1 #include <linux/dmaengine.h>
2 #include <linux/dma-mapping.h>
3 #include <linux/platform_device.h>
4 #include <linux/module.h>
6 #include <linux/slab.h>
7 #include <linux/of_dma.h>
8 #include <linux/of_irq.h>
9 #include <linux/dmapool.h>
10 #include <linux/interrupt.h>
11 #include <linux/of_address.h>
12 #include <linux/pm_runtime.h>
13 #include "dmaengine.h"
16 #define DESC_TYPE_HOST 0x10
17 #define DESC_TYPE_TEARD 0x13
19 #define TD_DESC_IS_RX (1 << 16)
20 #define TD_DESC_DMA_NUM 10
22 #define DESC_LENGTH_BITS_NUM 21
24 #define DESC_TYPE_USB (5 << 26)
25 #define DESC_PD_COMPLETE (1 << 31)
29 #define DMA_TXGCR(x) (0x800 + (x) * 0x20)
30 #define DMA_RXGCR(x) (0x808 + (x) * 0x20)
33 #define GCR_CHAN_ENABLE (1 << 31)
34 #define GCR_TEARDOWN (1 << 30)
35 #define GCR_STARV_RETRY (1 << 24)
36 #define GCR_DESC_TYPE_HOST (1 << 14)
39 #define DMA_SCHED_CTRL 0
40 #define DMA_SCHED_CTRL_EN (1 << 31)
41 #define DMA_SCHED_WORD(x) ((x) * 4 + 0x800)
43 #define SCHED_ENTRY0_CHAN(x) ((x) << 0)
44 #define SCHED_ENTRY0_IS_RX (1 << 7)
46 #define SCHED_ENTRY1_CHAN(x) ((x) << 8)
47 #define SCHED_ENTRY1_IS_RX (1 << 15)
49 #define SCHED_ENTRY2_CHAN(x) ((x) << 16)
50 #define SCHED_ENTRY2_IS_RX (1 << 23)
52 #define SCHED_ENTRY3_CHAN(x) ((x) << 24)
53 #define SCHED_ENTRY3_IS_RX (1 << 31)
56 /* 4 KiB of memory for descriptors, 2 for each endpoint */
57 #define ALLOC_DECS_NUM 128
59 #define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS)
60 #define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4)
62 #define QMGR_LRAM0_BASE 0x80
63 #define QMGR_LRAM_SIZE 0x84
64 #define QMGR_LRAM1_BASE 0x88
65 #define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10)
66 #define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10)
67 #define QMGR_MEMCTRL_IDX_SH 16
68 #define QMGR_MEMCTRL_DESC_SH 8
70 #define QMGR_NUM_PEND 5
71 #define QMGR_PEND(x) (0x90 + (x) * 4)
73 #define QMGR_PENDING_SLOT_Q(x) (x / 32)
74 #define QMGR_PENDING_BIT_Q(x) (x % 32)
76 #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
77 #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
78 #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
79 #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
81 /* Glue layer specific */
82 /* USBSS / USB AM335x */
83 #define USBSS_IRQ_STATUS 0x28
84 #define USBSS_IRQ_ENABLER 0x2c
85 #define USBSS_IRQ_CLEARR 0x30
87 #define USBSS_IRQ_PD_COMP (1 << 2)
89 /* Packet Descriptor */
90 #define PD2_ZERO_LENGTH (1 << 19)
92 struct cppi41_channel
{
94 struct dma_async_tx_descriptor txd
;
95 struct cppi41_dd
*cdd
;
96 struct cppi41_desc
*desc
;
98 void __iomem
*gcr_reg
;
103 unsigned int q_comp_num
;
104 unsigned int port_num
;
107 unsigned td_queued
:1;
109 unsigned td_desc_seen
:1;
129 struct dma_device ddev
;
132 dma_addr_t scratch_phys
;
134 struct cppi41_desc
*cd
;
135 dma_addr_t descs_phys
;
137 struct cppi41_channel
*chan_busy
[ALLOC_DECS_NUM
];
139 void __iomem
*usbss_mem
;
140 void __iomem
*ctrl_mem
;
141 void __iomem
*sched_mem
;
142 void __iomem
*qmgr_mem
;
144 const struct chan_queues
*queues_rx
;
145 const struct chan_queues
*queues_tx
;
146 struct chan_queues td_queue
;
148 /* context for suspend/resume */
149 unsigned int dma_tdfdq
;
152 #define FIST_COMPLETION_QUEUE 93
153 static struct chan_queues usb_queues_tx
[] = {
155 [ 0] = { .submit
= 32, .complete
= 93},
