KVM: nVMX: Fix returned value of MSR_IA32_VMX_VMCS_ENUM
[linux/fpc-iii.git] / arch / x86 / kvm / mmu.c
blob931467881da77f8ea025f2d74b5beaca3aac90a7
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
52 bool tdp_enabled = false;
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
63 #undef MMU_DEBUG
65 #ifdef MMU_DEBUG
67 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
68 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
70 #else
72 #define pgprintk(x...) do { } while (0)
73 #define rmap_printk(x...) do { } while (0)
75 #endif
77 #ifdef MMU_DEBUG
78 static bool dbg = 0;
79 module_param(dbg, bool, 0644);
80 #endif
82 #ifndef MMU_DEBUG
83 #define ASSERT(x) do { } while (0)
84 #else
85 #define ASSERT(x) \
86 if (!(x)) { \
87 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
88 __FILE__, __LINE__, #x); \
90 #endif
92 #define PTE_PREFETCH_NUM 8
94 #define PT_FIRST_AVAIL_BITS_SHIFT 10
95 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
97 #define PT64_LEVEL_BITS 9
99 #define PT64_LEVEL_SHIFT(level) \
100 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
102 #define PT64_INDEX(address, level)\
103 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
106 #define PT32_LEVEL_BITS 10
108 #define PT32_LEVEL_SHIFT(level) \
109 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
111 #define PT32_LVL_OFFSET_MASK(level) \
112 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT32_LEVEL_BITS))) - 1))
115 #define PT32_INDEX(address, level)\
116 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
119 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
120 #define PT64_DIR_BASE_ADDR_MASK \
121 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 #define PT64_LVL_ADDR_MASK(level) \
123 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT64_LEVEL_BITS))) - 1))
125 #define PT64_LVL_OFFSET_MASK(level) \
126 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT64_LEVEL_BITS))) - 1))
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
136 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
137 | shadow_x_mask | shadow_nx_mask)
139 #define ACC_EXEC_MASK 1
140 #define ACC_WRITE_MASK PT_WRITABLE_MASK
141 #define ACC_USER_MASK PT_USER_MASK
142 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
144 #include <trace/events/kvm.h>
146 #define CREATE_TRACE_POINTS
147 #include "mmutrace.h"
149 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
154 /* make pte_list_desc fit well in cache line */
155 #define PTE_LIST_EXT 3
157 struct pte_list_desc {
158 u64 *sptes[PTE_LIST_EXT];
159 struct pte_list_desc *more;
162 struct kvm_shadow_walk_iterator {
163 u64 addr;
164 hpa_t shadow_addr;
165 u64 *sptep;
166 int level;
167 unsigned index;
170 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172 shadow_walk_okay(&(_walker)); \
173 shadow_walk_next(&(_walker)))
175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
176 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
177 shadow_walk_okay(&(_walker)) && \
178 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
179 __shadow_walk_next(&(_walker), spte))
181 static struct kmem_cache *pte_list_desc_cache;
182 static struct kmem_cache *mmu_page_header_cache;
183 static struct percpu_counter kvm_total_used_mmu_pages;
185 static u64 __read_mostly shadow_nx_mask;
186 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
187 static u64 __read_mostly shadow_user_mask;
188 static u64 __read_mostly shadow_accessed_mask;
189 static u64 __read_mostly shadow_dirty_mask;
190 static u64 __read_mostly shadow_mmio_mask;
192 static void mmu_spte_set(u64 *sptep, u64 spte);
193 static void mmu_free_roots(struct kvm_vcpu *vcpu);
195 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
197 shadow_mmio_mask = mmio_mask;
199 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
202 * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
203 * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
204 * number.
206 #define MMIO_SPTE_GEN_LOW_SHIFT 3
207 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
209 #define MMIO_GEN_SHIFT 19
210 #define MMIO_GEN_LOW_SHIFT 9
211 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 1)
212 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
213 #define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
215 static u64 generation_mmio_spte_mask(unsigned int gen)
217 u64 mask;
219 WARN_ON(gen > MMIO_MAX_GEN);
221 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
222 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
223 return mask;
226 static unsigned int get_mmio_spte_generation(u64 spte)
228 unsigned int gen;
230 spte &= ~shadow_mmio_mask;
232 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
233 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
234 return gen;
237 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
240 * Init kvm generation close to MMIO_MAX_GEN to easily test the
241 * code of handling generation number wrap-around.
243 return (kvm_memslots(kvm)->generation +
244 MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
247 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
248 unsigned access)
250 unsigned int gen = kvm_current_mmio_generation(kvm);
251 u64 mask = generation_mmio_spte_mask(gen);
253 access &= ACC_WRITE_MASK | ACC_USER_MASK;
254 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
256 trace_mark_mmio_spte(sptep, gfn, access, gen);
257 mmu_spte_set(sptep, mask);
260 static bool is_mmio_spte(u64 spte)
262 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
265 static gfn_t get_mmio_spte_gfn(u64 spte)
267 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
268 return (spte & ~mask) >> PAGE_SHIFT;
271 static unsigned get_mmio_spte_access(u64 spte)
273 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
274 return (spte & ~mask) & ~PAGE_MASK;
277 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
278 pfn_t pfn, unsigned access)
280 if (unlikely(is_noslot_pfn(pfn))) {
281 mark_mmio_spte(kvm, sptep, gfn, access);
282 return true;
285 return false;
288 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
290 unsigned int kvm_gen, spte_gen;
292 kvm_gen = kvm_current_mmio_generation(kvm);
293 spte_gen = get_mmio_spte_generation(spte);
295 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
296 return likely(kvm_gen == spte_gen);
299 static inline u64 rsvd_bits(int s, int e)
301 return ((1ULL << (e - s + 1)) - 1) << s;
304 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
305 u64 dirty_mask, u64 nx_mask, u64 x_mask)
307 shadow_user_mask = user_mask;
308 shadow_accessed_mask = accessed_mask;
309 shadow_dirty_mask = dirty_mask;
310 shadow_nx_mask = nx_mask;
311 shadow_x_mask = x_mask;
313 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
315 static int is_cpuid_PSE36(void)
317 return 1;
320 static int is_nx(struct kvm_vcpu *vcpu)
322 return vcpu->arch.efer & EFER_NX;
325 static int is_shadow_present_pte(u64 pte)
327 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
330 static int is_large_pte(u64 pte)
332 return pte & PT_PAGE_SIZE_MASK;
335 static int is_rmap_spte(u64 pte)
337 return is_shadow_present_pte(pte);
340 static int is_last_spte(u64 pte, int level)
342 if (level == PT_PAGE_TABLE_LEVEL)
343 return 1;
344 if (is_large_pte(pte))
345 return 1;
346 return 0;
349 static pfn_t spte_to_pfn(u64 pte)
351 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
354 static gfn_t pse36_gfn_delta(u32 gpte)
356 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
358 return (gpte & PT32_DIR_PSE36_MASK) << shift;
361 #ifdef CONFIG_X86_64
362 static void __set_spte(u64 *sptep, u64 spte)
364 *sptep = spte;
367 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
369 *sptep = spte;
372 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374 return xchg(sptep, spte);
377 static u64 __get_spte_lockless(u64 *sptep)
379 return ACCESS_ONCE(*sptep);
382 static bool __check_direct_spte_mmio_pf(u64 spte)
384 /* It is valid if the spte is zapped. */
385 return spte == 0ull;
387 #else
388 union split_spte {
389 struct {
390 u32 spte_low;
391 u32 spte_high;
393 u64 spte;
396 static void count_spte_clear(u64 *sptep, u64 spte)
398 struct kvm_mmu_page *sp = page_header(__pa(sptep));
400 if (is_shadow_present_pte(spte))
401 return;
403 /* Ensure the spte is completely set before we increase the count */
404 smp_wmb();
405 sp->clear_spte_count++;
408 static void __set_spte(u64 *sptep, u64 spte)
410 union split_spte *ssptep, sspte;
412 ssptep = (union split_spte *)sptep;
413 sspte = (union split_spte)spte;
415 ssptep->spte_high = sspte.spte_high;
418 * If we map the spte from nonpresent to present, We should store
419 * the high bits firstly, then set present bit, so cpu can not
420 * fetch this spte while we are setting the spte.
422 smp_wmb();
424 ssptep->spte_low = sspte.spte_low;
427 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
429 union split_spte *ssptep, sspte;
431 ssptep = (union split_spte *)sptep;
432 sspte = (union split_spte)spte;
434 ssptep->spte_low = sspte.spte_low;
437 * If we map the spte from present to nonpresent, we should clear
438 * present bit firstly to avoid vcpu fetch the old high bits.
440 smp_wmb();
442 ssptep->spte_high = sspte.spte_high;
443 count_spte_clear(sptep, spte);
446 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
448 union split_spte *ssptep, sspte, orig;
450 ssptep = (union split_spte *)sptep;
451 sspte = (union split_spte)spte;
453 /* xchg acts as a barrier before the setting of the high bits */
454 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
455 orig.spte_high = ssptep->spte_high;
456 ssptep->spte_high = sspte.spte_high;
457 count_spte_clear(sptep, spte);
459 return orig.spte;
463 * The idea using the light way get the spte on x86_32 guest is from
464 * gup_get_pte(arch/x86/mm/gup.c).
466 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
467 * coalesces them and we are running out of the MMU lock. Therefore
468 * we need to protect against in-progress updates of the spte.
470 * Reading the spte while an update is in progress may get the old value
471 * for the high part of the spte. The race is fine for a present->non-present
472 * change (because the high part of the spte is ignored for non-present spte),
473 * but for a present->present change we must reread the spte.
475 * All such changes are done in two steps (present->non-present and
476 * non-present->present), hence it is enough to count the number of
477 * present->non-present updates: if it changed while reading the spte,
478 * we might have hit the race. This is done using clear_spte_count.
480 static u64 __get_spte_lockless(u64 *sptep)
482 struct kvm_mmu_page *sp = page_header(__pa(sptep));
483 union split_spte spte, *orig = (union split_spte *)sptep;
484 int count;
486 retry:
487 count = sp->clear_spte_count;
488 smp_rmb();
490 spte.spte_low = orig->spte_low;
491 smp_rmb();
493 spte.spte_high = orig->spte_high;
494 smp_rmb();
496 if (unlikely(spte.spte_low != orig->spte_low ||
497 count != sp->clear_spte_count))
498 goto retry;
500 return spte.spte;
503 static bool __check_direct_spte_mmio_pf(u64 spte)
505 union split_spte sspte = (union split_spte)spte;
506 u32 high_mmio_mask = shadow_mmio_mask >> 32;
508 /* It is valid if the spte is zapped. */
509 if (spte == 0ull)
510 return true;
512 /* It is valid if the spte is being zapped. */
513 if (sspte.spte_low == 0ull &&
514 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
515 return true;
517 return false;
519 #endif
521 static bool spte_is_locklessly_modifiable(u64 spte)
523 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
524 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
527 static bool spte_has_volatile_bits(u64 spte)
530 * Always atomicly update spte if it can be updated
531 * out of mmu-lock, it can ensure dirty bit is not lost,
532 * also, it can help us to get a stable is_writable_pte()
533 * to ensure tlb flush is not missed.
535 if (spte_is_locklessly_modifiable(spte))
536 return true;
538 if (!shadow_accessed_mask)
539 return false;
541 if (!is_shadow_present_pte(spte))
542 return false;
544 if ((spte & shadow_accessed_mask) &&
545 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
546 return false;
548 return true;
551 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
553 return (old_spte & bit_mask) && !(new_spte & bit_mask);
556 /* Rules for using mmu_spte_set:
557 * Set the sptep from nonpresent to present.
558 * Note: the sptep being assigned *must* be either not present
559 * or in a state where the hardware will not attempt to update
560 * the spte.
562 static void mmu_spte_set(u64 *sptep, u64 new_spte)
564 WARN_ON(is_shadow_present_pte(*sptep));
565 __set_spte(sptep, new_spte);
568 /* Rules for using mmu_spte_update:
569 * Update the state bits, it means the mapped pfn is not changged.
571 * Whenever we overwrite a writable spte with a read-only one we
572 * should flush remote TLBs. Otherwise rmap_write_protect
573 * will find a read-only spte, even though the writable spte
574 * might be cached on a CPU's TLB, the return value indicates this
575 * case.
577 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
579 u64 old_spte = *sptep;
580 bool ret = false;
582 WARN_ON(!is_rmap_spte(new_spte));
584 if (!is_shadow_present_pte(old_spte)) {
585 mmu_spte_set(sptep, new_spte);
586 return ret;
589 if (!spte_has_volatile_bits(old_spte))
590 __update_clear_spte_fast(sptep, new_spte);
591 else
592 old_spte = __update_clear_spte_slow(sptep, new_spte);
595 * For the spte updated out of mmu-lock is safe, since
596 * we always atomicly update it, see the comments in
597 * spte_has_volatile_bits().
599 if (spte_is_locklessly_modifiable(old_spte) &&
600 !is_writable_pte(new_spte))
601 ret = true;
603 if (!shadow_accessed_mask)
604 return ret;
606 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
607 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
608 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
609 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
611 return ret;
615 * Rules for using mmu_spte_clear_track_bits:
616 * It sets the sptep from present to nonpresent, and track the
617 * state bits, it is used to clear the last level sptep.
