2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
24 #include "kvm_cache_regs.h"
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
41 #include <asm/cmpxchg.h>
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
52 bool tdp_enabled
= false;
56 AUDIT_POST_PAGE_FAULT
,
67 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
68 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72 #define pgprintk(x...) do { } while (0)
73 #define rmap_printk(x...) do { } while (0)
79 module_param(dbg
, bool, 0644);
83 #define ASSERT(x) do { } while (0)
87 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
88 __FILE__, __LINE__, #x); \
92 #define PTE_PREFETCH_NUM 8
94 #define PT_FIRST_AVAIL_BITS_SHIFT 10
95 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
97 #define PT64_LEVEL_BITS 9
99 #define PT64_LEVEL_SHIFT(level) \
100 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
102 #define PT64_INDEX(address, level)\
103 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
106 #define PT32_LEVEL_BITS 10
108 #define PT32_LEVEL_SHIFT(level) \
109 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
111 #define PT32_LVL_OFFSET_MASK(level) \
112 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT32_LEVEL_BITS))) - 1))
115 #define PT32_INDEX(address, level)\
116 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
119 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
120 #define PT64_DIR_BASE_ADDR_MASK \
121 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 #define PT64_LVL_ADDR_MASK(level) \
123 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT64_LEVEL_BITS))) - 1))
125 #define PT64_LVL_OFFSET_MASK(level) \
126 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT64_LEVEL_BITS))) - 1))
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
136 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
137 | shadow_x_mask | shadow_nx_mask)
139 #define ACC_EXEC_MASK 1
140 #define ACC_WRITE_MASK PT_WRITABLE_MASK
141 #define ACC_USER_MASK PT_USER_MASK
142 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
144 #include <trace/events/kvm.h>
146 #define CREATE_TRACE_POINTS
147 #include "mmutrace.h"
149 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
154 /* make pte_list_desc fit well in cache line */
155 #define PTE_LIST_EXT 3
157 struct pte_list_desc
{
158 u64
*sptes
[PTE_LIST_EXT
];
159 struct pte_list_desc
*more
;
162 struct kvm_shadow_walk_iterator
{
170 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172 shadow_walk_okay(&(_walker)); \
173 shadow_walk_next(&(_walker)))
175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
176 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
177 shadow_walk_okay(&(_walker)) && \
178 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
179 __shadow_walk_next(&(_walker), spte))
181 static struct kmem_cache
*pte_list_desc_cache
;
182 static struct kmem_cache
*mmu_page_header_cache
;
183 static struct percpu_counter kvm_total_used_mmu_pages
;
185 static u64 __read_mostly shadow_nx_mask
;
186 static u64 __read_mostly shadow_x_mask
; /* mutual exclusive with nx_mask */
187 static u64 __read_mostly shadow_user_mask
;
188 static u64 __read_mostly shadow_accessed_mask
;
189 static u64 __read_mostly shadow_dirty_mask
;
190 static u64 __read_mostly shadow_mmio_mask
;
192 static void mmu_spte_set(u64
*sptep
, u64 spte
);
193 static void mmu_free_roots(struct kvm_vcpu
*vcpu
);
195 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask
)
197 shadow_mmio_mask
= mmio_mask
;
199 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask
);
202 * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
203 * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
206 #define MMIO_SPTE_GEN_LOW_SHIFT 3
207 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
209 #define MMIO_GEN_SHIFT 19
210 #define MMIO_GEN_LOW_SHIFT 9
211 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 1)
212 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
213 #define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
215 static u64
generation_mmio_spte_mask(unsigned int gen
)
219 WARN_ON(gen
> MMIO_MAX_GEN
);
221 mask
= (gen
& MMIO_GEN_LOW_MASK
) << MMIO_SPTE_GEN_LOW_SHIFT
;
222 mask
|= ((u64
)gen
>> MMIO_GEN_LOW_SHIFT
) << MMIO_SPTE_GEN_HIGH_SHIFT
;
226 static unsigned int get_mmio_spte_generation(u64 spte
)
230 spte
&= ~shadow_mmio_mask
;
232 gen
= (spte
>> MMIO_SPTE_GEN_LOW_SHIFT
) & MMIO_GEN_LOW_MASK
;
233 gen
|= (spte
>> MMIO_SPTE_GEN_HIGH_SHIFT
) << MMIO_GEN_LOW_SHIFT
;
237 static unsigned int kvm_current_mmio_generation(struct kvm
*kvm
)
240 * Init kvm generation close to MMIO_MAX_GEN to easily test the
241 * code of handling generation number wrap-around.
243 return (kvm_memslots(kvm
)->generation
+
244 MMIO_MAX_GEN
- 150) & MMIO_GEN_MASK
;
247 static void mark_mmio_spte(struct kvm
*kvm
, u64
*sptep
, u64 gfn
,
250 unsigned int gen
= kvm_current_mmio_generation(kvm
);
251 u64 mask
= generation_mmio_spte_mask(gen
);
253 access
&= ACC_WRITE_MASK
| ACC_USER_MASK
;
254 mask
|= shadow_mmio_mask
| access
| gfn
<< PAGE_SHIFT
;
256 trace_mark_mmio_spte(sptep
, gfn
, access
, gen
);
257 mmu_spte_set(sptep
, mask
);
260 static bool is_mmio_spte(u64 spte
)
262 return (spte
& shadow_mmio_mask
) == shadow_mmio_mask
;
265 static gfn_t
get_mmio_spte_gfn(u64 spte
)
267 u64 mask
= generation_mmio_spte_mask(MMIO_MAX_GEN
) | shadow_mmio_mask
;
268 return (spte
& ~mask
) >> PAGE_SHIFT
;
271 static unsigned get_mmio_spte_access(u64 spte
)
273 u64 mask
= generation_mmio_spte_mask(MMIO_MAX_GEN
) | shadow_mmio_mask
;
274 return (spte
& ~mask
) & ~PAGE_MASK
;
277 static bool set_mmio_spte(struct kvm
*kvm
, u64
*sptep
, gfn_t gfn
,
278 pfn_t pfn
, unsigned access
)
280 if (unlikely(is_noslot_pfn(pfn
))) {
281 mark_mmio_spte(kvm
, sptep
, gfn
, access
);
288 static bool check_mmio_spte(struct kvm
*kvm
, u64 spte
)
290 unsigned int kvm_gen
, spte_gen
;
292 kvm_gen
= kvm_current_mmio_generation(kvm
);
293 spte_gen
= get_mmio_spte_generation(spte
);
295 trace_check_mmio_spte(spte
, kvm_gen
, spte_gen
);
296 return likely(kvm_gen
== spte_gen
);
299 static inline u64
rsvd_bits(int s
, int e
)
301 return ((1ULL << (e
- s
+ 1)) - 1) << s
;
304 void kvm_mmu_set_mask_ptes(u64 user_mask
, u64 accessed_mask
,
305 u64 dirty_mask
, u64 nx_mask
, u64 x_mask
)
307 shadow_user_mask
= user_mask
;
308 shadow_accessed_mask
= accessed_mask
;
309 shadow_dirty_mask
= dirty_mask
;
310 shadow_nx_mask
= nx_mask
;
311 shadow_x_mask
= x_mask
;
313 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes
);
315 static int is_cpuid_PSE36(void)
320 static int is_nx(struct kvm_vcpu
*vcpu
)
322 return vcpu
->arch
.efer
& EFER_NX
;
325 static int is_shadow_present_pte(u64 pte
)
327 return pte
& PT_PRESENT_MASK
&& !is_mmio_spte(pte
);
330 static int is_large_pte(u64 pte
)
332 return pte
& PT_PAGE_SIZE_MASK
;
335 static int is_rmap_spte(u64 pte
)
337 return is_shadow_present_pte(pte
);
340 static int is_last_spte(u64 pte
, int level
)
342 if (level
== PT_PAGE_TABLE_LEVEL
)
344 if (is_large_pte(pte
))
349 static pfn_t
spte_to_pfn(u64 pte
)
351 return (pte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
354 static gfn_t
pse36_gfn_delta(u32 gpte
)
356 int shift
= 32 - PT32_DIR_PSE36_SHIFT
- PAGE_SHIFT
;
358 return (gpte
& PT32_DIR_PSE36_MASK
) << shift
;
362 static void __set_spte(u64
*sptep
, u64 spte
)
367 static void __update_clear_spte_fast(u64
*sptep
, u64 spte
)
372 static u64
__update_clear_spte_slow(u64
*sptep
, u64 spte
)
374 return xchg(sptep
, spte
);
377 static u64
__get_spte_lockless(u64
*sptep
)
379 return ACCESS_ONCE(*sptep
);
382 static bool __check_direct_spte_mmio_pf(u64 spte
)
384 /* It is valid if the spte is zapped. */
396 static void count_spte_clear(u64
*sptep
, u64 spte
)
398 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
400 if (is_shadow_present_pte(spte
))
403 /* Ensure the spte is completely set before we increase the count */
405 sp
->clear_spte_count
++;
408 static void __set_spte(u64
*sptep
, u64 spte
)
410 union split_spte
*ssptep
, sspte
;
412 ssptep
= (union split_spte
*)sptep
;
413 sspte
= (union split_spte
)spte
;
415 ssptep
->spte_high
= sspte
.spte_high
;
418 * If we map the spte from nonpresent to present, We should store
419 * the high bits firstly, then set present bit, so cpu can not
420 * fetch this spte while we are setting the spte.
424 ssptep
->spte_low
= sspte
.spte_low
;
427 static void __update_clear_spte_fast(u64
*sptep
, u64 spte
)
429 union split_spte
*ssptep
, sspte
;
431 ssptep
= (union split_spte
*)sptep
;
432 sspte
= (union split_spte
)spte
;
434 ssptep
->spte_low
= sspte
.spte_low
;
437 * If we map the spte from present to nonpresent, we should clear
438 * present bit firstly to avoid vcpu fetch the old high bits.
442 ssptep
->spte_high
= sspte
.spte_high
;
443 count_spte_clear(sptep
, spte
);
446 static u64
__update_clear_spte_slow(u64
*sptep
, u64 spte
)
448 union split_spte
*ssptep
, sspte
, orig
;
450 ssptep
= (union split_spte
*)sptep
;
451 sspte
= (union split_spte
)spte
;
453 /* xchg acts as a barrier before the setting of the high bits */
454 orig
.spte_low
= xchg(&ssptep
->spte_low
, sspte
.spte_low
);
455 orig
.spte_high
= ssptep
->spte_high
;
456 ssptep
->spte_high
= sspte
.spte_high
;
457 count_spte_clear(sptep
, spte
);
463 * The idea using the light way get the spte on x86_32 guest is from
464 * gup_get_pte(arch/x86/mm/gup.c).
466 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
467 * coalesces them and we are running out of the MMU lock. Therefore
468 * we need to protect against in-progress updates of the spte.
470 * Reading the spte while an update is in progress may get the old value
471 * for the high part of the spte. The race is fine for a present->non-present
472 * change (because the high part of the spte is ignored for non-present spte),
473 * but for a present->present change we must reread the spte.
475 * All such changes are done in two steps (present->non-present and
476 * non-present->present), hence it is enough to count the number of
477 * present->non-present updates: if it changed while reading the spte,
478 * we might have hit the race. This is done using clear_spte_count.
480 static u64
__get_spte_lockless(u64
*sptep
)
482 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
483 union split_spte spte
, *orig
= (union split_spte
*)sptep
;
487 count
= sp
->clear_spte_count
;
490 spte
.spte_low
= orig
->spte_low
;
493 spte
.spte_high
= orig
->spte_high
;
496 if (unlikely(spte
.spte_low
!= orig
->spte_low
||
497 count
!= sp
->clear_spte_count
))
503 static bool __check_direct_spte_mmio_pf(u64 spte
)
505 union split_spte sspte
= (union split_spte
)spte
;
506 u32 high_mmio_mask
= shadow_mmio_mask
>> 32;
508 /* It is valid if the spte is zapped. */
512 /* It is valid if the spte is being zapped. */
513 if (sspte
.spte_low
== 0ull &&
514 (sspte
.spte_high
& high_mmio_mask
) == high_mmio_mask
)
521 static bool spte_is_locklessly_modifiable(u64 spte
)
523 return (spte
& (SPTE_HOST_WRITEABLE
| SPTE_MMU_WRITEABLE
)) ==
524 (SPTE_HOST_WRITEABLE
| SPTE_MMU_WRITEABLE
);
527 static bool spte_has_volatile_bits(u64 spte
)
530 * Always atomicly update spte if it can be updated
531 * out of mmu-lock, it can ensure dirty bit is not lost,
532 * also, it can help us to get a stable is_writable_pte()
533 * to ensure tlb flush is not missed.
535 if (spte_is_locklessly_modifiable(spte
))
538 if (!shadow_accessed_mask
)
541 if (!is_shadow_present_pte(spte
))
544 if ((spte
& shadow_accessed_mask
) &&
545 (!is_writable_pte(spte
) || (spte
& shadow_dirty_mask
)))
551 static bool spte_is_bit_cleared(u64 old_spte
, u64 new_spte
, u64 bit_mask
)
553 return (old_spte
& bit_mask
) && !(new_spte
& bit_mask
);
556 /* Rules for using mmu_spte_set:
557 * Set the sptep from nonpresent to present.
558 * Note: the sptep being assigned *must* be either not present
559 * or in a state where the hardware will not attempt to update
562 static void mmu_spte_set(u64
*sptep
, u64 new_spte
)
564 WARN_ON(is_shadow_present_pte(*sptep
));
565 __set_spte(sptep
, new_spte
);
568 /* Rules for using mmu_spte_update:
569 * Update the state bits, it means the mapped pfn is not changged.
571 * Whenever we overwrite a writable spte with a read-only one we
572 * should flush remote TLBs. Otherwise rmap_write_protect
573 * will find a read-only spte, even though the writable spte
574 * might be cached on a CPU's TLB, the return value indicates this
577 static bool mmu_spte_update(u64
*sptep
, u64 new_spte
)
579 u64 old_spte
= *sptep
;
582 WARN_ON(!is_rmap_spte(new_spte
));
584 if (!is_shadow_present_pte(old_spte
)) {
585 mmu_spte_set(sptep
, new_spte
);
589 if (!spte_has_volatile_bits(old_spte
))
590 __update_clear_spte_fast(sptep
, new_spte
);
592 old_spte
= __update_clear_spte_slow(sptep
, new_spte
);
595 * For the spte updated out of mmu-lock is safe, since
596 * we always atomicly update it, see the comments in
597 * spte_has_volatile_bits().
599 if (spte_is_locklessly_modifiable(old_spte
) &&
600 !is_writable_pte(new_spte
))
603 if (!shadow_accessed_mask
)
606 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_accessed_mask
))
607 kvm_set_pfn_accessed(spte_to_pfn(old_spte
));
608 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_dirty_mask
))
609 kvm_set_pfn_dirty(spte_to_pfn(old_spte
));
615 * Rules for using mmu_spte_clear_track_bits:
616 * It sets the sptep from present to nonpresent, and track the
617 * state bits, it is used to clear the last level sptep.
619 static int mmu_spte_clear_track_bits(u64
*sptep
)
622 u64 old_spte
= *sptep
;
624 if (!spte_has_volatile_bits(old_spte
))
625 __update_clear_spte_fast(sptep
, 0ull);
627 old_spte
= __update_clear_spte_slow(sptep
, 0ull);
629 if (!is_rmap_spte(old_spte
))
632 pfn
= spte_to_pfn(old_spte
);
635 * KVM does not hold the refcount of the page used by
636 * kvm mmu, before reclaiming the page, we should
637 * unmap it from mmu first.
639 WARN_ON(!kvm_is_mmio_pfn(pfn
) && !page_count(pfn_to_page(pfn
)));
641 if (!shadow_accessed_mask
|| old_spte
& shadow_accessed_mask
)
642 kvm_set_pfn_accessed(pfn
);
643 if (!shadow_dirty_mask
|| (old_spte
& shadow_dirty_mask
))
644 kvm_set_pfn_dirty(pfn
);
649 * Rules for using mmu_spte_clear_no_track:
650 * Directly clear spte without caring the state bits of sptep,
651 * it is used to set the upper level spte.
653 static void mmu_spte_clear_no_track(u64
*sptep
)
655 __update_clear_spte_fast(sptep
, 0ull);
658 static u64
mmu_spte_get_lockless(u64
*sptep
)
660 return __get_spte_lockless(sptep
);
663 static void walk_shadow_page_lockless_begin(struct kvm_vcpu
*vcpu
)
666 * Prevent page table teardown by making any free-er wait during
667 * kvm_flush_remote_tlbs() IPI to all active vcpus.
