2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
21 #include "kvm_cache_regs.h"
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
40 #include <asm/virtext.h>
43 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45 MODULE_AUTHOR("Qumranet");
46 MODULE_LICENSE("GPL");
48 static const struct x86_cpu_id svm_cpu_id
[] = {
49 X86_FEATURE_MATCH(X86_FEATURE_SVM
),
52 MODULE_DEVICE_TABLE(x86cpu
, svm_cpu_id
);
54 #define IOPM_ALLOC_ORDER 2
55 #define MSRPM_ALLOC_ORDER 1
57 #define SEG_TYPE_LDT 2
58 #define SEG_TYPE_BUSY_TSS16 3
60 #define SVM_FEATURE_NPT (1 << 0)
61 #define SVM_FEATURE_LBRV (1 << 1)
62 #define SVM_FEATURE_SVML (1 << 2)
63 #define SVM_FEATURE_NRIP (1 << 3)
64 #define SVM_FEATURE_TSC_RATE (1 << 4)
65 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
66 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
67 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
68 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
70 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
71 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
72 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
74 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
77 #define TSC_RATIO_MIN 0x0000000000000001ULL
78 #define TSC_RATIO_MAX 0x000000ffffffffffULL
80 static bool erratum_383_found __read_mostly
;
82 static const u32 host_save_user_msrs
[] = {
84 MSR_STAR
, MSR_LSTAR
, MSR_CSTAR
, MSR_SYSCALL_MASK
, MSR_KERNEL_GS_BASE
,
87 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
90 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
100 /* These are the merged vectors */
103 /* gpa pointers to the real vectors */
107 /* A VMEXIT is required but not yet emulated */
110 /* cache for intercepts of the guest */
113 u32 intercept_exceptions
;
116 /* Nested Paging related state */
120 #define MSRPM_OFFSETS 16
121 static u32 msrpm_offsets
[MSRPM_OFFSETS
] __read_mostly
;
124 * Set osvw_len to higher value when updated Revision Guides
125 * are published and we know what the new status bits are
127 static uint64_t osvw_len
= 4, osvw_status
;
130 struct kvm_vcpu vcpu
;
132 unsigned long vmcb_pa
;
133 struct svm_cpu_data
*svm_data
;
134 uint64_t asid_generation
;
135 uint64_t sysenter_esp
;
136 uint64_t sysenter_eip
;
140 u64 host_user_msrs
[NR_HOST_SAVE_USER_MSRS
];
152 struct nested_state nested
;
156 unsigned int3_injected
;
157 unsigned long int3_rip
;
163 static DEFINE_PER_CPU(u64
, current_tsc_ratio
);
164 #define TSC_RATIO_DEFAULT 0x0100000000ULL
166 #define MSR_INVALID 0xffffffffU
168 static const struct svm_direct_access_msrs
{
169 u32 index
; /* Index of the MSR */
170 bool always
; /* True if intercept is always on */
171 } direct_access_msrs
[] = {
172 { .index
= MSR_STAR
, .always
= true },
173 { .index
= MSR_IA32_SYSENTER_CS
, .always
= true },
175 { .index
= MSR_GS_BASE
, .always
= true },
176 { .index
= MSR_FS_BASE
, .always
= true },
177 { .index
= MSR_KERNEL_GS_BASE
, .always
= true },
178 { .index
= MSR_LSTAR
, .always
= true },
179 { .index
= MSR_CSTAR
, .always
= true },
180 { .index
= MSR_SYSCALL_MASK
, .always
= true },
182 { .index
= MSR_IA32_LASTBRANCHFROMIP
, .always
= false },
183 { .index
= MSR_IA32_LASTBRANCHTOIP
, .always
= false },
184 { .index
= MSR_IA32_LASTINTFROMIP
, .always
= false },
185 { .index
= MSR_IA32_LASTINTTOIP
, .always
= false },
186 { .index
= MSR_INVALID
, .always
= false },
189 /* enable NPT for AMD64 and X86 with PAE */
190 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
191 static bool npt_enabled
= true;
193 static bool npt_enabled
;
196 /* allow nested paging (virtualized MMU) for all guests */
197 static int npt
= true;
198 module_param(npt
, int, S_IRUGO
);
200 /* allow nested virtualization in KVM/SVM */
201 static int nested
= true;
202 module_param(nested
, int, S_IRUGO
);
204 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
);
205 static void svm_complete_interrupts(struct vcpu_svm
*svm
);
207 static int nested_svm_exit_handled(struct vcpu_svm
*svm
);
208 static int nested_svm_intercept(struct vcpu_svm
*svm
);
209 static int nested_svm_vmexit(struct vcpu_svm
*svm
);
210 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
211 bool has_error_code
, u32 error_code
);
212 static u64
__scale_tsc(u64 ratio
, u64 tsc
);
215 VMCB_INTERCEPTS
, /* Intercept vectors, TSC offset,
216 pause filter count */
217 VMCB_PERM_MAP
, /* IOPM Base and MSRPM Base */
218 VMCB_ASID
, /* ASID */
219 VMCB_INTR
, /* int_ctl, int_vector */
220 VMCB_NPT
, /* npt_en, nCR3, gPAT */
221 VMCB_CR
, /* CR0, CR3, CR4, EFER */
222 VMCB_DR
, /* DR6, DR7 */
223 VMCB_DT
, /* GDT, IDT */
224 VMCB_SEG
, /* CS, DS, SS, ES, CPL */
225 VMCB_CR2
, /* CR2 only */
226 VMCB_LBR
, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
230 /* TPR and CR2 are always written before VMRUN */
231 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
233 static inline void mark_all_dirty(struct vmcb
*vmcb
)
235 vmcb
->control
.clean
= 0;
238 static inline void mark_all_clean(struct vmcb
*vmcb
)
240 vmcb
->control
.clean
= ((1 << VMCB_DIRTY_MAX
) - 1)
241 & ~VMCB_ALWAYS_DIRTY_MASK
;
244 static inline void mark_dirty(struct vmcb
*vmcb
, int bit
)
246 vmcb
->control
.clean
&= ~(1 << bit
);
249 static inline struct vcpu_svm
*to_svm(struct kvm_vcpu
*vcpu
)
251 return container_of(vcpu
, struct vcpu_svm
, vcpu
);
254 static void recalc_intercepts(struct vcpu_svm
*svm
)
256 struct vmcb_control_area
*c
, *h
;
257 struct nested_state
*g
;
259 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
261 if (!is_guest_mode(&svm
->vcpu
))
264 c
= &svm
->vmcb
->control
;
265 h
= &svm
->nested
.hsave
->control
;
268 c
->intercept_cr
= h
->intercept_cr
| g
->intercept_cr
;
269 c
->intercept_dr
= h
->intercept_dr
| g
->intercept_dr
;
270 c
->intercept_exceptions
= h
->intercept_exceptions
| g
->intercept_exceptions
;
271 c
->intercept
= h
->intercept
| g
->intercept
;
274 static inline struct vmcb
*get_host_vmcb(struct vcpu_svm
*svm
)
276 if (is_guest_mode(&svm
->vcpu
))
277 return svm
->nested
.hsave
;
282 static inline void set_cr_intercept(struct vcpu_svm
*svm
, int bit
)
284 struct vmcb
*vmcb
= get_host_vmcb(svm
);
286 vmcb
->control
.intercept_cr
|= (1U << bit
);
288 recalc_intercepts(svm
);
291 static inline void clr_cr_intercept(struct vcpu_svm
*svm
, int bit
)
293 struct vmcb
*vmcb
= get_host_vmcb(svm
);
295 vmcb
->control
.intercept_cr
&= ~(1U << bit
);
297 recalc_intercepts(svm
);
300 static inline bool is_cr_intercept(struct vcpu_svm
*svm
, int bit
)
302 struct vmcb
*vmcb
= get_host_vmcb(svm
);
304 return vmcb
->control
.intercept_cr
& (1U << bit
);
307 static inline void set_dr_intercepts(struct vcpu_svm
*svm
)
309 struct vmcb
*vmcb
= get_host_vmcb(svm
);
311 vmcb
->control
.intercept_dr
= (1 << INTERCEPT_DR0_READ
)
312 | (1 << INTERCEPT_DR1_READ
)
313 | (1 << INTERCEPT_DR2_READ
)
314 | (1 << INTERCEPT_DR3_READ
)
315 | (1 << INTERCEPT_DR4_READ
)
316 | (1 << INTERCEPT_DR5_READ
)
317 | (1 << INTERCEPT_DR6_READ
)
318 | (1 << INTERCEPT_DR7_READ
)
319 | (1 << INTERCEPT_DR0_WRITE
)
320 | (1 << INTERCEPT_DR1_WRITE
)
321 | (1 << INTERCEPT_DR2_WRITE
)
322 | (1 << INTERCEPT_DR3_WRITE
)
323 | (1 << INTERCEPT_DR4_WRITE
)
324 | (1 << INTERCEPT_DR5_WRITE
)
325 | (1 << INTERCEPT_DR6_WRITE
)
326 | (1 << INTERCEPT_DR7_WRITE
);
328 recalc_intercepts(svm
);
331 static inline void clr_dr_intercepts(struct vcpu_svm
*svm
)
333 struct vmcb
*vmcb
= get_host_vmcb(svm
);
335 vmcb
->control
.intercept_dr
= 0;
337 recalc_intercepts(svm
);
340 static inline void set_exception_intercept(struct vcpu_svm
*svm
, int bit
)
342 struct vmcb
*vmcb
= get_host_vmcb(svm
);
344 vmcb
->control
.intercept_exceptions
|= (1U << bit
);
346 recalc_intercepts(svm
);
349 static inline void clr_exception_intercept(struct vcpu_svm
*svm
, int bit
)
351 struct vmcb
*vmcb
= get_host_vmcb(svm
);
353 vmcb
->control
.intercept_exceptions
&= ~(1U << bit
);
355 recalc_intercepts(svm
);
358 static inline void set_intercept(struct vcpu_svm
*svm
, int bit
)
360 struct vmcb
*vmcb
= get_host_vmcb(svm
);
362 vmcb
->control
.intercept
|= (1ULL << bit
);
364 recalc_intercepts(svm
);
367 static inline void clr_intercept(struct vcpu_svm
*svm
, int bit
)
369 struct vmcb
*vmcb
= get_host_vmcb(svm
);
371 vmcb
->control
.intercept
&= ~(1ULL << bit
);
373 recalc_intercepts(svm
);
376 static inline void enable_gif(struct vcpu_svm
*svm
)
378 svm
->vcpu
.arch
.hflags
|= HF_GIF_MASK
;
381 static inline void disable_gif(struct vcpu_svm
*svm
)
383 svm
->vcpu
.arch
.hflags
&= ~HF_GIF_MASK
;
386 static inline bool gif_set(struct vcpu_svm
*svm
)
388 return !!(svm
->vcpu
.arch
.hflags
& HF_GIF_MASK
);
391 static unsigned long iopm_base
;
393 struct kvm_ldttss_desc
{
396 unsigned base1
:8, type
:5, dpl
:2, p
:1;
397 unsigned limit1
:4, zero0
:3, g
:1, base2
:8;
400 } __attribute__((packed
));
402 struct svm_cpu_data
{
408 struct kvm_ldttss_desc
*tss_desc
;
410 struct page
*save_area
;
413 static DEFINE_PER_CPU(struct svm_cpu_data
*, svm_data
);
415 struct svm_init_data
{
420 static const u32 msrpm_ranges
[] = {0, 0xc0000000, 0xc0010000};
422 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423 #define MSRS_RANGE_SIZE 2048
424 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
426 static u32
svm_msrpm_offset(u32 msr
)
431 for (i
= 0; i
< NUM_MSR_MAPS
; i
++) {
432 if (msr
< msrpm_ranges
[i
] ||
433 msr
>= msrpm_ranges
[i
] + MSRS_IN_RANGE
)
436 offset
= (msr
- msrpm_ranges
[i
]) / 4; /* 4 msrs per u8 */
437 offset
+= (i
* MSRS_RANGE_SIZE
); /* add range offset */
439 /* Now we have the u8 offset - but need the u32 offset */
443 /* MSR not in any range */
447 #define MAX_INST_SIZE 15
449 static inline void clgi(void)
451 asm volatile (__ex(SVM_CLGI
));
454 static inline void stgi(void)
456 asm volatile (__ex(SVM_STGI
));
459 static inline void invlpga(unsigned long addr
, u32 asid
)
461 asm volatile (__ex(SVM_INVLPGA
) : : "a"(addr
), "c"(asid
));
464 static int get_npt_level(void)
467 return PT64_ROOT_LEVEL
;
469 return PT32E_ROOT_LEVEL
;
473 static void svm_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
475 vcpu
->arch
.efer
= efer
;
476 if (!npt_enabled
&& !(efer
& EFER_LMA
))
479 to_svm(vcpu
)->vmcb
->save
.efer
= efer
| EFER_SVME
;
480 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
483 static int is_external_interrupt(u32 info
)
485 info
&= SVM_EVTINJ_TYPE_MASK
| SVM_EVTINJ_VALID
;
486 return info
== (SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
);
489 static u32
svm_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
491 struct vcpu_svm
*svm
= to_svm(vcpu
);
494 if (svm
->vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
)
495 ret
|= KVM_X86_SHADOW_INT_STI
| KVM_X86_SHADOW_INT_MOV_SS
;
499 static void svm_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
501 struct vcpu_svm
*svm
= to_svm(vcpu
);
504 svm
->vmcb
->control
.int_state
&= ~SVM_INTERRUPT_SHADOW_MASK
;
506 svm
->vmcb
->control
.int_state
|= SVM_INTERRUPT_SHADOW_MASK
;
510 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
512 struct vcpu_svm
*svm
= to_svm(vcpu
);
514 if (svm
->vmcb
->control
.next_rip
!= 0)
515 svm
->next_rip
= svm
->vmcb
->control
.next_rip
;
517 if (!svm
->next_rip
) {
518 if (emulate_instruction(vcpu
, EMULTYPE_SKIP
) !=
520 printk(KERN_DEBUG
"%s: NOP\n", __func__
);
523 if (svm
->next_rip
- kvm_rip_read(vcpu
) > MAX_INST_SIZE
)
524 printk(KERN_ERR
"%s: ip 0x%lx next 0x%llx\n",
525 __func__
, kvm_rip_read(vcpu
), svm
->next_rip
);
527 kvm_rip_write(vcpu
, svm
->next_rip
);
528 svm_set_interrupt_shadow(vcpu
, 0);
531 static void svm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
532 bool has_error_code
, u32 error_code
,
535 struct vcpu_svm
*svm
= to_svm(vcpu
);
538 * If we are within a nested VM we'd better #VMEXIT and let the guest
539 * handle the exception
542 nested_svm_check_exception(svm
, nr
, has_error_code
, error_code
))
545 if (nr
== BP_VECTOR
&& !static_cpu_has(X86_FEATURE_NRIPS
)) {
546 unsigned long rip
, old_rip
= kvm_rip_read(&svm
->vcpu
);
549 * For guest debugging where we have to reinject #BP if some
550 * INT3 is guest-owned:
551 * Emulate nRIP by moving RIP forward. Will fail if injection
552 * raises a fault that is not intercepted. Still better than
553 * failing in all cases.
555 skip_emulated_instruction(&svm
->vcpu
);
556 rip
= kvm_rip_read(&svm
->vcpu
);
557 svm
->int3_rip
= rip
+ svm
->vmcb
->save
.cs
.base
;
558 svm
->int3_injected
= rip
- old_rip
;
561 svm
->vmcb
->control
.event_inj
= nr
563 | (has_error_code
? SVM_EVTINJ_VALID_ERR
: 0)
564 | SVM_EVTINJ_TYPE_EXEPT
;
565 svm
->vmcb
->control
.event_inj_err
= error_code
;
568 static void svm_init_erratum_383(void)
574 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH
))
577 /* Use _safe variants to not break nested virtualization */
578 val
= native_read_msr_safe(MSR_AMD64_DC_CFG
, &err
);
584 low
= lower_32_bits(val
);
585 high
= upper_32_bits(val
);
587 native_write_msr_safe(MSR_AMD64_DC_CFG
, low
, high
);
589 erratum_383_found
= true;
592 static void svm_init_osvw(struct kvm_vcpu
*vcpu
)
595 * Guests should see errata 400 and 415 as fixed (assuming that
596 * HLT and IO instructions are intercepted).
598 vcpu
->arch
.osvw
.length
= (osvw_len
>= 3) ? (osvw_len
) : 3;
599 vcpu
->arch
.osvw
.status
= osvw_status
& ~(6ULL);
602 * By increasing VCPU's osvw.length to 3 we are telling the guest that
603 * all osvw.status bits inside that length, including bit 0 (which is
604 * reserved for erratum 298), are valid. However, if host processor's
605 * osvw_len is 0 then osvw_status[0] carries no information. We need to
606 * be conservative here and therefore we tell the guest that erratum 298
607 * is present (because we really don't know).
609 if (osvw_len
== 0 && boot_cpu_data
.x86
== 0x10)
610 vcpu
->arch
.osvw
.status
|= 1;
613 static int has_svm(void)
617 if (!cpu_has_svm(&msg
)) {
618 printk(KERN_INFO
"has_svm: %s\n", msg
);
625 static void svm_hardware_disable(void *garbage
)
627 /* Make sure we clean up behind us */
628 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
))
629 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
633 amd_pmu_disable_virt();
636 static int svm_hardware_enable(void *garbage
)
639 struct svm_cpu_data
*sd
;
641 struct desc_ptr gdt_descr
;
642 struct desc_struct
*gdt
;
643 int me
= raw_smp_processor_id();
645 rdmsrl(MSR_EFER
, efer
);
646 if (efer
& EFER_SVME
)
650 pr_err("%s: err EOPNOTSUPP on %d\n", __func__
, me
);
653 sd
= per_cpu(svm_data
, me
);
655 pr_err("%s: svm_data is NULL on %d\n", __func__
, me
);
659 sd
->asid_generation
= 1;
660 sd
->max_asid
= cpuid_ebx(SVM_CPUID_FUNC
) - 1;
661 sd
->next_asid
= sd
->max_asid
+ 1;
663 native_store_gdt(&gdt_descr
);
664 gdt
= (struct desc_struct
*)gdt_descr
.address
;
665 sd
->tss_desc
= (struct kvm_ldttss_desc
*)(gdt
+ GDT_ENTRY_TSS
);
667 wrmsrl(MSR_EFER
, efer
| EFER_SVME
);
669 wrmsrl(MSR_VM_HSAVE_PA
, page_to_pfn(sd
->save_area
) << PAGE_SHIFT
);
671 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
672 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
673 __get_cpu_var(current_tsc_ratio
) = TSC_RATIO_DEFAULT
;
680 * Note that it is possible to have a system with mixed processor
681 * revisions and therefore different OSVW bits. If bits are not the same
682 * on different processors then choose the worst case (i.e. if erratum
683 * is present on one processor and not on another then assume that the
684 * erratum is present everywhere).
686 if (cpu_has(&boot_cpu_data
, X86_FEATURE_OSVW
)) {
687 uint64_t len
, status
= 0;
690 len
= native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH
, &err
);
692 status
= native_read_msr_safe(MSR_AMD64_OSVW_STATUS
,
696 osvw_status
= osvw_len
= 0;
700 osvw_status
|= status
;
701 osvw_status
&= (1ULL << osvw_len
) - 1;
704 osvw_status
= osvw_len
= 0;
706 svm_init_erratum_383();
708 amd_pmu_enable_virt();
713 static void svm_cpu_uninit(int cpu
)
715 struct svm_cpu_data
*sd
= per_cpu(svm_data
, raw_smp_processor_id());
720 per_cpu(svm_data
, raw_smp_processor_id()) = NULL
;
721 __free_page(sd
->save_area
);
725 static int svm_cpu_init(int cpu
)
727 struct svm_cpu_data
*sd
;
730 sd
= kzalloc(sizeof(struct svm_cpu_data
), GFP_KERNEL
);
734 sd
->save_area
= alloc_page(GFP_KERNEL
);
739 per_cpu(svm_data
, cpu
) = sd
;
749 static bool valid_msr_intercept(u32 index
)
753 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++)
754 if (direct_access_msrs
[i
].index
== index
)
760 static void set_msr_interception(u32
*msrpm
, unsigned msr
,
763 u8 bit_read
, bit_write
;
768 * If this warning triggers extend the direct_access_msrs list at the
769 * beginning of the file
771 WARN_ON(!valid_msr_intercept(msr
));
773 offset
= svm_msrpm_offset(msr
);
774 bit_read
= 2 * (msr
& 0x0f);
775 bit_write
= 2 * (msr
& 0x0f) + 1;
778 BUG_ON(offset
== MSR_INVALID
);
780 read
? clear_bit(bit_read
, &tmp
) : set_bit(bit_read
, &tmp
);
781 write
? clear_bit(bit_write
, &tmp
) : set_bit(bit_write
, &tmp
);
786 static void svm_vcpu_init_msrpm(u32
*msrpm
)
790 memset(msrpm
, 0xff, PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
));
792 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
793 if (!direct_access_msrs
[i
].always
)
796 set_msr_interception(msrpm
, direct_access_msrs
[i
].index
, 1, 1);
800 static void add_msr_offset(u32 offset
)
804 for (i
= 0; i
< MSRPM_OFFSETS
; ++i
) {
806 /* Offset already in list? */
807 if (msrpm_offsets
[i
] == offset
)
810 /* Slot used by another offset? */
811 if (msrpm_offsets
[i
] != MSR_INVALID
)
814 /* Add offset to list */
815 msrpm_offsets
[i
] = offset
;
821 * If this BUG triggers the msrpm_offsets table has an overflow. Just
822 * increase MSRPM_OFFSETS in this case.
827 static void init_msrpm_offsets(void)
831 memset(msrpm_offsets
, 0xff, sizeof(msrpm_offsets
));
833 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
836 offset
= svm_msrpm_offset(direct_access_msrs
[i
].index
);
837 BUG_ON(offset
== MSR_INVALID
);
839 add_msr_offset(offset
);
843 static void svm_enable_lbrv(struct vcpu_svm
*svm
)
845 u32
*msrpm
= svm
->msrpm
;
847 svm
->vmcb
->control
.lbr_ctl
= 1;
848 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 1, 1);
849 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 1, 1);
850 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 1, 1);
851 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 1, 1);
854 static void svm_disable_lbrv(struct vcpu_svm
*svm
)
856 u32
*msrpm
= svm
->msrpm
;
858 svm
->vmcb
->control
.lbr_ctl
= 0;
859 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 0, 0);
860 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 0, 0);
861 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 0, 0);
862 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 0, 0);
865 static __init
int svm_hardware_setup(void)
868 struct page
*iopm_pages
;
872 iopm_pages
= alloc_pages(GFP_KERNEL
, IOPM_ALLOC_ORDER
);
877 iopm_va
= page_address(iopm_pages
);
878 memset(iopm_va
, 0xff, PAGE_SIZE
* (1 << IOPM_ALLOC_ORDER
));
879 iopm_base
= page_to_pfn(iopm_pages
) << PAGE_SHIFT
;
881 init_msrpm_offsets();
883 if (boot_cpu_has(X86_FEATURE_NX
))
884 kvm_enable_efer_bits(EFER_NX
);
886 if (boot_cpu_has(X86_FEATURE_FXSR_OPT
))
887 kvm_enable_efer_bits(EFER_FFXSR
);
889 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
892 kvm_has_tsc_control
= true;
895 * Make sure the user can only configure tsc_khz values that
896 * fit into a signed integer.
897 * A min value is not calculated needed because it will always
898 * be 1 on all machines and a value of 0 is used to disable
899 * tsc-scaling for the vcpu.
901 max
= min(0x7fffffffULL
, __scale_tsc(tsc_khz
, TSC_RATIO_MAX
));
903 kvm_max_guest_tsc_khz
= max
;
907 printk(KERN_INFO
"kvm: Nested Virtualization enabled\n");
908 kvm_enable_efer_bits(EFER_SVME
| EFER_LMSLE
);
911 for_each_possible_cpu(cpu
) {
912 r
= svm_cpu_init(cpu
);
917 if (!boot_cpu_has(X86_FEATURE_NPT
))
920 if (npt_enabled
&& !npt
) {
921 printk(KERN_INFO
"kvm: Nested Paging disabled\n");
926 printk(KERN_INFO
"kvm: Nested Paging enabled\n");
934 __free_pages(iopm_pages
, IOPM_ALLOC_ORDER
);
939 static __exit
void svm_hardware_unsetup(void)
943 for_each_possible_cpu(cpu
)
946 __free_pages(pfn_to_page(iopm_base
>> PAGE_SHIFT
), IOPM_ALLOC_ORDER
);
950 static void init_seg(struct vmcb_seg
*seg
)
953 seg
->attrib
= SVM_SELECTOR_P_MASK
| SVM_SELECTOR_S_MASK
|
954 SVM_SELECTOR_WRITE_MASK
; /* Read/Write Data Segment */
959 static void init_sys_seg(struct vmcb_seg
*seg
, uint32_t type
)
962 seg
->attrib
= SVM_SELECTOR_P_MASK
| type
;
967 static u64
__scale_tsc(u64 ratio
, u64 tsc
)
969 u64 mult
, frac
, _tsc
;
972 frac
= ratio
& ((1ULL << 32) - 1);
976 _tsc
+= (tsc
>> 32) * frac
;
977 _tsc
+= ((tsc
& ((1ULL << 32) - 1)) * frac
) >> 32;
982 static u64
svm_scale_tsc(struct kvm_vcpu
*vcpu
, u64 tsc
)
984 struct vcpu_svm
*svm
= to_svm(vcpu
);
987 if (svm
->tsc_ratio
!= TSC_RATIO_DEFAULT
)
988 _tsc
= __scale_tsc(svm
->tsc_ratio
, tsc
);
993 static void svm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
995 struct vcpu_svm
*svm
= to_svm(vcpu
);
999 /* Guest TSC same frequency as host TSC? */
1001 svm
->tsc_ratio
= TSC_RATIO_DEFAULT
;
1005 /* TSC scaling supported? */
1006 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
1007 if (user_tsc_khz
> tsc_khz
) {
1008 vcpu
->arch
.tsc_catchup
= 1;
1009 vcpu
->arch
.tsc_always_catchup
= 1;
1011 WARN(1, "user requested TSC rate below hardware speed\n");
1017 /* TSC scaling required - calculate ratio */
1019 do_div(ratio
, tsc_khz
);
1021 if (ratio
== 0 || ratio
& TSC_RATIO_RSVD
) {
1022 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1026 svm
->tsc_ratio
= ratio
;
1029 static u64
svm_read_tsc_offset(struct kvm_vcpu
*vcpu
)
1031 struct vcpu_svm
*svm
= to_svm(vcpu
);
1033 return svm
->vmcb
->control
.tsc_offset
;
1036 static void svm_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1038 struct vcpu_svm
*svm
= to_svm(vcpu
);
1039 u64 g_tsc_offset
= 0;
1041 if (is_guest_mode(vcpu
)) {
1042 g_tsc_offset
= svm
->vmcb
->control
.tsc_offset
-
1043 svm
->nested
.hsave
->control
.tsc_offset
;
1044 svm
->nested
.hsave
->control
.tsc_offset
= offset
;
1046 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
1047 svm
->vmcb
->control
.tsc_offset
,
1050 svm
->vmcb
->control
.tsc_offset
= offset
+ g_tsc_offset
;
1052 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
1055 static void svm_adjust_tsc_offset(struct kvm_vcpu
*vcpu
, s64 adjustment
, bool host
)
1057 struct vcpu_svm
*svm
= to_svm(vcpu
);
1059 WARN_ON(adjustment
< 0);
1061 adjustment
= svm_scale_tsc(vcpu
, adjustment
);
1063 svm
->vmcb
->control
.tsc_offset
+= adjustment
;
1064 if (is_guest_mode(vcpu
))
1065 svm
->nested
.hsave
->control
.tsc_offset
+= adjustment
;
1067 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
1068 svm
->vmcb
->control
.tsc_offset
- adjustment
,
1069 svm
->vmcb
->control
.tsc_offset
);
1071 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
1074 static u64
svm_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1078 tsc
= svm_scale_tsc(vcpu
, native_read_tsc());
1080 return target_tsc
- tsc
;
1083 static void init_vmcb(struct vcpu_svm
*svm
)
1085 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
1086 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
1088 svm
->vcpu
.fpu_active
= 1;
1089 svm
->vcpu
.arch
.hflags
= 0;
1091 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1092 set_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1093 set_cr_intercept(svm
, INTERCEPT_CR4_READ
);
1094 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1095 set_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1096 set_cr_intercept(svm
, INTERCEPT_CR4_WRITE
);
1097 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
1099 set_dr_intercepts(svm
);
1101 set_exception_intercept(svm
, PF_VECTOR
);
1102 set_exception_intercept(svm
, UD_VECTOR
);
1103 set_exception_intercept(svm
, MC_VECTOR
);
1105 set_intercept(svm
, INTERCEPT_INTR
);
1106 set_intercept(svm
, INTERCEPT_NMI
);
1107 set_intercept(svm
, INTERCEPT_SMI
);
1108 set_intercept(svm
, INTERCEPT_SELECTIVE_CR0
);
1109 set_intercept(svm
, INTERCEPT_RDPMC
);
1110 set_intercept(svm
, INTERCEPT_CPUID
);
1111 set_intercept(svm
, INTERCEPT_INVD
);
1112 set_intercept(svm
, INTERCEPT_HLT
);
1113 set_intercept(svm
, INTERCEPT_INVLPG
);
1114 set_intercept(svm
, INTERCEPT_INVLPGA
);
1115 set_intercept(svm
, INTERCEPT_IOIO_PROT
);
1116 set_intercept(svm
, INTERCEPT_MSR_PROT
);
1117 set_intercept(svm
, INTERCEPT_TASK_SWITCH
);
1118 set_intercept(svm
, INTERCEPT_SHUTDOWN
);
1119 set_intercept(svm
, INTERCEPT_VMRUN
);
1120 set_intercept(svm
, INTERCEPT_VMMCALL
);
1121 set_intercept(svm
, INTERCEPT_VMLOAD
);
1122 set_intercept(svm
, INTERCEPT_VMSAVE
);
1123 set_intercept(svm
, INTERCEPT_STGI
);
1124 set_intercept(svm
, INTERCEPT_CLGI
);
1125 set_intercept(svm
, INTERCEPT_SKINIT
);
1126 set_intercept(svm
, INTERCEPT_WBINVD
);
1127 set_intercept(svm
, INTERCEPT_MONITOR
);
1128 set_intercept(svm
, INTERCEPT_MWAIT
);
1129 set_intercept(svm
, INTERCEPT_XSETBV
);
1131 control
->iopm_base_pa
= iopm_base
;
1132 control
->msrpm_base_pa
= __pa(svm
->msrpm
);
1133 control
->int_ctl
= V_INTR_MASKING_MASK
;
1135 init_seg(&save
->es
);
1136 init_seg(&save
->ss
);
1137 init_seg(&save
->ds
);
1138 init_seg(&save
->fs
);
1139 init_seg(&save
->gs
);
1141 save
->cs
.selector
= 0xf000;
1142 save
->cs
.base
= 0xffff0000;
1143 /* Executable/Readable Code Segment */
1144 save
->cs
.attrib
= SVM_SELECTOR_READ_MASK
| SVM_SELECTOR_P_MASK
|
1145 SVM_SELECTOR_S_MASK
| SVM_SELECTOR_CODE_MASK
;
1146 save
->cs
.limit
= 0xffff;
1148 save
->gdtr
.limit
= 0xffff;
1149 save
->idtr
.limit
= 0xffff;
1151 init_sys_seg(&save
->ldtr
, SEG_TYPE_LDT
);
1152 init_sys_seg(&save
->tr
, SEG_TYPE_BUSY_TSS16
);
1154 svm_set_efer(&svm
->vcpu
, 0);
1155 save
->dr6
= 0xffff0ff0;
1156 kvm_set_rflags(&svm
->vcpu
, 2);
1157 save
->rip
= 0x0000fff0;
1158 svm
->vcpu
.arch
.regs
[VCPU_REGS_RIP
] = save
->rip
;
1161 * This is the guest-visible cr0 value.
1162 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1164 svm
->vcpu
.arch
.cr0
= 0;
1165 (void)kvm_set_cr0(&svm
->vcpu
, X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
);
1167 save
->cr4
= X86_CR4_PAE
;
1171 /* Setup VMCB for Nested Paging */
1172 control
->nested_ctl
= 1;
1173 clr_intercept(svm
, INTERCEPT_INVLPG
);
1174 clr_exception_intercept(svm
, PF_VECTOR
);
1175 clr_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1176 clr_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1177 save
->g_pat
= 0x0007040600070406ULL
;
1181 svm
->asid_generation
= 0;
1183 svm
->nested
.vmcb
= 0;
1184 svm
->vcpu
.arch
.hflags
= 0;
1186 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER
)) {
1187 control
->pause_filter_count
= 3000;
1188 set_intercept(svm
, INTERCEPT_PAUSE
);
1191 mark_all_dirty(svm
->vmcb
);
1196 static void svm_vcpu_reset(struct kvm_vcpu
*vcpu
)
1198 struct vcpu_svm
*svm
= to_svm(vcpu
);
1204 kvm_cpuid(vcpu
, &eax
, &dummy
, &dummy
, &dummy
);
1205 kvm_register_write(vcpu
, VCPU_REGS_RDX
, eax
);
1208 static struct kvm_vcpu
*svm_create_vcpu(struct kvm
*kvm
, unsigned int id
)
1210 struct vcpu_svm
*svm
;
1212 struct page
*msrpm_pages
;
1213 struct page
*hsave_page
;
1214 struct page
*nested_msrpm_pages
;
1217 svm
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
1223 svm
->tsc_ratio
= TSC_RATIO_DEFAULT
;
1225 err
= kvm_vcpu_init(&svm
->vcpu
, kvm
, id
);
1230 page
= alloc_page(GFP_KERNEL
);
1234 msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1238 nested_msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1239 if (!nested_msrpm_pages
)
1242 hsave_page
= alloc_page(GFP_KERNEL
);
1246 svm
->nested
.hsave
= page_address(hsave_page
);
1248 svm
->msrpm
= page_address(msrpm_pages
);
1249 svm_vcpu_init_msrpm(svm
->msrpm
);
1251 svm
->nested
.msrpm
= page_address(nested_msrpm_pages
);
1252 svm_vcpu_init_msrpm(svm
->nested
.msrpm
);
1254 svm
->vmcb
= page_address(page
);
1255 clear_page(svm
->vmcb
);
1256 svm
->vmcb_pa
= page_to_pfn(page
) << PAGE_SHIFT
;
1257 svm
->asid_generation
= 0;
1260 svm
->vcpu
.arch
.apic_base
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
1261 if (kvm_vcpu_is_bsp(&svm
->vcpu
))
1262 svm
->vcpu
.arch
.apic_base
|= MSR_IA32_APICBASE_BSP
;
1264 svm_init_osvw(&svm
->vcpu
);
1269 __free_pages(nested_msrpm_pages
, MSRPM_ALLOC_ORDER
);
1271 __free_pages(msrpm_pages
, MSRPM_ALLOC_ORDER
);
1275 kvm_vcpu_uninit(&svm
->vcpu
);
1277 kmem_cache_free(kvm_vcpu_cache
, svm
);
1279 return ERR_PTR(err
);
1282 static void svm_free_vcpu(struct kvm_vcpu
*vcpu
)
1284 struct vcpu_svm
*svm
= to_svm(vcpu
);
1286 __free_page(pfn_to_page(svm
->vmcb_pa
>> PAGE_SHIFT
));
1287 __free_pages(virt_to_page(svm
->msrpm
), MSRPM_ALLOC_ORDER
);
1288 __free_page(virt_to_page(svm
->nested
.hsave
));
1289 __free_pages(virt_to_page(svm
->nested
.msrpm
), MSRPM_ALLOC_ORDER
);
1290 kvm_vcpu_uninit(vcpu
);
1291 kmem_cache_free(kvm_vcpu_cache
, svm
);
1294 static void svm_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1296 struct vcpu_svm
*svm
= to_svm(vcpu
);
1299 if (unlikely(cpu
!= vcpu
->cpu
)) {
1300 svm
->asid_generation
= 0;
1301 mark_all_dirty(svm
->vmcb
);
1304 #ifdef CONFIG_X86_64
1305 rdmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host
.gs_base
);
1307 savesegment(fs
, svm
->host
.fs
);
1308 savesegment(gs
, svm
->host
.gs
);
1309 svm
->host
.ldt
= kvm_read_ldt();
1311 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1312 rdmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1314 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
) &&
1315 svm
->tsc_ratio
!= __get_cpu_var(current_tsc_ratio
)) {
1316 __get_cpu_var(current_tsc_ratio
) = svm
->tsc_ratio
;
1317 wrmsrl(MSR_AMD64_TSC_RATIO
, svm
->tsc_ratio
);
1321 static void svm_vcpu_put(struct kvm_vcpu
*vcpu
)
1323 struct vcpu_svm
*svm
= to_svm(vcpu
);
1326 ++vcpu
->stat
.host_state_reload
;
1327 kvm_load_ldt(svm
->host
.ldt
);
1328 #ifdef CONFIG_X86_64
1329 loadsegment(fs
, svm
->host
.fs
);
1330 wrmsrl(MSR_KERNEL_GS_BASE
, current
->thread
.gs
);
1331 load_gs_index(svm
->host
.gs
);
1333 #ifdef CONFIG_X86_32_LAZY_GS
1334 loadsegment(gs
, svm
->host
.gs
);
1337 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1338 wrmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1341 static unsigned long svm_get_rflags(struct kvm_vcpu
*vcpu
)
1343 return to_svm(vcpu
)->vmcb
->save
.rflags
;
1346 static void svm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
1349 * Any change of EFLAGS.VM is accompained by a reload of SS
1350 * (caused by either a task switch or an inter-privilege IRET),
1351 * so we do not need to update the CPL here.
1353 to_svm(vcpu
)->vmcb
->save
.rflags
= rflags
;
1356 static void svm_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
1359 case VCPU_EXREG_PDPTR
:
1360 BUG_ON(!npt_enabled
);
1361 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
1368 static void svm_set_vintr(struct vcpu_svm
*svm
)
1370 set_intercept(svm
, INTERCEPT_VINTR
);
1373 static void svm_clear_vintr(struct vcpu_svm
*svm
)
1375 clr_intercept(svm
, INTERCEPT_VINTR
);
1378 static struct vmcb_seg
*svm_seg(struct kvm_vcpu
*vcpu
, int seg
)
1380 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1383 case VCPU_SREG_CS
: return &save
->cs
;
1384 case VCPU_SREG_DS
: return &save
->ds
;
1385 case VCPU_SREG_ES
: return &save
->es
;
1386 case VCPU_SREG_FS
: return &save
->fs
;
1387 case VCPU_SREG_GS
: return &save
->gs
;
1388 case VCPU_SREG_SS
: return &save
->ss
;
1389 case VCPU_SREG_TR
: return &save
->tr
;
1390 case VCPU_SREG_LDTR
: return &save
->ldtr
;
1396 static u64
svm_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1398 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1403 static void svm_get_segment(struct kvm_vcpu
*vcpu
,
1404 struct kvm_segment
*var
, int seg
)
1406 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1408 var
->base
= s
->base
;
1409 var
->limit
= s
->limit
;
1410 var
->selector
= s
->selector
;
1411 var
->type
= s
->attrib
& SVM_SELECTOR_TYPE_MASK
;
1412 var
->s
= (s
->attrib
>> SVM_SELECTOR_S_SHIFT
) & 1;
1413 var
->dpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
1414 var
->present
= (s
->attrib
>> SVM_SELECTOR_P_SHIFT
) & 1;
1415 var
->avl
= (s
->attrib
>> SVM_SELECTOR_AVL_SHIFT
) & 1;
1416 var
->l
= (s
->attrib
>> SVM_SELECTOR_L_SHIFT
) & 1;
1417 var
->db
= (s
->attrib
>> SVM_SELECTOR_DB_SHIFT
) & 1;
1418 var
->g
= (s
->attrib
>> SVM_SELECTOR_G_SHIFT
) & 1;
1421 * AMD's VMCB does not have an explicit unusable field, so emulate it
1422 * for cross vendor migration purposes by "not present"
1424 var
->unusable
= !var
->present
|| (var
->type
== 0);
1429 * SVM always stores 0 for the 'G' bit in the CS selector in
1430 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1431 * Intel's VMENTRY has a check on the 'G' bit.
1433 var
->g
= s
->limit
> 0xfffff;
1437 * Work around a bug where the busy flag in the tr selector
1447 * The accessed bit must always be set in the segment
1448 * descriptor cache, although it can be cleared in the
1449 * descriptor, the cached bit always remains at 1. Since
1450 * Intel has a check on this, set it here to support
1451 * cross-vendor migration.
1458 * On AMD CPUs sometimes the DB bit in the segment
1459 * descriptor is left as 1, although the whole segment has
1460 * been made unusable. Clear it here to pass an Intel VMX
1461 * entry check when cross vendor migrating.
1469 static int svm_get_cpl(struct kvm_vcpu
*vcpu
)
1471 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1476 static void svm_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1478 struct vcpu_svm
*svm
= to_svm(vcpu
);
1480 dt
->size
= svm
->vmcb
->save
.idtr
.limit
;
1481 dt
->address
= svm
->vmcb
->save
.idtr
.base
;
1484 static void svm_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1486 struct vcpu_svm
*svm
= to_svm(vcpu
);
1488 svm
->vmcb
->save
.idtr
.limit
= dt
->size
;
1489 svm
->vmcb
->save
.idtr
.base
= dt
->address
;
1490 mark_dirty(svm
->vmcb
, VMCB_DT
);
1493 static void svm_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1495 struct vcpu_svm
*svm
= to_svm(vcpu
);
1497 dt
->size
= svm
->vmcb
->save
.gdtr
.limit
;
1498 dt
->address
= svm
->vmcb
->save
.gdtr
.base
;
1501 static void svm_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1503 struct vcpu_svm
*svm
= to_svm(vcpu
);
1505 svm
->vmcb
->save
.gdtr
.limit
= dt
->size
;
1506 svm
->vmcb
->save
.gdtr
.base
= dt
->address
;
1507 mark_dirty(svm
->vmcb
, VMCB_DT
);
1510 static void svm_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
1514 static void svm_decache_cr3(struct kvm_vcpu
*vcpu
)
1518 static void svm_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1522 static void update_cr0_intercept(struct vcpu_svm
*svm
)
1524 ulong gcr0
= svm
->vcpu
.arch
.cr0
;
1525 u64
*hcr0
= &svm
->vmcb
->save
.cr0
;
1527 if (!svm
->vcpu
.fpu_active
)
1528 *hcr0
|= SVM_CR0_SELECTIVE_MASK
;
1530 *hcr0
= (*hcr0
& ~SVM_CR0_SELECTIVE_MASK
)
1531 | (gcr0
& SVM_CR0_SELECTIVE_MASK
);
1533 mark_dirty(svm
->vmcb
, VMCB_CR
);
1535 if (gcr0
== *hcr0
&& svm
->vcpu
.fpu_active
) {
1536 clr_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1537 clr_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1539 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1540 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1544 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1546 struct vcpu_svm
*svm
= to_svm(vcpu
);
1548 #ifdef CONFIG_X86_64
1549 if (vcpu
->arch
.efer
& EFER_LME
) {
1550 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
1551 vcpu
->arch
.efer
|= EFER_LMA
;
1552 svm
->vmcb
->save
.efer
|= EFER_LMA
| EFER_LME
;
1555 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
)) {
1556 vcpu
->arch
.efer
&= ~EFER_LMA
;
1557 svm
->vmcb
->save
.efer
&= ~(EFER_LMA
| EFER_LME
);
1561 vcpu
->arch
.cr0
= cr0
;
1564 cr0
|= X86_CR0_PG
| X86_CR0_WP
;
1566 if (!vcpu
->fpu_active
)
1569 * re-enable caching here because the QEMU bios
1570 * does not do it - this results in some delay at
1573 cr0
&= ~(X86_CR0_CD
| X86_CR0_NW
);
1574 svm
->vmcb
->save
.cr0
= cr0
;
1575 mark_dirty(svm
->vmcb
, VMCB_CR
);
1576 update_cr0_intercept(svm
);
1579 static int svm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1581 unsigned long host_cr4_mce
= read_cr4() & X86_CR4_MCE
;
1582 unsigned long old_cr4
= to_svm(vcpu
)->vmcb
->save
.cr4
;
1584 if (cr4
& X86_CR4_VMXE
)
1587 if (npt_enabled
&& ((old_cr4
^ cr4
) & X86_CR4_PGE
))
1588 svm_flush_tlb(vcpu
);
1590 vcpu
->arch
.cr4
= cr4
;
1593 cr4
|= host_cr4_mce
;
1594 to_svm(vcpu
)->vmcb
->save
.cr4
= cr4
;
1595 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
1599 static void svm_set_segment(struct kvm_vcpu
*vcpu
,
1600 struct kvm_segment
*var
, int seg
)
1602 struct vcpu_svm
*svm
= to_svm(vcpu
);
1603 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1605 s
->base
= var
->base
;
1606 s
->limit
= var
->limit
;
1607 s
->selector
= var
->selector
;
1611 s
->attrib
= (var
->type
& SVM_SELECTOR_TYPE_MASK
);
1612 s
->attrib
|= (var
->s
& 1) << SVM_SELECTOR_S_SHIFT
;
1613 s
->attrib
|= (var
->dpl
& 3) << SVM_SELECTOR_DPL_SHIFT
;
1614 s
->attrib
|= (var
->present
& 1) << SVM_SELECTOR_P_SHIFT
;
1615 s
->attrib
|= (var
->avl
& 1) << SVM_SELECTOR_AVL_SHIFT
;
1616 s
->attrib
|= (var
->l
& 1) << SVM_SELECTOR_L_SHIFT
;
1617 s
->attrib
|= (var
->db
& 1) << SVM_SELECTOR_DB_SHIFT
;
1618 s
->attrib
|= (var
->g
& 1) << SVM_SELECTOR_G_SHIFT
;
1622 * This is always accurate, except if SYSRET returned to a segment
1623 * with SS.DPL != 3. Intel does not have this quirk, and always
1624 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1625 * would entail passing the CPL to userspace and back.
1627 if (seg
== VCPU_SREG_SS
)
1628 svm
->vmcb
->save
.cpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
1630 mark_dirty(svm
->vmcb
, VMCB_SEG
);
1633 static void update_db_bp_intercept(struct kvm_vcpu
*vcpu
)
1635 struct vcpu_svm
*svm
= to_svm(vcpu
);
1637 clr_exception_intercept(svm
, DB_VECTOR
);
1638 clr_exception_intercept(svm
, BP_VECTOR
);
1640 if (svm
->nmi_singlestep
)
1641 set_exception_intercept(svm
, DB_VECTOR
);
1643 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
1644 if (vcpu
->guest_debug
&
1645 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
1646 set_exception_intercept(svm
, DB_VECTOR
);
1647 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
1648 set_exception_intercept(svm
, BP_VECTOR
);
1650 vcpu
->guest_debug
= 0;
1653 static void new_asid(struct vcpu_svm
*svm
, struct svm_cpu_data
*sd
)
1655 if (sd
->next_asid
> sd
->max_asid
) {
1656 ++sd
->asid_generation
;
1658 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ALL_ASID
;
1661 svm
->asid_generation
= sd
->asid_generation
;
1662 svm
->vmcb
->control
.asid
= sd
->next_asid
++;
1664 mark_dirty(svm
->vmcb
, VMCB_ASID
);
1667 static u64
svm_get_dr6(struct kvm_vcpu
*vcpu
)
1669 return to_svm(vcpu
)->vmcb
->save
.dr6
;
1672 static void svm_set_dr6(struct kvm_vcpu
*vcpu
, unsigned long value
)
1674 struct vcpu_svm
*svm
= to_svm(vcpu
);
1676 svm
->vmcb
->save
.dr6
= value
;
1677 mark_dirty(svm
->vmcb
, VMCB_DR
);
1680 static void svm_sync_dirty_debug_regs(struct kvm_vcpu
*vcpu
)
1682 struct vcpu_svm
*svm
= to_svm(vcpu
);
1684 get_debugreg(vcpu
->arch
.db
[0], 0);
1685 get_debugreg(vcpu
->arch
.db
[1], 1);
1686 get_debugreg(vcpu
->arch
.db
[2], 2);
1687 get_debugreg(vcpu
->arch
.db
[3], 3);
1688 vcpu
->arch
.dr6
= svm_get_dr6(vcpu
);
1689 vcpu
->arch
.dr7
= svm
->vmcb
->save
.dr7
;
1691 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_WONT_EXIT
;
1692 set_dr_intercepts(svm
);
1695 static void svm_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long value
)
1697 struct vcpu_svm
*svm
= to_svm(vcpu
);
1699 svm
->vmcb
->save
.dr7
= value
;
1700 mark_dirty(svm
->vmcb
, VMCB_DR
);
1703 static int pf_interception(struct vcpu_svm
*svm
)
1705 u64 fault_address
= svm
->vmcb
->control
.exit_info_2
;
1709 switch (svm
->apf_reason
) {
1711 error_code
= svm
->vmcb
->control
.exit_info_1
;
1713 trace_kvm_page_fault(fault_address
, error_code
);
1714 if (!npt_enabled
&& kvm_event_needs_reinjection(&svm
->vcpu
))
1715 kvm_mmu_unprotect_page_virt(&svm
->vcpu
, fault_address
);
1716 r
= kvm_mmu_page_fault(&svm
->vcpu
, fault_address
, error_code
,
1717 svm
->vmcb
->control
.insn_bytes
,
1718 svm
->vmcb
->control
.insn_len
);
1720 case KVM_PV_REASON_PAGE_NOT_PRESENT
:
1721 svm
->apf_reason
= 0;
1722 local_irq_disable();
1723 kvm_async_pf_task_wait(fault_address
);
1726 case KVM_PV_REASON_PAGE_READY
:
1727 svm
->apf_reason
= 0;
1728 local_irq_disable();
1729 kvm_async_pf_task_wake(fault_address
);
1736 static int db_interception(struct vcpu_svm
*svm
)
1738 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1740 if (!(svm
->vcpu
.guest_debug
&
1741 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) &&
1742 !svm
->nmi_singlestep
) {
1743 kvm_queue_exception(&svm
->vcpu
, DB_VECTOR
);
1747 if (svm
->nmi_singlestep
) {
1748 svm
->nmi_singlestep
= false;
1749 if (!(svm
->vcpu
.guest_debug
& KVM_GUESTDBG_SINGLESTEP
))
1750 svm
->vmcb
->save
.rflags
&=
1751 ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1752 update_db_bp_intercept(&svm
->vcpu
);
1755 if (svm
->vcpu
.guest_debug
&
1756 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) {
1757 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1758 kvm_run
->debug
.arch
.pc
=
1759 svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1760 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
1767 static int bp_interception(struct vcpu_svm
*svm
)
1769 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1771 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1772 kvm_run
->debug
.arch
.pc
= svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1773 kvm_run
->debug
.arch
.exception
= BP_VECTOR
;
1777 static int ud_interception(struct vcpu_svm
*svm
)
1781 er
= emulate_instruction(&svm
->vcpu
, EMULTYPE_TRAP_UD
);
1782 if (er
!= EMULATE_DONE
)
1783 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1787 static void svm_fpu_activate(struct kvm_vcpu
*vcpu
)
1789 struct vcpu_svm
*svm
= to_svm(vcpu
);
1791 clr_exception_intercept(svm
, NM_VECTOR
);
1793 svm
->vcpu
.fpu_active
= 1;
1794 update_cr0_intercept(svm
);
1797 static int nm_interception(struct vcpu_svm
*svm
)
1799 svm_fpu_activate(&svm
->vcpu
);
1803 static bool is_erratum_383(void)
1808 if (!erratum_383_found
)
1811 value
= native_read_msr_safe(MSR_IA32_MC0_STATUS
, &err
);
1815 /* Bit 62 may or may not be set for this mce */
1816 value
&= ~(1ULL << 62);
1818 if (value
!= 0xb600000000010015ULL
)
1821 /* Clear MCi_STATUS registers */
1822 for (i
= 0; i
< 6; ++i
)
1823 native_write_msr_safe(MSR_IA32_MCx_STATUS(i
), 0, 0);
1825 value
= native_read_msr_safe(MSR_IA32_MCG_STATUS
, &err
);
1829 value
&= ~(1ULL << 2);
1830 low
= lower_32_bits(value
);
1831 high
= upper_32_bits(value
);
1833 native_write_msr_safe(MSR_IA32_MCG_STATUS
, low
, high
);
1836 /* Flush tlb to evict multi-match entries */
1842 static void svm_handle_mce(struct vcpu_svm
*svm
)
1844 if (is_erratum_383()) {
1846 * Erratum 383 triggered. Guest state is corrupt so kill the
1849 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1851 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, &svm
->vcpu
);
1857 * On an #MC intercept the MCE handler is not called automatically in
1858 * the host. So do it by hand here.
1862 /* not sure if we ever come back to this point */
1867 static int mc_interception(struct vcpu_svm
*svm
)
1872 static int shutdown_interception(struct vcpu_svm
*svm
)
1874 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1877 * VMCB is undefined after a SHUTDOWN intercept
1878 * so reinitialize it.
1880 clear_page(svm
->vmcb
);
1883 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1887 static int io_interception(struct vcpu_svm
*svm
)
1889 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
1890 u32 io_info
= svm
->vmcb
->control
.exit_info_1
; /* address size bug? */
1891 int size
, in
, string
;
1894 ++svm
->vcpu
.stat
.io_exits
;
1895 string
= (io_info
& SVM_IOIO_STR_MASK
) != 0;
1896 in
= (io_info
& SVM_IOIO_TYPE_MASK
) != 0;
1898 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
1900 port
= io_info
>> 16;
1901 size
= (io_info
& SVM_IOIO_SIZE_MASK
) >> SVM_IOIO_SIZE_SHIFT
;
1902 svm
->next_rip
= svm
->vmcb
->control
.exit_info_2
;
1903 skip_emulated_instruction(&svm
->vcpu
);
1905 return kvm_fast_pio_out(vcpu
, size
, port
);
1908 static int nmi_interception(struct vcpu_svm
*svm
)
1913 static int intr_interception(struct vcpu_svm
*svm
)
1915 ++svm
->vcpu
.stat
.irq_exits
;
1919 static int nop_on_interception(struct vcpu_svm
*svm
)
1924 static int halt_interception(struct vcpu_svm
*svm
)
1926 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 1;
1927 skip_emulated_instruction(&svm
->vcpu
);
1928 return kvm_emulate_halt(&svm
->vcpu
);
1931 static int vmmcall_interception(struct vcpu_svm
*svm
)
1933 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1934 skip_emulated_instruction(&svm
->vcpu
);
1935 kvm_emulate_hypercall(&svm
->vcpu
);
1939 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu
*vcpu
)
1941 struct vcpu_svm
*svm
= to_svm(vcpu
);
1943 return svm
->nested
.nested_cr3
;
1946 static u64
nested_svm_get_tdp_pdptr(struct kvm_vcpu
*vcpu
, int index
)
1948 struct vcpu_svm
*svm
= to_svm(vcpu
);
1949 u64 cr3
= svm
->nested
.nested_cr3
;
1953 ret
= kvm_read_guest_page(vcpu
->kvm
, gpa_to_gfn(cr3
), &pdpte
,
1954 offset_in_page(cr3
) + index
* 8, 8);
1960 static void nested_svm_set_tdp_cr3(struct kvm_vcpu
*vcpu
,
1963 struct vcpu_svm
*svm
= to_svm(vcpu
);
1965 svm
->vmcb
->control
.nested_cr3
= root
;
1966 mark_dirty(svm
->vmcb
, VMCB_NPT
);
1967 svm_flush_tlb(vcpu
);
1970 static void nested_svm_inject_npf_exit(struct kvm_vcpu
*vcpu
,
1971 struct x86_exception
*fault
)
1973 struct vcpu_svm
*svm
= to_svm(vcpu
);
1975 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NPF
;
1976 svm
->vmcb
->control
.exit_code_hi
= 0;
1977 svm
->vmcb
->control
.exit_info_1
= fault
->error_code
;
1978 svm
->vmcb
->control
.exit_info_2
= fault
->address
;
1980 nested_svm_vmexit(svm
);
1983 static void nested_svm_init_mmu_context(struct kvm_vcpu
*vcpu
)
1985 kvm_init_shadow_mmu(vcpu
, &vcpu
->arch
.mmu
);
1987 vcpu
->arch
.mmu
.set_cr3
= nested_svm_set_tdp_cr3
;
1988 vcpu
->arch
.mmu
.get_cr3
= nested_svm_get_tdp_cr3
;
1989 vcpu
->arch
.mmu
.get_pdptr
= nested_svm_get_tdp_pdptr
;
1990 vcpu
->arch
.mmu
.inject_page_fault
= nested_svm_inject_npf_exit
;
1991 vcpu
->arch
.mmu
.shadow_root_level
= get_npt_level();
1992 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
1995 static void nested_svm_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
1997 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
2000 static int nested_svm_check_permissions(struct vcpu_svm
*svm
)
2002 if (!(svm
->vcpu
.arch
.efer
& EFER_SVME
)
2003 || !is_paging(&svm
->vcpu
)) {
2004 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2008 if (svm
->vmcb
->save
.cpl
) {
2009 kvm_inject_gp(&svm
->vcpu
, 0);
2016 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
2017 bool has_error_code
, u32 error_code
)
2021 if (!is_guest_mode(&svm
->vcpu
))
2024 svm
->vmcb
->control
.exit_code
= SVM_EXIT_EXCP_BASE
+ nr
;
2025 svm
->vmcb
->control
.exit_code_hi
= 0;
2026 svm
->vmcb
->control
.exit_info_1
= error_code
;
2027 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.cr2
;
2029 vmexit
= nested_svm_intercept(svm
);
2030 if (vmexit
== NESTED_EXIT_DONE
)
2031 svm
->nested
.exit_required
= true;
2036 /* This function returns true if it is save to enable the irq window */
2037 static inline bool nested_svm_intr(struct vcpu_svm
*svm
)
2039 if (!is_guest_mode(&svm
->vcpu
))
2042 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
2045 if (!(svm
->vcpu
.arch
.hflags
& HF_HIF_MASK
))
2049 * if vmexit was already requested (by intercepted exception
2050 * for instance) do not overwrite it with "external interrupt"
2053 if (svm
->nested
.exit_required
)
2056 svm
->vmcb
->control
.exit_code
= SVM_EXIT_INTR
;
2057 svm
->vmcb
->control
.exit_info_1
= 0;
2058 svm
->vmcb
->control
.exit_info_2
= 0;
2060 if (svm
->nested
.intercept
& 1ULL) {
2062 * The #vmexit can't be emulated here directly because this
2063 * code path runs with irqs and preemption disabled. A
2064 * #vmexit emulation might sleep. Only signal request for
2067 svm
->nested
.exit_required
= true;
2068 trace_kvm_nested_intr_vmexit(svm
->vmcb
->save
.rip
);
2075 /* This function returns true if it is save to enable the nmi window */
2076 static inline bool nested_svm_nmi(struct vcpu_svm
*svm
)
2078 if (!is_guest_mode(&svm
->vcpu
))
2081 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_NMI
)))
2084 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NMI
;
2085 svm
->nested
.exit_required
= true;
2090 static void *nested_svm_map(struct vcpu_svm
*svm
, u64 gpa
, struct page
**_page
)
2096 page
= gfn_to_page(svm
->vcpu
.kvm
, gpa
>> PAGE_SHIFT
);
2097 if (is_error_page(page
))
2105 kvm_inject_gp(&svm
->vcpu
, 0);
2110 static void nested_svm_unmap(struct page
*page
)
2113 kvm_release_page_dirty(page
);
2116 static int nested_svm_intercept_ioio(struct vcpu_svm
*svm
)
2122 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_IOIO_PROT
)))
2123 return NESTED_EXIT_HOST
;
2125 port
= svm
->vmcb
->control
.exit_info_1
>> 16;
2126 gpa
= svm
->nested
.vmcb_iopm
+ (port
/ 8);
2130 if (kvm_read_guest(svm
->vcpu
.kvm
, gpa
, &val
, 1))
2133 return val
? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
2136 static int nested_svm_exit_handled_msr(struct vcpu_svm
*svm
)
2138 u32 offset
, msr
, value
;
2141 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
2142 return NESTED_EXIT_HOST
;
2144 msr
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2145 offset
= svm_msrpm_offset(msr
);
2146 write
= svm
->vmcb
->control
.exit_info_1
& 1;
2147 mask
= 1 << ((2 * (msr
& 0xf)) + write
);
2149 if (offset
== MSR_INVALID
)
2150 return NESTED_EXIT_DONE
;
2152 /* Offset is in 32 bit units but need in 8 bit units */
2155 if (kvm_read_guest(svm
->vcpu
.kvm
, svm
->nested
.vmcb_msrpm
+ offset
, &value
, 4))
2156 return NESTED_EXIT_DONE
;
2158 return (value
& mask
) ? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
2161 static int nested_svm_exit_special(struct vcpu_svm
*svm
)
2163 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2165 switch (exit_code
) {
2168 case SVM_EXIT_EXCP_BASE
+ MC_VECTOR
:
2169 return NESTED_EXIT_HOST
;
2171 /* For now we are always handling NPFs when using them */
2173 return NESTED_EXIT_HOST
;
2175 case SVM_EXIT_EXCP_BASE
+ PF_VECTOR
:
2176 /* When we're shadowing, trap PFs, but not async PF */
2177 if (!npt_enabled
&& svm
->apf_reason
== 0)
2178 return NESTED_EXIT_HOST
;
2180 case SVM_EXIT_EXCP_BASE
+ NM_VECTOR
:
2181 nm_interception(svm
);
2187 return NESTED_EXIT_CONTINUE
;
2191 * If this function returns true, this #vmexit was already handled
2193 static int nested_svm_intercept(struct vcpu_svm
*svm
)
2195 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2196 int vmexit
= NESTED_EXIT_HOST
;
2198 switch (exit_code
) {
2200 vmexit
= nested_svm_exit_handled_msr(svm
);
2203 vmexit
= nested_svm_intercept_ioio(svm
);
2205 case SVM_EXIT_READ_CR0
... SVM_EXIT_WRITE_CR8
: {
2206 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_CR0
);
2207 if (svm
->nested
.intercept_cr
& bit
)
2208 vmexit
= NESTED_EXIT_DONE
;
2211 case SVM_EXIT_READ_DR0
... SVM_EXIT_WRITE_DR7
: {
2212 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_DR0
);
2213 if (svm
->nested
.intercept_dr
& bit
)
2214 vmexit
= NESTED_EXIT_DONE
;
2217 case SVM_EXIT_EXCP_BASE
... SVM_EXIT_EXCP_BASE
+ 0x1f: {
2218 u32 excp_bits
= 1 << (exit_code
- SVM_EXIT_EXCP_BASE
);
2219 if (svm
->nested
.intercept_exceptions
& excp_bits
)
2220 vmexit
= NESTED_EXIT_DONE
;
2221 /* async page fault always cause vmexit */
2222 else if ((exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
) &&
2223 svm
->apf_reason
!= 0)
2224 vmexit
= NESTED_EXIT_DONE
;
2227 case SVM_EXIT_ERR
: {
2228 vmexit
= NESTED_EXIT_DONE
;
2232 u64 exit_bits
= 1ULL << (exit_code
- SVM_EXIT_INTR
);
2233 if (svm
->nested
.intercept
& exit_bits
)
2234 vmexit
= NESTED_EXIT_DONE
;
2241 static int nested_svm_exit_handled(struct vcpu_svm
*svm
)
2245 vmexit
= nested_svm_intercept(svm
);
2247 if (vmexit
== NESTED_EXIT_DONE
)
2248 nested_svm_vmexit(svm
);
2253 static inline void copy_vmcb_control_area(struct vmcb
*dst_vmcb
, struct vmcb
*from_vmcb
)
2255 struct vmcb_control_area
*dst
= &dst_vmcb
->control
;
2256 struct vmcb_control_area
*from
= &from_vmcb
->control
;
2258 dst
->intercept_cr
= from
->intercept_cr
;
2259 dst
->intercept_dr
= from
->intercept_dr
;
2260 dst
->intercept_exceptions
= from
->intercept_exceptions
;
2261 dst
->intercept
= from
->intercept
;
2262 dst
->iopm_base_pa
= from
->iopm_base_pa
;
2263 dst
->msrpm_base_pa
= from
->msrpm_base_pa
;
2264 dst
->tsc_offset
= from
->tsc_offset
;
2265 dst
->asid
= from
->asid
;
2266 dst
->tlb_ctl
= from
->tlb_ctl
;
2267 dst
->int_ctl
= from
->int_ctl
;
2268 dst
->int_vector
= from
->int_vector
;
2269 dst
->int_state
= from
->int_state
;
2270 dst
->exit_code
= from
->exit_code
;
2271 dst
->exit_code_hi
= from
->exit_code_hi
;
2272 dst
->exit_info_1
= from
->exit_info_1
;
2273 dst
->exit_info_2
= from
->exit_info_2
;
2274 dst
->exit_int_info
= from
->exit_int_info
;
2275 dst
->exit_int_info_err
= from
->exit_int_info_err
;
2276 dst
->nested_ctl
= from
->nested_ctl
;
2277 dst
->event_inj
= from
->event_inj
;
2278 dst
->event_inj_err
= from
->event_inj_err
;
2279 dst
->nested_cr3
= from
->nested_cr3
;
2280 dst
->lbr_ctl
= from
->lbr_ctl
;
2283 static int nested_svm_vmexit(struct vcpu_svm
*svm
)
2285 struct vmcb
*nested_vmcb
;
2286 struct vmcb
*hsave
= svm
->nested
.hsave
;
2287 struct vmcb
*vmcb
= svm
->vmcb
;
2290 trace_kvm_nested_vmexit_inject(vmcb
->control
.exit_code
,
2291 vmcb
->control
.exit_info_1
,
2292 vmcb
->control
.exit_info_2
,
2293 vmcb
->control
.exit_int_info
,
2294 vmcb
->control
.exit_int_info_err
,
2297 nested_vmcb
= nested_svm_map(svm
, svm
->nested
.vmcb
, &page
);
2301 /* Exit Guest-Mode */
2302 leave_guest_mode(&svm
->vcpu
);
2303 svm
->nested
.vmcb
= 0;
2305 /* Give the current vmcb to the guest */
2308 nested_vmcb
->save
.es
= vmcb
->save
.es
;
2309 nested_vmcb
->save
.cs
= vmcb
->save
.cs
;
2310 nested_vmcb
->save
.ss
= vmcb
->save
.ss
;
2311 nested_vmcb
->save
.ds
= vmcb
->save
.ds
;
2312 nested_vmcb
->save
.gdtr
= vmcb
->save
.gdtr
;
2313 nested_vmcb
->save
.idtr
= vmcb
->save
.idtr
;
2314 nested_vmcb
->save
.efer
= svm
->vcpu
.arch
.efer
;
2315 nested_vmcb
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
2316 nested_vmcb
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
2317 nested_vmcb
->save
.cr2
= vmcb
->save
.cr2
;
2318 nested_vmcb
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
2319 nested_vmcb
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
2320 nested_vmcb
->save
.rip
= vmcb
->save
.rip
;
2321 nested_vmcb
->save
.rsp
= vmcb
->save
.rsp
;
2322 nested_vmcb
->save
.rax
= vmcb
->save
.rax
;
2323 nested_vmcb
->save
.dr7
= vmcb
->save
.dr7
;
2324 nested_vmcb
->save
.dr6
= vmcb
->save
.dr6
;
2325 nested_vmcb
->save
.cpl
= vmcb
->save
.cpl
;
2327 nested_vmcb
->control
.int_ctl
= vmcb
->control
.int_ctl
;
2328 nested_vmcb
->control
.int_vector
= vmcb
->control
.int_vector
;
2329 nested_vmcb
->control
.int_state
= vmcb
->control
.int_state
;
2330 nested_vmcb
->control
.exit_code
= vmcb
->control
.exit_code
;
2331 nested_vmcb
->control
.exit_code_hi
= vmcb
->control
.exit_code_hi
;
2332 nested_vmcb
->control
.exit_info_1
= vmcb
->control
.exit_info_1
;
2333 nested_vmcb
->control
.exit_info_2
= vmcb
->control
.exit_info_2
;
2334 nested_vmcb
->control
.exit_int_info
= vmcb
->control
.exit_int_info
;
2335 nested_vmcb
->control
.exit_int_info_err
= vmcb
->control
.exit_int_info_err
;
2336 nested_vmcb
->control
.next_rip
= vmcb
->control
.next_rip
;
2339 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2340 * to make sure that we do not lose injected events. So check event_inj
2341 * here and copy it to exit_int_info if it is valid.
2342 * Exit_int_info and event_inj can't be both valid because the case
2343 * below only happens on a VMRUN instruction intercept which has
2344 * no valid exit_int_info set.
2346 if (vmcb
->control
.event_inj
& SVM_EVTINJ_VALID
) {
2347 struct vmcb_control_area
*nc
= &nested_vmcb
->control
;
2349 nc
->exit_int_info
= vmcb
->control
.event_inj
;
2350 nc
->exit_int_info_err
= vmcb
->control
.event_inj_err
;
2353 nested_vmcb
->control
.tlb_ctl
= 0;
2354 nested_vmcb
->control
.event_inj
= 0;
2355 nested_vmcb
->control
.event_inj_err
= 0;
2357 /* We always set V_INTR_MASKING and remember the old value in hflags */
2358 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
2359 nested_vmcb
->control
.int_ctl
&= ~V_INTR_MASKING_MASK
;
2361 /* Restore the original control entries */
2362 copy_vmcb_control_area(vmcb
, hsave
);
2364 kvm_clear_exception_queue(&svm
->vcpu
);
2365 kvm_clear_interrupt_queue(&svm
->vcpu
);
2367 svm
->nested
.nested_cr3
= 0;
2369 /* Restore selected save entries */
2370 svm
->vmcb
->save
.es
= hsave
->save
.es
;
2371 svm
->vmcb
->save
.cs
= hsave
->save
.cs
;
2372 svm
->vmcb
->save
.ss
= hsave
->save
.ss
;
2373 svm
->vmcb
->save
.ds
= hsave
->save
.ds
;
2374 svm
->vmcb
->save
.gdtr
= hsave
->save
.gdtr
;
2375 svm
->vmcb
->save
.idtr
= hsave
->save
.idtr
;
2376 kvm_set_rflags(&svm
->vcpu
, hsave
->save
.rflags
);
2377 svm_set_efer(&svm
->vcpu
, hsave
->save
.efer
);
2378 svm_set_cr0(&svm
->vcpu
, hsave
->save
.cr0
| X86_CR0_PE
);
2379 svm_set_cr4(&svm
->vcpu
, hsave
->save
.cr4
);
2381 svm
->vmcb
->save
.cr3
= hsave
->save
.cr3
;
2382 svm
->vcpu
.arch
.cr3
= hsave
->save
.cr3
;
2384 (void)kvm_set_cr3(&svm
->vcpu
, hsave
->save
.cr3
);
2386 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, hsave
->save
.rax
);
2387 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, hsave
->save
.rsp
);
2388 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, hsave
->save
.rip
);
2389 svm
->vmcb
->save
.dr7
= 0;
2390 svm
->vmcb
->save
.cpl
= 0;
2391 svm
->vmcb
->control
.exit_int_info
= 0;
2393 mark_all_dirty(svm
->vmcb
);
2395 nested_svm_unmap(page
);
2397 nested_svm_uninit_mmu_context(&svm
->vcpu
);
2398 kvm_mmu_reset_context(&svm
->vcpu
);
2399 kvm_mmu_load(&svm
->vcpu
);
2404 static bool nested_svm_vmrun_msrpm(struct vcpu_svm
*svm
)
2407 * This function merges the msr permission bitmaps of kvm and the
2408 * nested vmcb. It is optimized in that it only merges the parts where
2409 * the kvm msr permission bitmap may contain zero bits
2413 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
2416 for (i
= 0; i
< MSRPM_OFFSETS
; i
++) {
2420 if (msrpm_offsets
[i
] == 0xffffffff)
2423 p
= msrpm_offsets
[i
];
2424 offset
= svm
->nested
.vmcb_msrpm
+ (p
* 4);
2426 if (kvm_read_guest(svm
->vcpu
.kvm
, offset
, &value
, 4))
2429 svm
->nested
.msrpm
[p
] = svm
->msrpm
[p
] | value
;
2432 svm
->vmcb
->control
.msrpm_base_pa
= __pa(svm
->nested
.msrpm
);
2437 static bool nested_vmcb_checks(struct vmcb
*vmcb
)
2439 if ((vmcb
->control
.intercept
& (1ULL << INTERCEPT_VMRUN
)) == 0)
2442 if (vmcb
->control
.asid
== 0)
2445 if (vmcb
->control
.nested_ctl
&& !npt_enabled
)
2451 static bool nested_svm_vmrun(struct vcpu_svm
*svm
)
2453 struct vmcb
*nested_vmcb
;
2454 struct vmcb
*hsave
= svm
->nested
.hsave
;
2455 struct vmcb
*vmcb
= svm
->vmcb
;
2459 vmcb_gpa
= svm
->vmcb
->save
.rax
;
2461 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2465 if (!nested_vmcb_checks(nested_vmcb
)) {
2466 nested_vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
2467 nested_vmcb
->control
.exit_code_hi
= 0;
2468 nested_vmcb
->control
.exit_info_1
= 0;
2469 nested_vmcb
->control
.exit_info_2
= 0;
2471 nested_svm_unmap(page
);
2476 trace_kvm_nested_vmrun(svm
->vmcb
->save
.rip
, vmcb_gpa
,
2477 nested_vmcb
->save
.rip
,
2478 nested_vmcb
->control
.int_ctl
,
2479 nested_vmcb
->control
.event_inj
,
2480 nested_vmcb
->control
.nested_ctl
);
2482 trace_kvm_nested_intercepts(nested_vmcb
->control
.intercept_cr
& 0xffff,
2483 nested_vmcb
->control
.intercept_cr
>> 16,
2484 nested_vmcb
->control
.intercept_exceptions
,
2485 nested_vmcb
->control
.intercept
);
2487 /* Clear internal status */
2488 kvm_clear_exception_queue(&svm
->vcpu
);
2489 kvm_clear_interrupt_queue(&svm
->vcpu
);
2492 * Save the old vmcb, so we don't need to pick what we save, but can
2493 * restore everything when a VMEXIT occurs
2495 hsave
->save
.es
= vmcb
->save
.es
;
2496 hsave
->save
.cs
= vmcb
->save
.cs
;
2497 hsave
->save
.ss
= vmcb
->save
.ss
;
2498 hsave
->save
.ds
= vmcb
->save
.ds
;
2499 hsave
->save
.gdtr
= vmcb
->save
.gdtr
;
2500 hsave
->save
.idtr
= vmcb
->save
.idtr
;
2501 hsave
->save
.efer
= svm
->vcpu
.arch
.efer
;
2502 hsave
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
2503 hsave
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
2504 hsave
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
2505 hsave
->save
.rip
= kvm_rip_read(&svm
->vcpu
);
2506 hsave
->save
.rsp
= vmcb
->save
.rsp
;
2507 hsave
->save
.rax
= vmcb
->save
.rax
;
2509 hsave
->save
.cr3
= vmcb
->save
.cr3
;
2511 hsave
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
2513 copy_vmcb_control_area(hsave
, vmcb
);
2515 if (kvm_get_rflags(&svm
->vcpu
) & X86_EFLAGS_IF
)
2516 svm
->vcpu
.arch
.hflags
|= HF_HIF_MASK
;
2518 svm
->vcpu
.arch
.hflags
&= ~HF_HIF_MASK
;
2520 if (nested_vmcb
->control
.nested_ctl
) {
2521 kvm_mmu_unload(&svm
->vcpu
);
2522 svm
->nested
.nested_cr3
= nested_vmcb
->control
.nested_cr3
;
2523 nested_svm_init_mmu_context(&svm
->vcpu
);
2526 /* Load the nested guest state */
2527 svm
->vmcb
->save
.es
= nested_vmcb
->save
.es
;
2528 svm
->vmcb
->save
.cs
= nested_vmcb
->save
.cs
;
2529 svm
->vmcb
->save
.ss
= nested_vmcb
->save
.ss
;
2530 svm
->vmcb
->save
.ds
= nested_vmcb
->save
.ds
;
2531 svm
->vmcb
->save
.gdtr
= nested_vmcb
->save
.gdtr
;
2532 svm
->vmcb
->save
.idtr
= nested_vmcb
->save
.idtr
;
2533 kvm_set_rflags(&svm
->vcpu
, nested_vmcb
->save
.rflags
);
2534 svm_set_efer(&svm
->vcpu
, nested_vmcb
->save
.efer
);
2535 svm_set_cr0(&svm
->vcpu
, nested_vmcb
->save
.cr0
);
2536 svm_set_cr4(&svm
->vcpu
, nested_vmcb
->save
.cr4
);
2538 svm
->vmcb
->save
.cr3
= nested_vmcb
->save
.cr3
;
2539 svm
->vcpu
.arch
.cr3
= nested_vmcb
->save
.cr3
;
2541 (void)kvm_set_cr3(&svm
->vcpu
, nested_vmcb
->save
.cr3
);
2543 /* Guest paging mode is active - reset mmu */
2544 kvm_mmu_reset_context(&svm
->vcpu
);
2546 svm
->vmcb
->save
.cr2
= svm
->vcpu
.arch
.cr2
= nested_vmcb
->save
.cr2
;
2547 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, nested_vmcb
->save
.rax
);
2548 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, nested_vmcb
->save
.rsp
);
2549 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, nested_vmcb
->save
.rip
);
2551 /* In case we don't even reach vcpu_run, the fields are not updated */
2552 svm
->vmcb
->save
.rax
= nested_vmcb
->save
.rax
;
2553 svm
->vmcb
->save
.rsp
= nested_vmcb
->save
.rsp
;
2554 svm
->vmcb
->save
.rip
= nested_vmcb
->save
.rip
;
2555 svm
->vmcb
->save
.dr7
= nested_vmcb
->save
.dr7
;
2556 svm
->vmcb
->save
.dr6
= nested_vmcb
->save
.dr6
;
2557 svm
->vmcb
->save
.cpl
= nested_vmcb
->save
.cpl
;
2559 svm
->nested
.vmcb_msrpm
= nested_vmcb
->control
.msrpm_base_pa
& ~0x0fffULL
;
2560 svm
->nested
.vmcb_iopm
= nested_vmcb
->control
.iopm_base_pa
& ~0x0fffULL
;
2562 /* cache intercepts */
2563 svm
->nested
.intercept_cr
= nested_vmcb
->control
.intercept_cr
;
2564 svm
->nested
.intercept_dr
= nested_vmcb
->control
.intercept_dr
;
2565 svm
->nested
.intercept_exceptions
= nested_vmcb
->control
.intercept_exceptions
;
2566 svm
->nested
.intercept
= nested_vmcb
->control
.intercept
;
2568 svm_flush_tlb(&svm
->vcpu
);
2569 svm
->vmcb
->control
.int_ctl
= nested_vmcb
->control
.int_ctl
| V_INTR_MASKING_MASK
;
2570 if (nested_vmcb
->control
.int_ctl
& V_INTR_MASKING_MASK
)
2571 svm
->vcpu
.arch
.hflags
|= HF_VINTR_MASK
;
2573 svm
->vcpu
.arch
.hflags
&= ~HF_VINTR_MASK
;
2575 if (svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
) {
2576 /* We only want the cr8 intercept bits of the guest */
2577 clr_cr_intercept(svm
, INTERCEPT_CR8_READ
);
2578 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
2581 /* We don't want to see VMMCALLs from a nested guest */
2582 clr_intercept(svm
, INTERCEPT_VMMCALL
);
2584 svm
->vmcb
->control
.lbr_ctl
= nested_vmcb
->control
.lbr_ctl
;
2585 svm
->vmcb
->control
.int_vector
= nested_vmcb
->control
.int_vector
;
2586 svm
->vmcb
->control
.int_state
= nested_vmcb
->control
.int_state
;
2587 svm
->vmcb
->control
.tsc_offset
+= nested_vmcb
->control
.tsc_offset
;
2588 svm
->vmcb
->control
.event_inj
= nested_vmcb
->control
.event_inj
;
2589 svm
->vmcb
->control
.event_inj_err
= nested_vmcb
->control
.event_inj_err
;
2591 nested_svm_unmap(page
);
2593 /* Enter Guest-Mode */
2594 enter_guest_mode(&svm
->vcpu
);
2597 * Merge guest and host intercepts - must be called with vcpu in
2598 * guest-mode to take affect here
2600 recalc_intercepts(svm
);
2602 svm
->nested
.vmcb
= vmcb_gpa
;
2606 mark_all_dirty(svm
->vmcb
);
2611 static void nested_svm_vmloadsave(struct vmcb
*from_vmcb
, struct vmcb
*to_vmcb
)
2613 to_vmcb
->save
.fs
= from_vmcb
->save
.fs
;
2614 to_vmcb
->save
.gs
= from_vmcb
->save
.gs
;
2615 to_vmcb
->save
.tr
= from_vmcb
->save
.tr
;
2616 to_vmcb
->save
.ldtr
= from_vmcb
->save
.ldtr
;
2617 to_vmcb
->save
.kernel_gs_base
= from_vmcb
->save
.kernel_gs_base
;
2618 to_vmcb
->save
.star
= from_vmcb
->save
.star
;
2619 to_vmcb
->save
.lstar
= from_vmcb
->save
.lstar
;
2620 to_vmcb
->save
.cstar
= from_vmcb
->save
.cstar
;
2621 to_vmcb
->save
.sfmask
= from_vmcb
->save
.sfmask
;
2622 to_vmcb
->save
.sysenter_cs
= from_vmcb
->save
.sysenter_cs
;
2623 to_vmcb
->save
.sysenter_esp
= from_vmcb
->save
.sysenter_esp
;
2624 to_vmcb
->save
.sysenter_eip
= from_vmcb
->save
.sysenter_eip
;
2627 static int vmload_interception(struct vcpu_svm
*svm
)
2629 struct vmcb
*nested_vmcb
;
2632 if (nested_svm_check_permissions(svm
))
2635 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2639 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2640 skip_emulated_instruction(&svm
->vcpu
);
2642 nested_svm_vmloadsave(nested_vmcb
, svm
->vmcb
);
2643 nested_svm_unmap(page
);
2648 static int vmsave_interception(struct vcpu_svm
*svm
)
2650 struct vmcb
*nested_vmcb
;
2653 if (nested_svm_check_permissions(svm
))
2656 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2660 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2661 skip_emulated_instruction(&svm
->vcpu
);
2663 nested_svm_vmloadsave(svm
->vmcb
, nested_vmcb
);
2664 nested_svm_unmap(page
);
2669 static int vmrun_interception(struct vcpu_svm
*svm
)
2671 if (nested_svm_check_permissions(svm
))
2674 /* Save rip after vmrun instruction */
2675 kvm_rip_write(&svm
->vcpu
, kvm_rip_read(&svm
->vcpu
) + 3);
2677 if (!nested_svm_vmrun(svm
))
2680 if (!nested_svm_vmrun_msrpm(svm
))
2687 svm
->vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
2688 svm
->vmcb
->control
.exit_code_hi
= 0;
2689 svm
->vmcb
->control
.exit_info_1
= 0;
2690 svm
->vmcb
->control
.exit_info_2
= 0;
2692 nested_svm_vmexit(svm
);
2697 static int stgi_interception(struct vcpu_svm
*svm
)
2699 if (nested_svm_check_permissions(svm
))
2702 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2703 skip_emulated_instruction(&svm
->vcpu
);
2704 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
2711 static int clgi_interception(struct vcpu_svm
*svm
)
2713 if (nested_svm_check_permissions(svm
))
2716 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2717 skip_emulated_instruction(&svm
->vcpu
);
2721 /* After a CLGI no interrupts should come */
2722 svm_clear_vintr(svm
);
2723 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
2725 mark_dirty(svm
->vmcb
, VMCB_INTR
);
2730 static int invlpga_interception(struct vcpu_svm
*svm
)
2732 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
2734 trace_kvm_invlpga(svm
->vmcb
->save
.rip
, vcpu
->arch
.regs
[VCPU_REGS_RCX
],
2735 vcpu
->arch
.regs
[VCPU_REGS_RAX
]);
2737 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2738 kvm_mmu_invlpg(vcpu
, vcpu
->arch
.regs
[VCPU_REGS_RAX
]);
2740 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2741 skip_emulated_instruction(&svm
->vcpu
);
2745 static int skinit_interception(struct vcpu_svm
*svm
)
2747 trace_kvm_skinit(svm
->vmcb
->save
.rip
, svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
]);
2749 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2753 static int xsetbv_interception(struct vcpu_svm
*svm
)
2755 u64 new_bv
= kvm_read_edx_eax(&svm
->vcpu
);
2756 u32 index
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
2758 if (kvm_set_xcr(&svm
->vcpu
, index
, new_bv
) == 0) {
2759 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2760 skip_emulated_instruction(&svm
->vcpu
);
2766 static int task_switch_interception(struct vcpu_svm
*svm
)
2770 int int_type
= svm
->vmcb
->control
.exit_int_info
&
2771 SVM_EXITINTINFO_TYPE_MASK
;
2772 int int_vec
= svm
->vmcb
->control
.exit_int_info
& SVM_EVTINJ_VEC_MASK
;
2774 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_TYPE_MASK
;
2776 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_VALID
;
2777 bool has_error_code
= false;
2780 tss_selector
= (u16
)svm
->vmcb
->control
.exit_info_1
;
2782 if (svm
->vmcb
->control
.exit_info_2
&
2783 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET
))
2784 reason
= TASK_SWITCH_IRET
;
2785 else if (svm
->vmcb
->control
.exit_info_2
&
2786 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP
))
2787 reason
= TASK_SWITCH_JMP
;
2789 reason
= TASK_SWITCH_GATE
;
2791 reason
= TASK_SWITCH_CALL
;
2793 if (reason
== TASK_SWITCH_GATE
) {
2795 case SVM_EXITINTINFO_TYPE_NMI
:
2796 svm
->vcpu
.arch
.nmi_injected
= false;
2798 case SVM_EXITINTINFO_TYPE_EXEPT
:
2799 if (svm
->vmcb
->control
.exit_info_2
&
2800 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE
)) {
2801 has_error_code
= true;
2803 (u32
)svm
->vmcb
->control
.exit_info_2
;
2805 kvm_clear_exception_queue(&svm
->vcpu
);
2807 case SVM_EXITINTINFO_TYPE_INTR
:
2808 kvm_clear_interrupt_queue(&svm
->vcpu
);
2815 if (reason
!= TASK_SWITCH_GATE
||
2816 int_type
== SVM_EXITINTINFO_TYPE_SOFT
||
2817 (int_type
== SVM_EXITINTINFO_TYPE_EXEPT
&&
2818 (int_vec
== OF_VECTOR
|| int_vec
== BP_VECTOR
)))
2819 skip_emulated_instruction(&svm
->vcpu
);
2821 if (int_type
!= SVM_EXITINTINFO_TYPE_SOFT
)
2824 if (kvm_task_switch(&svm
->vcpu
, tss_selector
, int_vec
, reason
,
2825 has_error_code
, error_code
) == EMULATE_FAIL
) {
2826 svm
->vcpu
.run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
2827 svm
->vcpu
.run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
2828 svm
->vcpu
.run
->internal
.ndata
= 0;
2834 static int cpuid_interception(struct vcpu_svm
*svm
)
2836 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2837 kvm_emulate_cpuid(&svm
->vcpu
);
2841 static int iret_interception(struct vcpu_svm
*svm
)
2843 ++svm
->vcpu
.stat
.nmi_window_exits
;
2844 clr_intercept(svm
, INTERCEPT_IRET
);
2845 svm
->vcpu
.arch
.hflags
|= HF_IRET_MASK
;
2846 svm
->nmi_iret_rip
= kvm_rip_read(&svm
->vcpu
);
2847 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
2851 static int invlpg_interception(struct vcpu_svm
*svm
)
2853 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
2854 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
2856 kvm_mmu_invlpg(&svm
->vcpu
, svm
->vmcb
->control
.exit_info_1
);
2857 skip_emulated_instruction(&svm
->vcpu
);
2861 static int emulate_on_interception(struct vcpu_svm
*svm
)
2863 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
2866 static int rdpmc_interception(struct vcpu_svm
*svm
)
2870 if (!static_cpu_has(X86_FEATURE_NRIPS
))
2871 return emulate_on_interception(svm
);
2873 err
= kvm_rdpmc(&svm
->vcpu
);
2874 kvm_complete_insn_gp(&svm
->vcpu
, err
);
2879 bool check_selective_cr0_intercepted(struct vcpu_svm
*svm
, unsigned long val
)
2881 unsigned long cr0
= svm
->vcpu
.arch
.cr0
;
2885 intercept
= svm
->nested
.intercept
;
2887 if (!is_guest_mode(&svm
->vcpu
) ||
2888 (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
))))
2891 cr0
&= ~SVM_CR0_SELECTIVE_MASK
;
2892 val
&= ~SVM_CR0_SELECTIVE_MASK
;
2895 svm
->vmcb
->control
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
2896 ret
= (nested_svm_exit_handled(svm
) == NESTED_EXIT_DONE
);
2902 #define CR_VALID (1ULL << 63)
2904 static int cr_interception(struct vcpu_svm
*svm
)
2910 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
2911 return emulate_on_interception(svm
);
2913 if (unlikely((svm
->vmcb
->control
.exit_info_1
& CR_VALID
) == 0))
2914 return emulate_on_interception(svm
);
2916 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
2917 cr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_CR0
;
2920 if (cr
>= 16) { /* mov to cr */
2922 val
= kvm_register_read(&svm
->vcpu
, reg
);
2925 if (!check_selective_cr0_intercepted(svm
, val
))
2926 err
= kvm_set_cr0(&svm
->vcpu
, val
);
2932 err
= kvm_set_cr3(&svm
->vcpu
, val
);
2935 err
= kvm_set_cr4(&svm
->vcpu
, val
);
2938 err
= kvm_set_cr8(&svm
->vcpu
, val
);
2941 WARN(1, "unhandled write to CR%d", cr
);
2942 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2945 } else { /* mov from cr */
2948 val
= kvm_read_cr0(&svm
->vcpu
);
2951 val
= svm
->vcpu
.arch
.cr2
;
2954 val
= kvm_read_cr3(&svm
->vcpu
);
2957 val
= kvm_read_cr4(&svm
->vcpu
);
2960 val
= kvm_get_cr8(&svm
->vcpu
);
2963 WARN(1, "unhandled read from CR%d", cr
);
2964 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2967 kvm_register_write(&svm
->vcpu
, reg
, val
);
2969 kvm_complete_insn_gp(&svm
->vcpu
, err
);
2974 static int dr_interception(struct vcpu_svm
*svm
)
2980 if (svm
->vcpu
.guest_debug
== 0) {
2982 * No more DR vmexits; force a reload of the debug registers
2983 * and reenter on this instruction. The next vmexit will
2984 * retrieve the full state of the debug registers.
2986 clr_dr_intercepts(svm
);
2987 svm
->vcpu
.arch
.switch_db_regs
|= KVM_DEBUGREG_WONT_EXIT
;
2991 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS
))
2992 return emulate_on_interception(svm
);
2994 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
2995 dr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_DR0
;
2997 if (dr
>= 16) { /* mov to DRn */
2998 val
= kvm_register_read(&svm
->vcpu
, reg
);
2999 kvm_set_dr(&svm
->vcpu
, dr
- 16, val
);
3001 err
= kvm_get_dr(&svm
->vcpu
, dr
, &val
);
3003 kvm_register_write(&svm
->vcpu
, reg
, val
);
3006 skip_emulated_instruction(&svm
->vcpu
);
3011 static int cr8_write_interception(struct vcpu_svm
*svm
)
3013 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
3016 u8 cr8_prev
= kvm_get_cr8(&svm
->vcpu
);
3017 /* instruction emulation calls kvm_set_cr8() */
3018 r
= cr_interception(svm
);
3019 if (irqchip_in_kernel(svm
->vcpu
.kvm
))
3021 if (cr8_prev
<= kvm_get_cr8(&svm
->vcpu
))
3023 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
3027 u64
svm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
3029 struct vmcb
*vmcb
= get_host_vmcb(to_svm(vcpu
));
3030 return vmcb
->control
.tsc_offset
+
3031 svm_scale_tsc(vcpu
, host_tsc
);
3034 static int svm_get_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64
*data
)
3036 struct vcpu_svm
*svm
= to_svm(vcpu
);
3039 case MSR_IA32_TSC
: {
3040 *data
= svm
->vmcb
->control
.tsc_offset
+
3041 svm_scale_tsc(vcpu
, native_read_tsc());
3046 *data
= svm
->vmcb
->save
.star
;
3048 #ifdef CONFIG_X86_64
3050 *data
= svm
->vmcb
->save
.lstar
;
3053 *data
= svm
->vmcb
->save
.cstar
;
3055 case MSR_KERNEL_GS_BASE
:
3056 *data
= svm
->vmcb
->save
.kernel_gs_base
;
3058 case MSR_SYSCALL_MASK
:
3059 *data
= svm
->vmcb
->save
.sfmask
;
3062 case MSR_IA32_SYSENTER_CS
:
3063 *data
= svm
->vmcb
->save
.sysenter_cs
;
3065 case MSR_IA32_SYSENTER_EIP
:
3066 *data
= svm
->sysenter_eip
;
3068 case MSR_IA32_SYSENTER_ESP
:
3069 *data
= svm
->sysenter_esp
;
3072 * Nobody will change the following 5 values in the VMCB so we can
3073 * safely return them on rdmsr. They will always be 0 until LBRV is
3076 case MSR_IA32_DEBUGCTLMSR
:
3077 *data
= svm
->vmcb
->save
.dbgctl
;
3079 case MSR_IA32_LASTBRANCHFROMIP
:
3080 *data
= svm
->vmcb
->save
.br_from
;
3082 case MSR_IA32_LASTBRANCHTOIP
:
3083 *data
= svm
->vmcb
->save
.br_to
;
3085 case MSR_IA32_LASTINTFROMIP
:
3086 *data
= svm
->vmcb
->save
.last_excp_from
;
3088 case MSR_IA32_LASTINTTOIP
:
3089 *data
= svm
->vmcb
->save
.last_excp_to
;
3091 case MSR_VM_HSAVE_PA
:
3092 *data
= svm
->nested
.hsave_msr
;
3095 *data
= svm
->nested
.vm_cr_msr
;
3097 case MSR_IA32_UCODE_REV
:
3101 return kvm_get_msr_common(vcpu
, ecx
, data
);
3106 static int rdmsr_interception(struct vcpu_svm
*svm
)
3108 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
3111 if (svm_get_msr(&svm
->vcpu
, ecx
, &data
)) {
3112 trace_kvm_msr_read_ex(ecx
);
3113 kvm_inject_gp(&svm
->vcpu
, 0);
3115 trace_kvm_msr_read(ecx
, data
);
3117 svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] = data
& 0xffffffff;
3118 svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = data
>> 32;
3119 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
3120 skip_emulated_instruction(&svm
->vcpu
);
3125 static int svm_set_vm_cr(struct kvm_vcpu
*vcpu
, u64 data
)
3127 struct vcpu_svm
*svm
= to_svm(vcpu
);
3128 int svm_dis
, chg_mask
;
3130 if (data
& ~SVM_VM_CR_VALID_MASK
)
3133 chg_mask
= SVM_VM_CR_VALID_MASK
;
3135 if (svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
)
3136 chg_mask
&= ~(SVM_VM_CR_SVM_LOCK_MASK
| SVM_VM_CR_SVM_DIS_MASK
);
3138 svm
->nested
.vm_cr_msr
&= ~chg_mask
;
3139 svm
->nested
.vm_cr_msr
|= (data
& chg_mask
);
3141 svm_dis
= svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
;
3143 /* check for svm_disable while efer.svme is set */
3144 if (svm_dis
&& (vcpu
->arch
.efer
& EFER_SVME
))
3150 static int svm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
3152 struct vcpu_svm
*svm
= to_svm(vcpu
);
3154 u32 ecx
= msr
->index
;
3155 u64 data
= msr
->data
;
3158 kvm_write_tsc(vcpu
, msr
);
3161 svm
->vmcb
->save
.star
= data
;
3163 #ifdef CONFIG_X86_64
3165 svm
->vmcb
->save
.lstar
= data
;
3168 svm
->vmcb
->save
.cstar
= data
;
3170 case MSR_KERNEL_GS_BASE
:
3171 svm
->vmcb
->save
.kernel_gs_base
= data
;
3173 case MSR_SYSCALL_MASK
:
3174 svm
->vmcb
->save
.sfmask
= data
;
3177 case MSR_IA32_SYSENTER_CS
:
3178 svm
->vmcb
->save
.sysenter_cs
= data
;
3180 case MSR_IA32_SYSENTER_EIP
:
3181 svm
->sysenter_eip
= data
;
3182 svm
->vmcb
->save
.sysenter_eip
= data
;
3184 case MSR_IA32_SYSENTER_ESP
:
3185 svm
->sysenter_esp
= data
;
3186 svm
->vmcb
->save
.sysenter_esp
= data
;
3188 case MSR_IA32_DEBUGCTLMSR
:
3189 if (!boot_cpu_has(X86_FEATURE_LBRV
)) {
3190 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3194 if (data
& DEBUGCTL_RESERVED_BITS
)
3197 svm
->vmcb
->save
.dbgctl
= data
;
3198 mark_dirty(svm
->vmcb
, VMCB_LBR
);
3199 if (data
& (1ULL<<0))
3200 svm_enable_lbrv(svm
);
3202 svm_disable_lbrv(svm
);
3204 case MSR_VM_HSAVE_PA
:
3205 svm
->nested
.hsave_msr
= data
;
3208 return svm_set_vm_cr(vcpu
, data
);
3210 vcpu_unimpl(vcpu
, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx
, data
);
3213 return kvm_set_msr_common(vcpu
, msr
);
3218 static int wrmsr_interception(struct vcpu_svm
*svm
)
3220 struct msr_data msr
;
3221 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
3222 u64 data
= (svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] & -1u)
3223 | ((u64
)(svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
3227 msr
.host_initiated
= false;
3229 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
3230 if (svm_set_msr(&svm
->vcpu
, &msr
)) {
3231 trace_kvm_msr_write_ex(ecx
, data
);
3232 kvm_inject_gp(&svm
->vcpu
, 0);
3234 trace_kvm_msr_write(ecx
, data
);
3235 skip_emulated_instruction(&svm
->vcpu
);
3240 static int msr_interception(struct vcpu_svm
*svm
)
3242 if (svm
->vmcb
->control
.exit_info_1
)
3243 return wrmsr_interception(svm
);
3245 return rdmsr_interception(svm
);
3248 static int interrupt_window_interception(struct vcpu_svm
*svm
)
3250 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
3252 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3253 svm_clear_vintr(svm
);
3254 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
3255 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3256 ++svm
->vcpu
.stat
.irq_window_exits
;
3258 * If the user space waits to inject interrupts, exit as soon as
3261 if (!irqchip_in_kernel(svm
->vcpu
.kvm
) &&
3262 kvm_run
->request_interrupt_window
&&
3263 !kvm_cpu_has_interrupt(&svm
->vcpu
)) {
3264 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
3271 static int pause_interception(struct vcpu_svm
*svm
)
3273 kvm_vcpu_on_spin(&(svm
->vcpu
));
3277 static int nop_interception(struct vcpu_svm
*svm
)
3279 skip_emulated_instruction(&(svm
->vcpu
));
3283 static int monitor_interception(struct vcpu_svm
*svm
)
3285 printk_once(KERN_WARNING
"kvm: MONITOR instruction emulated as NOP!\n");
3286 return nop_interception(svm
);
3289 static int mwait_interception(struct vcpu_svm
*svm
)
3291 printk_once(KERN_WARNING
"kvm: MWAIT instruction emulated as NOP!\n");
3292 return nop_interception(svm
);
3295 static int (*const svm_exit_handlers
[])(struct vcpu_svm
*svm
) = {
3296 [SVM_EXIT_READ_CR0
] = cr_interception
,
3297 [SVM_EXIT_READ_CR3
] = cr_interception
,
3298 [SVM_EXIT_READ_CR4
] = cr_interception
,
3299 [SVM_EXIT_READ_CR8
] = cr_interception
,
3300 [SVM_EXIT_CR0_SEL_WRITE
] = emulate_on_interception
,
3301 [SVM_EXIT_WRITE_CR0
] = cr_interception
,
3302 [SVM_EXIT_WRITE_CR3
] = cr_interception
,
3303 [SVM_EXIT_WRITE_CR4
] = cr_interception
,
3304 [SVM_EXIT_WRITE_CR8
] = cr8_write_interception
,
3305 [SVM_EXIT_READ_DR0
] = dr_interception
,
3306 [SVM_EXIT_READ_DR1
] = dr_interception
,
3307 [SVM_EXIT_READ_DR2
] = dr_interception
,
3308 [SVM_EXIT_READ_DR3
] = dr_interception
,
3309 [SVM_EXIT_READ_DR4
] = dr_interception
,
3310 [SVM_EXIT_READ_DR5
] = dr_interception
,
3311 [SVM_EXIT_READ_DR6
] = dr_interception
,
3312 [SVM_EXIT_READ_DR7
] = dr_interception
,
3313 [SVM_EXIT_WRITE_DR0
] = dr_interception
,
3314 [SVM_EXIT_WRITE_DR1
] = dr_interception
,
3315 [SVM_EXIT_WRITE_DR2
] = dr_interception
,
3316 [SVM_EXIT_WRITE_DR3
] = dr_interception
,
3317 [SVM_EXIT_WRITE_DR4
] = dr_interception
,
3318 [SVM_EXIT_WRITE_DR5
] = dr_interception
,
3319 [SVM_EXIT_WRITE_DR6
] = dr_interception
,
3320 [SVM_EXIT_WRITE_DR7
] = dr_interception
,
3321 [SVM_EXIT_EXCP_BASE
+ DB_VECTOR
] = db_interception
,
3322 [SVM_EXIT_EXCP_BASE
+ BP_VECTOR
] = bp_interception
,
3323 [SVM_EXIT_EXCP_BASE
+ UD_VECTOR
] = ud_interception
,
3324 [SVM_EXIT_EXCP_BASE
+ PF_VECTOR
] = pf_interception
,
3325 [SVM_EXIT_EXCP_BASE
+ NM_VECTOR
] = nm_interception
,
3326 [SVM_EXIT_EXCP_BASE
+ MC_VECTOR
] = mc_interception
,
3327 [SVM_EXIT_INTR
] = intr_interception
,
3328 [SVM_EXIT_NMI
] = nmi_interception
,
3329 [SVM_EXIT_SMI
] = nop_on_interception
,
3330 [SVM_EXIT_INIT
] = nop_on_interception
,
3331 [SVM_EXIT_VINTR
] = interrupt_window_interception
,
3332 [SVM_EXIT_RDPMC
] = rdpmc_interception
,
3333 [SVM_EXIT_CPUID
] = cpuid_interception
,
3334 [SVM_EXIT_IRET
] = iret_interception
,
3335 [SVM_EXIT_INVD
] = emulate_on_interception
,
3336 [SVM_EXIT_PAUSE
] = pause_interception
,
3337 [SVM_EXIT_HLT
] = halt_interception
,
3338 [SVM_EXIT_INVLPG
] = invlpg_interception
,
3339 [SVM_EXIT_INVLPGA
] = invlpga_interception
,
3340 [SVM_EXIT_IOIO
] = io_interception
,
3341 [SVM_EXIT_MSR
] = msr_interception
,
3342 [SVM_EXIT_TASK_SWITCH
] = task_switch_interception
,
3343 [SVM_EXIT_SHUTDOWN
] = shutdown_interception
,
3344 [SVM_EXIT_VMRUN
] = vmrun_interception
,
3345 [SVM_EXIT_VMMCALL
] = vmmcall_interception
,
3346 [SVM_EXIT_VMLOAD
] = vmload_interception
,
3347 [SVM_EXIT_VMSAVE
] = vmsave_interception
,
3348 [SVM_EXIT_STGI
] = stgi_interception
,
3349 [SVM_EXIT_CLGI
] = clgi_interception
,
3350 [SVM_EXIT_SKINIT
] = skinit_interception
,
3351 [SVM_EXIT_WBINVD
] = emulate_on_interception
,
3352 [SVM_EXIT_MONITOR
] = monitor_interception
,
3353 [SVM_EXIT_MWAIT
] = mwait_interception
,
3354 [SVM_EXIT_XSETBV
] = xsetbv_interception
,
3355 [SVM_EXIT_NPF
] = pf_interception
,
3358 static void dump_vmcb(struct kvm_vcpu
*vcpu
)
3360 struct vcpu_svm
*svm
= to_svm(vcpu
);
3361 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
3362 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
3364 pr_err("VMCB Control Area:\n");
3365 pr_err("%-20s%04x\n", "cr_read:", control
->intercept_cr
& 0xffff);
3366 pr_err("%-20s%04x\n", "cr_write:", control
->intercept_cr
>> 16);
3367 pr_err("%-20s%04x\n", "dr_read:", control
->intercept_dr
& 0xffff);
3368 pr_err("%-20s%04x\n", "dr_write:", control
->intercept_dr
>> 16);
3369 pr_err("%-20s%08x\n", "exceptions:", control
->intercept_exceptions
);
3370 pr_err("%-20s%016llx\n", "intercepts:", control
->intercept
);
3371 pr_err("%-20s%d\n", "pause filter count:", control
->pause_filter_count
);
3372 pr_err("%-20s%016llx\n", "iopm_base_pa:", control
->iopm_base_pa
);
3373 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control
->msrpm_base_pa
);
3374 pr_err("%-20s%016llx\n", "tsc_offset:", control
->tsc_offset
);
3375 pr_err("%-20s%d\n", "asid:", control
->asid
);
3376 pr_err("%-20s%d\n", "tlb_ctl:", control
->tlb_ctl
);
3377 pr_err("%-20s%08x\n", "int_ctl:", control
->int_ctl
);
3378 pr_err("%-20s%08x\n", "int_vector:", control
->int_vector
);
3379 pr_err("%-20s%08x\n", "int_state:", control
->int_state
);
3380 pr_err("%-20s%08x\n", "exit_code:", control
->exit_code
);
3381 pr_err("%-20s%016llx\n", "exit_info1:", control
->exit_info_1
);
3382 pr_err("%-20s%016llx\n", "exit_info2:", control
->exit_info_2
);
3383 pr_err("%-20s%08x\n", "exit_int_info:", control
->exit_int_info
);
3384 pr_err("%-20s%08x\n", "exit_int_info_err:", control
->exit_int_info_err
);
3385 pr_err("%-20s%lld\n", "nested_ctl:", control
->nested_ctl
);
3386 pr_err("%-20s%016llx\n", "nested_cr3:", control
->nested_cr3
);
3387 pr_err("%-20s%08x\n", "event_inj:", control
->event_inj
);
3388 pr_err("%-20s%08x\n", "event_inj_err:", control
->event_inj_err
);
3389 pr_err("%-20s%lld\n", "lbr_ctl:", control
->lbr_ctl
);
3390 pr_err("%-20s%016llx\n", "next_rip:", control
->next_rip
);
3391 pr_err("VMCB State Save Area:\n");
3392 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3394 save
->es
.selector
, save
->es
.attrib
,
3395 save
->es
.limit
, save
->es
.base
);
3396 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3398 save
->cs
.selector
, save
->cs
.attrib
,
3399 save
->cs
.limit
, save
->cs
.base
);
3400 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3402 save
->ss
.selector
, save
->ss
.attrib
,
3403 save
->ss
.limit
, save
->ss
.base
);
3404 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3406 save
->ds
.selector
, save
->ds
.attrib
,
3407 save
->ds
.limit
, save
->ds
.base
);
3408 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3410 save
->fs
.selector
, save
->fs
.attrib
,
3411 save
->fs
.limit
, save
->fs
.base
);
3412 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3414 save
->gs
.selector
, save
->gs
.attrib
,
3415 save
->gs
.limit
, save
->gs
.base
);
3416 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3418 save
->gdtr
.selector
, save
->gdtr
.attrib
,
3419 save
->gdtr
.limit
, save
->gdtr
.base
);
3420 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3422 save
->ldtr
.selector
, save
->ldtr
.attrib
,
3423 save
->ldtr
.limit
, save
->ldtr
.base
);
3424 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3426 save
->idtr
.selector
, save
->idtr
.attrib
,
3427 save
->idtr
.limit
, save
->idtr
.base
);
3428 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3430 save
->tr
.selector
, save
->tr
.attrib
,
3431 save
->tr
.limit
, save
->tr
.base
);
3432 pr_err("cpl: %d efer: %016llx\n",
3433 save
->cpl
, save
->efer
);
3434 pr_err("%-15s %016llx %-13s %016llx\n",
3435 "cr0:", save
->cr0
, "cr2:", save
->cr2
);
3436 pr_err("%-15s %016llx %-13s %016llx\n",
3437 "cr3:", save
->cr3
, "cr4:", save
->cr4
);
3438 pr_err("%-15s %016llx %-13s %016llx\n",
3439 "dr6:", save
->dr6
, "dr7:", save
->dr7
);
3440 pr_err("%-15s %016llx %-13s %016llx\n",
3441 "rip:", save
->rip
, "rflags:", save
->rflags
);
3442 pr_err("%-15s %016llx %-13s %016llx\n",
3443 "rsp:", save
->rsp
, "rax:", save
->rax
);
3444 pr_err("%-15s %016llx %-13s %016llx\n",
3445 "star:", save
->star
, "lstar:", save
->lstar
);
3446 pr_err("%-15s %016llx %-13s %016llx\n",
3447 "cstar:", save
->cstar
, "sfmask:", save
->sfmask
);
3448 pr_err("%-15s %016llx %-13s %016llx\n",
3449 "kernel_gs_base:", save
->kernel_gs_base
,
3450 "sysenter_cs:", save
->sysenter_cs
);
3451 pr_err("%-15s %016llx %-13s %016llx\n",
3452 "sysenter_esp:", save
->sysenter_esp
,
3453 "sysenter_eip:", save
->sysenter_eip
);
3454 pr_err("%-15s %016llx %-13s %016llx\n",
3455 "gpat:", save
->g_pat
, "dbgctl:", save
->dbgctl
);
3456 pr_err("%-15s %016llx %-13s %016llx\n",
3457 "br_from:", save
->br_from
, "br_to:", save
->br_to
);
3458 pr_err("%-15s %016llx %-13s %016llx\n",
3459 "excp_from:", save
->last_excp_from
,
3460 "excp_to:", save
->last_excp_to
);
3463 static void svm_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
3465 struct vmcb_control_area
*control
= &to_svm(vcpu
)->vmcb
->control
;
3467 *info1
= control
->exit_info_1
;
3468 *info2
= control
->exit_info_2
;
3471 static int handle_exit(struct kvm_vcpu
*vcpu
)
3473 struct vcpu_svm
*svm
= to_svm(vcpu
);
3474 struct kvm_run
*kvm_run
= vcpu
->run
;
3475 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
3477 if (!is_cr_intercept(svm
, INTERCEPT_CR0_WRITE
))
3478 vcpu
->arch
.cr0
= svm
->vmcb
->save
.cr0
;
3480 vcpu
->arch
.cr3
= svm
->vmcb
->save
.cr3
;
3482 if (unlikely(svm
->nested
.exit_required
)) {
3483 nested_svm_vmexit(svm
);
3484 svm
->nested
.exit_required
= false;
3489 if (is_guest_mode(vcpu
)) {
3492 trace_kvm_nested_vmexit(svm
->vmcb
->save
.rip
, exit_code
,
3493 svm
->vmcb
->control
.exit_info_1
,
3494 svm
->vmcb
->control
.exit_info_2
,
3495 svm
->vmcb
->control
.exit_int_info
,
3496 svm
->vmcb
->control
.exit_int_info_err
,
3499 vmexit
= nested_svm_exit_special(svm
);
3501 if (vmexit
== NESTED_EXIT_CONTINUE
)
3502 vmexit
= nested_svm_exit_handled(svm
);
3504 if (vmexit
== NESTED_EXIT_DONE
)
3508 svm_complete_interrupts(svm
);
3510 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_ERR
) {
3511 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3512 kvm_run
->fail_entry
.hardware_entry_failure_reason
3513 = svm
->vmcb
->control
.exit_code
;
3514 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3519 if (is_external_interrupt(svm
->vmcb
->control
.exit_int_info
) &&
3520 exit_code
!= SVM_EXIT_EXCP_BASE
+ PF_VECTOR
&&
3521 exit_code
!= SVM_EXIT_NPF
&& exit_code
!= SVM_EXIT_TASK_SWITCH
&&
3522 exit_code
!= SVM_EXIT_INTR
&& exit_code
!= SVM_EXIT_NMI
)
3523 printk(KERN_ERR
"%s: unexpected exit_int_info 0x%x "
3525 __func__
, svm
->vmcb
->control
.exit_int_info
,
3528 if (exit_code
>= ARRAY_SIZE(svm_exit_handlers
)
3529 || !svm_exit_handlers
[exit_code
]) {
3530 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3531 kvm_run
->hw
.hardware_exit_reason
= exit_code
;
3535 return svm_exit_handlers
[exit_code
](svm
);
3538 static void reload_tss(struct kvm_vcpu
*vcpu
)
3540 int cpu
= raw_smp_processor_id();
3542 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
3543 sd
->tss_desc
->type
= 9; /* available 32/64-bit TSS */
3547 static void pre_svm_run(struct vcpu_svm
*svm
)
3549 int cpu
= raw_smp_processor_id();
3551 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
3553 /* FIXME: handle wraparound of asid_generation */
3554 if (svm
->asid_generation
!= sd
->asid_generation
)
3558 static void svm_inject_nmi(struct kvm_vcpu
*vcpu
)
3560 struct vcpu_svm
*svm
= to_svm(vcpu
);
3562 svm
->vmcb
->control
.event_inj
= SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_NMI
;
3563 vcpu
->arch
.hflags
|= HF_NMI_MASK
;
3564 set_intercept(svm
, INTERCEPT_IRET
);
3565 ++vcpu
->stat
.nmi_injections
;
3568 static inline void svm_inject_irq(struct vcpu_svm
*svm
, int irq
)
3570 struct vmcb_control_area
*control
;
3572 control
= &svm
->vmcb
->control
;
3573 control
->int_vector
= irq
;
3574 control
->int_ctl
&= ~V_INTR_PRIO_MASK
;
3575 control
->int_ctl
|= V_IRQ_MASK
|
3576 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT
);
3577 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3580 static void svm_set_irq(struct kvm_vcpu
*vcpu
)
3582 struct vcpu_svm
*svm
= to_svm(vcpu
);
3584 BUG_ON(!(gif_set(svm
)));
3586 trace_kvm_inj_virq(vcpu
->arch
.interrupt
.nr
);
3587 ++vcpu
->stat
.irq_injections
;
3589 svm
->vmcb
->control
.event_inj
= vcpu
->arch
.interrupt
.nr
|
3590 SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
;
3593 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
3595 struct vcpu_svm
*svm
= to_svm(vcpu
);
3597 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3600 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3606 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3609 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu
*vcpu
, bool set
)
3614 static int svm_vm_has_apicv(struct kvm
*kvm
)
3619 static void svm_load_eoi_exitmap(struct kvm_vcpu
*vcpu
, u64
*eoi_exit_bitmap
)
3624 static void svm_hwapic_isr_update(struct kvm
*kvm
, int isr
)
3629 static void svm_sync_pir_to_irr(struct kvm_vcpu
*vcpu
)
3634 static int svm_nmi_allowed(struct kvm_vcpu
*vcpu
)
3636 struct vcpu_svm
*svm
= to_svm(vcpu
);
3637 struct vmcb
*vmcb
= svm
->vmcb
;
3639 ret
= !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
3640 !(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
3641 ret
= ret
&& gif_set(svm
) && nested_svm_nmi(svm
);
3646 static bool svm_get_nmi_mask(struct kvm_vcpu
*vcpu
)
3648 struct vcpu_svm
*svm
= to_svm(vcpu
);
3650 return !!(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
3653 static void svm_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
3655 struct vcpu_svm
*svm
= to_svm(vcpu
);
3658 svm
->vcpu
.arch
.hflags
|= HF_NMI_MASK
;
3659 set_intercept(svm
, INTERCEPT_IRET
);
3661 svm
->vcpu
.arch
.hflags
&= ~HF_NMI_MASK
;
3662 clr_intercept(svm
, INTERCEPT_IRET
);
3666 static int svm_interrupt_allowed(struct kvm_vcpu
*vcpu
)
3668 struct vcpu_svm
*svm
= to_svm(vcpu
);
3669 struct vmcb
*vmcb
= svm
->vmcb
;
3672 if (!gif_set(svm
) ||
3673 (vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
))
3676 ret
= !!(kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
);
3678 if (is_guest_mode(vcpu
))
3679 return ret
&& !(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
);
3684 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
3686 struct vcpu_svm
*svm
= to_svm(vcpu
);
3689 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3690 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3691 * get that intercept, this function will be called again though and
3692 * we'll get the vintr intercept.
3694 if (gif_set(svm
) && nested_svm_intr(svm
)) {
3696 svm_inject_irq(svm
, 0x0);
3700 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
3702 struct vcpu_svm
*svm
= to_svm(vcpu
);
3704 if ((svm
->vcpu
.arch
.hflags
& (HF_NMI_MASK
| HF_IRET_MASK
))
3706 return; /* IRET will cause a vm exit */
3709 * Something prevents NMI from been injected. Single step over possible
3710 * problem (IRET or exception injection or interrupt shadow)
3712 svm
->nmi_singlestep
= true;
3713 svm
->vmcb
->save
.rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3714 update_db_bp_intercept(vcpu
);
3717 static int svm_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
3722 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
)
3724 struct vcpu_svm
*svm
= to_svm(vcpu
);
3726 if (static_cpu_has(X86_FEATURE_FLUSHBYASID
))
3727 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ASID
;
3729 svm
->asid_generation
--;
3732 static void svm_prepare_guest_switch(struct kvm_vcpu
*vcpu
)
3736 static inline void sync_cr8_to_lapic(struct kvm_vcpu
*vcpu
)
3738 struct vcpu_svm
*svm
= to_svm(vcpu
);
3740 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3743 if (!is_cr_intercept(svm
, INTERCEPT_CR8_WRITE
)) {
3744 int cr8
= svm
->vmcb
->control
.int_ctl
& V_TPR_MASK
;
3745 kvm_set_cr8(vcpu
, cr8
);
3749 static inline void sync_lapic_to_cr8(struct kvm_vcpu
*vcpu
)
3751 struct vcpu_svm
*svm
= to_svm(vcpu
);
3754 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3757 cr8
= kvm_get_cr8(vcpu
);
3758 svm
->vmcb
->control
.int_ctl
&= ~V_TPR_MASK
;
3759 svm
->vmcb
->control
.int_ctl
|= cr8
& V_TPR_MASK
;
3762 static void svm_complete_interrupts(struct vcpu_svm
*svm
)
3766 u32 exitintinfo
= svm
->vmcb
->control
.exit_int_info
;
3767 unsigned int3_injected
= svm
->int3_injected
;
3769 svm
->int3_injected
= 0;
3772 * If we've made progress since setting HF_IRET_MASK, we've
3773 * executed an IRET and can allow NMI injection.
3775 if ((svm
->vcpu
.arch
.hflags
& HF_IRET_MASK
)
3776 && kvm_rip_read(&svm
->vcpu
) != svm
->nmi_iret_rip
) {
3777 svm
->vcpu
.arch
.hflags
&= ~(HF_NMI_MASK
| HF_IRET_MASK
);
3778 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3781 svm
->vcpu
.arch
.nmi_injected
= false;
3782 kvm_clear_exception_queue(&svm
->vcpu
);
3783 kvm_clear_interrupt_queue(&svm
->vcpu
);
3785 if (!(exitintinfo
& SVM_EXITINTINFO_VALID
))
3788 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3790 vector
= exitintinfo
& SVM_EXITINTINFO_VEC_MASK
;
3791 type
= exitintinfo
& SVM_EXITINTINFO_TYPE_MASK
;
3794 case SVM_EXITINTINFO_TYPE_NMI
:
3795 svm
->vcpu
.arch
.nmi_injected
= true;
3797 case SVM_EXITINTINFO_TYPE_EXEPT
:
3799 * In case of software exceptions, do not reinject the vector,
3800 * but re-execute the instruction instead. Rewind RIP first
3801 * if we emulated INT3 before.
3803 if (kvm_exception_is_soft(vector
)) {
3804 if (vector
== BP_VECTOR
&& int3_injected
&&
3805 kvm_is_linear_rip(&svm
->vcpu
, svm
->int3_rip
))
3806 kvm_rip_write(&svm
->vcpu
,
3807 kvm_rip_read(&svm
->vcpu
) -
3811 if (exitintinfo
& SVM_EXITINTINFO_VALID_ERR
) {
3812 u32 err
= svm
->vmcb
->control
.exit_int_info_err
;
3813 kvm_requeue_exception_e(&svm
->vcpu
, vector
, err
);
3816 kvm_requeue_exception(&svm
->vcpu
, vector
);
3818 case SVM_EXITINTINFO_TYPE_INTR
:
3819 kvm_queue_interrupt(&svm
->vcpu
, vector
, false);
3826 static void svm_cancel_injection(struct kvm_vcpu
*vcpu
)
3828 struct vcpu_svm
*svm
= to_svm(vcpu
);
3829 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
3831 control
->exit_int_info
= control
->event_inj
;
3832 control
->exit_int_info_err
= control
->event_inj_err
;
3833 control
->event_inj
= 0;
3834 svm_complete_interrupts(svm
);
3837 static void svm_vcpu_run(struct kvm_vcpu
*vcpu
)
3839 struct vcpu_svm
*svm
= to_svm(vcpu
);
3841 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
3842 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
3843 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
3846 * A vmexit emulation is required before the vcpu can be executed
3849 if (unlikely(svm
->nested
.exit_required
))
3854 sync_lapic_to_cr8(vcpu
);
3856 svm
->vmcb
->save
.cr2
= vcpu
->arch
.cr2
;
3863 "push %%" _ASM_BP
"; \n\t"
3864 "mov %c[rbx](%[svm]), %%" _ASM_BX
" \n\t"
3865 "mov %c[rcx](%[svm]), %%" _ASM_CX
" \n\t"
3866 "mov %c[rdx](%[svm]), %%" _ASM_DX
" \n\t"
3867 "mov %c[rsi](%[svm]), %%" _ASM_SI
" \n\t"
3868 "mov %c[rdi](%[svm]), %%" _ASM_DI
" \n\t"
3869 "mov %c[rbp](%[svm]), %%" _ASM_BP
" \n\t"
3870 #ifdef CONFIG_X86_64
3871 "mov %c[r8](%[svm]), %%r8 \n\t"
3872 "mov %c[r9](%[svm]), %%r9 \n\t"
3873 "mov %c[r10](%[svm]), %%r10 \n\t"
3874 "mov %c[r11](%[svm]), %%r11 \n\t"
3875 "mov %c[r12](%[svm]), %%r12 \n\t"
3876 "mov %c[r13](%[svm]), %%r13 \n\t"
3877 "mov %c[r14](%[svm]), %%r14 \n\t"
3878 "mov %c[r15](%[svm]), %%r15 \n\t"
3881 /* Enter guest mode */
3882 "push %%" _ASM_AX
" \n\t"
3883 "mov %c[vmcb](%[svm]), %%" _ASM_AX
" \n\t"
3884 __ex(SVM_VMLOAD
) "\n\t"
3885 __ex(SVM_VMRUN
) "\n\t"
3886 __ex(SVM_VMSAVE
) "\n\t"
3887 "pop %%" _ASM_AX
" \n\t"
3889 /* Save guest registers, load host registers */
3890 "mov %%" _ASM_BX
", %c[rbx](%[svm]) \n\t"
3891 "mov %%" _ASM_CX
", %c[rcx](%[svm]) \n\t"
3892 "mov %%" _ASM_DX
", %c[rdx](%[svm]) \n\t"
3893 "mov %%" _ASM_SI
", %c[rsi](%[svm]) \n\t"
3894 "mov %%" _ASM_DI
", %c[rdi](%[svm]) \n\t"
3895 "mov %%" _ASM_BP
", %c[rbp](%[svm]) \n\t"
3896 #ifdef CONFIG_X86_64
3897 "mov %%r8, %c[r8](%[svm]) \n\t"
3898 "mov %%r9, %c[r9](%[svm]) \n\t"
3899 "mov %%r10, %c[r10](%[svm]) \n\t"
3900 "mov %%r11, %c[r11](%[svm]) \n\t"
3901 "mov %%r12, %c[r12](%[svm]) \n\t"
3902 "mov %%r13, %c[r13](%[svm]) \n\t"
3903 "mov %%r14, %c[r14](%[svm]) \n\t"
3904 "mov %%r15, %c[r15](%[svm]) \n\t"
3909 [vmcb
]"i"(offsetof(struct vcpu_svm
, vmcb_pa
)),
3910 [rbx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
3911 [rcx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
3912 [rdx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
3913 [rsi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
3914 [rdi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
3915 [rbp
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBP
]))
3916 #ifdef CONFIG_X86_64
3917 , [r8
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
3918 [r9
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
3919 [r10
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
3920 [r11
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
3921 [r12
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
3922 [r13
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
3923 [r14
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
3924 [r15
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R15
]))
3927 #ifdef CONFIG_X86_64
3928 , "rbx", "rcx", "rdx", "rsi", "rdi"
3929 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3931 , "ebx", "ecx", "edx", "esi", "edi"
3935 #ifdef CONFIG_X86_64
3936 wrmsrl(MSR_GS_BASE
, svm
->host
.gs_base
);
3938 loadsegment(fs
, svm
->host
.fs
);
3939 #ifndef CONFIG_X86_32_LAZY_GS
3940 loadsegment(gs
, svm
->host
.gs
);
3946 local_irq_disable();
3948 vcpu
->arch
.cr2
= svm
->vmcb
->save
.cr2
;
3949 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = svm
->vmcb
->save
.rax
;
3950 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = svm
->vmcb
->save
.rsp
;
3951 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = svm
->vmcb
->save
.rip
;
3953 trace_kvm_exit(svm
->vmcb
->control
.exit_code
, vcpu
, KVM_ISA_SVM
);
3955 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
3956 kvm_before_handle_nmi(&svm
->vcpu
);
3960 /* Any pending NMI will happen here */
3962 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
3963 kvm_after_handle_nmi(&svm
->vcpu
);
3965 sync_cr8_to_lapic(vcpu
);
3969 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_DO_NOTHING
;
3971 /* if exit due to PF check for async PF */
3972 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
)
3973 svm
->apf_reason
= kvm_read_and_reset_pf_reason();
3976 vcpu
->arch
.regs_avail
&= ~(1 << VCPU_EXREG_PDPTR
);
3977 vcpu
->arch
.regs_dirty
&= ~(1 << VCPU_EXREG_PDPTR
);
3981 * We need to handle MC intercepts here before the vcpu has a chance to
3982 * change the physical cpu
3984 if (unlikely(svm
->vmcb
->control
.exit_code
==
3985 SVM_EXIT_EXCP_BASE
+ MC_VECTOR
))
3986 svm_handle_mce(svm
);
3988 mark_all_clean(svm
->vmcb
);
3991 static void svm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
3993 struct vcpu_svm
*svm
= to_svm(vcpu
);
3995 svm
->vmcb
->save
.cr3
= root
;
3996 mark_dirty(svm
->vmcb
, VMCB_CR
);
3997 svm_flush_tlb(vcpu
);
4000 static void set_tdp_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
4002 struct vcpu_svm
*svm
= to_svm(vcpu
);
4004 svm
->vmcb
->control
.nested_cr3
= root
;
4005 mark_dirty(svm
->vmcb
, VMCB_NPT
);
4007 /* Also sync guest cr3 here in case we live migrate */
4008 svm
->vmcb
->save
.cr3
= kvm_read_cr3(vcpu
);
4009 mark_dirty(svm
->vmcb
, VMCB_CR
);
4011 svm_flush_tlb(vcpu
);
4014 static int is_disabled(void)
4018 rdmsrl(MSR_VM_CR
, vm_cr
);
4019 if (vm_cr
& (1 << SVM_VM_CR_SVM_DISABLE
))
4026 svm_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
4029 * Patch in the VMMCALL instruction:
4031 hypercall
[0] = 0x0f;
4032 hypercall
[1] = 0x01;
4033 hypercall
[2] = 0xd9;
4036 static void svm_check_processor_compat(void *rtn
)
4041 static bool svm_cpu_has_accelerated_tpr(void)
4046 static u64
svm_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
4051 static void svm_cpuid_update(struct kvm_vcpu
*vcpu
)
4055 static void svm_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
4060 entry
->ecx
|= (1 << 2); /* Set SVM bit */
4063 entry
->eax
= 1; /* SVM revision 1 */
4064 entry
->ebx
= 8; /* Lets support 8 ASIDs in case we add proper
4065 ASID emulation to nested SVM */
4066 entry
->ecx
= 0; /* Reserved */
4067 entry
->edx
= 0; /* Per default do not support any
4068 additional features */
4070 /* Support next_rip if host supports it */
4071 if (boot_cpu_has(X86_FEATURE_NRIPS
))
4072 entry
->edx
|= SVM_FEATURE_NRIP
;
4074 /* Support NPT for the guest if enabled */
4076 entry
->edx
|= SVM_FEATURE_NPT
;
4082 static int svm_get_lpage_level(void)
4084 return PT_PDPE_LEVEL
;
4087 static bool svm_rdtscp_supported(void)
4092 static bool svm_invpcid_supported(void)
4097 static bool svm_mpx_supported(void)
4102 static bool svm_has_wbinvd_exit(void)
4107 static void svm_fpu_deactivate(struct kvm_vcpu
*vcpu
)
4109 struct vcpu_svm
*svm
= to_svm(vcpu
);
4111 set_exception_intercept(svm
, NM_VECTOR
);
4112 update_cr0_intercept(svm
);
4115 #define PRE_EX(exit) { .exit_code = (exit), \
4116 .stage = X86_ICPT_PRE_EXCEPT, }
4117 #define POST_EX(exit) { .exit_code = (exit), \
4118 .stage = X86_ICPT_POST_EXCEPT, }
4119 #define POST_MEM(exit) { .exit_code = (exit), \
4120 .stage = X86_ICPT_POST_MEMACCESS, }
4122 static const struct __x86_intercept
{
4124 enum x86_intercept_stage stage
;
4125 } x86_intercept_map
[] = {
4126 [x86_intercept_cr_read
] = POST_EX(SVM_EXIT_READ_CR0
),
4127 [x86_intercept_cr_write
] = POST_EX(SVM_EXIT_WRITE_CR0
),
4128 [x86_intercept_clts
] = POST_EX(SVM_EXIT_WRITE_CR0
),
4129 [x86_intercept_lmsw
] = POST_EX(SVM_EXIT_WRITE_CR0
),
4130 [x86_intercept_smsw
] = POST_EX(SVM_EXIT_READ_CR0
),
4131 [x86_intercept_dr_read
] = POST_EX(SVM_EXIT_READ_DR0
),
4132 [x86_intercept_dr_write
] = POST_EX(SVM_EXIT_WRITE_DR0
),
4133 [x86_intercept_sldt
] = POST_EX(SVM_EXIT_LDTR_READ
),
4134 [x86_intercept_str
] = POST_EX(SVM_EXIT_TR_READ
),
4135 [x86_intercept_lldt
] = POST_EX(SVM_EXIT_LDTR_WRITE
),
4136 [x86_intercept_ltr
] = POST_EX(SVM_EXIT_TR_WRITE
),
4137 [x86_intercept_sgdt
] = POST_EX(SVM_EXIT_GDTR_READ
),
4138 [x86_intercept_sidt
] = POST_EX(SVM_EXIT_IDTR_READ
),
4139 [x86_intercept_lgdt
] = POST_EX(SVM_EXIT_GDTR_WRITE
),
4140 [x86_intercept_lidt
] = POST_EX(SVM_EXIT_IDTR_WRITE
),
4141 [x86_intercept_vmrun
] = POST_EX(SVM_EXIT_VMRUN
),
4142 [x86_intercept_vmmcall
] = POST_EX(SVM_EXIT_VMMCALL
),
4143 [x86_intercept_vmload
] = POST_EX(SVM_EXIT_VMLOAD
),
4144 [x86_intercept_vmsave
] = POST_EX(SVM_EXIT_VMSAVE
),
4145 [x86_intercept_stgi
] = POST_EX(SVM_EXIT_STGI
),
4146 [x86_intercept_clgi
] = POST_EX(SVM_EXIT_CLGI
),
4147 [x86_intercept_skinit
] = POST_EX(SVM_EXIT_SKINIT
),
4148 [x86_intercept_invlpga
] = POST_EX(SVM_EXIT_INVLPGA
),
4149 [x86_intercept_rdtscp
] = POST_EX(SVM_EXIT_RDTSCP
),
4150 [x86_intercept_monitor
] = POST_MEM(SVM_EXIT_MONITOR
),
4151 [x86_intercept_mwait
] = POST_EX(SVM_EXIT_MWAIT
),
4152 [x86_intercept_invlpg
] = POST_EX(SVM_EXIT_INVLPG
),
4153 [x86_intercept_invd
] = POST_EX(SVM_EXIT_INVD
),
4154 [x86_intercept_wbinvd
] = POST_EX(SVM_EXIT_WBINVD
),
4155 [x86_intercept_wrmsr
] = POST_EX(SVM_EXIT_MSR
),
4156 [x86_intercept_rdtsc
] = POST_EX(SVM_EXIT_RDTSC
),
4157 [x86_intercept_rdmsr
] = POST_EX(SVM_EXIT_MSR
),
4158 [x86_intercept_rdpmc
] = POST_EX(SVM_EXIT_RDPMC
),
4159 [x86_intercept_cpuid
] = PRE_EX(SVM_EXIT_CPUID
),
4160 [x86_intercept_rsm
] = PRE_EX(SVM_EXIT_RSM
),
4161 [x86_intercept_pause
] = PRE_EX(SVM_EXIT_PAUSE
),
4162 [x86_intercept_pushf
] = PRE_EX(SVM_EXIT_PUSHF
),
4163 [x86_intercept_popf
] = PRE_EX(SVM_EXIT_POPF
),
4164 [x86_intercept_intn
] = PRE_EX(SVM_EXIT_SWINT
),
4165 [x86_intercept_iret
] = PRE_EX(SVM_EXIT_IRET
),
4166 [x86_intercept_icebp
] = PRE_EX(SVM_EXIT_ICEBP
),
4167 [x86_intercept_hlt
] = POST_EX(SVM_EXIT_HLT
),
4168 [x86_intercept_in
] = POST_EX(SVM_EXIT_IOIO
),
4169 [x86_intercept_ins
] = POST_EX(SVM_EXIT_IOIO
),
4170 [x86_intercept_out
] = POST_EX(SVM_EXIT_IOIO
),
4171 [x86_intercept_outs
] = POST_EX(SVM_EXIT_IOIO
),
4178 static int svm_check_intercept(struct kvm_vcpu
*vcpu
,
4179 struct x86_instruction_info
*info
,
4180 enum x86_intercept_stage stage
)
4182 struct vcpu_svm
*svm
= to_svm(vcpu
);
4183 int vmexit
, ret
= X86EMUL_CONTINUE
;
4184 struct __x86_intercept icpt_info
;
4185 struct vmcb
*vmcb
= svm
->vmcb
;
4187 if (info
->intercept
>= ARRAY_SIZE(x86_intercept_map
))
4190 icpt_info
= x86_intercept_map
[info
->intercept
];
4192 if (stage
!= icpt_info
.stage
)
4195 switch (icpt_info
.exit_code
) {
4196 case SVM_EXIT_READ_CR0
:
4197 if (info
->intercept
== x86_intercept_cr_read
)
4198 icpt_info
.exit_code
+= info
->modrm_reg
;
4200 case SVM_EXIT_WRITE_CR0
: {
4201 unsigned long cr0
, val
;
4204 if (info
->intercept
== x86_intercept_cr_write
)
4205 icpt_info
.exit_code
+= info
->modrm_reg
;
4207 if (icpt_info
.exit_code
!= SVM_EXIT_WRITE_CR0
)
4210 intercept
= svm
->nested
.intercept
;
4212 if (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
)))
4215 cr0
= vcpu
->arch
.cr0
& ~SVM_CR0_SELECTIVE_MASK
;
4216 val
= info
->src_val
& ~SVM_CR0_SELECTIVE_MASK
;
4218 if (info
->intercept
== x86_intercept_lmsw
) {
4221 /* lmsw can't clear PE - catch this here */
4222 if (cr0
& X86_CR0_PE
)
4227 icpt_info
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
4231 case SVM_EXIT_READ_DR0
:
4232 case SVM_EXIT_WRITE_DR0
:
4233 icpt_info
.exit_code
+= info
->modrm_reg
;
4236 if (info
->intercept
== x86_intercept_wrmsr
)
4237 vmcb
->control
.exit_info_1
= 1;
4239 vmcb
->control
.exit_info_1
= 0;
4241 case SVM_EXIT_PAUSE
:
4243 * We get this for NOP only, but pause
4244 * is rep not, check this here
4246 if (info
->rep_prefix
!= REPE_PREFIX
)
4248 case SVM_EXIT_IOIO
: {
4252 exit_info
= (vcpu
->arch
.regs
[VCPU_REGS_RDX
] & 0xffff) << 16;
4254 if (info
->intercept
== x86_intercept_in
||
4255 info
->intercept
== x86_intercept_ins
) {
4256 exit_info
|= SVM_IOIO_TYPE_MASK
;
4257 bytes
= info
->src_bytes
;
4259 bytes
= info
->dst_bytes
;
4262 if (info
->intercept
== x86_intercept_outs
||
4263 info
->intercept
== x86_intercept_ins
)
4264 exit_info
|= SVM_IOIO_STR_MASK
;
4266 if (info
->rep_prefix
)
4267 exit_info
|= SVM_IOIO_REP_MASK
;
4269 bytes
= min(bytes
, 4u);
4271 exit_info
|= bytes
<< SVM_IOIO_SIZE_SHIFT
;
4273 exit_info
|= (u32
)info
->ad_bytes
<< (SVM_IOIO_ASIZE_SHIFT
- 1);
4275 vmcb
->control
.exit_info_1
= exit_info
;
4276 vmcb
->control
.exit_info_2
= info
->next_rip
;
4284 vmcb
->control
.next_rip
= info
->next_rip
;
4285 vmcb
->control
.exit_code
= icpt_info
.exit_code
;
4286 vmexit
= nested_svm_exit_handled(svm
);
4288 ret
= (vmexit
== NESTED_EXIT_DONE
) ? X86EMUL_INTERCEPTED
4295 static void svm_handle_external_intr(struct kvm_vcpu
*vcpu
)
4300 static struct kvm_x86_ops svm_x86_ops
= {
4301 .cpu_has_kvm_support
= has_svm
,
4302 .disabled_by_bios
= is_disabled
,
4303 .hardware_setup
= svm_hardware_setup
,
4304 .hardware_unsetup
= svm_hardware_unsetup
,
4305 .check_processor_compatibility
= svm_check_processor_compat
,
4306 .hardware_enable
= svm_hardware_enable
,
4307 .hardware_disable
= svm_hardware_disable
,
4308 .cpu_has_accelerated_tpr
= svm_cpu_has_accelerated_tpr
,
4310 .vcpu_create
= svm_create_vcpu
,
4311 .vcpu_free
= svm_free_vcpu
,
4312 .vcpu_reset
= svm_vcpu_reset
,
4314 .prepare_guest_switch
= svm_prepare_guest_switch
,
4315 .vcpu_load
= svm_vcpu_load
,
4316 .vcpu_put
= svm_vcpu_put
,
4318 .update_db_bp_intercept
= update_db_bp_intercept
,
4319 .get_msr
= svm_get_msr
,
4320 .set_msr
= svm_set_msr
,
4321 .get_segment_base
= svm_get_segment_base
,
4322 .get_segment
= svm_get_segment
,
4323 .set_segment
= svm_set_segment
,
4324 .get_cpl
= svm_get_cpl
,
4325 .get_cs_db_l_bits
= kvm_get_cs_db_l_bits
,
4326 .decache_cr0_guest_bits
= svm_decache_cr0_guest_bits
,
4327 .decache_cr3
= svm_decache_cr3
,
4328 .decache_cr4_guest_bits
= svm_decache_cr4_guest_bits
,
4329 .set_cr0
= svm_set_cr0
,
4330 .set_cr3
= svm_set_cr3
,
4331 .set_cr4
= svm_set_cr4
,
4332 .set_efer
= svm_set_efer
,
4333 .get_idt
= svm_get_idt
,
4334 .set_idt
= svm_set_idt
,
4335 .get_gdt
= svm_get_gdt
,
4336 .set_gdt
= svm_set_gdt
,
4337 .get_dr6
= svm_get_dr6
,
4338 .set_dr6
= svm_set_dr6
,
4339 .set_dr7
= svm_set_dr7
,
4340 .sync_dirty_debug_regs
= svm_sync_dirty_debug_regs
,
4341 .cache_reg
= svm_cache_reg
,
4342 .get_rflags
= svm_get_rflags
,
4343 .set_rflags
= svm_set_rflags
,
4344 .fpu_activate
= svm_fpu_activate
,
4345 .fpu_deactivate
= svm_fpu_deactivate
,
4347 .tlb_flush
= svm_flush_tlb
,
4349 .run
= svm_vcpu_run
,
4350 .handle_exit
= handle_exit
,
4351 .skip_emulated_instruction
= skip_emulated_instruction
,
4352 .set_interrupt_shadow
= svm_set_interrupt_shadow
,
4353 .get_interrupt_shadow
= svm_get_interrupt_shadow
,
4354 .patch_hypercall
= svm_patch_hypercall
,
4355 .set_irq
= svm_set_irq
,
4356 .set_nmi
= svm_inject_nmi
,
4357 .queue_exception
= svm_queue_exception
,
4358 .cancel_injection
= svm_cancel_injection
,
4359 .interrupt_allowed
= svm_interrupt_allowed
,
4360 .nmi_allowed
= svm_nmi_allowed
,
4361 .get_nmi_mask
= svm_get_nmi_mask
,
4362 .set_nmi_mask
= svm_set_nmi_mask
,
4363 .enable_nmi_window
= enable_nmi_window
,
4364 .enable_irq_window
= enable_irq_window
,
4365 .update_cr8_intercept
= update_cr8_intercept
,
4366 .set_virtual_x2apic_mode
= svm_set_virtual_x2apic_mode
,
4367 .vm_has_apicv
= svm_vm_has_apicv
,
4368 .load_eoi_exitmap
= svm_load_eoi_exitmap
,
4369 .hwapic_isr_update
= svm_hwapic_isr_update
,
4370 .sync_pir_to_irr
= svm_sync_pir_to_irr
,
4372 .set_tss_addr
= svm_set_tss_addr
,
4373 .get_tdp_level
= get_npt_level
,
4374 .get_mt_mask
= svm_get_mt_mask
,
4376 .get_exit_info
= svm_get_exit_info
,
4378 .get_lpage_level
= svm_get_lpage_level
,
4380 .cpuid_update
= svm_cpuid_update
,
4382 .rdtscp_supported
= svm_rdtscp_supported
,
4383 .invpcid_supported
= svm_invpcid_supported
,
4384 .mpx_supported
= svm_mpx_supported
,
4386 .set_supported_cpuid
= svm_set_supported_cpuid
,
4388 .has_wbinvd_exit
= svm_has_wbinvd_exit
,
4390 .set_tsc_khz
= svm_set_tsc_khz
,
4391 .read_tsc_offset
= svm_read_tsc_offset
,
4392 .write_tsc_offset
= svm_write_tsc_offset
,
4393 .adjust_tsc_offset
= svm_adjust_tsc_offset
,
4394 .compute_tsc_offset
= svm_compute_tsc_offset
,
4395 .read_l1_tsc
= svm_read_l1_tsc
,
4397 .set_tdp_cr3
= set_tdp_cr3
,
4399 .check_intercept
= svm_check_intercept
,
4400 .handle_external_intr
= svm_handle_external_intr
,
4403 static int __init
svm_init(void)
4405 return kvm_init(&svm_x86_ops
, sizeof(struct vcpu_svm
),
4406 __alignof__(struct vcpu_svm
), THIS_MODULE
);
4409 static void __exit
svm_exit(void)
4414 module_init(svm_init
)
4415 module_exit(svm_exit
)