2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
19 #include <linux/math64.h>
21 #include "ntp_internal.h"
22 #include "timekeeping_internal.h"
26 * NTP timekeeping variables:
28 * Note: All of the NTP state is protected by the timekeeping locks.
32 /* USER_HZ period (usecs): */
33 unsigned long tick_usec
= TICK_USEC
;
35 /* SHIFTED_HZ period (nsecs): */
36 unsigned long tick_nsec
;
38 static u64 tick_length
;
39 static u64 tick_length_base
;
41 #define SECS_PER_DAY 86400
42 #define MAX_TICKADJ 500LL /* usecs */
43 #define MAX_TICKADJ_SCALED \
44 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
47 * phase-lock loop variables
51 * clock synchronization status
53 * (TIME_ERROR prevents overwriting the CMOS clock)
55 static int time_state
= TIME_OK
;
57 /* clock status bits: */
58 static int time_status
= STA_UNSYNC
;
60 /* time adjustment (nsecs): */
61 static s64 time_offset
;
63 /* pll time constant: */
64 static long time_constant
= 2;
66 /* maximum error (usecs): */
67 static long time_maxerror
= NTP_PHASE_LIMIT
;
69 /* estimated error (usecs): */
70 static long time_esterror
= NTP_PHASE_LIMIT
;
72 /* frequency offset (scaled nsecs/secs): */
75 /* time at last adjustment (secs): */
76 static time64_t time_reftime
;
78 static long time_adjust
;
80 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
81 static s64 ntp_tick_adj
;
83 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
84 static time64_t ntp_next_leap_sec
= TIME64_MAX
;
89 * The following variables are used when a pulse-per-second (PPS) signal
90 * is available. They establish the engineering parameters of the clock
91 * discipline loop when controlled by the PPS signal.
93 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
94 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
95 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
96 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
97 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
98 increase pps_shift or consecutive bad
99 intervals to decrease it */
100 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
102 static int pps_valid
; /* signal watchdog counter */
103 static long pps_tf
[3]; /* phase median filter */
104 static long pps_jitter
; /* current jitter (ns) */
105 static struct timespec64 pps_fbase
; /* beginning of the last freq interval */
106 static int pps_shift
; /* current interval duration (s) (shift) */
107 static int pps_intcnt
; /* interval counter */
108 static s64 pps_freq
; /* frequency offset (scaled ns/s) */
109 static long pps_stabil
; /* current stability (scaled ns/s) */
112 * PPS signal quality monitors
114 static long pps_calcnt
; /* calibration intervals */
115 static long pps_jitcnt
; /* jitter limit exceeded */
116 static long pps_stbcnt
; /* stability limit exceeded */
117 static long pps_errcnt
; /* calibration errors */
120 /* PPS kernel consumer compensates the whole phase error immediately.
121 * Otherwise, reduce the offset by a fixed factor times the time constant.
123 static inline s64
ntp_offset_chunk(s64 offset
)
125 if (time_status
& STA_PPSTIME
&& time_status
& STA_PPSSIGNAL
)
128 return shift_right(offset
, SHIFT_PLL
+ time_constant
);
131 static inline void pps_reset_freq_interval(void)
133 /* the PPS calibration interval may end
134 surprisingly early */
135 pps_shift
= PPS_INTMIN
;
140 * pps_clear - Clears the PPS state variables
142 static inline void pps_clear(void)
144 pps_reset_freq_interval();
148 pps_fbase
.tv_sec
= pps_fbase
.tv_nsec
= 0;
152 /* Decrease pps_valid to indicate that another second has passed since
153 * the last PPS signal. When it reaches 0, indicate that PPS signal is
156 static inline void pps_dec_valid(void)
