4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h> /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
26 #include <asm/local.h>
28 static void update_pages_handler(struct work_struct
*work
);
31 * The ring buffer header is special. We must manually up keep it.
33 int ring_buffer_print_entry_header(struct trace_seq
*s
)
35 trace_seq_puts(s
, "# compressed entry header\n");
36 trace_seq_puts(s
, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s
, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s
, "\tarray : 32 bits\n");
39 trace_seq_putc(s
, '\n');
40 trace_seq_printf(s
, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING
);
42 trace_seq_printf(s
, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND
);
44 trace_seq_printf(s
, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
47 return !trace_seq_has_overflowed(s
);
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
64 * Here's some silly ASCII art.
67 * |reader| RING BUFFER
69 * +------+ +---+ +---+ +---+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
96 * +------------------------------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
104 * | New +---+ +---+ +---+
107 * +------------------------------+
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
114 * We will be using cmpxchg soon to make all this lockless.
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF (1 << 20)
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT 4U
125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT 0
130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
132 # define RB_FORCE_8BYTE_ALIGNMENT 1
133 # define RB_ARCH_ALIGNMENT 8U
136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
142 RB_LEN_TIME_EXTEND
= 8,
143 RB_LEN_TIME_STAMP
= 16,
146 #define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
149 static inline int rb_null_event(struct ring_buffer_event
*event
)
151 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
154 static void rb_event_set_padding(struct ring_buffer_event
*event
)
156 /* padding has a NULL time_delta */
157 event
->type_len
= RINGBUF_TYPE_PADDING
;
158 event
->time_delta
= 0;
162 rb_event_data_length(struct ring_buffer_event
*event
)
167 length
= event
->type_len
* RB_ALIGNMENT
;
169 length
= event
->array
[0];
170 return length
+ RB_EVNT_HDR_SIZE
;
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event
*event
)
181 switch (event
->type_len
) {
182 case RINGBUF_TYPE_PADDING
:
183 if (rb_null_event(event
))
186 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
188 case RINGBUF_TYPE_TIME_EXTEND
:
189 return RB_LEN_TIME_EXTEND
;
191 case RINGBUF_TYPE_TIME_STAMP
:
192 return RB_LEN_TIME_STAMP
;
194 case RINGBUF_TYPE_DATA
:
195 return rb_event_data_length(event
);
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event
*event
)
212 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
213 /* time extends include the data event after it */
214 len
= RB_LEN_TIME_EXTEND
;
215 event
= skip_time_extend(event
);
217 return len
+ rb_event_length(event
);
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
230 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
234 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
235 event
= skip_time_extend(event
);
237 length
= rb_event_length(event
);
238 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
240 length
-= RB_EVNT_HDR_SIZE
;
241 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
242 length
-= sizeof(event
->array
[0]);
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
247 /* inline for ring buffer fast paths */
249 rb_event_data(struct ring_buffer_event
*event
)
251 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
252 event
= skip_time_extend(event
);
253 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
254 /* If length is in len field, then array[0] has the data */
256 return (void *)&event
->array
[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event
->array
[1];
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
265 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
267 return rb_event_data(event
);
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
271 #define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
275 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST (~TS_MASK)
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED (1 << 30)
283 struct buffer_data_page
{
284 u64 time_stamp
; /* page time stamp */
285 local_t commit
; /* write committed index */
286 unsigned char data
[] RB_ALIGN_DATA
; /* data of buffer page */
290 * Note, the buffer_page list must be first. The buffer pages
291 * are allocated in cache lines, which means that each buffer
292 * page will be at the beginning of a cache line, and thus
293 * the least significant bits will be zero. We use this to
294 * add flags in the list struct pointers, to make the ring buffer
298 struct list_head list
; /* list of buffer pages */
299 local_t write
; /* index for next write */
300 unsigned read
; /* index for next read */
301 local_t entries
; /* entries on this page */
302 unsigned long real_end
; /* real end of data */
303 struct buffer_data_page
*page
; /* Actual data page */
307 * The buffer page counters, write and entries, must be reset
308 * atomically when crossing page boundaries. To synchronize this
309 * update, two counters are inserted into the number. One is
310 * the actual counter for the write position or count on the page.
312 * The other is a counter of updaters. Before an update happens
313 * the update partition of the counter is incremented. This will
314 * allow the updater to update the counter atomically.
316 * The counter is 20 bits, and the state data is 12.
318 #define RB_WRITE_MASK 0xfffff
319 #define RB_WRITE_INTCNT (1 << 20)
321 static void rb_init_page(struct buffer_data_page
*bpage
)
323 local_set(&bpage
->commit
, 0);
327 * ring_buffer_page_len - the size of data on the page.
328 * @page: The page to read
330 * Returns the amount of data on the page, including buffer page header.
332 size_t ring_buffer_page_len(void *page
)
334 return local_read(&((struct buffer_data_page
*)page
)->commit
)
339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
342 static void free_buffer_page(struct buffer_page
*bpage
)
344 free_page((unsigned long)bpage
->page
);
349 * We need to fit the time_stamp delta into 27 bits.
351 static inline int test_time_stamp(u64 delta
)
353 if (delta
& TS_DELTA_TEST
)
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
363 int ring_buffer_print_page_header(struct trace_seq
*s
)
365 struct buffer_data_page field
;
367 trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
368 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 (unsigned int)sizeof(field
.time_stamp
),
370 (unsigned int)is_signed_type(u64
));
372 trace_seq_printf(s
, "\tfield: local_t commit;\t"
373 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 (unsigned int)offsetof(typeof(field
), commit
),
375 (unsigned int)sizeof(field
.commit
),
376 (unsigned int)is_signed_type(long));
378 trace_seq_printf(s
, "\tfield: int overwrite;\t"
379 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)offsetof(typeof(field
), commit
),
382 (unsigned int)is_signed_type(long));
384 trace_seq_printf(s
, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 (unsigned int)offsetof(typeof(field
), data
),
387 (unsigned int)BUF_PAGE_SIZE
,
388 (unsigned int)is_signed_type(char));
390 return !trace_seq_has_overflowed(s
);
394 struct irq_work work
;
395 wait_queue_head_t waiters
;
396 wait_queue_head_t full_waiters
;
397 bool waiters_pending
;
398 bool full_waiters_pending
;
403 * Structure to hold event state and handle nested events.
405 struct rb_event_info
{
408 unsigned long length
;
409 struct buffer_page
*tail_page
;
414 * Used for which event context the event is in.
420 * See trace_recursive_lock() comment below for more details.
431 * head_page == tail_page && head == tail then buffer is empty.
433 struct ring_buffer_per_cpu
{
435 atomic_t record_disabled
;
436 struct ring_buffer
*buffer
;
437 raw_spinlock_t reader_lock
; /* serialize readers */
438 arch_spinlock_t lock
;
439 struct lock_class_key lock_key
;
440 unsigned int nr_pages
;
441 unsigned int current_context
;
442 struct list_head
*pages
;
443 struct buffer_page
*head_page
; /* read from head */
444 struct buffer_page
*tail_page
; /* write to tail */
445 struct buffer_page
*commit_page
; /* committed pages */
446 struct buffer_page
*reader_page
;
447 unsigned long lost_events
;
448 unsigned long last_overrun
;
449 local_t entries_bytes
;
452 local_t commit_overrun
;
453 local_t dropped_events
;
457 unsigned long read_bytes
;
460 /* ring buffer pages to update, > 0 to add, < 0 to remove */
461 int nr_pages_to_update
;
462 struct list_head new_pages
; /* new pages to add */
463 struct work_struct update_pages_work
;
464 struct completion update_done
;
466 struct rb_irq_work irq_work
;
472 atomic_t record_disabled
;
473 atomic_t resize_disabled
;
474 cpumask_var_t cpumask
;
476 struct lock_class_key
*reader_lock_key
;
480 struct ring_buffer_per_cpu
**buffers
;
482 #ifdef CONFIG_HOTPLUG_CPU
483 struct notifier_block cpu_notify
;
487 struct rb_irq_work irq_work
;
490 struct ring_buffer_iter
{
491 struct ring_buffer_per_cpu
*cpu_buffer
;
493 struct buffer_page
*head_page
;
494 struct buffer_page
*cache_reader_page
;
495 unsigned long cache_read
;
500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
502 * Schedules a delayed work to wake up any task that is blocked on the
503 * ring buffer waiters queue.
505 static void rb_wake_up_waiters(struct irq_work
*work
)
507 struct rb_irq_work
*rbwork
= container_of(work
, struct rb_irq_work
, work
);
509 wake_up_all(&rbwork
->waiters
);
510 if (rbwork
->wakeup_full
) {
511 rbwork
->wakeup_full
= false;
512 wake_up_all(&rbwork
->full_waiters
);
517 * ring_buffer_wait - wait for input to the ring buffer
518 * @buffer: buffer to wait on
519 * @cpu: the cpu buffer to wait on
520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523 * as data is added to any of the @buffer's cpu buffers. Otherwise
524 * it will wait for data to be added to a specific cpu buffer.
526 int ring_buffer_wait(struct ring_buffer
*buffer
, int cpu
, bool full
)
528 struct ring_buffer_per_cpu
*uninitialized_var(cpu_buffer
);
530 struct rb_irq_work
*work
;
534 * Depending on what the caller is waiting for, either any
535 * data in any cpu buffer, or a specific buffer, put the
536 * caller on the appropriate wait queue.
538 if (cpu
== RING_BUFFER_ALL_CPUS
) {
539 work
= &buffer
->irq_work
;
540 /* Full only makes sense on per cpu reads */
543 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
545 cpu_buffer
= buffer
->buffers
[cpu
];
546 work
= &cpu_buffer
->irq_work
;
552 prepare_to_wait(&work
->full_waiters
, &wait
, TASK_INTERRUPTIBLE
);
554 prepare_to_wait(&work
->waiters
, &wait
, TASK_INTERRUPTIBLE
);
557 * The events can happen in critical sections where
558 * checking a work queue can cause deadlocks.
559 * After adding a task to the queue, this flag is set
560 * only to notify events to try to wake up the queue
563 * We don't clear it even if the buffer is no longer
564 * empty. The flag only causes the next event to run
565 * irq_work to do the work queue wake up. The worse
566 * that can happen if we race with !trace_empty() is that
567 * an event will cause an irq_work to try to wake up
570 * There's no reason to protect this flag either, as
571 * the work queue and irq_work logic will do the necessary
572 * synchronization for the wake ups. The only thing
573 * that is necessary is that the wake up happens after
574 * a task has been queued. It's OK for spurious wake ups.
577 work
->full_waiters_pending
= true;
579 work
->waiters_pending
= true;
581 if (signal_pending(current
)) {
586 if (cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
))
589 if (cpu
!= RING_BUFFER_ALL_CPUS
&&
590 !ring_buffer_empty_cpu(buffer
, cpu
)) {
597 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
598 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
599 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
609 finish_wait(&work
->full_waiters
, &wait
);
611 finish_wait(&work
->waiters
, &wait
);
617 * ring_buffer_poll_wait - poll on buffer input
618 * @buffer: buffer to wait on
619 * @cpu: the cpu buffer to wait on
620 * @filp: the file descriptor
621 * @poll_table: The poll descriptor
623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624 * as data is added to any of the @buffer's cpu buffers. Otherwise
625 * it will wait for data to be added to a specific cpu buffer.
627 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
630 int ring_buffer_poll_wait(struct ring_buffer
*buffer
, int cpu
,
631 struct file
*filp
, poll_table
*poll_table
)
633 struct ring_buffer_per_cpu
*cpu_buffer
;
634 struct rb_irq_work
*work
;
636 if (cpu
== RING_BUFFER_ALL_CPUS
)
637 work
= &buffer
->irq_work
;
639 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
642 cpu_buffer
= buffer
->buffers
[cpu
];
643 work
= &cpu_buffer
->irq_work
;
646 poll_wait(filp
, &work
->waiters
, poll_table
);
647 work
->waiters_pending
= true;
649 * There's a tight race between setting the waiters_pending and
650 * checking if the ring buffer is empty. Once the waiters_pending bit
651 * is set, the next event will wake the task up, but we can get stuck
652 * if there's only a single event in.
654 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 * but adding a memory barrier to all events will cause too much of a
656 * performance hit in the fast path. We only need a memory barrier when
657 * the buffer goes from empty to having content. But as this race is
658 * extremely small, and it's not a problem if another event comes in, we
663 if ((cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
)) ||
664 (cpu
!= RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty_cpu(buffer
, cpu
)))
665 return POLLIN
| POLLRDNORM
;
669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
670 #define RB_WARN_ON(b, cond) \
672 int _____ret = unlikely(cond); \
674 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 struct ring_buffer_per_cpu *__b = \
677 atomic_inc(&__b->buffer->record_disabled); \
679 atomic_inc(&b->record_disabled); \
685 /* Up this if you want to test the TIME_EXTENTS and normalization */
686 #define DEBUG_SHIFT 0
688 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
690 /* shift to debug/test normalization and TIME_EXTENTS */
691 return buffer
->clock() << DEBUG_SHIFT
;
694 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
698 preempt_disable_notrace();
699 time
= rb_time_stamp(buffer
);
700 preempt_enable_no_resched_notrace();
704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
706 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
709 /* Just stupid testing the normalize function and deltas */
712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
715 * Making the ring buffer lockless makes things tricky.
716 * Although writes only happen on the CPU that they are on,
717 * and they only need to worry about interrupts. Reads can
720 * The reader page is always off the ring buffer, but when the
721 * reader finishes with a page, it needs to swap its page with
722 * a new one from the buffer. The reader needs to take from
723 * the head (writes go to the tail). But if a writer is in overwrite
724 * mode and wraps, it must push the head page forward.
726 * Here lies the problem.
728 * The reader must be careful to replace only the head page, and
729 * not another one. As described at the top of the file in the
730 * ASCII art, the reader sets its old page to point to the next
731 * page after head. It then sets the page after head to point to
732 * the old reader page. But if the writer moves the head page
733 * during this operation, the reader could end up with the tail.
735 * We use cmpxchg to help prevent this race. We also do something
736 * special with the page before head. We set the LSB to 1.
738 * When the writer must push the page forward, it will clear the
739 * bit that points to the head page, move the head, and then set
740 * the bit that points to the new head page.
