2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
23 /* max queue in one round of service */
24 static const int cfq_quantum
= 8;
25 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max
= 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty
= 2;
30 static const int cfq_slice_sync
= HZ
/ 10;
31 static int cfq_slice_async
= HZ
/ 25;
32 static const int cfq_slice_async_rq
= 2;
33 static int cfq_slice_idle
= HZ
/ 125;
34 static int cfq_group_idle
= HZ
/ 125;
35 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
36 static const int cfq_hist_divisor
= 4;
39 * offset from end of service tree
41 #define CFQ_IDLE_DELAY (HZ / 5)
44 * below this threshold, we consider thinktime immediate
46 #define CFQ_MIN_TT (2)
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
61 static struct kmem_cache
*cfq_pool
;
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
70 /* blkio-related constants */
71 #define CFQ_WEIGHT_LEGACY_MIN 10
72 #define CFQ_WEIGHT_LEGACY_DFL 500
73 #define CFQ_WEIGHT_LEGACY_MAX 1000
76 unsigned long last_end_request
;
78 unsigned long ttime_total
;
79 unsigned long ttime_samples
;
80 unsigned long ttime_mean
;
84 * Most of our rbtree usage is for sorting with min extraction, so
85 * if we cache the leftmost node we don't have to walk down the tree
86 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
87 * move this into the elevator for the rq sorting as well.
94 struct cfq_ttime ttime
;
96 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
97 .ttime = {.last_end_request = jiffies,},}
100 * Per process-grouping structure
103 /* reference count */
105 /* various state flags, see below */
107 /* parent cfq_data */
108 struct cfq_data
*cfqd
;
109 /* service_tree member */
110 struct rb_node rb_node
;
111 /* service_tree key */
112 unsigned long rb_key
;
113 /* prio tree member */
114 struct rb_node p_node
;
115 /* prio tree root we belong to, if any */
116 struct rb_root
*p_root
;
117 /* sorted list of pending requests */
118 struct rb_root sort_list
;
119 /* if fifo isn't expired, next request to serve */
120 struct request
*next_rq
;
121 /* requests queued in sort_list */
123 /* currently allocated requests */
125 /* fifo list of requests in sort_list */
126 struct list_head fifo
;
128 /* time when queue got scheduled in to dispatch first request. */
129 unsigned long dispatch_start
;
130 unsigned int allocated_slice
;
131 unsigned int slice_dispatch
;
132 /* time when first request from queue completed and slice started. */
133 unsigned long slice_start
;
134 unsigned long slice_end
;
137 /* pending priority requests */
139 /* number of requests that are on the dispatch list or inside driver */
142 /* io prio of this group */
143 unsigned short ioprio
, org_ioprio
;
144 unsigned short ioprio_class
;
149 sector_t last_request_pos
;
151 struct cfq_rb_root
*service_tree
;
152 struct cfq_queue
*new_cfqq
;
153 struct cfq_group
*cfqg
;
154 /* Number of sectors dispatched from queue in single dispatch round */
155 unsigned long nr_sectors
;
159 * First index in the service_trees.
160 * IDLE is handled separately, so it has negative index
170 * Second index in the service_trees.
174 SYNC_NOIDLE_WORKLOAD
= 1,
179 #ifdef CONFIG_CFQ_GROUP_IOSCHED
180 /* number of ios merged */
181 struct blkg_rwstat merged
;
182 /* total time spent on device in ns, may not be accurate w/ queueing */
183 struct blkg_rwstat service_time
;
184 /* total time spent waiting in scheduler queue in ns */
185 struct blkg_rwstat wait_time
;
186 /* number of IOs queued up */
187 struct blkg_rwstat queued
;
188 /* total disk time and nr sectors dispatched by this group */
189 struct blkg_stat time
;
190 #ifdef CONFIG_DEBUG_BLK_CGROUP
191 /* time not charged to this cgroup */
192 struct blkg_stat unaccounted_time
;
193 /* sum of number of ios queued across all samples */
194 struct blkg_stat avg_queue_size_sum
;
195 /* count of samples taken for average */
196 struct blkg_stat avg_queue_size_samples
;
197 /* how many times this group has been removed from service tree */
198 struct blkg_stat dequeue
;
199 /* total time spent waiting for it to be assigned a timeslice. */
200 struct blkg_stat group_wait_time
;
201 /* time spent idling for this blkcg_gq */
202 struct blkg_stat idle_time
;
203 /* total time with empty current active q with other requests queued */
204 struct blkg_stat empty_time
;
205 /* fields after this shouldn't be cleared on stat reset */
206 uint64_t start_group_wait_time
;
207 uint64_t start_idle_time
;
208 uint64_t start_empty_time
;
210 #endif /* CONFIG_DEBUG_BLK_CGROUP */
211 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
214 /* Per-cgroup data */
215 struct cfq_group_data
{
216 /* must be the first member */
217 struct blkcg_policy_data cpd
;
220 unsigned int leaf_weight
;
223 /* This is per cgroup per device grouping structure */
225 /* must be the first member */
226 struct blkg_policy_data pd
;
228 /* group service_tree member */
229 struct rb_node rb_node
;
231 /* group service_tree key */
235 * The number of active cfqgs and sum of their weights under this
236 * cfqg. This covers this cfqg's leaf_weight and all children's
237 * weights, but does not cover weights of further descendants.
239 * If a cfqg is on the service tree, it's active. An active cfqg
240 * also activates its parent and contributes to the children_weight
244 unsigned int children_weight
;
247 * vfraction is the fraction of vdisktime that the tasks in this
248 * cfqg are entitled to. This is determined by compounding the
249 * ratios walking up from this cfqg to the root.
251 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
252 * vfractions on a service tree is approximately 1. The sum may
253 * deviate a bit due to rounding errors and fluctuations caused by
254 * cfqgs entering and leaving the service tree.
256 unsigned int vfraction
;
259 * There are two weights - (internal) weight is the weight of this
260 * cfqg against the sibling cfqgs. leaf_weight is the wight of
261 * this cfqg against the child cfqgs. For the root cfqg, both
262 * weights are kept in sync for backward compatibility.
265 unsigned int new_weight
;
266 unsigned int dev_weight
;
268 unsigned int leaf_weight
;
269 unsigned int new_leaf_weight
;
270 unsigned int dev_leaf_weight
;
272 /* number of cfqq currently on this group */
276 * Per group busy queues average. Useful for workload slice calc. We
277 * create the array for each prio class but at run time it is used
278 * only for RT and BE class and slot for IDLE class remains unused.
279 * This is primarily done to avoid confusion and a gcc warning.
281 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
283 * rr lists of queues with requests. We maintain service trees for
284 * RT and BE classes. These trees are subdivided in subclasses
285 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
286 * class there is no subclassification and all the cfq queues go on
287 * a single tree service_tree_idle.
288 * Counts are embedded in the cfq_rb_root
290 struct cfq_rb_root service_trees
[2][3];
291 struct cfq_rb_root service_tree_idle
;
293 unsigned long saved_wl_slice
;
294 enum wl_type_t saved_wl_type
;
295 enum wl_class_t saved_wl_class
;
297 /* number of requests that are on the dispatch list or inside driver */
299 struct cfq_ttime ttime
;
300 struct cfqg_stats stats
; /* stats for this cfqg */
302 /* async queue for each priority case */
303 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
304 struct cfq_queue
*async_idle_cfqq
;
309 struct io_cq icq
; /* must be the first member */
310 struct cfq_queue
*cfqq
[2];
311 struct cfq_ttime ttime
;
312 int ioprio
; /* the current ioprio */
313 #ifdef CONFIG_CFQ_GROUP_IOSCHED
314 uint64_t blkcg_serial_nr
; /* the current blkcg serial */
319 * Per block device queue structure
322 struct request_queue
*queue
;
323 /* Root service tree for cfq_groups */
324 struct cfq_rb_root grp_service_tree
;
325 struct cfq_group
*root_group
;
328 * The priority currently being served
330 enum wl_class_t serving_wl_class
;
331 enum wl_type_t serving_wl_type
;
332 unsigned long workload_expires
;
333 struct cfq_group
*serving_group
;
336 * Each priority tree is sorted by next_request position. These
337 * trees are used when determining if two or more queues are
338 * interleaving requests (see cfq_close_cooperator).
340 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
342 unsigned int busy_queues
;
343 unsigned int busy_sync_queues
;
349 * queue-depth detection
355 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
356 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
359 int hw_tag_est_depth
;
360 unsigned int hw_tag_samples
;
363 * idle window management
365 struct timer_list idle_slice_timer
;
366 struct work_struct unplug_work
;
368 struct cfq_queue
*active_queue
;
369 struct cfq_io_cq
*active_cic
;
371 sector_t last_position
;
374 * tunables, see top of file
376 unsigned int cfq_quantum
;
377 unsigned int cfq_fifo_expire
[2];
378 unsigned int cfq_back_penalty
;
379 unsigned int cfq_back_max
;
380 unsigned int cfq_slice
[2];
381 unsigned int cfq_slice_async_rq
;
382 unsigned int cfq_slice_idle
;
383 unsigned int cfq_group_idle
;
384 unsigned int cfq_latency
;
385 unsigned int cfq_target_latency
;
388 * Fallback dummy cfqq for extreme OOM conditions
390 struct cfq_queue oom_cfqq
;
392 unsigned long last_delayed_sync
;
395 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
396 static void cfq_put_queue(struct cfq_queue
*cfqq
);
398 static struct cfq_rb_root
*st_for(struct cfq_group
*cfqg
,
399 enum wl_class_t
class,
405 if (class == IDLE_WORKLOAD
)
406 return &cfqg
->service_tree_idle
;
408 return &cfqg
->service_trees
[class][type
];
411 enum cfqq_state_flags
{
412 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
413 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
414 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
415 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
416 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
417 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
418 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
419 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
420 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
421 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
422 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
423 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
424 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
427 #define CFQ_CFQQ_FNS(name) \
428 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
430 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
432 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
434 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
436 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
438 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
442 CFQ_CFQQ_FNS(wait_request
);
443 CFQ_CFQQ_FNS(must_dispatch
);
444 CFQ_CFQQ_FNS(must_alloc_slice
);
445 CFQ_CFQQ_FNS(fifo_expire
);
446 CFQ_CFQQ_FNS(idle_window
);
447 CFQ_CFQQ_FNS(prio_changed
);
448 CFQ_CFQQ_FNS(slice_new
);
451 CFQ_CFQQ_FNS(split_coop
);
453 CFQ_CFQQ_FNS(wait_busy
);
456 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
458 /* cfqg stats flags */
459 enum cfqg_stats_flags
{
460 CFQG_stats_waiting
= 0,
465 #define CFQG_FLAG_FNS(name) \
466 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
468 stats->flags |= (1 << CFQG_stats_##name); \
470 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
472 stats->flags &= ~(1 << CFQG_stats_##name); \
474 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
476 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
479 CFQG_FLAG_FNS(waiting)
480 CFQG_FLAG_FNS(idling
)
484 /* This should be called with the queue_lock held. */
485 static void cfqg_stats_update_group_wait_time(struct cfqg_stats
*stats
)
487 unsigned long long now
;
489 if (!cfqg_stats_waiting(stats
))
493 if (time_after64(now
, stats
->start_group_wait_time
))
494 blkg_stat_add(&stats
->group_wait_time
,
495 now
- stats
->start_group_wait_time
);
496 cfqg_stats_clear_waiting(stats
);
499 /* This should be called with the queue_lock held. */
500 static void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
,
501 struct cfq_group
*curr_cfqg
)
503 struct cfqg_stats
*stats
= &cfqg
->stats
;
505 if (cfqg_stats_waiting(stats
))
507 if (cfqg
== curr_cfqg
)
509 stats
->start_group_wait_time
= sched_clock();
510 cfqg_stats_mark_waiting(stats
);
513 /* This should be called with the queue_lock held. */
514 static void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
)
516 unsigned long long now
;
518 if (!cfqg_stats_empty(stats
))
522 if (time_after64(now
, stats
->start_empty_time
))
523 blkg_stat_add(&stats
->empty_time
,
524 now
- stats
->start_empty_time
);
525 cfqg_stats_clear_empty(stats
);
528 static void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
)
530 blkg_stat_add(&cfqg
->stats
.dequeue
, 1);
533 static void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
)
535 struct cfqg_stats
*stats
= &cfqg
->stats
;
537 if (blkg_rwstat_total(&stats
->queued
))
541 * group is already marked empty. This can happen if cfqq got new
542 * request in parent group and moved to this group while being added
543 * to service tree. Just ignore the event and move on.