619 static int mmu_spte_clear_track_bits(u64 *sptep)
621 pfn_t pfn;
622 u64 old_spte = *sptep;
624 if (!spte_has_volatile_bits(old_spte))
625 __update_clear_spte_fast(sptep, 0ull);
626 else
627 old_spte = __update_clear_spte_slow(sptep, 0ull);
629 if (!is_rmap_spte(old_spte))
630 return 0;
632 pfn = spte_to_pfn(old_spte);
635 * KVM does not hold the refcount of the page used by
636 * kvm mmu, before reclaiming the page, we should
637 * unmap it from mmu first.
639 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
641 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
642 kvm_set_pfn_accessed(pfn);
643 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
644 kvm_set_pfn_dirty(pfn);
645 return 1;
649 * Rules for using mmu_spte_clear_no_track:
650 * Directly clear spte without caring the state bits of sptep,
651 * it is used to set the upper level spte.
653 static void mmu_spte_clear_no_track(u64 *sptep)
655 __update_clear_spte_fast(sptep, 0ull);
658 static u64 mmu_spte_get_lockless(u64 *sptep)
660 return __get_spte_lockless(sptep);
663 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
666 * Prevent page table teardown by making any free-er wait during
667 * kvm_flush_remote_tlbs() IPI to all active vcpus.
669 local_irq_disable();
670 vcpu->mode = READING_SHADOW_PAGE_TABLES;
672 * Make sure a following spte read is not reordered ahead of the write
673 * to vcpu->mode.
675 smp_mb();
678 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
681 * Make sure the write to vcpu->mode is not reordered in front of
682 * reads to sptes. If it does, kvm_commit_zap_page() can see us
683 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
685 smp_mb();
686 vcpu->mode = OUTSIDE_GUEST_MODE;
687 local_irq_enable();
690 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
691 struct kmem_cache *base_cache, int min)
693 void *obj;
695 if (cache->nobjs >= min)
696 return 0;
697 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
698 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
699 if (!obj)
700 return -ENOMEM;
701 cache->objects[cache->nobjs++] = obj;
703 return 0;
706 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
708 return cache->nobjs;
711 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
712 struct kmem_cache *cache)
714 while (mc->nobjs)
715 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
718 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
719 int min)
721 void *page;
723 if (cache->nobjs >= min)
724 return 0;
725 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
726 page = (void *)__get_free_page(GFP_KERNEL);
727 if (!page)
728 return -ENOMEM;
729 cache->objects[cache->nobjs++] = page;
731 return 0;
734 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
736 while (mc->nobjs)
737 free_page((unsigned long)mc->objects[--mc->nobjs]);
740 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
742 int r;
744 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
745 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
746 if (r)
747 goto out;
748 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
749 if (r)
750 goto out;
751 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
752 mmu_page_header_cache, 4);
753 out:
754 return r;
757 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
759 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
760 pte_list_desc_cache);
761 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
762 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
763 mmu_page_header_cache);
766 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
768 void *p;
770 BUG_ON(!mc->nobjs);
771 p = mc->objects[--mc->nobjs];
772 return p;
775 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
777 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
780 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
782 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
785 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
787 if (!sp->role.direct)
788 return sp->gfns[index];
790 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
793 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
795 if (sp->role.direct)
796 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
797 else
798 sp->gfns[index] = gfn;
802 * Return the pointer to the large page information for a given gfn,
803 * handling slots that are not large page aligned.
805 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
806 struct kvm_memory_slot *slot,
807 int level)
809 unsigned long idx;
811 idx = gfn_to_index(gfn, slot->base_gfn, level);
812 return &slot->arch.lpage_info[level - 2][idx];
815 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
817 struct kvm_memory_slot *slot;
818 struct kvm_lpage_info *linfo;
819 int i;
821 slot = gfn_to_memslot(kvm, gfn);
822 for (i = PT_DIRECTORY_LEVEL;
823 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
824 linfo = lpage_info_slot(gfn, slot, i);
825 linfo->write_count += 1;
827 kvm->arch.indirect_shadow_pages++;
830 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
832 struct kvm_memory_slot *slot;
833 struct kvm_lpage_info *linfo;
834 int i;
836 slot = gfn_to_memslot(kvm, gfn);
837 for (i = PT_DIRECTORY_LEVEL;
838 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
839 linfo = lpage_info_slot(gfn, slot, i);
840 linfo->write_count -= 1;
841 WARN_ON(linfo->write_count < 0);
843 kvm->arch.indirect_shadow_pages--;
846 static int has_wrprotected_page(struct kvm *kvm,
847 gfn_t gfn,
848 int level)
850 struct kvm_memory_slot *slot;
851 struct kvm_lpage_info *linfo;
853 slot = gfn_to_memslot(kvm, gfn);
854 if (slot) {
855 linfo = lpage_info_slot(gfn, slot, level);
856 return linfo->write_count;
859 return 1;
862 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
864 unsigned long page_size;
865 int i, ret = 0;
867 page_size = kvm_host_page_size(kvm, gfn);
869 for (i = PT_PAGE_TABLE_LEVEL;
870 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
871 if (page_size >= KVM_HPAGE_SIZE(i))
872 ret = i;
873 else
874 break;
877 return ret;
880 static struct kvm_memory_slot *
881 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
882 bool no_dirty_log)
884 struct kvm_memory_slot *slot;
886 slot = gfn_to_memslot(vcpu->kvm, gfn);
887 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
888 (no_dirty_log && slot->dirty_bitmap))
889 slot = NULL;
891 return slot;
894 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
896 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
899 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
901 int host_level, level, max_level;
903 host_level = host_mapping_level(vcpu->kvm, large_gfn);
905 if (host_level == PT_PAGE_TABLE_LEVEL)
906 return host_level;
908 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
910 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
911 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
912 break;
914 return level - 1;
918 * Pte mapping structures:
920 * If pte_list bit zero is zero, then pte_list point to the spte.
922 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
923 * pte_list_desc containing more mappings.
925 * Returns the number of pte entries before the spte was added or zero if
926 * the spte was not added.
929 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
930 unsigned long *pte_list)
932 struct pte_list_desc *desc;
933 int i, count = 0;
935 if (!*pte_list) {
936 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
937 *pte_list = (unsigned long)spte;
938 } else if (!(*pte_list & 1)) {
939 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
940 desc = mmu_alloc_pte_list_desc(vcpu);
941 desc->sptes[0] = (u64 *)*pte_list;
942 desc->sptes[1] = spte;
943 *pte_list = (unsigned long)desc | 1;
944 ++count;
945 } else {
946 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
947 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
948 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
949 desc = desc->more;
950 count += PTE_LIST_EXT;
952 if (desc->sptes[PTE_LIST_EXT-1]) {
953 desc->more = mmu_alloc_pte_list_desc(vcpu);
954 desc = desc->more;
956 for (i = 0; desc->sptes[i]; ++i)
957 ++count;
958 desc->sptes[i] = spte;
960 return count;
963 static void
964 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
965 int i, struct pte_list_desc *prev_desc)
967 int j;
969 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
971 desc->sptes[i] = desc->sptes[j];
972 desc->sptes[j] = NULL;
973 if (j != 0)
974 return;
975 if (!prev_desc && !desc->more)
976 *pte_list = (unsigned long)desc->sptes[0];
977 else
978 if (prev_desc)
979 prev_desc->more = desc->more;
980 else
981 *pte_list = (unsigned long)desc->more | 1;
982 mmu_free_pte_list_desc(desc);
985 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
987 struct pte_list_desc *desc;
988 struct pte_list_desc *prev_desc;
989 int i;
991 if (!*pte_list) {
992 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
993 BUG();
994 } else if (!(*pte_list & 1)) {
995 rmap_printk("pte_list_remove: %p 1->0\n", spte);
996 if ((u64 *)*pte_list != spte) {
997 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
998 BUG();
1000 *pte_list = 0;
1001 } else {
1002 rmap_printk("pte_list_remove: %p many->many\n", spte);
1003 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1004 prev_desc = NULL;
1005 while (desc) {
1006 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1007 if (desc->sptes[i] == spte) {
1008 pte_list_desc_remove_entry(pte_list,
1009 desc, i,
1010 prev_desc);
1011 return;
1013 prev_desc = desc;
1014 desc = desc->more;
1016 pr_err("pte_list_remove: %p many->many\n", spte);
1017 BUG();
1021 typedef void (*pte_list_walk_fn) (u64 *spte);
1022 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1024 struct pte_list_desc *desc;
1025 int i;
1027 if (!*pte_list)
1028 return;
1030 if (!(*pte_list & 1))
1031 return fn((u64 *)*pte_list);
1033 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1034 while (desc) {
1035 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1036 fn(desc->sptes[i]);
1037 desc = desc->more;
1041 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1042 struct kvm_memory_slot *slot)
1044 unsigned long idx;
1046 idx = gfn_to_index(gfn, slot->base_gfn, level);
1047 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1051 * Take gfn and return the reverse mapping to it.
1053 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1055 struct kvm_memory_slot *slot;
1057 slot = gfn_to_memslot(kvm, gfn);
1058 return __gfn_to_rmap(gfn, level, slot);
1061 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1063 struct kvm_mmu_memory_cache *cache;
1065 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1066 return mmu_memory_cache_free_objects(cache);
1069 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1071 struct kvm_mmu_page *sp;
1072 unsigned long *rmapp;
1074 sp = page_header(__pa(spte));
1075 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1076 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1077 return pte_list_add(vcpu, spte, rmapp);
1080 static void rmap_remove(struct kvm *kvm, u64 *spte)
1082 struct kvm_mmu_page *sp;
1083 gfn_t gfn;
1084 unsigned long *rmapp;
1086 sp = page_header(__pa(spte));
1087 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1088 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1089 pte_list_remove(spte, rmapp);
1093 * Used by the following functions to iterate through the sptes linked by a
1094 * rmap. All fields are private and not assumed to be used outside.
1096 struct rmap_iterator {
1097 /* private fields */
1098 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1099 int pos; /* index of the sptep */
1103 * Iteration must be started by this function. This should also be used after
1104 * removing/dropping sptes from the rmap link because in such cases the
1105 * information in the itererator may not be valid.
1107 * Returns sptep if found, NULL otherwise.
1109 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1111 if (!rmap)
1112 return NULL;
1114 if (!(rmap & 1)) {
1115 iter->desc = NULL;
1116 return (u64 *)rmap;
1119 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1120 iter->pos = 0;
1121 return iter->desc->sptes[iter->pos];
1125 * Must be used with a valid iterator: e.g. after rmap_get_first().
1127 * Returns sptep if found, NULL otherwise.
1129 static u64 *rmap_get_next(struct rmap_iterator *iter)
1131 if (iter->desc) {
1132 if (iter->pos < PTE_LIST_EXT - 1) {
1133 u64 *sptep;
1135 ++iter->pos;
1136 sptep = iter->desc->sptes[iter->pos];
1137 if (sptep)
1138 return sptep;
1141 iter->desc = iter->desc->more;
1143 if (iter->desc) {
1144 iter->pos = 0;
1145 /* desc->sptes[0] cannot be NULL */
1146 return iter->desc->sptes[iter->pos];
1150 return NULL;
1153 static void drop_spte(struct kvm *kvm, u64 *sptep)
1155 if (mmu_spte_clear_track_bits(sptep))
1156 rmap_remove(kvm, sptep);
1160 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1162 if (is_large_pte(*sptep)) {
1163 WARN_ON(page_header(__pa(sptep))->role.level ==
1164 PT_PAGE_TABLE_LEVEL);
1165 drop_spte(kvm, sptep);
1166 --kvm->stat.lpages;
1167 return true;
1170 return false;
1173 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1175 if (__drop_large_spte(vcpu->kvm, sptep))
1176 kvm_flush_remote_tlbs(vcpu->kvm);
1180 * Write-protect on the specified @sptep, @pt_protect indicates whether
1181 * spte write-protection is caused by protecting shadow page table.
1183 * Note: write protection is difference between drity logging and spte
1184 * protection:
1185 * - for dirty logging, the spte can be set to writable at anytime if
1186 * its dirty bitmap is properly set.
1187 * - for spte protection, the spte can be writable only after unsync-ing
1188 * shadow page.
1190 * Return true if tlb need be flushed.
1192 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1194 u64 spte = *sptep;
1196 if (!is_writable_pte(spte) &&
1197 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1198 return false;
1200 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1202 if (pt_protect)
1203 spte &= ~SPTE_MMU_WRITEABLE;
1204 spte = spte & ~PT_WRITABLE_MASK;
1206 return mmu_spte_update(sptep, spte);
1209 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1210 bool pt_protect)
1212 u64 *sptep;
1213 struct rmap_iterator iter;
1214 bool flush = false;
1216 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1217 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1219 flush |= spte_write_protect(kvm, sptep, pt_protect);
1220 sptep = rmap_get_next(&iter);
1223 return flush;
1227 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1228 * @kvm: kvm instance
1229 * @slot: slot to protect
1230 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1231 * @mask: indicates which pages we should protect
1233 * Used when we do not need to care about huge page mappings: e.g. during dirty
1234 * logging we do not have any such mappings.