742 * We also don't want an interrupt coming in and moving the head
743 * page on another writer. Thus we use the second LSB to catch
746 * head->list->prev->next bit 1 bit 0
749 * Points to head page 0 1
752 * Note we can not trust the prev pointer of the head page, because:
754 * +----+ +-----+ +-----+
755 * | |------>| T |---X--->| N |
757 * +----+ +-----+ +-----+
760 * +----------| R |----------+ |
764 * Key: ---X--> HEAD flag set in pointer
769 * (see __rb_reserve_next() to see where this happens)
771 * What the above shows is that the reader just swapped out
772 * the reader page with a page in the buffer, but before it
773 * could make the new header point back to the new page added
774 * it was preempted by a writer. The writer moved forward onto
775 * the new page added by the reader and is about to move forward
778 * You can see, it is legitimate for the previous pointer of
779 * the head (or any page) not to point back to itself. But only
783 #define RB_PAGE_NORMAL 0UL
784 #define RB_PAGE_HEAD 1UL
785 #define RB_PAGE_UPDATE 2UL
788 #define RB_FLAG_MASK 3UL
790 /* PAGE_MOVED is not part of the mask */
791 #define RB_PAGE_MOVED 4UL
794 * rb_list_head - remove any bit
796 static struct list_head
*rb_list_head(struct list_head
*list
)
798 unsigned long val
= (unsigned long)list
;
800 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
804 * rb_is_head_page - test if the given page is the head page
806 * Because the reader may move the head_page pointer, we can
807 * not trust what the head page is (it may be pointing to
808 * the reader page). But if the next page is a header page,
809 * its flags will be non zero.
812 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
813 struct buffer_page
*page
, struct list_head
*list
)
817 val
= (unsigned long)list
->next
;
819 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
820 return RB_PAGE_MOVED
;
822 return val
& RB_FLAG_MASK
;
828 * The unique thing about the reader page, is that, if the
829 * writer is ever on it, the previous pointer never points
830 * back to the reader page.
832 static bool rb_is_reader_page(struct buffer_page
*page
)
834 struct list_head
*list
= page
->list
.prev
;
836 return rb_list_head(list
->next
) != &page
->list
;
840 * rb_set_list_to_head - set a list_head to be pointing to head.
842 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
843 struct list_head
*list
)
847 ptr
= (unsigned long *)&list
->next
;
848 *ptr
|= RB_PAGE_HEAD
;
849 *ptr
&= ~RB_PAGE_UPDATE
;
853 * rb_head_page_activate - sets up head page
855 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
857 struct buffer_page
*head
;
859 head
= cpu_buffer
->head_page
;
864 * Set the previous list pointer to have the HEAD flag.
866 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
869 static void rb_list_head_clear(struct list_head
*list
)
871 unsigned long *ptr
= (unsigned long *)&list
->next
;
873 *ptr
&= ~RB_FLAG_MASK
;
877 * rb_head_page_dactivate - clears head page ptr (for free list)
880 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
882 struct list_head
*hd
;
884 /* Go through the whole list and clear any pointers found. */
885 rb_list_head_clear(cpu_buffer
->pages
);
887 list_for_each(hd
, cpu_buffer
->pages
)
888 rb_list_head_clear(hd
);
891 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
892 struct buffer_page
*head
,
893 struct buffer_page
*prev
,
894 int old_flag
, int new_flag
)
896 struct list_head
*list
;
897 unsigned long val
= (unsigned long)&head
->list
;
902 val
&= ~RB_FLAG_MASK
;
904 ret
= cmpxchg((unsigned long *)&list
->next
,
905 val
| old_flag
, val
| new_flag
);
907 /* check if the reader took the page */
908 if ((ret
& ~RB_FLAG_MASK
) != val
)
909 return RB_PAGE_MOVED
;
911 return ret
& RB_FLAG_MASK
;
914 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
915 struct buffer_page
*head
,
916 struct buffer_page
*prev
,
919 return rb_head_page_set(cpu_buffer
, head
, prev
,
920 old_flag
, RB_PAGE_UPDATE
);
923 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
924 struct buffer_page
*head
,
925 struct buffer_page
*prev
,
928 return rb_head_page_set(cpu_buffer
, head
, prev
,
929 old_flag
, RB_PAGE_HEAD
);
932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
933 struct buffer_page
*head
,
934 struct buffer_page
*prev
,
937 return rb_head_page_set(cpu_buffer
, head
, prev
,
938 old_flag
, RB_PAGE_NORMAL
);
941 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
942 struct buffer_page
**bpage
)
944 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
946 *bpage
= list_entry(p
, struct buffer_page
, list
);
949 static struct buffer_page
*
950 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
952 struct buffer_page
*head
;
953 struct buffer_page
*page
;
954 struct list_head
*list
;
957 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
961 list
= cpu_buffer
->pages
;
962 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
965 page
= head
= cpu_buffer
->head_page
;
967 * It is possible that the writer moves the header behind
968 * where we started, and we miss in one loop.
969 * A second loop should grab the header, but we'll do
970 * three loops just because I'm paranoid.
972 for (i
= 0; i
< 3; i
++) {
974 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
975 cpu_buffer
->head_page
= page
;
978 rb_inc_page(cpu_buffer
, &page
);
979 } while (page
!= head
);
982 RB_WARN_ON(cpu_buffer
, 1);
987 static int rb_head_page_replace(struct buffer_page
*old
,
988 struct buffer_page
*new)
990 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
994 val
= *ptr
& ~RB_FLAG_MASK
;
997 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
1003 * rb_tail_page_update - move the tail page forward
1005 * Returns 1 if moved tail page, 0 if someone else did.
1007 static int rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
1008 struct buffer_page
*tail_page
,
1009 struct buffer_page
*next_page
)
1011 struct buffer_page
*old_tail
;
1012 unsigned long old_entries
;
1013 unsigned long old_write
;
1017 * The tail page now needs to be moved forward.
1019 * We need to reset the tail page, but without messing
1020 * with possible erasing of data brought in by interrupts
1021 * that have moved the tail page and are currently on it.
1023 * We add a counter to the write field to denote this.
1025 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
1026 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
1029 * Just make sure we have seen our old_write and synchronize
1030 * with any interrupts that come in.
1035 * If the tail page is still the same as what we think
1036 * it is, then it is up to us to update the tail
1039 if (tail_page
== cpu_buffer
->tail_page
) {
1040 /* Zero the write counter */
1041 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
1042 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
1045 * This will only succeed if an interrupt did
1046 * not come in and change it. In which case, we
1047 * do not want to modify it.
1049 * We add (void) to let the compiler know that we do not care
1050 * about the return value of these functions. We use the
1051 * cmpxchg to only update if an interrupt did not already
1052 * do it for us. If the cmpxchg fails, we don't care.
1054 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
1055 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
1058 * No need to worry about races with clearing out the commit.
1059 * it only can increment when a commit takes place. But that
1060 * only happens in the outer most nested commit.
1062 local_set(&next_page
->page
->commit
, 0);
1064 old_tail
= cmpxchg(&cpu_buffer
->tail_page
,
1065 tail_page
, next_page
);
1067 if (old_tail
== tail_page
)
1074 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
1075 struct buffer_page
*bpage
)
1077 unsigned long val
= (unsigned long)bpage
;
1079 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
1086 * rb_check_list - make sure a pointer to a list has the last bits zero
1088 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
1089 struct list_head
*list
)
1091 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
1093 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
1099 * rb_check_pages - integrity check of buffer pages
1100 * @cpu_buffer: CPU buffer with pages to test
1102 * As a safety measure we check to make sure the data pages have not
1105 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1107 struct list_head
*head
= cpu_buffer
->pages
;
1108 struct buffer_page
*bpage
, *tmp
;
1110 /* Reset the head page if it exists */
1111 if (cpu_buffer
->head_page
)
1112 rb_set_head_page(cpu_buffer
);
1114 rb_head_page_deactivate(cpu_buffer
);
1116 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
1118 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
1121 if (rb_check_list(cpu_buffer
, head
))
1124 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1125 if (RB_WARN_ON(cpu_buffer
,
1126 bpage
->list
.next
->prev
!= &bpage
->list
))
1128 if (RB_WARN_ON(cpu_buffer
,
1129 bpage
->list
.prev
->next
!= &bpage
->list
))
1131 if (rb_check_list(cpu_buffer
, &bpage
->list
))
1135 rb_head_page_activate(cpu_buffer
);
1140 static int __rb_allocate_pages(int nr_pages
, struct list_head
*pages
, int cpu
)
1143 struct buffer_page
*bpage
, *tmp
;
1145 for (i
= 0; i
< nr_pages
; i
++) {
1148 * __GFP_NORETRY flag makes sure that the allocation fails
1149 * gracefully without invoking oom-killer and the system is
1152 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1153 GFP_KERNEL
| __GFP_NORETRY
,
1158 list_add(&bpage
->list
, pages
);
1160 page
= alloc_pages_node(cpu_to_node(cpu
),
1161 GFP_KERNEL
| __GFP_NORETRY
, 0);
1164 bpage
->page
= page_address(page
);
1165 rb_init_page(bpage
->page
);
1171 list_for_each_entry_safe(bpage
, tmp
, pages
, list
) {
1172 list_del_init(&bpage
->list
);
1173 free_buffer_page(bpage
);
1179 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1186 if (__rb_allocate_pages(nr_pages
, &pages
, cpu_buffer
->cpu
))
1190 * The ring buffer page list is a circular list that does not
1191 * start and end with a list head. All page list items point to
1194 cpu_buffer
->pages
= pages
.next
;
1197 cpu_buffer
->nr_pages
= nr_pages
;
1199 rb_check_pages(cpu_buffer
);
1204 static struct ring_buffer_per_cpu
*
1205 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int nr_pages
, int cpu
)
1207 struct ring_buffer_per_cpu
*cpu_buffer
;
1208 struct buffer_page
*bpage
;
1212 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1213 GFP_KERNEL
, cpu_to_node(cpu
));
1217 cpu_buffer
->cpu
= cpu
;
1218 cpu_buffer
->buffer
= buffer
;
1219 raw_spin_lock_init(&cpu_buffer
->reader_lock
);
1220 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1221 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1222 INIT_WORK(&cpu_buffer
->update_pages_work
, update_pages_handler
);
1223 init_completion(&cpu_buffer
->update_done
);
1224 init_irq_work(&cpu_buffer
->irq_work
.work
, rb_wake_up_waiters
);
1225 init_waitqueue_head(&cpu_buffer
->irq_work
.waiters
);
1226 init_waitqueue_head(&cpu_buffer
->irq_work
.full_waiters
);
1228 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1229 GFP_KERNEL
, cpu_to_node(cpu
));
1231 goto fail_free_buffer
;
1233 rb_check_bpage(cpu_buffer
, bpage
);
1235 cpu_buffer
->reader_page
= bpage
;
1236 page
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, 0);
1238 goto fail_free_reader
;
1239 bpage
->page
= page_address(page
);
1240 rb_init_page(bpage
->page
);
1242 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1243 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1245 ret
= rb_allocate_pages(cpu_buffer
, nr_pages
);
1247 goto fail_free_reader
;
1249 cpu_buffer
->head_page
1250 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1251 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1253 rb_head_page_activate(cpu_buffer
);
1258 free_buffer_page(cpu_buffer
->reader_page
);
1265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1267 struct list_head
*head
= cpu_buffer
->pages
;
1268 struct buffer_page
*bpage
, *tmp
;
1270 free_buffer_page(cpu_buffer
->reader_page
);
1272 rb_head_page_deactivate(cpu_buffer
);
1275 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1276 list_del_init(&bpage
->list
);
1277 free_buffer_page(bpage
);
1279 bpage
= list_entry(head
, struct buffer_page
, list
);
1280 free_buffer_page(bpage
);
1286 #ifdef CONFIG_HOTPLUG_CPU
1287 static int rb_cpu_notify(struct notifier_block
*self
,
1288 unsigned long action
, void *hcpu
);
1292 * __ring_buffer_alloc - allocate a new ring_buffer
1293 * @size: the size in bytes per cpu that is needed.
1294 * @flags: attributes to set for the ring buffer.
1296 * Currently the only flag that is available is the RB_FL_OVERWRITE
1297 * flag. This flag means that the buffer will overwrite old data
1298 * when the buffer wraps. If this flag is not set, the buffer will
1299 * drop data when the tail hits the head.
1301 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1302 struct lock_class_key
*key
)
1304 struct ring_buffer
*buffer
;
1308 /* keep it in its own cache line */
1309 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1314 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1315 goto fail_free_buffer
;
1317 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1318 buffer
->flags
= flags
;
1319 buffer
->clock
= trace_clock_local
;
1320 buffer
->reader_lock_key
= key
;
1322 init_irq_work(&buffer
->irq_work
.work
, rb_wake_up_waiters
);
1323 init_waitqueue_head(&buffer
->irq_work
.waiters
);
1325 /* need at least two pages */
1330 * In case of non-hotplug cpu, if the ring-buffer is allocated
1331 * in early initcall, it will not be notified of secondary cpus.
1332 * In that off case, we need to allocate for all possible cpus.
1334 #ifdef CONFIG_HOTPLUG_CPU
1335 cpu_notifier_register_begin();
1336 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1338 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1340 buffer
->cpus
= nr_cpu_ids
;
1342 bsize
= sizeof(void *) * nr_cpu_ids
;
1343 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1345 if (!buffer
->buffers
)
1346 goto fail_free_cpumask
;
1348 for_each_buffer_cpu(buffer
, cpu
) {
1349 buffer
->buffers
[cpu
] =
1350 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
1351 if (!buffer
->buffers
[cpu
])
1352 goto fail_free_buffers
;
1355 #ifdef CONFIG_HOTPLUG_CPU
1356 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1357 buffer
->cpu_notify
.priority
= 0;
1358 __register_cpu_notifier(&buffer
->cpu_notify
);
1359 cpu_notifier_register_done();
1362 mutex_init(&buffer
->mutex
);
1367 for_each_buffer_cpu(buffer
, cpu
) {
1368 if (buffer
->buffers
[cpu
])
1369 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1371 kfree(buffer
->buffers
);
1374 free_cpumask_var(buffer
->cpumask
);
1375 #ifdef CONFIG_HOTPLUG_CPU
1376 cpu_notifier_register_done();
1383 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1386 * ring_buffer_free - free a ring buffer.
1387 * @buffer: the buffer to free.
1390 ring_buffer_free(struct ring_buffer
*buffer
)
1394 #ifdef CONFIG_HOTPLUG_CPU
1395 cpu_notifier_register_begin();
1396 __unregister_cpu_notifier(&buffer
->cpu_notify
);
1399 for_each_buffer_cpu(buffer
, cpu
)
1400 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1402 #ifdef CONFIG_HOTPLUG_CPU
1403 cpu_notifier_register_done();
1406 kfree(buffer
->buffers
);
1407 free_cpumask_var(buffer
->cpumask
);
1411 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1413 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1416 buffer
->clock
= clock
;
1419 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1421 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1423 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1426 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1428 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1432 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned int nr_pages
)
1434 struct list_head
*tail_page
, *to_remove
, *next_page
;
1435 struct buffer_page
*to_remove_page
, *tmp_iter_page
;
1436 struct buffer_page
*last_page
, *first_page
;
1437 unsigned int nr_removed
;
1438 unsigned long head_bit
;
1443 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1444 atomic_inc(&cpu_buffer
->record_disabled
);
1446 * We don't race with the readers since we have acquired the reader
1447 * lock. We also don't race with writers after disabling recording.
