2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
41 #include <asm/virtext.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52 #define __ex_clear(x, reg) \
53 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
58 static const struct x86_cpu_id vmx_cpu_id
[] = {
59 X86_FEATURE_MATCH(X86_FEATURE_VMX
),
62 MODULE_DEVICE_TABLE(x86cpu
, vmx_cpu_id
);
64 static bool __read_mostly enable_vpid
= 1;
65 module_param_named(vpid
, enable_vpid
, bool, 0444);
67 static bool __read_mostly flexpriority_enabled
= 1;
68 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
70 static bool __read_mostly enable_ept
= 1;
71 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
73 static bool __read_mostly enable_unrestricted_guest
= 1;
74 module_param_named(unrestricted_guest
,
75 enable_unrestricted_guest
, bool, S_IRUGO
);
77 static bool __read_mostly enable_ept_ad_bits
= 1;
78 module_param_named(eptad
, enable_ept_ad_bits
, bool, S_IRUGO
);
80 static bool __read_mostly emulate_invalid_guest_state
= true;
81 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
83 static bool __read_mostly vmm_exclusive
= 1;
84 module_param(vmm_exclusive
, bool, S_IRUGO
);
86 static bool __read_mostly fasteoi
= 1;
87 module_param(fasteoi
, bool, S_IRUGO
);
89 static bool __read_mostly enable_apicv
= 1;
90 module_param(enable_apicv
, bool, S_IRUGO
);
92 static bool __read_mostly enable_shadow_vmcs
= 1;
93 module_param_named(enable_shadow_vmcs
, enable_shadow_vmcs
, bool, S_IRUGO
);
95 * If nested=1, nested virtualization is supported, i.e., guests may use
96 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
97 * use VMX instructions.
99 static bool __read_mostly nested
= 0;
100 module_param(nested
, bool, S_IRUGO
);
102 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
103 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
104 #define KVM_VM_CR0_ALWAYS_ON \
105 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
106 #define KVM_CR4_GUEST_OWNED_BITS \
107 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
108 | X86_CR4_OSXMMEXCPT)
110 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
111 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
113 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
115 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
118 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
119 * ple_gap: upper bound on the amount of time between two successive
120 * executions of PAUSE in a loop. Also indicate if ple enabled.
121 * According to test, this time is usually smaller than 128 cycles.
122 * ple_window: upper bound on the amount of time a guest is allowed to execute
123 * in a PAUSE loop. Tests indicate that most spinlocks are held for
124 * less than 2^12 cycles
125 * Time is measured based on a counter that runs at the same rate as the TSC,
126 * refer SDM volume 3b section 21.6.13 & 22.1.3.
128 #define KVM_VMX_DEFAULT_PLE_GAP 128
129 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
130 static int ple_gap
= KVM_VMX_DEFAULT_PLE_GAP
;
131 module_param(ple_gap
, int, S_IRUGO
);
133 static int ple_window
= KVM_VMX_DEFAULT_PLE_WINDOW
;
134 module_param(ple_window
, int, S_IRUGO
);
136 extern const ulong vmx_return
;
138 #define NR_AUTOLOAD_MSRS 8
139 #define VMCS02_POOL_SIZE 1
148 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
149 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
150 * loaded on this CPU (so we can clear them if the CPU goes down).
156 struct list_head loaded_vmcss_on_cpu_link
;
159 struct shared_msr_entry
{
166 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
167 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
168 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
169 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
170 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
171 * More than one of these structures may exist, if L1 runs multiple L2 guests.
172 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
173 * underlying hardware which will be used to run L2.
174 * This structure is packed to ensure that its layout is identical across
175 * machines (necessary for live migration).
176 * If there are changes in this struct, VMCS12_REVISION must be changed.
178 typedef u64 natural_width
;
179 struct __packed vmcs12
{
180 /* According to the Intel spec, a VMCS region must start with the
181 * following two fields. Then follow implementation-specific data.
186 u32 launch_state
; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
187 u32 padding
[7]; /* room for future expansion */
192 u64 vm_exit_msr_store_addr
;
193 u64 vm_exit_msr_load_addr
;
194 u64 vm_entry_msr_load_addr
;
196 u64 virtual_apic_page_addr
;
197 u64 apic_access_addr
;
199 u64 guest_physical_address
;
200 u64 vmcs_link_pointer
;
201 u64 guest_ia32_debugctl
;
204 u64 guest_ia32_perf_global_ctrl
;
212 u64 host_ia32_perf_global_ctrl
;
213 u64 padding64
[8]; /* room for future expansion */
215 * To allow migration of L1 (complete with its L2 guests) between
216 * machines of different natural widths (32 or 64 bit), we cannot have
217 * unsigned long fields with no explict size. We use u64 (aliased
218 * natural_width) instead. Luckily, x86 is little-endian.