1236 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1237 struct kvm_memory_slot *slot,
1238 gfn_t gfn_offset, unsigned long mask)
1240 unsigned long *rmapp;
1242 while (mask) {
1243 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1244 PT_PAGE_TABLE_LEVEL, slot);
1245 __rmap_write_protect(kvm, rmapp, false);
1247 /* clear the first set bit */
1248 mask &= mask - 1;
1252 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1254 struct kvm_memory_slot *slot;
1255 unsigned long *rmapp;
1256 int i;
1257 bool write_protected = false;
1259 slot = gfn_to_memslot(kvm, gfn);
1261 for (i = PT_PAGE_TABLE_LEVEL;
1262 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1263 rmapp = __gfn_to_rmap(gfn, i, slot);
1264 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1267 return write_protected;
1270 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1271 struct kvm_memory_slot *slot, unsigned long data)
1273 u64 *sptep;
1274 struct rmap_iterator iter;
1275 int need_tlb_flush = 0;
1277 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1278 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1279 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1281 drop_spte(kvm, sptep);
1282 need_tlb_flush = 1;
1285 return need_tlb_flush;
1288 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1289 struct kvm_memory_slot *slot, unsigned long data)
1291 u64 *sptep;
1292 struct rmap_iterator iter;
1293 int need_flush = 0;
1294 u64 new_spte;
1295 pte_t *ptep = (pte_t *)data;
1296 pfn_t new_pfn;
1298 WARN_ON(pte_huge(*ptep));
1299 new_pfn = pte_pfn(*ptep);
1301 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1302 BUG_ON(!is_shadow_present_pte(*sptep));
1303 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1305 need_flush = 1;
1307 if (pte_write(*ptep)) {
1308 drop_spte(kvm, sptep);
1309 sptep = rmap_get_first(*rmapp, &iter);
1310 } else {
1311 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1312 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1314 new_spte &= ~PT_WRITABLE_MASK;
1315 new_spte &= ~SPTE_HOST_WRITEABLE;
1316 new_spte &= ~shadow_accessed_mask;
1318 mmu_spte_clear_track_bits(sptep);
1319 mmu_spte_set(sptep, new_spte);
1320 sptep = rmap_get_next(&iter);
1324 if (need_flush)
1325 kvm_flush_remote_tlbs(kvm);
1327 return 0;
1330 static int kvm_handle_hva_range(struct kvm *kvm,
1331 unsigned long start,
1332 unsigned long end,
1333 unsigned long data,
1334 int (*handler)(struct kvm *kvm,
1335 unsigned long *rmapp,
1336 struct kvm_memory_slot *slot,
1337 unsigned long data))
1339 int j;
1340 int ret = 0;
1341 struct kvm_memslots *slots;
1342 struct kvm_memory_slot *memslot;
1344 slots = kvm_memslots(kvm);
1346 kvm_for_each_memslot(memslot, slots) {
1347 unsigned long hva_start, hva_end;
1348 gfn_t gfn_start, gfn_end;
1350 hva_start = max(start, memslot->userspace_addr);
1351 hva_end = min(end, memslot->userspace_addr +
1352 (memslot->npages << PAGE_SHIFT));
1353 if (hva_start >= hva_end)
1354 continue;
1356 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1357 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1359 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1360 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1362 for (j = PT_PAGE_TABLE_LEVEL;
1363 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1364 unsigned long idx, idx_end;
1365 unsigned long *rmapp;
1368 * {idx(page_j) | page_j intersects with
1369 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1371 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1372 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1374 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1376 for (; idx <= idx_end; ++idx)
1377 ret |= handler(kvm, rmapp++, memslot, data);
1381 return ret;
1384 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1385 unsigned long data,
1386 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1387 struct kvm_memory_slot *slot,
1388 unsigned long data))
1390 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1393 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1395 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1398 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1400 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1403 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1405 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1408 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1409 struct kvm_memory_slot *slot, unsigned long data)
1411 u64 *sptep;
1412 struct rmap_iterator uninitialized_var(iter);
1413 int young = 0;
1416 * In case of absence of EPT Access and Dirty Bits supports,
1417 * emulate the accessed bit for EPT, by checking if this page has
1418 * an EPT mapping, and clearing it if it does. On the next access,
1419 * a new EPT mapping will be established.
1420 * This has some overhead, but not as much as the cost of swapping
1421 * out actively used pages or breaking up actively used hugepages.
1423 if (!shadow_accessed_mask) {
1424 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1425 goto out;
1428 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1429 sptep = rmap_get_next(&iter)) {
1430 BUG_ON(!is_shadow_present_pte(*sptep));
1432 if (*sptep & shadow_accessed_mask) {
1433 young = 1;
1434 clear_bit((ffs(shadow_accessed_mask) - 1),
1435 (unsigned long *)sptep);
1438 out:
1439 /* @data has hva passed to kvm_age_hva(). */
1440 trace_kvm_age_page(data, slot, young);
1441 return young;
1444 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1445 struct kvm_memory_slot *slot, unsigned long data)
1447 u64 *sptep;
1448 struct rmap_iterator iter;
1449 int young = 0;
1452 * If there's no access bit in the secondary pte set by the
1453 * hardware it's up to gup-fast/gup to set the access bit in
1454 * the primary pte or in the page structure.
1456 if (!shadow_accessed_mask)
1457 goto out;
1459 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1460 sptep = rmap_get_next(&iter)) {
1461 BUG_ON(!is_shadow_present_pte(*sptep));
1463 if (*sptep & shadow_accessed_mask) {
1464 young = 1;
1465 break;
1468 out:
1469 return young;
1472 #define RMAP_RECYCLE_THRESHOLD 1000
1474 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1476 unsigned long *rmapp;
1477 struct kvm_mmu_page *sp;
1479 sp = page_header(__pa(spte));
1481 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1483 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1484 kvm_flush_remote_tlbs(vcpu->kvm);
1487 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1489 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1492 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1494 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1497 #ifdef MMU_DEBUG
1498 static int is_empty_shadow_page(u64 *spt)
1500 u64 *pos;
1501 u64 *end;
1503 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1504 if (is_shadow_present_pte(*pos)) {
1505 printk(KERN_ERR "%s: %p %llx\n", __func__,
1506 pos, *pos);
1507 return 0;
1509 return 1;
1511 #endif
1514 * This value is the sum of all of the kvm instances's
1515 * kvm->arch.n_used_mmu_pages values. We need a global,
1516 * aggregate version in order to make the slab shrinker
1517 * faster
1519 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1521 kvm->arch.n_used_mmu_pages += nr;
1522 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1525 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1527 ASSERT(is_empty_shadow_page(sp->spt));
1528 hlist_del(&sp->hash_link);
1529 list_del(&sp->link);
1530 free_page((unsigned long)sp->spt);
1531 if (!sp->role.direct)
1532 free_page((unsigned long)sp->gfns);
1533 kmem_cache_free(mmu_page_header_cache, sp);
1536 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1538 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1541 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1542 struct kvm_mmu_page *sp, u64 *parent_pte)
1544 if (!parent_pte)
1545 return;
1547 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1550 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1551 u64 *parent_pte)
1553 pte_list_remove(parent_pte, &sp->parent_ptes);
1556 static void drop_parent_pte(struct kvm_mmu_page *sp,
1557 u64 *parent_pte)
1559 mmu_page_remove_parent_pte(sp, parent_pte);
1560 mmu_spte_clear_no_track(parent_pte);
1563 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1564 u64 *parent_pte, int direct)
1566 struct kvm_mmu_page *sp;
1568 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1569 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1570 if (!direct)
1571 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1572 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1575 * The active_mmu_pages list is the FIFO list, do not move the
1576 * page until it is zapped. kvm_zap_obsolete_pages depends on
1577 * this feature. See the comments in kvm_zap_obsolete_pages().
1579 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1580 sp->parent_ptes = 0;
1581 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1582 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1583 return sp;
1586 static void mark_unsync(u64 *spte);
1587 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1589 pte_list_walk(&sp->parent_ptes, mark_unsync);
1592 static void mark_unsync(u64 *spte)
1594 struct kvm_mmu_page *sp;
1595 unsigned int index;
1597 sp = page_header(__pa(spte));
1598 index = spte - sp->spt;
1599 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1600 return;
1601 if (sp->unsync_children++)
1602 return;
1603 kvm_mmu_mark_parents_unsync(sp);
1606 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1607 struct kvm_mmu_page *sp)
1609 return 1;
1612 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1616 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1617 struct kvm_mmu_page *sp, u64 *spte,
1618 const void *pte)
1620 WARN_ON(1);
1623 #define KVM_PAGE_ARRAY_NR 16
1625 struct kvm_mmu_pages {
1626 struct mmu_page_and_offset {
1627 struct kvm_mmu_page *sp;
1628 unsigned int idx;
1629 } page[KVM_PAGE_ARRAY_NR];
1630 unsigned int nr;
1633 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1634 int idx)
1636 int i;
1638 if (sp->unsync)
1639 for (i=0; i < pvec->nr; i++)
1640 if (pvec->page[i].sp == sp)
1641 return 0;
1643 pvec->page[pvec->nr].sp = sp;
1644 pvec->page[pvec->nr].idx = idx;
1645 pvec->nr++;
1646 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1649 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1650 struct kvm_mmu_pages *pvec)
1652 int i, ret, nr_unsync_leaf = 0;
1654 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1655 struct kvm_mmu_page *child;
1656 u64 ent = sp->spt[i];
1658 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1659 goto clear_child_bitmap;
1661 child = page_header(ent & PT64_BASE_ADDR_MASK);
1663 if (child->unsync_children) {
1664 if (mmu_pages_add(pvec, child, i))
1665 return -ENOSPC;
1667 ret = __mmu_unsync_walk(child, pvec);
1668 if (!ret)
1669 goto clear_child_bitmap;
1670 else if (ret > 0)
1671 nr_unsync_leaf += ret;
1672 else
1673 return ret;
1674 } else if (child->unsync) {
1675 nr_unsync_leaf++;
1676 if (mmu_pages_add(pvec, child, i))
1677 return -ENOSPC;
1678 } else
1679 goto clear_child_bitmap;
1681 continue;
1683 clear_child_bitmap:
1684 __clear_bit(i, sp->unsync_child_bitmap);
1685 sp->unsync_children--;
1686 WARN_ON((int)sp->unsync_children < 0);
1690 return nr_unsync_leaf;
1693 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1694 struct kvm_mmu_pages *pvec)
1696 if (!sp->unsync_children)
1697 return 0;
1699 mmu_pages_add(pvec, sp, 0);
1700 return __mmu_unsync_walk(sp, pvec);
1703 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1705 WARN_ON(!sp->unsync);
1706 trace_kvm_mmu_sync_page(sp);
1707 sp->unsync = 0;
1708 --kvm->stat.mmu_unsync;
1711 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1712 struct list_head *invalid_list);
1713 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1714 struct list_head *invalid_list);
1717 * NOTE: we should pay more attention on the zapped-obsolete page
1718 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1719 * since it has been deleted from active_mmu_pages but still can be found
1720 * at hast list.
1722 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1723 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1724 * all the obsolete pages.