1448 * This makes it easy to figure out the first and the last page to be
1449 * removed from the list. We unlink all the pages in between including
1450 * the first and last pages. This is done in a busy loop so that we
1451 * lose the least number of traces.
1452 * The pages are freed after we restart recording and unlock readers.
1454 tail_page
= &cpu_buffer
->tail_page
->list
;
1457 * tail page might be on reader page, we remove the next page
1458 * from the ring buffer
1460 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
1461 tail_page
= rb_list_head(tail_page
->next
);
1462 to_remove
= tail_page
;
1464 /* start of pages to remove */
1465 first_page
= list_entry(rb_list_head(to_remove
->next
),
1466 struct buffer_page
, list
);
1468 for (nr_removed
= 0; nr_removed
< nr_pages
; nr_removed
++) {
1469 to_remove
= rb_list_head(to_remove
)->next
;
1470 head_bit
|= (unsigned long)to_remove
& RB_PAGE_HEAD
;
1473 next_page
= rb_list_head(to_remove
)->next
;
1476 * Now we remove all pages between tail_page and next_page.
1477 * Make sure that we have head_bit value preserved for the
1480 tail_page
->next
= (struct list_head
*)((unsigned long)next_page
|
1482 next_page
= rb_list_head(next_page
);
1483 next_page
->prev
= tail_page
;
1485 /* make sure pages points to a valid page in the ring buffer */
1486 cpu_buffer
->pages
= next_page
;
1488 /* update head page */
1490 cpu_buffer
->head_page
= list_entry(next_page
,
1491 struct buffer_page
, list
);
1494 * change read pointer to make sure any read iterators reset
1497 cpu_buffer
->read
= 0;
1499 /* pages are removed, resume tracing and then free the pages */
1500 atomic_dec(&cpu_buffer
->record_disabled
);
1501 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1503 RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
));
1505 /* last buffer page to remove */
1506 last_page
= list_entry(rb_list_head(to_remove
), struct buffer_page
,
1508 tmp_iter_page
= first_page
;
1511 to_remove_page
= tmp_iter_page
;
1512 rb_inc_page(cpu_buffer
, &tmp_iter_page
);
1514 /* update the counters */
1515 page_entries
= rb_page_entries(to_remove_page
);
1518 * If something was added to this page, it was full
1519 * since it is not the tail page. So we deduct the
1520 * bytes consumed in ring buffer from here.
1521 * Increment overrun to account for the lost events.
1523 local_add(page_entries
, &cpu_buffer
->overrun
);
1524 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1528 * We have already removed references to this list item, just
1529 * free up the buffer_page and its page
1531 free_buffer_page(to_remove_page
);
1534 } while (to_remove_page
!= last_page
);
1536 RB_WARN_ON(cpu_buffer
, nr_removed
);
1538 return nr_removed
== 0;
1542 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1544 struct list_head
*pages
= &cpu_buffer
->new_pages
;
1545 int retries
, success
;
1547 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1549 * We are holding the reader lock, so the reader page won't be swapped
1550 * in the ring buffer. Now we are racing with the writer trying to
1551 * move head page and the tail page.
1552 * We are going to adapt the reader page update process where:
1553 * 1. We first splice the start and end of list of new pages between
1554 * the head page and its previous page.
1555 * 2. We cmpxchg the prev_page->next to point from head page to the
1556 * start of new pages list.
1557 * 3. Finally, we update the head->prev to the end of new list.
1559 * We will try this process 10 times, to make sure that we don't keep
1565 struct list_head
*head_page
, *prev_page
, *r
;
1566 struct list_head
*last_page
, *first_page
;
1567 struct list_head
*head_page_with_bit
;
1569 head_page
= &rb_set_head_page(cpu_buffer
)->list
;
1572 prev_page
= head_page
->prev
;
1574 first_page
= pages
->next
;
1575 last_page
= pages
->prev
;
1577 head_page_with_bit
= (struct list_head
*)
1578 ((unsigned long)head_page
| RB_PAGE_HEAD
);
1580 last_page
->next
= head_page_with_bit
;
1581 first_page
->prev
= prev_page
;
1583 r
= cmpxchg(&prev_page
->next
, head_page_with_bit
, first_page
);
1585 if (r
== head_page_with_bit
) {
1587 * yay, we replaced the page pointer to our new list,
1588 * now, we just have to update to head page's prev
1589 * pointer to point to end of list
1591 head_page
->prev
= last_page
;
1598 INIT_LIST_HEAD(pages
);
1600 * If we weren't successful in adding in new pages, warn and stop
1603 RB_WARN_ON(cpu_buffer
, !success
);
1604 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1606 /* free pages if they weren't inserted */
1608 struct buffer_page
*bpage
, *tmp
;
1609 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1611 list_del_init(&bpage
->list
);
1612 free_buffer_page(bpage
);
1618 static void rb_update_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1622 if (cpu_buffer
->nr_pages_to_update
> 0)
1623 success
= rb_insert_pages(cpu_buffer
);
1625 success
= rb_remove_pages(cpu_buffer
,
1626 -cpu_buffer
->nr_pages_to_update
);
1629 cpu_buffer
->nr_pages
+= cpu_buffer
->nr_pages_to_update
;
1632 static void update_pages_handler(struct work_struct
*work
)
1634 struct ring_buffer_per_cpu
*cpu_buffer
= container_of(work
,
1635 struct ring_buffer_per_cpu
, update_pages_work
);
1636 rb_update_pages(cpu_buffer
);
1637 complete(&cpu_buffer
->update_done
);
1641 * ring_buffer_resize - resize the ring buffer
1642 * @buffer: the buffer to resize.
1643 * @size: the new size.
1644 * @cpu_id: the cpu buffer to resize
1646 * Minimum size is 2 * BUF_PAGE_SIZE.
1648 * Returns 0 on success and < 0 on failure.
1650 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
,
1653 struct ring_buffer_per_cpu
*cpu_buffer
;
1658 * Always succeed at resizing a non-existent buffer:
1663 /* Make sure the requested buffer exists */
1664 if (cpu_id
!= RING_BUFFER_ALL_CPUS
&&
1665 !cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1668 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1669 size
*= BUF_PAGE_SIZE
;
1671 /* we need a minimum of two pages */
1672 if (size
< BUF_PAGE_SIZE
* 2)
1673 size
= BUF_PAGE_SIZE
* 2;
1675 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1678 * Don't succeed if resizing is disabled, as a reader might be
1679 * manipulating the ring buffer and is expecting a sane state while
1682 if (atomic_read(&buffer
->resize_disabled
))
1685 /* prevent another thread from changing buffer sizes */
1686 mutex_lock(&buffer
->mutex
);
1688 if (cpu_id
== RING_BUFFER_ALL_CPUS
) {
1689 /* calculate the pages to update */
1690 for_each_buffer_cpu(buffer
, cpu
) {
1691 cpu_buffer
= buffer
->buffers
[cpu
];
1693 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1694 cpu_buffer
->nr_pages
;
1696 * nothing more to do for removing pages or no update
1698 if (cpu_buffer
->nr_pages_to_update
<= 0)
1701 * to add pages, make sure all new pages can be
1702 * allocated without receiving ENOMEM
1704 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1705 if (__rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1706 &cpu_buffer
->new_pages
, cpu
)) {
1707 /* not enough memory for new pages */
1715 * Fire off all the required work handlers
1716 * We can't schedule on offline CPUs, but it's not necessary
1717 * since we can change their buffer sizes without any race.
1719 for_each_buffer_cpu(buffer
, cpu
) {
1720 cpu_buffer
= buffer
->buffers
[cpu
];
1721 if (!cpu_buffer
->nr_pages_to_update
)
1724 /* Can't run something on an offline CPU. */
1725 if (!cpu_online(cpu
)) {
1726 rb_update_pages(cpu_buffer
);
1727 cpu_buffer
->nr_pages_to_update
= 0;
1729 schedule_work_on(cpu
,
1730 &cpu_buffer
->update_pages_work
);
1734 /* wait for all the updates to complete */
1735 for_each_buffer_cpu(buffer
, cpu
) {
1736 cpu_buffer
= buffer
->buffers
[cpu
];
1737 if (!cpu_buffer
->nr_pages_to_update
)
1740 if (cpu_online(cpu
))
1741 wait_for_completion(&cpu_buffer
->update_done
);
1742 cpu_buffer
->nr_pages_to_update
= 0;
1747 /* Make sure this CPU has been intitialized */
1748 if (!cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1751 cpu_buffer
= buffer
->buffers
[cpu_id
];
1753 if (nr_pages
== cpu_buffer
->nr_pages
)
1756 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1757 cpu_buffer
->nr_pages
;
1759 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1760 if (cpu_buffer
->nr_pages_to_update
> 0 &&
1761 __rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1762 &cpu_buffer
->new_pages
, cpu_id
)) {
1769 /* Can't run something on an offline CPU. */
1770 if (!cpu_online(cpu_id
))
1771 rb_update_pages(cpu_buffer
);
1773 schedule_work_on(cpu_id
,
1774 &cpu_buffer
->update_pages_work
);
1775 wait_for_completion(&cpu_buffer
->update_done
);
1778 cpu_buffer
->nr_pages_to_update
= 0;
1784 * The ring buffer resize can happen with the ring buffer
1785 * enabled, so that the update disturbs the tracing as little
1786 * as possible. But if the buffer is disabled, we do not need
1787 * to worry about that, and we can take the time to verify
1788 * that the buffer is not corrupt.
1790 if (atomic_read(&buffer
->record_disabled
)) {
1791 atomic_inc(&buffer
->record_disabled
);
1793 * Even though the buffer was disabled, we must make sure
1794 * that it is truly disabled before calling rb_check_pages.
1795 * There could have been a race between checking
1796 * record_disable and incrementing it.
1798 synchronize_sched();
1799 for_each_buffer_cpu(buffer
, cpu
) {
1800 cpu_buffer
= buffer
->buffers
[cpu
];
1801 rb_check_pages(cpu_buffer
);
1803 atomic_dec(&buffer
->record_disabled
);
1806 mutex_unlock(&buffer
->mutex
);
1810 for_each_buffer_cpu(buffer
, cpu
) {
1811 struct buffer_page
*bpage
, *tmp
;
1813 cpu_buffer
= buffer
->buffers
[cpu
];
1814 cpu_buffer
->nr_pages_to_update
= 0;
1816 if (list_empty(&cpu_buffer
->new_pages
))
1819 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1821 list_del_init(&bpage
->list
);
1822 free_buffer_page(bpage
);
1825 mutex_unlock(&buffer
->mutex
);
1828 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1830 void ring_buffer_change_overwrite(struct ring_buffer
*buffer
, int val
)
1832 mutex_lock(&buffer
->mutex
);
1834 buffer
->flags
|= RB_FL_OVERWRITE
;
1836 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1837 mutex_unlock(&buffer
->mutex
);
1839 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1841 static inline void *
1842 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1844 return bpage
->data
+ index
;
1847 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1849 return bpage
->page
->data
+ index
;
1852 static inline struct ring_buffer_event
*
1853 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1855 return __rb_page_index(cpu_buffer
->reader_page
,
1856 cpu_buffer
->reader_page
->read
);
1859 static inline struct ring_buffer_event
*
1860 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1862 return __rb_page_index(iter
->head_page
, iter
->head
);
1865 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1867 return local_read(&bpage
->page
->commit
);
1870 /* Size is determined by what has been committed */
1871 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1873 return rb_page_commit(bpage
);
1876 static inline unsigned
1877 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1879 return rb_page_commit(cpu_buffer
->commit_page
);
1882 static inline unsigned
1883 rb_event_index(struct ring_buffer_event
*event
)
1885 unsigned long addr
= (unsigned long)event
;
1887 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1890 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1892 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1895 * The iterator could be on the reader page (it starts there).
1896 * But the head could have moved, since the reader was
1897 * found. Check for this case and assign the iterator
1898 * to the head page instead of next.
1900 if (iter
->head_page
== cpu_buffer
->reader_page
)
1901 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1903 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1905 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1910 * rb_handle_head_page - writer hit the head page
1912 * Returns: +1 to retry page
1917 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1918 struct buffer_page
*tail_page
,
1919 struct buffer_page
*next_page
)
1921 struct buffer_page
*new_head
;
1926 entries
= rb_page_entries(next_page
);
1929 * The hard part is here. We need to move the head
1930 * forward, and protect against both readers on
1931 * other CPUs and writers coming in via interrupts.
1933 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
1937 * type can be one of four:
1938 * NORMAL - an interrupt already moved it for us
1939 * HEAD - we are the first to get here.
1940 * UPDATE - we are the interrupt interrupting
1942 * MOVED - a reader on another CPU moved the next
1943 * pointer to its reader page. Give up
1950 * We changed the head to UPDATE, thus
1951 * it is our responsibility to update
1954 local_add(entries
, &cpu_buffer
->overrun
);
1955 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1958 * The entries will be zeroed out when we move the
1962 /* still more to do */
1965 case RB_PAGE_UPDATE
:
1967 * This is an interrupt that interrupt the
1968 * previous update. Still more to do.
1971 case RB_PAGE_NORMAL
:
1973 * An interrupt came in before the update
1974 * and processed this for us.
1975 * Nothing left to do.
1980 * The reader is on another CPU and just did
1981 * a swap with our next_page.
1986 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
1991 * Now that we are here, the old head pointer is
1992 * set to UPDATE. This will keep the reader from
1993 * swapping the head page with the reader page.
1994 * The reader (on another CPU) will spin till
1997 * We just need to protect against interrupts
1998 * doing the job. We will set the next pointer
1999 * to HEAD. After that, we set the old pointer
2000 * to NORMAL, but only if it was HEAD before.
2001 * otherwise we are an interrupt, and only
2002 * want the outer most commit to reset it.
2004 new_head
= next_page
;
2005 rb_inc_page(cpu_buffer
, &new_head
);
2007 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
2011 * Valid returns are:
2012 * HEAD - an interrupt came in and already set it.
2013 * NORMAL - One of two things:
2014 * 1) We really set it.
2015 * 2) A bunch of interrupts came in and moved
2016 * the page forward again.
