cpu states in case of system crash. */
52 note_buf_t __percpu *crash_notes;
54 /* vmcoreinfo stuff */
55 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
56 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
57 size_t vmcoreinfo_size;
58 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
60 /* Flag to indicate we are going to kexec a new kernel */
61 bool kexec_in_progress = false;
64 /* Location of the reserved area for the crash kernel */
65 struct resource crashk_res = {
66 .name = "Crash kernel",
67 .start = 0,
68 .end = 0,
69 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
71 struct resource crashk_low_res = {
72 .name = "Crash kernel",
73 .start = 0,
74 .end = 0,
75 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
78 int kexec_should_crash(struct task_struct *p)
81 * If crash_kexec_post_notifiers is enabled, don't run
82 * crash_kexec() here yet, which must be run after panic
83 * notifiers in panic().
85 if (crash_kexec_post_notifiers)
86 return 0;
88 * There are 4 panic() calls in do_exit() path, each of which
89 * corresponds to each of these 4 conditions.
91 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
92 return 1;
93 return 0;
97 * When kexec transitions to the new kernel there is a one-to-one
98 * mapping between physical and virtual addresses. On processors
99 * where you can disable the MMU this is trivial, and easy. For
100 * others it is still a simple predictable page table to setup.
102 * In that environment kexec copies the new kernel to its final
103 * resting place. This means I can only support memory whose
104 * physical address can fit in an unsigned long. In particular
105 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
106 * If the assembly stub has more restrictive requirements
107 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
108 * defined more restrictively in <asm/kexec.h>.
110 * The code for the transition from the current kernel to the
111 * the new kernel is placed in the control_code_buffer, whose size
112 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
113 * page of memory is necessary, but some architectures require more.
114 * Because this memory must be identity mapped in the transition from
115 * virtual to physical addresses it must live in the range
116 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
117 * modifiable.
119 * The assembly stub in the control code buffer is passed a linked list
120 * of descriptor pages detailing the source pages of the new kernel,
121 * and the destination addresses of those source pages. As this data
122 * structure is not used in the context of the current OS, it must
123 * be self-contained.
125 * The code has been made to work with highmem pages and will use a
126 * destination page in its final resting place (if it happens
127 * to allocate it). The end product of this is that most of the
128 * physical address space, and most of RAM can be used.
130 * Future directions include:
131 * - allocating a page table with the control code buffer identity
132 * mapped, to simplify machine_kexec and make kexec_on_panic more
133 * reliable.
137 * KIMAGE_NO_DEST is an impossible destination address..., for
138 * allocating pages whose destination address we do not care about.
140 #define KIMAGE_NO_DEST (-1UL)
142 static struct page *kimage_alloc_page(struct kimage *image,
143 gfp_t gfp_mask,
144 unsigned long dest);
146 int sanity_check_segment_list(struct kimage *image)
148 int result, i;
149 unsigned long nr_segments = image->nr_segments;
152 * Verify we have good destination addresses. The caller is
153 * responsible for making certain we don't attempt to load
154 * the new image into invalid or reserved areas of RAM. This
155 * just verifies it is an address we can use.
157 * Since the kernel does everything in page size chunks ensure
158 * the destination addresses are page aligned. Too many
159 * special cases crop of when we don't do this. The most
160 * insidious is getting overlapping destination addresses
161 * simply because addresses are changed to page size
162 * granularity.
164 result = -EADDRNOTAVAIL;
165 for (i = 0; i < nr_segments; i++) {
166 unsigned long mstart, mend;
168 mstart = image->segment[i].mem;
169 mend = mstart + image->segment[i].memsz;
170 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
171 return result;
172 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
173 return result;
176 /* Verify our destination addresses do not overlap.
177 * If we alloed overlapping destination addresses
178 * through very weird things can happen with no
179 * easy explanation as one segment stops on another.
181 result = -EINVAL;
182 for (i = 0; i < nr_segments; i++) {
183 unsigned long mstart, mend;
184 unsigned long j;
186 mstart = image->segment[i].mem;
187 mend = mstart + image->segment[i].memsz;
188 for (j = 0; j < i; j++) {
189 unsigned long pstart, pend;
191 pstart = image->segment[j].mem;
192 pend = pstart + image->segment[j].memsz;
193 /* Do the segments overlap ? */
194 if ((mend > pstart) && (mstart < pend))
195 return result;
199 /* Ensure our buffer sizes are strictly less than
200 * our memory sizes. This should always be the case,
201 * and it is easier to check up front than to be surprised
202 * later on.
204 result = -EINVAL;
205 for (i = 0; i < nr_segments; i++) {
206 if (image->segment[i].bufsz > image->segment[i].memsz)
207 return result;
211 * Verify we have good destination addresses. Normally
212 * the caller is responsible for making certain we don't
213 * attempt to load the new image into invalid or reserved
214 * areas of RAM. But crash kernels are preloaded into a
215 * reserved area of ram. We must ensure the addresses
216 * are in the reserved area otherwise preloading the
217 * kernel could corrupt things.