156 [ 1] = { .submit
= 34, .complete
= 94},
157 [ 2] = { .submit
= 36, .complete
= 95},
158 [ 3] = { .submit
= 38, .complete
= 96},
159 [ 4] = { .submit
= 40, .complete
= 97},
160 [ 5] = { .submit
= 42, .complete
= 98},
161 [ 6] = { .submit
= 44, .complete
= 99},
162 [ 7] = { .submit
= 46, .complete
= 100},
163 [ 8] = { .submit
= 48, .complete
= 101},
164 [ 9] = { .submit
= 50, .complete
= 102},
165 [10] = { .submit
= 52, .complete
= 103},
166 [11] = { .submit
= 54, .complete
= 104},
167 [12] = { .submit
= 56, .complete
= 105},
168 [13] = { .submit
= 58, .complete
= 106},
169 [14] = { .submit
= 60, .complete
= 107},
172 [15] = { .submit
= 62, .complete
= 125},
173 [16] = { .submit
= 64, .complete
= 126},
174 [17] = { .submit
= 66, .complete
= 127},
175 [18] = { .submit
= 68, .complete
= 128},
176 [19] = { .submit
= 70, .complete
= 129},
177 [20] = { .submit
= 72, .complete
= 130},
178 [21] = { .submit
= 74, .complete
= 131},
179 [22] = { .submit
= 76, .complete
= 132},
180 [23] = { .submit
= 78, .complete
= 133},
181 [24] = { .submit
= 80, .complete
= 134},
182 [25] = { .submit
= 82, .complete
= 135},
183 [26] = { .submit
= 84, .complete
= 136},
184 [27] = { .submit
= 86, .complete
= 137},
185 [28] = { .submit
= 88, .complete
= 138},
186 [29] = { .submit
= 90, .complete
= 139},
189 static const struct chan_queues usb_queues_rx
[] = {
191 [ 0] = { .submit
= 1, .complete
= 109},
192 [ 1] = { .submit
= 2, .complete
= 110},
193 [ 2] = { .submit
= 3, .complete
= 111},
194 [ 3] = { .submit
= 4, .complete
= 112},
195 [ 4] = { .submit
= 5, .complete
= 113},
196 [ 5] = { .submit
= 6, .complete
= 114},
197 [ 6] = { .submit
= 7, .complete
= 115},
198 [ 7] = { .submit
= 8, .complete
= 116},
199 [ 8] = { .submit
= 9, .complete
= 117},
200 [ 9] = { .submit
= 10, .complete
= 118},
201 [10] = { .submit
= 11, .complete
= 119},
202 [11] = { .submit
= 12, .complete
= 120},
203 [12] = { .submit
= 13, .complete
= 121},
204 [13] = { .submit
= 14, .complete
= 122},
205 [14] = { .submit
= 15, .complete
= 123},
208 [15] = { .submit
= 16, .complete
= 141},
209 [16] = { .submit
= 17, .complete
= 142},
210 [17] = { .submit
= 18, .complete
= 143},
211 [18] = { .submit
= 19, .complete
= 144},
212 [19] = { .submit
= 20, .complete
= 145},
213 [20] = { .submit
= 21, .complete
= 146},
214 [21] = { .submit
= 22, .complete
= 147},
215 [22] = { .submit
= 23, .complete
= 148},
216 [23] = { .submit
= 24, .complete
= 149},
217 [24] = { .submit
= 25, .complete
= 150},
218 [25] = { .submit
= 26, .complete
= 151},
219 [26] = { .submit
= 27, .complete
= 152},
220 [27] = { .submit
= 28, .complete
= 153},
221 [28] = { .submit
= 29, .complete
= 154},
222 [29] = { .submit
= 30, .complete
= 155},
225 struct cppi_glue_infos
{
226 irqreturn_t (*isr
)(int irq
, void *data
);
227 const struct chan_queues
*queues_rx
;
228 const struct chan_queues
*queues_tx
;
229 struct chan_queues td_queue
;
232 static struct cppi41_channel
*to_cpp41_chan(struct dma_chan
*c
)
234 return container_of(c
, struct cppi41_channel
, chan
);
237 static struct cppi41_channel
*desc_to_chan(struct cppi41_dd
*cdd
, u32 desc
)
239 struct cppi41_channel
*c
;
243 descs_size
= sizeof(struct cppi41_desc
) * ALLOC_DECS_NUM
;
245 if (!((desc
>= cdd
->descs_phys
) &&
246 (desc
< (cdd
->descs_phys
+ descs_size
)))) {
250 desc_num
= (desc
- cdd
->descs_phys