2020 case RB_PAGE_NORMAL
:
2024 RB_WARN_ON(cpu_buffer
, 1);
2029 * It is possible that an interrupt came in,
2030 * set the head up, then more interrupts came in
2031 * and moved it again. When we get back here,
2032 * the page would have been set to NORMAL but we
2033 * just set it back to HEAD.
2035 * How do you detect this? Well, if that happened
2036 * the tail page would have moved.
2038 if (ret
== RB_PAGE_NORMAL
) {
2040 * If the tail had moved passed next, then we need
2041 * to reset the pointer.
2043 if (cpu_buffer
->tail_page
!= tail_page
&&
2044 cpu_buffer
->tail_page
!= next_page
)
2045 rb_head_page_set_normal(cpu_buffer
, new_head
,
2051 * If this was the outer most commit (the one that
2052 * changed the original pointer from HEAD to UPDATE),
2053 * then it is up to us to reset it to NORMAL.
2055 if (type
== RB_PAGE_HEAD
) {
2056 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
2059 if (RB_WARN_ON(cpu_buffer
,
2060 ret
!= RB_PAGE_UPDATE
))
2068 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2069 unsigned long tail
, struct rb_event_info
*info
)
2071 struct buffer_page
*tail_page
= info
->tail_page
;
2072 struct ring_buffer_event
*event
;
2073 unsigned long length
= info
->length
;
2076 * Only the event that crossed the page boundary
2077 * must fill the old tail_page with padding.
2079 if (tail
>= BUF_PAGE_SIZE
) {
2081 * If the page was filled, then we still need
2082 * to update the real_end. Reset it to zero
2083 * and the reader will ignore it.
2085 if (tail
== BUF_PAGE_SIZE
)
2086 tail_page
->real_end
= 0;
2088 local_sub(length
, &tail_page
->write
);
2092 event
= __rb_page_index(tail_page
, tail
);
2093 kmemcheck_annotate_bitfield(event
, bitfield
);
2095 /* account for padding bytes */
2096 local_add(BUF_PAGE_SIZE
- tail
, &cpu_buffer
->entries_bytes
);
2099 * Save the original length to the meta data.
2100 * This will be used by the reader to add lost event
2103 tail_page
->real_end
= tail
;
2106 * If this event is bigger than the minimum size, then
2107 * we need to be careful that we don't subtract the
2108 * write counter enough to allow another writer to slip
2110 * We put in a discarded commit instead, to make sure
2111 * that this space is not used again.
2113 * If we are less than the minimum size, we don't need to
2116 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
2117 /* No room for any events */
2119 /* Mark the rest of the page with padding */
2120 rb_event_set_padding(event
);
2122 /* Set the write back to the previous setting */
2123 local_sub(length
, &tail_page
->write
);
2127 /* Put in a discarded event */
2128 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
2129 event
->type_len
= RINGBUF_TYPE_PADDING
;
2130 /* time delta must be non zero */
2131 event
->time_delta
= 1;
2133 /* Set write to end of buffer */
2134 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
2135 local_sub(length
, &tail_page
->write
);
2139 * This is the slow path, force gcc not to inline it.
2141 static noinline
struct ring_buffer_event
*
2142 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2143 unsigned long tail
, struct rb_event_info
*info
)
2145 struct buffer_page
*tail_page
= info
->tail_page
;
2146 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
2147 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
2148 struct buffer_page
*next_page
;
2152 next_page
= tail_page
;
2154 rb_inc_page(cpu_buffer
, &next_page
);
2157 * If for some reason, we had an interrupt storm that made
2158 * it all the way around the buffer, bail, and warn
2161 if (unlikely(next_page
== commit_page
)) {
2162 local_inc(&cpu_buffer
->commit_overrun
);
2167 * This is where the fun begins!
2169 * We are fighting against races between a reader that
2170 * could be on another CPU trying to swap its reader
2171 * page with the buffer head.
2173 * We are also fighting against interrupts coming in and
2174 * moving the head or tail on us as well.
2176 * If the next page is the head page then we have filled
2177 * the buffer, unless the commit page is still on the
2180 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
2183 * If the commit is not on the reader page, then
2184 * move the header page.
2186 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
2188 * If we are not in overwrite mode,
2189 * this is easy, just stop here.
2191 if (!(buffer
->flags
& RB_FL_OVERWRITE
)) {
2192 local_inc(&cpu_buffer
->dropped_events
);
2196 ret
= rb_handle_head_page(cpu_buffer
,
2205 * We need to be careful here too. The
2206 * commit page could still be on the reader
2207 * page. We could have a small buffer, and
2208 * have filled up the buffer with events
2209 * from interrupts and such, and wrapped.
2211 * Note, if the tail page is also the on the
2212 * reader_page, we let it move out.
2214 if (unlikely((cpu_buffer
->commit_page
!=
2215 cpu_buffer
->tail_page
) &&
2216 (cpu_buffer
->commit_page
==
2217 cpu_buffer
->reader_page
))) {
2218 local_inc(&cpu_buffer
->commit_overrun
);
2224 ret
= rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
2227 * Nested commits always have zero deltas, so
2228 * just reread the time stamp
2230 ts
= rb_time_stamp(buffer
);
2231 next_page
->page
->time_stamp
= ts
;
2236 rb_reset_tail(cpu_buffer
, tail
, info
);
2238 /* fail and let the caller try again */
2239 return ERR_PTR(-EAGAIN
);
2243 rb_reset_tail(cpu_buffer
, tail
, info
);
2248 /* Slow path, do not inline */
2249 static noinline
struct ring_buffer_event
*
2250 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
)
2252 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
2254 /* Not the first event on the page? */
2255 if (rb_event_index(event
)) {
2256 event
->time_delta
= delta
& TS_MASK
;
2257 event
->array
[0] = delta
>> TS_SHIFT
;
2259 /* nope, just zero it */
2260 event
->time_delta
= 0;
2261 event
->array
[0] = 0;
2264 return skip_time_extend(event
);
2267 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2268 struct ring_buffer_event
*event
);
2271 * rb_update_event - update event type and data
2272 * @event: the event to update
2273 * @type: the type of event
2274 * @length: the size of the event field in the ring buffer
2276 * Update the type and data fields of the event. The length
2277 * is the actual size that is written to the ring buffer,
2278 * and with this, we can determine what to place into the
2282 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
2283 struct ring_buffer_event
*event
,
2284 struct rb_event_info
*info
)
2286 unsigned length
= info
->length
;
2287 u64 delta
= info
->delta
;
2289 /* Only a commit updates the timestamp */
2290 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
2294 * If we need to add a timestamp, then we
2295 * add it to the start of the resevered space.
2297 if (unlikely(info
->add_timestamp
)) {
2298 event
= rb_add_time_stamp(event
, delta
);
2299 length
-= RB_LEN_TIME_EXTEND
;
2303 event
->time_delta
= delta
;
2304 length
-= RB_EVNT_HDR_SIZE
;
2305 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
2306 event
->type_len
= 0;
2307 event
->array
[0] = length
;
2309 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
2312 static unsigned rb_calculate_event_length(unsigned length
)
2314 struct ring_buffer_event event
; /* Used only for sizeof array */
2316 /* zero length can cause confusions */
2320 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
2321 length
+= sizeof(event
.array
[0]);
2323 length
+= RB_EVNT_HDR_SIZE
;
2324 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
2327 * In case the time delta is larger than the 27 bits for it
2328 * in the header, we need to add a timestamp. If another
2329 * event comes in when trying to discard this one to increase
2330 * the length, then the timestamp will be added in the allocated
2331 * space of this event. If length is bigger than the size needed
2332 * for the TIME_EXTEND, then padding has to be used. The events
2333 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2334 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2335 * As length is a multiple of 4, we only need to worry if it
2336 * is 12 (RB_LEN_TIME_EXTEND + 4).
2338 if (length
== RB_LEN_TIME_EXTEND
+ RB_ALIGNMENT
)
2339 length
+= RB_ALIGNMENT
;
2344 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2345 static inline bool sched_clock_stable(void)
2352 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2353 struct ring_buffer_event
*event
)
2355 unsigned long new_index
, old_index
;
2356 struct buffer_page
*bpage
;
2357 unsigned long index
;
2360 new_index
= rb_event_index(event
);
2361 old_index
= new_index
+ rb_event_ts_length(event
);
2362 addr
= (unsigned long)event
;
2365 bpage
= cpu_buffer
->tail_page
;
2367 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2368 unsigned long write_mask
=
2369 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2370 unsigned long event_length
= rb_event_length(event
);
2372 * This is on the tail page. It is possible that
2373 * a write could come in and move the tail page
2374 * and write to the next page. That is fine
2375 * because we just shorten what is on this page.
2377 old_index
+= write_mask
;
2378 new_index
+= write_mask
;
2379 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2380 if (index
== old_index
) {
2381 /* update counters */
2382 local_sub(event_length
, &cpu_buffer
->entries_bytes
);
2387 /* could not discard */
2391 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2393 local_inc(&cpu_buffer
->committing
);
2394 local_inc(&cpu_buffer
->commits
);
2398 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
2400 unsigned long max_count
;
2403 * We only race with interrupts and NMIs on this CPU.
2404 * If we own the commit event, then we can commit
2405 * all others that interrupted us, since the interruptions
2406 * are in stack format (they finish before they come
2407 * back to us). This allows us to do a simple loop to
2408 * assign the commit to the tail.
2411 max_count
= cpu_buffer
->nr_pages
* 100;
2413 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
2414 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
2416 if (RB_WARN_ON(cpu_buffer
,
2417 rb_is_reader_page(cpu_buffer
->tail_page
)))
2419 local_set(&cpu_buffer
->commit_page
->page
->commit
,
2420 rb_page_write(cpu_buffer
->commit_page
));
2421 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
2422 cpu_buffer
->write_stamp
=
2423 cpu_buffer
->commit_page
->page
->time_stamp
;
2424 /* add barrier to keep gcc from optimizing too much */
2427 while (rb_commit_index(cpu_buffer
) !=
2428 rb_page_write(cpu_buffer
->commit_page
)) {
2430 local_set(&cpu_buffer
->commit_page
->page
->commit
,
2431 rb_page_write(cpu_buffer
->commit_page
));
2432 RB_WARN_ON(cpu_buffer
,
2433 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
2438 /* again, keep gcc from optimizing */
2442 * If an interrupt came in just after the first while loop
2443 * and pushed the tail page forward, we will be left with
2444 * a dangling commit that will never go forward.
2446 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
2450 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2452 unsigned long commits
;
2454 if (RB_WARN_ON(cpu_buffer
,
2455 !local_read(&cpu_buffer
->committing
)))
2459 commits
= local_read(&cpu_buffer
->commits
);
2460 /* synchronize with interrupts */
2462 if (local_read(&cpu_buffer
->committing
) == 1)
2463 rb_set_commit_to_write(cpu_buffer
);
2465 local_dec(&cpu_buffer
->committing
);
2467 /* synchronize with interrupts */
2471 * Need to account for interrupts coming in between the
2472 * updating of the commit page and the clearing of the
2473 * committing counter.
2475 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2476 !local_read(&cpu_buffer
->committing
)) {
2477 local_inc(&cpu_buffer
->committing
);
2482 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2484 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
2485 event
= skip_time_extend(event
);
2487 /* array[0] holds the actual length for the discarded event */
2488 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2489 event
->type_len
= RINGBUF_TYPE_PADDING
;
2490 /* time delta must be non zero */
2491 if (!event
->time_delta
)
2492 event
->time_delta
= 1;
2496 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2497 struct ring_buffer_event
*event
)
2499 unsigned long addr
= (unsigned long)event
;
2500 unsigned long index
;
2502 index
= rb_event_index(event
);
2505 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
2506 rb_commit_index(cpu_buffer
) == index
;
2510 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2511 struct ring_buffer_event
*event
)
2516 * The event first in the commit queue updates the
2519 if (rb_event_is_commit(cpu_buffer
, event
)) {
2521 * A commit event that is first on a page
2522 * updates the write timestamp with the page stamp
2524 if (!rb_event_index(event
))
2525 cpu_buffer
->write_stamp
=
2526 cpu_buffer
->commit_page
->page
->time_stamp
;
2527 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2528 delta
= event
->array
[0];
2530 delta
+= event
->time_delta
;
2531 cpu_buffer
->write_stamp
+= delta
;
2533 cpu_buffer
->write_stamp
+= event
->time_delta
;
2537 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2538 struct ring_buffer_event
*event
)
2540 local_inc(&cpu_buffer
->entries
);
2541 rb_update_write_stamp(cpu_buffer
, event
);
2542 rb_end_commit(cpu_buffer
);
2545 static __always_inline
void
2546 rb_wakeups(struct ring_buffer
*buffer
, struct ring_buffer_per_cpu
*cpu_buffer
)
2550 if (buffer
->irq_work
.waiters_pending
) {
2551 buffer
->irq_work
.waiters_pending
= false;
2552 /* irq_work_queue() supplies it's own memory barriers */
2553 irq_work_queue(&buffer
->irq_work
.work
);
2556 if (cpu_buffer
->irq_work
.waiters_pending
) {
2557 cpu_buffer
->irq_work
.waiters_pending
= false;
2558 /* irq_work_queue() supplies it's own memory barriers */
2559 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2562 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
2564 if (!pagebusy
&& cpu_buffer
->irq_work
.full_waiters_pending
) {
2565 cpu_buffer
->irq_work
.wakeup_full
= true;
2566 cpu_buffer
->irq_work
.full_waiters_pending
= false;
2567 /* irq_work_queue() supplies it's own memory barriers */
2568 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2573 * The lock and unlock are done within a preempt disable section.
2574 * The current_context per_cpu variable can only be modified
2575 * by the current task between lock and unlock. But it can
2576 * be modified more than once via an interrupt. To pass this
2577 * information from the lock to the unlock without having to
2578 * access the 'in_interrupt()' functions again (which do show
2579 * a bit of overhead in something as critical as function tracing,
2580 * we use a bitmask trick.
2582 * bit 0 = NMI context
2583 * bit 1 = IRQ context
2584 * bit 2 = SoftIRQ context
2585 * bit 3 = normal context.
2587 * This works because this is the order of contexts that can
2588 * preempt other contexts. A SoftIRQ never preempts an IRQ
2591 * When the context is determined, the corresponding bit is
2592 * checked and set (if it was set, then a recursion of that context
2595 * On unlock, we need to clear this bit. To do so, just subtract
2596 * 1 from the current_context and AND it to itself.
2600 * 101 & 100 = 100 (clearing bit zero)
2603 * 1010 & 1001 = 1000 (clearing bit 1)
2605 * The least significant bit can be cleared this way, and it
2606 * just so happens that it is the same bit corresponding to
2607 * the current context.