220 natural_width cr0_guest_host_mask
;
221 natural_width cr4_guest_host_mask
;
222 natural_width cr0_read_shadow
;
223 natural_width cr4_read_shadow
;
224 natural_width cr3_target_value0
;
225 natural_width cr3_target_value1
;
226 natural_width cr3_target_value2
;
227 natural_width cr3_target_value3
;
228 natural_width exit_qualification
;
229 natural_width guest_linear_address
;
230 natural_width guest_cr0
;
231 natural_width guest_cr3
;
232 natural_width guest_cr4
;
233 natural_width guest_es_base
;
234 natural_width guest_cs_base
;
235 natural_width guest_ss_base
;
236 natural_width guest_ds_base
;
237 natural_width guest_fs_base
;
238 natural_width guest_gs_base
;
239 natural_width guest_ldtr_base
;
240 natural_width guest_tr_base
;
241 natural_width guest_gdtr_base
;
242 natural_width guest_idtr_base
;
243 natural_width guest_dr7
;
244 natural_width guest_rsp
;
245 natural_width guest_rip
;
246 natural_width guest_rflags
;
247 natural_width guest_pending_dbg_exceptions
;
248 natural_width guest_sysenter_esp
;
249 natural_width guest_sysenter_eip
;
250 natural_width host_cr0
;
251 natural_width host_cr3
;
252 natural_width host_cr4
;
253 natural_width host_fs_base
;
254 natural_width host_gs_base
;
255 natural_width host_tr_base
;
256 natural_width host_gdtr_base
;
257 natural_width host_idtr_base
;
258 natural_width host_ia32_sysenter_esp
;
259 natural_width host_ia32_sysenter_eip
;
260 natural_width host_rsp
;
261 natural_width host_rip
;
262 natural_width paddingl
[8]; /* room for future expansion */
263 u32 pin_based_vm_exec_control
;
264 u32 cpu_based_vm_exec_control
;
265 u32 exception_bitmap
;
266 u32 page_fault_error_code_mask
;
267 u32 page_fault_error_code_match
;
268 u32 cr3_target_count
;
269 u32 vm_exit_controls
;
270 u32 vm_exit_msr_store_count
;
271 u32 vm_exit_msr_load_count
;
272 u32 vm_entry_controls
;
273 u32 vm_entry_msr_load_count
;
274 u32 vm_entry_intr_info_field
;
275 u32 vm_entry_exception_error_code
;
276 u32 vm_entry_instruction_len
;
278 u32 secondary_vm_exec_control
;
279 u32 vm_instruction_error
;
281 u32 vm_exit_intr_info
;
282 u32 vm_exit_intr_error_code
;
283 u32 idt_vectoring_info_field
;
284 u32 idt_vectoring_error_code
;
285 u32 vm_exit_instruction_len
;
286 u32 vmx_instruction_info
;
293 u32 guest_ldtr_limit
;
295 u32 guest_gdtr_limit
;
296 u32 guest_idtr_limit
;
297 u32 guest_es_ar_bytes
;
298 u32 guest_cs_ar_bytes
;
299 u32 guest_ss_ar_bytes
;
300 u32 guest_ds_ar_bytes
;
301 u32 guest_fs_ar_bytes
;
302 u32 guest_gs_ar_bytes
;
303 u32 guest_ldtr_ar_bytes
;
304 u32 guest_tr_ar_bytes
;
305 u32 guest_interruptibility_info
;
306 u32 guest_activity_state
;
307 u32 guest_sysenter_cs
;
308 u32 host_ia32_sysenter_cs
;
309 u32 vmx_preemption_timer_value
;
310 u32 padding32
[7]; /* room for future expansion */
311 u16 virtual_processor_id
;
312 u16 guest_es_selector
;
313 u16 guest_cs_selector
;
314 u16 guest_ss_selector
;
315 u16 guest_ds_selector
;
316 u16 guest_fs_selector
;
317 u16 guest_gs_selector
;
318 u16 guest_ldtr_selector
;
319 u16 guest_tr_selector
;
320 u16 host_es_selector
;
321 u16 host_cs_selector
;
322 u16 host_ss_selector
;
323 u16 host_ds_selector
;
324 u16 host_fs_selector
;
325 u16 host_gs_selector
;
326 u16 host_tr_selector
;
330 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
331 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
332 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
334 #define VMCS12_REVISION 0x11e57ed0
337 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
338 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
339 * current implementation, 4K are reserved to avoid future complications.
341 #define VMCS12_SIZE 0x1000
343 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
345 struct list_head list
;
347 struct loaded_vmcs vmcs02
;
351 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
352 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
355 /* Has the level1 guest done vmxon? */
359 /* The guest-physical address of the current VMCS L1 keeps for L2 */
361 /* The host-usable pointer to the above */
362 struct page
*current_vmcs12_page
;
363 struct vmcs12
*current_vmcs12
;
364 struct vmcs
*current_shadow_vmcs
;
366 * Indicates if the shadow vmcs must be updated with the
367 * data hold by vmcs12
369 bool sync_shadow_vmcs
;
371 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
372 struct list_head vmcs02_pool
;
374 u64 vmcs01_tsc_offset
;
375 /* L2 must run next, and mustn't decide to exit to L1. */
376 bool nested_run_pending
;
378 * Guest pages referred to in vmcs02 with host-physical pointers, so
379 * we must keep them pinned while L2 runs.
381 struct page
*apic_access_page
;
382 u64 msr_ia32_feature_control
;
384 struct hrtimer preemption_timer
;
385 bool preemption_timer_expired
;
387 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
391 #define POSTED_INTR_ON 0
392 /* Posted-Interrupt Descriptor */
394 u32 pir
[8]; /* Posted interrupt requested */
395 u32 control
; /* bit 0 of control is outstanding notification bit */
399 static bool pi_test_and_set_on(struct pi_desc
*pi_desc
)
401 return test_and_set_bit(POSTED_INTR_ON
,
402 (unsigned long *)&pi_desc
->control
);
405 static bool pi_test_and_clear_on(struct pi_desc
*pi_desc
)
407 return test_and_clear_bit(POSTED_INTR_ON
,
408 (unsigned long *)&pi_desc
->control
);
411 static int pi_test_and_set_pir(int vector
, struct pi_desc
*pi_desc
)
413 return test_and_set_bit(vector
, (unsigned long *)pi_desc
->pir
);
417 struct kvm_vcpu vcpu
;
418 unsigned long host_rsp
;
420 bool nmi_known_unmasked
;
422 u32 idt_vectoring_info
;
424 struct shared_msr_entry
*guest_msrs
;
427 unsigned long host_idt_base
;
429 u64 msr_host_kernel_gs_base
;
430 u64 msr_guest_kernel_gs_base
;
432 u32 vm_entry_controls_shadow
;
433 u32 vm_exit_controls_shadow
;
435 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
436 * non-nested (L1) guest, it always points to vmcs01. For a nested
437 * guest (L2), it points to a different VMCS.
439 struct loaded_vmcs vmcs01
;
440 struct loaded_vmcs
*loaded_vmcs
;
441 bool __launched
; /* temporary, used in vmx_vcpu_run */
442 struct msr_autoload
{
444 struct vmx_msr_entry guest
[NR_AUTOLOAD_MSRS
];
445 struct vmx_msr_entry host
[NR_AUTOLOAD_MSRS
];
449 u16 fs_sel
, gs_sel
, ldt_sel
;
453 int gs_ldt_reload_needed
;
454 int fs_reload_needed
;
455 u64 msr_host_bndcfgs
;
460 struct kvm_segment segs
[8];
463 u32 bitmask
; /* 4 bits per segment (1 bit per field) */
464 struct kvm_save_segment
{
472 bool emulation_required
;
474 /* Support for vnmi-less CPUs */
475 int soft_vnmi_blocked
;
477 s64 vnmi_blocked_time
;
482 /* Posted interrupt descriptor */
483 struct pi_desc pi_desc
;
485 /* Support for a guest hypervisor (nested VMX) */
486 struct nested_vmx nested
;
489 enum segment_cache_field
{
498 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
500 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
503 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
504 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
505 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
506 [number##_HIGH] = VMCS12_OFFSET(name)+4
509 static unsigned long shadow_read_only_fields
[] = {
511 * We do NOT shadow fields that are modified when L0
512 * traps and emulates any vmx instruction (e.g. VMPTRLD,
513 * VMXON...) executed by L1.
514 * For example, VM_INSTRUCTION_ERROR is read
515 * by L1 if a vmx instruction fails (part of the error path).
516 * Note the code assumes this logic. If for some reason
517 * we start shadowing these fields then we need to
518 * force a shadow sync when L0 emulates vmx instructions
519 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
520 * by nested_vmx_failValid)
524 VM_EXIT_INSTRUCTION_LEN
,
525 IDT_VECTORING_INFO_FIELD
,
526 IDT_VECTORING_ERROR_CODE
,
527 VM_EXIT_INTR_ERROR_CODE
,
529 GUEST_LINEAR_ADDRESS
,
530 GUEST_PHYSICAL_ADDRESS
532 static int max_shadow_read_only_fields
=
533 ARRAY_SIZE(shadow_read_only_fields
);
535 static unsigned long shadow_read_write_fields
[] = {
541 GUEST_INTERRUPTIBILITY_INFO
,
554 CPU_BASED_VM_EXEC_CONTROL
,
555 VM_ENTRY_EXCEPTION_ERROR_CODE
,
556 VM_ENTRY_INTR_INFO_FIELD
,
557 VM_ENTRY_INSTRUCTION_LEN
,
558 VM_ENTRY_EXCEPTION_ERROR_CODE
,
564 static int max_shadow_read_write_fields
=
565 ARRAY_SIZE(shadow_read_write_fields
);
567 static const unsigned short vmcs_field_to_offset_table
[] = {
568 FIELD(VIRTUAL_PROCESSOR_ID
, virtual_processor_id
),
569 FIELD(GUEST_ES_SELECTOR
, guest_es_selector
),
570 FIELD(GUEST_CS_SELECTOR
, guest_cs_selector
),
571 FIELD(GUEST_SS_SELECTOR
, guest_ss_selector
),
572 FIELD(GUEST_DS_SELECTOR
, guest_ds_selector
),
573 FIELD(GUEST_FS_SELECTOR
, guest_fs_selector
),
574 FIELD(GUEST_GS_SELECTOR
, guest_gs_selector
),
575 FIELD(GUEST_LDTR_SELECTOR
, guest_ldtr_selector
),
576 FIELD(GUEST_TR_SELECTOR
, guest_tr_selector
),
577 FIELD(HOST_ES_SELECTOR
, host_es_selector
),
578 FIELD(HOST_CS_SELECTOR
, host_cs_selector
),
579 FIELD(HOST_SS_SELECTOR
, host_ss_selector
),
580 FIELD(HOST_DS_SELECTOR
, host_ds_selector
),
581 FIELD(HOST_FS_SELECTOR
, host_fs_selector
),
582 FIELD(HOST_GS_SELECTOR
, host_gs_selector
),
583 FIELD(HOST_TR_SELECTOR
, host_tr_selector
),
584 FIELD64(IO_BITMAP_A
, io_bitmap_a
),
585 FIELD64(IO_BITMAP_B
, io_bitmap_b
),
586 FIELD64(MSR_BITMAP
, msr_bitmap
),
587 FIELD64(VM_EXIT_MSR_STORE_ADDR
, vm_exit_msr_store_addr
),
588 FIELD64(VM_EXIT_MSR_LOAD_ADDR
, vm_exit_msr_load_addr
),
589 FIELD64(VM_ENTRY_MSR_LOAD_ADDR
, vm_entry_msr_load_addr
),
590 FIELD64(TSC_OFFSET
, tsc_offset
),
591 FIELD64(VIRTUAL_APIC_PAGE_ADDR
, virtual_apic_page_addr
),
592 FIELD64(APIC_ACCESS_ADDR
, apic_access_addr
),
593 FIELD64(EPT_POINTER
, ept_pointer
),
594 FIELD64(GUEST_PHYSICAL_ADDRESS
, guest_physical_address
),
595 FIELD64(VMCS_LINK_POINTER
, vmcs_link_pointer
),
596 FIELD64(GUEST_IA32_DEBUGCTL
, guest_ia32_debugctl
),
597 FIELD64(GUEST_IA32_PAT
, guest_ia32_pat
),
598 FIELD64(GUEST_IA32_EFER
, guest_ia32_efer
),
599 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL
, guest_ia32_perf_global_ctrl
),
600 FIELD64(GUEST_PDPTR0
, guest_pdptr0
),
601 FIELD64(GUEST_PDPTR1
, guest_pdptr1
),
602 FIELD64(GUEST_PDPTR2
, guest_pdptr2
),
603 FIELD64(GUEST_PDPTR3
, guest_pdptr3
),
604 FIELD64(GUEST_BNDCFGS
, guest_bndcfgs
),
605 FIELD64(HOST_IA32_PAT
, host_ia32_pat
),
606 FIELD64(HOST_IA32_EFER
, host_ia32_efer
),
607 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL
, host_ia32_perf_global_ctrl
),
608 FIELD(PIN_BASED_VM_EXEC_CONTROL
, pin_based_vm_exec_control
),
609 FIELD(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
),
610 FIELD(EXCEPTION_BITMAP
, exception_bitmap
),
611 FIELD(PAGE_FAULT_ERROR_CODE_MASK
, page_fault_error_code_mask
),
612 FIELD(PAGE_FAULT_ERROR_CODE_MATCH
, page_fault_error_code_match
),
613 FIELD(CR3_TARGET_COUNT
, cr3_target_count
),
614 FIELD(VM_EXIT_CONTROLS
, vm_exit_controls
),
615 FIELD(VM_EXIT_MSR_STORE_COUNT
, vm_exit_msr_store_count
),
616 FIELD(VM_EXIT_MSR_LOAD_COUNT
, vm_exit_msr_load_count
),
617 FIELD(VM_ENTRY_CONTROLS
, vm_entry_controls
),
618 FIELD(VM_ENTRY_MSR_LOAD_COUNT
, vm_entry_msr_load_count
),
619 FIELD(VM_ENTRY_INTR_INFO_FIELD
, vm_entry_intr_info_field
),
620 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE
, vm_entry_exception_error_code
),
621 FIELD(VM_ENTRY_INSTRUCTION_LEN
, vm_entry_instruction_len
),
622 FIELD(TPR_THRESHOLD
, tpr_threshold
),
623 FIELD(SECONDARY_VM_EXEC_CONTROL
, secondary_vm_exec_control
),
624 FIELD(VM_INSTRUCTION_ERROR
, vm_instruction_error
),
625 FIELD(VM_EXIT_REASON
, vm_exit_reason
),
626 FIELD(VM_EXIT_INTR_INFO
, vm_exit_intr_info
),
627 FIELD(VM_EXIT_INTR_ERROR_CODE
, vm_exit_intr_error_code
),
628 FIELD(IDT_VECTORING_INFO_FIELD
, idt_vectoring_info_field
),
629 FIELD(IDT_VECTORING_ERROR_CODE
, idt_vectoring_error_code
),
630 FIELD(VM_EXIT_INSTRUCTION_LEN
, vm_exit_instruction_len
),
631 FIELD(VMX_INSTRUCTION_INFO
, vmx_instruction_info
),
632 FIELD(GUEST_ES_LIMIT
, guest_es_limit
),
633 FIELD(GUEST_CS_LIMIT
, guest_cs_limit
),
634 FIELD(GUEST_SS_LIMIT
, guest_ss_limit
),
635 FIELD(GUEST_DS_LIMIT
, guest_ds_limit
),
636 FIELD(GUEST_FS_LIMIT
, guest_fs_limit
),
637 FIELD(GUEST_GS_LIMIT
, guest_gs_limit
),
638 FIELD(GUEST_LDTR_LIMIT
, guest_ldtr_limit
),
639 FIELD(GUEST_TR_LIMIT
, guest_tr_limit
),
640 FIELD(GUEST_GDTR_LIMIT
, guest_gdtr_limit
),
641 FIELD(GUEST_IDTR_LIMIT
, guest_idtr_limit
),
642 FIELD(GUEST_ES_AR_BYTES
, guest_es_ar_bytes
),
643 FIELD(GUEST_CS_AR_BYTES
, guest_cs_ar_bytes
),
644 FIELD(GUEST_SS_AR_BYTES
, guest_ss_ar_bytes
),
645 FIELD(GUEST_DS_AR_BYTES
, guest_ds_ar_bytes
),
646 FIELD(GUEST_FS_AR_BYTES
, guest_fs_ar_bytes
),
647 FIELD(GUEST_GS_AR_BYTES
, guest_gs_ar_bytes
),
648 FIELD(GUEST_LDTR_AR_BYTES
, guest_ldtr_ar_bytes
),
649 FIELD(GUEST_TR_AR_BYTES
, guest_tr_ar_bytes
),
650 FIELD(GUEST_INTERRUPTIBILITY_INFO
, guest_interruptibility_info
),
651 FIELD(GUEST_ACTIVITY_STATE
, guest_activity_state
),
652 FIELD(GUEST_SYSENTER_CS
, guest_sysenter_cs
),
653 FIELD(HOST_IA32_SYSENTER_CS
, host_ia32_sysenter_cs
),
654 FIELD(VMX_PREEMPTION_TIMER_VALUE
, vmx_preemption_timer_value
),
655 FIELD(CR0_GUEST_HOST_MASK
, cr0_guest_host_mask
),
656 FIELD(CR4_GUEST_HOST_MASK
, cr4_guest_host_mask
),
657 FIELD(CR0_READ_SHADOW
, cr0_read_shadow
),
658 FIELD(CR4_READ_SHADOW
, cr4_read_shadow
),
659 FIELD(CR3_TARGET_VALUE0
, cr3_target_value0
),
660 FIELD(CR3_TARGET_VALUE1
, cr3_target_value1
),
661 FIELD(CR3_TARGET_VALUE2
, cr3_target_value2
),
662 FIELD(CR3_TARGET_VALUE3
, cr3_target_value3
),
663 FIELD(EXIT_QUALIFICATION
, exit_qualification
),
664 FIELD(GUEST_LINEAR_ADDRESS
, guest_linear_address
),
665 FIELD(GUEST_CR0
, guest_cr0
),
666 FIELD(GUEST_CR3
, guest_cr3
),
667 FIELD(GUEST_CR4
, guest_cr4
),
668 FIELD(GUEST_ES_BASE
, guest_es_base
),
669 FIELD(GUEST_CS_BASE
, guest_cs_base
),
670 FIELD(GUEST_SS_BASE
, guest_ss_base
),
671 FIELD(GUEST_DS_BASE
, guest_ds_base
),
672 FIELD(GUEST_FS_BASE
, guest_fs_base
),
673 FIELD(GUEST_GS_BASE
, guest_gs_base
),
674 FIELD(GUEST_LDTR_BASE
, guest_ldtr_base
),
675 FIELD(GUEST_TR_BASE
, guest_tr_base
),
676 FIELD(GUEST_GDTR_BASE
, guest_gdtr_base
),
677 FIELD(GUEST_IDTR_BASE
, guest_idtr_base
),
678 FIELD(GUEST_DR7
, guest_dr7
),
679 FIELD(GUEST_RSP
, guest_rsp
),
680 FIELD(GUEST_RIP
, guest_rip
),
681 FIELD(GUEST_RFLAGS
, guest_rflags
),
682 FIELD(GUEST_PENDING_DBG_EXCEPTIONS
, guest_pending_dbg_exceptions
),
683 FIELD(GUEST_SYSENTER_ESP
, guest_sysenter_esp
),
684 FIELD(GUEST_SYSENTER_EIP
, guest_sysenter_eip
),
685 FIELD(HOST_CR0
, host_cr0
),
686 FIELD(HOST_CR3
, host_cr3
),
687 FIELD(HOST_CR4
, host_cr4
),
688 FIELD(HOST_FS_BASE
, host_fs_base
),
689 FIELD(HOST_GS_BASE
, host_gs_base
),
690 FIELD(HOST_TR_BASE
, host_tr_base
),
691 FIELD(HOST_GDTR_BASE
, host_gdtr_base
),
692 FIELD(HOST_IDTR_BASE
, host_idtr_base
),
693 FIELD(HOST_IA32_SYSENTER_ESP
, host_ia32_sysenter_esp
),
694 FIELD(HOST_IA32_SYSENTER_EIP
, host_ia32_sysenter_eip
),
695 FIELD(HOST_RSP
, host_rsp
),
696 FIELD(HOST_RIP
, host_rip
),
698 static const int max_vmcs_field
= ARRAY_SIZE(vmcs_field_to_offset_table
);
700 static inline short vmcs_field_to_offset(unsigned long field
)
702 if (field
>= max_vmcs_field
|| vmcs_field_to_offset_table
[field
] == 0)
704 return vmcs_field_to_offset_table
[field
];
707 static inline struct vmcs12
*get_vmcs12(struct kvm_vcpu
*vcpu
)
709 return to_vmx(vcpu
)->nested
.current_vmcs12
;
712 static struct page
*nested_get_page(struct kvm_vcpu
*vcpu
, gpa_t addr
)
714 struct page
*page
= gfn_to_page(vcpu
->kvm
, addr
>> PAGE_SHIFT
);
715 if (is_error_page(page
))
721 static void nested_release_page(struct page
*page
)
723 kvm_release_page_dirty(page
);
726 static void nested_release_page_clean(struct page
*page
)
728 kvm_release_page_clean(page
);
731 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
);
732 static u64
construct_eptp(unsigned long root_hpa
);
733 static void kvm_cpu_vmxon(u64 addr
);
734 static void kvm_cpu_vmxoff(void);
735 static bool vmx_mpx_supported(void);
736 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
);
737 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
738 struct kvm_segment
*var
, int seg
);
739 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
740 struct kvm_segment
*var
, int seg
);
741 static bool guest_state_valid(struct kvm_vcpu
*vcpu
);
742 static u32
vmx_segment_access_rights(struct kvm_segment
*var
);
743 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu
*vcpu
);
744 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
);
745 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
);
746 static bool vmx_mpx_supported(void);
748 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
749 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
751 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
752 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
754 static DEFINE_PER_CPU(struct list_head
, loaded_vmcss_on_cpu
);
755 static DEFINE_PER_CPU(struct desc_ptr
, host_gdt
);
757 static unsigned long *vmx_io_bitmap_a
;
758 static unsigned long *vmx_io_bitmap_b
;
759 static unsigned long *vmx_msr_bitmap_legacy
;
760 static unsigned long *vmx_msr_bitmap_longmode
;
761 static unsigned long *vmx_msr_bitmap_legacy_x2apic
;
762 static unsigned long *vmx_msr_bitmap_longmode_x2apic
;
763 static unsigned long *vmx_vmread_bitmap
;
764 static unsigned long *vmx_vmwrite_bitmap
;
766 static bool cpu_has_load_ia32_efer
;
767 static bool cpu_has_load_perf_global_ctrl
;
769 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
770 static DEFINE_SPINLOCK(vmx_vpid_lock
);
772 static struct vmcs_config
{
776 u32 pin_based_exec_ctrl
;
777 u32 cpu_based_exec_ctrl
;
778 u32 cpu_based_2nd_exec_ctrl
;
783 static struct vmx_capability
{
788 #define VMX_SEGMENT_FIELD(seg) \
789 [VCPU_SREG_##seg] = { \
790 .selector = GUEST_##seg##_SELECTOR, \
791 .base = GUEST_##seg##_BASE, \
792 .limit = GUEST_##seg##_LIMIT, \
793 .ar_bytes = GUEST_##seg##_AR_BYTES, \
796 static const struct kvm_vmx_segment_field
{
801 } kvm_vmx_segment_fields
[] = {
802 VMX_SEGMENT_FIELD(CS
),
803 VMX_SEGMENT_FIELD(DS
),
804 VMX_SEGMENT_FIELD(ES
),
805 VMX_SEGMENT_FIELD(FS
),
806 VMX_SEGMENT_FIELD(GS
),
807 VMX_SEGMENT_FIELD(SS
),
808 VMX_SEGMENT_FIELD(TR
),
809 VMX_SEGMENT_FIELD(LDTR
),
812 static u64 host_efer
;
814 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
);
817 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
818 * away by decrementing the array size.
820 static const u32 vmx_msr_index
[] = {
822 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
,
824 MSR_EFER
, MSR_TSC_AUX
, MSR_STAR
,
826 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
828 static inline bool is_page_fault(u32 intr_info
)
830 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
831 INTR_INFO_VALID_MASK
)) ==
832 (INTR_TYPE_HARD_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
835 static inline bool is_no_device(u32 intr_info
)
837 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
838 INTR_INFO_VALID_MASK
)) ==
839 (INTR_TYPE_HARD_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
842 static inline bool is_invalid_opcode(u32 intr_info
)
844 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
845 INTR_INFO_VALID_MASK
)) ==
846 (INTR_TYPE_HARD_EXCEPTION
| UD_VECTOR
| INTR_INFO_VALID_MASK
);
849 static inline bool is_external_interrupt(u32 intr_info
)
851 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
852 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
855 static inline bool is_machine_check(u32 intr_info
)
857 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
858 INTR_INFO_VALID_MASK
)) ==
859 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
862 static inline bool cpu_has_vmx_msr_bitmap(void)
864 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
867 static inline bool cpu_has_vmx_tpr_shadow(void)
869 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
872 static inline bool vm_need_tpr_shadow(struct kvm
*kvm
)
874 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm
));
877 static inline bool cpu_has_secondary_exec_ctrls(void)
879 return vmcs_config
.cpu_based_exec_ctrl
&
880 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
883 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
885 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
886 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
889 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
891 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
892 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
895 static inline bool cpu_has_vmx_apic_register_virt(void)
897 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
898 SECONDARY_EXEC_APIC_REGISTER_VIRT
;
901 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
903 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
904 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
;
907 static inline bool cpu_has_vmx_posted_intr(void)
909 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_POSTED_INTR
;
912 static inline bool cpu_has_vmx_apicv(void)
914 return cpu_has_vmx_apic_register_virt() &&
915 cpu_has_vmx_virtual_intr_delivery() &&
916 cpu_has_vmx_posted_intr();
919 static inline bool cpu_has_vmx_flexpriority(void)
921 return cpu_has_vmx_tpr_shadow() &&
922 cpu_has_vmx_virtualize_apic_accesses();
925 static inline bool cpu_has_vmx_ept_execute_only(void)
927 return vmx_capability
.ept
& VMX_EPT_EXECUTE_ONLY_BIT
;
930 static inline bool cpu_has_vmx_eptp_uncacheable(void)
932 return vmx_capability
.ept
& VMX_EPTP_UC_BIT
;
935 static inline bool cpu_has_vmx_eptp_writeback(void)
937 return vmx_capability
.ept
& VMX_EPTP_WB_BIT
;
940 static inline bool cpu_has_vmx_ept_2m_page(void)
942 return vmx_capability
.ept
& VMX_EPT_2MB_PAGE_BIT
;
945 static inline bool cpu_has_vmx_ept_1g_page(void)
947 return vmx_capability
.ept
& VMX_EPT_1GB_PAGE_BIT
;
950 static inline bool cpu_has_vmx_ept_4levels(void)
952 return vmx_capability
.ept
& VMX_EPT_PAGE_WALK_4_BIT
;
955 static inline bool cpu_has_vmx_ept_ad_bits(void)
957 return vmx_capability
.ept
& VMX_EPT_AD_BIT
;
960 static inline bool cpu_has_vmx_invept_context(void)
962 return vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
;
965 static inline bool cpu_has_vmx_invept_global(void)
967 return vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
;
970 static inline bool cpu_has_vmx_invvpid_single(void)
972 return vmx_capability
.vpid
& VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT
;
975 static inline bool cpu_has_vmx_invvpid_global(void)
977 return vmx_capability
.vpid
& VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT
;
980 static inline bool cpu_has_vmx_ept(void)
982 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
983 SECONDARY_EXEC_ENABLE_EPT
;
986 static inline bool cpu_has_vmx_unrestricted_guest(void)
988 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
989 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
992 static inline bool cpu_has_vmx_ple(void)
994 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
995 SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
998 static inline bool vm_need_virtualize_apic_accesses(struct kvm
*kvm
)
1000 return flexpriority_enabled
&& irqchip_in_kernel(kvm
);
1003 static inline bool cpu_has_vmx_vpid(void)
1005 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1006 SECONDARY_EXEC_ENABLE_VPID
;
1009 static inline bool cpu_has_vmx_rdtscp(void)
1011 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1012 SECONDARY_EXEC_RDTSCP
;
1015 static inline bool cpu_has_vmx_invpcid(void)
1017 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1018 SECONDARY_EXEC_ENABLE_INVPCID
;
1021 static inline bool cpu_has_virtual_nmis(void)
1023 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
1026 static inline bool cpu_has_vmx_wbinvd_exit(void)
1028 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1029 SECONDARY_EXEC_WBINVD_EXITING
;
1032 static inline bool cpu_has_vmx_shadow_vmcs(void)
1035 rdmsrl(MSR_IA32_VMX_MISC
, vmx_msr
);
1036 /* check if the cpu supports writing r/o exit information fields */
1037 if (!(vmx_msr
& MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS
))
1040 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1041 SECONDARY_EXEC_SHADOW_VMCS
;
1044 static inline bool report_flexpriority(void)
1046 return flexpriority_enabled
;
1049 static inline bool nested_cpu_has(struct vmcs12
*vmcs12
, u32 bit
)
1051 return vmcs12