161 time_status
&= ~(STA_PPSSIGNAL
| STA_PPSJITTER
|
162 STA_PPSWANDER
| STA_PPSERROR
);
167 static inline void pps_set_freq(s64 freq
)
172 static inline int is_error_status(int status
)
174 return (status
& (STA_UNSYNC
|STA_CLOCKERR
))
175 /* PPS signal lost when either PPS time or
176 * PPS frequency synchronization requested
178 || ((status
& (STA_PPSFREQ
|STA_PPSTIME
))
179 && !(status
& STA_PPSSIGNAL
))
180 /* PPS jitter exceeded when
181 * PPS time synchronization requested */
182 || ((status
& (STA_PPSTIME
|STA_PPSJITTER
))
183 == (STA_PPSTIME
|STA_PPSJITTER
))
184 /* PPS wander exceeded or calibration error when
185 * PPS frequency synchronization requested
187 || ((status
& STA_PPSFREQ
)
188 && (status
& (STA_PPSWANDER
|STA_PPSERROR
)));
191 static inline void pps_fill_timex(struct timex
*txc
)
193 txc
->ppsfreq
= shift_right((pps_freq
>> PPM_SCALE_INV_SHIFT
) *
194 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
195 txc
->jitter
= pps_jitter
;
196 if (!(time_status
& STA_NANO
))
197 txc
->jitter
/= NSEC_PER_USEC
;
198 txc
->shift
= pps_shift
;
199 txc
->stabil
= pps_stabil
;
200 txc
->jitcnt
= pps_jitcnt
;
201 txc
->calcnt
= pps_calcnt
;
202 txc
->errcnt
= pps_errcnt
;
203 txc
->stbcnt
= pps_stbcnt
;
206 #else /* !CONFIG_NTP_PPS */
208 static inline s64
ntp_offset_chunk(s64 offset
)
210 return shift_right(offset
, SHIFT_PLL
+ time_constant
);
213 static inline void pps_reset_freq_interval(void) {}
214 static inline void pps_clear(void) {}
215 static inline void pps_dec_valid(void) {}
216 static inline void pps_set_freq(s64 freq
) {}
218 static inline int is_error_status(int status
)
220 return status
& (STA_UNSYNC
|STA_CLOCKERR
);
223 static inline void pps_fill_timex(struct timex
*txc
)
225 /* PPS is not implemented, so these are zero */
236 #endif /* CONFIG_NTP_PPS */
240 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
243 static inline int ntp_synced(void)
245 return !(time_status
& STA_UNSYNC
);
254 * Update (tick_length, tick_length_base, tick_nsec), based
255 * on (tick_usec, ntp_tick_adj, time_freq):
257 static void ntp_update_frequency(void)
262 second_length
= (u64
)(tick_usec
* NSEC_PER_USEC
* USER_HZ
)
265 second_length
+= ntp_tick_adj
;
266 second_length
+= time_freq
;
268 tick_nsec
= div_u64(second_length
, HZ
) >> NTP_SCALE_SHIFT
;
269 new_base
= div_u64(second_length
, NTP_INTERVAL_FREQ
);
272 * Don't wait for the next second_overflow, apply
273 * the change to the tick length immediately:
275 tick_length
+= new_base
- tick_length_base
;
276 tick_length_base
= new_base
;
279 static inline s64
ntp_update_offset_fll(s64 offset64
, long secs
)
281 time_status
&= ~STA_MODE
;
286 if (!(time_status
& STA_FLL
) && (secs
<= MAXSEC
))
289 time_status
|= STA_MODE
;
291 return div64_long(offset64
<< (NTP_SCALE_SHIFT
- SHIFT_FLL
), secs
);
294 static void ntp_update_offset(long offset
)
300 if (!(time_status
& STA_PLL
))
303 if (!(time_status
& STA_NANO
)) {
304 /* Make sure the multiplication below won't overflow */
305 offset
= clamp(offset
, -USEC_PER_SEC
, USEC_PER_SEC
);
306 offset
*= NSEC_PER_USEC
;
310 * Scale the phase adjustment and
311 * clamp to the operating range.
313 offset
= clamp(offset
, -MAXPHASE
, MAXPHASE
);
316 * Select how the frequency is to be controlled
317 * and in which mode (PLL or FLL).
319 secs
= (long)(__ktime_get_real_seconds() - time_reftime
);
320 if (unlikely(time_status
& STA_FREQHOLD
))
323 time_reftime
= __ktime_get_real_seconds();
326 freq_adj
= ntp_update_offset_fll(offset64
, secs
);
329 * Clamp update interval to reduce PLL gain with low
330 * sampling rate (e.g. intermittent network connection)
331 * to avoid instability.
