2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
36 * The most important data for readout fits into a single 64 byte
41 struct timekeeper timekeeper
;
42 } tk_core ____cacheline_aligned
;
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock
);
45 static struct timekeeper shadow_timekeeper
;
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
54 * See @update_fast_timekeeper() below.
58 struct tk_read_base base
[2];
61 static struct tk_fast tk_fast_mono ____cacheline_aligned
;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned
;
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended
;
67 static inline void tk_normalize_xtime(struct timekeeper
*tk
)
69 while (tk
->tkr_mono
.xtime_nsec
>= ((u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
)) {
70 tk
->tkr_mono
.xtime_nsec
-= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
75 static inline struct timespec64
tk_xtime(struct timekeeper
*tk
)
79 ts
.tv_sec
= tk
->xtime_sec
;
80 ts
.tv_nsec
= (long)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
84 static void tk_set_xtime(struct timekeeper
*tk
, const struct timespec64
*ts
)
86 tk
->xtime_sec
= ts
->tv_sec
;
87 tk
->tkr_mono
.xtime_nsec
= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
90 static void tk_xtime_add(struct timekeeper
*tk
, const struct timespec64
*ts
)
92 tk
->xtime_sec
+= ts
->tv_sec
;
93 tk
->tkr_mono
.xtime_nsec
+= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
94 tk_normalize_xtime(tk
);
97 static void tk_set_wall_to_mono(struct timekeeper
*tk
, struct timespec64 wtm
)
99 struct timespec64 tmp
;
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
105 set_normalized_timespec64(&tmp
, -tk
->wall_to_monotonic
.tv_sec
,
106 -tk
->wall_to_monotonic
.tv_nsec
);
107 WARN_ON_ONCE(tk
->offs_real
.tv64
!= timespec64_to_ktime(tmp
).tv64
);
108 tk
->wall_to_monotonic
= wtm
;
109 set_normalized_timespec64(&tmp
, -wtm
.tv_sec
, -wtm
.tv_nsec
);
110 tk
->offs_real
= timespec64_to_ktime(tmp
);
111 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tk
->tai_offset
, 0));
114 static inline void tk_update_sleep_time(struct timekeeper
*tk
, ktime_t delta
)
116 tk
->offs_boot
= ktime_add(tk
->offs_boot
, delta
);
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
122 static void timekeeping_check_update(struct timekeeper
*tk
, cycle_t offset
)
125 cycle_t max_cycles
= tk
->tkr_mono
.clock
->max_cycles
;
126 const char *name
= tk
->tkr_mono
.clock
->name
;
128 if (offset
> max_cycles
) {
129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 offset
, name
, max_cycles
);
131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
133 if (offset
> (max_cycles
>> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135 offset
, name
, max_cycles
>> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
140 if (tk
->underflow_seen
) {
141 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name
);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
145 tk
->last_warning
= jiffies
;
147 tk
->underflow_seen
= 0;
150 if (tk
->overflow_seen
) {
151 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name
);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
155 tk
->last_warning
= jiffies
;
157 tk
->overflow_seen
= 0;
161 static inline cycle_t
timekeeping_get_delta(struct tk_read_base
*tkr
)
163 struct timekeeper
*tk
= &tk_core
.timekeeper
;
164 cycle_t now
, last
, mask
, max
, delta
;
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
175 seq
= read_seqcount_begin(&tk_core
.seq
);
176 now
= tkr
->read(tkr
->clock
);
177 last
= tkr
->cycle_last
;
179 max
= tkr
->clock
->max_cycles
;
180 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
182 delta
= clocksource_delta(now
, last
, mask
);
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
188 if (unlikely((~delta
& mask
) < (mask
>> 3))) {
189 tk
->underflow_seen
= 1;
193 /* Cap delta value to the max_cycles values to avoid mult overflows */
194 if (unlikely(delta
> max
)) {
195 tk
->overflow_seen
= 1;
196 delta
= tkr
->clock
->max_cycles
;
202 static inline void timekeeping_check_update(struct timekeeper
*tk
, cycle_t offset
)
205 static inline cycle_t
timekeeping_get_delta(struct tk_read_base
*tkr
)
207 cycle_t cycle_now
, delta
;
209 /* read clocksource */
210 cycle_now
= tkr
->read(tkr
->clock
);
212 /* calculate the delta since the last update_wall_time */
213 delta
= clocksource_delta(cycle_now
, tkr
->cycle_last
, tkr
->mask
);
220 * tk_setup_internals - Set up internals to use clocksource clock.
222 * @tk: The target timekeeper to setup.
223 * @clock: Pointer to clocksource.
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
228 * Unless you're the timekeeping code, you should not be using this!
230 static void tk_setup_internals(struct timekeeper
*tk
, struct clocksource
*clock
)
233 u64 tmp
, ntpinterval
;
234 struct clocksource
*old_clock
;
236 old_clock
= tk
->tkr_mono
.clock
;
237 tk
->tkr_mono
.clock
= clock
;
238 tk
->tkr_mono
.read
= clock
->read
;
239 tk
->tkr_mono
.mask
= clock
->mask
;
240 tk
->tkr_mono
.cycle_last
= tk
->tkr_mono
.read(clock
);
242 tk
->tkr_raw
.clock
= clock
;
243 tk
->tkr_raw
.read
= clock
->read
;
244 tk
->tkr_raw
.mask
= clock
->mask
;
245 tk
->tkr_raw
.cycle_last
= tk
->tkr_mono
.cycle_last
;
247 /* Do the ns -> cycle conversion first, using original mult */
248 tmp
= NTP_INTERVAL_LENGTH
;
249 tmp
<<= clock
->shift
;
251 tmp
+= clock
->mult
/2;
252 do_div(tmp
, clock
->mult
);
256 interval
= (cycle_t
) tmp
;
257 tk
->cycle_interval
= interval
;
259 /* Go back from cycles -> shifted ns */
260 tk
->xtime_interval
= (u64
) interval
* clock
->mult
;
261 tk
->xtime_remainder
= ntpinterval
- tk
->xtime_interval
;
263 ((u64
) interval
* clock
->mult
) >> clock
->shift
;
265 /* if changing clocks, convert xtime_nsec shift units */
267 int shift_change
= clock
->shift
- old_clock
->shift
;
268 if (shift_change
< 0)
269 tk
->tkr_mono
.xtime_nsec
>>= -shift_change
;
271 tk
->tkr_mono
.xtime_nsec
<<= shift_change
;
273 tk
->tkr_raw
.xtime_nsec
= 0;
275 tk
->tkr_mono
.shift
= clock
->shift
;
276 tk
->tkr_raw
.shift
= clock
->shift
;
279 tk
->ntp_error_shift
= NTP_SCALE_SHIFT
- clock
->shift
;
280 tk
->ntp_tick
= ntpinterval
<< tk
->ntp_error_shift
;
283 * The timekeeper keeps its own mult values for the currently
284 * active clocksource. These value will be adjusted via NTP
285 * to counteract clock drifting.