220 if (image->type == KEXEC_TYPE_CRASH) {
221 result = -EADDRNOTAVAIL;
222 for (i = 0; i < nr_segments; i++) {
223 unsigned long mstart, mend;
225 mstart = image->segment[i].mem;
226 mend = mstart + image->segment[i].memsz - 1;
227 /* Ensure we are within the crash kernel limits */
228 if ((mstart < crashk_res.start) ||
229 (mend > crashk_res.end))
230 return result;
234 return 0;
237 struct kimage *do_kimage_alloc_init(void)
239 struct kimage *image;
241 /* Allocate a controlling structure */
242 image = kzalloc(sizeof(*image), GFP_KERNEL);
243 if (!image)
244 return NULL;
246 image->head = 0;
247 image->entry = &image->head;
248 image->last_entry = &image->head;
249 image->control_page = ~0; /* By default this does not apply */
250 image->type = KEXEC_TYPE_DEFAULT;
252 /* Initialize the list of control pages */
253 INIT_LIST_HEAD(&image->control_pages);
255 /* Initialize the list of destination pages */
256 INIT_LIST_HEAD(&image->dest_pages);
258 /* Initialize the list of unusable pages */
259 INIT_LIST_HEAD(&image->unusable_pages);
261 return image;
264 int kimage_is_destination_range(struct kimage *image,
265 unsigned long start,
266 unsigned long end)
268 unsigned long i;
270 for (i = 0; i < image->nr_segments; i++) {
271 unsigned long mstart, mend;
273 mstart = image->segment[i].mem;
274 mend = mstart + image->segment[i].memsz;
275 if ((end > mstart) && (start < mend))
276 return 1;
279 return 0;
282 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
284 struct page *pages;
286 pages = alloc_pages(gfp_mask, order);
287 if (pages) {
288 unsigned int count, i;
290 pages->mapping = NULL;
291 set_page_private(pages, order);
292 count = 1 << order;
293 for (i = 0; i < count; i++)
294 SetPageReserved(pages + i);
297 return pages;
300 static void kimage_free_pages(struct page *page)
302 unsigned int order, count, i;
304 order = page_private(page);
305 count = 1 << order;
306 for (i = 0; i < count; i++)
307 ClearPageReserved(page + i);
308 __free_pages(page, order);
311 void kimage_free_page_list(struct list_head *list)
313 struct list_head *pos, *next;
315 list_for_each_safe(pos, next, list) {
316 struct page *page;
318 page = list_entry(pos, struct page, lru);
319 list_del(&page->lru);
320 kimage_free_pages(page);
324 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
325 unsigned int order)
327 /* Control pages are special, they are the intermediaries
328 * that are needed while we copy the rest of the pages
329 * to their final resting place. As such they must
330 * not conflict with either the destination addresses
331 * or memory the kernel is already using.
333 * The only case where we really need more than one of
334 * these are for architectures where we cannot disable
335 * the MMU and must instead generate an identity mapped
336 * page table for all of the memory.
338 * At worst this runs in O(N) of the image size.
340 struct list_head extra_pages;
341 struct page *pages;
342 unsigned int count;
344 count = 1 << order;
345 INIT_LIST_HEAD(&extra_pages);
347 /* Loop while I can allocate a page and the page allocated
348 * is a destination page.
350 do {
351 unsigned long pfn, epfn, addr, eaddr;
353 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
354 if (!pages)
355 break;
356 pfn = page_to_pfn(pages);
357 epfn = pfn + count;
358 addr = pfn << PAGE_SHIFT;
359 eaddr = epfn << PAGE_SHIFT;
360 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
361 kimage_is_destination_range(image, addr, eaddr)) {
362 list_add(&pages->lru, &extra_pages);
363 pages = NULL;
365 } while (!pages);
367 if (pages) {
368 /* Remember the allocated page... */
369 list_add(&pages->lru, &image->control_pages);
371 /* Because the page is already in it's destination
372 * location we will never allocate another page at
373 * that address. Therefore kimage_alloc_pages
374 * will not return it (again) and we don't need
375 * to give it an entry in image->segment[].
378 /* Deal with the destination pages I have inadvertently allocated.
380 * Ideally I would convert multi-page allocations into single
381 * page allocations, and add everything to image->dest_pages.
383 * For now it is simpler to just free the pages.
385 kimage_free_page_list(&extra_pages);
387 return pages;
390 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
391 unsigned int order)
393 /* Control pages are special, they are the intermediaries
394 * that are needed while we copy the rest of the pages
395 * to their final resting place. As such they must
396 * not conflict with either the destination addresses
397 * or memory the kernel is already using.
399 * Control pages are also the only pags we must allocate
400 * when loading a crash kernel. All of the other pages
401 * are specified by the segments and we just memcpy
402 * into them directly.
404 * The only case where we really need more than one of
405 * these are for architectures where we cannot disable
406 * the MMU and must instead generate an identity mapped
407 * page table for all of the memory.
409 * Given the low demand this implements a very simple
410 * allocator that finds the first hole of the appropriate
411 * size in the reserved memory region, and allocates all
412 * of the memory up to and including the hole.
