2 * kexec.c - kexec system call core code.
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/capability.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
43 #include <asm/sections.h>
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
47 #include "kexec_internal.h"
49 DEFINE_MUTEX(kexec_mutex
);
51 /* Per cpu memory for storing cpu states in case of system crash. */
52 note_buf_t __percpu
*crash_notes
;
54 /* vmcoreinfo stuff */
55 static unsigned char vmcoreinfo_data
[VMCOREINFO_BYTES
];
56 u32 vmcoreinfo_note
[VMCOREINFO_NOTE_SIZE
/4];
57 size_t vmcoreinfo_size
;
58 size_t vmcoreinfo_max_size
= sizeof(vmcoreinfo_data
);
60 /* Flag to indicate we are going to kexec a new kernel */
61 bool kexec_in_progress
= false;
64 /* Location of the reserved area for the crash kernel */
65 struct resource crashk_res
= {
66 .name
= "Crash kernel",
69 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
71 struct resource crashk_low_res
= {
72 .name
= "Crash kernel",
75 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
78 int kexec_should_crash(struct task_struct
*p
)
81 * If crash_kexec_post_notifiers is enabled, don't run
82 * crash_kexec() here yet, which must be run after panic
83 * notifiers in panic().
85 if (crash_kexec_post_notifiers
)
88 * There are 4 panic() calls in do_exit() path, each of which
89 * corresponds to each of these 4 conditions.
91 if (in_interrupt() || !p
->pid
|| is_global_init(p
) || panic_on_oops
)
97 * When kexec transitions to the new kernel there is a one-to-one
98 * mapping between physical and virtual addresses. On processors
99 * where you can disable the MMU this is trivial, and easy. For
100 * others it is still a simple predictable page table to setup.
102 * In that environment kexec copies the new kernel to its final
103 * resting place. This means I can only support memory whose
104 * physical address can fit in an unsigned long. In particular
105 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
106 * If the assembly stub has more restrictive requirements
107 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
108 * defined more restrictively in <asm/kexec.h>.
110 * The code for the transition from the current kernel to the
111 * the new kernel is placed in the control_code_buffer, whose size
112 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
113 * page of memory is necessary, but some architectures require more.
114 * Because this memory must be identity mapped in the transition from
115 * virtual to physical addresses it must live in the range
116 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
119 * The assembly stub in the control code buffer is passed a linked list
120 * of descriptor pages detailing the source pages of the new kernel,
121 * and the destination addresses of those source pages. As this data
122 * structure is not used in the context of the current OS, it must
125 * The code has been made to work with highmem pages and will use a
126 * destination page in its final resting place (if it happens
127 * to allocate it). The end product of this is that most of the
128 * physical address space, and most of RAM can be used.
130 * Future directions include:
131 * - allocating a page table with the control code buffer identity
132 * mapped, to simplify machine_kexec and make kexec_on_panic more
137 * KIMAGE_NO_DEST is an impossible destination address..., for
138 * allocating pages whose destination address we do not care about.
140 #define KIMAGE_NO_DEST (-1UL)
142 static struct page
*kimage_alloc_page(struct kimage
*image
,
146 int sanity_check_segment_list(struct kimage
*image
)
149 unsigned long nr_segments
= image
->nr_segments
;
152 * Verify we have good destination addresses. The caller is
153 * responsible for making certain we don't attempt to load
154 * the new image into invalid or reserved areas of RAM. This
155 * just verifies it is an address we can use.
157 * Since the kernel does everything in page size chunks ensure
158 * the destination addresses are page aligned. Too many
159 * special cases crop of when we don't do this. The most
160 * insidious is getting overlapping destination addresses
161 * simply because addresses are changed to page size
164 result
= -EADDRNOTAVAIL
;
165 for (i
= 0; i
< nr_segments
; i
++) {
166 unsigned long mstart
, mend
;
168 mstart
= image
->segment
[i
].mem
;
169 mend
= mstart
+ image
->segment
[i
].memsz
;
170 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
172 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
176 /* Verify our destination addresses do not overlap.
177 * If we alloed overlapping destination addresses
178 * through very weird things can happen with no
179 * easy explanation as one segment stops on another.
182 for (i
= 0; i
< nr_segments
; i
++) {
183 unsigned long mstart
, mend
;
186 mstart
= image
->segment
[i
].mem
;
187 mend
= mstart
+ image
->segment
[i
].memsz
;
188 for (j
= 0; j
< i
; j
++) {
189 unsigned long pstart
, pend
;
191 pstart
= image
->segment
[j
].mem
;
192 pend
= pstart
+ image
->segment
[j
].memsz
;
193 /* Do the segments overlap ? */
194 if ((mend
> pstart
) && (mstart
< pend
))
199 /* Ensure our buffer sizes are strictly less than
200 * our memory sizes. This should always be the case,
201 * and it is easier to check up front than to be surprised
205 for (i
= 0; i
< nr_segments
; i
++) {
206 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
211 * Verify we have good destination addresses. Normally
212 * the caller is responsible for making certain we don't
213 * attempt to load the new image into invalid or reserved
214 * areas of RAM. But crash kernels are preloaded into a
215 * reserved area of ram. We must ensure the addresses
216 * are in the reserved area otherwise preloading the
217 * kernel could corrupt things.