333 if (unlikely(secs
> 1 << (SHIFT_PLL
+ 1 + time_constant
)))
334 secs
= 1 << (SHIFT_PLL
+ 1 + time_constant
);
336 freq_adj
+= (offset64
* secs
) <<
337 (NTP_SCALE_SHIFT
- 2 * (SHIFT_PLL
+ 2 + time_constant
));
339 freq_adj
= min(freq_adj
+ time_freq
, MAXFREQ_SCALED
);
341 time_freq
= max(freq_adj
, -MAXFREQ_SCALED
);
343 time_offset
= div_s64(offset64
<< NTP_SCALE_SHIFT
, NTP_INTERVAL_FREQ
);
347 * ntp_clear - Clears the NTP state variables
351 time_adjust
= 0; /* stop active adjtime() */
352 time_status
|= STA_UNSYNC
;
353 time_maxerror
= NTP_PHASE_LIMIT
;
354 time_esterror
= NTP_PHASE_LIMIT
;
356 ntp_update_frequency();
358 tick_length
= tick_length_base
;
361 ntp_next_leap_sec
= TIME64_MAX
;
362 /* Clear PPS state variables */
367 u64
ntp_tick_length(void)
373 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
375 * Provides the time of the next leapsecond against CLOCK_REALTIME in
376 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
378 ktime_t
ntp_get_next_leap(void)
382 if ((time_state
== TIME_INS
) && (time_status
& STA_INS
))
383 return ktime_set(ntp_next_leap_sec
, 0);
384 ret
.tv64
= KTIME_MAX
;
389 * this routine handles the overflow of the microsecond field
391 * The tricky bits of code to handle the accurate clock support
392 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
393 * They were originally developed for SUN and DEC kernels.
394 * All the kudos should go to Dave for this stuff.
396 * Also handles leap second processing, and returns leap offset
398 int second_overflow(time64_t secs
)
405 * Leap second processing. If in leap-insert state at the end of the
406 * day, the system clock is set back one second; if in leap-delete
407 * state, the system clock is set ahead one second.
409 switch (time_state
) {
411 if (time_status
& STA_INS
) {
412 time_state
= TIME_INS
;
413 div_s64_rem(secs
, SECS_PER_DAY
, &rem
);
414 ntp_next_leap_sec
= secs
+ SECS_PER_DAY
- rem
;
415 } else if (time_status
& STA_DEL
) {
416 time_state
= TIME_DEL
;
417 div_s64_rem(secs
+ 1, SECS_PER_DAY
, &rem
);
418 ntp_next_leap_sec
= secs
+ SECS_PER_DAY
- rem
;
422 if (!(time_status
& STA_INS
)) {
423 ntp_next_leap_sec
= TIME64_MAX
;
424 time_state
= TIME_OK
;
425 } else if (secs
== ntp_next_leap_sec
) {
427 time_state
= TIME_OOP
;
429 "Clock: inserting leap second 23:59:60 UTC\n");
433 if (!(time_status
& STA_DEL
)) {
434 ntp_next_leap_sec
= TIME64_MAX
;
435 time_state
= TIME_OK
;
436 } else if (secs
== ntp_next_leap_sec
) {
438 ntp_next_leap_sec
= TIME64_MAX
;
439 time_state
= TIME_WAIT
;
441 "Clock: deleting leap second 23:59:59 UTC\n");
445 ntp_next_leap_sec
= TIME64_MAX
;
446 time_state
= TIME_WAIT
;
449 if (!(time_status
& (STA_INS
| STA_DEL
)))
450 time_state
= TIME_OK
;
455 /* Bump the maxerror field */
456 time_maxerror
+= MAXFREQ
/ NSEC_PER_USEC
;
457 if (time_maxerror
> NTP_PHASE_LIMIT
) {
458 time_maxerror
= NTP_PHASE_LIMIT
;
459 time_status
|= STA_UNSYNC
;
462 /* Compute the phase adjustment for the next second */
463 tick_length
= tick_length_base
;
465 delta
= ntp_offset_chunk(time_offset
);
466 time_offset
-= delta
;
467 tick_length
+= delta
;
469 /* Check PPS signal */
475 if (time_adjust
> MAX_TICKADJ
) {
476 time_adjust
-= MAX_TICKADJ
;
477 tick_length
+= MAX_TICKADJ_SCALED
;
481 if (time_adjust
< -MAX_TICKADJ
) {
482 time_adjust
+= MAX_TICKADJ
;
483 tick_length
-= MAX_TICKADJ_SCALED
;
487 tick_length
+= (s64
)(time_adjust
* NSEC_PER_USEC
/ NTP_INTERVAL_FREQ
)
495 #ifdef CONFIG_GENERIC_CMOS_UPDATE
496 int __weak
update_persistent_clock(struct timespec now
)
501 int __weak
update_persistent_clock64(struct timespec64 now64
)
505 now
= timespec64_to_timespec(now64
);
506 return update_persistent_clock(now
);
510 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
511 static void sync_cmos_clock(struct work_struct
*work
);
513 static DECLARE_DELAYED_WORK(sync_cmos_work
, sync_cmos_clock
);
515 static void sync_cmos_clock(struct work_struct
*work
)
517 struct timespec64 now
;
518 struct timespec64 next
;
522 * If we have an externally synchronized Linux clock, then update
523 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
524 * called as close as possible to 500 ms before the new second starts.