414 unsigned long hole_start, hole_end, size;
415 struct page *pages;
417 pages = NULL;
418 size = (1 << order) << PAGE_SHIFT;
419 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
420 hole_end = hole_start + size - 1;
421 while (hole_end <= crashk_res.end) {
422 unsigned long i;
424 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
425 break;
426 /* See if I overlap any of the segments */
427 for (i = 0; i < image->nr_segments; i++) {
428 unsigned long mstart, mend;
430 mstart = image->segment[i].mem;
431 mend = mstart + image->segment[i].memsz - 1;
432 if ((hole_end >= mstart) && (hole_start <= mend)) {
433 /* Advance the hole to the end of the segment */
434 hole_start = (mend + (size - 1)) & ~(size - 1);
435 hole_end = hole_start + size - 1;
436 break;
439 /* If I don't overlap any segments I have found my hole! */
440 if (i == image->nr_segments) {
441 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
442 image->control_page = hole_end;
443 break;
447 return pages;
451 struct page *kimage_alloc_control_pages(struct kimage *image,
452 unsigned int order)
454 struct page *pages = NULL;
456 switch (image->type) {
457 case KEXEC_TYPE_DEFAULT:
458 pages = kimage_alloc_normal_control_pages(image, order);
459 break;
460 case KEXEC_TYPE_CRASH:
461 pages = kimage_alloc_crash_control_pages(image, order);
462 break;
465 return pages;
468 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
470 if (*image->entry != 0)
471 image->entry++;
473 if (image->entry == image->last_entry) {
474 kimage_entry_t *ind_page;
475 struct page *page;
477 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
478 if (!page)
479 return -ENOMEM;
481 ind_page = page_address(page);
482 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
483 image->entry = ind_page;
484 image->last_entry = ind_page +
485 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
487 *image->entry = entry;
488 image->entry++;
489 *image->entry = 0;
491 return 0;
494 static int kimage_set_destination(struct kimage *image,
495 unsigned long destination)
497 int result;
499 destination &= PAGE_MASK;
500 result = kimage_add_entry(image, destination | IND_DESTINATION);
502 return result;
506 static int kimage_add_page(struct kimage *image, unsigned long page)
508 int result;
510 page &= PAGE_MASK;
511 result = kimage_add_entry(image, page | IND_SOURCE);
513 return result;
517 static void kimage_free_extra_pages(struct kimage *image)
519 /* Walk through and free any extra destination pages I may have */
520 kimage_free_page_list(&image->dest_pages);
522 /* Walk through and free any unusable pages I have cached */
523 kimage_free_page_list(&image->unusable_pages);
526 void kimage_terminate(struct kimage *image)
528 if (*image->entry != 0)
529 image->entry++;
531 *image->entry = IND_DONE;
534 #define for_each_kimage_entry(image, ptr, entry) \
535 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
536 ptr = (entry & IND_INDIRECTION) ? \
537 phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
539 static void kimage_free_entry(kimage_entry_t entry)
541 struct page *page;
543 page = pfn_to_page(entry >> PAGE_SHIFT);
544 kimage_free_pages(page);
547 void kimage_free(struct kimage *image)
549 kimage_entry_t *ptr, entry;
550 kimage_entry_t ind = 0;
552 if (!image)
553 return;
555 kimage_free_extra_pages(image);
556 for_each_kimage_entry(image, ptr, entry) {
557 if (entry & IND_INDIRECTION) {
558 /* Free the previous indirection page */
559 if (ind & IND_INDIRECTION)
560 kimage_free_entry(ind);
561 /* Save this indirection page until we are
562 * done with it.
564 ind = entry;
565 } else if (entry & IND_SOURCE)
566 kimage_free_entry(entry);
568 /* Free the final indirection page */
569 if (ind & IND_INDIRECTION)
570 kimage_free_entry(ind);
572 /* Handle any machine specific cleanup */
573 machine_kexec_cleanup(image);
575 /* Free the kexec control pages... */
576 kimage_free_page_list(&image->control_pages);
579 * Free up any temporary buffers allocated. This might hit if
580 * error occurred much later after buffer allocation.
582 if (image->file_mode)
583 kimage_file_post_load_cleanup(image);
585 kfree(image);
588 static kimage_entry_t *kimage_dst_used(struct kimage *image,
589 unsigned long page)
591 kimage_entry_t *ptr, entry;
592 unsigned long destination = 0;
594 for_each_kimage_entry(image, ptr, entry) {
595 if (entry & IND_DESTINATION)
596 destination = entry & PAGE_MASK;
597 else if (entry & IND_SOURCE) {
598 if (page == destination)
599 return ptr;
600 destination += PAGE_SIZE;
604 return NULL;
607 static struct page *kimage_alloc_page(struct kimage *image,
608 gfp_t gfp_mask,
609 unsigned long destination)
612 * Here we implement safeguards to ensure that a source page
613 * is not copied to its destination page before the data on
614 * the destination page is no longer useful.
616 * To do this we maintain the invariant that a source page is
617 * either its own destination page, or it is not a
618 * destination page at all.
620 * That is slightly stronger than required, but the proof
621 * that no problems will not occur is trivial, and the
622 * implementation is simply to verify.
624 * When allocating all pages normally this algorithm will run
625 * in O(N) time, but in the worst case it will run in O(N^2)
626 * time. If the runtime is a problem the data structures can
627 * be fixed.
629 struct page *page;
630 unsigned long addr;
633 * Walk through the list of destination pages, and see if I
634 * have a match.