2610 static __always_inline
int
2611 trace_recursive_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
2613 unsigned int val
= cpu_buffer
->current_context
;
2616 if (in_interrupt()) {
2622 bit
= RB_CTX_SOFTIRQ
;
2624 bit
= RB_CTX_NORMAL
;
2626 if (unlikely(val
& (1 << bit
)))
2630 cpu_buffer
->current_context
= val
;
2635 static __always_inline
void
2636 trace_recursive_unlock(struct ring_buffer_per_cpu
*cpu_buffer
)
2638 cpu_buffer
->current_context
&= cpu_buffer
->current_context
- 1;
2642 * ring_buffer_unlock_commit - commit a reserved
2643 * @buffer: The buffer to commit to
2644 * @event: The event pointer to commit.
2646 * This commits the data to the ring buffer, and releases any locks held.
2648 * Must be paired with ring_buffer_lock_reserve.
2650 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2651 struct ring_buffer_event
*event
)
2653 struct ring_buffer_per_cpu
*cpu_buffer
;
2654 int cpu
= raw_smp_processor_id();
2656 cpu_buffer
= buffer
->buffers
[cpu
];
2658 rb_commit(cpu_buffer
, event
);
2660 rb_wakeups(buffer
, cpu_buffer
);
2662 trace_recursive_unlock(cpu_buffer
);
2664 preempt_enable_notrace();
2668 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2670 static noinline
void
2671 rb_handle_timestamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2672 struct rb_event_info
*info
)
2674 WARN_ONCE(info
->delta
> (1ULL << 59),
2675 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2676 (unsigned long long)info
->delta
,
2677 (unsigned long long)info
->ts
,
2678 (unsigned long long)cpu_buffer
->write_stamp
,
2679 sched_clock_stable() ? "" :
2680 "If you just came from a suspend/resume,\n"
2681 "please switch to the trace global clock:\n"
2682 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2683 info
->add_timestamp
= 1;
2686 static struct ring_buffer_event
*
2687 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2688 struct rb_event_info
*info
)
2690 struct ring_buffer_event
*event
;
2691 struct buffer_page
*tail_page
;
2692 unsigned long tail
, write
;
2695 * If the time delta since the last event is too big to
2696 * hold in the time field of the event, then we append a
2697 * TIME EXTEND event ahead of the data event.
2699 if (unlikely(info
->add_timestamp
))
2700 info
->length
+= RB_LEN_TIME_EXTEND
;
2702 tail_page
= info
->tail_page
= cpu_buffer
->tail_page
;
2703 write
= local_add_return(info
->length
, &tail_page
->write
);
2705 /* set write to only the index of the write */
2706 write
&= RB_WRITE_MASK
;
2707 tail
= write
- info
->length
;
2710 * If this is the first commit on the page, then it has the same
2711 * timestamp as the page itself.
2716 /* See if we shot pass the end of this buffer page */
2717 if (unlikely(write
> BUF_PAGE_SIZE
))
2718 return rb_move_tail(cpu_buffer
, tail
, info
);
2720 /* We reserved something on the buffer */
2722 event
= __rb_page_index(tail_page
, tail
);
2723 kmemcheck_annotate_bitfield(event
, bitfield
);
2724 rb_update_event(cpu_buffer
, event
, info
);
2726 local_inc(&tail_page
->entries
);
2729 * If this is the first commit on the page, then update
2733 tail_page
->page
->time_stamp
= info
->ts
;
2735 /* account for these added bytes */
2736 local_add(info
->length
, &cpu_buffer
->entries_bytes
);
2741 static struct ring_buffer_event
*
2742 rb_reserve_next_event(struct ring_buffer
*buffer
,
2743 struct ring_buffer_per_cpu
*cpu_buffer
,
2744 unsigned long length
)
2746 struct ring_buffer_event
*event
;
2747 struct rb_event_info info
;
2751 rb_start_commit(cpu_buffer
);
2753 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2755 * Due to the ability to swap a cpu buffer from a buffer
2756 * it is possible it was swapped before we committed.
2757 * (committing stops a swap). We check for it here and
2758 * if it happened, we have to fail the write.
2761 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2762 local_dec(&cpu_buffer
->committing
);
2763 local_dec(&cpu_buffer
->commits
);
2768 info
.length
= rb_calculate_event_length(length
);
2770 info
.add_timestamp
= 0;
2774 * We allow for interrupts to reenter here and do a trace.
2775 * If one does, it will cause this original code to loop
2776 * back here. Even with heavy interrupts happening, this
2777 * should only happen a few times in a row. If this happens
2778 * 1000 times in a row, there must be either an interrupt
2779 * storm or we have something buggy.
2782 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2785 info
.ts
= rb_time_stamp(cpu_buffer
->buffer
);
2786 diff
= info
.ts
- cpu_buffer
->write_stamp
;
2788 /* make sure this diff is calculated here */
2791 /* Did the write stamp get updated already? */
2792 if (likely(info
.ts
>= cpu_buffer
->write_stamp
)) {
2794 if (unlikely(test_time_stamp(info
.delta
)))
2795 rb_handle_timestamp(cpu_buffer
, &info
);
2798 event
= __rb_reserve_next(cpu_buffer
, &info
);
2800 if (unlikely(PTR_ERR(event
) == -EAGAIN
)) {
2801 if (info
.add_timestamp
)
2802 info
.length
-= RB_LEN_TIME_EXTEND
;
2812 rb_end_commit(cpu_buffer
);
2817 * ring_buffer_lock_reserve - reserve a part of the buffer
2818 * @buffer: the ring buffer to reserve from
2819 * @length: the length of the data to reserve (excluding event header)
2821 * Returns a reseverd event on the ring buffer to copy directly to.
2822 * The user of this interface will need to get the body to write into
2823 * and can use the ring_buffer_event_data() interface.
2825 * The length is the length of the data needed, not the event length
2826 * which also includes the event header.
2828 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2829 * If NULL is returned, then nothing has been allocated or locked.
2831 struct ring_buffer_event
*
2832 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2834 struct ring_buffer_per_cpu
*cpu_buffer
;
2835 struct ring_buffer_event
*event
;
2838 /* If we are tracing schedule, we don't want to recurse */
2839 preempt_disable_notrace();
2841 if (unlikely(atomic_read(&buffer
->record_disabled
)))
2844 cpu
= raw_smp_processor_id();
2846 if (unlikely(!cpumask_test_cpu(cpu
, buffer
->cpumask
)))
2849 cpu_buffer
= buffer
->buffers
[cpu
];
2851 if (unlikely(atomic_read(&cpu_buffer
->record_disabled
)))
2854 if (unlikely(length
> BUF_MAX_DATA_SIZE
))
2857 if (unlikely(trace_recursive_lock(cpu_buffer
)))
2860 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2867 trace_recursive_unlock(cpu_buffer
);
2869 preempt_enable_notrace();
2872 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2875 * Decrement the entries to the page that an event is on.
2876 * The event does not even need to exist, only the pointer
2877 * to the page it is on. This may only be called before the commit
2881 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2882 struct ring_buffer_event
*event
)
2884 unsigned long addr
= (unsigned long)event
;
2885 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2886 struct buffer_page
*start
;
2890 /* Do the likely case first */
2891 if (likely(bpage
->page
== (void *)addr
)) {
2892 local_dec(&bpage
->entries
);
2897 * Because the commit page may be on the reader page we
2898 * start with the next page and check the end loop there.
2900 rb_inc_page(cpu_buffer
, &bpage
);
2903 if (bpage
->page
== (void *)addr
) {
2904 local_dec(&bpage
->entries
);
2907 rb_inc_page(cpu_buffer
, &bpage
);
2908 } while (bpage
!= start
);
2910 /* commit not part of this buffer?? */
2911 RB_WARN_ON(cpu_buffer
, 1);
2915 * ring_buffer_commit_discard - discard an event that has not been committed
2916 * @buffer: the ring buffer
2917 * @event: non committed event to discard
2919 * Sometimes an event that is in the ring buffer needs to be ignored.
2920 * This function lets the user discard an event in the ring buffer
2921 * and then that event will not be read later.
2923 * This function only works if it is called before the the item has been
2924 * committed. It will try to free the event from the ring buffer
2925 * if another event has not been added behind it.
2927 * If another event has been added behind it, it will set the event
2928 * up as discarded, and perform the commit.
2930 * If this function is called, do not call ring_buffer_unlock_commit on
2933 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2934 struct ring_buffer_event
*event
)
2936 struct ring_buffer_per_cpu
*cpu_buffer
;
2939 /* The event is discarded regardless */
2940 rb_event_discard(event
);
2942 cpu
= smp_processor_id();
2943 cpu_buffer
= buffer
->buffers
[cpu
];
2946 * This must only be called if the event has not been
2947 * committed yet. Thus we can assume that preemption
2948 * is still disabled.
2950 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2952 rb_decrement_entry(cpu_buffer
, event
);
2953 if (rb_try_to_discard(cpu_buffer
, event
))
2957 * The commit is still visible by the reader, so we
2958 * must still update the timestamp.
2960 rb_update_write_stamp(cpu_buffer
, event
);
2962 rb_end_commit(cpu_buffer
);
2964 trace_recursive_unlock(cpu_buffer
);
2966 preempt_enable_notrace();
2969 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2972 * ring_buffer_write - write data to the buffer without reserving
2973 * @buffer: The ring buffer to write to.
2974 * @length: The length of the data being written (excluding the event header)
2975 * @data: The data to write to the buffer.
2977 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2978 * one function. If you already have the data to write to the buffer, it
2979 * may be easier to simply call this function.
2981 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2982 * and not the length of the event which would hold the header.
2984 int ring_buffer_write(struct ring_buffer
*buffer
,
2985 unsigned long length
,
2988 struct ring_buffer_per_cpu
*cpu_buffer
;
2989 struct ring_buffer_event
*event
;
2994 preempt_disable_notrace();
2996 if (atomic_read(&buffer
->record_disabled
))
2999 cpu
= raw_smp_processor_id();
3001 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3004 cpu_buffer
= buffer
->buffers
[cpu
];
3006 if (atomic_read(&cpu_buffer
->record_disabled
))
3009 if (length
> BUF_MAX_DATA_SIZE
)
3012 if (unlikely(trace_recursive_lock(cpu_buffer
)))
3015 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
3019 body
= rb_event_data(event
);
3021 memcpy(body
, data
, length
);
3023 rb_commit(cpu_buffer
, event
);
3025 rb_wakeups(buffer
, cpu_buffer
);
3030 trace_recursive_unlock(cpu_buffer
);
3033 preempt_enable_notrace();
3037 EXPORT_SYMBOL_GPL(ring_buffer_write
);
3039 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
3041 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
3042 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
3043 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
3045 /* In case of error, head will be NULL */
3046 if (unlikely(!head
))
3049 return reader
->read
== rb_page_commit(reader
) &&
3050 (commit
== reader
||
3052 head
->read
== rb_page_commit(commit
)));
3056 * ring_buffer_record_disable - stop all writes into the buffer
3057 * @buffer: The ring buffer to stop writes to.
3059 * This prevents all writes to the buffer. Any attempt to write
3060 * to the buffer after this will fail and return NULL.
3062 * The caller should call synchronize_sched() after this.
3064 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
3066 atomic_inc(&buffer
->record_disabled
);
3068 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
3071 * ring_buffer_record_enable - enable writes to the buffer
3072 * @buffer: The ring buffer to enable writes
3074 * Note, multiple disables will need the same number of enables
3075 * to truly enable the writing (much like preempt_disable).
3077 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
3079 atomic_dec(&buffer
->record_disabled
);
3081 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
3084 * ring_buffer_record_off - stop all writes into the buffer
3085 * @buffer: The ring buffer to stop writes to.
3087 * This prevents all writes to the buffer. Any attempt to write
3088 * to the buffer after this will fail and return NULL.
3090 * This is different than ring_buffer_record_disable() as
3091 * it works like an on/off switch, where as the disable() version
3092 * must be paired with a enable().
3094 void ring_buffer_record_off(struct ring_buffer
*buffer
)
3097 unsigned int new_rd
;
3100 rd
= atomic_read(&buffer
->record_disabled
);
3101 new_rd
= rd
| RB_BUFFER_OFF
;
3102 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3104 EXPORT_SYMBOL_GPL(ring_buffer_record_off
);
3107 * ring_buffer_record_on - restart writes into the buffer
3108 * @buffer: The ring buffer to start writes to.
3110 * This enables all writes to the buffer that was disabled by
3111 * ring_buffer_record_off().
3113 * This is different than ring_buffer_record_enable() as
3114 * it works like an on/off switch, where as the enable() version
3115 * must be paired with a disable().
3117 void ring_buffer_record_on(struct ring_buffer
*buffer
)
3120 unsigned int new_rd
;
3123 rd
= atomic_read(&buffer
->record_disabled
);
3124 new_rd
= rd
& ~RB_BUFFER_OFF
;
3125 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3127 EXPORT_SYMBOL_GPL(ring_buffer_record_on
);
3130 * ring_buffer_record_is_on - return true if the ring buffer can write
3131 * @buffer: The ring buffer to see if write is enabled
3133 * Returns true if the ring buffer is in a state that it accepts writes.
3135 int ring_buffer_record_is_on(struct ring_buffer
*buffer
)
3137 return !atomic_read(&buffer
->record_disabled
);
3141 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3142 * @buffer: The ring buffer to stop writes to.
3143 * @cpu: The CPU buffer to stop
3145 * This prevents all writes to the buffer. Any attempt to write
3146 * to the buffer after this will fail and return NULL.
3148 * The caller should call synchronize_sched() after this.
3150 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
3152 struct ring_buffer_per_cpu
*cpu_buffer
;
3154 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3157 cpu_buffer
= buffer
->buffers
[cpu
];
3158 atomic_inc(&cpu_buffer
->record_disabled
);
3160 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
3163 * ring_buffer_record_enable_cpu - enable writes to the buffer
3164 * @buffer: The ring buffer to enable writes
3165 * @cpu: The CPU to enable.
3167 * Note, multiple disables will need the same number of enables
3168 * to truly enable the writing (much like preempt_disable).
3170 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
3172 struct ring_buffer_per_cpu
*cpu_buffer
;
3174 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3177 cpu_buffer
= buffer
->buffers
[cpu
];
3178 atomic_dec(&cpu_buffer
->record_disabled
);
3180 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
3183 * The total entries in the ring buffer is the running counter
3184 * of entries entered into the ring buffer, minus the sum of
3185 * the entries read from the ring buffer and the number of
3186 * entries that were overwritten.
3188 static inline unsigned long
3189 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
3191 return local_read(&cpu_buffer
->entries
) -
3192 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
3196 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3197 * @buffer: The ring buffer
3198 * @cpu: The per CPU buffer to read from.