525 * This code is run on a timer. If the clock is set, that timer
526 * may not expire at the correct time. Thus, we adjust...
527 * We want the clock to be within a couple of ticks from the target.
531 * Not synced, exit, do not restart a timer (if one is
532 * running, let it run out).
537 getnstimeofday64(&now
);
538 if (abs(now
.tv_nsec
- (NSEC_PER_SEC
/ 2)) <= tick_nsec
* 5) {
539 struct timespec64 adjust
= now
;
542 if (persistent_clock_is_local
)
543 adjust
.tv_sec
-= (sys_tz
.tz_minuteswest
* 60);
544 #ifdef CONFIG_GENERIC_CMOS_UPDATE
545 fail
= update_persistent_clock64(adjust
);
548 #ifdef CONFIG_RTC_SYSTOHC
550 fail
= rtc_set_ntp_time(adjust
);
554 next
.tv_nsec
= (NSEC_PER_SEC
/ 2) - now
.tv_nsec
- (TICK_NSEC
/ 2);
555 if (next
.tv_nsec
<= 0)
556 next
.tv_nsec
+= NSEC_PER_SEC
;
558 if (!fail
|| fail
== -ENODEV
)
563 if (next
.tv_nsec
>= NSEC_PER_SEC
) {
565 next
.tv_nsec
-= NSEC_PER_SEC
;
567 queue_delayed_work(system_power_efficient_wq
,
568 &sync_cmos_work
, timespec64_to_jiffies(&next
));
571 void ntp_notify_cmos_timer(void)
573 queue_delayed_work(system_power_efficient_wq
, &sync_cmos_work
, 0);
577 void ntp_notify_cmos_timer(void) { }
582 * Propagate a new txc->status value into the NTP state:
584 static inline void process_adj_status(struct timex
*txc
, struct timespec64
*ts
)
586 if ((time_status
& STA_PLL
) && !(txc
->status
& STA_PLL
)) {
587 time_state
= TIME_OK
;
588 time_status
= STA_UNSYNC
;
589 ntp_next_leap_sec
= TIME64_MAX
;
590 /* restart PPS frequency calibration */
591 pps_reset_freq_interval();
595 * If we turn on PLL adjustments then reset the
596 * reference time to current time.