636 list_for_each_entry(page, &image->dest_pages, lru) {
637 addr = page_to_pfn(page) << PAGE_SHIFT;
638 if (addr == destination) {
639 list_del(&page->lru);
640 return page;
643 page = NULL;
644 while (1) {
645 kimage_entry_t *old;
647 /* Allocate a page, if we run out of memory give up */
648 page = kimage_alloc_pages(gfp_mask, 0);
649 if (!page)
650 return NULL;
651 /* If the page cannot be used file it away */
652 if (page_to_pfn(page) >
653 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
654 list_add(&page->lru, &image->unusable_pages);
655 continue;
657 addr = page_to_pfn(page) << PAGE_SHIFT;
659 /* If it is the destination page we want use it */
660 if (addr == destination)
661 break;
663 /* If the page is not a destination page use it */
664 if (!kimage_is_destination_range(image, addr,
665 addr + PAGE_SIZE))
666 break;
669 * I know that the page is someones destination page.
670 * See if there is already a source page for this
671 * destination page. And if so swap the source pages.
673 old = kimage_dst_used(image, addr);
674 if (old) {
675 /* If so move it */
676 unsigned long old_addr;
677 struct page *old_page;
679 old_addr = *old & PAGE_MASK;
680 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
681 copy_highpage(page, old_page);
682 *old = addr | (*old & ~PAGE_MASK);
684 /* The old page I have found cannot be a
685 * destination page, so return it if it's
686 * gfp_flags honor the ones passed in.
688 if (!(gfp_mask & __GFP_HIGHMEM) &&
689 PageHighMem(old_page)) {
690 kimage_free_pages(old_page);
691 continue;
693 addr = old_addr;
694 page = old_page;
695 break;
697 /* Place the page on the destination list, to be used later */
698 list_add(&page->lru, &image->dest_pages);
701 return page;
704 static int kimage_load_normal_segment(struct kimage *image,
705 struct kexec_segment *segment)
707 unsigned long maddr;
708 size_t ubytes, mbytes;
709 int result;
710 unsigned char __user *buf = NULL;
711 unsigned char *kbuf = NULL;
713 result = 0;
714 if (image->file_mode)
715 kbuf = segment->kbuf;
716 else
717 buf = segment->buf;
718 ubytes = segment->bufsz;
719 mbytes = segment->memsz;
720 maddr = segment->mem;
722 result = kimage_set_destination(image, maddr);
723 if (result < 0)
724 goto out;
726 while (mbytes) {
727 struct page *page;
728 char *ptr;
729 size_t uchunk, mchunk;
731 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
732 if (!page) {
733 result = -ENOMEM;
734 goto out;
736 result = kimage_add_page(image, page_to_pfn(page)
737 << PAGE_SHIFT);
738 if (result < 0)
739 goto out;
741 ptr = kmap(page);
742 /* Start with a clear page */
743 clear_page(ptr);
744 ptr += maddr & ~PAGE_MASK;
745 mchunk = min_t(size_t, mbytes,
746 PAGE_SIZE - (maddr & ~PAGE_MASK));
747 uchunk = min(ubytes, mchunk);
749 /* For file based kexec, source pages are in kernel memory */
750 if (image->file_mode)
751 memcpy(ptr, kbuf, uchunk);
752 else
753 result = copy_from_user(ptr, buf, uchunk);
754 kunmap(page);
755 if (result) {
756 result = -EFAULT;
757 goto out;
759 ubytes -= uchunk;
760 maddr += mchunk;
761 if (image->file_mode)
762 kbuf += mchunk;
763 else
764 buf += mchunk;
765 mbytes -= mchunk;
767 out:
768 return result;
771 static int kimage_load_crash_segment(struct kimage *image,
772 struct kexec_segment *segment)
774 /* For crash dumps kernels we simply copy the data from
775 * user space to it's destination.
776 * We do things a page at a time for the sake of kmap.
778 unsigned long maddr;
779 size_t ubytes, mbytes;
780 int result;
781 unsigned char __user *buf = NULL;
782 unsigned char *kbuf = NULL;
784 result = 0;
785 if (image->file_mode)
786 kbuf = segment->kbuf;
787 else
788 buf = segment->buf;
789 ubytes = segment->bufsz;
790 mbytes = segment->memsz;
791 maddr = segment->mem;
792 while (mbytes) {
793 struct page *page;
794 char *ptr;
795 size_t uchunk, mchunk;
797 page = pfn_to_page(maddr >> PAGE_SHIFT);
798 if (!page) {
799 result = -ENOMEM;
800 goto out;
802 ptr = kmap(page);
803 ptr += maddr & ~PAGE_MASK;
804 mchunk = min_t(size_t, mbytes,
805 PAGE_SIZE - (maddr & ~PAGE_MASK));
806 uchunk = min(ubytes, mchunk);
807 if (mchunk > uchunk) {
808 /* Zero the trailing part of the page */
809 memset(ptr + uchunk, 0, mchunk - uchunk);
812 /* For file based kexec, source pages are in kernel memory */
813 if (image->file_mode)
814 memcpy(ptr, kbuf, uchunk);
815 else
816 result = copy_from_user(ptr, buf, uchunk);
817 kexec_flush_icache_page(page);
818 kunmap(page);
819 if (result) {
820 result = -EFAULT;
821 goto out;
823 ubytes -= uchunk;
824 maddr += mchunk;
825 if (image->file_mode)
826 kbuf += mchunk;
827 else
828 buf += mchunk;
829 mbytes -= mchunk;
831 out:
832 return result;
835 int kimage_load_segment(struct kimage *image,
836 struct kexec_segment *segment)
838 int result = -ENOMEM;
840 switch (image->type) {
841 case KEXEC_TYPE_DEFAULT:
842 result = kimage_load_normal_segment(image, segment);
843 break;
844 case KEXEC_TYPE_CRASH:
845 result = kimage_load_crash_segment(image, segment);
846 break;
849 return result;
852 struct kimage *kexec_image;
853 struct kimage *kexec_crash_image;
854 int kexec_load_disabled;
857 * No panic_cpu check version of crash_kexec(). This function is called
858 * only when panic_cpu holds the current CPU number; this is the only CPU
859 * which processes crash_kexec routines.