670 vcpu
->mode
= READING_SHADOW_PAGE_TABLES
;
672 * Make sure a following spte read is not reordered ahead of the write
678 static void walk_shadow_page_lockless_end(struct kvm_vcpu
*vcpu
)
681 * Make sure the write to vcpu->mode is not reordered in front of
682 * reads to sptes. If it does, kvm_commit_zap_page() can see us
683 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
686 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
690 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
691 struct kmem_cache
*base_cache
, int min
)
695 if (cache
->nobjs
>= min
)
697 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
698 obj
= kmem_cache_zalloc(base_cache
, GFP_KERNEL
);
701 cache
->objects
[cache
->nobjs
++] = obj
;
706 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache
*cache
)
711 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
,
712 struct kmem_cache
*cache
)
715 kmem_cache_free(cache
, mc
->objects
[--mc
->nobjs
]);
718 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache
*cache
,
723 if (cache
->nobjs
>= min
)
725 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
726 page
= (void *)__get_free_page(GFP_KERNEL
);
729 cache
->objects
[cache
->nobjs
++] = page
;
734 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache
*mc
)
737 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
740 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
744 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_pte_list_desc_cache
,
745 pte_list_desc_cache
, 8 + PTE_PREFETCH_NUM
);
748 r
= mmu_topup_memory_cache_page(&vcpu
->arch
.mmu_page_cache
, 8);
751 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
752 mmu_page_header_cache
, 4);
757 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
759 mmu_free_memory_cache(&vcpu
->arch
.mmu_pte_list_desc_cache
,
760 pte_list_desc_cache
);
761 mmu_free_memory_cache_page(&vcpu
->arch
.mmu_page_cache
);
762 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
763 mmu_page_header_cache
);
766 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
)
771 p
= mc
->objects
[--mc
->nobjs
];
775 static struct pte_list_desc
*mmu_alloc_pte_list_desc(struct kvm_vcpu
*vcpu
)
777 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_pte_list_desc_cache
);
780 static void mmu_free_pte_list_desc(struct pte_list_desc
*pte_list_desc
)
782 kmem_cache_free(pte_list_desc_cache
, pte_list_desc
);
785 static gfn_t
kvm_mmu_page_get_gfn(struct kvm_mmu_page
*sp
, int index
)
787 if (!sp
->role
.direct
)
788 return sp
->gfns
[index
];
790 return sp
->gfn
+ (index
<< ((sp
->role
.level
- 1) * PT64_LEVEL_BITS
));
793 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page
*sp
, int index
, gfn_t gfn
)
796 BUG_ON(gfn
!= kvm_mmu_page_get_gfn(sp
, index
));
798 sp
->gfns
[index
] = gfn
;
802 * Return the pointer to the large page information for a given gfn,
803 * handling slots that are not large page aligned.
805 static struct kvm_lpage_info
*lpage_info_slot(gfn_t gfn
,
806 struct kvm_memory_slot
*slot
,
811 idx
= gfn_to_index(gfn
, slot
->base_gfn
, level
);
812 return &slot
->arch
.lpage_info
[level
- 2][idx
];
815 static void account_shadowed(struct kvm
*kvm
, gfn_t gfn
)
817 struct kvm_memory_slot
*slot
;
818 struct kvm_lpage_info
*linfo
;
821 slot
= gfn_to_memslot(kvm
, gfn
);
822 for (i
= PT_DIRECTORY_LEVEL
;
823 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
824 linfo
= lpage_info_slot(gfn
, slot
, i
);
825 linfo
->write_count
+= 1;
827 kvm
->arch
.indirect_shadow_pages
++;
830 static void unaccount_shadowed(struct kvm
*kvm
, gfn_t gfn
)
832 struct kvm_memory_slot
*slot
;
833 struct kvm_lpage_info
*linfo
;
836 slot
= gfn_to_memslot(kvm
, gfn
);
837 for (i
= PT_DIRECTORY_LEVEL
;
838 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
839 linfo
= lpage_info_slot(gfn
, slot
, i
);
840 linfo
->write_count
-= 1;
841 WARN_ON(linfo
->write_count
< 0);
843 kvm
->arch
.indirect_shadow_pages
--;
846 static int has_wrprotected_page(struct kvm
*kvm
,
850 struct kvm_memory_slot
*slot
;
851 struct kvm_lpage_info
*linfo
;
853 slot
= gfn_to_memslot(kvm
, gfn
);
855 linfo
= lpage_info_slot(gfn
, slot
, level
);
856 return linfo
->write_count
;
862 static int host_mapping_level(struct kvm
*kvm
, gfn_t gfn
)
864 unsigned long page_size
;
867 page_size
= kvm_host_page_size(kvm
, gfn
);
869 for (i
= PT_PAGE_TABLE_LEVEL
;
870 i
< (PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
); ++i
) {
871 if (page_size
>= KVM_HPAGE_SIZE(i
))
880 static struct kvm_memory_slot
*
881 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
884 struct kvm_memory_slot
*slot
;
886 slot
= gfn_to_memslot(vcpu
->kvm
, gfn
);
887 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
||
888 (no_dirty_log
&& slot
->dirty_bitmap
))
894 static bool mapping_level_dirty_bitmap(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
896 return !gfn_to_memslot_dirty_bitmap(vcpu
, large_gfn
, true);
899 static int mapping_level(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
901 int host_level
, level
, max_level
;
903 host_level
= host_mapping_level(vcpu
->kvm
, large_gfn
);
905 if (host_level
== PT_PAGE_TABLE_LEVEL
)
908 max_level
= min(kvm_x86_ops
->get_lpage_level(), host_level
);
910 for (level
= PT_DIRECTORY_LEVEL
; level
<= max_level
; ++level
)
911 if (has_wrprotected_page(vcpu
->kvm
, large_gfn
, level
))
918 * Pte mapping structures:
920 * If pte_list bit zero is zero, then pte_list point to the spte.
922 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
923 * pte_list_desc containing more mappings.
925 * Returns the number of pte entries before the spte was added or zero if
926 * the spte was not added.
929 static int pte_list_add(struct kvm_vcpu
*vcpu
, u64
*spte
,
930 unsigned long *pte_list
)
932 struct pte_list_desc
*desc
;
936 rmap_printk("pte_list_add: %p %llx 0->1\n", spte
, *spte
);
937 *pte_list
= (unsigned long)spte
;
938 } else if (!(*pte_list
& 1)) {
939 rmap_printk("pte_list_add: %p %llx 1->many\n", spte
, *spte
);
940 desc
= mmu_alloc_pte_list_desc(vcpu
);
941 desc
->sptes
[0] = (u64
*)*pte_list
;
942 desc
->sptes
[1] = spte
;
943 *pte_list
= (unsigned long)desc
| 1;
946 rmap_printk("pte_list_add: %p %llx many->many\n", spte
, *spte
);
947 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
948 while (desc
->sptes
[PTE_LIST_EXT
-1] && desc
->more
) {
950 count
+= PTE_LIST_EXT
;
952 if (desc
->sptes
[PTE_LIST_EXT
-1]) {
953 desc
->more
= mmu_alloc_pte_list_desc(vcpu
);
956 for (i
= 0; desc
->sptes
[i
]; ++i
)
958 desc
->sptes
[i
] = spte
;
964 pte_list_desc_remove_entry(unsigned long *pte_list
, struct pte_list_desc
*desc
,
965 int i
, struct pte_list_desc
*prev_desc
)
969 for (j
= PTE_LIST_EXT
- 1; !desc
->sptes
[j
] && j
> i
; --j
)
971 desc
->sptes
[i
] = desc
->sptes
[j
];
972 desc
->sptes
[j
] = NULL
;
975 if (!prev_desc
&& !desc
->more
)
976 *pte_list
= (unsigned long)desc
->sptes
[0];
979 prev_desc
->more
= desc
->more
;
981 *pte_list
= (unsigned long)desc
->more
| 1;
982 mmu_free_pte_list_desc(desc
);
985 static void pte_list_remove(u64
*spte
, unsigned long *pte_list
)
987 struct pte_list_desc
*desc
;
988 struct pte_list_desc
*prev_desc
;
992 printk(KERN_ERR
"pte_list_remove: %p 0->BUG\n", spte
);
994 } else if (!(*pte_list
& 1)) {
995 rmap_printk("pte_list_remove: %p 1->0\n", spte
);
996 if ((u64
*)*pte_list
!= spte
) {
997 printk(KERN_ERR
"pte_list_remove: %p 1->BUG\n", spte
);
1002 rmap_printk("pte_list_remove: %p many->many\n", spte
);
1003 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
1006 for (i
= 0; i
< PTE_LIST_EXT
&& desc
->sptes
[i
]; ++i
)
1007 if (desc
->sptes
[i
] == spte
) {
1008 pte_list_desc_remove_entry(pte_list
,
1016 pr_err("pte_list_remove: %p many->many\n", spte
);
1021 typedef void (*pte_list_walk_fn
) (u64
*spte
);
1022 static void pte_list_walk(unsigned long *pte_list
, pte_list_walk_fn fn
)
1024 struct pte_list_desc
*desc
;
1030 if (!(*pte_list
& 1))
1031 return fn((u64
*)*pte_list
);
1033 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
1035 for (i
= 0; i
< PTE_LIST_EXT
&& desc
->sptes
[i
]; ++i
)
1041 static unsigned long *__gfn_to_rmap(gfn_t gfn
, int level
,
1042 struct kvm_memory_slot
*slot
)
1046 idx
= gfn_to_index(gfn
, slot
->base_gfn
, level
);
1047 return &slot
->arch
.rmap
[level
- PT_PAGE_TABLE_LEVEL
][idx
];
1051 * Take gfn and return the reverse mapping to it.
1053 static unsigned long *gfn_to_rmap(struct kvm
*kvm
, gfn_t gfn
, int level
)
1055 struct kvm_memory_slot
*slot
;
1057 slot
= gfn_to_memslot(kvm
, gfn
);
1058 return __gfn_to_rmap(gfn
, level
, slot
);
1061 static bool rmap_can_add(struct kvm_vcpu
*vcpu
)
1063 struct kvm_mmu_memory_cache
*cache
;
1065 cache
= &vcpu
->arch
.mmu_pte_list_desc_cache
;
1066 return mmu_memory_cache_free_objects(cache
);
1069 static int rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
1071 struct kvm_mmu_page
*sp
;
1072 unsigned long *rmapp
;
1074 sp
= page_header(__pa(spte
));
1075 kvm_mmu_page_set_gfn(sp
, spte
- sp
->spt
, gfn
);
1076 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
1077 return pte_list_add(vcpu
, spte
, rmapp
);
1080 static void rmap_remove(struct kvm
*kvm
, u64
*spte
)
1082 struct kvm_mmu_page
*sp
;
1084 unsigned long *rmapp
;
1086 sp
= page_header(__pa(spte
));
1087 gfn
= kvm_mmu_page_get_gfn(sp
, spte
- sp
->spt
);
1088 rmapp
= gfn_to_rmap(kvm
, gfn
, sp
->role
.level
);
1089 pte_list_remove(spte
, rmapp
);
1093 * Used by the following functions to iterate through the sptes linked by a
1094 * rmap. All fields are private and not assumed to be used outside.
1096 struct rmap_iterator
{
1097 /* private fields */
1098 struct pte_list_desc
*desc
; /* holds the sptep if not NULL */
1099 int pos
; /* index of the sptep */
1103 * Iteration must be started by this function. This should also be used after
1104 * removing/dropping sptes from the rmap link because in such cases the
1105 * information in the itererator may not be valid.
1107 * Returns sptep if found, NULL otherwise.
1109 static u64
*rmap_get_first(unsigned long rmap
, struct rmap_iterator
*iter
)
1119 iter
->desc
= (struct pte_list_desc
*)(rmap
& ~1ul);
1121 return iter
->desc
->sptes
[iter
->pos
];
1125 * Must be used with a valid iterator: e.g. after rmap_get_first().
1127 * Returns sptep if found, NULL otherwise.
1129 static u64
*rmap_get_next(struct rmap_iterator
*iter
)
1132 if (iter
->pos
< PTE_LIST_EXT
- 1) {
1136 sptep
= iter
->desc
->sptes
[iter
->pos
];
1141 iter
->desc
= iter
->desc
->more
;
1145 /* desc->sptes[0] cannot be NULL */
1146 return iter
->desc
->sptes
[iter
->pos
];
1153 static void drop_spte(struct kvm
*kvm
, u64
*sptep
)
1155 if (mmu_spte_clear_track_bits(sptep
))
1156 rmap_remove(kvm
, sptep
);
1160 static bool __drop_large_spte(struct kvm
*kvm
, u64
*sptep
)
1162 if (is_large_pte(*sptep
)) {
1163 WARN_ON(page_header(__pa(sptep
))->role
.level
==
1164 PT_PAGE_TABLE_LEVEL
);
1165 drop_spte(kvm
, sptep
);
1173 static void drop_large_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
)
1175 if (__drop_large_spte(vcpu
->kvm
, sptep
))
1176 kvm_flush_remote_tlbs(vcpu
->kvm
);
1180 * Write-protect on the specified @sptep, @pt_protect indicates whether
1181 * spte write-protection is caused by protecting shadow page table.
1183 * Note: write protection is difference between drity logging and spte
1185 * - for dirty logging, the spte can be set to writable at anytime if
1186 * its dirty bitmap is properly set.
1187 * - for spte protection, the spte can be writable only after unsync-ing
1190 * Return true if tlb need be flushed.
1192 static bool spte_write_protect(struct kvm
*kvm
, u64
*sptep
, bool pt_protect
)
1196 if (!is_writable_pte(spte
) &&
1197 !(pt_protect
&& spte_is_locklessly_modifiable(spte
)))
1200 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep
, *sptep
);
1203 spte
&= ~SPTE_MMU_WRITEABLE
;
1204 spte
= spte
& ~PT_WRITABLE_MASK
;
1206 return mmu_spte_update(sptep
, spte
);
1209 static bool __rmap_write_protect(struct kvm
*kvm
, unsigned long *rmapp
,
1213 struct rmap_iterator iter
;
1216 for (sptep
= rmap_get_first(*rmapp
, &iter
); sptep
;) {
1217 BUG_ON(!(*sptep
& PT_PRESENT_MASK
));
1219 flush
|= spte_write_protect(kvm
, sptep
, pt_protect
);
1220 sptep
= rmap_get_next(&iter
);
1227 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1228 * @kvm: kvm instance
1229 * @slot: slot to protect
1230 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1231 * @mask: indicates which pages we should protect
1233 * Used when we do not need to care about huge page mappings: e.g. during dirty
1234 * logging we do not have any such mappings.