598 if (!(time_status
& STA_PLL
) && (txc
->status
& STA_PLL
))
599 time_reftime
= __ktime_get_real_seconds();
601 /* only set allowed bits */
602 time_status
&= STA_RONLY
;
603 time_status
|= txc
->status
& ~STA_RONLY
;
607 static inline void process_adjtimex_modes(struct timex
*txc
,
608 struct timespec64
*ts
,
611 if (txc
->modes
& ADJ_STATUS
)
612 process_adj_status(txc
, ts
);
614 if (txc
->modes
& ADJ_NANO
)
615 time_status
|= STA_NANO
;
617 if (txc
->modes
& ADJ_MICRO
)
618 time_status
&= ~STA_NANO
;
620 if (txc
->modes
& ADJ_FREQUENCY
) {
621 time_freq
= txc
->freq
* PPM_SCALE
;
622 time_freq
= min(time_freq
, MAXFREQ_SCALED
);
623 time_freq
= max(time_freq
, -MAXFREQ_SCALED
);
624 /* update pps_freq */
625 pps_set_freq(time_freq
);
628 if (txc
->modes
& ADJ_MAXERROR
)
629 time_maxerror
= txc
->maxerror
;
631 if (txc
->modes
& ADJ_ESTERROR
)
632 time_esterror
= txc
->esterror
;
634 if (txc
->modes
& ADJ_TIMECONST
) {
635 time_constant
= txc
->constant
;
636 if (!(time_status
& STA_NANO
))
638 time_constant
= min(time_constant
, (long)MAXTC
);
639 time_constant
= max(time_constant
, 0l);
642 if (txc
->modes
& ADJ_TAI
&& txc
->constant
> 0)
643 *time_tai
= txc
->constant
;
645 if (txc
->modes
& ADJ_OFFSET
)
646 ntp_update_offset(txc
->offset
);
648 if (txc
->modes
& ADJ_TICK
)
649 tick_usec
= txc
->tick
;
651 if (txc
->modes
& (ADJ_TICK
|ADJ_FREQUENCY
|ADJ_OFFSET
))
652 ntp_update_frequency();
658 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
660 int ntp_validate_timex(struct timex
*txc
)
662 if (txc
->modes
& ADJ_ADJTIME
) {
663 /* singleshot must not be used with any other mode bits */
664 if (!(txc
->modes
& ADJ_OFFSET_SINGLESHOT
))
666 if (!(txc
->modes
& ADJ_OFFSET_READONLY
) &&
667 !capable(CAP_SYS_TIME
))
670 /* In order to modify anything, you gotta be super-user! */
671 if (txc
->modes
&& !capable(CAP_SYS_TIME
))
674 * if the quartz is off by more than 10% then
675 * something is VERY wrong!
677 if (txc
->modes
& ADJ_TICK
&&
678 (txc
->tick
< 900000/USER_HZ
||
679 txc
->tick
> 1100000/USER_HZ
))
683 if (txc
->modes
& ADJ_SETOFFSET
) {
684 /* In order to inject time, you gotta be super-user! */
685 if (!capable(CAP_SYS_TIME
))
688 if (!timeval_inject_offset_valid(&txc
->time
))
693 * Check for potential multiplication overflows that can
694 * only happen on 64-bit systems:
696 if ((txc
->modes
& ADJ_FREQUENCY
) && (BITS_PER_LONG
== 64)) {
697 if (LLONG_MIN
/ PPM_SCALE
> txc
->freq
)
699 if (LLONG_MAX
/ PPM_SCALE
< txc
->freq
)
708 * adjtimex mainly allows reading (and writing, if superuser) of
709 * kernel time-keeping variables. used by xntpd.
711 int __do_adjtimex(struct timex
*txc
, struct timespec64
*ts
, s32
*time_tai
)
715 if (txc
->modes
& ADJ_ADJTIME
) {
716 long save_adjust
= time_adjust
;
718 if (!(txc
->modes
& ADJ_OFFSET_READONLY
)) {
719 /* adjtime() is independent from ntp_adjtime() */
720 time_adjust
= txc
->offset
;
721 ntp_update_frequency();
723 txc
->offset
= save_adjust
;
726 /* If there are input parameters, then process them: */
728 process_adjtimex_modes(txc
, ts
, time_tai
);
730 txc
->offset
= shift_right(time_offset
* NTP_INTERVAL_FREQ
,
732 if (!(time_status
& STA_NANO
))
733 txc
->offset
/= NSEC_PER_USEC
;
736 result
= time_state
; /* mostly `TIME_OK' */
737 /* check for errors */
738 if (is_error_status(time_status
))
741 txc
->freq