861 void __crash_kexec(struct pt_regs *regs)
863 /* Take the kexec_mutex here to prevent sys_kexec_load
864 * running on one cpu from replacing the crash kernel
865 * we are using after a panic on a different cpu.
867 * If the crash kernel was not located in a fixed area
868 * of memory the xchg(&kexec_crash_image) would be
869 * sufficient. But since I reuse the memory...
871 if (mutex_trylock(&kexec_mutex)) {
872 if (kexec_crash_image) {
873 struct pt_regs fixed_regs;
875 crash_setup_regs(&fixed_regs, regs);
876 crash_save_vmcoreinfo();
877 machine_crash_shutdown(&fixed_regs);
878 machine_kexec(kexec_crash_image);
880 mutex_unlock(&kexec_mutex);
884 void crash_kexec(struct pt_regs *regs)
886 int old_cpu, this_cpu;
889 * Only one CPU is allowed to execute the crash_kexec() code as with
890 * panic(). Otherwise parallel calls of panic() and crash_kexec()
891 * may stop each other. To exclude them, we use panic_cpu here too.
893 this_cpu = raw_smp_processor_id();
894 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
895 if (old_cpu == PANIC_CPU_INVALID) {
896 /* This is the 1st CPU which comes here, so go ahead. */
897 __crash_kexec(regs);
900 * Reset panic_cpu to allow another panic()/crash_kexec()
901 * call.
903 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
907 size_t crash_get_memory_size(void)
909 size_t size = 0;
911 mutex_lock(&kexec_mutex);
912 if (crashk_res.end != crashk_res.start)
913 size = resource_size(&crashk_res);
914 mutex_unlock(&kexec_mutex);
915 return size;
918 void __weak crash_free_reserved_phys_range(unsigned long begin,
919 unsigned long end)
921 unsigned long addr;
923 for (addr = begin; addr < end; addr += PAGE_SIZE)
924 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
927 int crash_shrink_memory(unsigned long new_size)
929 int ret = 0;
930 unsigned long start, end;
931 unsigned long old_size;
932 struct resource *ram_res;
934 mutex_lock(&kexec_mutex);
936 if (kexec_crash_image) {
937 ret = -ENOENT;
938 goto unlock;
940 start = crashk_res.start;
941 end = crashk_res.end;
942 old_size = (end == 0) ? 0 : end - start + 1;
943 if (new_size >= old_size) {
944 ret = (new_size == old_size) ? 0 : -EINVAL;
945 goto unlock;
948 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
949 if (!ram_res) {
950 ret = -ENOMEM;
951 goto unlock;
954 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
955 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
957 crash_map_reserved_pages();
958 crash_free_reserved_phys_range(end, crashk_res.end);
960 if ((start == end) && (crashk_res.parent != NULL))
961 release_resource(&crashk_res);
963 ram_res->start = end;
964 ram_res->end = crashk_res.end;
965 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
966 ram_res->name = "System RAM";
968 crashk_res.end = end - 1;
970 insert_resource(&iomem_resource, ram_res);
971 crash_unmap_reserved_pages();
973 unlock:
974 mutex_unlock(&kexec_mutex);
975 return ret;
978 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
979 size_t data_len)
981 struct elf_note note;
983 note.n_namesz = strlen(name) + 1;
984 note.n_descsz = data_len;
985 note.n_type = type;
986 memcpy(buf, &note, sizeof(note));
987 buf += (sizeof(note) + 3)/4;
988 memcpy(buf, name, note.n_namesz);
989 buf += (note.n_namesz + 3)/4;
990 memcpy(buf, data, note.n_descsz);
991 buf += (note.n_descsz + 3)/4;
993 return buf;
996 static void final_note(u32 *buf)
998 struct elf_note note;
1000 note.n_namesz = 0;
1001 note.n_descsz = 0;
1002 note.n_type = 0;
1003 memcpy(buf, &note, sizeof(note));
1006 void crash_save_cpu(struct pt_regs *regs, int cpu)
1008 struct elf_prstatus prstatus;
1009 u32 *buf;
1011 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1012 return;
1014 /* Using ELF notes here is opportunistic.
1015 * I need a well defined structure format
1016 * for the data I pass, and I need tags
1017 * on the data to indicate what information I have
1018 * squirrelled away. ELF notes happen to provide
1019 * all of that, so there is no need to invent something new.