1726 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1727 hlist_for_each_entry(_sp, \
1728 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1729 if ((_sp)->gfn != (_gfn)) {} else
1731 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1732 for_each_gfn_sp(_kvm, _sp, _gfn) \
1733 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1735 /* @sp->gfn should be write-protected at the call site */
1736 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1737 struct list_head *invalid_list, bool clear_unsync)
1739 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1740 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1741 return 1;
1744 if (clear_unsync)
1745 kvm_unlink_unsync_page(vcpu->kvm, sp);
1747 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1748 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1749 return 1;
1752 kvm_mmu_flush_tlb(vcpu);
1753 return 0;
1756 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1757 struct kvm_mmu_page *sp)
1759 LIST_HEAD(invalid_list);
1760 int ret;
1762 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1763 if (ret)
1764 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1766 return ret;
1769 #ifdef CONFIG_KVM_MMU_AUDIT
1770 #include "mmu_audit.c"
1771 #else
1772 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1773 static void mmu_audit_disable(void) { }
1774 #endif
1776 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1777 struct list_head *invalid_list)
1779 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1782 /* @gfn should be write-protected at the call site */
1783 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1785 struct kvm_mmu_page *s;
1786 LIST_HEAD(invalid_list);
1787 bool flush = false;
1789 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1790 if (!s->unsync)
1791 continue;
1793 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1794 kvm_unlink_unsync_page(vcpu->kvm, s);
1795 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1796 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1797 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1798 continue;
1800 flush = true;
1803 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1804 if (flush)
1805 kvm_mmu_flush_tlb(vcpu);
1808 struct mmu_page_path {
1809 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1810 unsigned int idx[PT64_ROOT_LEVEL-1];
1813 #define for_each_sp(pvec, sp, parents, i) \
1814 for (i = mmu_pages_next(&pvec, &parents, -1), \
1815 sp = pvec.page[i].sp; \
1816 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1817 i = mmu_pages_next(&pvec, &parents, i))
1819 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1820 struct mmu_page_path *parents,
1821 int i)
1823 int n;
1825 for (n = i+1; n < pvec->nr; n++) {
1826 struct kvm_mmu_page *sp = pvec->page[n].sp;
1828 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1829 parents->idx[0] = pvec->page[n].idx;
1830 return n;
1833 parents->parent[sp->role.level-2] = sp;
1834 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1837 return n;
1840 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1842 struct kvm_mmu_page *sp;
1843 unsigned int level = 0;
1845 do {
1846 unsigned int idx = parents->idx[level];
1848 sp = parents->parent[level];
1849 if (!sp)
1850 return;
1852 --sp->unsync_children;
1853 WARN_ON((int)sp->unsync_children < 0);
1854 __clear_bit(idx, sp->unsync_child_bitmap);
1855 level++;
1856 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1859 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1860 struct mmu_page_path *parents,
1861 struct kvm_mmu_pages *pvec)
1863 parents->parent[parent->role.level-1] = NULL;
1864 pvec->nr = 0;
1867 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1868 struct kvm_mmu_page *parent)
1870 int i;
1871 struct kvm_mmu_page *sp;
1872 struct mmu_page_path parents;
1873 struct kvm_mmu_pages pages;
1874 LIST_HEAD(invalid_list);
1876 kvm_mmu_pages_init(parent, &parents, &pages);
1877 while (mmu_unsync_walk(parent, &pages)) {
1878 bool protected = false;
1880 for_each_sp(pages, sp, parents, i)
1881 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1883 if (protected)
1884 kvm_flush_remote_tlbs(vcpu->kvm);
1886 for_each_sp(pages, sp, parents, i) {
1887 kvm_sync_page(vcpu, sp, &invalid_list);
1888 mmu_pages_clear_parents(&parents);
1890 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1891 cond_resched_lock(&vcpu->kvm->mmu_lock);
1892 kvm_mmu_pages_init(parent, &parents, &pages);
1896 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1898 int i;
1900 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1901 sp->spt[i] = 0ull;
1904 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1906 sp->write_flooding_count = 0;
1909 static void clear_sp_write_flooding_count(u64 *spte)
1911 struct kvm_mmu_page *sp = page_header(__pa(spte));
1913 __clear_sp_write_flooding_count(sp);
1916 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1918 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1921 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1922 gfn_t gfn,
1923 gva_t gaddr,
1924 unsigned level,
1925 int direct,
1926 unsigned access,
1927 u64 *parent_pte)
1929 union kvm_mmu_page_role role;
1930 unsigned quadrant;
1931 struct kvm_mmu_page *sp;
1932 bool need_sync = false;
1934 role = vcpu->arch.mmu.base_role;
1935 role.level = level;
1936 role.direct = direct;
1937 if (role.direct)
1938 role.cr4_pae = 0;
1939 role.access = access;
1940 if (!vcpu->arch.mmu.direct_map
1941 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1942 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1943 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1944 role.quadrant = quadrant;
1946 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1947 if (is_obsolete_sp(vcpu->kvm, sp))
1948 continue;
1950 if (!need_sync && sp->unsync)
1951 need_sync = true;
1953 if (sp->role.word != role.word)
1954 continue;
1956 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1957 break;
1959 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1960 if (sp->unsync_children) {
1961 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1962 kvm_mmu_mark_parents_unsync(sp);
1963 } else if (sp->unsync)
1964 kvm_mmu_mark_parents_unsync(sp);
1966 __clear_sp_write_flooding_count(sp);
1967 trace_kvm_mmu_get_page(sp, false);
1968 return sp;
1970 ++vcpu->kvm->stat.mmu_cache_miss;
1971 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1972 if (!sp)
1973 return sp;
1974 sp->gfn = gfn;
1975 sp->role = role;
1976 hlist_add_head(&sp->hash_link,
1977 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1978 if (!direct) {
1979 if (rmap_write_protect(vcpu->kvm, gfn))
1980 kvm_flush_remote_tlbs(vcpu->kvm);
1981 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1982 kvm_sync_pages(vcpu, gfn);
1984 account_shadowed(vcpu->kvm, gfn);
1986 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1987 init_shadow_page_table(sp);
1988 trace_kvm_mmu_get_page(sp, true);
1989 return sp;
1992 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1993 struct kvm_vcpu *vcpu, u64 addr)
1995 iterator->addr = addr;
1996 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1997 iterator->level = vcpu->arch.mmu.shadow_root_level;
1999 if (iterator->level == PT64_ROOT_LEVEL &&
2000 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2001 !vcpu->arch.mmu.direct_map)
2002 --iterator->level;
2004 if (iterator->level == PT32E_ROOT_LEVEL) {
2005 iterator->shadow_addr
2006 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2007 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2008 --iterator->level;
2009 if (!iterator->shadow_addr)
2010 iterator->level = 0;
2014 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2016 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2017 return false;
2019 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2020 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2021 return true;
2024 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2025 u64 spte)
2027 if (is_last_spte(spte, iterator->level)) {
2028 iterator->level = 0;
2029 return;
2032 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2033 --iterator->level;
2036 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2038 return __shadow_walk_next(iterator, *iterator->sptep);
2041 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2043 u64 spte;
2045 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2046 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2048 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2049 shadow_user_mask | shadow_x_mask;
2051 if (accessed)
2052 spte |= shadow_accessed_mask;
2054 mmu_spte_set(sptep, spte);
2057 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2058 unsigned direct_access)
2060 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2061 struct kvm_mmu_page *child;
2064 * For the direct sp, if the guest pte's dirty bit
2065 * changed form clean to dirty, it will corrupt the
2066 * sp's access: allow writable in the read-only sp,
2067 * so we should update the spte at this point to get
2068 * a new sp with the correct access.
2070 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2071 if (child->role.access == direct_access)
2072 return;
2074 drop_parent_pte(child, sptep);
2075 kvm_flush_remote_tlbs(vcpu->kvm);
2079 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2080 u64 *spte)
2082 u64 pte;
2083 struct kvm_mmu_page *child;
2085 pte = *spte;
2086 if (is_shadow_present_pte(pte)) {
2087 if (is_last_spte(pte, sp->role.level)) {
2088 drop_spte(kvm, spte);
2089 if (is_large_pte(pte))
2090 --kvm->stat.lpages;
2091 } else {
2092 child = page_header(pte & PT64_BASE_ADDR_MASK);
2093 drop_parent_pte(child, spte);
2095 return true;
2098 if (is_mmio_spte(pte))
2099 mmu_spte_clear_no_track(spte);
2101 return false;
2104 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2105 struct kvm_mmu_page *sp)
2107 unsigned i;
2109 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2110 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2113 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2115 mmu_page_remove_parent_pte(sp, parent_pte);
2118 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2120 u64 *sptep;
2121 struct rmap_iterator iter;
2123 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2124 drop_parent_pte(sp, sptep);
2127 static int mmu_zap_unsync_children(struct kvm *kvm,
2128 struct kvm_mmu_page *parent,
2129 struct list_head *invalid_list)
2131 int i, zapped = 0;
2132 struct mmu_page_path parents;
2133 struct kvm_mmu_pages pages;
2135 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2136 return 0;
2138 kvm_mmu_pages_init(parent, &parents, &pages);
2139 while (mmu_unsync_walk(parent, &pages)) {
2140 struct kvm_mmu_page *sp;
2142 for_each_sp(pages, sp, parents, i) {
2143 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2144 mmu_pages_clear_parents(&parents);
2145 zapped++;
2147 kvm_mmu_pages_init(parent, &parents, &pages);
2150 return zapped;
2153 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2154 struct list_head *invalid_list)
2156 int ret;
2158 trace_kvm_mmu_prepare_zap_page(sp);
2159 ++kvm->stat.mmu_shadow_zapped;
2160 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2161 kvm_mmu_page_unlink_children(kvm, sp);
2162 kvm_mmu_unlink_parents(kvm, sp);
2164 if (!sp->role.invalid && !sp->role.direct)
2165 unaccount_shadowed(kvm, sp->gfn);
2167 if (sp->unsync)
2168 kvm_unlink_unsync_page(kvm, sp);
2169 if (!sp->root_count) {
2170 /* Count self */
2171 ret++;
2172 list_move(&sp->link, invalid_list);
2173 kvm_mod_used_mmu_pages(kvm, -1);
2174 } else {
2175 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2178 * The obsolete pages can not be used on any vcpus.
2179 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2181 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2182 kvm_reload_remote_mmus(kvm);
2185 sp->role.invalid = 1;
2186 return ret;
2189 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2190 struct list_head *invalid_list)
2192 struct kvm_mmu_page *sp, *nsp;
2194 if (list_empty(invalid_list))
2195 return;
2198 * wmb: make sure everyone sees our modifications to the page tables
2199 * rmb: make sure we see changes to vcpu->mode
2201 smp_mb();
2204 * Wait for all vcpus to exit guest mode and/or lockless shadow
2205 * page table walks.
2207 kvm_flush_remote_tlbs(kvm);
2209 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2210 WARN_ON(!sp->role.invalid || sp->root_count);
2211 kvm_mmu_free_page(sp);
2215 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2216 struct list_head *invalid_list)
2218 struct kvm_mmu_page *sp;
2220 if (list_empty(&kvm->arch.active_mmu_pages))
2221 return false;
2223 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2224 struct kvm_mmu_page, link);
2225 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2227 return true;
2231 * Changing the number of mmu pages allocated to the vm
2232 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2234 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2236 LIST_HEAD(invalid_list);
2238 spin_lock(&kvm->mmu_lock);
2240 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2241 /* Need to free some mmu pages to achieve the goal. */
2242 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2243 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2244 break;
2246 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2247 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2250 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2252 spin_unlock(&kvm->mmu_lock);
2255 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2257 struct kvm_mmu_page *sp;
2258 LIST_HEAD(invalid_list);
2259 int r;
2261 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2262 r = 0;
2263 spin_lock(&kvm->mmu_lock);
2264 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2265 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2266 sp->role.word);
2267 r = 1;
2268 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2270 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2271 spin_unlock(&kvm->mmu_lock);
2273 return r;
2275 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2278 * The function is based on mtrr_type_lookup() in
2279 * arch/x86/kernel/cpu/mtrr/generic.c
2281 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2282 u64 start, u64 end)
2284 int i;
2285 u64 base, mask;
2286 u8 prev_match, curr_match;
2287 int num_var_ranges = KVM_NR_VAR_MTRR;
2289 if (!mtrr_state->enabled)
2290 return 0xFF;
2292 /* Make end inclusive end, instead of exclusive */
2293 end--;
2295 /* Look in fixed ranges. Just return the type as per start */
2296 if (mtrr_state->have_fixed && (start < 0x100000)) {
2297 int idx;
2299 if (start < 0x80000) {
2300 idx = 0;
2301 idx += (start >> 16);
2302 return mtrr_state->fixed_ranges[idx];
2303 } else if (start < 0xC0000) {
2304 idx = 1 * 8;
2305 idx += ((start - 0x80000) >> 14);
2306 return mtrr_state->fixed_ranges[idx];
2307 } else if (start < 0x1000000) {
2308 idx = 3 * 8;
2309 idx += ((start - 0xC0000) >> 12);
2310 return mtrr_state->fixed_ranges[idx];
2315 * Look in variable ranges
2316 * Look of multiple ranges matching this address and pick type
2317 * as per MTRR precedence
2319 if (!(mtrr_state->enabled & 2))
2320 return mtrr_state->def_type;
2322 prev_match = 0xFF;
2323 for (i = 0; i < num_var_ranges; ++i) {
2324 unsigned short start_state, end_state;
2326 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2327 continue;
2329 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2330 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2331 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2332 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2334 start_state = ((start & mask) == (base & mask));
2335 end_state = ((end & mask) == (base & mask));
2336 if (start_state != end_state)
2337 return 0xFE;
2339 if ((start & mask) != (base & mask))
2340 continue;
2342 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2343 if (prev_match == 0xFF) {
2344 prev_match = curr_match;
2345 continue;
2348 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2349 curr_match == MTRR_TYPE_UNCACHABLE)
2350 return MTRR_TYPE_UNCACHABLE;
2352 if ((prev_match == MTRR_TYPE_WRBACK &&
2353 curr_match == MTRR_TYPE_WRTHROUGH) ||
2354 (prev_match == MTRR_TYPE_WRTHROUGH &&
2355 curr_match == MTRR_TYPE_WRBACK)) {
2356 prev_match = MTRR_TYPE_WRTHROUGH;
2357 curr_match = MTRR_TYPE_WRTHROUGH;
2360 if (prev_match != curr_match)
2361 return MTRR_TYPE_UNCACHABLE;
2364 if (prev_match != 0xFF)
2365 return prev_match;
2367 return mtrr_state->def_type;
2370 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2372 u8 mtrr;
2374 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2375 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2376 if (mtrr == 0xfe || mtrr == 0xff)
2377 mtrr = MTRR_TYPE_WRBACK;
2378 return mtrr;
2380 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2382 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2384 trace_kvm_mmu_unsync_page(sp);
2385 ++vcpu->kvm->stat.mmu_unsync;
2386 sp->unsync = 1;
2388 kvm_mmu_mark_parents_unsync(sp);
2391 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2393 struct kvm_mmu_page *s;
2395 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2396 if (s->unsync)
2397 continue;
2398 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2399 __kvm_unsync_page(vcpu, s);
2403 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2404 bool can_unsync)
2406 struct kvm_mmu_page *s;
2407 bool need_unsync = false;
2409 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2410 if (!can_unsync)
2411 return 1;
2413 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2414 return 1;
2416 if (!s->unsync)
2417 need_unsync = true;
2419 if (need_unsync)
2420 kvm_unsync_pages(vcpu, gfn);
2421 return 0;
2424 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2425 unsigned pte_access, int level,
2426 gfn_t gfn, pfn_t pfn, bool speculative,
2427 bool can_unsync, bool host_writable)
2429 u64 spte;
2430 int ret = 0;
2432 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2433 return 0;
2435 spte = PT_PRESENT_MASK;
2436 if (!speculative)
2437 spte |= shadow_accessed_mask;
2439 if (pte_access & ACC_EXEC_MASK)
2440 spte |= shadow_x_mask;
2441 else
2442 spte |= shadow_nx_mask;
2444 if (pte_access & ACC_USER_MASK)
2445 spte |= shadow_user_mask;
2447 if (level > PT_PAGE_TABLE_LEVEL)
2448 spte |= PT_PAGE_SIZE_MASK;
2449 if (tdp_enabled)
2450 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2451 kvm_is_mmio_pfn(pfn));
2453 if (host_writable)
2454 spte |= SPTE_HOST_WRITEABLE;
2455 else
2456 pte_access &= ~ACC_WRITE_MASK;
2458 spte |= (u64)pfn << PAGE_SHIFT;
2460 if (pte_access & ACC_WRITE_MASK) {
2463 * Other vcpu creates new sp in the window between
2464 * mapping_level() and acquiring mmu-lock. We can
2465 * allow guest to retry the access, the mapping can
2466 * be fixed if guest refault.