220 if (image
->type
== KEXEC_TYPE_CRASH
) {
221 result
= -EADDRNOTAVAIL
;
222 for (i
= 0; i
< nr_segments
; i
++) {
223 unsigned long mstart
, mend
;
225 mstart
= image
->segment
[i
].mem
;
226 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
227 /* Ensure we are within the crash kernel limits */
228 if ((mstart
< crashk_res
.start
) ||
229 (mend
> crashk_res
.end
))
237 struct kimage
*do_kimage_alloc_init(void)
239 struct kimage
*image
;
241 /* Allocate a controlling structure */
242 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
247 image
->entry
= &image
->head
;
248 image
->last_entry
= &image
->head
;
249 image
->control_page
= ~0; /* By default this does not apply */
250 image
->type
= KEXEC_TYPE_DEFAULT
;
252 /* Initialize the list of control pages */
253 INIT_LIST_HEAD(&image
->control_pages
);
255 /* Initialize the list of destination pages */
256 INIT_LIST_HEAD(&image
->dest_pages
);
258 /* Initialize the list of unusable pages */
259 INIT_LIST_HEAD(&image
->unusable_pages
);
264 int kimage_is_destination_range(struct kimage
*image
,
270 for (i
= 0; i
< image
->nr_segments
; i
++) {
271 unsigned long mstart
, mend
;
273 mstart
= image
->segment
[i
].mem
;
274 mend
= mstart
+ image
->segment
[i
].memsz
;
275 if ((end
> mstart
) && (start
< mend
))
282 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
286 pages
= alloc_pages(gfp_mask
, order
);
288 unsigned int count
, i
;
290 pages
->mapping
= NULL
;
291 set_page_private(pages
, order
);
293 for (i
= 0; i
< count
; i
++)
294 SetPageReserved(pages
+ i
);
300 static void kimage_free_pages(struct page
*page
)
302 unsigned int order
, count
, i
;
304 order
= page_private(page
);
306 for (i
= 0; i
< count
; i
++)
307 ClearPageReserved(page
+ i
);
308 __free_pages(page
, order
);
311 void kimage_free_page_list(struct list_head
*list
)
313 struct list_head
*pos
, *next
;
315 list_for_each_safe(pos
, next
, list
) {
318 page
= list_entry(pos
, struct page
, lru
);
319 list_del(&page
->lru
);
320 kimage_free_pages(page
);
324 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
327 /* Control pages are special, they are the intermediaries
328 * that are needed while we copy the rest of the pages
329 * to their final resting place. As such they must
330 * not conflict with either the destination addresses
331 * or memory the kernel is already using.
333 * The only case where we really need more than one of
334 * these are for architectures where we cannot disable
335 * the MMU and must instead generate an identity mapped
336 * page table for all of the memory.
338 * At worst this runs in O(N) of the image size.
340 struct list_head extra_pages
;
345 INIT_LIST_HEAD(&extra_pages
);
347 /* Loop while I can allocate a page and the page allocated
348 * is a destination page.
351 unsigned long pfn
, epfn
, addr
, eaddr
;
353 pages
= kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP
, order
);
356 pfn
= page_to_pfn(pages
);
358 addr
= pfn
<< PAGE_SHIFT
;
359 eaddr
= epfn
<< PAGE_SHIFT
;
360 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
361 kimage_is_destination_range(image
, addr
, eaddr
)) {
362 list_add(&pages
->lru
, &extra_pages
);
368 /* Remember the allocated page... */
369 list_add(&pages
->lru
, &image
->control_pages
);
371 /* Because the page is already in it's destination
372 * location we will never allocate another page at
373 * that address. Therefore kimage_alloc_pages
374 * will not return it (again) and we don't need
375 * to give it an entry in image->segment[].
378 /* Deal with the destination pages I have inadvertently allocated.
380 * Ideally I would convert multi-page allocations into single
381 * page allocations, and add everything to image->dest_pages.
383 * For now it is simpler to just free the pages.
385 kimage_free_page_list(&extra_pages
);
390 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
393 /* Control pages are special, they are the intermediaries
394 * that are needed while we copy the rest of the pages
395 * to their final resting place. As such they must
396 * not conflict with either the destination addresses
397 * or memory the kernel is already using.
399 * Control pages are also the only pags we must allocate
400 * when loading a crash kernel. All of the other pages
401 * are specified by the segments and we just memcpy
402 * into them directly.
404 * The only case where we really need more than one of
405 * these are for architectures where we cannot disable
406 * the MMU and must instead generate an identity mapped
407 * page table for all of the memory.