= shift_right((time_freq
>> PPM_SCALE_INV_SHIFT
) *
742 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
743 txc
->maxerror
= time_maxerror
;
744 txc
->esterror
= time_esterror
;
745 txc
->status
= time_status
;
746 txc
->constant
= time_constant
;
748 txc
->tolerance
= MAXFREQ_SCALED
/ PPM_SCALE
;
749 txc
->tick
= tick_usec
;
750 txc
->tai
= *time_tai
;
752 /* fill PPS status fields */
755 txc
->time
.tv_sec
= (time_t)ts
->tv_sec
;
756 txc
->time
.tv_usec
= ts
->tv_nsec
;
757 if (!(time_status
& STA_NANO
))
758 txc
->time
.tv_usec
/= NSEC_PER_USEC
;
760 /* Handle leapsec adjustments */
761 if (unlikely(ts
->tv_sec
>= ntp_next_leap_sec
)) {
762 if ((time_state
== TIME_INS
) && (time_status
& STA_INS
)) {
767 if ((time_state
== TIME_DEL
) && (time_status
& STA_DEL
)) {
772 if ((time_state
== TIME_OOP
) &&
773 (ts
->tv_sec
== ntp_next_leap_sec
)) {
781 #ifdef CONFIG_NTP_PPS
783 /* actually struct pps_normtime is good old struct timespec, but it is
784 * semantically different (and it is the reason why it was invented):
785 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
786 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
787 struct pps_normtime
{
788 s64 sec
; /* seconds */
789 long nsec
; /* nanoseconds */
792 /* normalize the timestamp so that nsec is in the
793 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
794 static inline struct pps_normtime
pps_normalize_ts(struct timespec64 ts
)
796 struct pps_normtime norm
= {
801 if (norm
.nsec
> (NSEC_PER_SEC
>> 1)) {
802 norm
.nsec
-= NSEC_PER_SEC
;
809 /* get current phase correction and jitter */
810 static inline long pps_phase_filter_get(long *jitter
)
812 *jitter
= pps_tf
[0] - pps_tf
[1];
816 /* TODO: test various filters */
820 /* add the sample to the phase filter */
821 static inline void pps_phase_filter_add(long err
)
823 pps_tf
[2] = pps_tf
[1];
824 pps_tf
[1] = pps_tf
[0];
828 /* decrease frequency calibration interval length.
829 * It is halved after four consecutive unstable intervals.
831 static inline void pps_dec_freq_interval(void)
833 if (--pps_intcnt
<= -PPS_INTCOUNT
) {
834 pps_intcnt
= -PPS_INTCOUNT
;
835 if (pps_shift
> PPS_INTMIN
) {
842 /* increase frequency calibration interval length.
843 * It is doubled after four consecutive stable intervals.
845 static inline void pps_inc_freq_interval(void)
847 if (++pps_intcnt
>= PPS_INTCOUNT
) {
848 pps_intcnt
= PPS_INTCOUNT
;
849 if (pps_shift
< PPS_INTMAX
) {
856 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
859 * At the end of the calibration interval the difference between the
860 * first and last MONOTONIC_RAW clock timestamps divided by the length
861 * of the interval becomes the frequency update. If the interval was
862 * too long, the data are discarded.
863 * Returns the difference between old and new frequency values.
865 static long hardpps_update_freq(struct pps_normtime freq_norm
)
867 long delta
, delta_mod
;
870 /* check if the frequency interval was too long */
871 if (freq_norm
.sec
> (2 << pps_shift
)) {
872 time_status
|= STA_PPSERROR
;
874 pps_dec_freq_interval();
875 printk_deferred(KERN_ERR
876 "hardpps: PPSERROR: interval too long - %lld s\n",
881 /* here the raw frequency offset and wander (stability) is
882 * calculated. If the wander is less than the wander threshold
883 * the interval is increased; otherwise it is decreased.