2468 if (level > PT_PAGE_TABLE_LEVEL &&
2469 has_wrprotected_page(vcpu->kvm, gfn, level))
2470 goto done;
2472 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2475 * Optimization: for pte sync, if spte was writable the hash
2476 * lookup is unnecessary (and expensive). Write protection
2477 * is responsibility of mmu_get_page / kvm_sync_page.
2478 * Same reasoning can be applied to dirty page accounting.
2480 if (!can_unsync && is_writable_pte(*sptep))
2481 goto set_pte;
2483 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2484 pgprintk("%s: found shadow page for %llx, marking ro\n",
2485 __func__, gfn);
2486 ret = 1;
2487 pte_access &= ~ACC_WRITE_MASK;
2488 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2492 if (pte_access & ACC_WRITE_MASK)
2493 mark_page_dirty(vcpu->kvm, gfn);
2495 set_pte:
2496 if (mmu_spte_update(sptep, spte))
2497 kvm_flush_remote_tlbs(vcpu->kvm);
2498 done:
2499 return ret;
2502 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2503 unsigned pte_access, int write_fault, int *emulate,
2504 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2505 bool host_writable)
2507 int was_rmapped = 0;
2508 int rmap_count;
2510 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2511 *sptep, write_fault, gfn);
2513 if (is_rmap_spte(*sptep)) {
2515 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2516 * the parent of the now unreachable PTE.
2518 if (level > PT_PAGE_TABLE_LEVEL &&
2519 !is_large_pte(*sptep)) {
2520 struct kvm_mmu_page *child;
2521 u64 pte = *sptep;
2523 child = page_header(pte & PT64_BASE_ADDR_MASK);
2524 drop_parent_pte(child, sptep);
2525 kvm_flush_remote_tlbs(vcpu->kvm);
2526 } else if (pfn != spte_to_pfn(*sptep)) {
2527 pgprintk("hfn old %llx new %llx\n",
2528 spte_to_pfn(*sptep), pfn);
2529 drop_spte(vcpu->kvm, sptep);
2530 kvm_flush_remote_tlbs(vcpu->kvm);
2531 } else
2532 was_rmapped = 1;
2535 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2536 true, host_writable)) {
2537 if (write_fault)
2538 *emulate = 1;
2539 kvm_mmu_flush_tlb(vcpu);
2542 if (unlikely(is_mmio_spte(*sptep) && emulate))
2543 *emulate = 1;
2545 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2546 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2547 is_large_pte(*sptep)? "2MB" : "4kB",
2548 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2549 *sptep, sptep);
2550 if (!was_rmapped && is_large_pte(*sptep))
2551 ++vcpu->kvm->stat.lpages;
2553 if (is_shadow_present_pte(*sptep)) {
2554 if (!was_rmapped) {
2555 rmap_count = rmap_add(vcpu, sptep, gfn);
2556 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2557 rmap_recycle(vcpu, sptep, gfn);
2561 kvm_release_pfn_clean(pfn);
2564 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2565 bool no_dirty_log)
2567 struct kvm_memory_slot *slot;
2569 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2570 if (!slot)
2571 return KVM_PFN_ERR_FAULT;
2573 return gfn_to_pfn_memslot_atomic(slot, gfn);
2576 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2577 struct kvm_mmu_page *sp,
2578 u64 *start, u64 *end)
2580 struct page *pages[PTE_PREFETCH_NUM];
2581 unsigned access = sp->role.access;
2582 int i, ret;
2583 gfn_t gfn;
2585 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2586 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2587 return -1;
2589 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2590 if (ret <= 0)
2591 return -1;
2593 for (i = 0; i < ret; i++, gfn++, start++)
2594 mmu_set_spte(vcpu, start, access, 0, NULL,
2595 sp->role.level, gfn, page_to_pfn(pages[i]),
2596 true, true);
2598 return 0;
2601 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2602 struct kvm_mmu_page *sp, u64 *sptep)
2604 u64 *spte, *start = NULL;
2605 int i;
2607 WARN_ON(!sp->role.direct);
2609 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2610 spte = sp->spt + i;
2612 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2613 if (is_shadow_present_pte(*spte) || spte == sptep) {
2614 if (!start)
2615 continue;
2616 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2617 break;
2618 start = NULL;
2619 } else if (!start)
2620 start = spte;
2624 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2626 struct kvm_mmu_page *sp;
2629 * Since it's no accessed bit on EPT, it's no way to
2630 * distinguish between actually accessed translations
2631 * and prefetched, so disable pte prefetch if EPT is
2632 * enabled.
2634 if (!shadow_accessed_mask)
2635 return;
2637 sp = page_header(__pa(sptep));
2638 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2639 return;
2641 __direct_pte_prefetch(vcpu, sp, sptep);
2644 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2645 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2646 bool prefault)
2648 struct kvm_shadow_walk_iterator iterator;
2649 struct kvm_mmu_page *sp;
2650 int emulate = 0;
2651 gfn_t pseudo_gfn;
2653 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2654 return 0;
2656 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2657 if (iterator.level == level) {
2658 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2659 write, &emulate, level, gfn, pfn,
2660 prefault, map_writable);
2661 direct_pte_prefetch(vcpu, iterator.sptep);
2662 ++vcpu->stat.pf_fixed;
2663 break;
2666 drop_large_spte(vcpu, iterator.sptep);
2667 if (!is_shadow_present_pte(*iterator.sptep)) {
2668 u64 base_addr = iterator.addr;
2670 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2671 pseudo_gfn = base_addr >> PAGE_SHIFT;
2672 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2673 iterator.level - 1,
2674 1, ACC_ALL, iterator.sptep);
2676 link_shadow_page(iterator.sptep, sp, true);
2679 return emulate;
2682 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2684 siginfo_t info;
2686 info.si_signo = SIGBUS;
2687 info.si_errno = 0;
2688 info.si_code = BUS_MCEERR_AR;
2689 info.si_addr = (void __user *)address;
2690 info.si_addr_lsb = PAGE_SHIFT;
2692 send_sig_info(SIGBUS, &info, tsk);
2695 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2698 * Do not cache the mmio info caused by writing the readonly gfn
2699 * into the spte otherwise read access on readonly gfn also can
2700 * caused mmio page fault and treat it as mmio access.
2701 * Return 1 to tell kvm to emulate it.
2703 if (pfn == KVM_PFN_ERR_RO_FAULT)
2704 return 1;
2706 if (pfn == KVM_PFN_ERR_HWPOISON) {
2707 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2708 return 0;
2711 return -EFAULT;
2714 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2715 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2717 pfn_t pfn = *pfnp;
2718 gfn_t gfn = *gfnp;
2719 int level = *levelp;
2722 * Check if it's a transparent hugepage. If this would be an
2723 * hugetlbfs page, level wouldn't be set to
2724 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2725 * here.
2727 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2728 level == PT_PAGE_TABLE_LEVEL &&
2729 PageTransCompound(pfn_to_page(pfn)) &&
2730 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2731 unsigned long mask;
2733 * mmu_notifier_retry was successful and we hold the
2734 * mmu_lock here, so the pmd can't become splitting
2735 * from under us, and in turn
2736 * __split_huge_page_refcount() can't run from under
2737 * us and we can safely transfer the refcount from
2738 * PG_tail to PG_head as we switch the pfn to tail to
2739 * head.
2741 *levelp = level = PT_DIRECTORY_LEVEL;
2742 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2743 VM_BUG_ON((gfn & mask) != (pfn & mask));
2744 if (pfn & mask) {
2745 gfn &= ~mask;
2746 *gfnp = gfn;
2747 kvm_release_pfn_clean(pfn);
2748 pfn &= ~mask;
2749 kvm_get_pfn(pfn);
2750 *pfnp = pfn;
2755 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2756 pfn_t pfn, unsigned access, int *ret_val)
2758 bool ret = true;
2760 /* The pfn is invalid, report the error! */
2761 if (unlikely(is_error_pfn(pfn))) {
2762 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2763 goto exit;
2766 if (unlikely(is_noslot_pfn(pfn)))
2767 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2769 ret = false;
2770 exit:
2771 return ret;
2774 static bool page_fault_can_be_fast(u32 error_code)
2777 * Do not fix the mmio spte with invalid generation number which
2778 * need to be updated by slow page fault path.
2780 if (unlikely(error_code & PFERR_RSVD_MASK))
2781 return false;
2784 * #PF can be fast only if the shadow page table is present and it
2785 * is caused by write-protect, that means we just need change the
2786 * W bit of the spte which can be done out of mmu-lock.
2788 if (!(error_code & PFERR_PRESENT_MASK) ||
2789 !(error_code & PFERR_WRITE_MASK))
2790 return false;
2792 return true;
2795 static bool
2796 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2797 u64 *sptep, u64 spte)
2799 gfn_t gfn;
2801 WARN_ON(!sp->role.direct);
2804 * The gfn of direct spte is stable since it is calculated
2805 * by sp->gfn.
2807 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2809 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2810 mark_page_dirty(vcpu->kvm, gfn);
2812 return true;
2816 * Return value:
2817 * - true: let the vcpu to access on the same address again.
2818 * - false: let the real page fault path to fix it.
2820 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2821 u32 error_code)
2823 struct kvm_shadow_walk_iterator iterator;
2824 struct kvm_mmu_page *sp;
2825 bool ret = false;
2826 u64 spte = 0ull;
2828 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2829 return false;
2831 if (!page_fault_can_be_fast(error_code))
2832 return false;
2834 walk_shadow_page_lockless_begin(vcpu);
2835 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2836 if (!is_shadow_present_pte(spte) || iterator.level < level)
2837 break;
2840 * If the mapping has been changed, let the vcpu fault on the
2841 * same address again.
2843 if (!is_rmap_spte(spte)) {
2844 ret = true;
2845 goto exit;
2848 sp = page_header(__pa(iterator.sptep));
2849 if (!is_last_spte(spte, sp->role.level))
2850 goto exit;
2853 * Check if it is a spurious fault caused by TLB lazily flushed.
2855 * Need not check the access of upper level table entries since
2856 * they are always ACC_ALL.
2858 if (is_writable_pte(spte)) {
2859 ret = true;
2860 goto exit;
2864 * Currently, to simplify the code, only the spte write-protected
2865 * by dirty-log can be fast fixed.
2867 if (!spte_is_locklessly_modifiable(spte))
2868 goto exit;
2871 * Do not fix write-permission on the large spte since we only dirty
2872 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2873 * that means other pages are missed if its slot is dirty-logged.
2875 * Instead, we let the slow page fault path create a normal spte to
2876 * fix the access.
2878 * See the comments in kvm_arch_commit_memory_region().
2880 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2881 goto exit;
2884 * Currently, fast page fault only works for direct mapping since
2885 * the gfn is not stable for indirect shadow page.
2886 * See Documentation/virtual/kvm/locking.txt to get more detail.
2888 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2889 exit:
2890 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2891 spte, ret);
2892 walk_shadow_page_lockless_end(vcpu);
2894 return ret;
2897 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2898 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2899 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2901 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2902 gfn_t gfn, bool prefault)
2904 int r;
2905 int level;
2906 int force_pt_level;
2907 pfn_t pfn;
2908 unsigned long mmu_seq;
2909 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2911 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2912 if (likely(!force_pt_level)) {
2913 level = mapping_level(vcpu, gfn);
2915 * This path builds a PAE pagetable - so we can map
2916 * 2mb pages at maximum. Therefore check if the level
2917 * is larger than that.