1021 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1022 if (!buf)
1023 return;
1024 memset(&prstatus, 0, sizeof(prstatus));
1025 prstatus.pr_pid = current->pid;
1026 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1027 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1028 &prstatus, sizeof(prstatus));
1029 final_note(buf);
1032 static int __init crash_notes_memory_init(void)
1034 /* Allocate memory for saving cpu registers. */
1035 size_t size, align;
1038 * crash_notes could be allocated across 2 vmalloc pages when percpu
1039 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1040 * pages are also on 2 continuous physical pages. In this case the
1041 * 2nd part of crash_notes in 2nd page could be lost since only the
1042 * starting address and size of crash_notes are exported through sysfs.
1043 * Here round up the size of crash_notes to the nearest power of two
1044 * and pass it to __alloc_percpu as align value. This can make sure
1045 * crash_notes is allocated inside one physical page.
1047 size = sizeof(note_buf_t);
1048 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1051 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1052 * definitely will be in 2 pages with that.
1054 BUILD_BUG_ON(size > PAGE_SIZE);
1056 crash_notes = __alloc_percpu(size, align);
1057 if (!crash_notes) {
1058 pr_warn("Memory allocation for saving cpu register states failed\n");
1059 return -ENOMEM;
1061 return 0;
1063 subsys_initcall(crash_notes_memory_init);
1067 * parsing the "crashkernel" commandline
1069 * this code is intended to be called from architecture specific code
1074 * This function parses command lines in the format
1076 * crashkernel=ramsize-range:size[,...][@offset]
1078 * The function returns 0 on success and -EINVAL on failure.
1080 static int __init parse_crashkernel_mem(char *cmdline,
1081 unsigned long long system_ram,
1082 unsigned long long *crash_size,
1083 unsigned long long *crash_base)
1085 char *cur = cmdline, *tmp;
1087 /* for each entry of the comma-separated list */
1088 do {
1089 unsigned long long start, end = ULLONG_MAX, size;
1091 /* get the start of the range */
1092 start = memparse(cur, &tmp);
1093 if (cur == tmp) {
1094 pr_warn("crashkernel: Memory value expected\n");
1095 return -EINVAL;
1097 cur = tmp;
1098 if (*cur != '-') {
1099 pr_warn("crashkernel: '-' expected\n");
1100 return -EINVAL;
1102 cur++;
1104 /* if no ':' is here, than we read the end */
1105 if (*cur != ':') {
1106 end = memparse(cur, &tmp);
1107 if (cur == tmp) {
1108 pr_warn("crashkernel: Memory value expected\n");
1109 return -EINVAL;
1111 cur = tmp;
1112 if (end <= start) {
1113 pr_warn("crashkernel: end <= start\n");
1114 return -EINVAL;
1118 if (*cur != ':') {
1119 pr_warn("crashkernel: ':' expected\n");
1120 return -EINVAL;
1122 cur++;
1124 size = memparse(cur, &tmp);
1125 if (cur == tmp) {
1126 pr_warn("Memory value expected\n");
1127 return -EINVAL;
1129 cur = tmp;
1130 if (size >= system_ram) {
1131 pr_warn("crashkernel: invalid size\n");
1132 return -EINVAL;
1135 /* match ? */
1136 if (system_ram >= start && system_ram < end) {
1137 *crash_size = size;
1138 break;
1140 } while (*cur++ == ',');
1142 if (*crash_size > 0) {
1143 while (*cur && *cur != ' ' && *cur != '@')
1144 cur++;
1145 if (*cur == '@') {
1146 cur++;
1147 *crash_base = memparse(cur, &tmp);
1148 if (cur == tmp) {
1149 pr_warn("Memory value expected after '@'\n");
1150 return -EINVAL;
1155 return 0;
1159 * That function parses "simple" (old) crashkernel command lines like
1161 * crashkernel=size[@offset]
1163 * It returns 0 on success and -EINVAL on failure.
1165 static int __init parse_crashkernel_simple(char *cmdline,
1166 unsigned long long *crash_size,
1167 unsigned long long *crash_base)
1169 char *cur = cmdline;
1171 *crash_size = memparse(cmdline, &cur);
1172 if (cmdline == cur) {
1173 pr_warn("crashkernel: memory value expected\n");
1174 return -EINVAL;
1177 if (*cur == '@')
1178 *crash_base = memparse(cur+1, &cur);
1179 else if (*cur != ' ' && *cur != '\0') {
1180 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1181 return -EINVAL;
1184 return 0;
1187 #define SUFFIX_HIGH 0
1188 #define SUFFIX_LOW 1
1189 #define SUFFIX_NULL 2
1190 static __initdata char *suffix_tbl[] = {
1191 [SUFFIX_HIGH] = ",high",
1192 [SUFFIX_LOW] = ",low",
1193 [SUFFIX_NULL] = NULL,
1197 * That function parses "suffix" crashkernel command lines like
1199 * crashkernel=size,[high|low]
1201 * It returns 0 on success and -EINVAL on failure.