287 tk
->tkr_mono
.mult
= clock
->mult
;
288 tk
->tkr_raw
.mult
= clock
->mult
;
289 tk
->ntp_err_mult
= 0;
292 /* Timekeeper helper functions. */
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32
default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset
)(void) = default_arch_gettimeoffset
;
298 static inline u32
arch_gettimeoffset(void) { return 0; }
301 static inline s64
timekeeping_get_ns(struct tk_read_base
*tkr
)
306 delta
= timekeeping_get_delta(tkr
);
308 nsec
= (delta
* tkr
->mult
+ tkr
->xtime_nsec
) >> tkr
->shift
;
310 /* If arch requires, add in get_arch_timeoffset() */
311 return nsec
+ arch_gettimeoffset();
315 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
316 * @tkr: Timekeeping readout base from which we take the update
318 * We want to use this from any context including NMI and tracing /
319 * instrumenting the timekeeping code itself.
321 * Employ the latch technique; see @raw_write_seqcount_latch.
323 * So if a NMI hits the update of base[0] then it will use base[1]
324 * which is still consistent. In the worst case this can result is a
325 * slightly wrong timestamp (a few nanoseconds). See
326 * @ktime_get_mono_fast_ns.
328 static void update_fast_timekeeper(struct tk_read_base
*tkr
, struct tk_fast
*tkf
)
330 struct tk_read_base
*base
= tkf
->base
;
332 /* Force readers off to base[1] */
333 raw_write_seqcount_latch(&tkf
->seq
);
336 memcpy(base
, tkr
, sizeof(*base
));
338 /* Force readers back to base[0] */
339 raw_write_seqcount_latch(&tkf
->seq
);
342 memcpy(base
+ 1, base
, sizeof(*base
));
346 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
348 * This timestamp is not guaranteed to be monotonic across an update.
349 * The timestamp is calculated by:
351 * now = base_mono + clock_delta * slope
353 * So if the update lowers the slope, readers who are forced to the
354 * not yet updated second array are still using the old steeper slope.
363 * |12345678---> reader order
369 * So reader 6 will observe time going backwards versus reader 5.
371 * While other CPUs are likely to be able observe that, the only way
372 * for a CPU local observation is when an NMI hits in the middle of
373 * the update. Timestamps taken from that NMI context might be ahead
374 * of the following timestamps. Callers need to be aware of that and
377 static __always_inline u64
__ktime_get_fast_ns(struct tk_fast
*tkf
)
379 struct tk_read_base
*tkr
;
384 seq
= raw_read_seqcount_latch(&tkf
->seq
);
385 tkr
= tkf
->base
+ (seq
& 0x01);
386 now
= ktime_to_ns(tkr
->base
) + timekeeping_get_ns(tkr
);
387 } while (read_seqcount_retry(&tkf
->seq
, seq
));
392 u64
ktime_get_mono_fast_ns(void)
394 return __ktime_get_fast_ns(&tk_fast_mono
);
396 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns
);
398 u64
ktime_get_raw_fast_ns(void)
400 return __ktime_get_fast_ns(&tk_fast_raw
);
402 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns
);
404 /* Suspend-time cycles value for halted fast timekeeper. */
405 static cycle_t cycles_at_suspend
;
407 static cycle_t
dummy_clock_read(struct clocksource
*cs
)
409 return cycles_at_suspend
;
413 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
414 * @tk: Timekeeper to snapshot.
416 * It generally is unsafe to access the clocksource after timekeeping has been
417 * suspended, so take a snapshot of the readout base of @tk and use it as the
418 * fast timekeeper's readout base while suspended. It will return the same
419 * number of cycles every time until timekeeping is resumed at which time the
420 * proper readout base for the fast timekeeper will be restored automatically.
422 static void halt_fast_timekeeper(struct timekeeper
*tk
)
424 static struct tk_read_base tkr_dummy
;
425 struct tk_read_base
*tkr
= &tk
->tkr_mono
;
427 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
428 cycles_at_suspend
= tkr
->read(tkr
->clock
);
429 tkr_dummy
.read
= dummy_clock_read
;
430 update_fast_timekeeper(&tkr_dummy
, &tk_fast_mono
);
433 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
434 tkr_dummy
.read
= dummy_clock_read
;
435 update_fast_timekeeper(&tkr_dummy
, &tk_fast_raw
);
438 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
440 static inline void update_vsyscall(struct timekeeper
*tk
)
442 struct timespec xt
, wm
;
444 xt
= timespec64_to_timespec(tk_xtime(tk
));
445 wm
= timespec64_to_timespec(tk
->wall_to_monotonic
);
446 update_vsyscall_old(&xt
, &wm
, tk
->tkr_mono
.clock
, tk
->tkr_mono
.mult
,
447 tk
->tkr_mono
.cycle_last
);
450 static inline void old_vsyscall_fixup(struct timekeeper
*tk
)
455 * Store only full nanoseconds into xtime_nsec after rounding
456 * it up and add the remainder to the error difference.
457 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
458 * by truncating the remainder in vsyscalls. However, it causes
459 * additional work to be done in timekeeping_adjust(). Once
460 * the vsyscall implementations are converted to use xtime_nsec
461 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
462 * users are removed, this can be killed.
464 remainder
= tk
->tkr_mono
.xtime_nsec
& ((1ULL << tk
->tkr_mono
.shift
) - 1);
465 tk
->tkr_mono
.xtime_nsec
-= remainder
;
466 tk
->tkr_mono
.xtime_nsec
+= 1ULL << tk
->tkr_mono
.shift
;
467 tk
->ntp_error
+= remainder
<< tk
->ntp_error_shift
;
468 tk
->ntp_error
-= (1ULL << tk
->tkr_mono
.shift
) << tk
->ntp_error_shift
;
471 #define old_vsyscall_fixup(tk)
474 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain
);
476 static void update_pvclock_gtod(struct timekeeper
*tk
, bool was_set
)
478 raw_notifier_call_chain(&pvclock_gtod_chain
, was_set
, tk
);
482 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
484 int pvclock_gtod_register_notifier(struct notifier_block
*nb
)
486 struct timekeeper
*tk
= &tk_core
.timekeeper
;
490 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
491 ret
= raw_notifier_chain_register(&pvclock_gtod_chain
, nb
);
492 update_pvclock_gtod(tk
, true);
493 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
497 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier
);
500 * pvclock_gtod_unregister_notifier - unregister a pvclock
501 * timedata update listener
503 int pvclock_gtod_unregister_notifier(struct notifier_block
*nb
)
508 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
509 ret
= raw_notifier_chain_unregister(&pvclock_gtod_chain
, nb
);
510 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
514 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier
);
517 * tk_update_leap_state - helper to update the next_leap_ktime
519 static inline void tk_update_leap_state(struct timekeeper
*tk
)
521 tk
->next_leap_ktime
= ntp_get_next_leap();
522 if (tk
->next_leap_ktime
.tv64
!= KTIME_MAX
)
523 /* Convert to monotonic time */
524 tk
->next_leap_ktime
= ktime_sub(tk
->next_leap_ktime
, tk
->offs_real
);
528 * Update the ktime_t based scalar nsec members of the timekeeper
530 static inline void tk_update_ktime_data(struct timekeeper
*tk
)
536 * The xtime based monotonic readout is:
537 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
538 * The ktime based monotonic readout is:
539 * nsec = base_mono + now();
540 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
542 seconds
= (u64
)(tk
->xtime_sec
+ tk
->wall_to_monotonic
.tv_sec
);
543 nsec
= (u32
) tk
->wall_to_monotonic
.tv_nsec
;
544 tk
->tkr_mono
.base
= ns_to_ktime(seconds
* NSEC_PER_SEC
+ nsec
);
546 /* Update the monotonic raw base */
547 tk
->tkr_raw
.base
= timespec64_to_ktime(tk
->raw_time
);
550 * The sum of the nanoseconds portions of xtime and
551 * wall_to_monotonic can be greater/equal one second. Take
552 * this into account before updating tk->ktime_sec.