2919 if (level > PT_DIRECTORY_LEVEL)
2920 level = PT_DIRECTORY_LEVEL;
2922 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2923 } else
2924 level = PT_PAGE_TABLE_LEVEL;
2926 if (fast_page_fault(vcpu, v, level, error_code))
2927 return 0;
2929 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2930 smp_rmb();
2932 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2933 return 0;
2935 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2936 return r;
2938 spin_lock(&vcpu->kvm->mmu_lock);
2939 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2940 goto out_unlock;
2941 make_mmu_pages_available(vcpu);
2942 if (likely(!force_pt_level))
2943 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2944 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2945 prefault);
2946 spin_unlock(&vcpu->kvm->mmu_lock);
2949 return r;
2951 out_unlock:
2952 spin_unlock(&vcpu->kvm->mmu_lock);
2953 kvm_release_pfn_clean(pfn);
2954 return 0;
2958 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2960 int i;
2961 struct kvm_mmu_page *sp;
2962 LIST_HEAD(invalid_list);
2964 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2965 return;
2967 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2968 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2969 vcpu->arch.mmu.direct_map)) {
2970 hpa_t root = vcpu->arch.mmu.root_hpa;
2972 spin_lock(&vcpu->kvm->mmu_lock);
2973 sp = page_header(root);
2974 --sp->root_count;
2975 if (!sp->root_count && sp->role.invalid) {
2976 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2977 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2979 spin_unlock(&vcpu->kvm->mmu_lock);
2980 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2981 return;
2984 spin_lock(&vcpu->kvm->mmu_lock);
2985 for (i = 0; i < 4; ++i) {
2986 hpa_t root = vcpu->arch.mmu.pae_root[i];
2988 if (root) {
2989 root &= PT64_BASE_ADDR_MASK;
2990 sp = page_header(root);
2991 --sp->root_count;
2992 if (!sp->root_count && sp->role.invalid)
2993 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2994 &invalid_list);
2996 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2998 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2999 spin_unlock(&vcpu->kvm->mmu_lock);
3000 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3003 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3005 int ret = 0;
3007 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3008 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3009 ret = 1;
3012 return ret;
3015 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3017 struct kvm_mmu_page *sp;
3018 unsigned i;
3020 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3021 spin_lock(&vcpu->kvm->mmu_lock);
3022 make_mmu_pages_available(vcpu);
3023 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3024 1, ACC_ALL, NULL);
3025 ++sp->root_count;
3026 spin_unlock(&vcpu->kvm->mmu_lock);
3027 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3028 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3029 for (i = 0; i < 4; ++i) {
3030 hpa_t root = vcpu->arch.mmu.pae_root[i];
3032 ASSERT(!VALID_PAGE(root));
3033 spin_lock(&vcpu->kvm->mmu_lock);
3034 make_mmu_pages_available(vcpu);
3035 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3036 i << 30,
3037 PT32_ROOT_LEVEL, 1, ACC_ALL,
3038 NULL);
3039 root = __pa(sp->spt);
3040 ++sp->root_count;
3041 spin_unlock(&vcpu->kvm->mmu_lock);
3042 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3044 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3045 } else
3046 BUG();
3048 return 0;
3051 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3053 struct kvm_mmu_page *sp;
3054 u64 pdptr, pm_mask;
3055 gfn_t root_gfn;
3056 int i;
3058 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3060 if (mmu_check_root(vcpu, root_gfn))
3061 return 1;
3064 * Do we shadow a long mode page table? If so we need to
3065 * write-protect the guests page table root.
3067 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3068 hpa_t root = vcpu->arch.mmu.root_hpa;
3070 ASSERT(!VALID_PAGE(root));
3072 spin_lock(&vcpu->kvm->mmu_lock);
3073 make_mmu_pages_available(vcpu);
3074 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3075 0, ACC_ALL, NULL);
3076 root = __pa(sp->spt);
3077 ++sp->root_count;
3078 spin_unlock(&vcpu->kvm->mmu_lock);
3079 vcpu->arch.mmu.root_hpa = root;
3080 return 0;
3084 * We shadow a 32 bit page table. This may be a legacy 2-level
3085 * or a PAE 3-level page table. In either case we need to be aware that
3086 * the shadow page table may be a PAE or a long mode page table.
3088 pm_mask = PT_PRESENT_MASK;
3089 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3090 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3092 for (i = 0; i < 4; ++i) {
3093 hpa_t root = vcpu->arch.mmu.pae_root[i];
3095 ASSERT(!VALID_PAGE(root));
3096 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3097 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3098 if (!is_present_gpte(pdptr)) {
3099 vcpu->arch.mmu.pae_root[i] = 0;
3100 continue;
3102 root_gfn = pdptr >> PAGE_SHIFT;
3103 if (mmu_check_root(vcpu, root_gfn))
3104 return 1;
3106 spin_lock(&vcpu->kvm->mmu_lock);
3107 make_mmu_pages_available(vcpu);
3108 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3109 PT32_ROOT_LEVEL, 0,
3110 ACC_ALL, NULL);
3111 root = __pa(sp->spt);
3112 ++sp->root_count;
3113 spin_unlock(&vcpu->kvm->mmu_lock);
3115 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3117 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3120 * If we shadow a 32 bit page table with a long mode page
3121 * table we enter this path.
3123 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3124 if (vcpu->arch.mmu.lm_root == NULL) {
3126 * The additional page necessary for this is only
3127 * allocated on demand.
3130 u64 *lm_root;
3132 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3133 if (lm_root == NULL)
3134 return 1;
3136 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3138 vcpu->arch.mmu.lm_root = lm_root;
3141 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3144 return 0;
3147 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3149 if (vcpu->arch.mmu.direct_map)
3150 return mmu_alloc_direct_roots(vcpu);
3151 else
3152 return mmu_alloc_shadow_roots(vcpu);
3155 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3157 int i;
3158 struct kvm_mmu_page *sp;
3160 if (vcpu->arch.mmu.direct_map)
3161 return;
3163 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3164 return;
3166 vcpu_clear_mmio_info(vcpu, ~0ul);
3167 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3168 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3169 hpa_t root = vcpu->arch.mmu.root_hpa;
3170 sp = page_header(root);
3171 mmu_sync_children(vcpu, sp);
3172 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3173 return;
3175 for (i = 0; i < 4; ++i) {
3176 hpa_t root = vcpu->arch.mmu.pae_root[i];
3178 if (root && VALID_PAGE(root)) {
3179 root &= PT64_BASE_ADDR_MASK;
3180 sp = page_header(root);
3181 mmu_sync_children(vcpu, sp);
3184 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3187 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3189 spin_lock(&vcpu->kvm->mmu_lock);
3190 mmu_sync_roots(vcpu);
3191 spin_unlock(&vcpu->kvm->mmu_lock);
3193 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3195 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3196 u32 access, struct x86_exception *exception)
3198 if (exception)
3199 exception->error_code = 0;
3200 return vaddr;
3203 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3204 u32 access,
3205 struct x86_exception *exception)
3207 if (exception)
3208 exception->error_code = 0;
3209 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3212 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3214 if (direct)
3215 return vcpu_match_mmio_gpa(vcpu, addr);
3217 return vcpu_match_mmio_gva(vcpu, addr);
3222 * On direct hosts, the last spte is only allows two states
3223 * for mmio page fault:
3224 * - It is the mmio spte
3225 * - It is zapped or it is being zapped.
3227 * This function completely checks the spte when the last spte
3228 * is not the mmio spte.
3230 static bool check_direct_spte_mmio_pf(u64 spte)
3232 return __check_direct_spte_mmio_pf(spte);
3235 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3237 struct kvm_shadow_walk_iterator iterator;
3238 u64 spte = 0ull;
3240 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3241 return spte;
3243 walk_shadow_page_lockless_begin(vcpu);
3244 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3245 if (!is_shadow_present_pte(spte))
3246 break;
3247 walk_shadow_page_lockless_end(vcpu);
3249 return spte;
3252 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3254 u64 spte;
3256 if (quickly_check_mmio_pf(vcpu, addr, direct))
3257 return RET_MMIO_PF_EMULATE;
3259 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3261 if (is_mmio_spte(spte)) {
3262 gfn_t gfn = get_mmio_spte_gfn(spte);
3263 unsigned access = get_mmio_spte_access(spte);
3265 if (!check_mmio_spte(vcpu->kvm, spte))
3266 return RET_MMIO_PF_INVALID;
3268 if (direct)
3269 addr = 0;
3271 trace_handle_mmio_page_fault(addr, gfn, access);
3272 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3273 return RET_MMIO_PF_EMULATE;
3277 * It's ok if the gva is remapped by other cpus on shadow guest,
3278 * it's a BUG if the gfn is not a mmio page.
3280 if (direct && !check_direct_spte_mmio_pf(spte))
3281 return RET_MMIO_PF_BUG;
3284 * If the page table is zapped by other cpus, let CPU fault again on
3285 * the address.
3287 return RET_MMIO_PF_RETRY;
3289 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3291 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3292 u32 error_code, bool direct)
3294 int ret;
3296 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3297 WARN_ON(ret == RET_MMIO_PF_BUG);
3298 return ret;
3301 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3302 u32 error_code, bool prefault)
3304 gfn_t gfn;
3305 int r;
3307 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3309 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3310 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3312 if (likely(r != RET_MMIO_PF_INVALID))
3313 return r;
3316 r = mmu_topup_memory_caches(vcpu);
3317 if (r)
3318 return r;
3320 ASSERT(vcpu);
3321 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3323 gfn = gva >> PAGE_SHIFT;
3325 return nonpaging_map(vcpu, gva & PAGE_MASK,
3326 error_code, gfn, prefault);
3329 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3331 struct kvm_arch_async_pf arch;
3333 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3334 arch.gfn = gfn;
3335 arch.direct_map = vcpu->arch.mmu.direct_map;
3336 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3338 return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3341 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3343 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3344 kvm_event_needs_reinjection(vcpu)))
3345 return false;
3347 return kvm_x86_ops->interrupt_allowed(vcpu);
3350 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3351 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3353 bool async;
3355 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3357 if (!async)
3358 return false; /* *pfn has correct page already */
3360 if (!prefault && can_do_async_pf(vcpu)) {
3361 trace_kvm_try_async_get_page(gva, gfn);
3362 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3363 trace_kvm_async_pf_doublefault(gva, gfn);
3364 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3365 return true;
3366 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3367 return true;
3370 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3372 return false;
3375 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3376 bool prefault)
3378 pfn_t pfn;
3379 int r;
3380 int level;
3381 int force_pt_level;
3382 gfn_t gfn = gpa >> PAGE_SHIFT;
3383 unsigned long mmu_seq;
3384 int write = error_code & PFERR_WRITE_MASK;
3385 bool map_writable;
3387 ASSERT(vcpu);
3388 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3390 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3391 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3393 if (likely(r != RET_MMIO_PF_INVALID))
3394 return r;
3397 r = mmu_topup_memory_caches(vcpu);
3398 if (r)
3399 return r;
3401 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3402 if (likely(!force_pt_level)) {
3403 level = mapping_level(vcpu, gfn);
3404 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3405 } else
3406 level = PT_PAGE_TABLE_LEVEL;
3408 if (fast_page_fault(vcpu, gpa, level, error_code))
3409 return 0;
3411 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3412 smp_rmb();
3414 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3415 return 0;
3417 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3418 return r;
3420 spin_lock(&vcpu->kvm->mmu_lock);
3421 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3422 goto out_unlock;
3423 make_mmu_pages_available(vcpu);
3424 if (likely(!force_pt_level))
3425 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3426 r = __direct_map(vcpu, gpa, write, map_writable,
3427 level, gfn, pfn, prefault);
3428 spin_unlock(&vcpu->kvm->mmu_lock);
3430 return r;
3432 out_unlock:
3433 spin_unlock(&vcpu->kvm->mmu_lock);
3434 kvm_release_pfn_clean(pfn);
3435 return 0;
3438 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3439 struct kvm_mmu *context)
3441 context->page_fault = nonpaging_page_fault;
3442 context->gva_to_gpa = nonpaging_gva_to_gpa;
3443 context->sync_page = nonpaging_sync_page;
3444 context->invlpg = nonpaging_invlpg;
3445 context->update_pte = nonpaging_update_pte;
3446 context->root_level = 0;
3447 context->shadow_root_level = PT32E_ROOT_LEVEL;
3448 context->root_hpa = INVALID_PAGE;
3449 context->direct_map = true;
3450 context->nx = false;
3453 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3455 ++vcpu->stat.tlb_flush;
3456 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3458 EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
3460 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3462 mmu_free_roots(vcpu);
3465 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3467 return kvm_read_cr3(vcpu);
3470 static void inject_page_fault(struct kvm_vcpu *vcpu,
3471 struct x86_exception *fault)
3473 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3476 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3477 unsigned access, int *nr_present)
3479 if (unlikely(is_mmio_spte(*sptep))) {
3480 if (gfn != get_mmio_spte_gfn(*sptep)) {
3481 mmu_spte_clear_no_track(sptep);
3482 return true;
3485 (*nr_present)++;
3486 mark_mmio_spte(kvm, sptep, gfn, access);
3487 return true;
3490 return false;
3493 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3495 unsigned index;
3497 index = level - 1;
3498 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3499 return mmu->last_pte_bitmap & (1 << index);
3502 #define PTTYPE_EPT 18 /* arbitrary */
3503 #define PTTYPE PTTYPE_EPT
3504 #include "paging_tmpl.h"
3505 #undef PTTYPE
3507 #define PTTYPE 64
3508 #include "paging_tmpl.h"
3509 #undef PTTYPE
3511 #define PTTYPE 32
3512 #include "paging_tmpl.h"
3513 #undef PTTYPE
3515 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3516 struct kvm_mmu *context)
3518 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3519 u64 exb_bit_rsvd = 0;
3520 u64 gbpages_bit_rsvd = 0;
3522 context->bad_mt_xwr = 0;
3524 if (!context->nx)
3525 exb_bit_rsvd = rsvd_bits(63, 63);
3526 if (!guest_cpuid_has_gbpages(vcpu))
3527 gbpages_bit_rsvd = rsvd_bits(7, 7);
3528 switch (context->root_level) {
3529 case PT32_ROOT_LEVEL:
3530 /* no rsvd bits for 2 level 4K page table entries */
3531 context->rsvd_bits_mask[0][1] = 0;
3532 context->rsvd_bits_mask[0][0] = 0;
3533 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3535 if (!is_pse(vcpu)) {
3536 context->rsvd_bits_mask[1][1] = 0;
3537 break;
3540 if (is_cpuid_PSE36())
3541 /* 36bits PSE 4MB page */
3542 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3543 else
3544 /* 32 bits PSE 4MB page */
3545 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3546 break;
3547 case PT32E_ROOT_LEVEL:
3548 context->rsvd_bits_mask[0][2] =
3549 rsvd_bits(maxphyaddr, 63) |
3550 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3551 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3552 rsvd_bits(maxphyaddr, 62); /* PDE */
3553 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3554 rsvd_bits(maxphyaddr, 62); /* PTE */
3555 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3556 rsvd_bits(maxphyaddr, 62) |
3557 rsvd_bits(13, 20); /* large page */
3558 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3559 break;
3560 case PT64_ROOT_LEVEL:
3561 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3562 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 7);
3563 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3564 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3565 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3566 rsvd_bits(maxphyaddr, 51);
3567 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3568 rsvd_bits(maxphyaddr, 51);
3569 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3570 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3571 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3572 rsvd_bits(13, 29);
3573 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3574 rsvd_bits(maxphyaddr, 51) |
3575 rsvd_bits(13, 20); /* large page */
3576 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3577 break;
3581 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3582 struct kvm_mmu *context, bool execonly)
3584 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3585 int pte;
3587 context->rsvd_bits_mask[0][3] =
3588 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3589 context->rsvd_bits_mask[0][2] =
3590 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3591 context->rsvd_bits_mask[0][1] =
3592 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3593 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3595 /* large page */
3596 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3597 context->rsvd_bits_mask[1][2] =
3598 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3599 context->rsvd_bits_mask[1][1] =
3600 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3601 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3603 for (pte = 0; pte < 64; pte++) {
3604 int rwx_bits = pte & 7;
3605 int mt = pte >> 3;
3606 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3607 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3608 (rwx_bits == 0x4 && !execonly))
3609 context->bad_mt_xwr |= (1ull << pte);
3613 void update_permission_bitmask(struct kvm_vcpu *vcpu,
3614 struct kvm_mmu *mmu, bool ept)
3616 unsigned bit, byte, pfec;
3617 u8 map;
3618 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3620 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3621 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3622 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3623 pfec = byte << 1;
3624 map = 0;
3625 wf = pfec & PFERR_WRITE_MASK;
3626 uf = pfec & PFERR_USER_MASK;
3627 ff = pfec & PFERR_FETCH_MASK;
3629 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3630 * subject to SMAP restrictions, and cleared otherwise. The
3631 * bit is only meaningful if the SMAP bit is set in CR4.