409 * Given the low demand this implements a very simple
410 * allocator that finds the first hole of the appropriate
411 * size in the reserved memory region, and allocates all
412 * of the memory up to and including the hole.
414 unsigned long hole_start
, hole_end
, size
;
418 size
= (1 << order
) << PAGE_SHIFT
;
419 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
420 hole_end
= hole_start
+ size
- 1;
421 while (hole_end
<= crashk_res
.end
) {
424 if (hole_end
> KEXEC_CRASH_CONTROL_MEMORY_LIMIT
)
426 /* See if I overlap any of the segments */
427 for (i
= 0; i
< image
->nr_segments
; i
++) {
428 unsigned long mstart
, mend
;
430 mstart
= image
->segment
[i
].mem
;
431 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
432 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
433 /* Advance the hole to the end of the segment */
434 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
435 hole_end
= hole_start
+ size
- 1;
439 /* If I don't overlap any segments I have found my hole! */
440 if (i
== image
->nr_segments
) {
441 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
442 image
->control_page
= hole_end
;
451 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
454 struct page
*pages
= NULL
;
456 switch (image
->type
) {
457 case KEXEC_TYPE_DEFAULT
:
458 pages
= kimage_alloc_normal_control_pages(image
, order
);
460 case KEXEC_TYPE_CRASH
:
461 pages
= kimage_alloc_crash_control_pages(image
, order
);
468 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
470 if (*image
->entry
!= 0)
473 if (image
->entry
== image
->last_entry
) {
474 kimage_entry_t
*ind_page
;
477 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
481 ind_page
= page_address(page
);
482 *image
->entry
= virt_to_phys(ind_page
) | IND_INDIRECTION
;
483 image
->entry
= ind_page
;
484 image
->last_entry
= ind_page
+
485 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
487 *image
->entry
= entry
;
494 static int kimage_set_destination(struct kimage
*image
,
495 unsigned long destination
)
499 destination
&= PAGE_MASK
;
500 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
506 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
511 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
517 static void kimage_free_extra_pages(struct kimage
*image
)
519 /* Walk through and free any extra destination pages I may have */
520 kimage_free_page_list(&image
->dest_pages
);
522 /* Walk through and free any unusable pages I have cached */
523 kimage_free_page_list(&image
->unusable_pages
);
526 void kimage_terminate(struct kimage
*image
)
528 if (*image
->entry
!= 0)
531 *image
->entry
= IND_DONE
;
534 #define for_each_kimage_entry(image, ptr, entry) \
535 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
536 ptr = (entry & IND_INDIRECTION) ? \
537 phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
539 static void kimage_free_entry(kimage_entry_t entry
)
543 page
= pfn_to_page(entry
>> PAGE_SHIFT
);
544 kimage_free_pages(page
);
547 void kimage_free(struct kimage
*image
)
549 kimage_entry_t
*ptr
, entry
;
550 kimage_entry_t ind
= 0;
555 kimage_free_extra_pages(image
);
556 for_each_kimage_entry(image
, ptr
, entry
) {
557 if (entry
& IND_INDIRECTION
) {
558 /* Free the previous indirection page */
559 if (ind
& IND_INDIRECTION
)
560 kimage_free_entry(ind
);
561 /* Save this indirection page until we are
565 } else if (entry
& IND_SOURCE
)
566 kimage_free_entry(entry
);
568 /* Free the final indirection page */
569 if (ind
& IND_INDIRECTION
)
570 kimage_free_entry(ind
);
572 /* Handle any machine specific cleanup */
573 machine_kexec_cleanup(image
);
575 /* Free the kexec control pages... */
576 kimage_free_page_list(&image
->control_pages
);
579 * Free up any temporary buffers allocated. This might hit if
580 * error occurred much later after buffer allocation.
582 if (image
->file_mode
)
583 kimage_file_post_load_cleanup(image
);
588 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
591 kimage_entry_t
*ptr
, entry
;
592 unsigned long destination
= 0;
594 for_each_kimage_entry(image
, ptr
, entry
) {
595 if (entry
& IND_DESTINATION
)
596 destination
= entry
& PAGE_MASK
;
597 else if (entry
& IND_SOURCE
) {
598 if (page
== destination
)
600 destination
+= PAGE_SIZE
;
607 static struct page
*kimage_alloc_page(struct kimage
*image
,
609 unsigned long destination
)
612 * Here we implement safeguards to ensure that a source page
613 * is not copied to its destination page before the data on
614 * the destination page is no longer useful.
616 * To do this we maintain the invariant that a source page is
617 * either its own destination page, or it is not a
618 * destination page at all.
620 * That is slightly stronger than required, but the proof
621 * that no problems will not occur is trivial, and the
622 * implementation is simply to verify.