) / sizeof(struct cppi41_desc
);
251 BUG_ON(desc_num
>= ALLOC_DECS_NUM
);
252 c
= cdd
->chan_busy
[desc_num
];
253 cdd
->chan_busy
[desc_num
] = NULL
;
257 static void cppi_writel(u32 val
, void *__iomem
*mem
)
259 __raw_writel(val
, mem
);
262 static u32
cppi_readl(void *__iomem
*mem
)
264 return __raw_readl(mem
);
267 static u32
pd_trans_len(u32 val
)
269 return val
& ((1 << (DESC_LENGTH_BITS_NUM
+ 1)) - 1);
272 static u32
cppi41_pop_desc(struct cppi41_dd
*cdd
, unsigned queue_num
)
276 desc
= cppi_readl(cdd
->qmgr_mem
+ QMGR_QUEUE_D(queue_num
));
281 static irqreturn_t
cppi41_irq(int irq
, void *data
)
283 struct cppi41_dd
*cdd
= data
;
284 struct cppi41_channel
*c
;
288 status
= cppi_readl(cdd
->usbss_mem
+ USBSS_IRQ_STATUS
);
289 if (!(status
& USBSS_IRQ_PD_COMP
))
291 cppi_writel(status
, cdd
->usbss_mem
+ USBSS_IRQ_STATUS
);
293 for (i
= QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE
); i
< QMGR_NUM_PEND
;
298 val
= cppi_readl(cdd
->qmgr_mem
+ QMGR_PEND(i
));
299 if (i
== QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE
) && val
) {
301 /* set corresponding bit for completetion Q 93 */
302 mask
= 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE
);
303 /* not set all bits for queues less than Q 93 */
305 /* now invert and keep only Q 93+ set */
316 val
&= ~(1 << q_num
);
318 desc
= cppi41_pop_desc(cdd
, q_num
);
319 c
= desc_to_chan(cdd
, desc
);
321 pr_err("%s() q %d desc %08x\n", __func__
,
326 if (c
->desc
->pd2
& PD2_ZERO_LENGTH
)
329 len
= pd_trans_len(c
->desc
->pd0
);
331 c
->residue
= pd_trans_len(c
->desc
->pd6
) - len
;
332 dma_cookie_complete(&c
->txd
);
333 c
->txd
.callback(c
->txd
.callback_param
);
339 static dma_cookie_t
cppi41_tx_submit(struct dma_async_tx_descriptor
*tx
)
343 cookie
= dma_cookie_assign(tx
);
348 static int cppi41_dma_alloc_chan_resources(struct dma_chan
*chan
)
350 struct cppi41_channel
*c
= to_cpp41_chan(chan
);
352 dma_cookie_init(chan
);
353 dma_async_tx_descriptor_init(&c
->txd
, chan
);
354 c
->txd
.tx_submit
= cppi41_tx_submit
;
357 cppi_writel(c
->q_num
, c
->gcr_reg
+ RXHPCRA0
);
362 static void cppi41_dma_free_chan_resources(struct dma_chan
*chan
)
366 static enum dma_status
cppi41_dma_tx_status(struct dma_chan
*chan
,
367 dma_cookie_t cookie
, struct dma_tx_state
*txstate
)
369 struct cppi41_channel
*c
= to_cpp41_chan(chan
);
373 ret
= dma_cookie_status(chan
, cookie
, txstate
);
374 if (txstate
&& ret
== DMA_COMPLETE
)
375 txstate
->residue
= c
->residue
;
381 static void push_desc_queue(struct cppi41_channel
*c
)
383 struct cppi41_dd
*cdd
= c
->cdd
;
388 desc_phys
= lower_32_bits(c
->desc_phys
);
389 desc_num
= (desc_phys
- cdd
->descs_phys
) / sizeof(struct cppi41_desc
);
390 WARN_ON(cdd
->chan_busy
[desc_num
]);
391 cdd
->chan_busy
[desc_num
] = c
;
393 reg
= (sizeof(struct cppi41_desc
) - 24) / 4;
395 cppi_writel(reg
, cdd
->qmgr_mem
+ QMGR_QUEUE_D(c
->q_num
));
398 static void cppi41_dma_issue_pending(struct dma_chan
*chan
)
400 struct cppi41_channel
*c
= to_cpp41_chan(chan
);
405 reg
= GCR_CHAN_ENABLE
;
407 reg
|= GCR_STARV_RETRY
;
408 reg
|= GCR_DESC_TYPE_HOST
;
409 reg
|= c
->q_comp_num
;
412 cppi_writel(reg
, c
->gcr_reg
);
415 * We don't use writel() but __raw_writel() so we have to make sure
416 * that the DMA descriptor in coherent memory made to the main memory
417 * before starting the dma engine.