3200 u64
ring_buffer_oldest_event_ts(struct ring_buffer
*buffer
, int cpu
)
3202 unsigned long flags
;
3203 struct ring_buffer_per_cpu
*cpu_buffer
;
3204 struct buffer_page
*bpage
;
3207 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3210 cpu_buffer
= buffer
->buffers
[cpu
];
3211 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3213 * if the tail is on reader_page, oldest time stamp is on the reader
3216 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
3217 bpage
= cpu_buffer
->reader_page
;
3219 bpage
= rb_set_head_page(cpu_buffer
);
3221 ret
= bpage
->page
->time_stamp
;
3222 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3226 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts
);
3229 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3230 * @buffer: The ring buffer
3231 * @cpu: The per CPU buffer to read from.
3233 unsigned long ring_buffer_bytes_cpu(struct ring_buffer
*buffer
, int cpu
)
3235 struct ring_buffer_per_cpu
*cpu_buffer
;
3238 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3241 cpu_buffer
= buffer
->buffers
[cpu
];
3242 ret
= local_read(&cpu_buffer
->entries_bytes
) - cpu_buffer
->read_bytes
;
3246 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu
);
3249 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3250 * @buffer: The ring buffer
3251 * @cpu: The per CPU buffer to get the entries from.
3253 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
3255 struct ring_buffer_per_cpu
*cpu_buffer
;
3257 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3260 cpu_buffer
= buffer
->buffers
[cpu
];
3262 return rb_num_of_entries(cpu_buffer
);
3264 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
3267 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3268 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3269 * @buffer: The ring buffer
3270 * @cpu: The per CPU buffer to get the number of overruns from
3272 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3274 struct ring_buffer_per_cpu
*cpu_buffer
;
3277 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3280 cpu_buffer
= buffer
->buffers
[cpu
];
3281 ret
= local_read(&cpu_buffer
->overrun
);
3285 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
3288 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3289 * commits failing due to the buffer wrapping around while there are uncommitted
3290 * events, such as during an interrupt storm.
3291 * @buffer: The ring buffer
3292 * @cpu: The per CPU buffer to get the number of overruns from
3295 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3297 struct ring_buffer_per_cpu
*cpu_buffer
;
3300 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3303 cpu_buffer
= buffer
->buffers
[cpu
];
3304 ret
= local_read(&cpu_buffer
->commit_overrun
);
3308 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
3311 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3312 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3313 * @buffer: The ring buffer
3314 * @cpu: The per CPU buffer to get the number of overruns from
3317 ring_buffer_dropped_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3319 struct ring_buffer_per_cpu
*cpu_buffer
;
3322 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3325 cpu_buffer
= buffer
->buffers
[cpu
];
3326 ret
= local_read(&cpu_buffer
->dropped_events
);
3330 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu
);
3333 * ring_buffer_read_events_cpu - get the number of events successfully read
3334 * @buffer: The ring buffer
3335 * @cpu: The per CPU buffer to get the number of events read
3338 ring_buffer_read_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3340 struct ring_buffer_per_cpu
*cpu_buffer
;
3342 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3345 cpu_buffer
= buffer
->buffers
[cpu
];
3346 return cpu_buffer
->read
;
3348 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu
);
3351 * ring_buffer_entries - get the number of entries in a buffer
3352 * @buffer: The ring buffer
3354 * Returns the total number of entries in the ring buffer
3357 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
3359 struct ring_buffer_per_cpu
*cpu_buffer
;
3360 unsigned long entries
= 0;
3363 /* if you care about this being correct, lock the buffer */
3364 for_each_buffer_cpu(buffer
, cpu
) {
3365 cpu_buffer
= buffer
->buffers
[cpu
];
3366 entries
+= rb_num_of_entries(cpu_buffer
);
3371 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
3374 * ring_buffer_overruns - get the number of overruns in buffer
3375 * @buffer: The ring buffer
3377 * Returns the total number of overruns in the ring buffer
3380 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
3382 struct ring_buffer_per_cpu
*cpu_buffer
;
3383 unsigned long overruns
= 0;
3386 /* if you care about this being correct, lock the buffer */
3387 for_each_buffer_cpu(buffer
, cpu
) {
3388 cpu_buffer
= buffer
->buffers
[cpu
];
3389 overruns
+= local_read(&cpu_buffer
->overrun
);
3394 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
3396 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
3398 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3400 /* Iterator usage is expected to have record disabled */
3401 iter
->head_page
= cpu_buffer
->reader_page
;
3402 iter
->head
= cpu_buffer
->reader_page
->read
;
3404 iter
->cache_reader_page
= iter
->head_page
;
3405 iter
->cache_read
= cpu_buffer
->read
;
3408 iter
->read_stamp
= cpu_buffer
->read_stamp
;
3410 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
3414 * ring_buffer_iter_reset - reset an iterator
3415 * @iter: The iterator to reset
3417 * Resets the iterator, so that it will start from the beginning
3420 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
3422 struct ring_buffer_per_cpu
*cpu_buffer
;
3423 unsigned long flags
;
3428 cpu_buffer
= iter
->cpu_buffer
;
3430 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3431 rb_iter_reset(iter
);
3432 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3434 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
3437 * ring_buffer_iter_empty - check if an iterator has no more to read
3438 * @iter: The iterator to check
3440 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
3442 struct ring_buffer_per_cpu
*cpu_buffer
;
3444 cpu_buffer
= iter
->cpu_buffer
;
3446 return iter
->head_page
== cpu_buffer
->commit_page
&&
3447 iter
->head
== rb_commit_index(cpu_buffer
);
3449 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
3452 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3453 struct ring_buffer_event
*event
)
3457 switch (event
->type_len
) {
3458 case RINGBUF_TYPE_PADDING
:
3461 case RINGBUF_TYPE_TIME_EXTEND
:
3462 delta
= event
->array
[0];
3464 delta
+= event
->time_delta
;
3465 cpu_buffer
->read_stamp
+= delta
;
3468 case RINGBUF_TYPE_TIME_STAMP
:
3469 /* FIXME: not implemented */
3472 case RINGBUF_TYPE_DATA
:
3473 cpu_buffer
->read_stamp
+= event
->time_delta
;
3483 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
3484 struct ring_buffer_event
*event
)
3488 switch (event
->type_len
) {
3489 case RINGBUF_TYPE_PADDING
:
3492 case RINGBUF_TYPE_TIME_EXTEND
:
3493 delta
= event
->array
[0];
3495 delta
+= event
->time_delta
;
3496 iter
->read_stamp
+= delta
;
3499 case RINGBUF_TYPE_TIME_STAMP
:
3500 /* FIXME: not implemented */
3503 case RINGBUF_TYPE_DATA
:
3504 iter
->read_stamp
+= event
->time_delta
;
3513 static struct buffer_page
*
3514 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
3516 struct buffer_page
*reader
= NULL
;
3517 unsigned long overwrite
;
3518 unsigned long flags
;
3522 local_irq_save(flags
);
3523 arch_spin_lock(&cpu_buffer
->lock
);
3527 * This should normally only loop twice. But because the
3528 * start of the reader inserts an empty page, it causes
3529 * a case where we will loop three times. There should be no
3530 * reason to loop four times (that I know of).
3532 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
3537 reader
= cpu_buffer
->reader_page
;
3539 /* If there's more to read, return this page */
3540 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
3543 /* Never should we have an index greater than the size */
3544 if (RB_WARN_ON(cpu_buffer
,
3545 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
3548 /* check if we caught up to the tail */
3550 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
3553 /* Don't bother swapping if the ring buffer is empty */
3554 if (rb_num_of_entries(cpu_buffer
) == 0)
3558 * Reset the reader page to size zero.
3560 local_set(&cpu_buffer
->reader_page
->write
, 0);
3561 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3562 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3563 cpu_buffer
->reader_page
->real_end
= 0;
3567 * Splice the empty reader page into the list around the head.
3569 reader
= rb_set_head_page(cpu_buffer
);
3572 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
3573 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
3576 * cpu_buffer->pages just needs to point to the buffer, it
3577 * has no specific buffer page to point to. Lets move it out
3578 * of our way so we don't accidentally swap it.
3580 cpu_buffer
->pages
= reader
->list
.prev
;
3582 /* The reader page will be pointing to the new head */
3583 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
3586 * We want to make sure we read the overruns after we set up our
3587 * pointers to the next object. The writer side does a
3588 * cmpxchg to cross pages which acts as the mb on the writer
3589 * side. Note, the reader will constantly fail the swap
3590 * while the writer is updating the pointers, so this
3591 * guarantees that the overwrite recorded here is the one we
3592 * want to compare with the last_overrun.
3595 overwrite
= local_read(&(cpu_buffer
->overrun
));
3598 * Here's the tricky part.
3600 * We need to move the pointer past the header page.
3601 * But we can only do that if a writer is not currently
3602 * moving it. The page before the header page has the
3603 * flag bit '1' set if it is pointing to the page we want.
3604 * but if the writer is in the process of moving it
3605 * than it will be '2' or already moved '0'.
3608 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
3611 * If we did not convert it, then we must try again.
3617 * Yeah! We succeeded in replacing the page.
3619 * Now make the new head point back to the reader page.
3621 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
3622 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
3624 /* Finally update the reader page to the new head */
3625 cpu_buffer
->reader_page
= reader
;
3626 cpu_buffer
->reader_page
->read
= 0;
3628 if (overwrite
!= cpu_buffer
->last_overrun
) {
3629 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
3630 cpu_buffer
->last_overrun
= overwrite
;
3636 /* Update the read_stamp on the first event */
3637 if (reader
&& reader
->read
== 0)
3638 cpu_buffer
->read_stamp
= reader
->page
->time_stamp
;
3640 arch_spin_unlock(&cpu_buffer
->lock
);
3641 local_irq_restore(flags
);
3646 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3648 struct ring_buffer_event
*event
;
3649 struct buffer_page
*reader
;
3652 reader
= rb_get_reader_page(cpu_buffer
);
3654 /* This function should not be called when buffer is empty */
3655 if (RB_WARN_ON(cpu_buffer
, !reader
))
3658 event
= rb_reader_event(cpu_buffer
);
3660 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3663 rb_update_read_stamp(cpu_buffer
, event
);
3665 length
= rb_event_length(event
);
3666 cpu_buffer
->reader_page
->read
+= length
;
3669 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3671 struct ring_buffer_per_cpu
*cpu_buffer
;
3672 struct ring_buffer_event
*event
;
3675 cpu_buffer
= iter
->cpu_buffer
;
3678 * Check if we are at the end of the buffer.
3680 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3681 /* discarded commits can make the page empty */
3682 if (iter
->head_page
== cpu_buffer
->commit_page
)
3688 event
= rb_iter_head_event(iter
);
3690 length
= rb_event_length(event
);
3693 * This should not be called to advance the header if we are
3694 * at the tail of the buffer.
3696 if (RB_WARN_ON(cpu_buffer
,
3697 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3698 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3701 rb_update_iter_read_stamp(iter
, event
);
3703 iter
->head
+= length
;
3705 /* check for end of page padding */
3706 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3707 (iter
->head_page
!= cpu_buffer
->commit_page
))
3711 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3713 return cpu_buffer
->lost_events
;
3716 static struct ring_buffer_event
*
3717 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3718 unsigned long *lost_events
)
3720 struct ring_buffer_event
*event
;
3721 struct buffer_page
*reader
;
3726 * We repeat when a time extend is encountered.
3727 * Since the time extend is always attached to a data event,
3728 * we should never loop more than once.
3729 * (We never hit the following condition more than twice).
3731 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3734 reader
= rb_get_reader_page(cpu_buffer
);
3738 event
= rb_reader_event(cpu_buffer
);
3740 switch (event
->type_len
) {
3741 case RINGBUF_TYPE_PADDING
:
3742 if (rb_null_event(event
))
3743 RB_WARN_ON(cpu_buffer
, 1);
3745 * Because the writer could be discarding every
3746 * event it creates (which would probably be bad)
3747 * if we were to go back to "again" then we may never
3748 * catch up, and will trigger the warn on, or lock
3749 * the box. Return the padding, and we will release
3750 * the current locks, and try again.
3754 case RINGBUF_TYPE_TIME_EXTEND
:
3755 /* Internal data, OK to advance */
3756 rb_advance_reader(cpu_buffer
);
3759 case RINGBUF_TYPE_TIME_STAMP
:
3760 /* FIXME: not implemented */
3761 rb_advance_reader(cpu_buffer
);
3764 case RINGBUF_TYPE_DATA
:
3766 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3767 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3768 cpu_buffer
->cpu
, ts
);
3771 *lost_events
= rb_lost_events(cpu_buffer
);
3780 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3782 static struct ring_buffer_event
*
3783 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3785 struct ring_buffer
*buffer
;
3786 struct ring_buffer_per_cpu
*cpu_buffer
;
3787 struct ring_buffer_event
*event
;
3790 cpu_buffer
= iter
->cpu_buffer
;
3791 buffer
= cpu_buffer
->buffer
;
3794 * Check if someone performed a consuming read to
3795 * the buffer. A consuming read invalidates the iterator
3796 * and we need to reset the iterator in this case.
3798 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3799 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3800 rb_iter_reset(iter
);
3803 if (ring_buffer_iter_empty(iter
))
3807 * We repeat when a time extend is encountered or we hit
3808 * the end of the page. Since the time extend is always attached
3809 * to a data event, we should never loop more than three times.
3810 * Once for going to next page, once on time extend, and
3811 * finally once to get the event.
3812 * (We never hit the following condition more than thrice).
3814 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3))
3817 if (rb_per_cpu_empty(cpu_buffer
))
3820 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3825 event
= rb_iter_head_event(iter
);
3827 switch (event
->type_len
) {
3828 case RINGBUF_TYPE_PADDING
:
3829 if (rb_null_event(event
)) {
3833 rb_advance_iter(iter
);
3836 case RINGBUF_TYPE_TIME_EXTEND
:
3837 /* Internal data, OK to advance */
3838 rb_advance_iter(iter
);
3841 case RINGBUF_TYPE_TIME_STAMP
:
3842 /* FIXME: not implemented */
3843 rb_advance_iter(iter
);
3846 case RINGBUF_TYPE_DATA
:
3848 *ts
= iter
->read_stamp
+ event
->time_delta
;
3849 ring_buffer_normalize_time_stamp(buffer
,
3850 cpu_buffer
->cpu
, ts
);
3860 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3862 static inline bool rb_reader_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
3864 if (likely(!in_nmi())) {
3865 raw_spin_lock(&cpu_buffer
->reader_lock
);
3870 * If an NMI die dumps out the content of the ring buffer
3871 * trylock must be used to prevent a deadlock if the NMI
3872 * preempted a task that holds the ring buffer locks. If
3873 * we get the lock then all is fine, if not, then continue
3874 * to do the read, but this can corrupt the ring buffer,
3875 * so it must be permanently disabled from future writes.