1236 void kvm_mmu_write_protect_pt_masked(struct kvm
*kvm
,
1237 struct kvm_memory_slot
*slot
,
1238 gfn_t gfn_offset
, unsigned long mask
)
1240 unsigned long *rmapp
;
1243 rmapp
= __gfn_to_rmap(slot
->base_gfn
+ gfn_offset
+ __ffs(mask
),
1244 PT_PAGE_TABLE_LEVEL
, slot
);
1245 __rmap_write_protect(kvm
, rmapp
, false);
1247 /* clear the first set bit */
1252 static bool rmap_write_protect(struct kvm
*kvm
, u64 gfn
)
1254 struct kvm_memory_slot
*slot
;
1255 unsigned long *rmapp
;
1257 bool write_protected
= false;
1259 slot
= gfn_to_memslot(kvm
, gfn
);
1261 for (i
= PT_PAGE_TABLE_LEVEL
;
1262 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
1263 rmapp
= __gfn_to_rmap(gfn
, i
, slot
);
1264 write_protected
|= __rmap_write_protect(kvm
, rmapp
, true);
1267 return write_protected
;
1270 static int kvm_unmap_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1271 struct kvm_memory_slot
*slot
, unsigned long data
)
1274 struct rmap_iterator iter
;
1275 int need_tlb_flush
= 0;
1277 while ((sptep
= rmap_get_first(*rmapp
, &iter
))) {
1278 BUG_ON(!(*sptep
& PT_PRESENT_MASK
));
1279 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep
, *sptep
);
1281 drop_spte(kvm
, sptep
);
1285 return need_tlb_flush
;
1288 static int kvm_set_pte_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1289 struct kvm_memory_slot
*slot
, unsigned long data
)
1292 struct rmap_iterator iter
;
1295 pte_t
*ptep
= (pte_t
*)data
;
1298 WARN_ON(pte_huge(*ptep
));
1299 new_pfn
= pte_pfn(*ptep
);
1301 for (sptep
= rmap_get_first(*rmapp
, &iter
); sptep
;) {
1302 BUG_ON(!is_shadow_present_pte(*sptep
));
1303 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep
, *sptep
);
1307 if (pte_write(*ptep
)) {
1308 drop_spte(kvm
, sptep
);
1309 sptep
= rmap_get_first(*rmapp
, &iter
);
1311 new_spte
= *sptep
& ~PT64_BASE_ADDR_MASK
;
1312 new_spte
|= (u64
)new_pfn
<< PAGE_SHIFT
;
1314 new_spte
&= ~PT_WRITABLE_MASK
;
1315 new_spte
&= ~SPTE_HOST_WRITEABLE
;
1316 new_spte
&= ~shadow_accessed_mask
;
1318 mmu_spte_clear_track_bits(sptep
);
1319 mmu_spte_set(sptep
, new_spte
);
1320 sptep
= rmap_get_next(&iter
);
1325 kvm_flush_remote_tlbs(kvm
);
1330 static int kvm_handle_hva_range(struct kvm
*kvm
,
1331 unsigned long start
,
1334 int (*handler
)(struct kvm
*kvm
,
1335 unsigned long *rmapp
,
1336 struct kvm_memory_slot
*slot
,
1337 unsigned long data
))
1341 struct kvm_memslots
*slots
;
1342 struct kvm_memory_slot
*memslot
;
1344 slots
= kvm_memslots(kvm
);
1346 kvm_for_each_memslot(memslot
, slots
) {
1347 unsigned long hva_start
, hva_end
;
1348 gfn_t gfn_start
, gfn_end
;
1350 hva_start
= max(start
, memslot
->userspace_addr
);
1351 hva_end
= min(end
, memslot
->userspace_addr
+
1352 (memslot
->npages
<< PAGE_SHIFT
));
1353 if (hva_start
>= hva_end
)
1356 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1357 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1359 gfn_start
= hva_to_gfn_memslot(hva_start
, memslot
);
1360 gfn_end
= hva_to_gfn_memslot(hva_end
+ PAGE_SIZE
- 1, memslot
);
1362 for (j
= PT_PAGE_TABLE_LEVEL
;
1363 j
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++j
) {
1364 unsigned long idx
, idx_end
;
1365 unsigned long *rmapp
;
1368 * {idx(page_j) | page_j intersects with
1369 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1371 idx
= gfn_to_index(gfn_start
, memslot
->base_gfn
, j
);
1372 idx_end
= gfn_to_index(gfn_end
- 1, memslot
->base_gfn
, j
);
1374 rmapp
= __gfn_to_rmap(gfn_start
, j
, memslot
);
1376 for (; idx
<= idx_end
; ++idx
)
1377 ret
|= handler(kvm
, rmapp
++, memslot
, data
);
1384 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
,
1386 int (*handler
)(struct kvm
*kvm
, unsigned long *rmapp
,
1387 struct kvm_memory_slot
*slot
,
1388 unsigned long data
))
1390 return kvm_handle_hva_range(kvm
, hva
, hva
+ 1, data
, handler
);
1393 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
1395 return kvm_handle_hva(kvm
, hva
, 0, kvm_unmap_rmapp
);
1398 int kvm_unmap_hva_range(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
1400 return kvm_handle_hva_range(kvm
, start
, end
, 0, kvm_unmap_rmapp
);
1403 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1405 kvm_handle_hva(kvm
, hva
, (unsigned long)&pte
, kvm_set_pte_rmapp
);
1408 static int kvm_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1409 struct kvm_memory_slot
*slot
, unsigned long data
)
1412 struct rmap_iterator
uninitialized_var(iter
);
1416 * In case of absence of EPT Access and Dirty Bits supports,
1417 * emulate the accessed bit for EPT, by checking if this page has
1418 * an EPT mapping, and clearing it if it does. On the next access,
1419 * a new EPT mapping will be established.
1420 * This has some overhead, but not as much as the cost of swapping
1421 * out actively used pages or breaking up actively used hugepages.
1423 if (!shadow_accessed_mask
) {
1424 young
= kvm_unmap_rmapp(kvm
, rmapp
, slot
, data
);
1428 for (sptep
= rmap_get_first(*rmapp
, &iter
); sptep
;
1429 sptep
= rmap_get_next(&iter
)) {
1430 BUG_ON(!is_shadow_present_pte(*sptep
));
1432 if (*sptep
& shadow_accessed_mask
) {
1434 clear_bit((ffs(shadow_accessed_mask
) - 1),
1435 (unsigned long *)sptep
);
1439 /* @data has hva passed to kvm_age_hva(). */
1440 trace_kvm_age_page(data
, slot
, young
);
1444 static int kvm_test_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1445 struct kvm_memory_slot
*slot
, unsigned long data
)
1448 struct rmap_iterator iter
;
1452 * If there's no access bit in the secondary pte set by the
1453 * hardware it's up to gup-fast/gup to set the access bit in
1454 * the primary pte or in the page structure.
1456 if (!shadow_accessed_mask
)
1459 for (sptep
= rmap_get_first(*rmapp
, &iter
); sptep
;
1460 sptep
= rmap_get_next(&iter
)) {
1461 BUG_ON(!is_shadow_present_pte(*sptep
));
1463 if (*sptep
& shadow_accessed_mask
) {
1472 #define RMAP_RECYCLE_THRESHOLD 1000
1474 static void rmap_recycle(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
1476 unsigned long *rmapp
;
1477 struct kvm_mmu_page
*sp
;
1479 sp
= page_header(__pa(spte
));
1481 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
1483 kvm_unmap_rmapp(vcpu
->kvm
, rmapp
, NULL
, 0);
1484 kvm_flush_remote_tlbs(vcpu
->kvm
);
1487 int kvm_age_hva(struct kvm
*kvm
, unsigned long hva
)
1489 return kvm_handle_hva(kvm
, hva
, hva
, kvm_age_rmapp
);
1492 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
1494 return kvm_handle_hva(kvm
, hva
, 0, kvm_test_age_rmapp
);
1498 static int is_empty_shadow_page(u64
*spt
)
1503 for (pos
= spt
, end
= pos
+ PAGE_SIZE
/ sizeof(u64
); pos
!= end
; pos
++)
1504 if (is_shadow_present_pte(*pos
)) {
1505 printk(KERN_ERR
"%s: %p %llx\n", __func__
,
1514 * This value is the sum of all of the kvm instances's
1515 * kvm->arch.n_used_mmu_pages values. We need a global,
1516 * aggregate version in order to make the slab shrinker
1519 static inline void kvm_mod_used_mmu_pages(struct kvm
*kvm
, int nr
)
1521 kvm
->arch
.n_used_mmu_pages
+= nr
;
1522 percpu_counter_add(&kvm_total_used_mmu_pages
, nr
);
1525 static void kvm_mmu_free_page(struct kvm_mmu_page
*sp
)
1527 ASSERT(is_empty_shadow_page(sp
->spt
));
1528 hlist_del(&sp
->hash_link
);
1529 list_del(&sp
->link
);
1530 free_page((unsigned long)sp
->spt
);
1531 if (!sp
->role
.direct
)
1532 free_page((unsigned long)sp
->gfns
);
1533 kmem_cache_free(mmu_page_header_cache
, sp
);
1536 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
1538 return gfn
& ((1 << KVM_MMU_HASH_SHIFT
) - 1);
1541 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
1542 struct kvm_mmu_page
*sp
, u64
*parent_pte
)
1547 pte_list_add(vcpu
, parent_pte
, &sp
->parent_ptes
);
1550 static void mmu_page_remove_parent_pte(struct kvm_mmu_page
*sp
,
1553 pte_list_remove(parent_pte
, &sp
->parent_ptes
);
1556 static void drop_parent_pte(struct kvm_mmu_page
*sp
,
1559 mmu_page_remove_parent_pte(sp
, parent_pte
);
1560 mmu_spte_clear_no_track(parent_pte
);
1563 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
,
1564 u64
*parent_pte
, int direct
)
1566 struct kvm_mmu_page
*sp
;
1568 sp
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_header_cache
);
1569 sp
->spt
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
);
1571 sp
->gfns
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
);
1572 set_page_private(virt_to_page(sp
->spt
), (unsigned long)sp
);
1575 * The active_mmu_pages list is the FIFO list, do not move the
1576 * page until it is zapped. kvm_zap_obsolete_pages depends on
1577 * this feature. See the comments in kvm_zap_obsolete_pages().
1579 list_add(&sp
->link
, &vcpu
->kvm
->arch
.active_mmu_pages
);
1580 sp
->parent_ptes
= 0;
1581 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
1582 kvm_mod_used_mmu_pages(vcpu
->kvm
, +1);
1586 static void mark_unsync(u64
*spte
);
1587 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page
*sp
)
1589 pte_list_walk(&sp
->parent_ptes
, mark_unsync
);
1592 static void mark_unsync(u64
*spte
)
1594 struct kvm_mmu_page
*sp
;
1597 sp
= page_header(__pa(spte
));
1598 index
= spte
- sp
->spt
;
1599 if (__test_and_set_bit(index
, sp
->unsync_child_bitmap
))
1601 if (sp
->unsync_children
++)
1603 kvm_mmu_mark_parents_unsync(sp
);
1606 static int nonpaging_sync_page(struct kvm_vcpu
*vcpu
,
1607 struct kvm_mmu_page
*sp
)
1612 static void nonpaging_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
1616 static void nonpaging_update_pte(struct kvm_vcpu
*vcpu
,
1617 struct kvm_mmu_page
*sp
, u64
*spte
,
1623 #define KVM_PAGE_ARRAY_NR 16
1625 struct kvm_mmu_pages
{
1626 struct mmu_page_and_offset
{
1627 struct kvm_mmu_page
*sp
;
1629 } page
[KVM_PAGE_ARRAY_NR
];
1633 static int mmu_pages_add(struct kvm_mmu_pages
*pvec
, struct kvm_mmu_page
*sp
,
1639 for (i
=0; i
< pvec
->nr
; i
++)
1640 if (pvec
->page
[i
].sp
== sp
)
1643 pvec
->page
[pvec
->nr
].sp
= sp
;
1644 pvec
->page
[pvec
->nr
].idx
= idx
;
1646 return (pvec
->nr
== KVM_PAGE_ARRAY_NR
);
1649 static int __mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1650 struct kvm_mmu_pages
*pvec
)
1652 int i
, ret
, nr_unsync_leaf
= 0;
1654 for_each_set_bit(i
, sp
->unsync_child_bitmap
, 512) {
1655 struct kvm_mmu_page
*child
;
1656 u64 ent
= sp
->spt
[i
];
1658 if (!is_shadow_present_pte(ent
) || is_large_pte(ent
))
1659 goto clear_child_bitmap
;
1661 child
= page_header(ent
& PT64_BASE_ADDR_MASK
);
1663 if (child
->unsync_children
) {
1664 if (mmu_pages_add(pvec
, child
, i
))
1667 ret
= __mmu_unsync_walk(child
, pvec
);
1669 goto clear_child_bitmap
;
1671 nr_unsync_leaf
+= ret
;
1674 } else if (child
->unsync
) {
1676 if (mmu_pages_add(pvec
, child
, i
))
1679 goto clear_child_bitmap
;
1684 __clear_bit(i
, sp
->unsync_child_bitmap
);
1685 sp
->unsync_children
--;
1686 WARN_ON((int)sp
->unsync_children
< 0);
1690 return nr_unsync_leaf
;
1693 static int mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1694 struct kvm_mmu_pages
*pvec
)
1696 if (!sp
->unsync_children
)
1699 mmu_pages_add(pvec
, sp
, 0);
1700 return __mmu_unsync_walk(sp
, pvec
);
1703 static void kvm_unlink_unsync_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1705 WARN_ON(!sp
->unsync
);
1706 trace_kvm_mmu_sync_page(sp
);
1708 --kvm
->stat
.mmu_unsync
;
1711 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
1712 struct list_head
*invalid_list
);
1713 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
1714 struct list_head
*invalid_list
);
1717 * NOTE: we should pay more attention on the zapped-obsolete page
1718 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1719 * since it has been deleted from active_mmu_pages but still can be found
1722 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1723 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1724 * all the obsolete pages.