423 static u32
get_host_pd0(u32 length
)
427 reg
= DESC_TYPE_HOST
<< DESC_TYPE
;
433 static u32
get_host_pd1(struct cppi41_channel
*c
)
442 static u32
get_host_pd2(struct cppi41_channel
*c
)
447 reg
|= c
->q_comp_num
;
452 static u32
get_host_pd3(u32 length
)
456 /* PD3 = packet size */
462 static u32
get_host_pd6(u32 length
)
466 /* PD6 buffer size */
467 reg
= DESC_PD_COMPLETE
;
473 static u32
get_host_pd4_or_7(u32 addr
)
482 static u32
get_host_pd5(void)
491 static struct dma_async_tx_descriptor
*cppi41_dma_prep_slave_sg(
492 struct dma_chan
*chan
, struct scatterlist
*sgl
, unsigned sg_len
,
493 enum dma_transfer_direction dir
, unsigned long tx_flags
, void *context
)
495 struct cppi41_channel
*c
= to_cpp41_chan(chan
);
496 struct cppi41_desc
*d
;
497 struct scatterlist
*sg
;
503 for_each_sg(sgl
, sg
, sg_len
, i
) {
507 /* We need to use more than one desc once musb supports sg */
509 addr
= lower_32_bits(sg_dma_address(sg
));
510 len
= sg_dma_len(sg
);
512 d
->pd0
= get_host_pd0(len
);
513 d
->pd1
= get_host_pd1(c
);
514 d
->pd2
= get_host_pd2(c
);
515 d
->pd3
= get_host_pd3(len
);
516 d
->pd4
= get_host_pd4_or_7(addr
);
517 d
->pd5
= get_host_pd5();
518 d
->pd6
= get_host_pd6(len
);
519 d
->pd7
= get_host_pd4_or_7(addr
);
527 static int cpp41_cfg_chan(struct cppi41_channel
*c
,
528 struct dma_slave_config
*cfg
)
533 static void cppi41_compute_td_desc(struct cppi41_desc
*d
)
535 d
->pd0
= DESC_TYPE_TEARD
<< DESC_TYPE
;
538 static int cppi41_tear_down_chan(struct cppi41_channel
*c
)
540 struct cppi41_dd
*cdd
= c
->cdd
;
541 struct cppi41_desc
*td
;
547 td
+= cdd
->first_td_desc
;
549 td_desc_phys
= cdd
->descs_phys
;
550 td_desc_phys
+= cdd
->first_td_desc
* sizeof(struct cppi41_desc
);
553 cppi41_compute_td_desc(td
);
556 reg
= (sizeof(struct cppi41_desc
) - 24) / 4;
558 cppi_writel(reg
, cdd
->qmgr_mem
+
559 QMGR_QUEUE_D(cdd
->td_queue
.submit
));
561 reg
= GCR_CHAN_ENABLE
;
563 reg
|= GCR_STARV_RETRY
;
564 reg
|= GCR_DESC_TYPE_HOST
;
565 reg
|= c
->q_comp_num
;
568 cppi_writel(reg
, c
->gcr_reg
);
573 if (!c
->td_seen
|| !c
->td_desc_seen
) {
575 desc_phys
= cppi41_pop_desc(cdd
, cdd
->td_queue
.complete
);
577 desc_phys
= cppi41_pop_desc(cdd
, c
->q_comp_num
);
579 if (desc_phys
== c
->desc_phys
) {
582 } else if (desc_phys
== td_desc_phys
) {
587 WARN_ON((pd0
>> DESC_TYPE
) != DESC_TYPE_TEARD
);
588 WARN_ON(!c
->is_tx
&& !(pd0
& TD_DESC_IS_RX
));
589 WARN_ON((pd0
& 0x1f) != c
->port_num
);
591 } else if (desc_phys
) {
597 * If the TX descriptor / channel is in use, the caller needs to poke
598 * his TD bit multiple times. After that he hardware releases the
599 * transfer descriptor followed by TD descriptor. Waiting seems not to
600 * cause any difference.