1203 static int __init parse_crashkernel_suffix(char *cmdline,
1204 unsigned long long *crash_size,
1205 const char *suffix)
1207 char *cur = cmdline;
1209 *crash_size = memparse(cmdline, &cur);
1210 if (cmdline == cur) {
1211 pr_warn("crashkernel: memory value expected\n");
1212 return -EINVAL;
1215 /* check with suffix */
1216 if (strncmp(cur, suffix, strlen(suffix))) {
1217 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1218 return -EINVAL;
1220 cur += strlen(suffix);
1221 if (*cur != ' ' && *cur != '\0') {
1222 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1223 return -EINVAL;
1226 return 0;
1229 static __init char *get_last_crashkernel(char *cmdline,
1230 const char *name,
1231 const char *suffix)
1233 char *p = cmdline, *ck_cmdline = NULL;
1235 /* find crashkernel and use the last one if there are more */
1236 p = strstr(p, name);
1237 while (p) {
1238 char *end_p = strchr(p, ' ');
1239 char *q;
1241 if (!end_p)
1242 end_p = p + strlen(p);
1244 if (!suffix) {
1245 int i;
1247 /* skip the one with any known suffix */
1248 for (i = 0; suffix_tbl[i]; i++) {
1249 q = end_p - strlen(suffix_tbl[i]);
1250 if (!strncmp(q, suffix_tbl[i],
1251 strlen(suffix_tbl[i])))
1252 goto next;
1254 ck_cmdline = p;
1255 } else {
1256 q = end_p - strlen(suffix);
1257 if (!strncmp(q, suffix, strlen(suffix)))
1258 ck_cmdline = p;
1260 next:
1261 p = strstr(p+1, name);
1264 if (!ck_cmdline)
1265 return NULL;
1267 return ck_cmdline;
1270 static int __init __parse_crashkernel(char *cmdline,
1271 unsigned long long system_ram,
1272 unsigned long long *crash_size,
1273 unsigned long long *crash_base,
1274 const char *name,
1275 const char *suffix)
1277 char *first_colon, *first_space;
1278 char *ck_cmdline;
1280 BUG_ON(!crash_size || !crash_base);
1281 *crash_size = 0;
1282 *crash_base = 0;
1284 ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1286 if (!ck_cmdline)
1287 return -EINVAL;
1289 ck_cmdline += strlen(name);
1291 if (suffix)
1292 return parse_crashkernel_suffix(ck_cmdline, crash_size,
1293 suffix);
1295 * if the commandline contains a ':', then that's the extended
1296 * syntax -- if not, it must be the classic syntax
1298 first_colon = strchr(ck_cmdline, ':');
1299 first_space = strchr(ck_cmdline, ' ');
1300 if (first_colon && (!first_space || first_colon < first_space))
1301 return parse_crashkernel_mem(ck_cmdline, system_ram,
1302 crash_size, crash_base);
1304 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1308 * That function is the entry point for command line parsing and should be
1309 * called from the arch-specific code.
1311 int __init parse_crashkernel(char *cmdline,
1312 unsigned long long system_ram,
1313 unsigned long long *crash_size,
1314 unsigned long long *crash_base)
1316 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1317 "crashkernel=", NULL);
1320 int __init parse_crashkernel_high(char *cmdline,
1321 unsigned long long system_ram,
1322 unsigned long long *crash_size,
1323 unsigned long long *crash_base)
1325 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1326 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1329 int __init parse_crashkernel_low(char *cmdline,
1330 unsigned long long system_ram,
1331 unsigned long long *crash_size,
1332 unsigned long long *crash_base)
1334 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1335 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
1338 static void update_vmcoreinfo_note(void)
1340 u32 *buf = vmcoreinfo_note;
1342 if (!vmcoreinfo_size)
1343 return;
1344 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1345 vmcoreinfo_size);
1346 final_note(buf);
1349 void crash_save_vmcoreinfo(void)
1351 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1352 update_vmcoreinfo_note();
1355 void vmcoreinfo_append_str(const char *fmt, ...)
1357 va_list args;
1358 char buf[0x50];
1359 size_t r;
1361 va_start(args, fmt);
1362 r = vscnprintf(buf, sizeof(buf), fmt, args);
1363 va_end(args);
1365 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1367 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1369 vmcoreinfo_size += r;
1373 * provide an empty default implementation here -- architecture
1374 * code may override this
1376 void __weak arch_crash_save_vmcoreinfo(void)
1379 unsigned long __weak paddr_vmcoreinfo_note(void)
1381 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1384 static int __init crash_save_vmcoreinfo_init(void)
1386 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1387 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1389 VMCOREINFO_SYMBOL(init_uts_ns);
1390 VMCOREINFO_SYMBOL(node_online_map);
1391 #ifdef CONFIG_MMU
1392 VMCOREINFO_SYMBOL(swapper_pg_dir);
1393 #endif
1394 VMCOREINFO_SYMBOL(_stext);
1395 VMCOREINFO_SYMBOL(vmap_area_list);
1397 #ifndef CONFIG_NEED_MULTIPLE_NODES