1726 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1727 hlist_for_each_entry(_sp, \
1728 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1729 if ((_sp)->gfn != (_gfn)) {} else
1731 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1732 for_each_gfn_sp(_kvm, _sp, _gfn) \
1733 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1735 /* @sp->gfn should be write-protected at the call site */
1736 static int __kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1737 struct list_head
*invalid_list
, bool clear_unsync
)
1739 if (sp
->role
.cr4_pae
!= !!is_pae(vcpu
)) {
1740 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1745 kvm_unlink_unsync_page(vcpu
->kvm
, sp
);
1747 if (vcpu
->arch
.mmu
.sync_page(vcpu
, sp
)) {
1748 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1752 kvm_mmu_flush_tlb(vcpu
);
1756 static int kvm_sync_page_transient(struct kvm_vcpu
*vcpu
,
1757 struct kvm_mmu_page
*sp
)
1759 LIST_HEAD(invalid_list
);
1762 ret
= __kvm_sync_page(vcpu
, sp
, &invalid_list
, false);
1764 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1769 #ifdef CONFIG_KVM_MMU_AUDIT
1770 #include "mmu_audit.c"
1772 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, int point
) { }
1773 static void mmu_audit_disable(void) { }
1776 static int kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1777 struct list_head
*invalid_list
)
1779 return __kvm_sync_page(vcpu
, sp
, invalid_list
, true);
1782 /* @gfn should be write-protected at the call site */
1783 static void kvm_sync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1785 struct kvm_mmu_page
*s
;
1786 LIST_HEAD(invalid_list
);
1789 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
) {
1793 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
1794 kvm_unlink_unsync_page(vcpu
->kvm
, s
);
1795 if ((s
->role
.cr4_pae
!= !!is_pae(vcpu
)) ||
1796 (vcpu
->arch
.mmu
.sync_page(vcpu
, s
))) {
1797 kvm_mmu_prepare_zap_page(vcpu
->kvm
, s
, &invalid_list
);
1803 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1805 kvm_mmu_flush_tlb(vcpu
);
1808 struct mmu_page_path
{
1809 struct kvm_mmu_page
*parent
[PT64_ROOT_LEVEL
-1];
1810 unsigned int idx
[PT64_ROOT_LEVEL
-1];
1813 #define for_each_sp(pvec, sp, parents, i) \
1814 for (i = mmu_pages_next(&pvec, &parents, -1), \
1815 sp = pvec.page[i].sp; \
1816 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1817 i = mmu_pages_next(&pvec, &parents, i))
1819 static int mmu_pages_next(struct kvm_mmu_pages
*pvec
,
1820 struct mmu_page_path
*parents
,
1825 for (n
= i
+1; n
< pvec
->nr
; n
++) {
1826 struct kvm_mmu_page
*sp
= pvec
->page
[n
].sp
;
1828 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
) {
1829 parents
->idx
[0] = pvec
->page
[n
].idx
;
1833 parents
->parent
[sp
->role
.level
-2] = sp
;
1834 parents
->idx
[sp
->role
.level
-1] = pvec
->page
[n
].idx
;
1840 static void mmu_pages_clear_parents(struct mmu_page_path
*parents
)
1842 struct kvm_mmu_page
*sp
;
1843 unsigned int level
= 0;
1846 unsigned int idx
= parents
->idx
[level
];
1848 sp
= parents
->parent
[level
];
1852 --sp
->unsync_children
;
1853 WARN_ON((int)sp
->unsync_children
< 0);
1854 __clear_bit(idx
, sp
->unsync_child_bitmap
);
1856 } while (level
< PT64_ROOT_LEVEL
-1 && !sp
->unsync_children
);
1859 static void kvm_mmu_pages_init(struct kvm_mmu_page
*parent
,
1860 struct mmu_page_path
*parents
,
1861 struct kvm_mmu_pages
*pvec
)
1863 parents
->parent
[parent
->role
.level
-1] = NULL
;
1867 static void mmu_sync_children(struct kvm_vcpu
*vcpu
,
1868 struct kvm_mmu_page
*parent
)
1871 struct kvm_mmu_page
*sp
;
1872 struct mmu_page_path parents
;
1873 struct kvm_mmu_pages pages
;
1874 LIST_HEAD(invalid_list
);
1876 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1877 while (mmu_unsync_walk(parent
, &pages
)) {
1878 bool protected = false;
1880 for_each_sp(pages
, sp
, parents
, i
)
1881 protected |= rmap_write_protect(vcpu
->kvm
, sp
->gfn
);
1884 kvm_flush_remote_tlbs(vcpu
->kvm
);
1886 for_each_sp(pages
, sp
, parents
, i
) {
1887 kvm_sync_page(vcpu
, sp
, &invalid_list
);
1888 mmu_pages_clear_parents(&parents
);
1890 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1891 cond_resched_lock(&vcpu
->kvm
->mmu_lock
);
1892 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1896 static void init_shadow_page_table(struct kvm_mmu_page
*sp
)
1900 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
1904 static void __clear_sp_write_flooding_count(struct kvm_mmu_page
*sp
)
1906 sp
->write_flooding_count
= 0;
1909 static void clear_sp_write_flooding_count(u64
*spte
)
1911 struct kvm_mmu_page
*sp
= page_header(__pa(spte
));
1913 __clear_sp_write_flooding_count(sp
);
1916 static bool is_obsolete_sp(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1918 return unlikely(sp
->mmu_valid_gen
!= kvm
->arch
.mmu_valid_gen
);
1921 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
1929 union kvm_mmu_page_role role
;
1931 struct kvm_mmu_page
*sp
;
1932 bool need_sync
= false;
1934 role
= vcpu
->arch
.mmu
.base_role
;
1936 role
.direct
= direct
;
1939 role
.access
= access
;
1940 if (!vcpu
->arch
.mmu
.direct_map
1941 && vcpu
->arch
.mmu
.root_level
<= PT32_ROOT_LEVEL
) {
1942 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
1943 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
1944 role
.quadrant
= quadrant
;
1946 for_each_gfn_sp(vcpu
->kvm
, sp
, gfn
) {
1947 if (is_obsolete_sp(vcpu
->kvm
, sp
))
1950 if (!need_sync
&& sp
->unsync
)
1953 if (sp
->role
.word
!= role
.word
)
1956 if (sp
->unsync
&& kvm_sync_page_transient(vcpu
, sp
))
1959 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
1960 if (sp
->unsync_children
) {
1961 kvm_make_request(KVM_REQ_MMU_SYNC
, vcpu
);
1962 kvm_mmu_mark_parents_unsync(sp
);
1963 } else if (sp
->unsync
)
1964 kvm_mmu_mark_parents_unsync(sp
);
1966 __clear_sp_write_flooding_count(sp
);
1967 trace_kvm_mmu_get_page(sp
, false);
1970 ++vcpu
->kvm
->stat
.mmu_cache_miss
;
1971 sp
= kvm_mmu_alloc_page(vcpu
, parent_pte
, direct
);
1976 hlist_add_head(&sp
->hash_link
,
1977 &vcpu
->kvm
->arch
.mmu_page_hash
[kvm_page_table_hashfn(gfn
)]);
1979 if (rmap_write_protect(vcpu
->kvm
, gfn
))
1980 kvm_flush_remote_tlbs(vcpu
->kvm
);
1981 if (level
> PT_PAGE_TABLE_LEVEL
&& need_sync
)
1982 kvm_sync_pages(vcpu
, gfn
);
1984 account_shadowed(vcpu
->kvm
, gfn
);
1986 sp
->mmu_valid_gen
= vcpu
->kvm
->arch
.mmu_valid_gen
;
1987 init_shadow_page_table(sp
);
1988 trace_kvm_mmu_get_page(sp
, true);
1992 static void shadow_walk_init(struct kvm_shadow_walk_iterator
*iterator
,
1993 struct kvm_vcpu
*vcpu
, u64 addr
)
1995 iterator
->addr
= addr
;
1996 iterator
->shadow_addr
= vcpu
->arch
.mmu
.root_hpa
;
1997 iterator
->level
= vcpu
->arch
.mmu
.shadow_root_level
;
1999 if (iterator
->level
== PT64_ROOT_LEVEL
&&
2000 vcpu
->arch
.mmu
.root_level
< PT64_ROOT_LEVEL
&&
2001 !vcpu
->arch
.mmu
.direct_map
)
2004 if (iterator
->level
== PT32E_ROOT_LEVEL
) {
2005 iterator
->shadow_addr
2006 = vcpu
->arch
.mmu
.pae_root
[(addr
>> 30) & 3];
2007 iterator
->shadow_addr
&= PT64_BASE_ADDR_MASK
;
2009 if (!iterator
->shadow_addr
)
2010 iterator
->level
= 0;
2014 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator
*iterator
)
2016 if (iterator
->level
< PT_PAGE_TABLE_LEVEL
)
2019 iterator
->index
= SHADOW_PT_INDEX(iterator
->addr
, iterator
->level
);
2020 iterator
->sptep
= ((u64
*)__va(iterator
->shadow_addr
)) + iterator
->index
;
2024 static void __shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
,
2027 if (is_last_spte(spte
, iterator
->level
)) {
2028 iterator
->level
= 0;
2032 iterator
->shadow_addr
= spte
& PT64_BASE_ADDR_MASK
;
2036 static void shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
)
2038 return __shadow_walk_next(iterator
, *iterator
->sptep
);
2041 static void link_shadow_page(u64
*sptep
, struct kvm_mmu_page
*sp
, bool accessed
)
2045 BUILD_BUG_ON(VMX_EPT_READABLE_MASK
!= PT_PRESENT_MASK
||
2046 VMX_EPT_WRITABLE_MASK
!= PT_WRITABLE_MASK
);
2048 spte
= __pa(sp
->spt
) | PT_PRESENT_MASK
| PT_WRITABLE_MASK
|
2049 shadow_user_mask
| shadow_x_mask
;
2052 spte
|= shadow_accessed_mask
;
2054 mmu_spte_set(sptep
, spte
);
2057 static void validate_direct_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2058 unsigned direct_access
)
2060 if (is_shadow_present_pte(*sptep
) && !is_large_pte(*sptep
)) {
2061 struct kvm_mmu_page
*child
;
2064 * For the direct sp, if the guest pte's dirty bit
2065 * changed form clean to dirty, it will corrupt the
2066 * sp's access: allow writable in the read-only sp,
2067 * so we should update the spte at this point to get
2068 * a new sp with the correct access.
2070 child
= page_header(*sptep
& PT64_BASE_ADDR_MASK
);
2071 if (child
->role
.access
== direct_access
)
2074 drop_parent_pte(child
, sptep
);
2075 kvm_flush_remote_tlbs(vcpu
->kvm
);
2079 static bool mmu_page_zap_pte(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
2083 struct kvm_mmu_page
*child
;
2086 if (is_shadow_present_pte(pte
)) {
2087 if (is_last_spte(pte
, sp
->role
.level
)) {
2088 drop_spte(kvm
, spte
);
2089 if (is_large_pte(pte
))
2092 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2093 drop_parent_pte(child
, spte
);
2098 if (is_mmio_spte(pte
))
2099 mmu_spte_clear_no_track(spte
);
2104 static void kvm_mmu_page_unlink_children(struct kvm
*kvm
,
2105 struct kvm_mmu_page
*sp
)
2109 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
2110 mmu_page_zap_pte(kvm
, sp
, sp
->spt
+ i
);
2113 static void kvm_mmu_put_page(struct kvm_mmu_page
*sp
, u64
*parent_pte
)
2115 mmu_page_remove_parent_pte(sp
, parent_pte
);
2118 static void kvm_mmu_unlink_parents(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
2121 struct rmap_iterator iter
;
2123 while ((sptep
= rmap_get_first(sp
->parent_ptes
, &iter
)))
2124 drop_parent_pte(sp
, sptep
);
2127 static int mmu_zap_unsync_children(struct kvm
*kvm
,
2128 struct kvm_mmu_page
*parent
,
2129 struct list_head
*invalid_list
)
2132 struct mmu_page_path parents
;
2133 struct kvm_mmu_pages pages
;
2135 if (parent
->role
.level
== PT_PAGE_TABLE_LEVEL
)
2138 kvm_mmu_pages_init(parent
, &parents
, &pages
);
2139 while (mmu_unsync_walk(parent
, &pages
)) {
2140 struct kvm_mmu_page
*sp
;
2142 for_each_sp(pages
, sp
, parents
, i
) {
2143 kvm_mmu_prepare_zap_page(kvm
, sp
, invalid_list
);
2144 mmu_pages_clear_parents(&parents
);
2147 kvm_mmu_pages_init(parent
, &parents
, &pages
);
2153 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
2154 struct list_head
*invalid_list
)
2158 trace_kvm_mmu_prepare_zap_page(sp
);
2159 ++kvm
->stat
.mmu_shadow_zapped
;
2160 ret
= mmu_zap_unsync_children(kvm
, sp
, invalid_list
);
2161 kvm_mmu_page_unlink_children(kvm
, sp
);
2162 kvm_mmu_unlink_parents(kvm
, sp
);
2164 if (!sp
->role
.invalid
&& !sp
->role
.direct
)
2165 unaccount_shadowed(kvm
, sp
->gfn
);
2168 kvm_unlink_unsync_page(kvm
, sp
);
2169 if (!sp
->root_count
) {
2172 list_move(&sp
->link
, invalid_list
);
2173 kvm_mod_used_mmu_pages(kvm
, -1);
2175 list_move(&sp
->link
, &kvm
->arch
.active_mmu_pages
);
2178 * The obsolete pages can not be used on any vcpus.
2179 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2181 if (!sp
->role
.invalid
&& !is_obsolete_sp(kvm
, sp
))
2182 kvm_reload_remote_mmus(kvm
);
2185 sp
->role
.invalid
= 1;
2189 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
2190 struct list_head
*invalid_list
)
2192 struct kvm_mmu_page
*sp
, *nsp
;
2194 if (list_empty(invalid_list
))
2198 * wmb: make sure everyone sees our modifications to the page tables
2199 * rmb: make sure we see changes to vcpu->mode
2204 * Wait for all vcpus to exit guest mode and/or lockless shadow
2207 kvm_flush_remote_tlbs(kvm
);
2209 list_for_each_entry_safe(sp
, nsp
, invalid_list
, link
) {
2210 WARN_ON(!sp
->role
.invalid
|| sp
->root_count
);
2211 kvm_mmu_free_page(sp
);
2215 static bool prepare_zap_oldest_mmu_page(struct kvm
*kvm
,
2216 struct list_head
*invalid_list
)
2218 struct kvm_mmu_page
*sp
;
2220 if (list_empty(&kvm
->arch
.active_mmu_pages
))
2223 sp
= list_entry(kvm
->arch
.active_mmu_pages
.prev
,
2224 struct kvm_mmu_page
, link
);
2225 kvm_mmu_prepare_zap_page(kvm
, sp
, invalid_list
);
2231 * Changing the number of mmu pages allocated to the vm
2232 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2234 void kvm_mmu_change_mmu_pages(struct kvm
*kvm
, unsigned int goal_nr_mmu_pages
)
2236 LIST_HEAD(invalid_list
);
2238 spin_lock(&kvm
->mmu_lock
);
2240 if (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
) {
2241 /* Need to free some mmu pages to achieve the goal. */
2242 while (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
)
2243 if (!prepare_zap_oldest_mmu_page(kvm
, &invalid_list
))
2246 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
2247 goal_nr_mmu_pages
= kvm
->arch
.n_used_mmu_pages
;
2250 kvm
->arch
.n_max_mmu_pages
= goal_nr_mmu_pages
;
2252 spin_unlock(&kvm
->mmu_lock
);
2255 int kvm_mmu_unprotect_page(struct kvm
*kvm
, gfn_t gfn
)
2257 struct kvm_mmu_page
*sp
;
2258 LIST_HEAD(invalid_list
);
2261 pgprintk("%s: looking for gfn %llx\n", __func__
, gfn
);
2263 spin_lock(&kvm
->mmu_lock
);
2264 for_each_gfn_indirect_valid_sp(kvm
, sp
, gfn
) {
2265 pgprintk("%s: gfn %llx role %x\n", __func__
, gfn
,
2268 kvm_mmu_prepare_zap_page(kvm
, sp
, &invalid_list
);
2270 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
2271 spin_unlock(&kvm
->mmu_lock
);
2275 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page
);
2278 * The function is based on mtrr_type_lookup() in
2279 * arch/x86/kernel/cpu/mtrr/generic.c
2281 static int get_mtrr_type(struct mtrr_state_type
*mtrr_state
,
2286 u8 prev_match
, curr_match
;
2287 int num_var_ranges
= KVM_NR_VAR_MTRR
;
2289 if (!mtrr_state
->enabled
)
2292 /* Make end inclusive end, instead of exclusive */
2295 /* Look in fixed ranges. Just return the type as per start */
2296 if (mtrr_state
->have_fixed
&& (start
< 0x100000)) {
2299 if (start
< 0x80000) {
2301 idx
+= (start
>> 16);
2302 return mtrr_state
->fixed_ranges
[idx
];
2303 } else if (start
< 0xC0000) {
2305 idx
+= ((start
- 0x80000) >> 14);
2306 return mtrr_state
->fixed_ranges
[idx
];
2307 } else if (start
< 0x1000000) {
2309 idx
+= ((start
- 0xC0000) >> 12);
2310 return mtrr_state
->fixed_ranges
[idx
];
2315 * Look in variable ranges
2316 * Look of multiple ranges matching this address and pick type
2317 * as per MTRR precedence
2319 if (!(mtrr_state
->enabled
& 2))
2320 return mtrr_state
->def_type
;
2323 for (i
= 0; i
< num_var_ranges
; ++i
) {
2324 unsigned short start_state
, end_state
;
2326 if (!(mtrr_state
->var_ranges
[i
].mask_lo
& (1 << 11)))
2329 base
= (((u64
)mtrr_state
->var_ranges
[i
].base_hi
) << 32) +
2330 (mtrr_state
->var_ranges
[i
].base_lo
& PAGE_MASK
);
2331 mask
= (((u64
)mtrr_state
->var_ranges
[i
].mask_hi
) << 32) +
2332 (mtrr_state
->var_ranges
[i
].mask_lo
& PAGE_MASK
);
2334 start_state
= ((start
& mask
) == (base
& mask
));
2335 end_state
= ((end
& mask
) == (base
& mask
));
2336 if (start_state
!= end_state
)
2339 if ((start
& mask
) != (base
& mask
))
2342 curr_match
= mtrr_state
->var_ranges
[i
].base_lo
& 0xff;
2343 if (prev_match
== 0xFF) {
2344 prev_match
= curr_match
;
2348 if (prev_match
== MTRR_TYPE_UNCACHABLE
||
2349 curr_match
== MTRR_TYPE_UNCACHABLE
)
2350 return MTRR_TYPE_UNCACHABLE
;
2352 if ((prev_match
== MTRR_TYPE_WRBACK
&&
2353 curr_match
== MTRR_TYPE_WRTHROUGH
) ||
2354 (prev_match
== MTRR_TYPE_WRTHROUGH
&&
2355 curr_match
== MTRR_TYPE_WRBACK
)) {
2356 prev_match
= MTRR_TYPE_WRTHROUGH
;
2357 curr_match
= MTRR_TYPE_WRTHROUGH
;
2360 if (prev_match
!= curr_match
)
2361 return MTRR_TYPE_UNCACHABLE
;
2364 if (prev_match
!= 0xFF)
2367 return mtrr_state
->def_type
;
2370 u8
kvm_get_guest_memory_type(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2374 mtrr
= get_mtrr_type(&vcpu
->arch
.mtrr_state
, gfn
<< PAGE_SHIFT
,
2375 (gfn
<< PAGE_SHIFT
) + PAGE_SIZE
);
2376 if (mtrr
== 0xfe || mtrr
== 0xff)
2377 mtrr
= MTRR_TYPE_WRBACK
;
2380 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type
);
2382 static void __kvm_unsync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
2384 trace_kvm_mmu_unsync_page(sp
);
2385 ++vcpu
->kvm
->stat
.mmu_unsync
;
2388 kvm_mmu_mark_parents_unsync(sp
);
2391 static void kvm_unsync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2393 struct kvm_mmu_page
*s
;
2395 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
) {
2398 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
2399 __kvm_unsync_page(vcpu
, s
);
2403 static int mmu_need_write_protect(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2406 struct kvm_mmu_page
*s
;
2407 bool need_unsync
= false;
2409 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
) {
2413 if (s
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
2420 kvm_unsync_pages(vcpu
, gfn
);
2424 static int set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2425 unsigned pte_access
, int level
,
2426 gfn_t gfn
, pfn_t pfn
, bool speculative
,
2427 bool can_unsync
, bool host_writable
)
2432 if (set_mmio_spte(vcpu
->kvm
, sptep
, gfn
, pfn
, pte_access
))
2435 spte
= PT_PRESENT_MASK
;
2437 spte
|= shadow_accessed_mask
;
2439 if (pte_access
& ACC_EXEC_MASK
)
2440 spte
|= shadow_x_mask
;
2442 spte
|= shadow_nx_mask
;
2444 if (pte_access
& ACC_USER_MASK
)
2445 spte
|= shadow_user_mask
;
2447 if (level
> PT_PAGE_TABLE_LEVEL
)
2448 spte
|= PT_PAGE_SIZE_MASK
;
2450 spte
|= kvm_x86_ops
->get_mt_mask(vcpu
, gfn
,
2451 kvm_is_mmio_pfn(pfn
));
2454 spte
|= SPTE_HOST_WRITEABLE
;
2456 pte_access
&= ~ACC_WRITE_MASK
;
2458 spte
|= (u64
)pfn
<< PAGE_SHIFT
;
2460 if (pte_access
& ACC_WRITE_MASK
) {
2463 * Other vcpu creates new sp in the window between
2464 * mapping_level() and acquiring mmu-lock. We can
2465 * allow guest to retry the access, the mapping can
2466 * be fixed if guest refault.