3633 smapf = !(pfec & PFERR_RSVD_MASK);
3634 for (bit = 0; bit < 8; ++bit) {
3635 x = bit & ACC_EXEC_MASK;
3636 w = bit & ACC_WRITE_MASK;
3637 u = bit & ACC_USER_MASK;
3639 if (!ept) {
3640 /* Not really needed: !nx will cause pte.nx to fault */
3641 x |= !mmu->nx;
3642 /* Allow supervisor writes if !cr0.wp */
3643 w |= !is_write_protection(vcpu) && !uf;
3644 /* Disallow supervisor fetches of user code if cr4.smep */
3645 x &= !(cr4_smep && u && !uf);
3648 * SMAP:kernel-mode data accesses from user-mode
3649 * mappings should fault. A fault is considered
3650 * as a SMAP violation if all of the following
3651 * conditions are ture:
3652 * - X86_CR4_SMAP is set in CR4
3653 * - An user page is accessed
3654 * - Page fault in kernel mode
3655 * - if CPL = 3 or X86_EFLAGS_AC is clear
3657 * Here, we cover the first three conditions.
3658 * The fourth is computed dynamically in
3659 * permission_fault() and is in smapf.
3661 * Also, SMAP does not affect instruction
3662 * fetches, add the !ff check here to make it
3663 * clearer.
3665 smap = cr4_smap && u && !uf && !ff;
3666 } else
3667 /* Not really needed: no U/S accesses on ept */
3668 u = 1;
3670 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3671 (smapf && smap);
3672 map |= fault << bit;
3674 mmu->permissions[byte] = map;
3678 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3680 u8 map;
3681 unsigned level, root_level = mmu->root_level;
3682 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3684 if (root_level == PT32E_ROOT_LEVEL)
3685 --root_level;
3686 /* PT_PAGE_TABLE_LEVEL always terminates */
3687 map = 1 | (1 << ps_set_index);
3688 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3689 if (level <= PT_PDPE_LEVEL
3690 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3691 map |= 1 << (ps_set_index | (level - 1));
3693 mmu->last_pte_bitmap = map;
3696 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3697 struct kvm_mmu *context,
3698 int level)
3700 context->nx = is_nx(vcpu);
3701 context->root_level = level;
3703 reset_rsvds_bits_mask(vcpu, context);
3704 update_permission_bitmask(vcpu, context, false);
3705 update_last_pte_bitmap(vcpu, context);
3707 ASSERT(is_pae(vcpu));
3708 context->page_fault = paging64_page_fault;
3709 context->gva_to_gpa = paging64_gva_to_gpa;
3710 context->sync_page = paging64_sync_page;
3711 context->invlpg = paging64_invlpg;
3712 context->update_pte = paging64_update_pte;
3713 context->shadow_root_level = level;
3714 context->root_hpa = INVALID_PAGE;
3715 context->direct_map = false;
3718 static void paging64_init_context(struct kvm_vcpu *vcpu,
3719 struct kvm_mmu *context)
3721 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3724 static void paging32_init_context(struct kvm_vcpu *vcpu,
3725 struct kvm_mmu *context)
3727 context->nx = false;
3728 context->root_level = PT32_ROOT_LEVEL;
3730 reset_rsvds_bits_mask(vcpu, context);
3731 update_permission_bitmask(vcpu, context, false);
3732 update_last_pte_bitmap(vcpu, context);
3734 context->page_fault = paging32_page_fault;
3735 context->gva_to_gpa = paging32_gva_to_gpa;
3736 context->sync_page = paging32_sync_page;
3737 context->invlpg = paging32_invlpg;
3738 context->update_pte = paging32_update_pte;
3739 context->shadow_root_level = PT32E_ROOT_LEVEL;
3740 context->root_hpa = INVALID_PAGE;
3741 context->direct_map = false;
3744 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3745 struct kvm_mmu *context)
3747 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3750 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3752 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3754 context->base_role.word = 0;
3755 context->page_fault = tdp_page_fault;
3756 context->sync_page = nonpaging_sync_page;
3757 context->invlpg = nonpaging_invlpg;
3758 context->update_pte = nonpaging_update_pte;
3759 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3760 context->root_hpa = INVALID_PAGE;
3761 context->direct_map = true;
3762 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3763 context->get_cr3 = get_cr3;
3764 context->get_pdptr = kvm_pdptr_read;
3765 context->inject_page_fault = kvm_inject_page_fault;
3767 if (!is_paging(vcpu)) {
3768 context->nx = false;
3769 context->gva_to_gpa = nonpaging_gva_to_gpa;
3770 context->root_level = 0;
3771 } else if (is_long_mode(vcpu)) {
3772 context->nx = is_nx(vcpu);
3773 context->root_level = PT64_ROOT_LEVEL;
3774 reset_rsvds_bits_mask(vcpu, context);
3775 context->gva_to_gpa = paging64_gva_to_gpa;
3776 } else if (is_pae(vcpu)) {
3777 context->nx = is_nx(vcpu);
3778 context->root_level = PT32E_ROOT_LEVEL;
3779 reset_rsvds_bits_mask(vcpu, context);
3780 context->gva_to_gpa = paging64_gva_to_gpa;
3781 } else {
3782 context->nx = false;
3783 context->root_level = PT32_ROOT_LEVEL;
3784 reset_rsvds_bits_mask(vcpu, context);
3785 context->gva_to_gpa = paging32_gva_to_gpa;
3788 update_permission_bitmask(vcpu, context, false);
3789 update_last_pte_bitmap(vcpu, context);
3792 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3794 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3795 ASSERT(vcpu);
3796 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3798 if (!is_paging(vcpu))
3799 nonpaging_init_context(vcpu, context);
3800 else if (is_long_mode(vcpu))
3801 paging64_init_context(vcpu, context);
3802 else if (is_pae(vcpu))
3803 paging32E_init_context(vcpu, context);
3804 else
3805 paging32_init_context(vcpu, context);
3807 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3808 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3809 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3810 vcpu->arch.mmu.base_role.smep_andnot_wp
3811 = smep && !is_write_protection(vcpu);
3813 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3815 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
3816 bool execonly)
3818 ASSERT(vcpu);
3819 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3821 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3823 context->nx = true;
3824 context->page_fault = ept_page_fault;
3825 context->gva_to_gpa = ept_gva_to_gpa;
3826 context->sync_page = ept_sync_page;
3827 context->invlpg = ept_invlpg;
3828 context->update_pte = ept_update_pte;
3829 context->root_level = context->shadow_root_level;
3830 context->root_hpa = INVALID_PAGE;
3831 context->direct_map = false;
3833 update_permission_bitmask(vcpu, context, true);
3834 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3836 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3838 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3840 kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3841 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3842 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3843 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3844 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3847 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3849 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3851 g_context->get_cr3 = get_cr3;
3852 g_context->get_pdptr = kvm_pdptr_read;
3853 g_context->inject_page_fault = kvm_inject_page_fault;
3856 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3857 * translation of l2_gpa to l1_gpa addresses is done using the
3858 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3859 * functions between mmu and nested_mmu are swapped.
3861 if (!is_paging(vcpu)) {
3862 g_context->nx = false;
3863 g_context->root_level = 0;
3864 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3865 } else if (is_long_mode(vcpu)) {
3866 g_context->nx = is_nx(vcpu);
3867 g_context->root_level = PT64_ROOT_LEVEL;
3868 reset_rsvds_bits_mask(vcpu, g_context);
3869 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3870 } else if (is_pae(vcpu)) {
3871 g_context->nx = is_nx(vcpu);
3872 g_context->root_level = PT32E_ROOT_LEVEL;
3873 reset_rsvds_bits_mask(vcpu, g_context);
3874 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3875 } else {
3876 g_context->nx = false;
3877 g_context->root_level = PT32_ROOT_LEVEL;
3878 reset_rsvds_bits_mask(vcpu, g_context);
3879 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3882 update_permission_bitmask(vcpu, g_context, false);
3883 update_last_pte_bitmap(vcpu, g_context);
3886 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3888 if (mmu_is_nested(vcpu))
3889 return init_kvm_nested_mmu(vcpu);
3890 else if (tdp_enabled)
3891 return init_kvm_tdp_mmu(vcpu);
3892 else
3893 return init_kvm_softmmu(vcpu);
3896 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3898 ASSERT(vcpu);
3900 kvm_mmu_unload(vcpu);
3901 init_kvm_mmu(vcpu);
3903 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3905 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3907 int r;
3909 r = mmu_topup_memory_caches(vcpu);
3910 if (r)
3911 goto out;
3912 r = mmu_alloc_roots(vcpu);
3913 kvm_mmu_sync_roots(vcpu);
3914 if (r)
3915 goto out;
3916 /* set_cr3() should ensure TLB has been flushed */
3917 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3918 out:
3919 return r;
3921 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3923 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3925 mmu_free_roots(vcpu);
3926 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3928 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3930 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3931 struct kvm_mmu_page *sp, u64 *spte,
3932 const void *new)
3934 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3935 ++vcpu->kvm->stat.mmu_pde_zapped;
3936 return;
3939 ++vcpu->kvm->stat.mmu_pte_updated;
3940 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3943 static bool need_remote_flush(u64 old, u64 new)
3945 if (!is_shadow_present_pte(old))
3946 return false;
3947 if (!is_shadow_present_pte(new))
3948 return true;
3949 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3950 return true;
3951 old ^= shadow_nx_mask;
3952 new ^= shadow_nx_mask;
3953 return (old & ~new & PT64_PERM_MASK) != 0;
3956 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3957 bool remote_flush, bool local_flush)
3959 if (zap_page)
3960 return;
3962 if (remote_flush)
3963 kvm_flush_remote_tlbs(vcpu->kvm);
3964 else if (local_flush)
3965 kvm_mmu_flush_tlb(vcpu);
3968 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3969 const u8 *new, int *bytes)
3971 u64 gentry;
3972 int r;
3975 * Assume that the pte write on a page table of the same type
3976 * as the current vcpu paging mode since we update the sptes only
3977 * when they have the same mode.
3979 if (is_pae(vcpu) && *bytes == 4) {
3980 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3981 *gpa &= ~(gpa_t)7;
3982 *bytes = 8;
3983 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3984 if (r)
3985 gentry = 0;
3986 new = (const u8 *)&gentry;
3989 switch (*bytes) {
3990 case 4:
3991 gentry = *(const u32 *)new;
3992 break;
3993 case 8:
3994 gentry = *(const u64 *)new;
3995 break;
3996 default:
3997 gentry = 0;
3998 break;
4001 return gentry;
4005 * If we're seeing too many writes to a page, it may no longer be a page table,
4006 * or we may be forking, in which case it is better to unmap the page.
4008 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4011 * Skip write-flooding detected for the sp whose level is 1, because
4012 * it can become unsync, then the guest page is not write-protected.
4014 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4015 return false;
4017 return ++sp->write_flooding_count >= 3;
4021 * Misaligned accesses are too much trouble to fix up; also, they usually
4022 * indicate a page is not used as a page table.