1398 VMCOREINFO_SYMBOL(mem_map);
1399 VMCOREINFO_SYMBOL(contig_page_data);
1400 #endif
1401 #ifdef CONFIG_SPARSEMEM
1402 VMCOREINFO_SYMBOL(mem_section);
1403 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1404 VMCOREINFO_STRUCT_SIZE(mem_section);
1405 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1406 #endif
1407 VMCOREINFO_STRUCT_SIZE(page);
1408 VMCOREINFO_STRUCT_SIZE(pglist_data);
1409 VMCOREINFO_STRUCT_SIZE(zone);
1410 VMCOREINFO_STRUCT_SIZE(free_area);
1411 VMCOREINFO_STRUCT_SIZE(list_head);
1412 VMCOREINFO_SIZE(nodemask_t);
1413 VMCOREINFO_OFFSET(page, flags);
1414 VMCOREINFO_OFFSET(page, _count);
1415 VMCOREINFO_OFFSET(page, mapping);
1416 VMCOREINFO_OFFSET(page, lru);
1417 VMCOREINFO_OFFSET(page, _mapcount);
1418 VMCOREINFO_OFFSET(page, private);
1419 VMCOREINFO_OFFSET(pglist_data, node_zones);
1420 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1421 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1422 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1423 #endif
1424 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1425 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1426 VMCOREINFO_OFFSET(pglist_data, node_id);
1427 VMCOREINFO_OFFSET(zone, free_area);
1428 VMCOREINFO_OFFSET(zone, vm_stat);
1429 VMCOREINFO_OFFSET(zone, spanned_pages);
1430 VMCOREINFO_OFFSET(free_area, free_list);
1431 VMCOREINFO_OFFSET(list_head, next);
1432 VMCOREINFO_OFFSET(list_head, prev);
1433 VMCOREINFO_OFFSET(vmap_area, va_start);
1434 VMCOREINFO_OFFSET(vmap_area, list);
1435 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1436 log_buf_kexec_setup();
1437 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1438 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1439 VMCOREINFO_NUMBER(PG_lru);
1440 VMCOREINFO_NUMBER(PG_private);
1441 VMCOREINFO_NUMBER(PG_swapcache);
1442 VMCOREINFO_NUMBER(PG_slab);
1443 #ifdef CONFIG_MEMORY_FAILURE
1444 VMCOREINFO_NUMBER(PG_hwpoison);
1445 #endif
1446 VMCOREINFO_NUMBER(PG_head_mask);
1447 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1448 #ifdef CONFIG_X86
1449 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
1450 #endif
1451 #ifdef CONFIG_HUGETLBFS
1452 VMCOREINFO_SYMBOL(free_huge_page);
1453 #endif
1455 arch_crash_save_vmcoreinfo();
1456 update_vmcoreinfo_note();
1458 return 0;
1461 subsys_initcall(crash_save_vmcoreinfo_init);
1464 * Move into place and start executing a preloaded standalone
1465 * executable. If nothing was preloaded return an error.
1467 int kernel_kexec(void)
1469 int error = 0;
1471 if (!mutex_trylock(&kexec_mutex))
1472 return -EBUSY;
1473 if (!kexec_image) {
1474 error = -EINVAL;
1475 goto Unlock;
1478 #ifdef CONFIG_KEXEC_JUMP
1479 if (kexec_image->preserve_context) {
1480 lock_system_sleep();
1481 pm_prepare_console();
1482 error = freeze_processes();
1483 if (error) {
1484 error = -EBUSY;
1485 goto Restore_console;
1487 suspend_console();
1488 error = dpm_suspend_start(PMSG_FREEZE);
1489 if (error)
1490 goto Resume_console;
1491 /* At this point, dpm_suspend_start() has been called,
1492 * but *not* dpm_suspend_end(). We *must* call
1493 * dpm_suspend_end() now. Otherwise, drivers for
1494 * some devices (e.g. interrupt controllers) become
1495 * desynchronized with the actual state of the
1496 * hardware at resume time, and evil weirdness ensues.
1498 error = dpm_suspend_end(PMSG_FREEZE);
1499 if (error)
1500 goto Resume_devices;
1501 error = disable_nonboot_cpus();
1502 if (error)
1503 goto Enable_cpus;
1504 local_irq_disable();
1505 error = syscore_suspend();
1506 if (error)
1507 goto Enable_irqs;
1508 } else
1509 #endif
1511 kexec_in_progress = true;
1512 kernel_restart_prepare(NULL);
1513 migrate_to_reboot_cpu();
1516 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1517 * no further code needs to use CPU hotplug (which is true in
1518 * the reboot case). However, the kexec path depends on using
1519 * CPU hotplug again; so re-enable it here.
1521 cpu_hotplug_enable();
1522 pr_emerg("Starting new kernel\n");
1523 machine_shutdown();
1526 machine_kexec(kexec_image);
1528 #ifdef CONFIG_KEXEC_JUMP
1529 if (kexec_image->preserve_context) {
1530 syscore_resume();
1531 Enable_irqs:
1532 local_irq_enable();
1533 Enable_cpus:
1534 enable_nonboot_cpus();
1535 dpm_resume_start(PMSG_RESTORE);
1536 Resume_devices:
1537 dpm_resume_end(PMSG_RESTORE);
1538 Resume_console:
1539 resume_console();
1540 thaw_processes();
1541 Restore_console:
1542 pm_restore_console();
1543 unlock_system_sleep();
1545 #endif
1547 Unlock:
1548 mutex_unlock(&kexec_mutex);
1549 return error;
1553 * Add and remove page tables for crashkernel memory
1555 * Provide an empty default implementation here -- architecture
1556 * code may override this
1558 void __weak crash_map_reserved_pages(void)
1561 void __weak crash_unmap_reserved_pages(void)