554 nsec
+= (u32
)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
555 if (nsec
>= NSEC_PER_SEC
)
557 tk
->ktime_sec
= seconds
;
560 /* must hold timekeeper_lock */
561 static void timekeeping_update(struct timekeeper
*tk
, unsigned int action
)
563 if (action
& TK_CLEAR_NTP
) {
568 tk_update_leap_state(tk
);
569 tk_update_ktime_data(tk
);
572 update_pvclock_gtod(tk
, action
& TK_CLOCK_WAS_SET
);
574 update_fast_timekeeper(&tk
->tkr_mono
, &tk_fast_mono
);
575 update_fast_timekeeper(&tk
->tkr_raw
, &tk_fast_raw
);
577 if (action
& TK_CLOCK_WAS_SET
)
578 tk
->clock_was_set_seq
++;
580 * The mirroring of the data to the shadow-timekeeper needs
581 * to happen last here to ensure we don't over-write the
582 * timekeeper structure on the next update with stale data
584 if (action
& TK_MIRROR
)
585 memcpy(&shadow_timekeeper
, &tk_core
.timekeeper
,
586 sizeof(tk_core
.timekeeper
));
590 * timekeeping_forward_now - update clock to the current time
592 * Forward the current clock to update its state since the last call to
593 * update_wall_time(). This is useful before significant clock changes,
594 * as it avoids having to deal with this time offset explicitly.
596 static void timekeeping_forward_now(struct timekeeper
*tk
)
598 struct clocksource
*clock
= tk
->tkr_mono
.clock
;
599 cycle_t cycle_now
, delta
;
602 cycle_now
= tk
->tkr_mono
.read(clock
);
603 delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
604 tk
->tkr_mono
.cycle_last
= cycle_now
;
605 tk
->tkr_raw
.cycle_last
= cycle_now
;
607 tk
->tkr_mono
.xtime_nsec
+= delta
* tk
->tkr_mono
.mult
;
609 /* If arch requires, add in get_arch_timeoffset() */
610 tk
->tkr_mono
.xtime_nsec
+= (u64
)arch_gettimeoffset() << tk
->tkr_mono
.shift
;
612 tk_normalize_xtime(tk
);
614 nsec
= clocksource_cyc2ns(delta
, tk
->tkr_raw
.mult
, tk
->tkr_raw
.shift
);
615 timespec64_add_ns(&tk
->raw_time
, nsec
);
619 * __getnstimeofday64 - Returns the time of day in a timespec64.
620 * @ts: pointer to the timespec to be set
622 * Updates the time of day in the timespec.
623 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
625 int __getnstimeofday64(struct timespec64
*ts
)
627 struct timekeeper
*tk
= &tk_core
.timekeeper
;
632 seq
= read_seqcount_begin(&tk_core
.seq
);
634 ts
->tv_sec
= tk
->xtime_sec
;
635 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
637 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
640 timespec64_add_ns(ts
, nsecs
);
643 * Do not bail out early, in case there were callers still using
644 * the value, even in the face of the WARN_ON.
646 if (unlikely(timekeeping_suspended
))
650 EXPORT_SYMBOL(__getnstimeofday64
);
653 * getnstimeofday64 - Returns the time of day in a timespec64.
654 * @ts: pointer to the timespec64 to be set
656 * Returns the time of day in a timespec64 (WARN if suspended).
658 void getnstimeofday64(struct timespec64
*ts
)
660 WARN_ON(__getnstimeofday64(ts
));
662 EXPORT_SYMBOL(getnstimeofday64
);
664 ktime_t
ktime_get(void)
666 struct timekeeper
*tk
= &tk_core
.timekeeper
;
671 WARN_ON(timekeeping_suspended
);
674 seq
= read_seqcount_begin(&tk_core
.seq
);
675 base
= tk
->tkr_mono
.base
;
676 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
678 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
680 return ktime_add_ns(base
, nsecs
);
682 EXPORT_SYMBOL_GPL(ktime_get
);
684 u32
ktime_get_resolution_ns(void)
686 struct timekeeper
*tk
= &tk_core
.timekeeper
;
690 WARN_ON(timekeeping_suspended
);
693 seq
= read_seqcount_begin(&tk_core
.seq
);
694 nsecs
= tk
->tkr_mono
.mult
>> tk
->tkr_mono
.shift
;
695 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
699 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns
);
701 static ktime_t
*offsets
[TK_OFFS_MAX
] = {
702 [TK_OFFS_REAL
] = &tk_core
.timekeeper
.offs_real
,
703 [TK_OFFS_BOOT
] = &tk_core
.timekeeper
.offs_boot
,
704 [TK_OFFS_TAI
] = &tk_core
.timekeeper
.offs_tai
,
707 ktime_t
ktime_get_with_offset(enum tk_offsets offs
)
709 struct timekeeper
*tk
= &tk_core
.timekeeper
;
711 ktime_t base
, *offset
= offsets
[offs
];
714 WARN_ON(timekeeping_suspended
);
717 seq
= read_seqcount_begin(&tk_core
.seq
);
718 base
= ktime_add(tk
->tkr_mono
.base
, *offset
);
719 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
721 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
723 return ktime_add_ns(base
, nsecs
);
726 EXPORT_SYMBOL_GPL(ktime_get_with_offset
);
729 * ktime_mono_to_any() - convert mononotic time to any other time
730 * @tmono: time to convert.
731 * @offs: which offset to use
733 ktime_t
ktime_mono_to_any(ktime_t tmono
, enum tk_offsets offs
)
735 ktime_t
*offset
= offsets
[offs
];
740 seq
= read_seqcount_begin(&tk_core
.seq
);
741 tconv
= ktime_add(tmono
, *offset
);
742 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
746 EXPORT_SYMBOL_GPL(ktime_mono_to_any
);
749 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
751 ktime_t
ktime_get_raw(void)
753 struct timekeeper
*tk
= &tk_core
.timekeeper
;
759 seq
= read_seqcount_begin(&tk_core
.seq
);
760 base
= tk
->tkr_raw
.base
;
761 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
763 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
765 return ktime_add_ns(base
, nsecs
);
767 EXPORT_SYMBOL_GPL(ktime_get_raw
);
770 * ktime_get_ts64 - get the monotonic clock in timespec64 format
771 * @ts: pointer to timespec variable
773 * The function calculates the monotonic clock from the realtime
774 * clock and the wall_to_monotonic offset and stores the result
775 * in normalized timespec64 format in the variable pointed to by @ts.
777 void ktime_get_ts64(struct timespec64
*ts
)
779 struct timekeeper
*tk
= &tk_core
.timekeeper
;
780 struct timespec64 tomono
;
784 WARN_ON(timekeeping_suspended
);
787 seq
= read_seqcount_begin(&tk_core
.seq
);
788 ts
->tv_sec
= tk
->xtime_sec
;
789 nsec
= timekeeping_get_ns(&tk
->tkr_mono
);
790 tomono
= tk
->wall_to_monotonic
;
792 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
794 ts
->tv_sec
+= tomono
.tv_sec
;
796 timespec64_add_ns(ts
, nsec
+ tomono
.tv_nsec
);
798 EXPORT_SYMBOL_GPL(ktime_get_ts64
);
801 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
803 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
804 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
805 * works on both 32 and 64 bit systems. On 32 bit systems the readout
806 * covers ~136 years of uptime which should be enough to prevent
807 * premature wrap arounds.