601 * RX seems to be thrown out right away. However once the TearDown
602 * descriptor gets through we are done. If we have seens the transfer
603 * descriptor before the TD we fetch it from enqueue, it has to be
604 * there waiting for us.
606 if (!c
->td_seen
&& c
->td_retry
)
609 WARN_ON(!c
->td_retry
);
610 if (!c
->td_desc_seen
) {
611 desc_phys
= cppi41_pop_desc(cdd
, c
->q_num
);
618 cppi_writel(0, c
->gcr_reg
);
622 static int cppi41_stop_chan(struct dma_chan
*chan
)
624 struct cppi41_channel
*c
= to_cpp41_chan(chan
);
625 struct cppi41_dd
*cdd
= c
->cdd
;
630 desc_phys
= lower_32_bits(c
->desc_phys
);
631 desc_num
= (desc_phys
- cdd
->descs_phys
) / sizeof(struct cppi41_desc
);
632 if (!cdd
->chan_busy
[desc_num
])
635 ret
= cppi41_tear_down_chan(c
);
639 WARN_ON(!cdd
->chan_busy
[desc_num
]);
640 cdd
->chan_busy
[desc_num
] = NULL
;
645 static int cppi41_dma_control(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
648 struct cppi41_channel
*c
= to_cpp41_chan(chan
);
652 case DMA_SLAVE_CONFIG
:
653 ret
= cpp41_cfg_chan(c
, (struct dma_slave_config
*) arg
);
656 case DMA_TERMINATE_ALL
:
657 ret
= cppi41_stop_chan(chan
);
667 static void cleanup_chans(struct cppi41_dd
*cdd
)
669 while (!list_empty(&cdd
->ddev
.channels
)) {
670 struct cppi41_channel
*cchan
;
672 cchan
= list_first_entry(&cdd
->ddev
.channels
,
673 struct cppi41_channel
, chan
.device_node
);
674 list_del(&cchan
->chan
.device_node
);
679 static int cppi41_add_chans(struct device
*dev
, struct cppi41_dd
*cdd
)
681 struct cppi41_channel
*cchan
;
686 ret
= of_property_read_u32(dev
->of_node
, "#dma-channels",
691 * The channels can only be used as TX or as RX. So we add twice
692 * that much dma channels because USB can only do RX or TX.
696 for (i
= 0; i
< n_chans
; i
++) {
697 cchan
= kzalloc(sizeof(*cchan
), GFP_KERNEL
);
703 cchan
->gcr_reg
= cdd
->ctrl_mem
+ DMA_TXGCR(i
>> 1);
706 cchan
->gcr_reg
= cdd
->ctrl_mem
+ DMA_RXGCR(i
>> 1);
709 cchan
->port_num
= i
>> 1;
710 cchan
->desc
= &cdd
->cd
[i
];
711 cchan
->desc_phys
= cdd
->descs_phys
;
712 cchan
->desc_phys
+= i
* sizeof(struct cppi41_desc
);
713 cchan
->chan
.device
= &cdd
->ddev
;
714 list_add_tail(&cchan
->chan
.device_node
, &cdd
->ddev
.channels
);
716 cdd
->first_td_desc
= n_chans
;
724 static void purge_descs(struct device
*dev
, struct cppi41_dd
*cdd
)
726 unsigned int mem_decs
;
729 mem_decs
= ALLOC_DECS_NUM
* sizeof(struct cppi41_desc
);
731 for (i
= 0; i
< DESCS_AREAS
; i
++) {
733 cppi_writel(0, cdd
->qmgr_mem
+ QMGR_MEMBASE(i
));
734 cppi_writel(0, cdd
->qmgr_mem
+ QMGR_MEMCTRL(i
));
736 dma_free_coherent(dev
, mem_decs
, cdd
->cd
,
741 static void disable_sched(struct cppi41_dd
*cdd
)
743 cppi_writel(0, cdd