545 if (cfqg_stats_empty(stats
))
548 stats
->start_empty_time
= sched_clock();
549 cfqg_stats_mark_empty(stats
);
552 static void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
)
554 struct cfqg_stats
*stats
= &cfqg
->stats
;
556 if (cfqg_stats_idling(stats
)) {
557 unsigned long long now
= sched_clock();
559 if (time_after64(now
, stats
->start_idle_time
))
560 blkg_stat_add(&stats
->idle_time
,
561 now
- stats
->start_idle_time
);
562 cfqg_stats_clear_idling(stats
);
566 static void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
)
568 struct cfqg_stats
*stats
= &cfqg
->stats
;
570 BUG_ON(cfqg_stats_idling(stats
));
572 stats
->start_idle_time
= sched_clock();
573 cfqg_stats_mark_idling(stats
);
576 static void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
)
578 struct cfqg_stats
*stats
= &cfqg
->stats
;
580 blkg_stat_add(&stats
->avg_queue_size_sum
,
581 blkg_rwstat_total(&stats
->queued
));
582 blkg_stat_add(&stats
->avg_queue_size_samples
, 1);
583 cfqg_stats_update_group_wait_time(stats
);
586 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
588 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
, struct cfq_group
*curr_cfqg
) { }
589 static inline void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
) { }
590 static inline void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
) { }
591 static inline void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
) { }
592 static inline void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
) { }
593 static inline void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
) { }
594 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
) { }
596 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
598 #ifdef CONFIG_CFQ_GROUP_IOSCHED
600 static inline struct cfq_group
*pd_to_cfqg(struct blkg_policy_data
*pd
)
602 return pd
? container_of(pd
, struct cfq_group
, pd
) : NULL
;
605 static struct cfq_group_data
606 *cpd_to_cfqgd(struct blkcg_policy_data
*cpd
)
608 return cpd
? container_of(cpd
, struct cfq_group_data
, cpd
) : NULL
;
611 static inline struct blkcg_gq
*cfqg_to_blkg(struct cfq_group
*cfqg
)
613 return pd_to_blkg(&cfqg
->pd
);
616 static struct blkcg_policy blkcg_policy_cfq
;
618 static inline struct cfq_group
*blkg_to_cfqg(struct blkcg_gq
*blkg
)
620 return pd_to_cfqg(blkg_to_pd(blkg
, &blkcg_policy_cfq
));
623 static struct cfq_group_data
*blkcg_to_cfqgd(struct blkcg
*blkcg
)
625 return cpd_to_cfqgd(blkcg_to_cpd(blkcg
, &blkcg_policy_cfq
));
628 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
)
630 struct blkcg_gq
*pblkg
= cfqg_to_blkg(cfqg
)->parent
;
632 return pblkg
? blkg_to_cfqg(pblkg
) : NULL
;
635 static inline bool cfqg_is_descendant(struct cfq_group
*cfqg
,
636 struct cfq_group
*ancestor
)
638 return cgroup_is_descendant(cfqg_to_blkg(cfqg
)->blkcg
->css
.cgroup
,
639 cfqg_to_blkg(ancestor
)->blkcg
->css
.cgroup
);
642 static inline void cfqg_get(struct cfq_group
*cfqg
)
644 return blkg_get(cfqg_to_blkg(cfqg
));
647 static inline void cfqg_put(struct cfq_group
*cfqg
)
649 return blkg_put(cfqg_to_blkg(cfqg
));
652 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
655 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
656 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
657 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
658 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
662 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
665 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
666 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
669 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
670 struct cfq_group
*curr_cfqg
, int rw
)
672 blkg_rwstat_add(&cfqg
->stats
.queued
, rw
, 1);
673 cfqg_stats_end_empty_time(&cfqg
->stats
);
674 cfqg_stats_set_start_group_wait_time(cfqg
, curr_cfqg
);
677 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
678 unsigned long time
, unsigned long unaccounted_time
)
680 blkg_stat_add(&cfqg
->stats
.time
, time
);
681 #ifdef CONFIG_DEBUG_BLK_CGROUP
682 blkg_stat_add(&cfqg
->stats
.unaccounted_time
, unaccounted_time
);
686 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
, int rw
)
688 blkg_rwstat_add(&cfqg
->stats
.queued
, rw
, -1);
691 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
, int rw
)
693 blkg_rwstat_add(&cfqg
->stats
.merged
, rw
, 1);
696 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
697 uint64_t start_time
, uint64_t io_start_time
, int rw
)
699 struct cfqg_stats
*stats
= &cfqg
->stats
;
700 unsigned long long now
= sched_clock();
702 if (time_after64(now
, io_start_time
))
703 blkg_rwstat_add(&stats
->service_time
, rw
, now
- io_start_time
);
704 if (time_after64(io_start_time
, start_time
))
705 blkg_rwstat_add(&stats
->wait_time
, rw
,
706 io_start_time
- start_time
);
710 static void cfqg_stats_reset(struct cfqg_stats
*stats
)
712 /* queued stats shouldn't be cleared */
713 blkg_rwstat_reset(&stats
->merged
);
714 blkg_rwstat_reset(&stats
->service_time
);
715 blkg_rwstat_reset(&stats
->wait_time
);
716 blkg_stat_reset(&stats
->time
);
717 #ifdef CONFIG_DEBUG_BLK_CGROUP
718 blkg_stat_reset(&stats
->unaccounted_time
);
719 blkg_stat_reset(&stats
->avg_queue_size_sum
);
720 blkg_stat_reset(&stats
->avg_queue_size_samples
);
721 blkg_stat_reset(&stats
->dequeue
);
722 blkg_stat_reset(&stats
->group_wait_time
);
723 blkg_stat_reset(&stats
->idle_time
);
724 blkg_stat_reset(&stats
->empty_time
);
729 static void cfqg_stats_add_aux(struct cfqg_stats
*to
, struct cfqg_stats
*from
)
731 /* queued stats shouldn't be cleared */
732 blkg_rwstat_add_aux(&to
->merged
, &from
->merged
);
733 blkg_rwstat_add_aux(&to
->service_time
, &from
->service_time
);
734 blkg_rwstat_add_aux(&to
->wait_time
, &from
->wait_time
);
735 blkg_stat_add_aux(&from
->time
, &from
->time
);
736 #ifdef CONFIG_DEBUG_BLK_CGROUP
737 blkg_stat_add_aux(&to
->unaccounted_time
, &from
->unaccounted_time
);
738 blkg_stat_add_aux(&to
->avg_queue_size_sum
, &from
->avg_queue_size_sum
);
739 blkg_stat_add_aux(&to
->avg_queue_size_samples
, &from
->avg_queue_size_samples
);
740 blkg_stat_add_aux(&to
->dequeue
, &from
->dequeue
);
741 blkg_stat_add_aux(&to
->group_wait_time
, &from
->group_wait_time
);
742 blkg_stat_add_aux(&to
->idle_time
, &from
->idle_time
);
743 blkg_stat_add_aux(&to
->empty_time
, &from
->empty_time
);
748 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
749 * recursive stats can still account for the amount used by this cfqg after
752 static void cfqg_stats_xfer_dead(struct cfq_group
*cfqg
)
754 struct cfq_group
*parent
= cfqg_parent(cfqg
);
756 lockdep_assert_held(cfqg_to_blkg(cfqg
)->q
->queue_lock
);
758 if (unlikely(!parent
))
761 cfqg_stats_add_aux(&parent
->stats
, &cfqg
->stats
);
762 cfqg_stats_reset(&cfqg
->stats
);
765 #else /* CONFIG_CFQ_GROUP_IOSCHED */
767 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
) { return NULL
; }
768 static inline bool cfqg_is_descendant(struct cfq_group
*cfqg
,
769 struct cfq_group
*ancestor
)
773 static inline void cfqg_get(struct cfq_group
*cfqg
) { }
774 static inline void cfqg_put(struct cfq_group
*cfqg
) { }
776 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
777 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
778 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
779 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
781 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
783 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
784 struct cfq_group
*curr_cfqg
, int rw
) { }
785 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
786 unsigned long time
, unsigned long unaccounted_time
) { }
787 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
, int rw
) { }
788 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
, int rw
) { }
789 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
790 uint64_t start_time
, uint64_t io_start_time
, int rw
) { }
792 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
794 #define cfq_log(cfqd, fmt, args...) \
795 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
797 /* Traverses through cfq group service trees */
798 #define for_each_cfqg_st(cfqg, i, j, st) \
799 for (i = 0; i <= IDLE_WORKLOAD; i++) \
800 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
801 : &cfqg->service_tree_idle; \
802 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
803 (i == IDLE_WORKLOAD && j == 0); \
804 j++, st = i < IDLE_WORKLOAD ? \
805 &cfqg->service_trees[i][j]: NULL) \
807 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
808 struct cfq_ttime
*ttime
, bool group_idle
)
811 if (!sample_valid(ttime
->ttime_samples
))
814 slice
= cfqd
->cfq_group_idle
;
816 slice
= cfqd
->cfq_slice_idle
;
817 return ttime
->ttime_mean
> slice
;
820 static inline bool iops_mode(struct cfq_data
*cfqd
)
823 * If we are not idling on queues and it is a NCQ drive, parallel
824 * execution of requests is on and measuring time is not possible
825 * in most of the cases until and unless we drive shallower queue
826 * depths and that becomes a performance bottleneck. In such cases
827 * switch to start providing fairness in terms of number of IOs.
829 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
835 static inline enum wl_class_t
cfqq_class(struct cfq_queue
*cfqq
)
837 if (cfq_class_idle(cfqq
))
838 return IDLE_WORKLOAD
;
839 if (cfq_class_rt(cfqq
))
845 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
847 if (!cfq_cfqq_sync(cfqq
))
848 return ASYNC_WORKLOAD
;
849 if (!cfq_cfqq_idle_window(cfqq
))
850 return SYNC_NOIDLE_WORKLOAD
;
851 return SYNC_WORKLOAD
;
854 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class
,
855 struct cfq_data
*cfqd
,
856 struct cfq_group
*cfqg
)
858 if (wl_class
== IDLE_WORKLOAD
)
859 return cfqg
->service_tree_idle
.count
;
861 return cfqg
->service_trees
[wl_class
][ASYNC_WORKLOAD
].count
+
862 cfqg
->service_trees
[wl_class
][SYNC_NOIDLE_WORKLOAD
].count
+
863 cfqg
->service_trees
[wl_class
][SYNC_WORKLOAD
].count
;
866 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
867 struct cfq_group
*cfqg
)
869 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
+
870 cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
873 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
874 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
,
875 struct cfq_io_cq
*cic
, struct bio
*bio
);
877 static inline struct cfq_io_cq
*icq_to_cic(struct io_cq
*icq
)
879 /* cic->icq is the first member, %NULL will convert to %NULL */
880 return container_of(icq
, struct cfq_io_cq
, icq
);
883 static inline struct cfq_io_cq
*cfq_cic_lookup(struct cfq_data
*cfqd
,
884 struct io_context
*ioc
)
887 return icq_to_cic(ioc_lookup_icq(ioc
, cfqd
->queue
));
891 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_cq
*cic
, bool is_sync
)
893 return cic
->cfqq
[is_sync
];
896 static inline void cic_set_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
,
899 cic
->cfqq
[is_sync
] = cfqq
;
902 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_cq
*cic
)
904 return cic
->icq
.q
->elevator
->elevator_data
;
908 * We regard a request as SYNC, if it's either a read or has the SYNC bit
909 * set (in which case it could also be direct WRITE).
911 static inline bool cfq_bio_sync(struct bio
*bio
)
913 return bio_data_dir(bio
) == READ
|| (bio
->bi_rw
& REQ_SYNC
);
917 * scheduler run of queue, if there are requests pending and no one in the
918 * driver that will restart queueing
920 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
922 if (cfqd
->busy_queues
) {
923 cfq_log(cfqd
, "schedule dispatch");
924 kblockd_schedule_work(&cfqd
->unplug_work
);
929 * Scale schedule slice based on io priority. Use the sync time slice only
930 * if a queue is marked sync and has sync io queued. A sync queue with async
931 * io only, should not get full sync slice length.
933 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
936 const int base_slice
= cfqd
->cfq_slice
[sync
];
938 WARN_ON(prio
>= IOPRIO_BE_NR
);
940 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
944 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
946 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
950 * cfqg_scale_charge - scale disk time charge according to cfqg weight
951 * @charge: disk time being charged
952 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
954 * Scale @charge according to @vfraction, which is in range (0, 1]. The
955 * scaling is inversely proportional.
957 * scaled = charge / vfraction
959 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
961 static inline u64
cfqg_scale_charge(unsigned long charge
,
962 unsigned int vfraction
)
964 u64 c
= charge
<< CFQ_SERVICE_SHIFT
; /* make it fixed point */
966 /* charge / vfraction */
967 c
<<= CFQ_SERVICE_SHIFT
;
968 do_div(c
, vfraction
);
972 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
974 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
976 min_vdisktime
= vdisktime
;
978 return min_vdisktime
;
981 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
983 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
985 min_vdisktime
= vdisktime
;
987 return min_vdisktime
;
990 static void update_min_vdisktime(struct cfq_rb_root
*st
)
992 struct cfq_group
*cfqg
;
995 cfqg
= rb_entry_cfqg(st
->left
);
996 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
1002 * get averaged number of queues of RT/BE priority.
1003 * average is updated, with a formula that gives more weight to higher numbers,
1004 * to quickly follows sudden increases and decrease slowly
1007 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
1008 struct cfq_group
*cfqg
, bool rt
)
1010 unsigned min_q
, max_q
;
1011 unsigned mult
= cfq_hist_divisor
- 1;
1012 unsigned round
= cfq_hist_divisor
/ 2;
1013 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
1015 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
1016 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
1017 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
1019 return cfqg
->busy_queues_avg
[rt
];
1022 static inline unsigned
1023 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1025 return cfqd
->cfq_target_latency
* cfqg
->vfraction
>> CFQ_SERVICE_SHIFT
;
1028 static inline unsigned
1029 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1031 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
1032 if (cfqd
->cfq_latency
) {
1034 * interested queues (we consider only the ones with the same
1035 * priority class in the cfq group)
1037 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
1038 cfq_class_rt(cfqq
));
1039 unsigned sync_slice
= cfqd
->cfq_slice
[1];
1040 unsigned expect_latency
= sync_slice
* iq
;
1041 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
1043 if (expect_latency
> group_slice
) {
1044 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
1045 /* scale low_slice according to IO priority
1046 * and sync vs async */
1047 unsigned low_slice
=
1048 min(slice
, base_low_slice
* slice
/ sync_slice
);
1049 /* the adapted slice value is scaled to fit all iqs
1050 * into the target latency */
1051 slice
= max(slice
* group_slice
/ expect_latency
,
1059 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1061 unsigned slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
1063 cfqq
->slice_start
= jiffies
;
1064 cfqq
->slice_end
= jiffies
+ slice
;
1065 cfqq
->allocated_slice
= slice
;
1066 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
1070 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1071 * isn't valid until the first request from the dispatch is activated
1072 * and the slice time set.
1074 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
1076 if (cfq_cfqq_slice_new(cfqq
))
1078 if (time_before(jiffies
, cfqq
->slice_end
))
1085 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1086 * We choose the request that is closest to the head right now. Distance
1087 * behind the head is penalized and only allowed to a certain extent.
1089 static struct request
*
1090 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
1092 sector_t s1
, s2
, d1
= 0, d2
= 0;
1093 unsigned long back_max
;
1094 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1095 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1096 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
1098 if (rq1
== NULL
|| rq1
== rq2
)
1103 if (rq_is_sync(rq1
) != rq_is_sync(rq2
))
1104 return rq_is_sync(rq1
) ? rq1
: rq2
;
1106 if ((rq1
->cmd_flags
^ rq2
->cmd_flags
) & REQ_PRIO
)
1107 return rq1
->cmd_flags
& REQ_PRIO
? rq1
: rq2
;
1109 s1
= blk_rq_pos(rq1
);
1110 s2
= blk_rq_pos(rq2
);
1113 * by definition, 1KiB is 2 sectors
1115 back_max
= cfqd
->cfq_back_max
* 2;
1118 * Strict one way elevator _except_ in the case where we allow
1119 * short backward seeks which are biased as twice the cost of a
1120 * similar forward seek.
1124 else if (s1
+ back_max
>= last
)
1125 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
1127 wrap
|= CFQ_RQ1_WRAP
;
1131 else if (s2
+ back_max
>= last
)
1132 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
1134 wrap
|= CFQ_RQ2_WRAP
;
1136 /* Found required data */
1139 * By doing switch() on the bit mask "wrap" we avoid having to
1140 * check two variables for all permutations: --> faster!
1143 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1159 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
1162 * Since both rqs are wrapped,
1163 * start with the one that's further behind head
1164 * (--> only *one* back seek required),
1165 * since back seek takes more time than forward.