4024 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4025 int bytes)
4027 unsigned offset, pte_size, misaligned;
4029 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4030 gpa, bytes, sp->role.word);
4032 offset = offset_in_page(gpa);
4033 pte_size = sp->role.cr4_pae ? 8 : 4;
4036 * Sometimes, the OS only writes the last one bytes to update status
4037 * bits, for example, in linux, andb instruction is used in clear_bit().
4039 if (!(offset & (pte_size - 1)) && bytes == 1)
4040 return false;
4042 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4043 misaligned |= bytes < 4;
4045 return misaligned;
4048 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4050 unsigned page_offset, quadrant;
4051 u64 *spte;
4052 int level;
4054 page_offset = offset_in_page(gpa);
4055 level = sp->role.level;
4056 *nspte = 1;
4057 if (!sp->role.cr4_pae) {
4058 page_offset <<= 1; /* 32->64 */
4060 * A 32-bit pde maps 4MB while the shadow pdes map
4061 * only 2MB. So we need to double the offset again
4062 * and zap two pdes instead of one.
4064 if (level == PT32_ROOT_LEVEL) {
4065 page_offset &= ~7; /* kill rounding error */
4066 page_offset <<= 1;
4067 *nspte = 2;
4069 quadrant = page_offset >> PAGE_SHIFT;
4070 page_offset &= ~PAGE_MASK;
4071 if (quadrant != sp->role.quadrant)
4072 return NULL;
4075 spte = &sp->spt[page_offset / sizeof(*spte)];
4076 return spte;
4079 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4080 const u8 *new, int bytes)
4082 gfn_t gfn = gpa >> PAGE_SHIFT;
4083 union kvm_mmu_page_role mask = { .word = 0 };
4084 struct kvm_mmu_page *sp;
4085 LIST_HEAD(invalid_list);
4086 u64 entry, gentry, *spte;
4087 int npte;
4088 bool remote_flush, local_flush, zap_page;
4091 * If we don't have indirect shadow pages, it means no page is
4092 * write-protected, so we can exit simply.
4094 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4095 return;
4097 zap_page = remote_flush = local_flush = false;
4099 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4101 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4104 * No need to care whether allocation memory is successful
4105 * or not since pte prefetch is skiped if it does not have
4106 * enough objects in the cache.
4108 mmu_topup_memory_caches(vcpu);
4110 spin_lock(&vcpu->kvm->mmu_lock);
4111 ++vcpu->kvm->stat.mmu_pte_write;
4112 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4114 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4115 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4116 if (detect_write_misaligned(sp, gpa, bytes) ||
4117 detect_write_flooding(sp)) {
4118 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4119 &invalid_list);
4120 ++vcpu->kvm->stat.mmu_flooded;
4121 continue;
4124 spte = get_written_sptes(sp, gpa, &npte);
4125 if (!spte)
4126 continue;
4128 local_flush = true;
4129 while (npte--) {
4130 entry = *spte;
4131 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4132 if (gentry &&
4133 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4134 & mask.word) && rmap_can_add(vcpu))
4135 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4136 if (need_remote_flush(entry, *spte))
4137 remote_flush = true;
4138 ++spte;
4141 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4142 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4143 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4144 spin_unlock(&vcpu->kvm->mmu_lock);
4147 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4149 gpa_t gpa;
4150 int r;
4152 if (vcpu->arch.mmu.direct_map)
4153 return 0;
4155 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4157 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4159 return r;
4161 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4163 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4165 LIST_HEAD(invalid_list);
4167 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4168 return;
4170 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4171 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4172 break;
4174 ++vcpu->kvm->stat.mmu_recycled;
4176 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4179 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4181 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4182 return vcpu_match_mmio_gpa(vcpu, addr);
4184 return vcpu_match_mmio_gva(vcpu, addr);
4187 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4188 void *insn, int insn_len)
4190 int r, emulation_type = EMULTYPE_RETRY;
4191 enum emulation_result er;
4193 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4194 if (r < 0)
4195 goto out;
4197 if (!r) {
4198 r = 1;
4199 goto out;
4202 if (is_mmio_page_fault(vcpu, cr2))
4203 emulation_type = 0;
4205 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4207 switch (er) {
4208 case EMULATE_DONE:
4209 return 1;
4210 case EMULATE_USER_EXIT:
4211 ++vcpu->stat.mmio_exits;
4212 /* fall through */
4213 case EMULATE_FAIL:
4214 return 0;
4215 default:
4216 BUG();
4218 out:
4219 return r;
4221 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4223 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4225 vcpu->arch.mmu.invlpg(vcpu, gva);
4226 kvm_mmu_flush_tlb(vcpu);
4227 ++vcpu->stat.invlpg;
4229 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4231 void kvm_enable_tdp(void)
4233 tdp_enabled = true;
4235 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4237 void kvm_disable_tdp(void)
4239 tdp_enabled = false;
4241 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4243 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4245 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4246 if (vcpu->arch.mmu.lm_root != NULL)
4247 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4250 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4252 struct page *page;
4253 int i;
4255 ASSERT(vcpu);
4258 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4259 * Therefore we need to allocate shadow page tables in the first
4260 * 4GB of memory, which happens to fit the DMA32 zone.
4262 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4263 if (!page)
4264 return -ENOMEM;
4266 vcpu->arch.mmu.pae_root = page_address(page);
4267 for (i = 0; i < 4; ++i)
4268 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4270 return 0;
4273 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4275 ASSERT(vcpu);
4277 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4278 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4279 vcpu->arch.mmu.translate_gpa = translate_gpa;
4280 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4282 return alloc_mmu_pages(vcpu);
4285 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4287 ASSERT(vcpu);
4288 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4290 init_kvm_mmu(vcpu);
4293 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4295 struct kvm_memory_slot *memslot;
4296 gfn_t last_gfn;
4297 int i;
4299 memslot = id_to_memslot(kvm->memslots, slot);
4300 last_gfn = memslot->base_gfn + memslot->npages - 1;
4302 spin_lock(&kvm->mmu_lock);
4304 for (i = PT_PAGE_TABLE_LEVEL;
4305 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4306 unsigned long *rmapp;
4307 unsigned long last_index, index;
4309 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4310 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4312 for (index = 0; index <= last_index; ++index, ++rmapp) {
4313 if (*rmapp)
4314 __rmap_write_protect(kvm, rmapp, false);
4316 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4317 cond_resched_lock(&kvm->mmu_lock);
4321 spin_unlock(&kvm->mmu_lock);
4324 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4325 * which do tlb flush out of mmu-lock should be serialized by
4326 * kvm->slots_lock otherwise tlb flush would be missed.
4328 lockdep_assert_held(&kvm->slots_lock);
4331 * We can flush all the TLBs out of the mmu lock without TLB
4332 * corruption since we just change the spte from writable to
4333 * readonly so that we only need to care the case of changing
4334 * spte from present to present (changing the spte from present
4335 * to nonpresent will flush all the TLBs immediately), in other
4336 * words, the only case we care is mmu_spte_update() where we
4337 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4338 * instead of PT_WRITABLE_MASK, that means it does not depend
4339 * on PT_WRITABLE_MASK anymore.
4341 kvm_flush_remote_tlbs(kvm);
4344 #define BATCH_ZAP_PAGES 10
4345 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4347 struct kvm_mmu_page *sp, *node;
4348 int batch = 0;
4350 restart:
4351 list_for_each_entry_safe_reverse(sp, node,
4352 &kvm->arch.active_mmu_pages, link) {
4353 int ret;
4356 * No obsolete page exists before new created page since
4357 * active_mmu_pages is the FIFO list.
4359 if (!is_obsolete_sp(kvm, sp))
4360 break;
4363 * Since we are reversely walking the list and the invalid
4364 * list will be moved to the head, skip the invalid page
4365 * can help us to avoid the infinity list walking.
4367 if (sp->role.invalid)
4368 continue;
4371 * Need not flush tlb since we only zap the sp with invalid
4372 * generation number.
4374 if (batch >= BATCH_ZAP_PAGES &&
4375 cond_resched_lock(&kvm->mmu_lock)) {
4376 batch = 0;
4377 goto restart;
4380 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4381 &kvm->arch.zapped_obsolete_pages);
4382 batch += ret;
4384 if (ret)
4385 goto restart;
4389 * Should flush tlb before free page tables since lockless-walking
4390 * may use the pages.
4392 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4396 * Fast invalidate all shadow pages and use lock-break technique
4397 * to zap obsolete pages.
4399 * It's required when memslot is being deleted or VM is being
4400 * destroyed, in these cases, we should ensure that KVM MMU does
4401 * not use any resource of the being-deleted slot or all slots
4402 * after calling the function.
4404 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4406 spin_lock(&kvm->mmu_lock);
4407 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4408 kvm->arch.mmu_valid_gen++;
4411 * Notify all vcpus to reload its shadow page table
4412 * and flush TLB. Then all vcpus will switch to new
4413 * shadow page table with the new mmu_valid_gen.
4415 * Note: we should do this under the protection of
4416 * mmu-lock, otherwise, vcpu would purge shadow page
4417 * but miss tlb flush.
4419 kvm_reload_remote_mmus(kvm);
4421 kvm_zap_obsolete_pages(kvm);
4422 spin_unlock(&kvm->mmu_lock);
4425 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4427 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4430 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4433 * The very rare case: if the generation-number is round,
4434 * zap all shadow pages.
4436 if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
4437 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4438 kvm_mmu_invalidate_zap_all_pages(kvm);
4442 static unsigned long
4443 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4445 struct kvm *kvm;
4446 int nr_to_scan = sc->nr_to_scan;
4447 unsigned long freed = 0;
4449 spin_lock(&kvm_lock);
4451 list_for_each_entry(kvm, &vm_list, vm_list) {
4452 int idx;
4453 LIST_HEAD(invalid_list);
4456 * Never scan more than sc->nr_to_scan VM instances.
4457 * Will not hit this condition practically since we do not try
4458 * to shrink more than one VM and it is very unlikely to see
4459 * !n_used_mmu_pages so many times.
4461 if (!nr_to_scan--)
4462 break;
4464 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4465 * here. We may skip a VM instance errorneosly, but we do not
4466 * want to shrink a VM that only started to populate its MMU
4467 * anyway.
4469 if (!kvm->arch.n_used_mmu_pages &&
4470 !kvm_has_zapped_obsolete_pages(kvm))
4471 continue;
4473 idx = srcu_read_lock(&kvm->srcu);
4474 spin_lock(&kvm->mmu_lock);
4476 if (kvm_has_zapped_obsolete_pages(kvm)) {
4477 kvm_mmu_commit_zap_page(kvm,
4478 &kvm->arch.zapped_obsolete_pages);
4479 goto unlock;
4482 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4483 freed++;
4484 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4486 unlock:
4487 spin_unlock(&kvm->mmu_lock);
4488 srcu_read_unlock(&kvm->srcu, idx);
4491 * unfair on small ones
4492 * per-vm shrinkers cry out
4493 * sadness comes quickly
4495 list_move_tail(&kvm->vm_list, &vm_list);
4496 break;
4499 spin_unlock(&kvm_lock);
4500 return freed;
4503 static unsigned long
4504 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4506 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4509 static struct shrinker mmu_shrinker = {
4510 .count_objects = mmu_shrink_count,
4511 .scan_objects = mmu_shrink_scan,
4512 .seeks = DEFAULT_SEEKS * 10,
4515 static void mmu_destroy_caches(void)
4517 if (pte_list_desc_cache)
4518 kmem_cache_destroy(pte_list_desc_cache);
4519 if (mmu_page_header_cache)
4520 kmem_cache_destroy(mmu_page_header_cache);
4523 int kvm_mmu_module_init(void)
4525 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4526 sizeof(struct pte_list_desc),
4527 0, 0, NULL);
4528 if (!pte_list_desc_cache)
4529 goto nomem;
4531 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4532 sizeof(struct kvm_mmu_page),
4533 0, 0, NULL);
4534 if (!mmu_page_header_cache)
4535 goto nomem;
4537 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4538 goto nomem;
4540 register_shrinker(&mmu_shrinker);
4542 return 0;
4544 nomem:
4545 mmu_destroy_caches();
4546 return -ENOMEM;
4550 * Caculate mmu pages needed for kvm.
4552 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4554 unsigned int nr_mmu_pages;
4555 unsigned int nr_pages = 0;
4556 struct kvm_memslots *slots;
4557 struct kvm_memory_slot *memslot;
4559 slots = kvm_memslots(kvm);
4561 kvm_for_each_memslot(memslot, slots)
4562 nr_pages += memslot->npages;
4564 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4565 nr_mmu_pages = max(nr_mmu_pages,
4566 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4568 return nr_mmu_pages;
4571 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4573 struct kvm_shadow_walk_iterator iterator;
4574 u64 spte;
4575 int nr_sptes = 0;
4577 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4578 return nr_sptes;
4580 walk_shadow_page_lockless_begin(vcpu);
4581 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4582 sptes[iterator.level-1] = spte;
4583 nr_sptes++;
4584 if (!is_shadow_present_pte(spte))
4585 break;
4587 walk_shadow_page_lockless_end(vcpu);
4589 return nr_sptes;
4591 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4593 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4595 ASSERT(vcpu);
4597 kvm_mmu_unload(vcpu);
4598 free_mmu_pages(vcpu);
4599 mmu_free_memory_caches(vcpu);
4602 void kvm_mmu_module_exit(void)
4604 mmu_destroy_caches();
4605 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4606 unregister_shrinker(&mmu_shrinker);
4607 mmu_audit_disable();