->sched_mem
+ DMA_SCHED_CTRL
);
746 static void deinit_cppi41(struct device
*dev
, struct cppi41_dd
*cdd
)
750 purge_descs(dev
, cdd
);
752 cppi_writel(0, cdd
->qmgr_mem
+ QMGR_LRAM0_BASE
);
753 cppi_writel(0, cdd
->qmgr_mem
+ QMGR_LRAM0_BASE
);
754 dma_free_coherent(dev
, QMGR_SCRATCH_SIZE
, cdd
->qmgr_scratch
,
758 static int init_descs(struct device
*dev
, struct cppi41_dd
*cdd
)
760 unsigned int desc_size
;
761 unsigned int mem_decs
;
766 BUILD_BUG_ON(sizeof(struct cppi41_desc
) &
767 (sizeof(struct cppi41_desc
) - 1));
768 BUILD_BUG_ON(sizeof(struct cppi41_desc
) < 32);
769 BUILD_BUG_ON(ALLOC_DECS_NUM
< 32);
771 desc_size
= sizeof(struct cppi41_desc
);
772 mem_decs
= ALLOC_DECS_NUM
* desc_size
;
775 for (i
= 0; i
< DESCS_AREAS
; i
++) {
777 reg
= idx
<< QMGR_MEMCTRL_IDX_SH
;
778 reg
|= (ilog2(desc_size
) - 5) << QMGR_MEMCTRL_DESC_SH
;
779 reg
|= ilog2(ALLOC_DECS_NUM
) - 5;
781 BUILD_BUG_ON(DESCS_AREAS
!= 1);
782 cdd
->cd
= dma_alloc_coherent(dev
, mem_decs
,
783 &cdd
->descs_phys
, GFP_KERNEL
);
787 cppi_writel(cdd
->descs_phys
, cdd
->qmgr_mem
+ QMGR_MEMBASE(i
));
788 cppi_writel(reg
, cdd
->qmgr_mem
+ QMGR_MEMCTRL(i
));
790 idx
+= ALLOC_DECS_NUM
;
795 static void init_sched(struct cppi41_dd
*cdd
)
802 cppi_writel(0, cdd
->sched_mem
+ DMA_SCHED_CTRL
);
803 for (ch
= 0; ch
< 15 * 2; ch
+= 2) {
805 reg
= SCHED_ENTRY0_CHAN(ch
);
806 reg
|= SCHED_ENTRY1_CHAN(ch
) | SCHED_ENTRY1_IS_RX
;
808 reg
|= SCHED_ENTRY2_CHAN(ch
+ 1);
809 reg
|= SCHED_ENTRY3_CHAN(ch
+ 1) | SCHED_ENTRY3_IS_RX
;
810 cppi_writel(reg
, cdd
->sched_mem
+ DMA_SCHED_WORD(word
));
813 reg
= 15 * 2 * 2 - 1;
814 reg
|= DMA_SCHED_CTRL_EN
;
815 cppi_writel(reg
, cdd
->sched_mem
+ DMA_SCHED_CTRL
);
818 static int init_cppi41(struct device
*dev
, struct cppi41_dd
*cdd
)
822 BUILD_BUG_ON(QMGR_SCRATCH_SIZE
> ((1 << 14) - 1));
823 cdd
->qmgr_scratch
= dma_alloc_coherent(dev
, QMGR_SCRATCH_SIZE
,
824 &cdd
->scratch_phys
, GFP_KERNEL
);
825 if (!cdd
->qmgr_scratch
)
828 cppi_writel(cdd
->scratch_phys
, cdd
->qmgr_mem
+ QMGR_LRAM0_BASE
);
829 cppi_writel(QMGR_SCRATCH_SIZE
, cdd
->qmgr_mem
+ QMGR_LRAM_SIZE
);
830 cppi_writel(0, cdd
->qmgr_mem
+ QMGR_LRAM1_BASE
);
832 ret
= init_descs(dev
, cdd
);
836 cppi_writel(cdd
->td_queue
.submit
, cdd
->ctrl_mem
+ DMA_TDFDQ
);
840 deinit_cppi41(dev
, cdd
);
844 static struct platform_driver cpp41_dma_driver
;
846 * The param format is:
854 static bool cpp41_dma_filter_fn(struct dma_chan
*chan
, void *param
)
856 struct cppi41_channel
*cchan
;
857 struct cppi41_dd
*cdd
;
858 const struct chan_queues
*queues
;
861 if (chan
->device
->dev
->driver
!= &cpp41_dma_driver
.driver
)
864 cchan
= to_cpp41_chan(chan
);
866 if (cchan
->port_num
!= num
[INFO_PORT
])
869 if (cchan