1175 * The below is leftmost cache rbtree addon
1177 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
1179 /* Service tree is empty */
1184 root
->left
= rb_first(&root
->rb
);
1187 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
1192 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
1195 root
->left
= rb_first(&root
->rb
);
1198 return rb_entry_cfqg(root
->left
);
1203 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
1209 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
1211 if (root
->left
== n
)
1213 rb_erase_init(n
, &root
->rb
);
1218 * would be nice to take fifo expire time into account as well
1220 static struct request
*
1221 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1222 struct request
*last
)
1224 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
1225 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
1226 struct request
*next
= NULL
, *prev
= NULL
;
1228 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
1231 prev
= rb_entry_rq(rbprev
);
1234 next
= rb_entry_rq(rbnext
);
1236 rbnext
= rb_first(&cfqq
->sort_list
);
1237 if (rbnext
&& rbnext
!= &last
->rb_node
)
1238 next
= rb_entry_rq(rbnext
);
1241 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
1244 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
1245 struct cfq_queue
*cfqq
)
1248 * just an approximation, should be ok.
1250 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
1251 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
1255 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1257 return cfqg
->vdisktime
- st
->min_vdisktime
;
1261 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1263 struct rb_node
**node
= &st
->rb
.rb_node
;
1264 struct rb_node
*parent
= NULL
;
1265 struct cfq_group
*__cfqg
;
1266 s64 key
= cfqg_key(st
, cfqg
);
1269 while (*node
!= NULL
) {
1271 __cfqg
= rb_entry_cfqg(parent
);
1273 if (key
< cfqg_key(st
, __cfqg
))
1274 node
= &parent
->rb_left
;
1276 node
= &parent
->rb_right
;
1282 st
->left
= &cfqg
->rb_node
;
1284 rb_link_node(&cfqg
->rb_node
, parent
, node
);
1285 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
1289 * This has to be called only on activation of cfqg
1292 cfq_update_group_weight(struct cfq_group
*cfqg
)
1294 if (cfqg
->new_weight
) {
1295 cfqg
->weight
= cfqg
->new_weight
;
1296 cfqg
->new_weight
= 0;
1301 cfq_update_group_leaf_weight(struct cfq_group
*cfqg
)
1303 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1305 if (cfqg
->new_leaf_weight
) {
1306 cfqg
->leaf_weight
= cfqg
->new_leaf_weight
;
1307 cfqg
->new_leaf_weight
= 0;
1312 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1314 unsigned int vfr
= 1 << CFQ_SERVICE_SHIFT
; /* start with 1 */
1315 struct cfq_group
*pos
= cfqg
;
1316 struct cfq_group
*parent
;
1319 /* add to the service tree */
1320 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1323 * Update leaf_weight. We cannot update weight at this point
1324 * because cfqg might already have been activated and is
1325 * contributing its current weight to the parent's child_weight.
1327 cfq_update_group_leaf_weight(cfqg
);
1328 __cfq_group_service_tree_add(st
, cfqg
);
1331 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1332 * entitled to. vfraction is calculated by walking the tree
1333 * towards the root calculating the fraction it has at each level.
1334 * The compounded ratio is how much vfraction @cfqg owns.
1336 * Start with the proportion tasks in this cfqg has against active
1337 * children cfqgs - its leaf_weight against children_weight.
1339 propagate
= !pos
->nr_active
++;
1340 pos
->children_weight
+= pos
->leaf_weight
;
1341 vfr
= vfr
* pos
->leaf_weight
/ pos
->children_weight
;
1344 * Compound ->weight walking up the tree. Both activation and
1345 * vfraction calculation are done in the same loop. Propagation
1346 * stops once an already activated node is met. vfraction
1347 * calculation should always continue to the root.
1349 while ((parent
= cfqg_parent(pos
))) {
1351 cfq_update_group_weight(pos
);
1352 propagate
= !parent
->nr_active
++;
1353 parent
->children_weight
+= pos
->weight
;
1355 vfr
= vfr
* pos
->weight
/ parent
->children_weight
;
1359 cfqg
->vfraction
= max_t(unsigned, vfr
, 1);
1363 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1365 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1366 struct cfq_group
*__cfqg
;
1370 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1374 * Currently put the group at the end. Later implement something
1375 * so that groups get lesser vtime based on their weights, so that
1376 * if group does not loose all if it was not continuously backlogged.
1378 n
= rb_last(&st
->rb
);
1380 __cfqg
= rb_entry_cfqg(n
);
1381 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
1383 cfqg
->vdisktime
= st
->min_vdisktime
;
1384 cfq_group_service_tree_add(st
, cfqg
);
1388 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1390 struct cfq_group
*pos
= cfqg
;
1394 * Undo activation from cfq_group_service_tree_add(). Deactivate
1395 * @cfqg and propagate deactivation upwards.
1397 propagate
= !--pos
->nr_active
;
1398 pos
->children_weight
-= pos
->leaf_weight
;
1401 struct cfq_group
*parent
= cfqg_parent(pos
);
1403 /* @pos has 0 nr_active at this point */
1404 WARN_ON_ONCE(pos
->children_weight
);
1410 propagate
= !--parent
->nr_active
;
1411 parent
->children_weight
-= pos
->weight
;
1415 /* remove from the service tree */
1416 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1417 cfq_rb_erase(&cfqg
->rb_node
, st
);
1421 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1423 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1425 BUG_ON(cfqg
->nr_cfqq
< 1);
1428 /* If there are other cfq queues under this group, don't delete it */
1432 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
1433 cfq_group_service_tree_del(st
, cfqg
);
1434 cfqg
->saved_wl_slice
= 0;
1435 cfqg_stats_update_dequeue(cfqg
);
1438 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
1439 unsigned int *unaccounted_time
)
1441 unsigned int slice_used
;
1444 * Queue got expired before even a single request completed or
1445 * got expired immediately after first request completion.
1447 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
1449 * Also charge the seek time incurred to the group, otherwise
1450 * if there are mutiple queues in the group, each can dispatch
1451 * a single request on seeky media and cause lots of seek time
1452 * and group will never know it.
1454 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
1457 slice_used
= jiffies
- cfqq
->slice_start
;
1458 if (slice_used
> cfqq
->allocated_slice
) {
1459 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
1460 slice_used
= cfqq
->allocated_slice
;
1462 if (time_after(cfqq
->slice_start
, cfqq
->dispatch_start
))
1463 *unaccounted_time
+= cfqq
->slice_start
-
1464 cfqq
->dispatch_start
;
1470 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
1471 struct cfq_queue
*cfqq
)
1473 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1474 unsigned int used_sl
, charge
, unaccounted_sl
= 0;
1475 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
1476 - cfqg
->service_tree_idle
.count
;
1479 BUG_ON(nr_sync
< 0);
1480 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
1482 if (iops_mode(cfqd
))
1483 charge
= cfqq
->slice_dispatch
;
1484 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
1485 charge
= cfqq
->allocated_slice
;
1488 * Can't update vdisktime while on service tree and cfqg->vfraction
1489 * is valid only while on it. Cache vfr, leave the service tree,
1490 * update vdisktime and go back on. The re-addition to the tree
1491 * will also update the weights as necessary.
1493 vfr
= cfqg
->vfraction
;
1494 cfq_group_service_tree_del(st
, cfqg
);
1495 cfqg
->vdisktime
+= cfqg_scale_charge(charge
, vfr
);
1496 cfq_group_service_tree_add(st
, cfqg
);
1498 /* This group is being expired. Save the context */
1499 if (time_after(cfqd
->workload_expires
, jiffies
)) {
1500 cfqg
->saved_wl_slice
= cfqd
->workload_expires
1502 cfqg
->saved_wl_type
= cfqd
->serving_wl_type
;
1503 cfqg
->saved_wl_class
= cfqd
->serving_wl_class
;
1505 cfqg
->saved_wl_slice
= 0;
1507 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
1509 cfq_log_cfqq(cfqq
->cfqd
, cfqq
,
1510 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1511 used_sl
, cfqq
->slice_dispatch
, charge
,
1512 iops_mode(cfqd
), cfqq
->nr_sectors
);
1513 cfqg_stats_update_timeslice_used(cfqg
, used_sl
, unaccounted_sl
);
1514 cfqg_stats_set_start_empty_time(cfqg
);
1518 * cfq_init_cfqg_base - initialize base part of a cfq_group
1519 * @cfqg: cfq_group to initialize
1521 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1522 * is enabled or not.
1524 static void cfq_init_cfqg_base(struct cfq_group
*cfqg
)
1526 struct cfq_rb_root
*st
;
1529 for_each_cfqg_st(cfqg
, i
, j
, st
)
1531 RB_CLEAR_NODE(&cfqg
->rb_node
);
1533 cfqg
->ttime
.last_end_request
= jiffies
;
1536 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1537 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1538 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
);
1540 static void cfqg_stats_exit(struct cfqg_stats
*stats
)
1542 blkg_rwstat_exit(&stats
->merged
);
1543 blkg_rwstat_exit(&stats
->service_time
);
1544 blkg_rwstat_exit(&stats
->wait_time
);
1545 blkg_rwstat_exit(&stats
->queued
);
1546 blkg_stat_exit(&stats
->time
);
1547 #ifdef CONFIG_DEBUG_BLK_CGROUP
1548 blkg_stat_exit(&stats
->unaccounted_time
);
1549 blkg_stat_exit(&stats
->avg_queue_size_sum
);
1550 blkg_stat_exit(&stats
->avg_queue_size_samples
);
1551 blkg_stat_exit(&stats
->dequeue
);
1552 blkg_stat_exit(&stats
->group_wait_time
);
1553 blkg_stat_exit(&stats
->idle_time
);
1554 blkg_stat_exit(&stats
->empty_time
);
1558 static int cfqg_stats_init(struct cfqg_stats
*stats
, gfp_t gfp
)
1560 if (blkg_rwstat_init(&stats
->merged
, gfp
) ||
1561 blkg_rwstat_init(&stats
->service_time
, gfp
) ||
1562 blkg_rwstat_init(&stats
->wait_time
, gfp
) ||
1563 blkg_rwstat_init(&stats
->queued
, gfp
) ||
1564 blkg_stat_init(&stats
->time
, gfp
))
1567 #ifdef CONFIG_DEBUG_BLK_CGROUP
1568 if (blkg_stat_init(&stats
->unaccounted_time
, gfp
) ||
1569 blkg_stat_init(&stats
->avg_queue_size_sum
, gfp
) ||
1570 blkg_stat_init(&stats
->avg_queue_size_samples
, gfp
) ||
1571 blkg_stat_init(&stats
->dequeue
, gfp
) ||
1572 blkg_stat_init(&stats
->group_wait_time
, gfp
) ||
1573 blkg_stat_init(&stats
->idle_time
, gfp
) ||
1574 blkg_stat_init(&stats
->empty_time
, gfp
))
1579 cfqg_stats_exit(stats
);
1583 static struct blkcg_policy_data
*cfq_cpd_alloc(gfp_t gfp
)
1585 struct cfq_group_data
*cgd
;
1587 cgd
= kzalloc(sizeof(*cgd
), GFP_KERNEL
);
1593 static void cfq_cpd_init(struct blkcg_policy_data
*cpd
)
1595 struct cfq_group_data
*cgd
= cpd_to_cfqgd(cpd
);
1596 unsigned int weight
= cgroup_subsys_on_dfl(io_cgrp_subsys
) ?
1597 CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1599 if (cpd_to_blkcg(cpd
) == &blkcg_root
)
1602 cgd
->weight
= weight
;
1603 cgd
->leaf_weight
= weight
;
1606 static void cfq_cpd_free(struct blkcg_policy_data
*cpd
)
1608 kfree(cpd_to_cfqgd(cpd
));
1611 static void cfq_cpd_bind(struct blkcg_policy_data
*cpd
)
1613 struct blkcg
*blkcg
= cpd_to_blkcg(cpd
);
1614 bool on_dfl
= cgroup_subsys_on_dfl(io_cgrp_subsys
);
1615 unsigned int weight
= on_dfl
? CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1617 if (blkcg
== &blkcg_root
)
1620 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, false));
1621 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, true));
1624 static struct blkg_policy_data
*cfq_pd_alloc(gfp_t gfp
, int node
)
1626 struct cfq_group
*cfqg
;
1628 cfqg
= kzalloc_node(sizeof(*cfqg
), gfp
, node
);
1632 cfq_init_cfqg_base(cfqg
);
1633 if (cfqg_stats_init(&cfqg
->stats
, gfp
)) {
1641 static void cfq_pd_init(struct blkg_policy_data
*pd
)
1643 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1644 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(pd
->blkg
->blkcg
);
1646 cfqg
->weight
= cgd
->weight
;
1647 cfqg
->leaf_weight
= cgd
->leaf_weight
;
1650 static void cfq_pd_offline(struct blkg_policy_data
*pd
)
1652 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1655 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
1656 if (cfqg
->async_cfqq
[0][i
])
1657 cfq_put_queue(cfqg
->async_cfqq
[0][i
]);
1658 if (cfqg
->async_cfqq
[1][i
])
1659 cfq_put_queue(cfqg
->async_cfqq
[1][i
]);
1662 if (cfqg
->async_idle_cfqq
)
1663 cfq_put_queue(cfqg
->async_idle_cfqq
);
1666 * @blkg is going offline and will be ignored by
1667 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1668 * that they don't get lost. If IOs complete after this point, the
1669 * stats for them will be lost. Oh well...