3876 * Reading from NMI is a oneshot deal.
3878 if (raw_spin_trylock(&cpu_buffer
->reader_lock
))
3881 /* Continue without locking, but disable the ring buffer */
3882 atomic_inc(&cpu_buffer
->record_disabled
);
3887 rb_reader_unlock(struct ring_buffer_per_cpu
*cpu_buffer
, bool locked
)
3890 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3895 * ring_buffer_peek - peek at the next event to be read
3896 * @buffer: The ring buffer to read
3897 * @cpu: The cpu to peak at
3898 * @ts: The timestamp counter of this event.
3899 * @lost_events: a variable to store if events were lost (may be NULL)
3901 * This will return the event that will be read next, but does
3902 * not consume the data.
3904 struct ring_buffer_event
*
3905 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3906 unsigned long *lost_events
)
3908 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3909 struct ring_buffer_event
*event
;
3910 unsigned long flags
;
3913 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3917 local_irq_save(flags
);
3918 dolock
= rb_reader_lock(cpu_buffer
);
3919 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3920 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3921 rb_advance_reader(cpu_buffer
);
3922 rb_reader_unlock(cpu_buffer
, dolock
);
3923 local_irq_restore(flags
);
3925 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3932 * ring_buffer_iter_peek - peek at the next event to be read
3933 * @iter: The ring buffer iterator
3934 * @ts: The timestamp counter of this event.
3936 * This will return the event that will be read next, but does
3937 * not increment the iterator.
3939 struct ring_buffer_event
*
3940 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3942 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3943 struct ring_buffer_event
*event
;
3944 unsigned long flags
;
3947 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3948 event
= rb_iter_peek(iter
, ts
);
3949 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3951 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3958 * ring_buffer_consume - return an event and consume it
3959 * @buffer: The ring buffer to get the next event from
3960 * @cpu: the cpu to read the buffer from
3961 * @ts: a variable to store the timestamp (may be NULL)
3962 * @lost_events: a variable to store if events were lost (may be NULL)
3964 * Returns the next event in the ring buffer, and that event is consumed.
3965 * Meaning, that sequential reads will keep returning a different event,
3966 * and eventually empty the ring buffer if the producer is slower.
3968 struct ring_buffer_event
*
3969 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3970 unsigned long *lost_events
)
3972 struct ring_buffer_per_cpu
*cpu_buffer
;
3973 struct ring_buffer_event
*event
= NULL
;
3974 unsigned long flags
;
3978 /* might be called in atomic */
3981 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3984 cpu_buffer
= buffer
->buffers
[cpu
];
3985 local_irq_save(flags
);
3986 dolock
= rb_reader_lock(cpu_buffer
);
3988 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3990 cpu_buffer
->lost_events
= 0;
3991 rb_advance_reader(cpu_buffer
);
3994 rb_reader_unlock(cpu_buffer
, dolock
);
3995 local_irq_restore(flags
);
4000 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4005 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
4008 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4009 * @buffer: The ring buffer to read from
4010 * @cpu: The cpu buffer to iterate over
4012 * This performs the initial preparations necessary to iterate
4013 * through the buffer. Memory is allocated, buffer recording
4014 * is disabled, and the iterator pointer is returned to the caller.
4016 * Disabling buffer recordng prevents the reading from being
4017 * corrupted. This is not a consuming read, so a producer is not
4020 * After a sequence of ring_buffer_read_prepare calls, the user is
4021 * expected to make at least one call to ring_buffer_read_prepare_sync.
4022 * Afterwards, ring_buffer_read_start is invoked to get things going
4025 * This overall must be paired with ring_buffer_read_finish.
4027 struct ring_buffer_iter
*
4028 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
4030 struct ring_buffer_per_cpu
*cpu_buffer
;
4031 struct ring_buffer_iter
*iter
;
4033 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4036 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
4040 cpu_buffer
= buffer
->buffers
[cpu
];
4042 iter
->cpu_buffer
= cpu_buffer
;
4044 atomic_inc(&buffer
->resize_disabled
);
4045 atomic_inc(&cpu_buffer
->record_disabled
);
4049 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
4052 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4054 * All previously invoked ring_buffer_read_prepare calls to prepare
4055 * iterators will be synchronized. Afterwards, read_buffer_read_start
4056 * calls on those iterators are allowed.
4059 ring_buffer_read_prepare_sync(void)
4061 synchronize_sched();
4063 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
4066 * ring_buffer_read_start - start a non consuming read of the buffer
4067 * @iter: The iterator returned by ring_buffer_read_prepare
4069 * This finalizes the startup of an iteration through the buffer.
4070 * The iterator comes from a call to ring_buffer_read_prepare and
4071 * an intervening ring_buffer_read_prepare_sync must have been
4074 * Must be paired with ring_buffer_read_finish.
4077 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
4079 struct ring_buffer_per_cpu
*cpu_buffer
;
4080 unsigned long flags
;
4085 cpu_buffer
= iter
->cpu_buffer
;
4087 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4088 arch_spin_lock(&cpu_buffer
->lock
);
4089 rb_iter_reset(iter
);
4090 arch_spin_unlock(&cpu_buffer
->lock
);
4091 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4093 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
4096 * ring_buffer_read_finish - finish reading the iterator of the buffer
4097 * @iter: The iterator retrieved by ring_buffer_start
4099 * This re-enables the recording to the buffer, and frees the
4103 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
4105 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4106 unsigned long flags
;
4109 * Ring buffer is disabled from recording, here's a good place
4110 * to check the integrity of the ring buffer.
4111 * Must prevent readers from trying to read, as the check
4112 * clears the HEAD page and readers require it.
4114 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4115 rb_check_pages(cpu_buffer
);
4116 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4118 atomic_dec(&cpu_buffer
->record_disabled
);
4119 atomic_dec(&cpu_buffer
->buffer
->resize_disabled
);
4122 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
4125 * ring_buffer_read - read the next item in the ring buffer by the iterator
4126 * @iter: The ring buffer iterator
4127 * @ts: The time stamp of the event read.
4129 * This reads the next event in the ring buffer and increments the iterator.
4131 struct ring_buffer_event
*
4132 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
4134 struct ring_buffer_event
*event
;
4135 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4136 unsigned long flags
;
4138 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4140 event
= rb_iter_peek(iter
, ts
);
4144 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
4147 rb_advance_iter(iter
);
4149 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4153 EXPORT_SYMBOL_GPL(ring_buffer_read
);
4156 * ring_buffer_size - return the size of the ring buffer (in bytes)
4157 * @buffer: The ring buffer.
4159 unsigned long ring_buffer_size(struct ring_buffer
*buffer
, int cpu
)
4162 * Earlier, this method returned
4163 * BUF_PAGE_SIZE * buffer->nr_pages
4164 * Since the nr_pages field is now removed, we have converted this to
4165 * return the per cpu buffer value.
4167 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4170 return BUF_PAGE_SIZE
* buffer
->buffers
[cpu
]->nr_pages
;
4172 EXPORT_SYMBOL_GPL(ring_buffer_size
);
4175 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
4177 rb_head_page_deactivate(cpu_buffer
);
4179 cpu_buffer
->head_page
4180 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
4181 local_set(&cpu_buffer
->head_page
->write
, 0);
4182 local_set(&cpu_buffer
->head_page
->entries
, 0);
4183 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
4185 cpu_buffer
->head_page
->read
= 0;
4187 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
4188 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
4190 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
4191 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
4192 local_set(&cpu_buffer
->reader_page
->write
, 0);
4193 local_set(&cpu_buffer
->reader_page
->entries
, 0);
4194 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
4195 cpu_buffer
->reader_page
->read
= 0;
4197 local_set(&cpu_buffer
->entries_bytes
, 0);
4198 local_set(&cpu_buffer
->overrun
, 0);
4199 local_set(&cpu_buffer
->commit_overrun
, 0);
4200 local_set(&cpu_buffer
->dropped_events
, 0);
4201 local_set(&cpu_buffer
->entries
, 0);
4202 local_set(&cpu_buffer
->committing
, 0);
4203 local_set(&cpu_buffer
->commits
, 0);
4204 cpu_buffer
->read
= 0;
4205 cpu_buffer
->read_bytes
= 0;
4207 cpu_buffer
->write_stamp
= 0;
4208 cpu_buffer
->read_stamp
= 0;
4210 cpu_buffer
->lost_events
= 0;
4211 cpu_buffer
->last_overrun
= 0;
4213 rb_head_page_activate(cpu_buffer
);
4217 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4218 * @buffer: The ring buffer to reset a per cpu buffer of
4219 * @cpu: The CPU buffer to be reset
4221 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
4223 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4224 unsigned long flags
;
4226 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4229 atomic_inc(&buffer
->resize_disabled
);
4230 atomic_inc(&cpu_buffer
->record_disabled
);
4232 /* Make sure all commits have finished */
4233 synchronize_sched();
4235 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4237 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
4240 arch_spin_lock(&cpu_buffer
->lock
);
4242 rb_reset_cpu(cpu_buffer
);
4244 arch_spin_unlock(&cpu_buffer
->lock
);
4247 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4249 atomic_dec(&cpu_buffer
->record_disabled
);
4250 atomic_dec(&buffer
->resize_disabled
);
4252 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
4255 * ring_buffer_reset - reset a ring buffer
4256 * @buffer: The ring buffer to reset all cpu buffers
4258 void ring_buffer_reset(struct ring_buffer
*buffer
)
4262 for_each_buffer_cpu(buffer
, cpu
)
4263 ring_buffer_reset_cpu(buffer
, cpu
);
4265 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
4268 * rind_buffer_empty - is the ring buffer empty?
4269 * @buffer: The ring buffer to test
4271 bool ring_buffer_empty(struct ring_buffer
*buffer
)
4273 struct ring_buffer_per_cpu
*cpu_buffer
;
4274 unsigned long flags
;
4279 /* yes this is racy, but if you don't like the race, lock the buffer */
4280 for_each_buffer_cpu(buffer
, cpu
) {
4281 cpu_buffer
= buffer
->buffers
[cpu
];
4282 local_irq_save(flags
);
4283 dolock
= rb_reader_lock(cpu_buffer
);
4284 ret
= rb_per_cpu_empty(cpu_buffer
);
4285 rb_reader_unlock(cpu_buffer
, dolock
);
4286 local_irq_restore(flags
);
4294 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
4297 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4298 * @buffer: The ring buffer
4299 * @cpu: The CPU buffer to test
4301 bool ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
4303 struct ring_buffer_per_cpu
*cpu_buffer
;
4304 unsigned long flags
;
4308 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4311 cpu_buffer
= buffer
->buffers
[cpu
];
4312 local_irq_save(flags
);
4313 dolock
= rb_reader_lock(cpu_buffer
);
4314 ret
= rb_per_cpu_empty(cpu_buffer
);
4315 rb_reader_unlock(cpu_buffer
, dolock
);
4316 local_irq_restore(flags
);
4320 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
4322 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4324 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4325 * @buffer_a: One buffer to swap with
4326 * @buffer_b: The other buffer to swap with
4328 * This function is useful for tracers that want to take a "snapshot"
4329 * of a CPU buffer and has another back up buffer lying around.
4330 * it is expected that the tracer handles the cpu buffer not being
4331 * used at the moment.
4333 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
4334 struct ring_buffer
*buffer_b
, int cpu
)
4336 struct ring_buffer_per_cpu
*cpu_buffer_a
;
4337 struct ring_buffer_per_cpu
*cpu_buffer_b
;
4340 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
4341 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
4344 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
4345 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
4347 /* At least make sure the two buffers are somewhat the same */
4348 if (cpu_buffer_a
->nr_pages
!= cpu_buffer_b
->nr_pages
)
4353 if (atomic_read(&buffer_a
->record_disabled
))
4356 if (atomic_read(&buffer_b
->record_disabled
))
4359 if (atomic_read(&cpu_buffer_a
->record_disabled
))
4362 if (atomic_read(&cpu_buffer_b
->record_disabled
))
4366 * We can't do a synchronize_sched here because this
4367 * function can be called in atomic context.
4368 * Normally this will be called from the same CPU as cpu.
4369 * If not it's up to the caller to protect this.
4371 atomic_inc(&cpu_buffer_a
->record_disabled
);
4372 atomic_inc(&cpu_buffer_b
->record_disabled
);
4375 if (local_read(&cpu_buffer_a
->committing
))
4377 if (local_read(&cpu_buffer_b
->committing
))
4380 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
4381 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
4383 cpu_buffer_b
->buffer
= buffer_a
;
4384 cpu_buffer_a
->buffer
= buffer_b
;
4389 atomic_dec(&cpu_buffer_a
->record_disabled
);
4390 atomic_dec(&cpu_buffer_b
->record_disabled
);
4394 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
4395 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4398 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4399 * @buffer: the buffer to allocate for.
4400 * @cpu: the cpu buffer to allocate.
4402 * This function is used in conjunction with ring_buffer_read_page.
4403 * When reading a full page from the ring buffer, these functions
4404 * can be used to speed up the process. The calling function should
4405 * allocate a few pages first with this function. Then when it
4406 * needs to get pages from the ring buffer, it passes the result
4407 * of this function into ring_buffer_read_page, which will swap
4408 * the page that was allocated, with the read page of the buffer.
4411 * The page allocated, or NULL on error.
4413 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
, int cpu
)
4415 struct buffer_data_page
*bpage
;
4418 page
= alloc_pages_node(cpu_to_node(cpu
),
4419 GFP_KERNEL
| __GFP_NORETRY
, 0);
4423 bpage
= page_address(page
);
4425 rb_init_page(bpage
);
4429 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
4432 * ring_buffer_free_read_page - free an allocated read page
4433 * @buffer: the buffer the page was allocate for
4434 * @data: the page to free
4436 * Free a page allocated from ring_buffer_alloc_read_page.
4438 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
4440 free_page((unsigned long)data
);
4442 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
4445 * ring_buffer_read_page - extract a page from the ring buffer
4446 * @buffer: buffer to extract from
4447 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4448 * @len: amount to extract
4449 * @cpu: the cpu of the buffer to extract
4450 * @full: should the extraction only happen when the page is full.
4452 * This function will pull out a page from the ring buffer and consume it.
4453 * @data_page must be the address of the variable that was returned
4454 * from ring_buffer_alloc_read_page. This is because the page might be used
4455 * to swap with a page in the ring buffer.
4458 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4461 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4463 * process_page(rpage, ret);
4465 * When @full is set, the function will not return true unless
4466 * the writer is off the reader page.
4468 * Note: it is up to the calling functions to handle sleeps and wakeups.