885 ftemp
= div_s64(((s64
)(-freq_norm
.nsec
)) << NTP_SCALE_SHIFT
,
887 delta
= shift_right(ftemp
- pps_freq
, NTP_SCALE_SHIFT
);
889 if (delta
> PPS_MAXWANDER
|| delta
< -PPS_MAXWANDER
) {
890 printk_deferred(KERN_WARNING
891 "hardpps: PPSWANDER: change=%ld\n", delta
);
892 time_status
|= STA_PPSWANDER
;
894 pps_dec_freq_interval();
895 } else { /* good sample */
896 pps_inc_freq_interval();
899 /* the stability metric is calculated as the average of recent
900 * frequency changes, but is used only for performance
905 delta_mod
= -delta_mod
;
906 pps_stabil
+= (div_s64(((s64
)delta_mod
) <<
907 (NTP_SCALE_SHIFT
- SHIFT_USEC
),
908 NSEC_PER_USEC
) - pps_stabil
) >> PPS_INTMIN
;
910 /* if enabled, the system clock frequency is updated */
911 if ((time_status
& STA_PPSFREQ
) != 0 &&
912 (time_status
& STA_FREQHOLD
) == 0) {
913 time_freq
= pps_freq
;
914 ntp_update_frequency();
920 /* correct REALTIME clock phase error against PPS signal */
921 static void hardpps_update_phase(long error
)
923 long correction
= -error
;
926 /* add the sample to the median filter */
927 pps_phase_filter_add(correction
);
928 correction
= pps_phase_filter_get(&jitter
);
930 /* Nominal jitter is due to PPS signal noise. If it exceeds the
931 * threshold, the sample is discarded; otherwise, if so enabled,
932 * the time offset is updated.
934 if (jitter
> (pps_jitter
<< PPS_POPCORN
)) {
935 printk_deferred(KERN_WARNING
936 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
937 jitter
, (pps_jitter
<< PPS_POPCORN
));
938 time_status
|= STA_PPSJITTER
;
940 } else if (time_status
& STA_PPSTIME
) {
941 /* correct the time using the phase offset */
942 time_offset
= div_s64(((s64
)correction
) << NTP_SCALE_SHIFT
,
944 /* cancel running adjtime() */
948 pps_jitter
+= (jitter
- pps_jitter
) >> PPS_INTMIN
;
952 * __hardpps() - discipline CPU clock oscillator to external PPS signal
954 * This routine is called at each PPS signal arrival in order to
955 * discipline the CPU clock oscillator to the PPS signal. It takes two
956 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
957 * is used to correct clock phase error and the latter is used to
958 * correct the frequency.
960 * This code is based on David Mills's reference nanokernel
961 * implementation. It was mostly rewritten but keeps the same idea.
963 void __hardpps(const struct timespec64
*phase_ts
, const struct timespec64
*raw_ts
)
965 struct pps_normtime pts_norm
, freq_norm
;
967 pts_norm
= pps_normalize_ts(*phase_ts
);
969 /* clear the error bits, they will be set again if needed */
970 time_status
&= ~(STA_PPSJITTER
| STA_PPSWANDER
| STA_PPSERROR
);
972 /* indicate signal presence */
973 time_status
|= STA_PPSSIGNAL
;
974 pps_valid
= PPS_VALID
;
976 /* when called for the first time,
977 * just start the frequency interval */
978 if (unlikely(pps_fbase
.tv_sec
== 0)) {
983 /* ok, now we have a base for frequency calculation */
984 freq_norm
= pps_normalize_ts(timespec64_sub(*raw_ts
, pps_fbase
));
986 /* check that the signal is in the range
987 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
988 if ((freq_norm
.sec
== 0) ||
989 (freq_norm
.nsec
> MAXFREQ
* freq_norm
.sec
) ||
990 (freq_norm
.nsec
< -MAXFREQ
* freq_norm
.sec
)) {
991 time_status
|= STA_PPSJITTER
;
992 /* restart the frequency calibration interval */
994 printk_deferred(KERN_ERR
"hardpps: PPSJITTER: bad pulse\n");
1000 /* check if the current frequency interval is finished */
1001 if (freq_norm
.sec
>= (1 << pps_shift
)) {
1003 /* restart the frequency calibration interval */
1004 pps_fbase
= *raw_ts
;
1005 hardpps_update_freq(freq_norm
);
1008 hardpps_update_phase(pts_norm
.nsec
);
1011 #endif /* CONFIG_NTP_PPS */
1013 static int __init
ntp_tick_adj_setup(char *str
)
1015 int rc
= kstrtol(str
, 0, (long *)&ntp_tick_adj
);
1019 ntp_tick_adj
<<= NTP_SCALE_SHIFT
;
1024 __setup("ntp_tick_adj=", ntp_tick_adj_setup
);
1026 void __init
ntp_init(void)