1671 cfqg_stats_xfer_dead(cfqg
);
1674 static void cfq_pd_free(struct blkg_policy_data
*pd
)
1676 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1678 cfqg_stats_exit(&cfqg
->stats
);
1682 static void cfq_pd_reset_stats(struct blkg_policy_data
*pd
)
1684 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1686 cfqg_stats_reset(&cfqg
->stats
);
1689 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
1690 struct blkcg
*blkcg
)
1692 struct blkcg_gq
*blkg
;
1694 blkg
= blkg_lookup(blkcg
, cfqd
->queue
);
1696 return blkg_to_cfqg(blkg
);
1700 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1703 /* cfqq reference on cfqg */
1707 static u64
cfqg_prfill_weight_device(struct seq_file
*sf
,
1708 struct blkg_policy_data
*pd
, int off
)
1710 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1712 if (!cfqg
->dev_weight
)
1714 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_weight
);
1717 static int cfqg_print_weight_device(struct seq_file
*sf
, void *v
)
1719 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1720 cfqg_prfill_weight_device
, &blkcg_policy_cfq
,
1725 static u64
cfqg_prfill_leaf_weight_device(struct seq_file
*sf
,
1726 struct blkg_policy_data
*pd
, int off
)
1728 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1730 if (!cfqg
->dev_leaf_weight
)
1732 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_leaf_weight
);
1735 static int cfqg_print_leaf_weight_device(struct seq_file
*sf
, void *v
)
1737 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1738 cfqg_prfill_leaf_weight_device
, &blkcg_policy_cfq
,
1743 static int cfq_print_weight(struct seq_file
*sf
, void *v
)
1745 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1746 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1747 unsigned int val
= 0;
1752 seq_printf(sf
, "%u\n", val
);
1756 static int cfq_print_leaf_weight(struct seq_file
*sf
, void *v
)
1758 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1759 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1760 unsigned int val
= 0;
1763 val
= cgd
->leaf_weight
;
1765 seq_printf(sf
, "%u\n", val
);
1769 static ssize_t
__cfqg_set_weight_device(struct kernfs_open_file
*of
,
1770 char *buf
, size_t nbytes
, loff_t off
,
1771 bool on_dfl
, bool is_leaf_weight
)
1773 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1774 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1775 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1776 struct blkg_conf_ctx ctx
;
1777 struct cfq_group
*cfqg
;
1778 struct cfq_group_data
*cfqgd
;
1782 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_cfq
, buf
, &ctx
);
1786 if (sscanf(ctx
.body
, "%llu", &v
) == 1) {
1787 /* require "default" on dfl */
1791 } else if (!strcmp(strim(ctx
.body
), "default")) {
1798 cfqg
= blkg_to_cfqg(ctx
.blkg
);
1799 cfqgd
= blkcg_to_cfqgd(blkcg
);
1802 if (!v
|| (v
>= min
&& v
<= max
)) {
1803 if (!is_leaf_weight
) {
1804 cfqg
->dev_weight
= v
;
1805 cfqg
->new_weight
= v
?: cfqgd
->weight
;
1807 cfqg
->dev_leaf_weight
= v
;
1808 cfqg
->new_leaf_weight
= v
?: cfqgd
->leaf_weight
;
1813 blkg_conf_finish(&ctx
);
1814 return ret
?: nbytes
;
1817 static ssize_t
cfqg_set_weight_device(struct kernfs_open_file
*of
,
1818 char *buf
, size_t nbytes
, loff_t off
)
1820 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, false);
1823 static ssize_t
cfqg_set_leaf_weight_device(struct kernfs_open_file
*of
,
1824 char *buf
, size_t nbytes
, loff_t off
)
1826 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, true);
1829 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1830 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
)
1832 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1833 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1834 struct blkcg
*blkcg
= css_to_blkcg(css
);
1835 struct blkcg_gq
*blkg
;
1836 struct cfq_group_data
*cfqgd
;
1839 if (val
< min
|| val
> max
)
1842 spin_lock_irq(&blkcg
->lock
);
1843 cfqgd
= blkcg_to_cfqgd(blkcg
);
1849 if (!is_leaf_weight
)
1850 cfqgd
->weight
= val
;
1852 cfqgd
->leaf_weight
= val
;
1854 hlist_for_each_entry(blkg
, &blkcg
->blkg_list
, blkcg_node
) {
1855 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
1860 if (!is_leaf_weight
) {
1862 cfqg
->dev_weight
= 0;
1863 if (!cfqg
->dev_weight
)
1864 cfqg
->new_weight
= cfqgd
->weight
;
1867 cfqg
->dev_leaf_weight
= 0;
1868 if (!cfqg
->dev_leaf_weight
)
1869 cfqg
->new_leaf_weight
= cfqgd
->leaf_weight
;
1874 spin_unlock_irq(&blkcg
->lock
);
1878 static int cfq_set_weight(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1881 return __cfq_set_weight(css
, val
, false, false, false);
1884 static int cfq_set_leaf_weight(struct cgroup_subsys_state
*css
,
1885 struct cftype
*cft
, u64 val
)
1887 return __cfq_set_weight(css
, val
, false, false, true);
1890 static int cfqg_print_stat(struct seq_file
*sf
, void *v
)
1892 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_stat
,
1893 &blkcg_policy_cfq
, seq_cft(sf
)->private, false);
1897 static int cfqg_print_rwstat(struct seq_file
*sf
, void *v
)
1899 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_rwstat
,
1900 &blkcg_policy_cfq
, seq_cft(sf
)->private, true);
1904 static u64
cfqg_prfill_stat_recursive(struct seq_file
*sf
,
1905 struct blkg_policy_data
*pd
, int off
)
1907 u64 sum
= blkg_stat_recursive_sum(pd_to_blkg(pd
),
1908 &blkcg_policy_cfq
, off
);
1909 return __blkg_prfill_u64(sf
, pd
, sum
);
1912 static u64
cfqg_prfill_rwstat_recursive(struct seq_file
*sf
,
1913 struct blkg_policy_data
*pd
, int off
)
1915 struct blkg_rwstat sum
= blkg_rwstat_recursive_sum(pd_to_blkg(pd
),
1916 &blkcg_policy_cfq
, off
);
1917 return __blkg_prfill_rwstat(sf
, pd
, &sum
);
1920 static int cfqg_print_stat_recursive(struct seq_file
*sf
, void *v
)
1922 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1923 cfqg_prfill_stat_recursive
, &blkcg_policy_cfq
,
1924 seq_cft(sf
)->private, false);
1928 static int cfqg_print_rwstat_recursive(struct seq_file
*sf
, void *v
)
1930 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1931 cfqg_prfill_rwstat_recursive
, &blkcg_policy_cfq
,
1932 seq_cft(sf
)->private, true);
1936 static u64
cfqg_prfill_sectors(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1939 u64 sum
= blkg_rwstat_total(&pd
->blkg
->stat_bytes
);
1941 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1944 static int cfqg_print_stat_sectors(struct seq_file
*sf
, void *v
)
1946 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1947 cfqg_prfill_sectors
, &blkcg_policy_cfq
, 0, false);
1951 static u64
cfqg_prfill_sectors_recursive(struct seq_file
*sf
,
1952 struct blkg_policy_data
*pd
, int off
)
1954 struct blkg_rwstat tmp
= blkg_rwstat_recursive_sum(pd
->blkg
, NULL
,
1955 offsetof(struct blkcg_gq
, stat_bytes
));
1956 u64 sum
= atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_READ
]) +
1957 atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_WRITE
]);
1959 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1962 static int cfqg_print_stat_sectors_recursive(struct seq_file
*sf
, void *v
)
1964 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1965 cfqg_prfill_sectors_recursive
, &blkcg_policy_cfq
, 0,
1970 #ifdef CONFIG_DEBUG_BLK_CGROUP
1971 static u64
cfqg_prfill_avg_queue_size(struct seq_file
*sf
,
1972 struct blkg_policy_data
*pd
, int off
)
1974 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1975 u64 samples
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_samples
);
1979 v
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_sum
);
1980 v
= div64_u64(v
, samples
);
1982 __blkg_prfill_u64(sf
, pd
, v
);
1986 /* print avg_queue_size */
1987 static int cfqg_print_avg_queue_size(struct seq_file
*sf
, void *v
)
1989 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1990 cfqg_prfill_avg_queue_size
, &blkcg_policy_cfq
,
1994 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1996 static struct cftype cfq_blkcg_legacy_files
[] = {
1997 /* on root, weight is mapped to leaf_weight */
1999 .name
= "weight_device",
2000 .flags
= CFTYPE_ONLY_ON_ROOT
,
2001 .seq_show
= cfqg_print_leaf_weight_device
,
2002 .write
= cfqg_set_leaf_weight_device
,
2006 .flags
= CFTYPE_ONLY_ON_ROOT
,
2007 .seq_show
= cfq_print_leaf_weight
,
2008 .write_u64
= cfq_set_leaf_weight
,
2011 /* no such mapping necessary for !roots */
2013 .name
= "weight_device",
2014 .flags
= CFTYPE_NOT_ON_ROOT
,
2015 .seq_show
= cfqg_print_weight_device
,
2016 .write
= cfqg_set_weight_device
,
2020 .flags
= CFTYPE_NOT_ON_ROOT
,
2021 .seq_show
= cfq_print_weight
,
2022 .write_u64
= cfq_set_weight
,
2026 .name
= "leaf_weight_device",
2027 .seq_show
= cfqg_print_leaf_weight_device
,
2028 .write
= cfqg_set_leaf_weight_device
,
2031 .name
= "leaf_weight",
2032 .seq_show
= cfq_print_leaf_weight
,
2033 .write_u64
= cfq_set_leaf_weight
,
2036 /* statistics, covers only the tasks in the cfqg */
2039 .private = offsetof(struct cfq_group
, stats
.time
),
2040 .seq_show
= cfqg_print_stat
,
2044 .seq_show
= cfqg_print_stat_sectors
,
2047 .name
= "io_service_bytes",
2048 .private = (unsigned long)&blkcg_policy_cfq
,
2049 .seq_show
= blkg_print_stat_bytes
,
2052 .name
= "io_serviced",
2053 .private = (unsigned long)&blkcg_policy_cfq
,
2054 .seq_show
= blkg_print_stat_ios
,
2057 .name
= "io_service_time",
2058 .private = offsetof(struct cfq_group
, stats
.service_time
),
2059 .seq_show
= cfqg_print_rwstat
,
2062 .name
= "io_wait_time",
2063 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2064 .seq_show
= cfqg_print_rwstat
,
2067 .name
= "io_merged",
2068 .private = offsetof(struct cfq_group
, stats
.merged
),
2069 .seq_show
= cfqg_print_rwstat
,
2072 .name
= "io_queued",
2073 .private = offsetof(struct cfq_group
, stats
.queued
),
2074 .seq_show
= cfqg_print_rwstat
,
2077 /* the same statictics which cover the cfqg and its descendants */
2079 .name
= "time_recursive",
2080 .private = offsetof(struct cfq_group
, stats
.time
),
2081 .seq_show
= cfqg_print_stat_recursive
,
2084 .name
= "sectors_recursive",
2085 .seq_show
= cfqg_print_stat_sectors_recursive
,
2088 .name
= "io_service_bytes_recursive",
2089 .private = (unsigned long)&blkcg_policy_cfq
,
2090 .seq_show
= blkg_print_stat_bytes_recursive
,
2093 .name
= "io_serviced_recursive",
2094 .private = (unsigned long)&blkcg_policy_cfq
,
2095 .seq_show
= blkg_print_stat_ios_recursive
,
2098 .name
= "io_service_time_recursive",
2099 .private = offsetof(struct cfq_group
, stats
.service_time
),
2100 .seq_show
= cfqg_print_rwstat_recursive
,
2103 .name
= "io_wait_time_recursive",
2104 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2105 .seq_show
= cfqg_print_rwstat_recursive
,
2108 .name
= "io_merged_recursive",
2109 .private = offsetof(struct cfq_group
, stats
.merged
),
2110 .seq_show
= cfqg_print_rwstat_recursive
,
2113 .name
= "io_queued_recursive",
2114 .private = offsetof(struct cfq_group
, stats
.queued
),
2115 .seq_show
= cfqg_print_rwstat_recursive
,
2117 #ifdef CONFIG_DEBUG_BLK_CGROUP
2119 .name
= "avg_queue_size",
2120 .seq_show
= cfqg_print_avg_queue_size
,
2123 .name
= "group_wait_time",
2124 .private = offsetof(struct cfq_group
, stats
.group_wait_time
),
2125 .seq_show
= cfqg_print_stat
,
2128 .name
= "idle_time",
2129 .private = offsetof(struct cfq_group
, stats
.idle_time
),
2130 .seq_show
= cfqg_print_stat
,
2133 .name
= "empty_time",
2134 .private = offsetof(struct cfq_group
, stats
.empty_time
),
2135 .seq_show
= cfqg_print_stat
,
2139 .private = offsetof(struct cfq_group
, stats
.dequeue
),
2140 .seq_show
= cfqg_print_stat
,
2143 .name
= "unaccounted_time",
2144 .private = offsetof(struct cfq_group
, stats
.unaccounted_time
),
2145 .seq_show
= cfqg_print_stat
,
2147 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2151 static int cfq_print_weight_on_dfl(struct seq_file
*sf
, void *v
)
2153 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
2154 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
2156 seq_printf(sf
, "default %u\n", cgd
->weight
);
2157 blkcg_print_blkgs(sf
, blkcg
, cfqg_prfill_weight_device
,
2158 &blkcg_policy_cfq
, 0, false);
2162 static ssize_t
cfq_set_weight_on_dfl(struct kernfs_open_file
*of
,
2163 char *buf
, size_t nbytes
, loff_t off
)
2171 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2172 v
= simple_strtoull(buf
, &endp
, 0);
2173 if (*endp
== '\0' || sscanf(buf
, "default %llu", &v
) == 1) {
2174 ret
= __cfq_set_weight(of_css(of
), v
, true, false, false);
2175 return ret
?: nbytes
;
2178 /* "MAJ:MIN WEIGHT" */
2179 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, true, false);
2182 static struct cftype cfq_blkcg_files
[] = {
2185 .flags
= CFTYPE_NOT_ON_ROOT
,
2186 .seq_show
= cfq_print_weight_on_dfl
,
2187 .write
= cfq_set_weight_on_dfl
,
2192 #else /* GROUP_IOSCHED */
2193 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
2194 struct blkcg
*blkcg
)
2196 return cfqd
->root_group
;
2200 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
2204 #endif /* GROUP_IOSCHED */
2207 * The cfqd->service_trees holds all pending cfq_queue's that have
2208 * requests waiting to be processed. It is sorted in the order that
2209 * we will service the queues.
2211 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2214 struct rb_node
**p
, *parent
;
2215 struct cfq_queue
*__cfqq
;
2216 unsigned long rb_key
;
2217 struct cfq_rb_root
*st
;
2221 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
), cfqq_type(cfqq
));
2222 if (cfq_class_idle(cfqq
)) {
2223 rb_key
= CFQ_IDLE_DELAY
;
2224 parent
= rb_last(&st
->rb
);
2225 if (parent
&& parent
!= &cfqq
->rb_node
) {
2226 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2227 rb_key
+= __cfqq
->rb_key
;
2230 } else if (!add_front
) {
2232 * Get our rb key offset. Subtract any residual slice
2233 * value carried from last service. A negative resid
2234 * count indicates slice overrun, and this should position
2235 * the next service time further away in the tree.
2237 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
2238 rb_key
-= cfqq
->slice_resid
;
2239 cfqq
->slice_resid
= 0;
2242 __cfqq
= cfq_rb_first(st
);
2243 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
2246 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2249 * same position, nothing more to do
2251 if (rb_key
== cfqq
->rb_key
&& cfqq
->service_tree
== st
)
2254 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2255 cfqq
->service_tree
= NULL
;
2260 cfqq
->service_tree
= st
;
2261 p
= &st
->rb
.rb_node
;
2264 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2267 * sort by key, that represents service time.