4469 * The ring buffer can be used anywhere in the kernel and can not
4470 * blindly call wake_up. The layer that uses the ring buffer must be
4471 * responsible for that.
4474 * >=0 if data has been transferred, returns the offset of consumed data.
4475 * <0 if no data has been transferred.
4477 int ring_buffer_read_page(struct ring_buffer
*buffer
,
4478 void **data_page
, size_t len
, int cpu
, int full
)
4480 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4481 struct ring_buffer_event
*event
;
4482 struct buffer_data_page
*bpage
;
4483 struct buffer_page
*reader
;
4484 unsigned long missed_events
;
4485 unsigned long flags
;
4486 unsigned int commit
;
4491 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4495 * If len is not big enough to hold the page header, then
4496 * we can not copy anything.
4498 if (len
<= BUF_PAGE_HDR_SIZE
)
4501 len
-= BUF_PAGE_HDR_SIZE
;
4510 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4512 reader
= rb_get_reader_page(cpu_buffer
);
4516 event
= rb_reader_event(cpu_buffer
);
4518 read
= reader
->read
;
4519 commit
= rb_page_commit(reader
);
4521 /* Check if any events were dropped */
4522 missed_events
= cpu_buffer
->lost_events
;
4525 * If this page has been partially read or
4526 * if len is not big enough to read the rest of the page or
4527 * a writer is still on the page, then
4528 * we must copy the data from the page to the buffer.
4529 * Otherwise, we can simply swap the page with the one passed in.
4531 if (read
|| (len
< (commit
- read
)) ||
4532 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
4533 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
4534 unsigned int rpos
= read
;
4535 unsigned int pos
= 0;
4541 if (len
> (commit
- read
))
4542 len
= (commit
- read
);
4544 /* Always keep the time extend and data together */
4545 size
= rb_event_ts_length(event
);
4550 /* save the current timestamp, since the user will need it */
4551 save_timestamp
= cpu_buffer
->read_stamp
;
4553 /* Need to copy one event at a time */
4555 /* We need the size of one event, because
4556 * rb_advance_reader only advances by one event,
4557 * whereas rb_event_ts_length may include the size of
4558 * one or two events.
4559 * We have already ensured there's enough space if this
4560 * is a time extend. */
4561 size
= rb_event_length(event
);
4562 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
4566 rb_advance_reader(cpu_buffer
);
4567 rpos
= reader
->read
;
4573 event
= rb_reader_event(cpu_buffer
);
4574 /* Always keep the time extend and data together */
4575 size
= rb_event_ts_length(event
);
4576 } while (len
>= size
);
4579 local_set(&bpage
->commit
, pos
);
4580 bpage
->time_stamp
= save_timestamp
;
4582 /* we copied everything to the beginning */
4585 /* update the entry counter */
4586 cpu_buffer
->read
+= rb_page_entries(reader
);
4587 cpu_buffer
->read_bytes
+= BUF_PAGE_SIZE
;
4589 /* swap the pages */
4590 rb_init_page(bpage
);
4591 bpage
= reader
->page
;
4592 reader
->page
= *data_page
;
4593 local_set(&reader
->write
, 0);
4594 local_set(&reader
->entries
, 0);
4599 * Use the real_end for the data size,
4600 * This gives us a chance to store the lost events
4603 if (reader
->real_end
)
4604 local_set(&bpage
->commit
, reader
->real_end
);
4608 cpu_buffer
->lost_events
= 0;
4610 commit
= local_read(&bpage
->commit
);
4612 * Set a flag in the commit field if we lost events
4614 if (missed_events
) {
4615 /* If there is room at the end of the page to save the
4616 * missed events, then record it there.
4618 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
4619 memcpy(&bpage
->data
[commit
], &missed_events
,
4620 sizeof(missed_events
));
4621 local_add(RB_MISSED_STORED
, &bpage
->commit
);
4622 commit
+= sizeof(missed_events
);
4624 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
4628 * This page may be off to user land. Zero it out here.
4630 if (commit
< BUF_PAGE_SIZE
)
4631 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
4634 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4639 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
4641 #ifdef CONFIG_HOTPLUG_CPU
4642 static int rb_cpu_notify(struct notifier_block
*self
,
4643 unsigned long action
, void *hcpu
)
4645 struct ring_buffer
*buffer
=
4646 container_of(self
, struct ring_buffer
, cpu_notify
);
4647 long cpu
= (long)hcpu
;
4648 int cpu_i
, nr_pages_same
;
4649 unsigned int nr_pages
;
4652 case CPU_UP_PREPARE
:
4653 case CPU_UP_PREPARE_FROZEN
:
4654 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4659 /* check if all cpu sizes are same */
4660 for_each_buffer_cpu(buffer
, cpu_i
) {
4661 /* fill in the size from first enabled cpu */
4663 nr_pages
= buffer
->buffers
[cpu_i
]->nr_pages
;
4664 if (nr_pages
!= buffer
->buffers
[cpu_i
]->nr_pages
) {
4669 /* allocate minimum pages, user can later expand it */
4672 buffer
->buffers
[cpu
] =
4673 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
4674 if (!buffer
->buffers
[cpu
]) {
4675 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4680 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4682 case CPU_DOWN_PREPARE
:
4683 case CPU_DOWN_PREPARE_FROZEN
:
4686 * If we were to free the buffer, then the user would
4687 * lose any trace that was in the buffer.
4697 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4699 * This is a basic integrity check of the ring buffer.
4700 * Late in the boot cycle this test will run when configured in.
4701 * It will kick off a thread per CPU that will go into a loop
4702 * writing to the per cpu ring buffer various sizes of data.
4703 * Some of the data will be large items, some small.
4705 * Another thread is created that goes into a spin, sending out
4706 * IPIs to the other CPUs to also write into the ring buffer.
4707 * this is to test the nesting ability of the buffer.
4709 * Basic stats are recorded and reported. If something in the
4710 * ring buffer should happen that's not expected, a big warning
4711 * is displayed and all ring buffers are disabled.
4713 static struct task_struct
*rb_threads
[NR_CPUS
] __initdata
;
4715 struct rb_test_data
{
4716 struct ring_buffer
*buffer
;
4717 unsigned long events
;
4718 unsigned long bytes_written
;
4719 unsigned long bytes_alloc
;
4720 unsigned long bytes_dropped
;
4721 unsigned long events_nested
;
4722 unsigned long bytes_written_nested
;
4723 unsigned long bytes_alloc_nested
;
4724 unsigned long bytes_dropped_nested
;
4725 int min_size_nested
;
4726 int max_size_nested
;
4733 static struct rb_test_data rb_data
[NR_CPUS
] __initdata
;
4736 #define RB_TEST_BUFFER_SIZE 1048576
4738 static char rb_string
[] __initdata
=
4739 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4740 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4741 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4743 static bool rb_test_started __initdata
;
4750 static __init
int rb_write_something(struct rb_test_data
*data
, bool nested
)
4752 struct ring_buffer_event
*event
;
4753 struct rb_item
*item
;
4760 /* Have nested writes different that what is written */
4761 cnt
= data
->cnt
+ (nested
? 27 : 0);
4763 /* Multiply cnt by ~e, to make some unique increment */
4764 size
= (data
->cnt
* 68 / 25) % (sizeof(rb_string
) - 1);
4766 len
= size
+ sizeof(struct rb_item
);
4768 started
= rb_test_started
;
4769 /* read rb_test_started before checking buffer enabled */
4772 event
= ring_buffer_lock_reserve(data
->buffer
, len
);
4774 /* Ignore dropped events before test starts. */
4777 data
->bytes_dropped
+= len
;
4779 data
->bytes_dropped_nested
+= len
;
4784 event_len
= ring_buffer_event_length(event
);
4786 if (RB_WARN_ON(data
->buffer
, event_len
< len
))
4789 item
= ring_buffer_event_data(event
);
4791 memcpy(item
->str
, rb_string
, size
);
4794 data
->bytes_alloc_nested
+= event_len
;
4795 data
->bytes_written_nested
+= len
;
4796 data
->events_nested
++;
4797 if (!data
->min_size_nested
|| len
< data
->min_size_nested
)
4798 data
->min_size_nested
= len
;
4799 if (len
> data
->max_size_nested
)
4800 data
->max_size_nested
= len
;
4802 data
->bytes_alloc
+= event_len
;
4803 data
->bytes_written
+= len
;
4805 if (!data
->min_size
|| len
< data
->min_size
)
4806 data
->max_size
= len
;
4807 if (len
> data
->max_size
)
4808 data
->max_size
= len
;
4812 ring_buffer_unlock_commit(data
->buffer
, event
);
4817 static __init
int rb_test(void *arg
)
4819 struct rb_test_data
*data
= arg
;
4821 while (!kthread_should_stop()) {
4822 rb_write_something(data
, false);
4825 set_current_state(TASK_INTERRUPTIBLE
);
4826 /* Now sleep between a min of 100-300us and a max of 1ms */
4827 usleep_range(((data
->cnt
% 3) + 1) * 100, 1000);
4833 static __init
void rb_ipi(void *ignore
)
4835 struct rb_test_data
*data
;
4836 int cpu
= smp_processor_id();
4838 data
= &rb_data
[cpu
];
4839 rb_write_something(data
, true);
4842 static __init
int rb_hammer_test(void *arg
)
4844 while (!kthread_should_stop()) {
4846 /* Send an IPI to all cpus to write data! */
4847 smp_call_function(rb_ipi
, NULL
, 1);
4848 /* No sleep, but for non preempt, let others run */
4855 static __init
int test_ringbuffer(void)
4857 struct task_struct
*rb_hammer
;
4858 struct ring_buffer
*buffer
;
4862 pr_info("Running ring buffer tests...\n");
4864 buffer
= ring_buffer_alloc(RB_TEST_BUFFER_SIZE
, RB_FL_OVERWRITE
);
4865 if (WARN_ON(!buffer
))
4868 /* Disable buffer so that threads can't write to it yet */
4869 ring_buffer_record_off(buffer
);
4871 for_each_online_cpu(cpu
) {
4872 rb_data
[cpu
].buffer
= buffer
;
4873 rb_data
[cpu
].cpu
= cpu
;
4874 rb_data
[cpu
].cnt
= cpu
;
4875 rb_threads
[cpu
] = kthread_create(rb_test
, &rb_data
[cpu
],
4876 "rbtester/%d", cpu
);
4877 if (WARN_ON(!rb_threads
[cpu
])) {
4878 pr_cont("FAILED\n");
4883 kthread_bind(rb_threads
[cpu
], cpu
);
4884 wake_up_process(rb_threads
[cpu
]);
4887 /* Now create the rb hammer! */
4888 rb_hammer
= kthread_run(rb_hammer_test
, NULL
, "rbhammer");
4889 if (WARN_ON(!rb_hammer
)) {
4890 pr_cont("FAILED\n");
4895 ring_buffer_record_on(buffer
);
4897 * Show buffer is enabled before setting rb_test_started.
4898 * Yes there's a small race window where events could be
4899 * dropped and the thread wont catch it. But when a ring
4900 * buffer gets enabled, there will always be some kind of
4901 * delay before other CPUs see it. Thus, we don't care about
4902 * those dropped events. We care about events dropped after
4903 * the threads see that the buffer is active.
4906 rb_test_started
= true;
4908 set_current_state(TASK_INTERRUPTIBLE
);
4909 /* Just run for 10 seconds */;
4910 schedule_timeout(10 * HZ
);
4912 kthread_stop(rb_hammer
);
4915 for_each_online_cpu(cpu
) {
4916 if (!rb_threads
[cpu
])
4918 kthread_stop(rb_threads
[cpu
]);
4921 ring_buffer_free(buffer
);
4926 pr_info("finished\n");
4927 for_each_online_cpu(cpu
) {
4928 struct ring_buffer_event
*event
;
4929 struct rb_test_data
*data
= &rb_data
[cpu
];
4930 struct rb_item
*item
;
4931 unsigned long total_events
;
4932 unsigned long total_dropped
;
4933 unsigned long total_written
;
4934 unsigned long total_alloc
;
4935 unsigned long total_read
= 0;
4936 unsigned long total_size
= 0;
4937 unsigned long total_len
= 0;
4938 unsigned long total_lost
= 0;
4941 int small_event_size
;
4945 total_events
= data
->events
+ data
->events_nested
;
4946 total_written
= data
->bytes_written
+ data
->bytes_written_nested
;
4947 total_alloc
= data
->bytes_alloc
+ data
->bytes_alloc_nested
;
4948 total_dropped
= data
->bytes_dropped
+ data
->bytes_dropped_nested
;
4950 big_event_size
= data
->max_size
+ data
->max_size_nested
;
4951 small_event_size
= data
->min_size
+ data
->min_size_nested
;
4953 pr_info("CPU %d:\n", cpu
);
4954 pr_info(" events: %ld\n", total_events
);
4955 pr_info(" dropped bytes: %ld\n", total_dropped
);
4956 pr_info(" alloced bytes: %ld\n", total_alloc
);
4957 pr_info(" written bytes: %ld\n", total_written
);
4958 pr_info(" biggest event: %d\n", big_event_size
);
4959 pr_info(" smallest event: %d\n", small_event_size
);
4961 if (RB_WARN_ON(buffer
, total_dropped
))
4966 while ((event
= ring_buffer_consume(buffer
, cpu
, NULL
, &lost
))) {
4968 item
= ring_buffer_event_data(event
);
4969 total_len
+= ring_buffer_event_length(event
);
4970 total_size
+= item
->size
+ sizeof(struct rb_item
);
4971 if (memcmp(&item
->str
[0], rb_string
, item
->size
) != 0) {
4972 pr_info("FAILED!\n");
4973 pr_info("buffer had: %.*s\n", item
->size
, item
->str
);
4974 pr_info("expected: %.*s\n", item
->size
, rb_string
);
4975 RB_WARN_ON(buffer
, 1);
4986 pr_info(" read events: %ld\n", total_read
);
4987 pr_info(" lost events: %ld\n", total_lost
);
4988 pr_info(" total events: %ld\n", total_lost
+ total_read
);
4989 pr_info(" recorded len bytes: %ld\n", total_len
);
4990 pr_info(" recorded size bytes: %ld\n", total_size
);
4992 pr_info(" With dropped events, record len and size may not match\n"
4993 " alloced and written from above\n");
4995 if (RB_WARN_ON(buffer
, total_len
!= total_alloc
||
4996 total_size
!= total_written
))
4999 if (RB_WARN_ON(buffer
, total_lost
+ total_read
!= total_events
))
5005 pr_info("Ring buffer PASSED!\n");
5007 ring_buffer_free(buffer
);
5011 late_initcall(test_ringbuffer
);
5012 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */