irqdomain: Allow domain lookup with DOMAIN_BUS_WIRED token
[linux/fpc-iii.git] / kernel / time / tick-broadcast.c
blobf6aae7977824ab7595950e378c2dd0f0bbe0256d
1 /*
2 * linux/kernel/time/tick-broadcast.c
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
24 #include "tick-internal.h"
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_forced;
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 #else
42 static inline void tick_broadcast_clear_oneshot(int cpu) { }
43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 #endif
47 * Debugging: see timer_list.c
49 struct tick_device *tick_get_broadcast_device(void)
51 return &tick_broadcast_device;
54 struct cpumask *tick_get_broadcast_mask(void)
56 return tick_broadcast_mask;
60 * Start the device in periodic mode
62 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
64 if (bc)
65 tick_setup_periodic(bc, 1);
69 * Check, if the device can be utilized as broadcast device:
71 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
72 struct clock_event_device *newdev)
74 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75 (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77 return false;
79 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
80 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81 return false;
83 return !curdev || newdev->rating > curdev->rating;
87 * Conditionally install/replace broadcast device
89 void tick_install_broadcast_device(struct clock_event_device *dev)
91 struct clock_event_device *cur = tick_broadcast_device.evtdev;
93 if (!tick_check_broadcast_device(cur, dev))
94 return;
96 if (!try_module_get(dev->owner))
97 return;
99 clockevents_exchange_device(cur, dev);
100 if (cur)
101 cur->event_handler = clockevents_handle_noop;
102 tick_broadcast_device.evtdev = dev;
103 if (!cpumask_empty(tick_broadcast_mask))
104 tick_broadcast_start_periodic(dev);
106 * Inform all cpus about this. We might be in a situation
107 * where we did not switch to oneshot mode because the per cpu
108 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109 * of a oneshot capable broadcast device. Without that
110 * notification the systems stays stuck in periodic mode
111 * forever.
113 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
114 tick_clock_notify();
118 * Check, if the device is the broadcast device
120 int tick_is_broadcast_device(struct clock_event_device *dev)
122 return (dev && tick_broadcast_device.evtdev == dev);
125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
127 int ret = -ENODEV;
129 if (tick_is_broadcast_device(dev)) {
130 raw_spin_lock(&tick_broadcast_lock);
131 ret = __clockevents_update_freq(dev, freq);
132 raw_spin_unlock(&tick_broadcast_lock);
134 return ret;
138 static void err_broadcast(const struct cpumask *mask)
140 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
145 if (!dev->broadcast)
146 dev->broadcast = tick_broadcast;
147 if (!dev->broadcast) {
148 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
149 dev->name);
150 dev->broadcast = err_broadcast;
155 * Check, if the device is disfunctional and a place holder, which
156 * needs to be handled by the broadcast device.
158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
160 struct clock_event_device *bc = tick_broadcast_device.evtdev;
161 unsigned long flags;
162 int ret = 0;
164 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
167 * Devices might be registered with both periodic and oneshot
168 * mode disabled. This signals, that the device needs to be
169 * operated from the broadcast device and is a placeholder for
170 * the cpu local device.
172 if (!tick_device_is_functional(dev)) {
173 dev->event_handler = tick_handle_periodic;
174 tick_device_setup_broadcast_func(dev);
175 cpumask_set_cpu(cpu, tick_broadcast_mask);
176 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
177 tick_broadcast_start_periodic(bc);
178 else
179 tick_broadcast_setup_oneshot(bc);
180 ret = 1;
181 } else {
183 * Clear the broadcast bit for this cpu if the
184 * device is not power state affected.
186 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187 cpumask_clear_cpu(cpu, tick_broadcast_mask);
188 else
189 tick_device_setup_broadcast_func(dev);
192 * Clear the broadcast bit if the CPU is not in
193 * periodic broadcast on state.
195 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
196 cpumask_clear_cpu(cpu, tick_broadcast_mask);
198 switch (tick_broadcast_device.mode) {
199 case TICKDEV_MODE_ONESHOT:
201 * If the system is in oneshot mode we can
202 * unconditionally clear the oneshot mask bit,
203 * because the CPU is running and therefore
204 * not in an idle state which causes the power
205 * state affected device to stop. Let the
206 * caller initialize the device.
208 tick_broadcast_clear_oneshot(cpu);
209 ret = 0;
210 break;
212 case TICKDEV_MODE_PERIODIC:
214 * If the system is in periodic mode, check
215 * whether the broadcast device can be
216 * switched off now.
218 if (cpumask_empty(tick_broadcast_mask) && bc)
219 clockevents_shutdown(bc);
221 * If we kept the cpu in the broadcast mask,
222 * tell the caller to leave the per cpu device
223 * in shutdown state. The periodic interrupt
224 * is delivered by the broadcast device, if
225 * the broadcast device exists and is not
226 * hrtimer based.
228 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
229 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
230 break;
231 default:
232 break;
235 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
236 return ret;
239 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
240 int tick_receive_broadcast(void)
242 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
243 struct clock_event_device *evt = td->evtdev;
245 if (!evt)
246 return -ENODEV;
248 if (!evt->event_handler)
249 return -EINVAL;
251 evt->event_handler(evt);
252 return 0;
254 #endif
257 * Broadcast the event to the cpus, which are set in the mask (mangled).
259 static bool tick_do_broadcast(struct cpumask *mask)
261 int cpu = smp_processor_id();
262 struct tick_device *td;
263 bool local = false;
266 * Check, if the current cpu is in the mask
268 if (cpumask_test_cpu(cpu, mask)) {
269 struct clock_event_device *bc = tick_broadcast_device.evtdev;
271 cpumask_clear_cpu(cpu, mask);
273 * We only run the local handler, if the broadcast
274 * device is not hrtimer based. Otherwise we run into
275 * a hrtimer recursion.
277 * local timer_interrupt()
278 * local_handler()
279 * expire_hrtimers()
280 * bc_handler()
281 * local_handler()
282 * expire_hrtimers()
284 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
287 if (!cpumask_empty(mask)) {
289 * It might be necessary to actually check whether the devices
290 * have different broadcast functions. For now, just use the
291 * one of the first device. This works as long as we have this
292 * misfeature only on x86 (lapic)
294 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
295 td->evtdev->broadcast(mask);
297 return local;
301 * Periodic broadcast:
302 * - invoke the broadcast handlers
304 static bool tick_do_periodic_broadcast(void)
306 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
307 return tick_do_broadcast(tmpmask);
311 * Event handler for periodic broadcast ticks
313 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
315 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
316 bool bc_local;
318 raw_spin_lock(&tick_broadcast_lock);
320 /* Handle spurious interrupts gracefully */
321 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
322 raw_spin_unlock(&tick_broadcast_lock);
323 return;
326 bc_local = tick_do_periodic_broadcast();
328 if (clockevent_state_oneshot(dev)) {
329 ktime_t next = ktime_add(dev->next_event, tick_period);
331 clockevents_program_event(dev, next, true);
333 raw_spin_unlock(&tick_broadcast_lock);
336 * We run the handler of the local cpu after dropping
337 * tick_broadcast_lock because the handler might deadlock when
338 * trying to switch to oneshot mode.
340 if (bc_local)
341 td->evtdev->event_handler(td->evtdev);
345 * tick_broadcast_control - Enable/disable or force broadcast mode
346 * @mode: The selected broadcast mode
348 * Called when the system enters a state where affected tick devices
349 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
351 * Called with interrupts disabled, so clockevents_lock is not
352 * required here because the local clock event device cannot go away
353 * under us.
355 void tick_broadcast_control(enum tick_broadcast_mode mode)
357 struct clock_event_device *bc, *dev;
358 struct tick_device *td;
359 int cpu, bc_stopped;
361 td = this_cpu_ptr(&tick_cpu_device);
362 dev = td->evtdev;
365 * Is the device not affected by the powerstate ?