2269 if (time_before(rb_key
, __cfqq
->rb_key
))
2270 p
= &parent
->rb_left
;
2272 p
= &parent
->rb_right
;
2278 st
->left
= &cfqq
->rb_node
;
2280 cfqq
->rb_key
= rb_key
;
2281 rb_link_node(&cfqq
->rb_node
, parent
, p
);
2282 rb_insert_color(&cfqq
->rb_node
, &st
->rb
);
2284 if (add_front
|| !new_cfqq
)
2286 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
2289 static struct cfq_queue
*
2290 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
2291 sector_t sector
, struct rb_node
**ret_parent
,
2292 struct rb_node
***rb_link
)
2294 struct rb_node
**p
, *parent
;
2295 struct cfq_queue
*cfqq
= NULL
;
2303 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2306 * Sort strictly based on sector. Smallest to the left,
2307 * largest to the right.
2309 if (sector
> blk_rq_pos(cfqq
->next_rq
))
2310 n
= &(*p
)->rb_right
;
2311 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
2319 *ret_parent
= parent
;
2325 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2327 struct rb_node
**p
, *parent
;
2328 struct cfq_queue
*__cfqq
;
2331 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2332 cfqq
->p_root
= NULL
;
2335 if (cfq_class_idle(cfqq
))
2340 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
2341 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
2342 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
2344 rb_link_node(&cfqq
->p_node
, parent
, p
);
2345 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
2347 cfqq
->p_root
= NULL
;
2351 * Update cfqq's position in the service tree.
2353 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2356 * Resorting requires the cfqq to be on the RR list already.
2358 if (cfq_cfqq_on_rr(cfqq
)) {
2359 cfq_service_tree_add(cfqd
, cfqq
, 0);
2360 cfq_prio_tree_add(cfqd
, cfqq
);
2365 * add to busy list of queues for service, trying to be fair in ordering
2366 * the pending list according to last request service
2368 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2370 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
2371 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2372 cfq_mark_cfqq_on_rr(cfqq
);
2373 cfqd
->busy_queues
++;
2374 if (cfq_cfqq_sync(cfqq
))
2375 cfqd
->busy_sync_queues
++;
2377 cfq_resort_rr_list(cfqd
, cfqq
);
2381 * Called when the cfqq no longer has requests pending, remove it from
2384 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2386 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
2387 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2388 cfq_clear_cfqq_on_rr(cfqq
);
2390 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2391 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2392 cfqq
->service_tree
= NULL
;
2395 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2396 cfqq
->p_root
= NULL
;
2399 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
2400 BUG_ON(!cfqd
->busy_queues
);
2401 cfqd
->busy_queues
--;
2402 if (cfq_cfqq_sync(cfqq
))
2403 cfqd
->busy_sync_queues
--;
2407 * rb tree support functions
2409 static void cfq_del_rq_rb(struct request
*rq
)
2411 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2412 const int sync
= rq_is_sync(rq
);
2414 BUG_ON(!cfqq
->queued
[sync
]);
2415 cfqq
->queued
[sync
]--;
2417 elv_rb_del(&cfqq
->sort_list
, rq
);
2419 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2421 * Queue will be deleted from service tree when we actually
2422 * expire it later. Right now just remove it from prio tree
2426 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2427 cfqq
->p_root
= NULL
;
2432 static void cfq_add_rq_rb(struct request
*rq
)
2434 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2435 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2436 struct request
*prev
;
2438 cfqq
->queued
[rq_is_sync(rq
)]++;
2440 elv_rb_add(&cfqq
->sort_list
, rq
);
2442 if (!cfq_cfqq_on_rr(cfqq
))
2443 cfq_add_cfqq_rr(cfqd
, cfqq
);
2446 * check if this request is a better next-serve candidate
2448 prev
= cfqq
->next_rq
;
2449 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
2452 * adjust priority tree position, if ->next_rq changes
2454 if (prev
!= cfqq
->next_rq
)
2455 cfq_prio_tree_add(cfqd
, cfqq
);
2457 BUG_ON(!cfqq
->next_rq
);
2460 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
2462 elv_rb_del(&cfqq
->sort_list
, rq
);
2463 cfqq
->queued
[rq_is_sync(rq
)]--;
2464 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
2466 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqq
->cfqd
->serving_group
,
2470 static struct request
*
2471 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
2473 struct task_struct
*tsk
= current
;
2474 struct cfq_io_cq
*cic
;
2475 struct cfq_queue
*cfqq
;
2477 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2481 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
2483 return elv_rb_find(&cfqq
->sort_list
, bio_end_sector(bio
));
2488 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
2490 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2492 cfqd
->rq_in_driver
++;
2493 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
2494 cfqd
->rq_in_driver
);
2496 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2499 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
2501 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2503 WARN_ON(!cfqd
->rq_in_driver
);
2504 cfqd
->rq_in_driver
--;
2505 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
2506 cfqd
->rq_in_driver
);
2509 static void cfq_remove_request(struct request
*rq
)
2511 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2513 if (cfqq
->next_rq
== rq
)
2514 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
2516 list_del_init(&rq
->queuelist
);
2519 cfqq
->cfqd
->rq_queued
--;
2520 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
2521 if (rq
->cmd_flags
& REQ_PRIO
) {
2522 WARN_ON(!cfqq
->prio_pending
);
2523 cfqq
->prio_pending
--;
2527 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
2530 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2531 struct request
*__rq
;
2533 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
2534 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
2536 return ELEVATOR_FRONT_MERGE
;
2539 return ELEVATOR_NO_MERGE
;
2542 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
2545 if (type
== ELEVATOR_FRONT_MERGE
) {
2546 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
2548 cfq_reposition_rq_rb(cfqq
, req
);
2552 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
2555 cfqg_stats_update_io_merged(RQ_CFQG(req
), bio
->bi_rw
);
2559 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
2560 struct request
*next
)
2562 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2563 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2566 * reposition in fifo if next is older than rq
2568 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
2569 time_before(next
->fifo_time
, rq
->fifo_time
) &&
2570 cfqq
== RQ_CFQQ(next
)) {
2571 list_move(&rq
->queuelist
, &next
->queuelist
);
2572 rq
->fifo_time
= next
->fifo_time
;
2575 if (cfqq
->next_rq
== next
)
2577 cfq_remove_request(next
);
2578 cfqg_stats_update_io_merged(RQ_CFQG(rq
), next
->cmd_flags
);
2580 cfqq
= RQ_CFQQ(next
);
2582 * all requests of this queue are merged to other queues, delete it
2583 * from the service tree. If it's the active_queue,
2584 * cfq_dispatch_requests() will choose to expire it or do idle
2586 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
) &&
2587 cfqq
!= cfqd
->active_queue
)
2588 cfq_del_cfqq_rr(cfqd
, cfqq
);
2591 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
2594 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2595 struct cfq_io_cq
*cic
;
2596 struct cfq_queue
*cfqq
;
2599 * Disallow merge of a sync bio into an async request.
2601 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
2605 * Lookup the cfqq that this bio will be queued with and allow
2606 * merge only if rq is queued there.
2608 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
2612 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
2613 return cfqq
== RQ_CFQQ(rq
);
2616 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2618 del_timer(&cfqd
->idle_slice_timer
);
2619 cfqg_stats_update_idle_time(cfqq
->cfqg
);
2622 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
2623 struct cfq_queue
*cfqq
)
2626 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_class:%d wl_type:%d",
2627 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2628 cfqg_stats_update_avg_queue_size(cfqq
->cfqg
);
2629 cfqq
->slice_start
= 0;
2630 cfqq
->dispatch_start
= jiffies
;
2631 cfqq
->allocated_slice
= 0;
2632 cfqq
->slice_end
= 0;
2633 cfqq
->slice_dispatch
= 0;
2634 cfqq
->nr_sectors
= 0;
2636 cfq_clear_cfqq_wait_request(cfqq
);
2637 cfq_clear_cfqq_must_dispatch(cfqq
);
2638 cfq_clear_cfqq_must_alloc_slice(cfqq
);
2639 cfq_clear_cfqq_fifo_expire(cfqq
);
2640 cfq_mark_cfqq_slice_new(cfqq
);
2642 cfq_del_timer(cfqd
, cfqq
);
2645 cfqd
->active_queue
= cfqq
;
2649 * current cfqq expired its slice (or was too idle), select new one
2652 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2655 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
2657 if (cfq_cfqq_wait_request(cfqq
))
2658 cfq_del_timer(cfqd
, cfqq
);
2660 cfq_clear_cfqq_wait_request(cfqq
);
2661 cfq_clear_cfqq_wait_busy(cfqq
);
2664 * If this cfqq is shared between multiple processes, check to
2665 * make sure that those processes are still issuing I/Os within
2666 * the mean seek distance. If not, it may be time to break the
2667 * queues apart again.
2669 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
2670 cfq_mark_cfqq_split_coop(cfqq
);
2673 * store what was left of this slice, if the queue idled/timed out
2676 if (cfq_cfqq_slice_new(cfqq
))
2677 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
2679 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
2680 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
2683 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
2685 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
2686 cfq_del_cfqq_rr(cfqd
, cfqq
);
2688 cfq_resort_rr_list(cfqd
, cfqq
);
2690 if (cfqq
== cfqd
->active_queue
)
2691 cfqd
->active_queue
= NULL
;
2693 if (cfqd
->active_cic
) {
2694 put_io_context(cfqd
->active_cic
->icq
.ioc
);
2695 cfqd
->active_cic
= NULL
;
2699 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
2701 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2704 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
2708 * Get next queue for service. Unless we have a queue preemption,
2709 * we'll simply select the first cfqq in the service tree.
2711 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
2713 struct cfq_rb_root
*st
= st_for(cfqd
->serving_group
,
2714 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2716 if (!cfqd
->rq_queued
)
2719 /* There is nothing to dispatch */
2722 if (RB_EMPTY_ROOT(&st
->rb
))
2724 return cfq_rb_first(st
);
2727 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
2729 struct cfq_group
*cfqg
;
2730 struct cfq_queue
*cfqq
;
2732 struct cfq_rb_root
*st
;
2734 if (!cfqd
->rq_queued
)
2737 cfqg
= cfq_get_next_cfqg(cfqd
);
2741 for_each_cfqg_st(cfqg
, i
, j
, st
)
2742 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
2748 * Get and set a new active queue for service.
2750 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
2751 struct cfq_queue
*cfqq
)
2754 cfqq
= cfq_get_next_queue(cfqd
);
2756 __cfq_set_active_queue(cfqd
, cfqq
);
2760 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
2763 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
2764 return blk_rq_pos(rq
) - cfqd
->last_position
;
2766 return cfqd
->last_position
- blk_rq_pos(rq
);
2769 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2772 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
2775 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
2776 struct cfq_queue
*cur_cfqq
)
2778 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
2779 struct rb_node
*parent
, *node
;
2780 struct cfq_queue
*__cfqq
;
2781 sector_t sector
= cfqd
->last_position
;
2783 if (RB_EMPTY_ROOT(root
))
2787 * First, if we find a request starting at the end of the last
2788 * request, choose it.
2790 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
2795 * If the exact sector wasn't found, the parent of the NULL leaf
2796 * will contain the closest sector.
2798 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2799 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2802 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
2803 node
= rb_next(&__cfqq
->p_node
);
2805 node
= rb_prev(&__cfqq
->p_node
);
2809 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
2810 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2818 * cur_cfqq - passed in so that we don't decide that the current queue is
2819 * closely cooperating with itself.
2821 * So, basically we're assuming that that cur_cfqq has dispatched at least
2822 * one request, and that cfqd->last_position reflects a position on the disk
2823 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2826 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
2827 struct cfq_queue
*cur_cfqq
)
2829 struct cfq_queue
*cfqq
;
2831 if (cfq_class_idle(cur_cfqq
))
2833 if (!cfq_cfqq_sync(cur_cfqq
))
2835 if (CFQQ_SEEKY(cur_cfqq
))
2839 * Don't search priority tree if it's the only queue in the group.
2841 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
2845 * We should notice if some of the queues are cooperating, eg
2846 * working closely on the same area of the disk. In that case,
2847 * we can group them together and don't waste time idling.
2849 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
2853 /* If new queue belongs to different cfq_group, don't choose it */
2854 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
2858 * It only makes sense to merge sync queues.
2860 if (!cfq_cfqq_sync(cfqq
))
2862 if (CFQQ_SEEKY(cfqq
))
2866 * Do not merge queues of different priority classes
2868 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
2875 * Determine whether we should enforce idle window for this queue.
2878 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2880 enum wl_class_t wl_class
= cfqq_class(cfqq
);
2881 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2886 if (!cfqd
->cfq_slice_idle
)
2889 /* We never do for idle class queues. */
2890 if (wl_class
== IDLE_WORKLOAD
)
2893 /* We do for queues that were marked with idle window flag. */
2894 if (cfq_cfqq_idle_window(cfqq
) &&
2895 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
2899 * Otherwise, we do only if they are the last ones
2900 * in their service tree.
2902 if (st
->count
== 1 && cfq_cfqq_sync(cfqq
) &&
2903 !cfq_io_thinktime_big(cfqd
, &st
->ttime
, false))
2905 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d", st
->count
);
2909 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
2911 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2912 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2913 struct cfq_io_cq
*cic
;
2914 unsigned long sl
, group_idle
= 0;
2917 * SSD device without seek penalty, disable idling. But only do so
2918 * for devices that support queuing, otherwise we still have a problem
2919 * with sync vs async workloads.
2921 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
2924 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
2925 WARN_ON(cfq_cfqq_slice_new(cfqq
));
2928 * idle is disabled, either manually or by past process history
2930 if (!cfq_should_idle(cfqd
, cfqq
)) {
2931 /* no queue idling. Check for group idling */
2932 if (cfqd
->cfq_group_idle
)
2933 group_idle
= cfqd
->cfq_group_idle
;
2939 * still active requests from this queue, don't idle
2941 if (cfqq
->dispatched
)
2945 * task has exited, don't wait
2947 cic
= cfqd
->active_cic
;
2948 if (!cic
|| !atomic_read(&cic
->icq
.ioc
->active_ref
))
2952 * If our average think time is larger than the remaining time
2953 * slice, then don't idle. This avoids overrunning the allotted
2956 if (sample_valid(cic
->ttime
.ttime_samples
) &&
2957 (cfqq
->slice_end
- jiffies
< cic
->ttime
.ttime_mean
)) {
2958 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%lu",
2959 cic
->ttime
.ttime_mean
);
2964 * There are other queues in the group or this is the only group and
2965 * it has too big thinktime, don't do group idle.
2968 (cfqq
->cfqg
->nr_cfqq
> 1 ||
2969 cfq_io_thinktime_big(cfqd
, &st
->ttime
, true)))
2972 cfq_mark_cfqq_wait_request(cfqq
);
2975 sl
= cfqd
->cfq_group_idle
;
2977 sl
= cfqd
->cfq_slice_idle
;
2979 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
2980 cfqg_stats_set_start_idle_time(cfqq
->cfqg
);
2981 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu group_idle: %d", sl
,
2982 group_idle
? 1 : 0);
2986 * Move request from internal lists to the request queue dispatch list.