809 time64_t
ktime_get_seconds(void)
811 struct timekeeper
*tk
= &tk_core
.timekeeper
;
813 WARN_ON(timekeeping_suspended
);
814 return tk
->ktime_sec
;
816 EXPORT_SYMBOL_GPL(ktime_get_seconds
);
819 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
821 * Returns the wall clock seconds since 1970. This replaces the
822 * get_seconds() interface which is not y2038 safe on 32bit systems.
824 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
825 * 32bit systems the access must be protected with the sequence
826 * counter to provide "atomic" access to the 64bit tk->xtime_sec
829 time64_t
ktime_get_real_seconds(void)
831 struct timekeeper
*tk
= &tk_core
.timekeeper
;
835 if (IS_ENABLED(CONFIG_64BIT
))
836 return tk
->xtime_sec
;
839 seq
= read_seqcount_begin(&tk_core
.seq
);
840 seconds
= tk
->xtime_sec
;
842 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
846 EXPORT_SYMBOL_GPL(ktime_get_real_seconds
);
849 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
850 * but without the sequence counter protect. This internal function
851 * is called just when timekeeping lock is already held.
853 time64_t
__ktime_get_real_seconds(void)
855 struct timekeeper
*tk
= &tk_core
.timekeeper
;
857 return tk
->xtime_sec
;
861 #ifdef CONFIG_NTP_PPS
864 * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
865 * @ts_raw: pointer to the timespec to be set to raw monotonic time
866 * @ts_real: pointer to the timespec to be set to the time of day
868 * This function reads both the time of day and raw monotonic time at the
869 * same time atomically and stores the resulting timestamps in timespec
872 void ktime_get_raw_and_real_ts64(struct timespec64
*ts_raw
, struct timespec64
*ts_real
)
874 struct timekeeper
*tk
= &tk_core
.timekeeper
;
876 s64 nsecs_raw
, nsecs_real
;
878 WARN_ON_ONCE(timekeeping_suspended
);
881 seq
= read_seqcount_begin(&tk_core
.seq
);
883 *ts_raw
= tk
->raw_time
;
884 ts_real
->tv_sec
= tk
->xtime_sec
;
885 ts_real
->tv_nsec
= 0;
887 nsecs_raw
= timekeeping_get_ns(&tk
->tkr_raw
);
888 nsecs_real
= timekeeping_get_ns(&tk
->tkr_mono
);
890 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
892 timespec64_add_ns(ts_raw
, nsecs_raw
);
893 timespec64_add_ns(ts_real
, nsecs_real
);
895 EXPORT_SYMBOL(ktime_get_raw_and_real_ts64
);
897 #endif /* CONFIG_NTP_PPS */
900 * do_gettimeofday - Returns the time of day in a timeval
901 * @tv: pointer to the timeval to be set
903 * NOTE: Users should be converted to using getnstimeofday()
905 void do_gettimeofday(struct timeval
*tv
)
907 struct timespec64 now
;
909 getnstimeofday64(&now
);
910 tv
->tv_sec
= now
.tv_sec
;
911 tv
->tv_usec
= now
.tv_nsec
/1000;
913 EXPORT_SYMBOL(do_gettimeofday
);
916 * do_settimeofday64 - Sets the time of day.
917 * @ts: pointer to the timespec64 variable containing the new time
919 * Sets the time of day to the new time and update NTP and notify hrtimers
921 int do_settimeofday64(const struct timespec64
*ts
)
923 struct timekeeper
*tk
= &tk_core
.timekeeper
;
924 struct timespec64 ts_delta
, xt
;
928 if (!timespec64_valid_strict(ts
))
931 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
932 write_seqcount_begin(&tk_core
.seq
);
934 timekeeping_forward_now(tk
);
937 ts_delta
.tv_sec
= ts
->tv_sec
- xt
.tv_sec
;
938 ts_delta
.tv_nsec
= ts
->tv_nsec
- xt
.tv_nsec
;
940 if (timespec64_compare(&tk
->wall_to_monotonic
, &ts_delta
) > 0) {
945 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts_delta
));
947 tk_set_xtime(tk
, ts
);
949 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
951 write_seqcount_end(&tk_core
.seq
);
952 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
954 /* signal hrtimers about time change */
959 EXPORT_SYMBOL(do_settimeofday64
);
962 * timekeeping_inject_offset - Adds or subtracts from the current time.
963 * @tv: pointer to the timespec variable containing the offset
965 * Adds or subtracts an offset value from the current time.
967 int timekeeping_inject_offset(struct timespec
*ts
)
969 struct timekeeper
*tk
= &tk_core
.timekeeper
;
971 struct timespec64 ts64
, tmp
;
974 if (!timespec_inject_offset_valid(ts
))
977 ts64
= timespec_to_timespec64(*ts
);
979 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
980 write_seqcount_begin(&tk_core
.seq
);
982 timekeeping_forward_now(tk
);
984 /* Make sure the proposed value is valid */
985 tmp
= timespec64_add(tk_xtime(tk
), ts64
);
986 if (timespec64_compare(&tk
->wall_to_monotonic
, &ts64
) > 0 ||
987 !timespec64_valid_strict(&tmp
)) {
992 tk_xtime_add(tk
, &ts64
);
993 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts64
));
995 error
: /* even if we error out, we forwarded the time, so call update */
996 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
998 write_seqcount_end(&tk_core
.seq
);
999 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1001 /* signal hrtimers about time change */
1006 EXPORT_SYMBOL(timekeeping_inject_offset
);
1010 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1013 s32
timekeeping_get_tai_offset(void)
1015 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1020 seq
= read_seqcount_begin(&tk_core
.seq
);
1021 ret
= tk
->tai_offset
;
1022 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1028 * __timekeeping_set_tai_offset - Lock free worker function
1031 static void __timekeeping_set_tai_offset(struct timekeeper
*tk
, s32 tai_offset
)
1033 tk
->tai_offset
= tai_offset
;
1034 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tai_offset
, 0));
1038 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1041 void timekeeping_set_tai_offset(s32 tai_offset
)
1043 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1044 unsigned long flags
;
1046 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1047 write_seqcount_begin(&tk_core
.seq
);
1048 __timekeeping_set_tai_offset(tk
, tai_offset
);
1049 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1050 write_seqcount_end(&tk_core
.seq
);
1051 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1056 * change_clocksource - Swaps clocksources if a new one is available
1058 * Accumulates current time interval and initializes new clocksource
1060 static int change_clocksource(void *data
)
1062 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1063 struct clocksource
*new, *old
;
1064 unsigned long flags
;
1066 new = (struct clocksource
*) data
;
1068 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1069 write_seqcount_begin(&tk_core
.seq
);
1071 timekeeping_forward_now(tk
);
1073 * If the cs is in module, get a module reference. Succeeds
1074 * for built-in code (owner == NULL) as well.
1076 if (try_module_get(new->owner
)) {
1077 if (!new->enable
|| new->enable(new) == 0) {
1078 old
= tk
->tkr_mono
.clock
;
1079 tk_setup_internals(tk
, new);
1082 module_put(old
->owner
);
1084 module_put(new->owner
);
1087 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1089 write_seqcount_end(&tk_core
.seq
);
1090 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1096 * timekeeping_notify - Install a new clock source
1097 * @clock: pointer to the clock source
1099 * This function is called from clocksource.c after a new, better clock
1100 * source has been registered. The caller holds the clocksource_mutex.