->is_tx
&& !num
[INFO_IS_TX
])
873 queues
= cdd
->queues_tx
;
875 queues
= cdd
->queues_rx
;
877 BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx
) != ARRAY_SIZE(usb_queues_tx
));
878 if (WARN_ON(cchan
->port_num
> ARRAY_SIZE(usb_queues_rx
)))
881 cchan
->q_num
= queues
[cchan
->port_num
].submit
;
882 cchan
->q_comp_num
= queues
[cchan
->port_num
].complete
;
886 static struct of_dma_filter_info cpp41_dma_info
= {
887 .filter_fn
= cpp41_dma_filter_fn
,
890 static struct dma_chan
*cppi41_dma_xlate(struct of_phandle_args
*dma_spec
,
891 struct of_dma
*ofdma
)
893 int count
= dma_spec
->args_count
;
894 struct of_dma_filter_info
*info
= ofdma
->of_dma_data
;
896 if (!info
|| !info
->filter_fn
)
902 return dma_request_channel(info
->dma_cap
, info
->filter_fn
,
906 static const struct cppi_glue_infos usb_infos
= {
908 .queues_rx
= usb_queues_rx
,
909 .queues_tx
= usb_queues_tx
,
910 .td_queue
= { .submit
= 31, .complete
= 0 },
913 static const struct of_device_id cppi41_dma_ids
[] = {
914 { .compatible
= "ti,am3359-cppi41", .data
= &usb_infos
},
917 MODULE_DEVICE_TABLE(of
, cppi41_dma_ids
);
919 static const struct cppi_glue_infos
*get_glue_info(struct device
*dev
)
921 const struct of_device_id
*of_id
;
923 of_id
= of_match_node(cppi41_dma_ids
, dev
->of_node
);
929 static int cppi41_dma_probe(struct platform_device
*pdev
)
931 struct cppi41_dd
*cdd
;
932 struct device
*dev
= &pdev
->dev
;
933 const struct cppi_glue_infos
*glue_info
;
937 glue_info
= get_glue_info(dev
);
941 cdd
= devm_kzalloc(&pdev
->dev
, sizeof(*cdd
), GFP_KERNEL
);
945 dma_cap_set(DMA_SLAVE
, cdd
->ddev
.cap_mask
);
946 cdd
->ddev
.device_alloc_chan_resources
= cppi41_dma_alloc_chan_resources
;
947 cdd
->ddev
.device_free_chan_resources
= cppi41_dma_free_chan_resources
;
948 cdd
->ddev
.device_tx_status
= cppi41_dma_tx_status
;
949 cdd
->ddev
.device_issue_pending
= cppi41_dma_issue_pending
;
950 cdd
->ddev
.device_prep_slave_sg
= cppi41_dma_prep_slave_sg
;
951 cdd
->ddev
.device_control
= cppi41_dma_control
;
953 INIT_LIST_HEAD(&cdd
->ddev
.channels
);
954 cpp41_dma_info
.dma_cap
= cdd
->ddev
.cap_mask
;
956 cdd
->usbss_mem
= of_iomap(dev
->of_node
, 0);
957 cdd
->ctrl_mem
= of_iomap(dev
->of_node
, 1);
958 cdd
->sched_mem
= of_iomap(dev
->of_node
, 2);
959 cdd
->qmgr_mem
= of_iomap(dev
->of_node
, 3);
961 if (!cdd
->usbss_mem
|| !cdd
->ctrl_mem
|| !cdd
->sched_mem
||
965 pm_runtime_enable(dev
);
966 ret
= pm_runtime_get_sync(dev
);
970 cdd
->queues_rx
= glue_info
->queues_rx
;
971 cdd
->queues_tx
= glue_info
->queues_tx
;
972 cdd
->td_queue
= glue_info
->td_queue
;
974 ret
= init_cppi41(dev
, cdd
);
978 ret
= cppi41_add_chans(dev
, cdd
);
982 irq
= irq_of_parse_and_map(dev
->of_node