624 * When allocating all pages normally this algorithm will run
625 * in O(N) time, but in the worst case it will run in O(N^2)
626 * time. If the runtime is a problem the data structures can
633 * Walk through the list of destination pages, and see if I
636 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
637 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
638 if (addr
== destination
) {
639 list_del(&page
->lru
);
647 /* Allocate a page, if we run out of memory give up */
648 page
= kimage_alloc_pages(gfp_mask
, 0);
651 /* If the page cannot be used file it away */
652 if (page_to_pfn(page
) >
653 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
654 list_add(&page
->lru
, &image
->unusable_pages
);
657 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
659 /* If it is the destination page we want use it */
660 if (addr
== destination
)
663 /* If the page is not a destination page use it */
664 if (!kimage_is_destination_range(image
, addr
,
669 * I know that the page is someones destination page.
670 * See if there is already a source page for this
671 * destination page. And if so swap the source pages.
673 old
= kimage_dst_used(image
, addr
);
676 unsigned long old_addr
;
677 struct page
*old_page
;
679 old_addr
= *old
& PAGE_MASK
;
680 old_page
= pfn_to_page(old_addr
>> PAGE_SHIFT
);
681 copy_highpage(page
, old_page
);
682 *old
= addr
| (*old
& ~PAGE_MASK
);
684 /* The old page I have found cannot be a
685 * destination page, so return it if it's
686 * gfp_flags honor the ones passed in.
688 if (!(gfp_mask
& __GFP_HIGHMEM
) &&
689 PageHighMem(old_page
)) {
690 kimage_free_pages(old_page
);
697 /* Place the page on the destination list, to be used later */
698 list_add(&page
->lru
, &image
->dest_pages
);
704 static int kimage_load_normal_segment(struct kimage
*image
,
705 struct kexec_segment
*segment
)
708 size_t ubytes
, mbytes
;
710 unsigned char __user
*buf
= NULL
;
711 unsigned char *kbuf
= NULL
;
714 if (image
->file_mode
)
715 kbuf
= segment
->kbuf
;
718 ubytes
= segment
->bufsz
;
719 mbytes
= segment
->memsz
;
720 maddr
= segment
->mem
;
722 result
= kimage_set_destination(image
, maddr
);
729 size_t uchunk
, mchunk
;
731 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
736 result
= kimage_add_page(image
, page_to_pfn(page
)
742 /* Start with a clear page */
744 ptr
+= maddr
& ~PAGE_MASK
;
745 mchunk
= min_t(size_t, mbytes
,
746 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
747 uchunk
= min(ubytes
, mchunk
);
749 /* For file based kexec, source pages are in kernel memory */
750 if (image
->file_mode
)
751 memcpy(ptr
, kbuf
, uchunk
);
753 result
= copy_from_user(ptr
, buf
, uchunk
);
761 if (image
->file_mode
)
771 static int kimage_load_crash_segment(struct kimage
*image
,
772 struct kexec_segment
*segment
)
774 /* For crash dumps kernels we simply copy the data from
775 * user space to it's destination.
776 * We do things a page at a time for the sake of kmap.
779 size_t ubytes
, mbytes
;
781 unsigned char __user
*buf
= NULL
;
782 unsigned char *kbuf
= NULL
;
785 if (image
->file_mode
)
786 kbuf
= segment
->kbuf
;
789 ubytes
= segment
->bufsz
;
790 mbytes
= segment
->memsz
;
791 maddr
= segment
->mem
;
795 size_t uchunk
, mchunk
;
797 page
= pfn_to_page(maddr
>> PAGE_SHIFT
);
803 ptr
+= maddr
& ~PAGE_MASK
;
804 mchunk
= min_t(size_t, mbytes
,
805 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
806 uchunk
= min(ubytes
, mchunk
);
807 if (mchunk
> uchunk
) {
808 /* Zero the trailing part of the page */
809 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
812 /* For file based kexec, source pages are in kernel memory */
813 if (image
->file_mode
)
814 memcpy(ptr
, kbuf
, uchunk
);
816 result
= copy_from_user(ptr
, buf
, uchunk
);
817 kexec_flush_icache_page(page
);
825 if (image
->file_mode
)
835 int kimage_load_segment(struct kimage
*image
,
836 struct kexec_segment
*segment
)
838 int result
= -ENOMEM
;
840 switch (image
->type
) {
841 case KEXEC_TYPE_DEFAULT
:
842 result
= kimage_load_normal_segment(image
, segment
);
844 case KEXEC_TYPE_CRASH
:
845 result
= kimage_load_crash_segment(image
, segment
);
852 struct kimage
*kexec_image
;
853 struct kimage
*kexec_crash_image
;
854 int kexec_load_disabled
;
857 * No panic_cpu check version of crash_kexec(). This function is called
858 * only when panic_cpu holds the current CPU number; this is the only CPU
859 * which processes crash_kexec routines.
861 void __crash_kexec(struct pt_regs
*regs
)
863 /* Take the kexec_mutex here to prevent sys_kexec_load
864 * running on one cpu from replacing the crash kernel
865 * we are using after a panic on a different cpu.
867 * If the crash kernel was not located in a fixed area
868 * of memory the xchg(&kexec_crash_image) would be
869 * sufficient. But since I reuse the memory...