1102 int timekeeping_notify(struct clocksource
*clock
)
1104 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1106 if (tk
->tkr_mono
.clock
== clock
)
1108 stop_machine(change_clocksource
, clock
, NULL
);
1109 tick_clock_notify();
1110 return tk
->tkr_mono
.clock
== clock
? 0 : -1;
1114 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1115 * @ts: pointer to the timespec64 to be set
1117 * Returns the raw monotonic time (completely un-modified by ntp)
1119 void getrawmonotonic64(struct timespec64
*ts
)
1121 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1122 struct timespec64 ts64
;
1127 seq
= read_seqcount_begin(&tk_core
.seq
);
1128 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
1129 ts64
= tk
->raw_time
;
1131 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1133 timespec64_add_ns(&ts64
, nsecs
);
1136 EXPORT_SYMBOL(getrawmonotonic64
);
1140 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1142 int timekeeping_valid_for_hres(void)
1144 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1149 seq
= read_seqcount_begin(&tk_core
.seq
);
1151 ret
= tk
->tkr_mono
.clock
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
;
1153 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1159 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1161 u64
timekeeping_max_deferment(void)
1163 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1168 seq
= read_seqcount_begin(&tk_core
.seq
);
1170 ret
= tk
->tkr_mono
.clock
->max_idle_ns
;
1172 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1178 * read_persistent_clock - Return time from the persistent clock.
1180 * Weak dummy function for arches that do not yet support it.
1181 * Reads the time from the battery backed persistent clock.
1182 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1184 * XXX - Do be sure to remove it once all arches implement it.
1186 void __weak
read_persistent_clock(struct timespec
*ts
)
1192 void __weak
read_persistent_clock64(struct timespec64
*ts64
)
1196 read_persistent_clock(&ts
);
1197 *ts64
= timespec_to_timespec64(ts
);
1201 * read_boot_clock64 - Return time of the system start.
1203 * Weak dummy function for arches that do not yet support it.
1204 * Function to read the exact time the system has been started.
1205 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1207 * XXX - Do be sure to remove it once all arches implement it.
1209 void __weak
read_boot_clock64(struct timespec64
*ts
)
1215 /* Flag for if timekeeping_resume() has injected sleeptime */
1216 static bool sleeptime_injected
;
1218 /* Flag for if there is a persistent clock on this platform */
1219 static bool persistent_clock_exists
;
1222 * timekeeping_init - Initializes the clocksource and common timekeeping values
1224 void __init
timekeeping_init(void)
1226 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1227 struct clocksource
*clock
;
1228 unsigned long flags
;
1229 struct timespec64 now
, boot
, tmp
;
1231 read_persistent_clock64(&now
);
1232 if (!timespec64_valid_strict(&now
)) {
1233 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1234 " Check your CMOS/BIOS settings.\n");
1237 } else if (now
.tv_sec
|| now
.tv_nsec
)
1238 persistent_clock_exists
= true;
1240 read_boot_clock64(&boot
);
1241 if (!timespec64_valid_strict(&boot
)) {
1242 pr_warn("WARNING: Boot clock returned invalid value!\n"
1243 " Check your CMOS/BIOS settings.\n");
1248 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1249 write_seqcount_begin(&tk_core
.seq
);
1252 clock
= clocksource_default_clock();
1254 clock
->enable(clock
);
1255 tk_setup_internals(tk
, clock
);
1257 tk_set_xtime(tk
, &now
);
1258 tk
->raw_time
.tv_sec
= 0;
1259 tk
->raw_time
.tv_nsec
= 0;
1260 if (boot
.tv_sec
== 0 && boot
.tv_nsec
== 0)
1261 boot
= tk_xtime(tk
);
1263 set_normalized_timespec64(&tmp
, -boot
.tv_sec
, -boot
.tv_nsec
);
1264 tk_set_wall_to_mono(tk
, tmp
);
1266 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1268 write_seqcount_end(&tk_core
.seq
);
1269 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1272 /* time in seconds when suspend began for persistent clock */
1273 static struct timespec64 timekeeping_suspend_time
;
1276 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1277 * @delta: pointer to a timespec delta value
1279 * Takes a timespec offset measuring a suspend interval and properly
1280 * adds the sleep offset to the timekeeping variables.
1282 static void __timekeeping_inject_sleeptime(struct timekeeper
*tk
,
1283 struct timespec64
*delta
)
1285 if (!timespec64_valid_strict(delta
)) {
1286 printk_deferred(KERN_WARNING
1287 "__timekeeping_inject_sleeptime: Invalid "
1288 "sleep delta value!\n");
1291 tk_xtime_add(tk
, delta
);
1292 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, *delta
));
1293 tk_update_sleep_time(tk
, timespec64_to_ktime(*delta
));
1294 tk_debug_account_sleep_time(delta
);
1297 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1299 * We have three kinds of time sources to use for sleep time
1300 * injection, the preference order is:
1301 * 1) non-stop clocksource
1302 * 2) persistent clock (ie: RTC accessible when irqs are off)
1305 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1306 * If system has neither 1) nor 2), 3) will be used finally.
1309 * If timekeeping has injected sleeptime via either 1) or 2),
1310 * 3) becomes needless, so in this case we don't need to call
1311 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1314 bool timekeeping_rtc_skipresume(void)
1316 return sleeptime_injected
;
1320 * 1) can be determined whether to use or not only when doing
1321 * timekeeping_resume() which is invoked after rtc_suspend(),
1322 * so we can't skip rtc_suspend() surely if system has 1).
1324 * But if system has 2), 2) will definitely be used, so in this
1325 * case we don't need to call rtc_suspend(), and this is what
1326 * timekeeping_rtc_skipsuspend() means.
1328 bool timekeeping_rtc_skipsuspend(void)
1330 return persistent_clock_exists
;
1334 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1335 * @delta: pointer to a timespec64 delta value
1337 * This hook is for architectures that cannot support read_persistent_clock64
1338 * because their RTC/persistent clock is only accessible when irqs are enabled.
1339 * and also don't have an effective nonstop clocksource.
1341 * This function should only be called by rtc_resume(), and allows
1342 * a suspend offset to be injected into the timekeeping values.
1344 void timekeeping_inject_sleeptime64(struct timespec64
*delta
)
1346 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1347 unsigned long flags
;
1349 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1350 write_seqcount_begin(&tk_core
.seq
);
1352 timekeeping_forward_now(tk
);
1354 __timekeeping_inject_sleeptime(tk
, delta
);
1356 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1358 write_seqcount_end(&tk_core
.seq
);
1359 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1361 /* signal hrtimers about time change */
1367 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1369 void timekeeping_resume(void)
1371 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1372 struct clocksource
*clock
= tk
->tkr_mono
.clock
;
1373 unsigned long flags
;
1374 struct timespec64 ts_new
, ts_delta
;
1375 cycle_t cycle_now
, cycle_delta
;
1377 sleeptime_injected
= false;
1378 read_persistent_clock64(&ts_new
);
1380 clockevents_resume();
1381 clocksource_resume();
1383 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1384 write_seqcount_begin(&tk_core
.seq
);
1387 * After system resumes, we need to calculate the suspended time and
1388 * compensate it for the OS time. There are 3 sources that could be
1389 * used: Nonstop clocksource during suspend, persistent clock and rtc
1392 * One specific platform may have 1 or 2 or all of them, and the
1393 * preference will be:
1394 * suspend-nonstop clocksource -> persistent clock -> rtc
1395 * The less preferred source will only be tried if there is no better
1396 * usable source. The rtc part is handled separately in rtc core code.