, 0);
988 cppi_writel(USBSS_IRQ_PD_COMP
, cdd
->usbss_mem
+ USBSS_IRQ_ENABLER
);
990 ret
= devm_request_irq(&pdev
->dev
, irq
, glue_info
->isr
, IRQF_SHARED
,
996 ret
= dma_async_device_register(&cdd
->ddev
);
1000 ret
= of_dma_controller_register(dev
->of_node
,
1001 cppi41_dma_xlate
, &cpp41_dma_info
);
1005 platform_set_drvdata(pdev
, cdd
);
1008 dma_async_device_unregister(&cdd
->ddev
);
1011 cppi_writel(0, cdd
->usbss_mem
+ USBSS_IRQ_CLEARR
);
1014 deinit_cppi41(dev
, cdd
);
1016 pm_runtime_put(dev
);
1018 pm_runtime_disable(dev
);
1019 iounmap(cdd
->usbss_mem
);
1020 iounmap(cdd
->ctrl_mem
);
1021 iounmap(cdd
->sched_mem
);
1022 iounmap(cdd
->qmgr_mem
);
1026 static int cppi41_dma_remove(struct platform_device
*pdev
)
1028 struct cppi41_dd
*cdd
= platform_get_drvdata(pdev
);
1030 of_dma_controller_free(pdev
->dev
.of_node
);
1031 dma_async_device_unregister(&cdd
->ddev
);
1033 cppi_writel(0, cdd
->usbss_mem
+ USBSS_IRQ_CLEARR
);
1034 devm_free_irq(&pdev
->dev
, cdd
->irq
, cdd
);
1036 deinit_cppi41(&pdev
->dev
, cdd
);
1037 iounmap(cdd
->usbss_mem
);
1038 iounmap(cdd
->ctrl_mem
);
1039 iounmap(cdd
->sched_mem
);
1040 iounmap(cdd
->qmgr_mem
);
1041 pm_runtime_put(&pdev
->dev
);
1042 pm_runtime_disable(&pdev
->dev
);
1046 #ifdef CONFIG_PM_SLEEP
1047 static int cppi41_suspend(struct device
*dev
)
1049 struct cppi41_dd
*cdd
= dev_get_drvdata(dev
);
1051 cdd
->dma_tdfdq
= cppi_readl(cdd
->ctrl_mem
+ DMA_TDFDQ
);
1052 cppi_writel(0, cdd
->usbss_mem
+ USBSS_IRQ_CLEARR
);
1058 static int cppi41_resume(struct device
*dev
)
1060 struct cppi41_dd
*cdd
= dev_get_drvdata(dev
);
1061 struct cppi41_channel
*c
;
1064 for (i
= 0; i
< DESCS_AREAS
; i
++)
1065 cppi_writel(cdd
->descs_phys
, cdd
->qmgr_mem
+ QMGR_MEMBASE(i
));
1067 list_for_each_entry(c
, &cdd
->ddev
.channels
, chan
.device_node
)
1069 cppi_writel(c
->q_num
, c
->gcr_reg
+ RXHPCRA0
);
1073 cppi_writel(cdd
->dma_tdfdq
, cdd
->ctrl_mem
+ DMA_TDFDQ
);
1074 cppi_writel(cdd
->scratch_phys
, cdd
->qmgr_mem
+ QMGR_LRAM0_BASE
);
1075 cppi_writel(QMGR_SCRATCH_SIZE
, cdd
->qmgr_mem
+ QMGR_LRAM_SIZE
);
1076 cppi_writel(0, cdd
->qmgr_mem
+ QMGR_LRAM1_BASE
);
1078 cppi_writel(USBSS_IRQ_PD_COMP
, cdd
->usbss_mem
+ USBSS_IRQ_ENABLER
);
1084 static SIMPLE_DEV_PM_OPS(cppi41_pm_ops
, cppi41_suspend
, cppi41_resume
);
1086 static struct platform_driver cpp41_dma_driver
= {
1087 .probe
= cppi41_dma_probe
,
1088 .remove
= cppi41_dma_remove
,
1090 .name
= "cppi41-dma-engine",
1091 .owner
= THIS_MODULE
,
1092 .pm
= &cppi41_pm_ops
,
1093 .of_match_table
= of_match_ptr(cppi41_dma_ids
),
1097 module_platform_driver(cpp41_dma_driver
);
1098 MODULE_LICENSE("GPL");
1099 MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");