2468 if (level
> PT_PAGE_TABLE_LEVEL
&&
2469 has_wrprotected_page(vcpu
->kvm
, gfn
, level
))
2472 spte
|= PT_WRITABLE_MASK
| SPTE_MMU_WRITEABLE
;
2475 * Optimization: for pte sync, if spte was writable the hash
2476 * lookup is unnecessary (and expensive). Write protection
2477 * is responsibility of mmu_get_page / kvm_sync_page.
2478 * Same reasoning can be applied to dirty page accounting.
2480 if (!can_unsync
&& is_writable_pte(*sptep
))
2483 if (mmu_need_write_protect(vcpu
, gfn
, can_unsync
)) {
2484 pgprintk("%s: found shadow page for %llx, marking ro\n",
2487 pte_access
&= ~ACC_WRITE_MASK
;
2488 spte
&= ~(PT_WRITABLE_MASK
| SPTE_MMU_WRITEABLE
);
2492 if (pte_access
& ACC_WRITE_MASK
)
2493 mark_page_dirty(vcpu
->kvm
, gfn
);
2496 if (mmu_spte_update(sptep
, spte
))
2497 kvm_flush_remote_tlbs(vcpu
->kvm
);
2502 static void mmu_set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2503 unsigned pte_access
, int write_fault
, int *emulate
,
2504 int level
, gfn_t gfn
, pfn_t pfn
, bool speculative
,
2507 int was_rmapped
= 0;
2510 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__
,
2511 *sptep
, write_fault
, gfn
);
2513 if (is_rmap_spte(*sptep
)) {
2515 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2516 * the parent of the now unreachable PTE.
2518 if (level
> PT_PAGE_TABLE_LEVEL
&&
2519 !is_large_pte(*sptep
)) {
2520 struct kvm_mmu_page
*child
;
2523 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2524 drop_parent_pte(child
, sptep
);
2525 kvm_flush_remote_tlbs(vcpu
->kvm
);
2526 } else if (pfn
!= spte_to_pfn(*sptep
)) {
2527 pgprintk("hfn old %llx new %llx\n",
2528 spte_to_pfn(*sptep
), pfn
);
2529 drop_spte(vcpu
->kvm
, sptep
);
2530 kvm_flush_remote_tlbs(vcpu
->kvm
);
2535 if (set_spte(vcpu
, sptep
, pte_access
, level
, gfn
, pfn
, speculative
,
2536 true, host_writable
)) {
2539 kvm_mmu_flush_tlb(vcpu
);
2542 if (unlikely(is_mmio_spte(*sptep
) && emulate
))
2545 pgprintk("%s: setting spte %llx\n", __func__
, *sptep
);
2546 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2547 is_large_pte(*sptep
)? "2MB" : "4kB",
2548 *sptep
& PT_PRESENT_MASK
?"RW":"R", gfn
,
2550 if (!was_rmapped
&& is_large_pte(*sptep
))
2551 ++vcpu
->kvm
->stat
.lpages
;
2553 if (is_shadow_present_pte(*sptep
)) {
2555 rmap_count
= rmap_add(vcpu
, sptep
, gfn
);
2556 if (rmap_count
> RMAP_RECYCLE_THRESHOLD
)
2557 rmap_recycle(vcpu
, sptep
, gfn
);
2561 kvm_release_pfn_clean(pfn
);
2564 static pfn_t
pte_prefetch_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2567 struct kvm_memory_slot
*slot
;
2569 slot
= gfn_to_memslot_dirty_bitmap(vcpu
, gfn
, no_dirty_log
);
2571 return KVM_PFN_ERR_FAULT
;
2573 return gfn_to_pfn_memslot_atomic(slot
, gfn
);
2576 static int direct_pte_prefetch_many(struct kvm_vcpu
*vcpu
,
2577 struct kvm_mmu_page
*sp
,
2578 u64
*start
, u64
*end
)
2580 struct page
*pages
[PTE_PREFETCH_NUM
];
2581 unsigned access
= sp
->role
.access
;
2585 gfn
= kvm_mmu_page_get_gfn(sp
, start
- sp
->spt
);
2586 if (!gfn_to_memslot_dirty_bitmap(vcpu
, gfn
, access
& ACC_WRITE_MASK
))
2589 ret
= gfn_to_page_many_atomic(vcpu
->kvm
, gfn
, pages
, end
- start
);
2593 for (i
= 0; i
< ret
; i
++, gfn
++, start
++)
2594 mmu_set_spte(vcpu
, start
, access
, 0, NULL
,
2595 sp
->role
.level
, gfn
, page_to_pfn(pages
[i
]),
2601 static void __direct_pte_prefetch(struct kvm_vcpu
*vcpu
,
2602 struct kvm_mmu_page
*sp
, u64
*sptep
)
2604 u64
*spte
, *start
= NULL
;
2607 WARN_ON(!sp
->role
.direct
);
2609 i
= (sptep
- sp
->spt
) & ~(PTE_PREFETCH_NUM
- 1);
2612 for (i
= 0; i
< PTE_PREFETCH_NUM
; i
++, spte
++) {
2613 if (is_shadow_present_pte(*spte
) || spte
== sptep
) {
2616 if (direct_pte_prefetch_many(vcpu
, sp
, start
, spte
) < 0)
2624 static void direct_pte_prefetch(struct kvm_vcpu
*vcpu
, u64
*sptep
)
2626 struct kvm_mmu_page
*sp
;
2629 * Since it's no accessed bit on EPT, it's no way to
2630 * distinguish between actually accessed translations
2631 * and prefetched, so disable pte prefetch if EPT is
2634 if (!shadow_accessed_mask
)
2637 sp
= page_header(__pa(sptep
));
2638 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
2641 __direct_pte_prefetch(vcpu
, sp
, sptep
);
2644 static int __direct_map(struct kvm_vcpu
*vcpu
, gpa_t v
, int write
,
2645 int map_writable
, int level
, gfn_t gfn
, pfn_t pfn
,
2648 struct kvm_shadow_walk_iterator iterator
;
2649 struct kvm_mmu_page
*sp
;
2653 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2656 for_each_shadow_entry(vcpu
, (u64
)gfn
<< PAGE_SHIFT
, iterator
) {
2657 if (iterator
.level
== level
) {
2658 mmu_set_spte(vcpu
, iterator
.sptep
, ACC_ALL
,
2659 write
, &emulate
, level
, gfn
, pfn
,
2660 prefault
, map_writable
);
2661 direct_pte_prefetch(vcpu
, iterator
.sptep
);
2662 ++vcpu
->stat
.pf_fixed
;
2666 drop_large_spte(vcpu
, iterator
.sptep
);
2667 if (!is_shadow_present_pte(*iterator
.sptep
)) {
2668 u64 base_addr
= iterator
.addr
;
2670 base_addr
&= PT64_LVL_ADDR_MASK(iterator
.level
);
2671 pseudo_gfn
= base_addr
>> PAGE_SHIFT
;
2672 sp
= kvm_mmu_get_page(vcpu
, pseudo_gfn
, iterator
.addr
,
2674 1, ACC_ALL
, iterator
.sptep
);
2676 link_shadow_page(iterator
.sptep
, sp
, true);
2682 static void kvm_send_hwpoison_signal(unsigned long address
, struct task_struct
*tsk
)
2686 info
.si_signo
= SIGBUS
;
2688 info
.si_code
= BUS_MCEERR_AR
;
2689 info
.si_addr
= (void __user
*)address
;
2690 info
.si_addr_lsb
= PAGE_SHIFT
;
2692 send_sig_info(SIGBUS
, &info
, tsk
);
2695 static int kvm_handle_bad_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, pfn_t pfn
)
2698 * Do not cache the mmio info caused by writing the readonly gfn
2699 * into the spte otherwise read access on readonly gfn also can
2700 * caused mmio page fault and treat it as mmio access.
2701 * Return 1 to tell kvm to emulate it.
2703 if (pfn
== KVM_PFN_ERR_RO_FAULT
)
2706 if (pfn
== KVM_PFN_ERR_HWPOISON
) {
2707 kvm_send_hwpoison_signal(gfn_to_hva(vcpu
->kvm
, gfn
), current
);
2714 static void transparent_hugepage_adjust(struct kvm_vcpu
*vcpu
,
2715 gfn_t
*gfnp
, pfn_t
*pfnp
, int *levelp
)
2719 int level
= *levelp
;
2722 * Check if it's a transparent hugepage. If this would be an
2723 * hugetlbfs page, level wouldn't be set to
2724 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2727 if (!is_error_noslot_pfn(pfn
) && !kvm_is_mmio_pfn(pfn
) &&
2728 level
== PT_PAGE_TABLE_LEVEL
&&
2729 PageTransCompound(pfn_to_page(pfn
)) &&
2730 !has_wrprotected_page(vcpu
->kvm
, gfn
, PT_DIRECTORY_LEVEL
)) {
2733 * mmu_notifier_retry was successful and we hold the
2734 * mmu_lock here, so the pmd can't become splitting
2735 * from under us, and in turn
2736 * __split_huge_page_refcount() can't run from under
2737 * us and we can safely transfer the refcount from
2738 * PG_tail to PG_head as we switch the pfn to tail to
2741 *levelp
= level
= PT_DIRECTORY_LEVEL
;
2742 mask
= KVM_PAGES_PER_HPAGE(level
) - 1;
2743 VM_BUG_ON((gfn
& mask
) != (pfn
& mask
));
2747 kvm_release_pfn_clean(pfn
);
2755 static bool handle_abnormal_pfn(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
,
2756 pfn_t pfn
, unsigned access
, int *ret_val
)
2760 /* The pfn is invalid, report the error! */
2761 if (unlikely(is_error_pfn(pfn
))) {
2762 *ret_val
= kvm_handle_bad_page(vcpu
, gfn
, pfn
);
2766 if (unlikely(is_noslot_pfn(pfn
)))
2767 vcpu_cache_mmio_info(vcpu
, gva
, gfn
, access
);
2774 static bool page_fault_can_be_fast(u32 error_code
)
2777 * Do not fix the mmio spte with invalid generation number which
2778 * need to be updated by slow page fault path.
2780 if (unlikely(error_code
& PFERR_RSVD_MASK
))
2784 * #PF can be fast only if the shadow page table is present and it
2785 * is caused by write-protect, that means we just need change the
2786 * W bit of the spte which can be done out of mmu-lock.
2788 if (!(error_code
& PFERR_PRESENT_MASK
) ||
2789 !(error_code
& PFERR_WRITE_MASK
))
2796 fast_pf_fix_direct_spte(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
2797 u64
*sptep
, u64 spte
)
2801 WARN_ON(!sp
->role
.direct
);
2804 * The gfn of direct spte is stable since it is calculated
2807 gfn
= kvm_mmu_page_get_gfn(sp
, sptep
- sp
->spt
);
2809 if (cmpxchg64(sptep
, spte
, spte
| PT_WRITABLE_MASK
) == spte
)
2810 mark_page_dirty(vcpu
->kvm
, gfn
);
2817 * - true: let the vcpu to access on the same address again.
2818 * - false: let the real page fault path to fix it.
2820 static bool fast_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
, int level
,
2823 struct kvm_shadow_walk_iterator iterator
;
2824 struct kvm_mmu_page
*sp
;
2828 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2831 if (!page_fault_can_be_fast(error_code
))
2834 walk_shadow_page_lockless_begin(vcpu
);
2835 for_each_shadow_entry_lockless(vcpu
, gva
, iterator
, spte
)
2836 if (!is_shadow_present_pte(spte
) || iterator
.level
< level
)
2840 * If the mapping has been changed, let the vcpu fault on the
2841 * same address again.
2843 if (!is_rmap_spte(spte
)) {
2848 sp
= page_header(__pa(iterator
.sptep
));
2849 if (!is_last_spte(spte
, sp
->role
.level
))
2853 * Check if it is a spurious fault caused by TLB lazily flushed.
2855 * Need not check the access of upper level table entries since
2856 * they are always ACC_ALL.
2858 if (is_writable_pte(spte
)) {
2864 * Currently, to simplify the code, only the spte write-protected
2865 * by dirty-log can be fast fixed.
2867 if (!spte_is_locklessly_modifiable(spte
))
2871 * Do not fix write-permission on the large spte since we only dirty
2872 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2873 * that means other pages are missed if its slot is dirty-logged.
2875 * Instead, we let the slow page fault path create a normal spte to
2878 * See the comments in kvm_arch_commit_memory_region().
2880 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
2884 * Currently, fast page fault only works for direct mapping since
2885 * the gfn is not stable for indirect shadow page.
2886 * See Documentation/virtual/kvm/locking.txt to get more detail.
2888 ret
= fast_pf_fix_direct_spte(vcpu
, sp
, iterator
.sptep
, spte
);
2890 trace_fast_page_fault(vcpu
, gva
, error_code
, iterator
.sptep
,
2892 walk_shadow_page_lockless_end(vcpu
);
2897 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
2898 gva_t gva
, pfn_t
*pfn
, bool write
, bool *writable
);
2899 static void make_mmu_pages_available(struct kvm_vcpu
*vcpu
);
2901 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, u32 error_code
,
2902 gfn_t gfn
, bool prefault
)
2908 unsigned long mmu_seq
;
2909 bool map_writable
, write
= error_code
& PFERR_WRITE_MASK
;
2911 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, gfn
);
2912 if (likely(!force_pt_level
)) {
2913 level
= mapping_level(vcpu
, gfn
);
2915 * This path builds a PAE pagetable - so we can map
2916 * 2mb pages at maximum. Therefore check if the level
2917 * is larger than that.
2919 if (level
> PT_DIRECTORY_LEVEL
)
2920 level
= PT_DIRECTORY_LEVEL
;
2922 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
2924 level
= PT_PAGE_TABLE_LEVEL
;
2926 if (fast_page_fault(vcpu
, v
, level
, error_code
))
2929 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2932 if (try_async_pf(vcpu
, prefault
, gfn
, v
, &pfn
, write
, &map_writable
))
2935 if (handle_abnormal_pfn(vcpu
, v
, gfn
, pfn
, ACC_ALL
, &r
))
2938 spin_lock(&vcpu
->kvm
->mmu_lock
);
2939 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
2941 make_mmu_pages_available(vcpu
);
2942 if (likely(!force_pt_level
))
2943 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
2944 r
= __direct_map(vcpu
, v
, write
, map_writable
, level
, gfn
, pfn
,
2946 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2952 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2953 kvm_release_pfn_clean(pfn
);
2958 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
2961 struct kvm_mmu_page
*sp
;
2962 LIST_HEAD(invalid_list
);
2964 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2967 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
&&
2968 (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
||
2969 vcpu
->arch
.mmu
.direct_map
)) {
2970 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2972 spin_lock(&vcpu
->kvm
->mmu_lock
);
2973 sp
= page_header(root
);
2975 if (!sp
->root_count
&& sp
->role
.invalid
) {
2976 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, &invalid_list
);
2977 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
2979 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2980 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2984 spin_lock(&vcpu
->kvm
->mmu_lock
);
2985 for (i
= 0; i
< 4; ++i
) {
2986 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2989 root
&= PT64_BASE_ADDR_MASK
;
2990 sp
= page_header(root
);
2992 if (!sp
->root_count
&& sp
->role
.invalid
)
2993 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
2996 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
2998 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
2999 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3000 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
3003 static int mmu_check_root(struct kvm_vcpu
*vcpu
, gfn_t root_gfn
)
3007 if (!kvm_is_visible_gfn(vcpu
->kvm
, root_gfn
)) {
3008 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3015 static int mmu_alloc_direct_roots(struct kvm_vcpu
*vcpu
)
3017 struct kvm_mmu_page
*sp
;
3020 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
3021 spin_lock(&vcpu
->kvm
->mmu_lock
);
3022 make_mmu_pages_available(vcpu
);
3023 sp
= kvm_mmu_get_page(vcpu
, 0, 0, PT64_ROOT_LEVEL
,
3026 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3027 vcpu
->arch
.mmu
.root_hpa
= __pa(sp
->spt
);
3028 } else if (vcpu
->arch
.mmu
.shadow_root_level
== PT32E_ROOT_LEVEL
) {
3029 for (i
= 0; i
< 4; ++i
) {
3030 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3032 ASSERT(!VALID_PAGE(root
));
3033 spin_lock(&vcpu
->kvm
->mmu_lock
);
3034 make_mmu_pages_available(vcpu
);
3035 sp
= kvm_mmu_get_page(vcpu
, i
<< (30 - PAGE_SHIFT
),
3037 PT32_ROOT_LEVEL
, 1, ACC_ALL
,
3039 root
= __pa(sp
->spt
);
3041 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3042 vcpu
->arch
.mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
3044 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
3051 static int mmu_alloc_shadow_roots(struct kvm_vcpu
*vcpu
)
3053 struct kvm_mmu_page
*sp
;
3058 root_gfn
= vcpu
->arch
.mmu
.get_cr3(vcpu
) >> PAGE_SHIFT
;
3060 if (mmu_check_root(vcpu
, root_gfn
))
3064 * Do we shadow a long mode page table? If so we need to
3065 * write-protect the guests page table root.
3067 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
3068 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3070 ASSERT(!VALID_PAGE(root
));
3072 spin_lock(&vcpu
->kvm
->mmu_lock
);
3073 make_mmu_pages_available(vcpu
);
3074 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, 0, PT64_ROOT_LEVEL
,
3076 root
= __pa(sp
->spt
);
3078 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3079 vcpu
->arch
.mmu
.root_hpa
= root
;
3084 * We shadow a 32 bit page table. This may be a legacy 2-level
3085 * or a PAE 3-level page table. In either case we need to be aware that
3086 * the shadow page table may be a PAE or a long mode page table.
3088 pm_mask
= PT_PRESENT_MASK
;
3089 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
)
3090 pm_mask
|= PT_ACCESSED_MASK
| PT_WRITABLE_MASK
| PT_USER_MASK
;
3092 for (i
= 0; i
< 4; ++i
) {
3093 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3095 ASSERT(!VALID_PAGE(root
));
3096 if (vcpu
->arch
.mmu
.root_level
== PT32E_ROOT_LEVEL
) {
3097 pdptr
= vcpu
->arch
.mmu
.get_pdptr(vcpu
, i
);
3098 if (!is_present_gpte(pdptr
)) {
3099 vcpu
->arch
.mmu
.pae_root
[i
] = 0;
3102 root_gfn
= pdptr
>> PAGE_SHIFT
;
3103 if (mmu_check_root(vcpu
, root_gfn
))
3106 spin_lock(&vcpu
->kvm
->mmu_lock
);
3107 make_mmu_pages_available(vcpu
);
3108 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30,
3111 root
= __pa(sp
->spt
);
3113 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3115 vcpu
->arch
.mmu
.pae_root
[i
] = root
| pm_mask
;
3117 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
3120 * If we shadow a 32 bit page table with a long mode page
3121 * table we enter this path.
3123 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
3124 if (vcpu
->arch
.mmu
.lm_root
== NULL
) {
3126 * The additional page necessary for this is only
3127 * allocated on demand.
3132 lm_root
= (void*)get_zeroed_page(GFP_KERNEL
);
3133 if (lm_root
== NULL
)
3136 lm_root
[0] = __pa(vcpu
->arch
.mmu
.pae_root
) | pm_mask
;
3138 vcpu
->arch
.mmu
.lm_root
= lm_root
;
3141 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.lm_root
);
3147 static int mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
3149 if (vcpu
->arch
.mmu
.direct_map
)
3150 return mmu_alloc_direct_roots(vcpu
);
3152 return mmu_alloc_shadow_roots(vcpu
);
3155 static void mmu_sync_roots(struct kvm_vcpu
*vcpu
)
3158 struct kvm_mmu_page
*sp
;
3160 if (vcpu
->arch
.mmu
.direct_map
)
3163 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3166 vcpu_clear_mmio_info(vcpu
, ~0ul);
3167 kvm_mmu_audit(vcpu
, AUDIT_PRE_SYNC
);
3168 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
3169 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3170 sp
= page_header(root
);
3171 mmu_sync_children(vcpu
, sp
);
3172 kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
3175 for (i
= 0; i
< 4; ++i
) {
3176 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3178 if (root
&& VALID_PAGE(root
)) {
3179 root
&= PT64_BASE_ADDR_MASK
;
3180 sp
= page_header(root
);
3181 mmu_sync_children(vcpu
, sp
);
3184 kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
3187 void kvm_mmu_sync_roots(struct kvm_vcpu
*vcpu
)
3189 spin_lock(&vcpu
->kvm
->mmu_lock
);
3190 mmu_sync_roots(vcpu
);
3191 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3193 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots
);
3195 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
3196 u32 access
, struct x86_exception
*exception
)
3199 exception
->error_code
= 0;
3203 static gpa_t
nonpaging_gva_to_gpa_nested(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
3205 struct x86_exception
*exception
)
3208 exception
->error_code
= 0;
3209 return vcpu
->arch
.nested_mmu
.translate_gpa(vcpu
, vaddr
, access
);
3212 static bool quickly_check_mmio_pf(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
)
3215 return vcpu_match_mmio_gpa(vcpu
, addr
);
3217 return vcpu_match_mmio_gva(vcpu
, addr
);
3222 * On direct hosts, the last spte is only allows two states
3223 * for mmio page fault:
3224 * - It is the mmio spte
3225 * - It is zapped or it is being zapped.
3227 * This function completely checks the spte when the last spte
3228 * is not the mmio spte.
3230 static bool check_direct_spte_mmio_pf(u64 spte
)
3232 return __check_direct_spte_mmio_pf(spte
);
3235 static u64
walk_shadow_page_get_mmio_spte(struct kvm_vcpu
*vcpu
, u64 addr
)
3237 struct kvm_shadow_walk_iterator iterator
;
3240 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3243 walk_shadow_page_lockless_begin(vcpu
);
3244 for_each_shadow_entry_lockless(vcpu
, addr
, iterator
, spte
)
3245 if (!is_shadow_present_pte(spte
))
3247 walk_shadow_page_lockless_end(vcpu
);
3252 int handle_mmio_page_fault_common(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
)
3256 if (quickly_check_mmio_pf(vcpu
, addr
, direct
))
3257 return RET_MMIO_PF_EMULATE
;
3259 spte
= walk_shadow_page_get_mmio_spte(vcpu
, addr
);
3261 if (is_mmio_spte(spte
)) {
3262 gfn_t gfn
= get_mmio_spte_gfn(spte
);
3263 unsigned access
= get_mmio_spte_access(spte
);
3265 if (!check_mmio_spte(vcpu
->kvm
, spte
))
3266 return RET_MMIO_PF_INVALID
;
3271 trace_handle_mmio_page_fault(addr
, gfn
, access
);
3272 vcpu_cache_mmio_info(vcpu
, addr
, gfn
, access
);
3273 return RET_MMIO_PF_EMULATE
;
3277 * It's ok if the gva is remapped by other cpus on shadow guest,
3278 * it's a BUG if the gfn is not a mmio page.
3280 if (direct
&& !check_direct_spte_mmio_pf(spte
))
3281 return RET_MMIO_PF_BUG
;
3284 * If the page table is zapped by other cpus, let CPU fault again on
3287 return RET_MMIO_PF_RETRY
;
3289 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common
);
3291 static int handle_mmio_page_fault(struct kvm_vcpu
*vcpu
, u64 addr
,
3292 u32 error_code
, bool direct
)
3296 ret
= handle_mmio_page_fault_common(vcpu
, addr
, direct
);
3297 WARN_ON(ret
== RET_MMIO_PF_BUG
);
3301 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
3302 u32 error_code
, bool prefault
)
3307 pgprintk("%s: gva %lx error %x\n", __func__
, gva
, error_code
);
3309 if (unlikely(error_code
& PFERR_RSVD_MASK
)) {
3310 r
= handle_mmio_page_fault(vcpu
, gva
, error_code
, true);
3312 if (likely(r
!= RET_MMIO_PF_INVALID
))
3316 r
= mmu_topup_memory_caches(vcpu
);
3321 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3323 gfn
= gva
>> PAGE_SHIFT
;
3325 return nonpaging_map(vcpu
, gva
& PAGE_MASK
,
3326 error_code
, gfn
, prefault
);
3329 static int kvm_arch_setup_async_pf(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
)
3331 struct kvm_arch_async_pf arch
;
3333 arch
.token
= (vcpu
->arch
.apf
.id
++ << 12) | vcpu
->vcpu_id
;
3335 arch
.direct_map
= vcpu
->arch
.mmu
.direct_map
;
3336 arch
.cr3
= vcpu
->arch
.mmu
.get_cr3(vcpu
);
3338 return kvm_setup_async_pf(vcpu
, gva
, gfn_to_hva(vcpu
->kvm
, gfn
), &arch
);
3341 static bool can_do_async_pf(struct kvm_vcpu
*vcpu
)
3343 if (unlikely(!irqchip_in_kernel(vcpu
->kvm
) ||
3344 kvm_event_needs_reinjection(vcpu
)))
3347 return kvm_x86_ops
->interrupt_allowed(vcpu
);
3350 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
3351 gva_t gva
, pfn_t
*pfn
, bool write
, bool *writable
)
3355 *pfn
= gfn_to_pfn_async(vcpu
->kvm
, gfn
, &async
, write
, writable
);
3358 return false; /* *pfn has correct page already */
3360 if (!prefault
&& can_do_async_pf(vcpu
)) {
3361 trace_kvm_try_async_get_page(gva
, gfn
);
3362 if (kvm_find_async_pf_gfn(vcpu
, gfn
)) {
3363 trace_kvm_async_pf_doublefault(gva
, gfn
);
3364 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
3366 } else if (kvm_arch_setup_async_pf(vcpu
, gva
, gfn
))
3370 *pfn
= gfn_to_pfn_prot(vcpu
->kvm
, gfn
, write
, writable
);
3375 static int tdp_page_fault(struct kvm_vcpu
*vcpu
, gva_t gpa
, u32 error_code
,
3382 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
3383 unsigned long mmu_seq
;
3384 int write
= error_code
& PFERR_WRITE_MASK
;
3388 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3390 if (unlikely(error_code
& PFERR_RSVD_MASK
)) {
3391 r
= handle_mmio_page_fault(vcpu
, gpa
, error_code
, true);
3393 if (likely(r
!= RET_MMIO_PF_INVALID
))
3397 r
= mmu_topup_memory_caches(vcpu
);
3401 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, gfn
);
3402 if (likely(!force_pt_level
)) {
3403 level
= mapping_level(vcpu
, gfn
);
3404 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
3406 level
= PT_PAGE_TABLE_LEVEL
;
3408 if (fast_page_fault(vcpu
, gpa
, level
, error_code
))
3411 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
3414 if (try_async_pf(vcpu
, prefault
, gfn
, gpa
, &pfn
, write
, &map_writable
))
3417 if (handle_abnormal_pfn(vcpu
, 0, gfn
, pfn
, ACC_ALL
, &r
))
3420 spin_lock(&vcpu
->kvm
->mmu_lock
);
3421 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
3423 make_mmu_pages_available(vcpu
);
3424 if (likely(!force_pt_level
))
3425 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
3426 r
= __direct_map(vcpu
, gpa
, write
, map_writable
,
3427 level
, gfn
, pfn
, prefault
);
3428 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3433 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3434 kvm_release_pfn_clean(pfn
);
3438 static void nonpaging_init_context(struct kvm_vcpu
*vcpu
,
3439 struct kvm_mmu
*context
)
3441 context
->page_fault
= nonpaging_page_fault
;
3442 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
3443 context
->sync_page
= nonpaging_sync_page
;
3444 context
->invlpg
= nonpaging_invlpg
;
3445 context
->update_pte
= nonpaging_update_pte
;
3446 context
->root_level
= 0;
3447 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
3448 context
->root_hpa
= INVALID_PAGE
;
3449 context
->direct_map
= true;
3450 context
->nx
= false;
3453 void kvm_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
3455 ++vcpu
->stat
.tlb_flush
;
3456 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
3458 EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb
);
3460 void kvm_mmu_new_cr3(struct kvm_vcpu
*vcpu
)
3462 mmu_free_roots(vcpu
);
3465 static unsigned long get_cr3(struct kvm_vcpu
*vcpu
)
3467 return kvm_read_cr3(vcpu
);
3470 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
3471 struct x86_exception
*fault
)
3473 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
3476 static bool sync_mmio_spte(struct kvm
*kvm
, u64
*sptep
, gfn_t gfn
,
3477 unsigned access
, int *nr_present
)
3479 if (unlikely(is_mmio_spte(*sptep
))) {
3480 if (gfn
!= get_mmio_spte_gfn(*sptep
)) {
3481 mmu_spte_clear_no_track(sptep
);
3486 mark_mmio_spte(kvm
, sptep
, gfn
, access
);
3493 static inline bool is_last_gpte(struct kvm_mmu
*mmu
, unsigned level
, unsigned gpte
)
3498 index
|= (gpte
& PT_PAGE_SIZE_MASK
) >> (PT_PAGE_SIZE_SHIFT
- 2);
3499 return mmu
->last_pte_bitmap
& (1 << index
);
3502 #define PTTYPE_EPT 18 /* arbitrary */
3503 #define PTTYPE PTTYPE_EPT
3504 #include "paging_tmpl.h"
3508 #include "paging_tmpl.h"
3512 #include "paging_tmpl.h"
3515 static void reset_rsvds_bits_mask(struct kvm_vcpu
*vcpu
,
3516 struct kvm_mmu
*context
)
3518 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
3519 u64 exb_bit_rsvd
= 0;
3520 u64 gbpages_bit_rsvd
= 0;
3522 context
->bad_mt_xwr
= 0;
3525 exb_bit_rsvd
= rsvd_bits(63, 63);
3526 if (!guest_cpuid_has_gbpages(vcpu
))
3527 gbpages_bit_rsvd
= rsvd_bits(7, 7);
3528 switch (context
->root_level
) {
3529 case PT32_ROOT_LEVEL
:
3530 /* no rsvd bits for 2 level 4K page table entries */
3531 context
->rsvd_bits_mask
[0][1] = 0;
3532 context
->rsvd_bits_mask
[0][0] = 0;
3533 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3535 if (!is_pse(vcpu
)) {
3536 context
->rsvd_bits_mask
[1][1] = 0;
3540 if (is_cpuid_PSE36())
3541 /* 36bits PSE 4MB page */
3542 context
->rsvd_bits_mask
[1][1] = rsvd_bits(17, 21);
3544 /* 32 bits PSE 4MB page */
3545 context
->rsvd_bits_mask
[1][1] = rsvd_bits(13, 21);
3547 case PT32E_ROOT_LEVEL
:
3548 context
->rsvd_bits_mask
[0][2] =
3549 rsvd_bits(maxphyaddr
, 63) |
3550 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3551 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
3552 rsvd_bits(maxphyaddr
, 62); /* PDE */
3553 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
3554 rsvd_bits(maxphyaddr
, 62); /* PTE */
3555 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
3556 rsvd_bits(maxphyaddr
, 62) |
3557 rsvd_bits(13, 20); /* large page */
3558 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3560 case PT64_ROOT_LEVEL
:
3561 context
->rsvd_bits_mask
[0][3] = exb_bit_rsvd
|
3562 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(7, 7);
3563 context
->rsvd_bits_mask
[0][2] = exb_bit_rsvd
|
3564 gbpages_bit_rsvd
| rsvd_bits(maxphyaddr
, 51);
3565 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
3566 rsvd_bits(maxphyaddr
, 51);
3567 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
3568 rsvd_bits(maxphyaddr
, 51);
3569 context
->rsvd_bits_mask
[1][3] = context
->rsvd_bits_mask
[0][3];
3570 context
->rsvd_bits_mask
[1][2] = exb_bit_rsvd
|
3571 gbpages_bit_rsvd
| rsvd_bits(maxphyaddr
, 51) |
3573 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
3574 rsvd_bits(maxphyaddr
, 51) |
3575 rsvd_bits(13, 20); /* large page */
3576 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3581 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu
*vcpu
,
3582 struct kvm_mmu
*context
, bool execonly
)
3584 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
3587 context
->rsvd_bits_mask
[0][3] =
3588 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 7);
3589 context
->rsvd_bits_mask
[0][2] =
3590 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 6);
3591 context
->rsvd_bits_mask
[0][1] =
3592 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 6);
3593 context
->rsvd_bits_mask
[0][0] = rsvd_bits(maxphyaddr
, 51);
3596 context
->rsvd_bits_mask
[1][3] = context
->rsvd_bits_mask
[0][3];
3597 context
->rsvd_bits_mask
[1][2] =
3598 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(12, 29);
3599 context
->rsvd_bits_mask
[1][1] =
3600 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(12, 20);
3601 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3603 for (pte
= 0; pte
< 64; pte
++) {
3604 int rwx_bits
= pte
& 7;
3606 if (mt
== 0x2 || mt
== 0x3 || mt
== 0x7 ||
3607 rwx_bits
== 0x2 || rwx_bits
== 0x6 ||
3608 (rwx_bits
== 0x4 && !execonly
))
3609 context
->bad_mt_xwr
|= (1ull << pte
);
3613 void update_permission_bitmask(struct kvm_vcpu
*vcpu
,
3614 struct kvm_mmu
*mmu
, bool ept
)
3616 unsigned bit
, byte
, pfec
;
3618 bool fault
, x
, w
, u
, wf
, uf
, ff
, smapf
, cr4_smap
, cr4_smep
, smap
= 0;
3620 cr4_smep
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
);
3621 cr4_smap
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMAP
);
3622 for (byte
= 0; byte
< ARRAY_SIZE(mmu
->permissions
); ++byte
) {
3625 wf
= pfec
& PFERR_WRITE_MASK
;
3626 uf
= pfec
& PFERR_USER_MASK
;
3627 ff
= pfec
& PFERR_FETCH_MASK
;
3629 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3630 * subject to SMAP restrictions, and cleared otherwise. The
3631 * bit is only meaningful if the SMAP bit is set in CR4.
3633 smapf
= !(pfec
& PFERR_RSVD_MASK
);
3634 for (bit
= 0; bit
< 8; ++bit
) {
3635 x
= bit
& ACC_EXEC_MASK
;
3636 w
= bit
& ACC_WRITE_MASK
;
3637 u
= bit
& ACC_USER_MASK
;
3640 /* Not really needed: !nx will cause pte.nx to fault */
3642 /* Allow supervisor writes if !cr0.wp */
3643 w
|= !is_write_protection(vcpu
) && !uf
;
3644 /* Disallow supervisor fetches of user code if cr4.smep */
3645 x
&= !(cr4_smep
&& u
&& !uf
);
3648 * SMAP:kernel-mode data accesses from user-mode
3649 * mappings should fault. A fault is considered
3650 * as a SMAP violation if all of the following
3651 * conditions are ture:
3652 * - X86_CR4_SMAP is set in CR4
3653 * - An user page is accessed
3654 * - Page fault in kernel mode
3655 * - if CPL = 3 or X86_EFLAGS_AC is clear
3657 * Here, we cover the first three conditions.
3658 * The fourth is computed dynamically in
3659 * permission_fault() and is in smapf.
3661 * Also, SMAP does not affect instruction
3662 * fetches, add the !ff check here to make it
3665 smap
= cr4_smap
&& u
&& !uf
&& !ff
;
3667 /* Not really needed: no U/S accesses on ept */
3670 fault
= (ff
&& !x
) || (uf
&& !u
) || (wf
&& !w
) ||
3672 map
|= fault
<< bit
;
3674 mmu
->permissions
[byte
] = map
;
3678 static void update_last_pte_bitmap(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
)
3681 unsigned level
, root_level
= mmu
->root_level
;
3682 const unsigned ps_set_index
= 1 << 2; /* bit 2 of index: ps */
3684 if (root_level
== PT32E_ROOT_LEVEL
)
3686 /* PT_PAGE_TABLE_LEVEL always terminates */
3687 map
= 1 | (1 << ps_set_index
);
3688 for (level
= PT_DIRECTORY_LEVEL
; level
<= root_level
; ++level
) {
3689 if (level
<= PT_PDPE_LEVEL
3690 && (mmu
->root_level
>= PT32E_ROOT_LEVEL
|| is_pse(vcpu
)))
3691 map
|= 1 << (ps_set_index
| (level
- 1));
3693 mmu
->last_pte_bitmap
= map
;
3696 static void paging64_init_context_common(struct kvm_vcpu
*vcpu
,
3697 struct kvm_mmu
*context
,
3700 context
->nx
= is_nx(vcpu
);
3701 context
->root_level
= level
;
3703 reset_rsvds_bits_mask(vcpu
, context
);
3704 update_permission_bitmask(vcpu
, context
, false);
3705 update_last_pte_bitmap(vcpu
, context
);
3707 ASSERT(is_pae(vcpu
));
3708 context
->page_fault
= paging64_page_fault
;
3709 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3710 context
->sync_page
= paging64_sync_page
;
3711 context
->invlpg
= paging64_invlpg
;
3712 context
->update_pte
= paging64_update_pte
;
3713 context
->shadow_root_level
= level
;
3714 context
->root_hpa
= INVALID_PAGE
;
3715 context
->direct_map
= false;
3718 static void paging64_init_context(struct kvm_vcpu
*vcpu
,
3719 struct kvm_mmu
*context
)
3721 paging64_init_context_common(vcpu
, context
, PT64_ROOT_LEVEL
);
3724 static void paging32_init_context(struct kvm_vcpu
*vcpu
,
3725 struct kvm_mmu
*context
)
3727 context
->nx
= false;
3728 context
->root_level
= PT32_ROOT_LEVEL
;
3730 reset_rsvds_bits_mask(vcpu
, context
);
3731 update_permission_bitmask(vcpu
, context
, false);
3732 update_last_pte_bitmap(vcpu
, context
);
3734 context
->page_fault
= paging32_page_fault
;
3735 context
->gva_to_gpa
= paging32_gva_to_gpa
;
3736 context
->sync_page
= paging32_sync_page
;
3737 context
->invlpg
= paging32_invlpg
;
3738 context
->update_pte
= paging32_update_pte
;
3739 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
3740 context
->root_hpa
= INVALID_PAGE
;
3741 context
->direct_map
= false;
3744 static void paging32E_init_context(struct kvm_vcpu
*vcpu
,
3745 struct kvm_mmu
*context
)
3747 paging64_init_context_common(vcpu
, context
, PT32E_ROOT_LEVEL
);
3750 static void init_kvm_tdp_mmu(struct kvm_vcpu
*vcpu
)
3752 struct kvm_mmu
*context
= vcpu
->arch
.walk_mmu
;
3754 context
->base_role
.word
= 0;
3755 context
->page_fault
= tdp_page_fault
;
3756 context
->sync_page
= nonpaging_sync_page
;
3757 context
->invlpg
= nonpaging_invlpg
;
3758 context
->update_pte
= nonpaging_update_pte
;
3759 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
3760 context
->root_hpa
= INVALID_PAGE
;
3761 context
->direct_map
= true;
3762 context
->set_cr3
= kvm_x86_ops
->set_tdp_cr3
;
3763 context
->get_cr3
= get_cr3
;
3764 context
->get_pdptr
= kvm_pdptr_read
;
3765 context
->inject_page_fault
= kvm_inject_page_fault
;
3767 if (!is_paging(vcpu
)) {
3768 context
->nx
= false;
3769 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
3770 context
->root_level
= 0;
3771 } else if (is_long_mode(vcpu
)) {
3772 context
->nx
= is_nx(vcpu
);
3773 context
->root_level
= PT64_ROOT_LEVEL
;
3774 reset_rsvds_bits_mask(vcpu
, context
);
3775 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3776 } else if (is_pae(vcpu
)) {
3777 context
->nx
= is_nx(vcpu
);
3778 context
->root_level
= PT32E_ROOT_LEVEL
;
3779 reset_rsvds_bits_mask(vcpu
, context
);
3780 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3782 context
->nx
= false;
3783 context
->root_level
= PT32_ROOT_LEVEL
;
3784 reset_rsvds_bits_mask(vcpu
, context
);
3785 context
->gva_to_gpa
= paging32_gva_to_gpa
;
3788 update_permission_bitmask(vcpu
, context
, false);
3789 update_last_pte_bitmap(vcpu
, context
);
3792 void kvm_init_shadow_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*context
)
3794 bool smep
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
);
3796 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3798 if (!is_paging(vcpu
))
3799 nonpaging_init_context(vcpu
, context
);
3800 else if (is_long_mode(vcpu
))
3801 paging64_init_context(vcpu
, context
);
3802 else if (is_pae(vcpu
))
3803 paging32E_init_context(vcpu
, context
);
3805 paging32_init_context(vcpu
, context
);
3807 vcpu
->arch
.mmu
.base_role
.nxe
= is_nx(vcpu
);
3808 vcpu
->arch
.mmu
.base_role
.cr4_pae
= !!is_pae(vcpu
);
3809 vcpu
->arch
.mmu
.base_role
.cr0_wp
= is_write_protection(vcpu
);
3810 vcpu
->arch
.mmu
.base_role
.smep_andnot_wp
3811 = smep
&& !is_write_protection(vcpu
);
3813 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu
);
3815 void kvm_init_shadow_ept_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*context
,
3819 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3821 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
3824 context
->page_fault
= ept_page_fault
;
3825 context
->gva_to_gpa
= ept_gva_to_gpa
;
3826 context
->sync_page
= ept_sync_page
;
3827 context
->invlpg
= ept_invlpg
;
3828 context
->update_pte
= ept_update_pte
;
3829 context
->root_level
= context
->shadow_root_level
;
3830 context
->root_hpa
= INVALID_PAGE
;
3831 context
->direct_map
= false;
3833 update_permission_bitmask(vcpu
, context
, true);
3834 reset_rsvds_bits_mask_ept(vcpu
, context
, execonly
);
3836 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu
);
3838 static void init_kvm_softmmu(struct kvm_vcpu
*vcpu
)
3840 kvm_init_shadow_mmu(vcpu
, vcpu
->arch
.walk_mmu
);
3841 vcpu
->arch
.walk_mmu
->set_cr3
= kvm_x86_ops
->set_cr3
;
3842 vcpu
->arch
.walk_mmu
->get_cr3
= get_cr3
;
3843 vcpu
->arch
.walk_mmu
->get_pdptr
= kvm_pdptr_read
;
3844 vcpu
->arch
.walk_mmu
->inject_page_fault
= kvm_inject_page_fault
;
3847 static void init_kvm_nested_mmu(struct kvm_vcpu
*vcpu
)
3849 struct kvm_mmu
*g_context
= &vcpu
->arch
.nested_mmu
;
3851 g_context
->get_cr3
= get_cr3
;
3852 g_context
->get_pdptr
= kvm_pdptr_read
;
3853 g_context
->inject_page_fault
= kvm_inject_page_fault
;
3856 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3857 * translation of l2_gpa to l1_gpa addresses is done using the
3858 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3859 * functions between mmu and nested_mmu are swapped.
3861 if (!is_paging(vcpu
)) {
3862 g_context
->nx
= false;
3863 g_context
->root_level
= 0;
3864 g_context
->gva_to_gpa
= nonpaging_gva_to_gpa_nested
;
3865 } else if (is_long_mode(vcpu
)) {
3866 g_context
->nx
= is_nx(vcpu
);
3867 g_context
->root_level
= PT64_ROOT_LEVEL
;
3868 reset_rsvds_bits_mask(vcpu
, g_context
);
3869 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
3870 } else if (is_pae(vcpu
)) {
3871 g_context
->nx
= is_nx(vcpu
);
3872 g_context
->root_level
= PT32E_ROOT_LEVEL
;
3873 reset_rsvds_bits_mask(vcpu
, g_context
);
3874 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
3876 g_context
->nx
= false;
3877 g_context
->root_level
= PT32_ROOT_LEVEL
;
3878 reset_rsvds_bits_mask(vcpu
, g_context
);
3879 g_context
->gva_to_gpa
= paging32_gva_to_gpa_nested
;
3882 update_permission_bitmask(vcpu
, g_context
, false);
3883 update_last_pte_bitmap(vcpu
, g_context
);
3886 static void init_kvm_mmu(struct kvm_vcpu
*vcpu
)
3888 if (mmu_is_nested(vcpu
))
3889 return init_kvm_nested_mmu(vcpu
);
3890 else if (tdp_enabled
)
3891 return init_kvm_tdp_mmu(vcpu
);
3893 return init_kvm_softmmu(vcpu
);
3896 void kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
3900 kvm_mmu_unload(vcpu
);
3903 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context
);
3905 int kvm_mmu_load(struct kvm_vcpu
*vcpu
)
3909 r
= mmu_topup_memory_caches(vcpu
);
3912 r
= mmu_alloc_roots(vcpu
);
3913 kvm_mmu_sync_roots(vcpu
);
3916 /* set_cr3() should ensure TLB has been flushed */
3917 vcpu
->arch
.mmu
.set_cr3(vcpu
, vcpu
->arch
.mmu
.root_hpa
);
3921 EXPORT_SYMBOL_GPL(kvm_mmu_load
);
3923 void kvm_mmu_unload(struct kvm_vcpu
*vcpu
)
3925 mmu_free_roots(vcpu
);
3926 WARN_ON(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3928 EXPORT_SYMBOL_GPL(kvm_mmu_unload
);
3930 static void mmu_pte_write_new_pte(struct kvm_vcpu
*vcpu
,
3931 struct kvm_mmu_page
*sp
, u64
*spte
,
3934 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
) {
3935 ++vcpu
->kvm
->stat
.mmu_pde_zapped
;
3939 ++vcpu
->kvm
->stat
.mmu_pte_updated
;
3940 vcpu
->arch
.mmu
.update_pte(vcpu
, sp
, spte
, new);
3943 static bool need_remote_flush(u64 old
, u64
new)
3945 if (!is_shadow_present_pte(old
))
3947 if (!is_shadow_present_pte(new))
3949 if ((old
^ new) & PT64_BASE_ADDR_MASK
)
3951 old
^= shadow_nx_mask
;
3952 new ^= shadow_nx_mask
;
3953 return (old
& ~new & PT64_PERM_MASK
) != 0;
3956 static void mmu_pte_write_flush_tlb(struct kvm_vcpu
*vcpu
, bool zap_page
,
3957 bool remote_flush
, bool local_flush
)
3963 kvm_flush_remote_tlbs(vcpu
->kvm
);
3964 else if (local_flush
)
3965 kvm_mmu_flush_tlb(vcpu
);
3968 static u64
mmu_pte_write_fetch_gpte(struct kvm_vcpu
*vcpu
, gpa_t
*gpa
,
3969 const u8
*new, int *bytes
)
3975 * Assume that the pte write on a page table of the same type
3976 * as the current vcpu paging mode since we update the sptes only
3977 * when they have the same mode.
3979 if (is_pae(vcpu
) && *bytes
== 4) {
3980 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3983 r
= kvm_read_guest(vcpu
->kvm
, *gpa
, &gentry
, 8);
3986 new = (const u8
*)&gentry
;
3991 gentry
= *(const u32
*)new;
3994 gentry
= *(const u64
*)new;
4005 * If we're seeing too many writes to a page, it may no longer be a page table,
4006 * or we may be forking, in which case it is better to unmap the page.
4008 static bool detect_write_flooding(struct kvm_mmu_page
*sp
)
4011 * Skip write-flooding detected for the sp whose level is 1, because
4012 * it can become unsync, then the guest page is not write-protected.
4014 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
)
4017 return ++sp
->write_flooding_count
>= 3;
4021 * Misaligned accesses are too much trouble to fix up; also, they usually
4022 * indicate a page is not used as a page table.
4024 static bool detect_write_misaligned(struct kvm_mmu_page
*sp
, gpa_t gpa
,
4027 unsigned offset
, pte_size
, misaligned
;
4029 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4030 gpa
, bytes
, sp
->role
.word
);
4032 offset
= offset_in_page(gpa
);
4033 pte_size
= sp
->role
.cr4_pae
? 8 : 4;
4036 * Sometimes, the OS only writes the last one bytes to update status
4037 * bits, for example, in linux, andb instruction is used in clear_bit().
4039 if (!(offset
& (pte_size
- 1)) && bytes
== 1)
4042 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
4043 misaligned
|= bytes
< 4;
4048 static u64
*get_written_sptes(struct kvm_mmu_page
*sp
, gpa_t gpa
, int *nspte
)
4050 unsigned page_offset
, quadrant
;
4054 page_offset
= offset_in_page(gpa
);
4055 level
= sp
->role
.level
;
4057 if (!sp
->role
.cr4_pae
) {
4058 page_offset
<<= 1; /* 32->64 */
4060 * A 32-bit pde maps 4MB while the shadow pdes map
4061 * only 2MB. So we need to double the offset again
4062 * and zap two pdes instead of one.
4064 if (level
== PT32_ROOT_LEVEL
) {
4065 page_offset
&= ~7; /* kill rounding error */
4069 quadrant
= page_offset
>> PAGE_SHIFT
;
4070 page_offset
&= ~PAGE_MASK
;
4071 if (quadrant
!= sp
->role
.quadrant
)
4075 spte
= &sp
->spt
[page_offset
/ sizeof(*spte
)];
4079 void kvm_mmu_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4080 const u8
*new, int bytes
)
4082 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
4083 union kvm_mmu_page_role mask
= { .word
= 0 };
4084 struct kvm_mmu_page
*sp
;
4085 LIST_HEAD(invalid_list
);
4086 u64 entry
, gentry
, *spte
;
4088 bool remote_flush
, local_flush
, zap_page
;
4091 * If we don't have indirect shadow pages, it means no page is
4092 * write-protected, so we can exit simply.
4094 if (!ACCESS_ONCE(vcpu
->kvm
->arch
.indirect_shadow_pages
))
4097 zap_page
= remote_flush
= local_flush
= false;
4099 pgprintk("%s: gpa %llx bytes %d\n", __func__
, gpa
, bytes
);
4101 gentry
= mmu_pte_write_fetch_gpte(vcpu
, &gpa
, new, &bytes
);
4104 * No need to care whether allocation memory is successful
4105 * or not since pte prefetch is skiped if it does not have
4106 * enough objects in the cache.
4108 mmu_topup_memory_caches(vcpu
);
4110 spin_lock(&vcpu
->kvm
->mmu_lock
);
4111 ++vcpu
->kvm
->stat
.mmu_pte_write
;
4112 kvm_mmu_audit(vcpu
, AUDIT_PRE_PTE_WRITE
);
4114 mask
.cr0_wp
= mask
.cr4_pae
= mask
.nxe
= 1;
4115 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, sp
, gfn
) {
4116 if (detect_write_misaligned(sp
, gpa
, bytes
) ||
4117 detect_write_flooding(sp
)) {
4118 zap_page
|= !!kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
4120 ++vcpu
->kvm
->stat
.mmu_flooded
;
4124 spte
= get_written_sptes(sp
, gpa
, &npte
);
4131 mmu_page_zap_pte(vcpu
->kvm
, sp
, spte
);
4133 !((sp
->role
.word
^ vcpu
->arch
.mmu
.base_role
.word
)
4134 & mask
.word
) && rmap_can_add(vcpu
))
4135 mmu_pte_write_new_pte(vcpu
, sp
, spte
, &gentry
);
4136 if (need_remote_flush(entry
, *spte
))
4137 remote_flush
= true;
4141 mmu_pte_write_flush_tlb(vcpu
, zap_page
, remote_flush
, local_flush
);
4142 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
4143 kvm_mmu_audit(vcpu
, AUDIT_POST_PTE_WRITE
);
4144 spin_unlock(&vcpu
->kvm
->mmu_lock
);
4147 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
4152 if (vcpu
->arch
.mmu
.direct_map
)
4155 gpa
= kvm_mmu_gva_to_gpa_read(vcpu
, gva
, NULL
);
4157 r
= kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4161 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt
);
4163 static void make_mmu_pages_available(struct kvm_vcpu
*vcpu
)
4165 LIST_HEAD(invalid_list
);
4167 if (likely(kvm_mmu_available_pages(vcpu
->kvm
) >= KVM_MIN_FREE_MMU_PAGES
))
4170 while (kvm_mmu_available_pages(vcpu
->kvm
) < KVM_REFILL_PAGES
) {
4171 if (!prepare_zap_oldest_mmu_page(vcpu
->kvm
, &invalid_list
))
4174 ++vcpu
->kvm
->stat
.mmu_recycled
;
4176 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
4179 static bool is_mmio_page_fault(struct kvm_vcpu
*vcpu
, gva_t addr
)
4181 if (vcpu
->arch
.mmu
.direct_map
|| mmu_is_nested(vcpu
))
4182 return vcpu_match_mmio_gpa(vcpu
, addr
);
4184 return vcpu_match_mmio_gva(vcpu
, addr
);
4187 int kvm_mmu_page_fault(struct kvm_vcpu
*vcpu
, gva_t cr2
, u32 error_code
,
4188 void *insn
, int insn_len
)
4190 int r
, emulation_type
= EMULTYPE_RETRY
;
4191 enum emulation_result er
;
4193 r
= vcpu
->arch
.mmu
.page_fault(vcpu
, cr2
, error_code
, false);
4202 if (is_mmio_page_fault(vcpu
, cr2
))
4205 er
= x86_emulate_instruction(vcpu
, cr2
, emulation_type
, insn
, insn_len
);
4210 case EMULATE_USER_EXIT
:
4211 ++vcpu
->stat
.mmio_exits
;
4221 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault
);
4223 void kvm_mmu_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
4225 vcpu
->arch
.mmu
.invlpg(vcpu
, gva
);
4226 kvm_mmu_flush_tlb(vcpu
);
4227 ++vcpu
->stat
.invlpg
;
4229 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg
);
4231 void kvm_enable_tdp(void)
4235 EXPORT_SYMBOL_GPL(kvm_enable_tdp
);
4237 void kvm_disable_tdp(void)
4239 tdp_enabled
= false;
4241 EXPORT_SYMBOL_GPL(kvm_disable_tdp
);
4243 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
4245 free_page((unsigned long)vcpu
->arch
.mmu
.pae_root
);
4246 if (vcpu
->arch
.mmu
.lm_root
!= NULL
)
4247 free_page((unsigned long)vcpu
->arch
.mmu
.lm_root
);
4250 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
4258 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4259 * Therefore we need to allocate shadow page tables in the first
4260 * 4GB of memory, which happens to fit the DMA32 zone.
4262 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
4266 vcpu
->arch
.mmu
.pae_root
= page_address(page
);
4267 for (i
= 0; i
< 4; ++i
)
4268 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
4273 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
4277 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
4278 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4279 vcpu
->arch
.mmu
.translate_gpa
= translate_gpa
;
4280 vcpu
->arch
.nested_mmu
.translate_gpa
= translate_nested_gpa
;
4282 return alloc_mmu_pages(vcpu
);
4285 void kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
4288 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
4293 void kvm_mmu_slot_remove_write_access(struct kvm
*kvm
, int slot
)
4295 struct kvm_memory_slot
*memslot
;
4299 memslot
= id_to_memslot(kvm
->memslots
, slot
);
4300 last_gfn
= memslot
->base_gfn
+ memslot
->npages
- 1;
4302 spin_lock(&kvm
->mmu_lock
);
4304 for (i
= PT_PAGE_TABLE_LEVEL
;
4305 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
4306 unsigned long *rmapp
;
4307 unsigned long last_index
, index
;
4309 rmapp
= memslot
->arch
.rmap
[i
- PT_PAGE_TABLE_LEVEL
];
4310 last_index
= gfn_to_index(last_gfn
, memslot
->base_gfn
, i
);
4312 for (index
= 0; index
<= last_index
; ++index
, ++rmapp
) {
4314 __rmap_write_protect(kvm
, rmapp
, false);
4316 if (need_resched() || spin_needbreak(&kvm
->mmu_lock
))
4317 cond_resched_lock(&kvm
->mmu_lock
);
4321 spin_unlock(&kvm
->mmu_lock
);
4324 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4325 * which do tlb flush out of mmu-lock should be serialized by
4326 * kvm->slots_lock otherwise tlb flush would be missed.
4328 lockdep_assert_held(&kvm
->slots_lock
);
4331 * We can flush all the TLBs out of the mmu lock without TLB
4332 * corruption since we just change the spte from writable to
4333 * readonly so that we only need to care the case of changing
4334 * spte from present to present (changing the spte from present
4335 * to nonpresent will flush all the TLBs immediately), in other
4336 * words, the only case we care is mmu_spte_update() where we
4337 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4338 * instead of PT_WRITABLE_MASK, that means it does not depend
4339 * on PT_WRITABLE_MASK anymore.
4341 kvm_flush_remote_tlbs(kvm
);
4344 #define BATCH_ZAP_PAGES 10
4345 static void kvm_zap_obsolete_pages(struct kvm
*kvm
)
4347 struct kvm_mmu_page
*sp
, *node
;
4351 list_for_each_entry_safe_reverse(sp
, node
,
4352 &kvm
->arch
.active_mmu_pages
, link
) {
4356 * No obsolete page exists before new created page since
4357 * active_mmu_pages is the FIFO list.
4359 if (!is_obsolete_sp(kvm
, sp
))
4363 * Since we are reversely walking the list and the invalid
4364 * list will be moved to the head, skip the invalid page
4365 * can help us to avoid the infinity list walking.
4367 if (sp
->role
.invalid
)
4371 * Need not flush tlb since we only zap the sp with invalid
4372 * generation number.
4374 if (batch
>= BATCH_ZAP_PAGES
&&
4375 cond_resched_lock(&kvm
->mmu_lock
)) {
4380 ret
= kvm_mmu_prepare_zap_page(kvm
, sp
,
4381 &kvm
->arch
.zapped_obsolete_pages
);
4389 * Should flush tlb before free page tables since lockless-walking
4390 * may use the pages.
4392 kvm_mmu_commit_zap_page(kvm
, &kvm
->arch
.zapped_obsolete_pages
);
4396 * Fast invalidate all shadow pages and use lock-break technique
4397 * to zap obsolete pages.
4399 * It's required when memslot is being deleted or VM is being
4400 * destroyed, in these cases, we should ensure that KVM MMU does
4401 * not use any resource of the being-deleted slot or all slots
4402 * after calling the function.
4404 void kvm_mmu_invalidate_zap_all_pages(struct kvm
*kvm
)
4406 spin_lock(&kvm
->mmu_lock
);
4407 trace_kvm_mmu_invalidate_zap_all_pages(kvm
);
4408 kvm
->arch
.mmu_valid_gen
++;
4411 * Notify all vcpus to reload its shadow page table
4412 * and flush TLB. Then all vcpus will switch to new
4413 * shadow page table with the new mmu_valid_gen.
4415 * Note: we should do this under the protection of
4416 * mmu-lock, otherwise, vcpu would purge shadow page
4417 * but miss tlb flush.
4419 kvm_reload_remote_mmus(kvm
);
4421 kvm_zap_obsolete_pages(kvm
);
4422 spin_unlock(&kvm
->mmu_lock
);
4425 static bool kvm_has_zapped_obsolete_pages(struct kvm
*kvm
)
4427 return unlikely(!list_empty_careful(&kvm
->arch
.zapped_obsolete_pages
));
4430 void kvm_mmu_invalidate_mmio_sptes(struct kvm
*kvm
)
4433 * The very rare case: if the generation-number is round,
4434 * zap all shadow pages.
4436 if (unlikely(kvm_current_mmio_generation(kvm
) >= MMIO_MAX_GEN
)) {
4437 printk_ratelimited(KERN_INFO
"kvm: zapping shadow pages for mmio generation wraparound\n");
4438 kvm_mmu_invalidate_zap_all_pages(kvm
);
4442 static unsigned long
4443 mmu_shrink_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
4446 int nr_to_scan
= sc
->nr_to_scan
;
4447 unsigned long freed
= 0;
4449 spin_lock(&kvm_lock
);
4451 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4453 LIST_HEAD(invalid_list
);
4456 * Never scan more than sc->nr_to_scan VM instances.
4457 * Will not hit this condition practically since we do not try
4458 * to shrink more than one VM and it is very unlikely to see
4459 * !n_used_mmu_pages so many times.
4464 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4465 * here. We may skip a VM instance errorneosly, but we do not
4466 * want to shrink a VM that only started to populate its MMU
4469 if (!kvm
->arch
.n_used_mmu_pages
&&
4470 !kvm_has_zapped_obsolete_pages(kvm
))
4473 idx
= srcu_read_lock(&kvm
->srcu
);
4474 spin_lock(&kvm
->mmu_lock
);
4476 if (kvm_has_zapped_obsolete_pages(kvm
)) {
4477 kvm_mmu_commit_zap_page(kvm
,
4478 &kvm
->arch
.zapped_obsolete_pages
);
4482 if (prepare_zap_oldest_mmu_page(kvm
, &invalid_list
))
4484 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
4487 spin_unlock(&kvm
->mmu_lock
);
4488 srcu_read_unlock(&kvm
->srcu
, idx
);
4491 * unfair on small ones
4492 * per-vm shrinkers cry out
4493 * sadness comes quickly
4495 list_move_tail(&kvm
->vm_list
, &vm_list
);
4499 spin_unlock(&kvm_lock
);
4503 static unsigned long
4504 mmu_shrink_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
4506 return percpu_counter_read_positive(&kvm_total_used_mmu_pages
);
4509 static struct shrinker mmu_shrinker
= {
4510 .count_objects
= mmu_shrink_count
,
4511 .scan_objects
= mmu_shrink_scan
,
4512 .seeks
= DEFAULT_SEEKS
* 10,
4515 static void mmu_destroy_caches(void)
4517 if (pte_list_desc_cache
)
4518 kmem_cache_destroy(pte_list_desc_cache
);
4519 if (mmu_page_header_cache
)
4520 kmem_cache_destroy(mmu_page_header_cache
);
4523 int kvm_mmu_module_init(void)
4525 pte_list_desc_cache
= kmem_cache_create("pte_list_desc",
4526 sizeof(struct pte_list_desc
),
4528 if (!pte_list_desc_cache
)
4531 mmu_page_header_cache
= kmem_cache_create("kvm_mmu_page_header",
4532 sizeof(struct kvm_mmu_page
),
4534 if (!mmu_page_header_cache
)
4537 if (percpu_counter_init(&kvm_total_used_mmu_pages
, 0))
4540 register_shrinker(&mmu_shrinker
);
4545 mmu_destroy_caches();
4550 * Caculate mmu pages needed for kvm.
4552 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm
*kvm
)
4554 unsigned int nr_mmu_pages
;
4555 unsigned int nr_pages
= 0;
4556 struct kvm_memslots
*slots
;
4557 struct kvm_memory_slot
*memslot
;
4559 slots
= kvm_memslots(kvm
);
4561 kvm_for_each_memslot(memslot
, slots
)
4562 nr_pages
+= memslot
->npages
;
4564 nr_mmu_pages
= nr_pages
* KVM_PERMILLE_MMU_PAGES
/ 1000;
4565 nr_mmu_pages
= max(nr_mmu_pages
,
4566 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES
);
4568 return nr_mmu_pages
;
4571 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu
*vcpu
, u64 addr
, u64 sptes
[4])
4573 struct kvm_shadow_walk_iterator iterator
;
4577 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
4580 walk_shadow_page_lockless_begin(vcpu
);
4581 for_each_shadow_entry_lockless(vcpu
, addr
, iterator
, spte
) {
4582 sptes
[iterator
.level
-1] = spte
;
4584 if (!is_shadow_present_pte(spte
))
4587 walk_shadow_page_lockless_end(vcpu
);
4591 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy
);
4593 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
4597 kvm_mmu_unload(vcpu
);
4598 free_mmu_pages(vcpu
);
4599 mmu_free_memory_caches(vcpu
);
4602 void kvm_mmu_module_exit(void)
4604 mmu_destroy_caches();
4605 percpu_counter_destroy(&kvm_total_used_mmu_pages
);
4606 unregister_shrinker(&mmu_shrinker
);
4607 mmu_audit_disable();