367 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
368 return;
370 if (!tick_device_is_functional(dev))
371 return;
373 raw_spin_lock(&tick_broadcast_lock);
374 cpu = smp_processor_id();
375 bc = tick_broadcast_device.evtdev;
376 bc_stopped = cpumask_empty(tick_broadcast_mask);
378 switch (mode) {
379 case TICK_BROADCAST_FORCE:
380 tick_broadcast_forced = 1;
381 case TICK_BROADCAST_ON:
382 cpumask_set_cpu(cpu, tick_broadcast_on);
383 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
385 * Only shutdown the cpu local device, if:
387 * - the broadcast device exists
388 * - the broadcast device is not a hrtimer based one
389 * - the broadcast device is in periodic mode to
390 * avoid a hickup during switch to oneshot mode
392 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
393 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
394 clockevents_shutdown(dev);
396 break;
398 case TICK_BROADCAST_OFF:
399 if (tick_broadcast_forced)
400 break;
401 cpumask_clear_cpu(cpu, tick_broadcast_on);
402 if (!tick_device_is_functional(dev))
403 break;
404 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
405 if (tick_broadcast_device.mode ==
406 TICKDEV_MODE_PERIODIC)
407 tick_setup_periodic(dev, 0);
409 break;
412 if (bc) {
413 if (cpumask_empty(tick_broadcast_mask)) {
414 if (!bc_stopped)
415 clockevents_shutdown(bc);
416 } else if (bc_stopped) {
417 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
418 tick_broadcast_start_periodic(bc);
419 else
420 tick_broadcast_setup_oneshot(bc);
423 raw_spin_unlock(&tick_broadcast_lock);
425 EXPORT_SYMBOL_GPL(tick_broadcast_control);
428 * Set the periodic handler depending on broadcast on/off
430 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
432 if (!broadcast)
433 dev->event_handler = tick_handle_periodic;
434 else
435 dev->event_handler = tick_handle_periodic_broadcast;
438 #ifdef CONFIG_HOTPLUG_CPU
440 * Remove a CPU from broadcasting
442 void tick_shutdown_broadcast(unsigned int cpu)
444 struct clock_event_device *bc;
445 unsigned long flags;
447 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
449 bc = tick_broadcast_device.evtdev;
450 cpumask_clear_cpu(cpu, tick_broadcast_mask);
451 cpumask_clear_cpu(cpu, tick_broadcast_on);
453 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
454 if (bc && cpumask_empty(tick_broadcast_mask))
455 clockevents_shutdown(bc);
458 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
460 #endif
462 void tick_suspend_broadcast(void)
464 struct clock_event_device *bc;
465 unsigned long flags;
467 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
469 bc = tick_broadcast_device.evtdev;
470 if (bc)
471 clockevents_shutdown(bc);
473 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
477 * This is called from tick_resume_local() on a resuming CPU. That's
478 * called from the core resume function, tick_unfreeze() and the magic XEN
479 * resume hackery.
481 * In none of these cases the broadcast device mode can change and the
482 * bit of the resuming CPU in the broadcast mask is safe as well.
484 bool tick_resume_check_broadcast(void)
486 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
487 return false;
488 else
489 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
492 void tick_resume_broadcast(void)
494 struct clock_event_device *bc;
495 unsigned long flags;
497 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
499 bc = tick_broadcast_device.evtdev;
501 if (bc) {
502 clockevents_tick_resume(bc);
504 switch (tick_broadcast_device.mode) {
505 case TICKDEV_MODE_PERIODIC:
506 if (!cpumask_empty(tick_broadcast_mask))
507 tick_broadcast_start_periodic(bc);
508 break;
509 case TICKDEV_MODE_ONESHOT:
510 if (!cpumask_empty(tick_broadcast_mask))
511 tick_resume_broadcast_oneshot(bc);
512 break;
515 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
518 #ifdef CONFIG_TICK_ONESHOT
520 static cpumask_var_t tick_broadcast_oneshot_mask;
521 static cpumask_var_t tick_broadcast_pending_mask;
522 static cpumask_var_t tick_broadcast_force_mask;
525 * Exposed for debugging: see timer_list.c
527 struct cpumask *tick_get_broadcast_oneshot_mask(void)
529 return tick_broadcast_oneshot_mask;
533 * Called before going idle with interrupts disabled. Checks whether a
534 * broadcast event from the other core is about to happen. We detected
535 * that in tick_broadcast_oneshot_control(). The callsite can use this
536 * to avoid a deep idle transition as we are about to get the
537 * broadcast IPI right away.
539 int tick_check_broadcast_expired(void)
541 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
545 * Set broadcast interrupt affinity
547 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
548 const struct cpumask *cpumask)
550 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
551 return;
553 if (cpumask_equal(bc->cpumask, cpumask))
554 return;
556 bc->cpumask = cpumask;
557 irq_set_affinity(bc->irq, bc->cpumask);
560 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
561 ktime_t expires)
563 if (!clockevent_state_oneshot(bc))
564 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
566 clockevents_program_event(bc, expires, 1);
567 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
570 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
572 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
576 * Called from irq_enter() when idle was interrupted to reenable the
577 * per cpu device.
579 void tick_check_oneshot_broadcast_this_cpu(void)
581 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
582 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
585 * We might be in the middle of switching over from
586 * periodic to oneshot. If the CPU has not yet
587 * switched over, leave the device alone.
589 if (td->mode == TICKDEV_MODE_ONESHOT) {
590 clockevents_switch_state(td->evtdev,
591 CLOCK_EVT_STATE_ONESHOT);
597 * Handle oneshot mode broadcasting
599 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
601 struct tick_device *td;
602 ktime_t now, next_event;
603 int cpu, next_cpu = 0;
604 bool bc_local;
606 raw_spin_lock(&tick_broadcast_lock);
607 dev->next_event.tv64 = KTIME_MAX;
608 next_event.tv64 = KTIME_MAX;
609 cpumask_clear(tmpmask);
610 now = ktime_get();
611 /* Find all expired events */
612 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
613 td = &per_cpu(tick_cpu_device, cpu);
614 if (td->evtdev->next_event.tv64 <= now.tv64) {
615 cpumask_set_cpu(cpu, tmpmask);
617 * Mark the remote cpu in the pending mask, so
618 * it can avoid reprogramming the cpu local
619 * timer in tick_broadcast_oneshot_control().
621 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
622 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
623 next_event.tv64 = td->evtdev->next_event.tv64;
624 next_cpu = cpu;
629 * Remove the current cpu from the pending mask. The event is
630 * delivered immediately in tick_do_broadcast() !
632 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
634 /* Take care of enforced broadcast requests */
635 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
636 cpumask_clear(tick_broadcast_force_mask);
639 * Sanity check. Catch the case where we try to broadcast to
640 * offline cpus.
642 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
643 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
646 * Wakeup the cpus which have an expired event.
648 bc_local = tick_do_broadcast(tmpmask);
651 * Two reasons for reprogram:
653 * - The global event did not expire any CPU local
654 * events. This happens in dyntick mode, as the maximum PIT
655 * delta is quite small.
657 * - There are pending events on sleeping CPUs which were not
658 * in the event mask
660 if (next_event.tv64 != KTIME_MAX)
661 tick_broadcast_set_event(dev, next_cpu, next_event);
663 raw_spin_unlock(&tick_broadcast_lock);
665 if (bc_local) {
666 td = this_cpu_ptr(&tick_cpu_device);
667 td->evtdev->event_handler(td->evtdev);
671 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
673 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
674 return 0;
675 if (bc->next_event.tv64 == KTIME_MAX)
676 return 0;
677 return bc->bound_on == cpu ? -EBUSY : 0;
680 static void broadcast_shutdown_local(struct clock_event_device *bc,
681 struct clock_event_device *dev)
684 * For hrtimer based broadcasting we cannot shutdown the cpu
685 * local device if our own event is the first one to expire or
686 * if we own the broadcast timer.
688 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
689 if (broadcast_needs_cpu(bc, smp_processor_id()))
690 return;
691 if (dev->next_event.tv64 < bc->next_event.tv64)
692 return;
694 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
697 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
699 struct clock_event_device *bc, *dev;
700 int cpu, ret = 0;
701 ktime_t now;
704 * If there is no broadcast device, tell the caller not to go
705 * into deep idle.
707 if (!tick_broadcast_device.evtdev)
708 return -EBUSY;
710 dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
712 raw_spin_lock(&tick_broadcast_lock);
713 bc = tick_broadcast_device.evtdev;
714 cpu = smp_processor_id();
716 if (state == TICK_BROADCAST_ENTER) {
718 * If the current CPU owns the hrtimer broadcast
719 * mechanism, it cannot go deep idle and we do not add
720 * the CPU to the broadcast mask. We don't have to go
721 * through the EXIT path as the local timer is not
722 * shutdown.
724 ret = broadcast_needs_cpu(bc, cpu);
725 if (ret)
726 goto out;
729 * If the broadcast device is in periodic mode, we
730 * return.
732 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
733 /* If it is a hrtimer based broadcast, return busy */
734 if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
735 ret = -EBUSY;
736 goto out;
739 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
740 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
742 /* Conditionally shut down the local timer. */
743 broadcast_shutdown_local(bc, dev);
746 * We only reprogram the broadcast timer if we
747 * did not mark ourself in the force mask and
748 * if the cpu local event is earlier than the
749 * broadcast event. If the current CPU is in
750 * the force mask, then we are going to be
751 * woken by the IPI right away; we return
752 * busy, so the CPU does not try to go deep
753 * idle.
755 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
756 ret = -EBUSY;
757 } else if (dev->next_event.tv64 < bc->next_event.tv64) {
758 tick_broadcast_set_event(bc, cpu, dev->next_event);
760 * In case of hrtimer broadcasts the
761 * programming might have moved the
762 * timer to this cpu. If yes, remove
763 * us from the broadcast mask and
764 * return busy.
766 ret = broadcast_needs_cpu(bc, cpu);
767 if (ret) {
768 cpumask_clear_cpu(cpu,
769 tick_broadcast_oneshot_mask);
773 } else {
774 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
775 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
777 * The cpu which was handling the broadcast
778 * timer marked this cpu in the broadcast
779 * pending mask and fired the broadcast
780 * IPI. So we are going to handle the expired
781 * event anyway via the broadcast IPI
782 * handler. No need to reprogram the timer
783 * with an already expired event.
785 if (cpumask_test_and_clear_cpu(cpu,
786 tick_broadcast_pending_mask))
787 goto out;
790 * Bail out if there is no next event.
792 if (dev->next_event.tv64 == KTIME_MAX)
793 goto out;
795 * If the pending bit is not set, then we are
796 * either the CPU handling the broadcast
797 * interrupt or we got woken by something else.
799 * We are not longer in the broadcast mask, so
800 * if the cpu local expiry time is already
801 * reached, we would reprogram the cpu local
802 * timer with an already expired event.
804 * This can lead to a ping-pong when we return
805 * to idle and therefor rearm the broadcast
806 * timer before the cpu local timer was able
807 * to fire. This happens because the forced
808 * reprogramming makes sure that the event
809 * will happen in the future and depending on
810 * the min_delta setting this might be far
811 * enough out that the ping-pong starts.
813 * If the cpu local next_event has expired
814 * then we know that the broadcast timer
815 * next_event has expired as well and
816 * broadcast is about to be handled. So we
817 * avoid reprogramming and enforce that the
818 * broadcast handler, which did not run yet,
819 * will invoke the cpu local handler.
821 * We cannot call the handler directly from
822 * here, because we might be in a NOHZ phase
823 * and we did not go through the irq_enter()
824 * nohz fixups.
826 now = ktime_get();
827 if (dev->next_event.tv64 <= now.tv64) {
828 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
829 goto out;
832 * We got woken by something else. Reprogram
833 * the cpu local timer device.
835 tick_program_event(dev->next_event, 1);
838 out:
839 raw_spin_unlock(&tick_broadcast_lock);
840 return ret;
844 * Reset the one shot broadcast for a cpu
846 * Called with tick_broadcast_lock held
848 static void tick_broadcast_clear_oneshot(int cpu)
850 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
851 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
854 static void tick_broadcast_init_next_event(struct cpumask *mask,
855 ktime_t expires)
857 struct tick_device *td;
858 int cpu;
860 for_each_cpu(cpu, mask) {
861 td = &per_cpu(tick_cpu_device, cpu);
862 if (td->evtdev)
863 td->evtdev->next_event = expires;
868 * tick_broadcast_setup_oneshot - setup the broadcast device
870 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
872 int cpu = smp_processor_id();
874 /* Set it up only once ! */
875 if (bc->event_handler != tick_handle_oneshot_broadcast) {
876 int was_periodic = clockevent_state_periodic(bc);
878 bc->event_handler = tick_handle_oneshot_broadcast;
881 * We must be careful here. There might be other CPUs
882 * waiting for periodic broadcast. We need to set the
883 * oneshot_mask bits for those and program the
884 * broadcast device to fire.
886 cpumask_copy(tmpmask, tick_broadcast_mask);
887 cpumask_clear_cpu(cpu, tmpmask);
888 cpumask_or(tick_broadcast_oneshot_mask,
889 tick_broadcast_oneshot_mask, tmpmask);
891 if (was_periodic && !cpumask_empty(tmpmask)) {
892 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
893 tick_broadcast_init_next_event(tmpmask,
894 tick_next_period);
895 tick_broadcast_set_event(bc, cpu, tick_next_period);
896 } else
897 bc->next_event.tv64 = KTIME_MAX;
898 } else {
900 * The first cpu which switches to oneshot mode sets
901 * the bit for all other cpus which are in the general
902 * (periodic) broadcast mask. So the bit is set and
903 * would prevent the first broadcast enter after this
904 * to program the bc device.
906 tick_broadcast_clear_oneshot(cpu);
911 * Select oneshot operating mode for the broadcast device
913 void tick_broadcast_switch_to_oneshot(void)
915 struct clock_event_device *bc;
916 unsigned long flags;
918 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
920 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
921 bc = tick_broadcast_device.evtdev;
922 if (bc)
923 tick_broadcast_setup_oneshot(bc);
925 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
928 #ifdef CONFIG_HOTPLUG_CPU
929 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
931 struct clock_event_device *bc;
932 unsigned long flags;
934 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
935 bc = tick_broadcast_device.evtdev;
937 if (bc && broadcast_needs_cpu(bc, deadcpu)) {
938 /* This moves the broadcast assignment to this CPU: */
939 clockevents_program_event(bc, bc->next_event, 1);
941 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
945 * Remove a dead CPU from broadcasting
947 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
949 unsigned long flags;
951 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
954 * Clear the broadcast masks for the dead cpu, but do not stop
955 * the broadcast device!
957 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
958 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
959 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
961 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
963 #endif
966 * Check, whether the broadcast device is in one shot mode
968 int tick_broadcast_oneshot_active(void)
970 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
974 * Check whether the broadcast device supports oneshot.
976 bool tick_broadcast_oneshot_available(void)
978 struct clock_event_device *bc = tick_broadcast_device.evtdev;
980 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
983 #else
984 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
986 struct clock_event_device *bc = tick_broadcast_device.evtdev;
988 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
989 return -EBUSY;
991 return 0;
993 #endif
995 void __init tick_broadcast_init(void)
997 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
998 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
999 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1000 #ifdef CONFIG_TICK_ONESHOT
1001 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1002 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1003 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1004 #endif