2988 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
2990 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2991 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2993 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
2995 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
2996 cfq_remove_request(rq
);
2998 (RQ_CFQG(rq
))->dispatched
++;
2999 elv_dispatch_sort(q
, rq
);
3001 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
3002 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
3006 * return expired entry, or NULL to just start from scratch in rbtree
3008 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
3010 struct request
*rq
= NULL
;
3012 if (cfq_cfqq_fifo_expire(cfqq
))
3015 cfq_mark_cfqq_fifo_expire(cfqq
);
3017 if (list_empty(&cfqq
->fifo
))
3020 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
3021 if (time_before(jiffies
, rq
->fifo_time
))
3024 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
3029 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3031 const int base_rq
= cfqd
->cfq_slice_async_rq
;
3033 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
3035 return 2 * base_rq
* (IOPRIO_BE_NR
- cfqq
->ioprio
);
3039 * Must be called with the queue_lock held.
3041 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
3043 int process_refs
, io_refs
;
3045 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
3046 process_refs
= cfqq
->ref
- io_refs
;
3047 BUG_ON(process_refs
< 0);
3048 return process_refs
;
3051 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
3053 int process_refs
, new_process_refs
;
3054 struct cfq_queue
*__cfqq
;
3057 * If there are no process references on the new_cfqq, then it is
3058 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3059 * chain may have dropped their last reference (not just their
3060 * last process reference).
3062 if (!cfqq_process_refs(new_cfqq
))
3065 /* Avoid a circular list and skip interim queue merges */
3066 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
3072 process_refs
= cfqq_process_refs(cfqq
);
3073 new_process_refs
= cfqq_process_refs(new_cfqq
);
3075 * If the process for the cfqq has gone away, there is no
3076 * sense in merging the queues.
3078 if (process_refs
== 0 || new_process_refs
== 0)
3082 * Merge in the direction of the lesser amount of work.
3084 if (new_process_refs
>= process_refs
) {
3085 cfqq
->new_cfqq
= new_cfqq
;
3086 new_cfqq
->ref
+= process_refs
;
3088 new_cfqq
->new_cfqq
= cfqq
;
3089 cfqq
->ref
+= new_process_refs
;
3093 static enum wl_type_t
cfq_choose_wl_type(struct cfq_data
*cfqd
,
3094 struct cfq_group
*cfqg
, enum wl_class_t wl_class
)
3096 struct cfq_queue
*queue
;
3098 bool key_valid
= false;
3099 unsigned long lowest_key
= 0;
3100 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
3102 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
3103 /* select the one with lowest rb_key */
3104 queue
= cfq_rb_first(st_for(cfqg
, wl_class
, i
));
3106 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
3107 lowest_key
= queue
->rb_key
;
3117 choose_wl_class_and_type(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
3121 struct cfq_rb_root
*st
;
3122 unsigned group_slice
;
3123 enum wl_class_t original_class
= cfqd
->serving_wl_class
;
3125 /* Choose next priority. RT > BE > IDLE */
3126 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
3127 cfqd
->serving_wl_class
= RT_WORKLOAD
;
3128 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
3129 cfqd
->serving_wl_class
= BE_WORKLOAD
;
3131 cfqd
->serving_wl_class
= IDLE_WORKLOAD
;
3132 cfqd
->workload_expires
= jiffies
+ 1;
3136 if (original_class
!= cfqd
->serving_wl_class
)
3140 * For RT and BE, we have to choose also the type
3141 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3144 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3148 * check workload expiration, and that we still have other queues ready
3150 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
3154 /* otherwise select new workload type */
3155 cfqd
->serving_wl_type
= cfq_choose_wl_type(cfqd
, cfqg
,
3156 cfqd
->serving_wl_class
);
3157 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3161 * the workload slice is computed as a fraction of target latency
3162 * proportional to the number of queues in that workload, over
3163 * all the queues in the same priority class
3165 group_slice
= cfq_group_slice(cfqd
, cfqg
);
3167 slice
= group_slice
* count
/
3168 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_wl_class
],
3169 cfq_group_busy_queues_wl(cfqd
->serving_wl_class
, cfqd
,
3172 if (cfqd
->serving_wl_type
== ASYNC_WORKLOAD
) {
3176 * Async queues are currently system wide. Just taking
3177 * proportion of queues with-in same group will lead to higher
3178 * async ratio system wide as generally root group is going
3179 * to have higher weight. A more accurate thing would be to
3180 * calculate system wide asnc/sync ratio.
3182 tmp
= cfqd
->cfq_target_latency
*
3183 cfqg_busy_async_queues(cfqd
, cfqg
);
3184 tmp
= tmp
/cfqd
->busy_queues
;
3185 slice
= min_t(unsigned, slice
, tmp
);
3187 /* async workload slice is scaled down according to
3188 * the sync/async slice ratio. */
3189 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
3191 /* sync workload slice is at least 2 * cfq_slice_idle */
3192 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
3194 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
3195 cfq_log(cfqd
, "workload slice:%d", slice
);
3196 cfqd
->workload_expires
= jiffies
+ slice
;
3199 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
3201 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
3202 struct cfq_group
*cfqg
;
3204 if (RB_EMPTY_ROOT(&st
->rb
))
3206 cfqg
= cfq_rb_first_group(st
);
3207 update_min_vdisktime(st
);
3211 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
3213 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
3215 cfqd
->serving_group
= cfqg
;
3217 /* Restore the workload type data */
3218 if (cfqg
->saved_wl_slice
) {
3219 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_wl_slice
;
3220 cfqd
->serving_wl_type
= cfqg
->saved_wl_type
;
3221 cfqd
->serving_wl_class
= cfqg
->saved_wl_class
;
3223 cfqd
->workload_expires
= jiffies
- 1;
3225 choose_wl_class_and_type(cfqd
, cfqg
);
3229 * Select a queue for service. If we have a current active queue,
3230 * check whether to continue servicing it, or retrieve and set a new one.
3232 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
3234 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
3236 cfqq
= cfqd
->active_queue
;
3240 if (!cfqd
->rq_queued
)
3244 * We were waiting for group to get backlogged. Expire the queue
3246 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
3250 * The active queue has run out of time, expire it and select new.
3252 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
3254 * If slice had not expired at the completion of last request
3255 * we might not have turned on wait_busy flag. Don't expire
3256 * the queue yet. Allow the group to get backlogged.
3258 * The very fact that we have used the slice, that means we
3259 * have been idling all along on this queue and it should be
3260 * ok to wait for this request to complete.
3262 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
3263 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3267 goto check_group_idle
;
3271 * The active queue has requests and isn't expired, allow it to
3274 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3278 * If another queue has a request waiting within our mean seek
3279 * distance, let it run. The expire code will check for close
3280 * cooperators and put the close queue at the front of the service
3281 * tree. If possible, merge the expiring queue with the new cfqq.
3283 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
3285 if (!cfqq
->new_cfqq
)
3286 cfq_setup_merge(cfqq
, new_cfqq
);
3291 * No requests pending. If the active queue still has requests in
3292 * flight or is idling for a new request, allow either of these
3293 * conditions to happen (or time out) before selecting a new queue.
3295 if (timer_pending(&cfqd
->idle_slice_timer
)) {
3301 * This is a deep seek queue, but the device is much faster than
3302 * the queue can deliver, don't idle
3304 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
3305 (cfq_cfqq_slice_new(cfqq
) ||
3306 (cfqq
->slice_end
- jiffies
> jiffies
- cfqq
->slice_start
))) {
3307 cfq_clear_cfqq_deep(cfqq
);
3308 cfq_clear_cfqq_idle_window(cfqq
);
3311 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3317 * If group idle is enabled and there are requests dispatched from
3318 * this group, wait for requests to complete.
3321 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1 &&
3322 cfqq
->cfqg
->dispatched
&&
3323 !cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true)) {
3329 cfq_slice_expired(cfqd
, 0);
3332 * Current queue expired. Check if we have to switch to a new
3336 cfq_choose_cfqg(cfqd
);
3338 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
3343 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
3347 while (cfqq
->next_rq
) {
3348 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
3352 BUG_ON(!list_empty(&cfqq
->fifo
));
3354 /* By default cfqq is not expired if it is empty. Do it explicitly */
3355 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
3360 * Drain our current requests. Used for barriers and when switching
3361 * io schedulers on-the-fly.
3363 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
3365 struct cfq_queue
*cfqq
;
3368 /* Expire the timeslice of the current active queue first */
3369 cfq_slice_expired(cfqd
, 0);
3370 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
3371 __cfq_set_active_queue(cfqd
, cfqq
);
3372 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
3375 BUG_ON(cfqd
->busy_queues
);
3377 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
3381 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
3382 struct cfq_queue
*cfqq
)
3384 /* the queue hasn't finished any request, can't estimate */
3385 if (cfq_cfqq_slice_new(cfqq
))
3387 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
3394 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3396 unsigned int max_dispatch
;
3399 * Drain async requests before we start sync IO
3401 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
3405 * If this is an async queue and we have sync IO in flight, let it wait
3407 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
3410 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
3411 if (cfq_class_idle(cfqq
))
3415 * Does this cfqq already have too much IO in flight?
3417 if (cfqq
->dispatched
>= max_dispatch
) {
3418 bool promote_sync
= false;
3420 * idle queue must always only have a single IO in flight
3422 if (cfq_class_idle(cfqq
))
3426 * If there is only one sync queue
3427 * we can ignore async queue here and give the sync
3428 * queue no dispatch limit. The reason is a sync queue can
3429 * preempt async queue, limiting the sync queue doesn't make
3430 * sense. This is useful for aiostress test.
3432 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
3433 promote_sync
= true;
3436 * We have other queues, don't allow more IO from this one
3438 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
3443 * Sole queue user, no limit
3445 if (cfqd
->busy_queues
== 1 || promote_sync
)
3449 * Normally we start throttling cfqq when cfq_quantum/2
3450 * requests have been dispatched. But we can drive
3451 * deeper queue depths at the beginning of slice
3452 * subjected to upper limit of cfq_quantum.
3454 max_dispatch
= cfqd
->cfq_quantum
;
3458 * Async queues must wait a bit before being allowed dispatch.
3459 * We also ramp up the dispatch depth gradually for async IO,
3460 * based on the last sync IO we serviced
3462 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
3463 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
3466 depth
= last_sync
/ cfqd
->cfq_slice
[1];
3467 if (!depth
&& !cfqq
->dispatched
)
3469 if (depth
< max_dispatch
)
3470 max_dispatch
= depth
;
3474 * If we're below the current max, allow a dispatch
3476 return cfqq
->dispatched
< max_dispatch
;
3480 * Dispatch a request from cfqq, moving them to the request queue
3483 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3487 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
3489 if (!cfq_may_dispatch(cfqd
, cfqq
))
3493 * follow expired path, else get first next available
3495 rq
= cfq_check_fifo(cfqq
);
3500 * insert request into driver dispatch list
3502 cfq_dispatch_insert(cfqd
->queue
, rq
);
3504 if (!cfqd
->active_cic
) {
3505 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
3507 atomic_long_inc(&cic
->icq
.ioc
->refcount
);
3508 cfqd
->active_cic
= cic
;
3515 * Find the cfqq that we need to service and move a request from that to the
3518 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
3520 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3521 struct cfq_queue
*cfqq
;
3523 if (!cfqd
->busy_queues
)
3526 if (unlikely(force
))
3527 return cfq_forced_dispatch(cfqd
);
3529 cfqq
= cfq_select_queue(cfqd
);
3534 * Dispatch a request from this cfqq, if it is allowed
3536 if (!cfq_dispatch_request(cfqd
, cfqq
))
3539 cfqq
->slice_dispatch
++;
3540 cfq_clear_cfqq_must_dispatch(cfqq
);
3543 * expire an async queue immediately if it has used up its slice. idle
3544 * queue always expire after 1 dispatch round.
3546 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
3547 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
3548 cfq_class_idle(cfqq
))) {
3549 cfqq
->slice_end
= jiffies
+ 1;
3550 cfq_slice_expired(cfqd
, 0);
3553 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
3558 * task holds one reference to the queue, dropped when task exits. each rq
3559 * in-flight on this queue also holds a reference, dropped when rq is freed.
3561 * Each cfq queue took a reference on the parent group. Drop it now.
3562 * queue lock must be held here.
3564 static void cfq_put_queue(struct cfq_queue
*cfqq
)
3566 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3567 struct cfq_group
*cfqg
;
3569 BUG_ON(cfqq
->ref
<= 0);
3575 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
3576 BUG_ON(rb_first(&cfqq
->sort_list
));
3577 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
3580 if (unlikely(cfqd
->active_queue
== cfqq
)) {
3581 __cfq_slice_expired(cfqd
, cfqq
, 0);
3582 cfq_schedule_dispatch(cfqd
);
3585 BUG_ON(cfq_cfqq_on_rr(cfqq
));
3586 kmem_cache_free(cfq_pool
, cfqq
);
3590 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
3592 struct cfq_queue
*__cfqq
, *next
;
3595 * If this queue was scheduled to merge with another queue, be
3596 * sure to drop the reference taken on that queue (and others in
3597 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3599 __cfqq
= cfqq
->new_cfqq
;
3601 if (__cfqq
== cfqq
) {
3602 WARN(1, "cfqq->new_cfqq loop detected\n");
3605 next
= __cfqq
->new_cfqq
;
3606 cfq_put_queue(__cfqq
);
3611 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3613 if (unlikely(cfqq
== cfqd
->active_queue
)) {
3614 __cfq_slice_expired(cfqd
, cfqq
, 0);
3615 cfq_schedule_dispatch(cfqd
);
3618 cfq_put_cooperator(cfqq
);
3620 cfq_put_queue(cfqq
);
3623 static void cfq_init_icq(struct io_cq
*icq
)
3625 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3627 cic
->ttime
.last_end_request
= jiffies
;
3630 static void cfq_exit_icq(struct io_cq
*icq
)
3632 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3633 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3635 if (cic_to_cfqq(cic
, false)) {
3636 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, false));
3637 cic_set_cfqq(cic
, NULL
, false);
3640 if (cic_to_cfqq(cic
, true)) {
3641 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, true));
3642 cic_set_cfqq(cic
, NULL
, true);
3646 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct cfq_io_cq
*cic
)
3648 struct task_struct
*tsk
= current
;
3651 if (!cfq_cfqq_prio_changed(cfqq
))
3654 ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3655 switch (ioprio_class
) {
3657 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
3658 case IOPRIO_CLASS_NONE
:
3660 * no prio set, inherit CPU scheduling settings
3662 cfqq
->ioprio
= task_nice_ioprio(tsk
);
3663 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
3665 case IOPRIO_CLASS_RT
:
3666 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3667 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
3669 case IOPRIO_CLASS_BE
:
3670 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3671 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3673 case IOPRIO_CLASS_IDLE
:
3674 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
3676 cfq_clear_cfqq_idle_window(cfqq
);
3681 * keep track of original prio settings in case we have to temporarily
3682 * elevate the priority of this queue
3684 cfqq
->org_ioprio
= cfqq
->ioprio
;
3685 cfq_clear_cfqq_prio_changed(cfqq
);
3688 static void check_ioprio_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3690 int ioprio
= cic
->icq
.ioc
->ioprio
;
3691 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3692 struct cfq_queue
*cfqq
;
3695 * Check whether ioprio has changed. The condition may trigger
3696 * spuriously on a newly created cic but there's no harm.