1398 cycle_now
= tk
->tkr_mono
.read(clock
);
1399 if ((clock
->flags
& CLOCK_SOURCE_SUSPEND_NONSTOP
) &&
1400 cycle_now
> tk
->tkr_mono
.cycle_last
) {
1401 u64 num
, max
= ULLONG_MAX
;
1402 u32 mult
= clock
->mult
;
1403 u32 shift
= clock
->shift
;
1406 cycle_delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
,
1410 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1411 * suspended time is too long. In that case we need do the
1412 * 64 bits math carefully
1415 if (cycle_delta
> max
) {
1416 num
= div64_u64(cycle_delta
, max
);
1417 nsec
= (((u64
) max
* mult
) >> shift
) * num
;
1418 cycle_delta
-= num
* max
;
1420 nsec
+= ((u64
) cycle_delta
* mult
) >> shift
;
1422 ts_delta
= ns_to_timespec64(nsec
);
1423 sleeptime_injected
= true;
1424 } else if (timespec64_compare(&ts_new
, &timekeeping_suspend_time
) > 0) {
1425 ts_delta
= timespec64_sub(ts_new
, timekeeping_suspend_time
);
1426 sleeptime_injected
= true;
1429 if (sleeptime_injected
)
1430 __timekeeping_inject_sleeptime(tk
, &ts_delta
);
1432 /* Re-base the last cycle value */
1433 tk
->tkr_mono
.cycle_last
= cycle_now
;
1434 tk
->tkr_raw
.cycle_last
= cycle_now
;
1437 timekeeping_suspended
= 0;
1438 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1439 write_seqcount_end(&tk_core
.seq
);
1440 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1442 touch_softlockup_watchdog();
1448 int timekeeping_suspend(void)
1450 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1451 unsigned long flags
;
1452 struct timespec64 delta
, delta_delta
;
1453 static struct timespec64 old_delta
;
1455 read_persistent_clock64(&timekeeping_suspend_time
);
1458 * On some systems the persistent_clock can not be detected at
1459 * timekeeping_init by its return value, so if we see a valid
1460 * value returned, update the persistent_clock_exists flag.
1462 if (timekeeping_suspend_time
.tv_sec
|| timekeeping_suspend_time
.tv_nsec
)
1463 persistent_clock_exists
= true;
1465 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1466 write_seqcount_begin(&tk_core
.seq
);
1467 timekeeping_forward_now(tk
);
1468 timekeeping_suspended
= 1;
1470 if (persistent_clock_exists
) {
1472 * To avoid drift caused by repeated suspend/resumes,
1473 * which each can add ~1 second drift error,
1474 * try to compensate so the difference in system time
1475 * and persistent_clock time stays close to constant.
1477 delta
= timespec64_sub(tk_xtime(tk
), timekeeping_suspend_time
);
1478 delta_delta
= timespec64_sub(delta
, old_delta
);
1479 if (abs(delta_delta
.tv_sec
) >= 2) {
1481 * if delta_delta is too large, assume time correction
1482 * has occurred and set old_delta to the current delta.
1486 /* Otherwise try to adjust old_system to compensate */
1487 timekeeping_suspend_time
=
1488 timespec64_add(timekeeping_suspend_time
, delta_delta
);
1492 timekeeping_update(tk
, TK_MIRROR
);
1493 halt_fast_timekeeper(tk
);
1494 write_seqcount_end(&tk_core
.seq
);
1495 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1498 clocksource_suspend();
1499 clockevents_suspend();
1504 /* sysfs resume/suspend bits for timekeeping */
1505 static struct syscore_ops timekeeping_syscore_ops
= {
1506 .resume
= timekeeping_resume
,
1507 .suspend
= timekeeping_suspend
,
1510 static int __init
timekeeping_init_ops(void)
1512 register_syscore_ops(&timekeeping_syscore_ops
);
1515 device_initcall(timekeeping_init_ops
);
1518 * Apply a multiplier adjustment to the timekeeper
1520 static __always_inline
void timekeeping_apply_adjustment(struct timekeeper
*tk
,
1525 s64 interval
= tk
->cycle_interval
;
1529 mult_adj
= -mult_adj
;
1530 interval
= -interval
;
1533 mult_adj
<<= adj_scale
;
1534 interval
<<= adj_scale
;
1535 offset
<<= adj_scale
;
1538 * So the following can be confusing.
1540 * To keep things simple, lets assume mult_adj == 1 for now.
1542 * When mult_adj != 1, remember that the interval and offset values
1543 * have been appropriately scaled so the math is the same.
1545 * The basic idea here is that we're increasing the multiplier
1546 * by one, this causes the xtime_interval to be incremented by
1547 * one cycle_interval. This is because:
1548 * xtime_interval = cycle_interval * mult
1549 * So if mult is being incremented by one:
1550 * xtime_interval = cycle_interval * (mult + 1)
1552 * xtime_interval = (cycle_interval * mult) + cycle_interval
1553 * Which can be shortened to:
1554 * xtime_interval += cycle_interval
1556 * So offset stores the non-accumulated cycles. Thus the current
1557 * time (in shifted nanoseconds) is:
1558 * now = (offset * adj) + xtime_nsec
1559 * Now, even though we're adjusting the clock frequency, we have
1560 * to keep time consistent. In other words, we can't jump back
1561 * in time, and we also want to avoid jumping forward in time.
1563 * So given the same offset value, we need the time to be the same
1564 * both before and after the freq adjustment.
1565 * now = (offset * adj_1) + xtime_nsec_1
1566 * now = (offset * adj_2) + xtime_nsec_2
1568 * (offset * adj_1) + xtime_nsec_1 =
1569 * (offset * adj_2) + xtime_nsec_2
1573 * (offset * adj_1) + xtime_nsec_1 =
1574 * (offset * (adj_1+1)) + xtime_nsec_2
1575 * (offset * adj_1) + xtime_nsec_1 =
1576 * (offset * adj_1) + offset + xtime_nsec_2
1577 * Canceling the sides:
1578 * xtime_nsec_1 = offset + xtime_nsec_2
1580 * xtime_nsec_2 = xtime_nsec_1 - offset
1581 * Which simplfies to:
1582 * xtime_nsec -= offset
1584 * XXX - TODO: Doc ntp_error calculation.
1586 if ((mult_adj
> 0) && (tk
->tkr_mono
.mult
+ mult_adj
< mult_adj
)) {
1587 /* NTP adjustment caused clocksource mult overflow */
1592 tk
->tkr_mono
.mult
+= mult_adj
;
1593 tk
->xtime_interval
+= interval
;
1594 tk
->tkr_mono
.xtime_nsec
-= offset
;
1595 tk
->ntp_error
-= (interval
- offset
) << tk
->ntp_error_shift
;
1599 * Calculate the multiplier adjustment needed to match the frequency
1602 static __always_inline
void timekeeping_freqadjust(struct timekeeper
*tk
,
1605 s64 interval
= tk
->cycle_interval
;
1606 s64 xinterval
= tk
->xtime_interval
;
1607 u32 base
= tk
->tkr_mono
.clock
->mult
;
1608 u32 max
= tk
->tkr_mono
.clock
->maxadj
;
1609 u32 cur_adj
= tk
->tkr_mono
.mult
;
1614 /* Remove any current error adj from freq calculation */
1615 if (tk
->ntp_err_mult
)
1616 xinterval
-= tk
->cycle_interval
;
1618 tk
->ntp_tick
= ntp_tick_length();
1620 /* Calculate current error per tick */
1621 tick_error
= ntp_tick_length() >> tk
->ntp_error_shift
;
1622 tick_error
-= (xinterval
+ tk
->xtime_remainder
);
1624 /* Don't worry about correcting it if its small */
1625 if (likely((tick_error
>= 0) && (tick_error
<= interval
)))
1628 /* preserve the direction of correction */
1629 negative
= (tick_error
< 0);
1631 /* If any adjustment would pass the max, just return */
1632 if (negative
&& (cur_adj
- 1) <= (base
- max
))
1634 if (!negative
&& (cur_adj
+ 1) >= (base
+ max
))
1637 * Sort out the magnitude of the correction, but
1638 * avoid making so large a correction that we go
1639 * over the max adjustment.
1642 tick_error
= abs(tick_error
);
1643 while (tick_error
> interval
) {
1644 u32 adj
= 1 << (adj_scale
+ 1);
1646 /* Check if adjustment gets us within 1 unit from the max */
1647 if (negative
&& (cur_adj
- adj
) <= (base
- max
))
1649 if (!negative
&& (cur_adj
+ adj
) >= (base
+ max
))
1656 /* scale the corrections */
1657 timekeeping_apply_adjustment(tk
, offset
, negative
, adj_scale
);
1661 * Adjust the timekeeper's multiplier to the correct frequency
1662 * and also to reduce the accumulated error value.
1664 static void timekeeping_adjust(struct timekeeper
*tk
, s64 offset
)
1666 /* Correct for the current frequency error */
1667 timekeeping_freqadjust(tk
, offset
);
1669 /* Next make a small adjustment to fix any cumulative error */
1670 if (!tk
->ntp_err_mult
&& (tk
->ntp_error
> 0)) {
1671 tk
->ntp_err_mult
= 1;
1672 timekeeping_apply_adjustment(tk
, offset
, 0, 0);
1673 } else if (tk
->ntp_err_mult
&& (tk
->ntp_error
<= 0)) {
1674 /* Undo any existing error adjustment */
1675 timekeeping_apply_adjustment(tk
, offset
, 1, 0);
1676 tk
->ntp_err_mult
= 0;
1679 if (unlikely(tk
->tkr_mono
.clock
->maxadj
&&
1680 (abs(tk
->tkr_mono
.mult
- tk
->tkr_mono
.clock
->mult
)
1681 > tk
->tkr_mono
.clock
->maxadj
))) {
1682 printk_once(KERN_WARNING
1683 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1684 tk
->tkr_mono
.clock
->name
, (long)tk
->tkr_mono
.mult
,
1685 (long)tk
->tkr_mono
.clock
->mult
+ tk
->tkr_mono
.clock
->maxadj
);
1689 * It may be possible that when we entered this function, xtime_nsec
1690 * was very small. Further, if we're slightly speeding the clocksource
1691 * in the code above, its possible the required corrective factor to
1692 * xtime_nsec could cause it to underflow.
1694 * Now, since we already accumulated the second, cannot simply roll
1695 * the accumulated second back, since the NTP subsystem has been
1696 * notified via second_overflow. So instead we push xtime_nsec forward
1697 * by the amount we underflowed, and add that amount into the error.
1699 * We'll correct this error next time through this function, when
1700 * xtime_nsec is not as small.
1702 if (unlikely((s64
)tk
->tkr_mono
.xtime_nsec
< 0)) {
1703 s64 neg
= -(s64
)tk
->tkr_mono
.xtime_nsec
;
1704 tk
->tkr_mono
.xtime_nsec
= 0;
1705 tk
->ntp_error
+= neg
<< tk
->ntp_error_shift
;
1710 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1712 * Helper function that accumulates the nsecs greater than a second
1713 * from the xtime_nsec field to the xtime_secs field.
1714 * It also calls into the NTP code to handle leapsecond processing.
1717 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper
*tk
)
1719 u64 nsecps
= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
1720 unsigned int clock_set
= 0;
1722 while (tk
->tkr_mono
.xtime_nsec
>= nsecps
) {
1725 tk
->tkr_mono
.xtime_nsec
-= nsecps
;
1728 /* Figure out if its a leap sec and apply if needed */
1729 leap
= second_overflow(tk
->xtime_sec
);
1730 if (unlikely(leap
)) {
1731 struct timespec64 ts
;
1733 tk
->xtime_sec
+= leap
;
1737 tk_set_wall_to_mono(tk
,
1738 timespec64_sub(tk
->wall_to_monotonic
, ts
));
1740 __timekeeping_set_tai_offset(tk
, tk
->tai_offset
- leap
);
1742 clock_set
= TK_CLOCK_WAS_SET
;
1749 * logarithmic_accumulation - shifted accumulation of cycles
1751 * This functions accumulates a shifted interval of cycles into
1752 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1755 * Returns the unconsumed cycles.
1757 static cycle_t
logarithmic_accumulation(struct timekeeper
*tk
, cycle_t offset
,
1759 unsigned int *clock_set
)
1761 cycle_t interval
= tk
->cycle_interval
<< shift
;
1764 /* If the offset is smaller than a shifted interval, do nothing */
1765 if (offset
< interval
)
1768 /* Accumulate one shifted interval */
1770 tk
->tkr_mono
.cycle_last
+= interval
;
1771 tk
->tkr_raw
.cycle_last
+= interval
;
1773 tk
->tkr_mono
.xtime_nsec
+= tk
->xtime_interval
<< shift
;
1774 *clock_set
|= accumulate_nsecs_to_secs(tk
);
1776 /* Accumulate raw time */
1777 raw_nsecs
= (u64
)tk
->raw_interval
<< shift
;
1778 raw_nsecs
+= tk
->raw_time
.tv_nsec
;
1779 if (raw_nsecs
>= NSEC_PER_SEC
) {
1780 u64 raw_secs
= raw_nsecs
;
1781 raw_nsecs
= do_div(raw_secs
, NSEC_PER_SEC
);
1782 tk
->raw_time
.tv_sec
+= raw_secs
;
1784 tk
->raw_time
.tv_nsec
= raw_nsecs
;
1786 /* Accumulate error between NTP and clock interval */
1787 tk
->ntp_error
+= tk
->ntp_tick
<< shift
;
1788 tk
->ntp_error
-= (tk
->xtime_interval
+ tk
->xtime_remainder
) <<
1789 (tk
->ntp_error_shift
+ shift
);
1795 * update_wall_time - Uses the current clocksource to increment the wall time
1798 void update_wall_time(void)
1800 struct timekeeper
*real_tk
= &tk_core
.timekeeper
;
1801 struct timekeeper
*tk
= &shadow_timekeeper
;
1803 int shift
= 0, maxshift
;
1804 unsigned int clock_set
= 0;
1805 unsigned long flags
;
1807 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1809 /* Make sure we're fully resumed: */
1810 if (unlikely(timekeeping_suspended
))
1813 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1814 offset
= real_tk
->cycle_interval
;
1816 offset
= clocksource_delta(tk
->tkr_mono
.read(tk
->tkr_mono
.clock
),
1817 tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
1820 /* Check if there's really nothing to do */
1821 if (offset
< real_tk
->cycle_interval
)
1824 /* Do some additional sanity checking */
1825 timekeeping_check_update(real_tk
, offset
);
1828 * With NO_HZ we may have to accumulate many cycle_intervals
1829 * (think "ticks") worth of time at once. To do this efficiently,
1830 * we calculate the largest doubling multiple of cycle_intervals
1831 * that is smaller than the offset. We then accumulate that
1832 * chunk in one go, and then try to consume the next smaller
1835 shift
= ilog2(offset
) - ilog2(tk
->cycle_interval
);
1836 shift
= max(0, shift
);
1837 /* Bound shift to one less than what overflows tick_length */
1838 maxshift
= (64 - (ilog2(ntp_tick_length())+1)) - 1;
1839 shift
= min(shift
, maxshift
);
1840 while (offset
>= tk
->cycle_interval
) {
1841 offset
= logarithmic_accumulation(tk
, offset
, shift
,
1843 if (offset
< tk
->cycle_interval
<<shift
)
1847 /* correct the clock when NTP error is too big */
1848 timekeeping_adjust(tk
, offset
);
1851 * XXX This can be killed once everyone converts
1852 * to the new update_vsyscall.
1854 old_vsyscall_fixup(tk
);
1857 * Finally, make sure that after the rounding
1858 * xtime_nsec isn't larger than NSEC_PER_SEC
1860 clock_set
|= accumulate_nsecs_to_secs(tk
);
1862 write_seqcount_begin(&tk_core
.seq
);
1864 * Update the real timekeeper.
1866 * We could avoid this memcpy by switching pointers, but that
1867 * requires changes to all other timekeeper usage sites as
1868 * well, i.e. move the timekeeper pointer getter into the
1869 * spinlocked/seqcount protected sections. And we trade this
1870 * memcpy under the tk_core.seq against one before we start
1873 timekeeping_update(tk
, clock_set
);
1874 memcpy(real_tk
, tk
, sizeof(*tk
));
1875 /* The memcpy must come last. Do not put anything here! */
1876 write_seqcount_end(&tk_core
.seq
);
1878 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1880 /* Have to call _delayed version, since in irq context*/
1881 clock_was_set_delayed();
1885 * getboottime64 - Return the real time of system boot.
1886 * @ts: pointer to the timespec64 to be set
1888 * Returns the wall-time of boot in a timespec64.
1890 * This is based on the wall_to_monotonic offset and the total suspend
1891 * time. Calls to settimeofday will affect the value returned (which
1892 * basically means that however wrong your real time clock is at boot time,
1893 * you get the right time here).
1895 void getboottime64(struct timespec64
*ts
)
1897 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1898 ktime_t t
= ktime_sub(tk
->offs_real
, tk
->offs_boot
);
1900 *ts
= ktime_to_timespec64(t
);
1902 EXPORT_SYMBOL_GPL(getboottime64
);
1904 unsigned long get_seconds(void)
1906 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1908 return tk
->xtime_sec
;
1910 EXPORT_SYMBOL(get_seconds
);
1912 struct timespec
__current_kernel_time(void)
1914 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1916 return timespec64_to_timespec(tk_xtime(tk
));
1919 struct timespec64
current_kernel_time64(void)
1921 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1922 struct timespec64 now
;
1926 seq
= read_seqcount_begin(&tk_core
.seq
);
1929 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1933 EXPORT_SYMBOL(current_kernel_time64
);
1935 struct timespec64
get_monotonic_coarse64(void)
1937 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1938 struct timespec64 now
, mono
;
1942 seq
= read_seqcount_begin(&tk_core
.seq
);
1945 mono
= tk
->wall_to_monotonic
;
1946 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1948 set_normalized_timespec64(&now
, now
.tv_sec
+ mono
.tv_sec
,
1949 now
.tv_nsec
+ mono
.tv_nsec
);
1955 * Must hold jiffies_lock
1957 void do_timer(unsigned long ticks
)
1959 jiffies_64
+= ticks
;
1960 calc_global_load(ticks
);
1964 * ktime_get_update_offsets_now - hrtimer helper
1965 * @cwsseq: pointer to check and store the clock was set sequence number
1966 * @offs_real: pointer to storage for monotonic -> realtime offset
1967 * @offs_boot: pointer to storage for monotonic -> boottime offset
1968 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1970 * Returns current monotonic time and updates the offsets if the
1971 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1974 * Called from hrtimer_interrupt() or retrigger_next_event()
1976 ktime_t
ktime_get_update_offsets_now(unsigned int *cwsseq
, ktime_t
*offs_real
,
1977 ktime_t
*offs_boot
, ktime_t
*offs_tai
)
1979 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1985 seq
= read_seqcount_begin(&tk_core
.seq
);
1987 base
= tk
->tkr_mono
.base
;
1988 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
1989 base
= ktime_add_ns(base
, nsecs
);
1991 if (*cwsseq
!= tk
->clock_was_set_seq
) {
1992 *cwsseq
= tk
->clock_was_set_seq
;
1993 *offs_real
= tk
->offs_real
;
1994 *offs_boot
= tk
->offs_boot
;
1995 *offs_tai
= tk
->offs_tai
;
1998 /* Handle leapsecond insertion adjustments */
1999 if (unlikely(base
.tv64
>= tk
->next_leap_ktime
.tv64
))
2000 *offs_real
= ktime_sub(tk
->offs_real
, ktime_set(1, 0));
2002 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2008 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2010 int do_adjtimex(struct timex
*txc
)
2012 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2013 unsigned long flags
;
2014 struct timespec64 ts
;
2018 /* Validate the data before disabling interrupts */
2019 ret
= ntp_validate_timex(txc
);
2023 if (txc
->modes
& ADJ_SETOFFSET
) {
2024 struct timespec delta
;
2025 delta
.tv_sec
= txc
->time
.tv_sec
;
2026 delta
.tv_nsec
= txc
->time
.tv_usec
;
2027 if (!(txc
->modes
& ADJ_NANO
))
2028 delta
.tv_nsec
*= 1000;
2029 ret
= timekeeping_inject_offset(&delta
);
2034 getnstimeofday64(&ts
);
2036 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2037 write_seqcount_begin(&tk_core
.seq
);
2039 orig_tai
= tai
= tk
->tai_offset
;
2040 ret
= __do_adjtimex(txc
, &ts
, &tai
);
2042 if (tai
!= orig_tai
) {
2043 __timekeeping_set_tai_offset(tk
, tai
);
2044 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
2046 tk_update_leap_state(tk
);
2048 write_seqcount_end(&tk_core
.seq
);
2049 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2051 if (tai
!= orig_tai
)
2054 ntp_notify_cmos_timer();
2059 #ifdef CONFIG_NTP_PPS
2061 * hardpps() - Accessor function to NTP __hardpps function
2063 void hardpps(const struct timespec64
*phase_ts
, const struct timespec64
*raw_ts
)
2065 unsigned long flags
;
2067 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2068 write_seqcount_begin(&tk_core
.seq
);
2070 __hardpps(phase_ts
, raw_ts
);
2072 write_seqcount_end(&tk_core
.seq
);
2073 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2075 EXPORT_SYMBOL(hardpps
);
2079 * xtime_update() - advances the timekeeping infrastructure
2080 * @ticks: number of ticks, that have elapsed since the last call.
2082 * Must be called with interrupts disabled.
2084 void xtime_update(unsigned long ticks
)
2086 write_seqlock(&jiffies_lock
);
2088 write_sequnlock(&jiffies_lock
);