871 if (mutex_trylock(&kexec_mutex
)) {
872 if (kexec_crash_image
) {
873 struct pt_regs fixed_regs
;
875 crash_setup_regs(&fixed_regs
, regs
);
876 crash_save_vmcoreinfo();
877 machine_crash_shutdown(&fixed_regs
);
878 machine_kexec(kexec_crash_image
);
880 mutex_unlock(&kexec_mutex
);
884 void crash_kexec(struct pt_regs
*regs
)
886 int old_cpu
, this_cpu
;
889 * Only one CPU is allowed to execute the crash_kexec() code as with
890 * panic(). Otherwise parallel calls of panic() and crash_kexec()
891 * may stop each other. To exclude them, we use panic_cpu here too.
893 this_cpu
= raw_smp_processor_id();
894 old_cpu
= atomic_cmpxchg(&panic_cpu
, PANIC_CPU_INVALID
, this_cpu
);
895 if (old_cpu
== PANIC_CPU_INVALID
) {
896 /* This is the 1st CPU which comes here, so go ahead. */
900 * Reset panic_cpu to allow another panic()/crash_kexec()
903 atomic_set(&panic_cpu
, PANIC_CPU_INVALID
);
907 size_t crash_get_memory_size(void)
911 mutex_lock(&kexec_mutex
);
912 if (crashk_res
.end
!= crashk_res
.start
)
913 size
= resource_size(&crashk_res
);
914 mutex_unlock(&kexec_mutex
);
918 void __weak
crash_free_reserved_phys_range(unsigned long begin
,
923 for (addr
= begin
; addr
< end
; addr
+= PAGE_SIZE
)
924 free_reserved_page(pfn_to_page(addr
>> PAGE_SHIFT
));
927 int crash_shrink_memory(unsigned long new_size
)
930 unsigned long start
, end
;
931 unsigned long old_size
;
932 struct resource
*ram_res
;
934 mutex_lock(&kexec_mutex
);
936 if (kexec_crash_image
) {
940 start
= crashk_res
.start
;
941 end
= crashk_res
.end
;
942 old_size
= (end
== 0) ? 0 : end
- start
+ 1;
943 if (new_size
>= old_size
) {
944 ret
= (new_size
== old_size
) ? 0 : -EINVAL
;
948 ram_res
= kzalloc(sizeof(*ram_res
), GFP_KERNEL
);
954 start
= roundup(start
, KEXEC_CRASH_MEM_ALIGN
);
955 end
= roundup(start
+ new_size
, KEXEC_CRASH_MEM_ALIGN
);
957 crash_map_reserved_pages();
958 crash_free_reserved_phys_range(end
, crashk_res
.end
);
960 if ((start
== end
) && (crashk_res
.parent
!= NULL
))
961 release_resource(&crashk_res
);
963 ram_res
->start
= end
;
964 ram_res
->end
= crashk_res
.end
;
965 ram_res
->flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
;
966 ram_res
->name
= "System RAM";
968 crashk_res
.end
= end
- 1;
970 insert_resource(&iomem_resource
, ram_res
);
971 crash_unmap_reserved_pages();
974 mutex_unlock(&kexec_mutex
);
978 static u32
*append_elf_note(u32
*buf
, char *name
, unsigned type
, void *data
,
981 struct elf_note note
;
983 note
.n_namesz
= strlen(name
) + 1;
984 note
.n_descsz
= data_len
;
986 memcpy(buf
, ¬e
, sizeof(note
));
987 buf
+= (sizeof(note
) + 3)/4;
988 memcpy(buf
, name
, note
.n_namesz
);
989 buf
+= (note
.n_namesz
+ 3)/4;
990 memcpy(buf
, data
, note
.n_descsz
);
991 buf
+= (note
.n_descsz
+ 3)/4;
996 static void final_note(u32
*buf
)
998 struct elf_note note
;
1003 memcpy(buf
, ¬e
, sizeof(note
));
1006 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
1008 struct elf_prstatus prstatus
;
1011 if ((cpu
< 0) || (cpu
>= nr_cpu_ids
))
1014 /* Using ELF notes here is opportunistic.
1015 * I need a well defined structure format
1016 * for the data I pass, and I need tags
1017 * on the data to indicate what information I have
1018 * squirrelled away. ELF notes happen to provide
1019 * all of that, so there is no need to invent something new.
1021 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
1024 memset(&prstatus
, 0, sizeof(prstatus
));
1025 prstatus
.pr_pid
= current
->pid
;
1026 elf_core_copy_kernel_regs(&prstatus
.pr_reg
, regs
);
1027 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
1028 &prstatus
, sizeof(prstatus
));
1032 static int __init
crash_notes_memory_init(void)
1034 /* Allocate memory for saving cpu registers. */
1038 * crash_notes could be allocated across 2 vmalloc pages when percpu
1039 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1040 * pages are also on 2 continuous physical pages. In this case the
1041 * 2nd part of crash_notes in 2nd page could be lost since only the
1042 * starting address and size of crash_notes are exported through sysfs.
1043 * Here round up the size of crash_notes to the nearest power of two
1044 * and pass it to __alloc_percpu as align value. This can make sure
1045 * crash_notes is allocated inside one physical page.
1047 size
= sizeof(note_buf_t
);
1048 align
= min(roundup_pow_of_two(sizeof(note_buf_t
)), PAGE_SIZE
);
1051 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1052 * definitely will be in 2 pages with that.
1054 BUILD_BUG_ON(size
> PAGE_SIZE
);
1056 crash_notes
= __alloc_percpu(size
, align
);
1058 pr_warn("Memory allocation for saving cpu register states failed\n");
1063 subsys_initcall(crash_notes_memory_init
);
1067 * parsing the "crashkernel" commandline
1069 * this code is intended to be called from architecture specific code
1074 * This function parses command lines in the format
1076 * crashkernel=ramsize-range:size[,...][@offset]
1078 * The function returns 0 on success and -EINVAL on failure.
1080 static int __init
parse_crashkernel_mem(char *cmdline
,
1081 unsigned long long system_ram
,
1082 unsigned long long *crash_size
,
1083 unsigned long long *crash_base
)
1085 char *cur
= cmdline
, *tmp
;
1087 /* for each entry of the comma-separated list */
1089 unsigned long long start
, end
= ULLONG_MAX
, size
;
1091 /* get the start of the range */
1092 start
= memparse(cur
, &tmp
);
1094 pr_warn("crashkernel: Memory value expected\n");
1099 pr_warn("crashkernel: '-' expected\n");
1104 /* if no ':' is here, than we read the end */
1106 end
= memparse(cur
, &tmp
);
1108 pr_warn("crashkernel: Memory value expected\n");
1113 pr_warn("crashkernel: end <= start\n");
1119 pr_warn("crashkernel: ':' expected\n");
1124 size
= memparse(cur
, &tmp
);
1126 pr_warn("Memory value expected\n");
1130 if (size
>= system_ram
) {
1131 pr_warn("crashkernel: invalid size\n");
1136 if (system_ram
>= start
&& system_ram
< end
) {
1140 } while (*cur
++ == ',');
1142 if (*crash_size
> 0) {
1143 while (*cur
&& *cur
!= ' ' && *cur
!= '@')
1147 *crash_base
= memparse(cur
, &tmp
);
1149 pr_warn("Memory value expected after '@'\n");
1159 * That function parses "simple" (old) crashkernel command lines like
1161 * crashkernel=size[@offset]
1163 * It returns 0 on success and -EINVAL on failure.
1165 static int __init
parse_crashkernel_simple(char *cmdline
,
1166 unsigned long long *crash_size
,
1167 unsigned long long *crash_base
)
1169 char *cur
= cmdline
;
1171 *crash_size
= memparse(cmdline
, &cur
);
1172 if (cmdline
== cur
) {
1173 pr_warn("crashkernel: memory value expected\n");
1178 *crash_base
= memparse(cur
+1, &cur
);
1179 else if (*cur
!= ' ' && *cur
!= '\0') {
1180 pr_warn("crashkernel: unrecognized char: %c\n", *cur
);
1187 #define SUFFIX_HIGH 0
1188 #define SUFFIX_LOW 1
1189 #define SUFFIX_NULL 2
1190 static __initdata
char *suffix_tbl
[] = {
1191 [SUFFIX_HIGH
] = ",high",
1192 [SUFFIX_LOW
] = ",low",
1193 [SUFFIX_NULL
] = NULL
,
1197 * That function parses "suffix" crashkernel command lines like
1199 * crashkernel=size,[high|low]
1201 * It returns 0 on success and -EINVAL on failure.