3698 if (unlikely(!cfqd
) || likely(cic
->ioprio
== ioprio
))
3701 cfqq
= cic_to_cfqq(cic
, false);
3703 cfq_put_queue(cfqq
);
3704 cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
, bio
);
3705 cic_set_cfqq(cic
, cfqq
, false);
3708 cfqq
= cic_to_cfqq(cic
, true);
3710 cfq_mark_cfqq_prio_changed(cfqq
);
3712 cic
->ioprio
= ioprio
;
3715 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3716 pid_t pid
, bool is_sync
)
3718 RB_CLEAR_NODE(&cfqq
->rb_node
);
3719 RB_CLEAR_NODE(&cfqq
->p_node
);
3720 INIT_LIST_HEAD(&cfqq
->fifo
);
3725 cfq_mark_cfqq_prio_changed(cfqq
);
3728 if (!cfq_class_idle(cfqq
))
3729 cfq_mark_cfqq_idle_window(cfqq
);
3730 cfq_mark_cfqq_sync(cfqq
);
3735 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3736 static void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3738 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3739 struct cfq_queue
*cfqq
;
3743 serial_nr
= bio_blkcg(bio
)->css
.serial_nr
;
3747 * Check whether blkcg has changed. The condition may trigger
3748 * spuriously on a newly created cic but there's no harm.
3750 if (unlikely(!cfqd
) || likely(cic
->blkcg_serial_nr
== serial_nr
))
3754 * Drop reference to queues. New queues will be assigned in new
3755 * group upon arrival of fresh requests.
3757 cfqq
= cic_to_cfqq(cic
, false);
3759 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3760 cic_set_cfqq(cic
, NULL
, false);
3761 cfq_put_queue(cfqq
);
3764 cfqq
= cic_to_cfqq(cic
, true);
3766 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3767 cic_set_cfqq(cic
, NULL
, true);
3768 cfq_put_queue(cfqq
);
3771 cic
->blkcg_serial_nr
= serial_nr
;
3774 static inline void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
) { }
3775 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3777 static struct cfq_queue
**
3778 cfq_async_queue_prio(struct cfq_group
*cfqg
, int ioprio_class
, int ioprio
)
3780 switch (ioprio_class
) {
3781 case IOPRIO_CLASS_RT
:
3782 return &cfqg
->async_cfqq
[0][ioprio
];
3783 case IOPRIO_CLASS_NONE
:
3784 ioprio
= IOPRIO_NORM
;
3786 case IOPRIO_CLASS_BE
:
3787 return &cfqg
->async_cfqq
[1][ioprio
];
3788 case IOPRIO_CLASS_IDLE
:
3789 return &cfqg
->async_idle_cfqq
;
3795 static struct cfq_queue
*
3796 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct cfq_io_cq
*cic
,
3799 int ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3800 int ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3801 struct cfq_queue
**async_cfqq
= NULL
;
3802 struct cfq_queue
*cfqq
;
3803 struct cfq_group
*cfqg
;
3806 cfqg
= cfq_lookup_cfqg(cfqd
, bio_blkcg(bio
));
3808 cfqq
= &cfqd
->oom_cfqq
;
3813 if (!ioprio_valid(cic
->ioprio
)) {
3814 struct task_struct
*tsk
= current
;
3815 ioprio
= task_nice_ioprio(tsk
);
3816 ioprio_class
= task_nice_ioclass(tsk
);
3818 async_cfqq
= cfq_async_queue_prio(cfqg
, ioprio_class
, ioprio
);
3824 cfqq
= kmem_cache_alloc_node(cfq_pool
, GFP_NOWAIT
| __GFP_ZERO
,
3827 cfqq
= &cfqd
->oom_cfqq
;
3831 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
3832 cfq_init_prio_data(cfqq
, cic
);
3833 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
3834 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
3837 /* a new async queue is created, pin and remember */
3848 __cfq_update_io_thinktime(struct cfq_ttime
*ttime
, unsigned long slice_idle
)
3850 unsigned long elapsed
= jiffies
- ttime
->last_end_request
;
3851 elapsed
= min(elapsed
, 2UL * slice_idle
);
3853 ttime
->ttime_samples
= (7*ttime
->ttime_samples
+ 256) / 8;
3854 ttime
->ttime_total
= (7*ttime
->ttime_total
+ 256*elapsed
) / 8;
3855 ttime
->ttime_mean
= (ttime
->ttime_total
+ 128) / ttime
->ttime_samples
;
3859 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3860 struct cfq_io_cq
*cic
)
3862 if (cfq_cfqq_sync(cfqq
)) {
3863 __cfq_update_io_thinktime(&cic
->ttime
, cfqd
->cfq_slice_idle
);
3864 __cfq_update_io_thinktime(&cfqq
->service_tree
->ttime
,
3865 cfqd
->cfq_slice_idle
);
3867 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3868 __cfq_update_io_thinktime(&cfqq
->cfqg
->ttime
, cfqd
->cfq_group_idle
);
3873 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3877 sector_t n_sec
= blk_rq_sectors(rq
);
3878 if (cfqq
->last_request_pos
) {
3879 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3880 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3882 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3885 cfqq
->seek_history
<<= 1;
3886 if (blk_queue_nonrot(cfqd
->queue
))
3887 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3889 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3893 * Disable idle window if the process thinks too long or seeks so much that
3897 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3898 struct cfq_io_cq
*cic
)
3900 int old_idle
, enable_idle
;
3903 * Don't idle for async or idle io prio class
3905 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3908 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3910 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3911 cfq_mark_cfqq_deep(cfqq
);
3913 if (cfqq
->next_rq
&& (cfqq
->next_rq
->cmd_flags
& REQ_NOIDLE
))
3915 else if (!atomic_read(&cic
->icq
.ioc
->active_ref
) ||
3916 !cfqd
->cfq_slice_idle
||
3917 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3919 else if (sample_valid(cic
->ttime
.ttime_samples
)) {
3920 if (cic
->ttime
.ttime_mean
> cfqd
->cfq_slice_idle
)
3926 if (old_idle
!= enable_idle
) {
3927 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3929 cfq_mark_cfqq_idle_window(cfqq
);
3931 cfq_clear_cfqq_idle_window(cfqq
);
3936 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3937 * no or if we aren't sure, a 1 will cause a preempt.
3940 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3943 struct cfq_queue
*cfqq
;
3945 cfqq
= cfqd
->active_queue
;
3949 if (cfq_class_idle(new_cfqq
))
3952 if (cfq_class_idle(cfqq
))
3956 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3958 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3962 * if the new request is sync, but the currently running queue is
3963 * not, let the sync request have priority.
3965 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3969 * Treat ancestors of current cgroup the same way as current cgroup.
3970 * For anybody else we disallow preemption to guarantee service
3971 * fairness among cgroups.
3973 if (!cfqg_is_descendant(cfqq
->cfqg
, new_cfqq
->cfqg
))
3976 if (cfq_slice_used(cfqq
))
3980 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3982 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3985 WARN_ON_ONCE(cfqq
->ioprio_class
!= new_cfqq
->ioprio_class
);
3986 /* Allow preemption only if we are idling on sync-noidle tree */
3987 if (cfqd
->serving_wl_type
== SYNC_NOIDLE_WORKLOAD
&&
3988 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3989 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3993 * So both queues are sync. Let the new request get disk time if
3994 * it's a metadata request and the current queue is doing regular IO.
3996 if ((rq
->cmd_flags
& REQ_PRIO
) && !cfqq
->prio_pending
)
3999 /* An idle queue should not be idle now for some reason */
4000 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
4003 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
4007 * if this request is as-good as one we would expect from the
4008 * current cfqq, let it preempt
4010 if (cfq_rq_close(cfqd
, cfqq
, rq
))
4017 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4018 * let it have half of its nominal slice.
4020 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4022 enum wl_type_t old_type
= cfqq_type(cfqd
->active_queue
);
4024 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
4025 cfq_slice_expired(cfqd
, 1);
4028 * workload type is changed, don't save slice, otherwise preempt
4031 if (old_type
!= cfqq_type(cfqq
))
4032 cfqq
->cfqg
->saved_wl_slice
= 0;
4035 * Put the new queue at the front of the of the current list,
4036 * so we know that it will be selected next.
4038 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
4040 cfq_service_tree_add(cfqd
, cfqq
, 1);
4042 cfqq
->slice_end
= 0;
4043 cfq_mark_cfqq_slice_new(cfqq
);
4047 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4048 * something we should do about it
4051 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
4054 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
4057 if (rq
->cmd_flags
& REQ_PRIO
)
4058 cfqq
->prio_pending
++;
4060 cfq_update_io_thinktime(cfqd
, cfqq
, cic
);
4061 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
4062 cfq_update_idle_window(cfqd
, cfqq
, cic
);
4064 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
4066 if (cfqq
== cfqd
->active_queue
) {
4068 * Remember that we saw a request from this process, but
4069 * don't start queuing just yet. Otherwise we risk seeing lots
4070 * of tiny requests, because we disrupt the normal plugging
4071 * and merging. If the request is already larger than a single
4072 * page, let it rip immediately. For that case we assume that
4073 * merging is already done. Ditto for a busy system that
4074 * has other work pending, don't risk delaying until the
4075 * idle timer unplug to continue working.
4077 if (cfq_cfqq_wait_request(cfqq
)) {
4078 if (blk_rq_bytes(rq
) > PAGE_SIZE
||
4079 cfqd
->busy_queues
> 1) {
4080 cfq_del_timer(cfqd
, cfqq
);
4081 cfq_clear_cfqq_wait_request(cfqq
);
4082 __blk_run_queue(cfqd
->queue
);
4084 cfqg_stats_update_idle_time(cfqq
->cfqg
);
4085 cfq_mark_cfqq_must_dispatch(cfqq
);
4088 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
4090 * not the active queue - expire current slice if it is
4091 * idle and has expired it's mean thinktime or this new queue
4092 * has some old slice time left and is of higher priority or
4093 * this new queue is RT and the current one is BE
4095 cfq_preempt_queue(cfqd
, cfqq
);
4096 __blk_run_queue(cfqd
->queue
);
4100 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
4102 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4103 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4105 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
4106 cfq_init_prio_data(cfqq
, RQ_CIC(rq
));
4108 rq
->fifo_time
= jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)];
4109 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
4111 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqd
->serving_group
,
4113 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
4117 * Update hw_tag based on peak queue depth over 50 samples under
4120 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
4122 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
4124 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
4125 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
4127 if (cfqd
->hw_tag
== 1)
4130 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
4131 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
4135 * If active queue hasn't enough requests and can idle, cfq might not
4136 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4139 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
4140 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
4141 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
4144 if (cfqd
->hw_tag_samples
++ < 50)
4147 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
4153 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4155 struct cfq_io_cq
*cic
= cfqd
->active_cic
;
4157 /* If the queue already has requests, don't wait */
4158 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4161 /* If there are other queues in the group, don't wait */
4162 if (cfqq
->cfqg
->nr_cfqq
> 1)
4165 /* the only queue in the group, but think time is big */
4166 if (cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true))
4169 if (cfq_slice_used(cfqq
))
4172 /* if slice left is less than think time, wait busy */
4173 if (cic
&& sample_valid(cic
->ttime
.ttime_samples
)
4174 && (cfqq
->slice_end
- jiffies
< cic
->ttime
.ttime_mean
))
4178 * If think times is less than a jiffy than ttime_mean=0 and above
4179 * will not be true. It might happen that slice has not expired yet
4180 * but will expire soon (4-5 ns) during select_queue(). To cover the
4181 * case where think time is less than a jiffy, mark the queue wait
4182 * busy if only 1 jiffy is left in the slice.
4184 if (cfqq
->slice_end
- jiffies
== 1)
4190 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
4192 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4193 struct cfq_data
*cfqd
= cfqq
->cfqd
;
4194 const int sync
= rq_is_sync(rq
);
4198 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
4199 !!(rq
->cmd_flags
& REQ_NOIDLE
));
4201 cfq_update_hw_tag(cfqd
);
4203 WARN_ON(!cfqd
->rq_in_driver
);
4204 WARN_ON(!cfqq
->dispatched
);
4205 cfqd
->rq_in_driver
--;
4207 (RQ_CFQG(rq
))->dispatched
--;
4208 cfqg_stats_update_completion(cfqq
->cfqg
, rq_start_time_ns(rq
),
4209 rq_io_start_time_ns(rq
), rq
->cmd_flags
);
4211 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
4214 struct cfq_rb_root
*st
;
4216 RQ_CIC(rq
)->ttime
.last_end_request
= now
;
4218 if (cfq_cfqq_on_rr(cfqq
))
4219 st
= cfqq
->service_tree
;
4221 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
),
4224 st
->ttime
.last_end_request
= now
;
4225 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
4226 cfqd
->last_delayed_sync
= now
;
4229 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4230 cfqq
->cfqg
->ttime
.last_end_request
= now
;
4234 * If this is the active queue, check if it needs to be expired,
4235 * or if we want to idle in case it has no pending requests.
4237 if (cfqd
->active_queue
== cfqq
) {
4238 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
4240 if (cfq_cfqq_slice_new(cfqq
)) {
4241 cfq_set_prio_slice(cfqd
, cfqq
);
4242 cfq_clear_cfqq_slice_new(cfqq
);
4246 * Should we wait for next request to come in before we expire
4249 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
4250 unsigned long extend_sl
= cfqd
->cfq_slice_idle
;
4251 if (!cfqd
->cfq_slice_idle
)
4252 extend_sl
= cfqd
->cfq_group_idle
;
4253 cfqq
->slice_end
= jiffies
+ extend_sl
;
4254 cfq_mark_cfqq_wait_busy(cfqq
);
4255 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
4259 * Idling is not enabled on:
4261 * - idle-priority queues
4263 * - queues with still some requests queued
4264 * - when there is a close cooperator
4266 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
4267 cfq_slice_expired(cfqd
, 1);
4268 else if (sync
&& cfqq_empty
&&
4269 !cfq_close_cooperator(cfqd
, cfqq
)) {
4270 cfq_arm_slice_timer(cfqd
);
4274 if (!cfqd
->rq_in_driver
)
4275 cfq_schedule_dispatch(cfqd
);
4278 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
4280 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
4281 cfq_mark_cfqq_must_alloc_slice(cfqq
);
4282 return ELV_MQUEUE_MUST
;
4285 return ELV_MQUEUE_MAY
;
4288 static int cfq_may_queue(struct request_queue
*q
, int rw
)
4290 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4291 struct task_struct
*tsk
= current
;
4292 struct cfq_io_cq
*cic
;
4293 struct cfq_queue
*cfqq
;
4296 * don't force setup of a queue from here, as a call to may_queue
4297 * does not necessarily imply that a request actually will be queued.
4298 * so just lookup a possibly existing queue, or return 'may queue'
4301 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
4303 return ELV_MQUEUE_MAY
;
4305 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
4307 cfq_init_prio_data(cfqq
, cic
);
4309 return __cfq_may_queue(cfqq
);
4312 return ELV_MQUEUE_MAY
;
4316 * queue lock held here
4318 static void cfq_put_request(struct request
*rq
)
4320 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4323 const int rw
= rq_data_dir(rq
);
4325 BUG_ON(!cfqq
->allocated
[rw
]);
4326 cfqq
->allocated
[rw
]--;
4328 /* Put down rq reference on cfqg */
4329 cfqg_put(RQ_CFQG(rq
));
4330 rq
->elv
.priv
[0] = NULL
;
4331 rq
->elv
.priv
[1] = NULL
;
4333 cfq_put_queue(cfqq
);
4337 static struct cfq_queue
*
4338 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_cq
*cic
,
4339 struct cfq_queue
*cfqq
)
4341 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
4342 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
4343 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
4344 cfq_put_queue(cfqq
);
4345 return cic_to_cfqq(cic
, 1);
4349 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4350 * was the last process referring to said cfqq.
4352 static struct cfq_queue
*
4353 split_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
)
4355 if (cfqq_process_refs(cfqq
) == 1) {
4356 cfqq
->pid
= current
->pid
;
4357 cfq_clear_cfqq_coop(cfqq
);
4358 cfq_clear_cfqq_split_coop(cfqq
);
4362 cic_set_cfqq(cic
, NULL
, 1);
4364 cfq_put_cooperator(cfqq
);
4366 cfq_put_queue(cfqq
);
4370 * Allocate cfq data structures associated with this request.
4373 cfq_set_request(struct request_queue
*q
, struct request
*rq
, struct bio
*bio
,
4376 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4377 struct cfq_io_cq
*cic
= icq_to_cic(rq
->elv
.icq
);
4378 const int rw
= rq_data_dir(rq
);
4379 const bool is_sync
= rq_is_sync(rq
);
4380 struct cfq_queue
*cfqq
;
4382 spin_lock_irq(q
->queue_lock
);
4384 check_ioprio_changed(cic
, bio
);
4385 check_blkcg_changed(cic
, bio
);
4387 cfqq
= cic_to_cfqq(cic
, is_sync
);
4388 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
4390 cfq_put_queue(cfqq
);
4391 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
, bio
);
4392 cic_set_cfqq(cic
, cfqq
, is_sync
);
4395 * If the queue was seeky for too long, break it apart.
4397 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
4398 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
4399 cfqq
= split_cfqq(cic
, cfqq
);
4405 * Check to see if this queue is scheduled to merge with
4406 * another, closely cooperating queue. The merging of
4407 * queues happens here as it must be done in process context.
4408 * The reference on new_cfqq was taken in merge_cfqqs.
4411 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
4414 cfqq
->allocated
[rw
]++;
4417 cfqg_get(cfqq
->cfqg
);
4418 rq
->elv
.priv
[0] = cfqq
;
4419 rq
->elv
.priv
[1] = cfqq
->cfqg
;
4420 spin_unlock_irq(q
->queue_lock
);
4424 static void cfq_kick_queue(struct work_struct
*work
)
4426 struct cfq_data
*cfqd
=
4427 container_of(work
, struct cfq_data
, unplug_work
);
4428 struct request_queue
*q
= cfqd
->queue
;
4430 spin_lock_irq(q
->queue_lock
);
4431 __blk_run_queue(cfqd
->queue
);
4432 spin_unlock_irq(q
->queue_lock
);
4436 * Timer running if the active_queue is currently idling inside its time slice
4438 static void cfq_idle_slice_timer(unsigned long data
)
4440 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
4441 struct cfq_queue
*cfqq
;
4442 unsigned long flags
;
4445 cfq_log(cfqd
, "idle timer fired");
4447 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
4449 cfqq
= cfqd
->active_queue
;
4454 * We saw a request before the queue expired, let it through
4456 if (cfq_cfqq_must_dispatch(cfqq
))
4462 if (cfq_slice_used(cfqq
))
4466 * only expire and reinvoke request handler, if there are
4467 * other queues with pending requests
4469 if (!cfqd
->busy_queues
)
4473 * not expired and it has a request pending, let it dispatch
4475 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4479 * Queue depth flag is reset only when the idle didn't succeed
4481 cfq_clear_cfqq_deep(cfqq
);
4484 cfq_slice_expired(cfqd
, timed_out
);
4486 cfq_schedule_dispatch(cfqd
);
4488 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
4491 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
4493 del_timer_sync(&cfqd
->idle_slice_timer
);
4494 cancel_work_sync(&cfqd
->unplug_work
);
4497 static void cfq_exit_queue(struct elevator_queue
*e
)
4499 struct cfq_data
*cfqd
= e
->elevator_data
;
4500 struct request_queue
*q
= cfqd
->queue
;
4502 cfq_shutdown_timer_wq(cfqd
);
4504 spin_lock_irq(q
->queue_lock
);
4506 if (cfqd
->active_queue
)
4507 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
4509 spin_unlock_irq(q
->queue_lock
);
4511 cfq_shutdown_timer_wq(cfqd
);
4513 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4514 blkcg_deactivate_policy(q
, &blkcg_policy_cfq
);
4516 kfree(cfqd
->root_group
);
4521 static int cfq_init_queue(struct request_queue
*q
, struct elevator_type
*e
)
4523 struct cfq_data
*cfqd
;
4524 struct blkcg_gq
*blkg __maybe_unused
;
4526 struct elevator_queue
*eq
;
4528 eq
= elevator_alloc(q
, e
);
4532 cfqd
= kzalloc_node(sizeof(*cfqd
), GFP_KERNEL
, q
->node
);
4534 kobject_put(&eq
->kobj
);
4537 eq
->elevator_data
= cfqd
;
4540 spin_lock_irq(q
->queue_lock
);
4542 spin_unlock_irq(q
->queue_lock
);
4544 /* Init root service tree */
4545 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
4547 /* Init root group and prefer root group over other groups by default */
4548 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4549 ret
= blkcg_activate_policy(q
, &blkcg_policy_cfq
);
4553 cfqd
->root_group
= blkg_to_cfqg(q
->root_blkg
);
4556 cfqd
->root_group
= kzalloc_node(sizeof(*cfqd
->root_group
),
4557 GFP_KERNEL
, cfqd
->queue
->node
);
4558 if (!cfqd
->root_group
)
4561 cfq_init_cfqg_base(cfqd
->root_group
);
4562 cfqd
->root_group
->weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4563 cfqd
->root_group
->leaf_weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4567 * Not strictly needed (since RB_ROOT just clears the node and we
4568 * zeroed cfqd on alloc), but better be safe in case someone decides
4569 * to add magic to the rb code
4571 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
4572 cfqd
->prio_trees
[i
] = RB_ROOT
;
4575 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4576 * Grab a permanent reference to it, so that the normal code flow
4577 * will not attempt to free it. oom_cfqq is linked to root_group
4578 * but shouldn't hold a reference as it'll never be unlinked. Lose
4579 * the reference from linking right away.
4581 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
4582 cfqd
->oom_cfqq
.ref
++;
4584 spin_lock_irq(q
->queue_lock
);
4585 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, cfqd
->root_group
);
4586 cfqg_put(cfqd
->root_group
);
4587 spin_unlock_irq(q
->queue_lock
);
4589 init_timer(&cfqd
->idle_slice_timer
);
4590 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
4591 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
4593 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
4595 cfqd
->cfq_quantum
= cfq_quantum
;
4596 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
4597 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
4598 cfqd
->cfq_back_max
= cfq_back_max
;
4599 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
4600 cfqd
->cfq_slice
[0] = cfq_slice_async
;
4601 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
4602 cfqd
->cfq_target_latency
= cfq_target_latency
;
4603 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
4604 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
4605 cfqd
->cfq_group_idle
= cfq_group_idle
;
4606 cfqd
->cfq_latency
= 1;
4609 * we optimistically start assuming sync ops weren't delayed in last
4610 * second, in order to have larger depth for async operations.
4612 cfqd
->last_delayed_sync
= jiffies
- HZ
;
4617 kobject_put(&eq
->kobj
);
4621 static void cfq_registered_queue(struct request_queue
*q
)
4623 struct elevator_queue
*e
= q
->elevator
;
4624 struct cfq_data
*cfqd
= e
->elevator_data
;
4627 * Default to IOPS mode with no idling for SSDs
4629 if (blk_queue_nonrot(q
))
4630 cfqd
->cfq_slice_idle
= 0;
4634 * sysfs parts below -->
4637 cfq_var_show(unsigned int var
, char *page
)
4639 return sprintf(page
, "%u\n", var
);
4643 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
4645 char *p
= (char *) page
;
4647 *var
= simple_strtoul(p
, &p
, 10);
4651 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4652 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4654 struct cfq_data *cfqd = e->elevator_data; \
4655 unsigned int __data = __VAR; \
4657 __data = jiffies_to_msecs(__data); \
4658 return cfq_var_show(__data, (page)); \
4660 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4661 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4662 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4663 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4664 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4665 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4666 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4667 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4668 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4669 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4670 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4671 SHOW_FUNCTION(cfq_target_latency_show
, cfqd
->cfq_target_latency
, 1);
4672 #undef SHOW_FUNCTION
4674 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4675 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4677 struct cfq_data *cfqd = e->elevator_data; \
4678 unsigned int __data; \
4679 int ret = cfq_var_store(&__data, (page), count); \
4680 if (__data < (MIN)) \
4682 else if (__data > (MAX)) \
4685 *(__PTR) = msecs_to_jiffies(__data); \
4687 *(__PTR) = __data; \
4690 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4691 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4693 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4695 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4696 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4698 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4699 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4700 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4701 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4702 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4704 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4705 STORE_FUNCTION(cfq_target_latency_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
, 1);
4706 #undef STORE_FUNCTION
4708 #define CFQ_ATTR(name) \
4709 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4711 static struct elv_fs_entry cfq_attrs
[] = {
4713 CFQ_ATTR(fifo_expire_sync
),
4714 CFQ_ATTR(fifo_expire_async
),
4715 CFQ_ATTR(back_seek_max
),
4716 CFQ_ATTR(back_seek_penalty
),
4717 CFQ_ATTR(slice_sync
),
4718 CFQ_ATTR(slice_async
),
4719 CFQ_ATTR(slice_async_rq
),
4720 CFQ_ATTR(slice_idle
),
4721 CFQ_ATTR(group_idle
),
4722 CFQ_ATTR(low_latency
),
4723 CFQ_ATTR(target_latency
),
4727 static struct elevator_type iosched_cfq
= {
4729 .elevator_merge_fn
= cfq_merge
,
4730 .elevator_merged_fn
= cfq_merged_request
,
4731 .elevator_merge_req_fn
= cfq_merged_requests
,
4732 .elevator_allow_merge_fn
= cfq_allow_merge
,
4733 .elevator_bio_merged_fn
= cfq_bio_merged
,
4734 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4735 .elevator_add_req_fn
= cfq_insert_request
,
4736 .elevator_activate_req_fn
= cfq_activate_request
,
4737 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4738 .elevator_completed_req_fn
= cfq_completed_request
,
4739 .elevator_former_req_fn
= elv_rb_former_request
,
4740 .elevator_latter_req_fn
= elv_rb_latter_request
,
4741 .elevator_init_icq_fn
= cfq_init_icq
,
4742 .elevator_exit_icq_fn
= cfq_exit_icq
,
4743 .elevator_set_req_fn
= cfq_set_request
,
4744 .elevator_put_req_fn
= cfq_put_request
,
4745 .elevator_may_queue_fn
= cfq_may_queue
,
4746 .elevator_init_fn
= cfq_init_queue
,
4747 .elevator_exit_fn
= cfq_exit_queue
,
4748 .elevator_registered_fn
= cfq_registered_queue
,
4750 .icq_size
= sizeof(struct cfq_io_cq
),
4751 .icq_align
= __alignof__(struct cfq_io_cq
),
4752 .elevator_attrs
= cfq_attrs
,
4753 .elevator_name
= "cfq",
4754 .elevator_owner
= THIS_MODULE
,
4757 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4758 static struct blkcg_policy blkcg_policy_cfq
= {
4759 .dfl_cftypes
= cfq_blkcg_files
,
4760 .legacy_cftypes
= cfq_blkcg_legacy_files
,
4762 .cpd_alloc_fn
= cfq_cpd_alloc
,
4763 .cpd_init_fn
= cfq_cpd_init
,
4764 .cpd_free_fn
= cfq_cpd_free
,
4765 .cpd_bind_fn
= cfq_cpd_bind
,
4767 .pd_alloc_fn
= cfq_pd_alloc
,
4768 .pd_init_fn
= cfq_pd_init
,
4769 .pd_offline_fn
= cfq_pd_offline
,
4770 .pd_free_fn
= cfq_pd_free
,
4771 .pd_reset_stats_fn
= cfq_pd_reset_stats
,
4775 static int __init
cfq_init(void)
4780 * could be 0 on HZ < 1000 setups
4782 if (!cfq_slice_async
)
4783 cfq_slice_async
= 1;
4784 if (!cfq_slice_idle
)
4787 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4788 if (!cfq_group_idle
)
4791 ret
= blkcg_policy_register(&blkcg_policy_cfq
);
4799 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
4803 ret
= elv_register(&iosched_cfq
);
4810 kmem_cache_destroy(cfq_pool
);
4812 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4813 blkcg_policy_unregister(&blkcg_policy_cfq
);
4818 static void __exit
cfq_exit(void)
4820 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4821 blkcg_policy_unregister(&blkcg_policy_cfq
);
4823 elv_unregister(&iosched_cfq
);
4824 kmem_cache_destroy(cfq_pool
);
4827 module_init(cfq_init
);
4828 module_exit(cfq_exit
);
4830 MODULE_AUTHOR("Jens Axboe");
4831 MODULE_LICENSE("GPL");
4832 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");