1203 static int __init
parse_crashkernel_suffix(char *cmdline
,
1204 unsigned long long *crash_size
,
1207 char *cur
= cmdline
;
1209 *crash_size
= memparse(cmdline
, &cur
);
1210 if (cmdline
== cur
) {
1211 pr_warn("crashkernel: memory value expected\n");
1215 /* check with suffix */
1216 if (strncmp(cur
, suffix
, strlen(suffix
))) {
1217 pr_warn("crashkernel: unrecognized char: %c\n", *cur
);
1220 cur
+= strlen(suffix
);
1221 if (*cur
!= ' ' && *cur
!= '\0') {
1222 pr_warn("crashkernel: unrecognized char: %c\n", *cur
);
1229 static __init
char *get_last_crashkernel(char *cmdline
,
1233 char *p
= cmdline
, *ck_cmdline
= NULL
;
1235 /* find crashkernel and use the last one if there are more */
1236 p
= strstr(p
, name
);
1238 char *end_p
= strchr(p
, ' ');
1242 end_p
= p
+ strlen(p
);
1247 /* skip the one with any known suffix */
1248 for (i
= 0; suffix_tbl
[i
]; i
++) {
1249 q
= end_p
- strlen(suffix_tbl
[i
]);
1250 if (!strncmp(q
, suffix_tbl
[i
],
1251 strlen(suffix_tbl
[i
])))
1256 q
= end_p
- strlen(suffix
);
1257 if (!strncmp(q
, suffix
, strlen(suffix
)))
1261 p
= strstr(p
+1, name
);
1270 static int __init
__parse_crashkernel(char *cmdline
,
1271 unsigned long long system_ram
,
1272 unsigned long long *crash_size
,
1273 unsigned long long *crash_base
,
1277 char *first_colon
, *first_space
;
1280 BUG_ON(!crash_size
|| !crash_base
);
1284 ck_cmdline
= get_last_crashkernel(cmdline
, name
, suffix
);
1289 ck_cmdline
+= strlen(name
);
1292 return parse_crashkernel_suffix(ck_cmdline
, crash_size
,
1295 * if the commandline contains a ':', then that's the extended
1296 * syntax -- if not, it must be the classic syntax
1298 first_colon
= strchr(ck_cmdline
, ':');
1299 first_space
= strchr(ck_cmdline
, ' ');
1300 if (first_colon
&& (!first_space
|| first_colon
< first_space
))
1301 return parse_crashkernel_mem(ck_cmdline
, system_ram
,
1302 crash_size
, crash_base
);
1304 return parse_crashkernel_simple(ck_cmdline
, crash_size
, crash_base
);
1308 * That function is the entry point for command line parsing and should be
1309 * called from the arch-specific code.
1311 int __init
parse_crashkernel(char *cmdline
,
1312 unsigned long long system_ram
,
1313 unsigned long long *crash_size
,
1314 unsigned long long *crash_base
)
1316 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1317 "crashkernel=", NULL
);
1320 int __init
parse_crashkernel_high(char *cmdline
,
1321 unsigned long long system_ram
,
1322 unsigned long long *crash_size
,
1323 unsigned long long *crash_base
)
1325 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1326 "crashkernel=", suffix_tbl
[SUFFIX_HIGH
]);
1329 int __init
parse_crashkernel_low(char *cmdline
,
1330 unsigned long long system_ram
,
1331 unsigned long long *crash_size
,
1332 unsigned long long *crash_base
)
1334 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1335 "crashkernel=", suffix_tbl
[SUFFIX_LOW
]);
1338 static void update_vmcoreinfo_note(void)
1340 u32
*buf
= vmcoreinfo_note
;
1342 if (!vmcoreinfo_size
)
1344 buf
= append_elf_note(buf
, VMCOREINFO_NOTE_NAME
, 0, vmcoreinfo_data
,
1349 void crash_save_vmcoreinfo(void)
1351 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1352 update_vmcoreinfo_note();
1355 void vmcoreinfo_append_str(const char *fmt
, ...)
1361 va_start(args
, fmt
);
1362 r
= vscnprintf(buf
, sizeof(buf
), fmt
, args
);
1365 r
= min(r
, vmcoreinfo_max_size
- vmcoreinfo_size
);
1367 memcpy(&vmcoreinfo_data
[vmcoreinfo_size
], buf
, r
);
1369 vmcoreinfo_size
+= r
;
1373 * provide an empty default implementation here -- architecture
1374 * code may override this
1376 void __weak
arch_crash_save_vmcoreinfo(void)
1379 unsigned long __weak
paddr_vmcoreinfo_note(void)
1381 return __pa((unsigned long)(char *)&vmcoreinfo_note
);
1384 static int __init
crash_save_vmcoreinfo_init(void)
1386 VMCOREINFO_OSRELEASE(init_uts_ns
.name
.release
);
1387 VMCOREINFO_PAGESIZE(PAGE_SIZE
);
1389 VMCOREINFO_SYMBOL(init_uts_ns
);
1390 VMCOREINFO_SYMBOL(node_online_map
);
1392 VMCOREINFO_SYMBOL(swapper_pg_dir
);
1394 VMCOREINFO_SYMBOL(_stext
);
1395 VMCOREINFO_SYMBOL(vmap_area_list
);
1397 #ifndef CONFIG_NEED_MULTIPLE_NODES
1398 VMCOREINFO_SYMBOL(mem_map
);
1399 VMCOREINFO_SYMBOL(contig_page_data
);
1401 #ifdef CONFIG_SPARSEMEM
1402 VMCOREINFO_SYMBOL(mem_section
);
1403 VMCOREINFO_LENGTH(mem_section
, NR_SECTION_ROOTS
);
1404 VMCOREINFO_STRUCT_SIZE(mem_section
);
1405 VMCOREINFO_OFFSET(mem_section
, section_mem_map
);
1407 VMCOREINFO_STRUCT_SIZE(page
);
1408 VMCOREINFO_STRUCT_SIZE(pglist_data
);
1409 VMCOREINFO_STRUCT_SIZE(zone
);
1410 VMCOREINFO_STRUCT_SIZE(free_area
);
1411 VMCOREINFO_STRUCT_SIZE(list_head
);
1412 VMCOREINFO_SIZE(nodemask_t
);
1413 VMCOREINFO_OFFSET(page
, flags
);
1414 VMCOREINFO_OFFSET(page
, _count
);
1415 VMCOREINFO_OFFSET(page
, mapping
);
1416 VMCOREINFO_OFFSET(page
, lru
);
1417 VMCOREINFO_OFFSET(page
, _mapcount
);
1418 VMCOREINFO_OFFSET(page
, private);
1419 VMCOREINFO_OFFSET(pglist_data
, node_zones
);
1420 VMCOREINFO_OFFSET(pglist_data
, nr_zones
);
1421 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1422 VMCOREINFO_OFFSET(pglist_data
, node_mem_map
);
1424 VMCOREINFO_OFFSET(pglist_data
, node_start_pfn
);
1425 VMCOREINFO_OFFSET(pglist_data
, node_spanned_pages
);
1426 VMCOREINFO_OFFSET(pglist_data
, node_id
);
1427 VMCOREINFO_OFFSET(zone
, free_area
);
1428 VMCOREINFO_OFFSET(zone
, vm_stat
);
1429 VMCOREINFO_OFFSET(zone
, spanned_pages
);
1430 VMCOREINFO_OFFSET(free_area
, free_list
);
1431 VMCOREINFO_OFFSET(list_head
, next
);
1432 VMCOREINFO_OFFSET(list_head
, prev
);
1433 VMCOREINFO_OFFSET(vmap_area
, va_start
);
1434 VMCOREINFO_OFFSET(vmap_area
, list
);
1435 VMCOREINFO_LENGTH(zone
.free_area
, MAX_ORDER
);
1436 log_buf_kexec_setup();
1437 VMCOREINFO_LENGTH(free_area
.free_list
, MIGRATE_TYPES
);
1438 VMCOREINFO_NUMBER(NR_FREE_PAGES
);
1439 VMCOREINFO_NUMBER(PG_lru
);
1440 VMCOREINFO_NUMBER(PG_private
);
1441 VMCOREINFO_NUMBER(PG_swapcache
);
1442 VMCOREINFO_NUMBER(PG_slab
);
1443 #ifdef CONFIG_MEMORY_FAILURE
1444 VMCOREINFO_NUMBER(PG_hwpoison
);
1446 VMCOREINFO_NUMBER(PG_head_mask
);
1447 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE
);
1449 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE
);
1451 #ifdef CONFIG_HUGETLBFS
1452 VMCOREINFO_SYMBOL(free_huge_page
);
1455 arch_crash_save_vmcoreinfo();
1456 update_vmcoreinfo_note();
1461 subsys_initcall(crash_save_vmcoreinfo_init
);
1464 * Move into place and start executing a preloaded standalone
1465 * executable. If nothing was preloaded return an error.
1467 int kernel_kexec(void)
1471 if (!mutex_trylock(&kexec_mutex
))
1478 #ifdef CONFIG_KEXEC_JUMP
1479 if (kexec_image
->preserve_context
) {
1480 lock_system_sleep();
1481 pm_prepare_console();
1482 error
= freeze_processes();
1485 goto Restore_console
;
1488 error
= dpm_suspend_start(PMSG_FREEZE
);
1490 goto Resume_console
;
1491 /* At this point, dpm_suspend_start() has been called,
1492 * but *not* dpm_suspend_end(). We *must* call
1493 * dpm_suspend_end() now. Otherwise, drivers for
1494 * some devices (e.g. interrupt controllers) become
1495 * desynchronized with the actual state of the
1496 * hardware at resume time, and evil weirdness ensues.
1498 error
= dpm_suspend_end(PMSG_FREEZE
);
1500 goto Resume_devices
;
1501 error
= disable_nonboot_cpus();
1504 local_irq_disable();
1505 error
= syscore_suspend();
1511 kexec_in_progress
= true;
1512 kernel_restart_prepare(NULL
);
1513 migrate_to_reboot_cpu();
1516 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1517 * no further code needs to use CPU hotplug (which is true in
1518 * the reboot case). However, the kexec path depends on using
1519 * CPU hotplug again; so re-enable it here.
1521 cpu_hotplug_enable();
1522 pr_emerg("Starting new kernel\n");
1526 machine_kexec(kexec_image
);
1528 #ifdef CONFIG_KEXEC_JUMP
1529 if (kexec_image
->preserve_context
) {
1534 enable_nonboot_cpus();
1535 dpm_resume_start(PMSG_RESTORE
);
1537 dpm_resume_end(PMSG_RESTORE
);
1542 pm_restore_console();
1543 unlock_system_sleep();
1548 mutex_unlock(&kexec_mutex
);
1553 * Add and remove page tables for crashkernel memory
1555 * Provide an empty default implementation here -- architecture
1556 * code may override this
1558 void __weak
crash_map_reserved_pages(void)
1561 void __weak
crash_unmap_reserved_pages(void)