->cpu_based_vm_exec_control
& bit
;
1054 static inline bool nested_cpu_has2(struct vmcs12
*vmcs12
, u32 bit
)
1056 return (vmcs12
->cpu_based_vm_exec_control
&
1057 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) &&
1058 (vmcs12
->secondary_vm_exec_control
& bit
);
1061 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12
*vmcs12
)
1063 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_VIRTUAL_NMIS
;
1066 static inline bool nested_cpu_has_preemption_timer(struct vmcs12
*vmcs12
)
1068 return vmcs12
->pin_based_vm_exec_control
&
1069 PIN_BASED_VMX_PREEMPTION_TIMER
;
1072 static inline int nested_cpu_has_ept(struct vmcs12
*vmcs12
)
1074 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_EPT
);
1077 static inline bool is_exception(u32 intr_info
)
1079 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
1080 == (INTR_TYPE_HARD_EXCEPTION
| INTR_INFO_VALID_MASK
);
1083 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
,
1085 unsigned long exit_qualification
);
1086 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
1087 struct vmcs12
*vmcs12
,
1088 u32 reason
, unsigned long qualification
);
1090 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
1094 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
1095 if (vmx_msr_index
[vmx
->guest_msrs
[i
].index
] == msr
)
1100 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
1106 } operand
= { vpid
, 0, gva
};
1108 asm volatile (__ex(ASM_VMX_INVVPID
)
1109 /* CF==1 or ZF==1 --> rc = -1 */
1110 "; ja 1f ; ud2 ; 1:"
1111 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
1114 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
1118 } operand
= {eptp
, gpa
};
1120 asm volatile (__ex(ASM_VMX_INVEPT
)
1121 /* CF==1 or ZF==1 --> rc = -1 */
1122 "; ja 1f ; ud2 ; 1:\n"
1123 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
1126 static struct shared_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
1130 i
= __find_msr_index(vmx
, msr
);
1132 return &vmx
->guest_msrs
[i
];
1136 static void vmcs_clear(struct vmcs
*vmcs
)
1138 u64 phys_addr
= __pa(vmcs
);
1141 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
1142 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
1145 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
1149 static inline void loaded_vmcs_init(struct loaded_vmcs
*loaded_vmcs
)
1151 vmcs_clear(loaded_vmcs
->vmcs
);
1152 loaded_vmcs
->cpu
= -1;
1153 loaded_vmcs
->launched
= 0;
1156 static void vmcs_load(struct vmcs
*vmcs
)
1158 u64 phys_addr
= __pa(vmcs
);
1161 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
1162 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
1165 printk(KERN_ERR
"kvm: vmptrld %p/%llx failed\n",
1171 * This bitmap is used to indicate whether the vmclear
1172 * operation is enabled on all cpus. All disabled by
1175 static cpumask_t crash_vmclear_enabled_bitmap
= CPU_MASK_NONE
;
1177 static inline void crash_enable_local_vmclear(int cpu
)
1179 cpumask_set_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1182 static inline void crash_disable_local_vmclear(int cpu
)
1184 cpumask_clear_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1187 static inline int crash_local_vmclear_enabled(int cpu
)
1189 return cpumask_test_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1192 static void crash_vmclear_local_loaded_vmcss(void)
1194 int cpu
= raw_smp_processor_id();
1195 struct loaded_vmcs
*v
;
1197 if (!crash_local_vmclear_enabled(cpu
))
1200 list_for_each_entry(v
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
1201 loaded_vmcss_on_cpu_link
)
1202 vmcs_clear(v
->vmcs
);
1205 static inline void crash_enable_local_vmclear(int cpu
) { }
1206 static inline void crash_disable_local_vmclear(int cpu
) { }
1207 #endif /* CONFIG_KEXEC */
1209 static void __loaded_vmcs_clear(void *arg
)
1211 struct loaded_vmcs
*loaded_vmcs
= arg
;
1212 int cpu
= raw_smp_processor_id();
1214 if (loaded_vmcs
->cpu
!= cpu
)
1215 return; /* vcpu migration can race with cpu offline */
1216 if (per_cpu(current_vmcs
, cpu
) == loaded_vmcs
->vmcs
)
1217 per_cpu(current_vmcs
, cpu
) = NULL
;
1218 crash_disable_local_vmclear(cpu
);
1219 list_del(&loaded_vmcs
->loaded_vmcss_on_cpu_link
);
1222 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1223 * is before setting loaded_vmcs->vcpu to -1 which is done in
1224 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1225 * then adds the vmcs into percpu list before it is deleted.
1229 loaded_vmcs_init(loaded_vmcs
);
1230 crash_enable_local_vmclear(cpu
);
1233 static void loaded_vmcs_clear(struct loaded_vmcs
*loaded_vmcs
)
1235 int cpu
= loaded_vmcs
->cpu
;
1238 smp_call_function_single(cpu
,
1239 __loaded_vmcs_clear
, loaded_vmcs
, 1);
1242 static inline void vpid_sync_vcpu_single(struct vcpu_vmx
*vmx
)
1247 if (cpu_has_vmx_invvpid_single())
1248 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vmx
->vpid
, 0);
1251 static inline void vpid_sync_vcpu_global(void)
1253 if (cpu_has_vmx_invvpid_global())
1254 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT
, 0, 0);
1257 static inline void vpid_sync_context(struct vcpu_vmx
*vmx
)
1259 if (cpu_has_vmx_invvpid_single())
1260 vpid_sync_vcpu_single(vmx
);
1262 vpid_sync_vcpu_global();
1265 static inline void ept_sync_global(void)
1267 if (cpu_has_vmx_invept_global())
1268 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
1271 static inline void ept_sync_context(u64 eptp
)
1274 if (cpu_has_vmx_invept_context())
1275 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
1281 static __always_inline
unsigned long vmcs_readl(unsigned long field
)
1283 unsigned long value
;
1285 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX
, "%0")
1286 : "=a"(value
) : "d"(field
) : "cc");
1290 static __always_inline u16
vmcs_read16(unsigned long field
)
1292 return vmcs_readl(field
);
1295 static __always_inline u32
vmcs_read32(unsigned long field
)
1297 return vmcs_readl(field
);
1300 static __always_inline u64
vmcs_read64(unsigned long field
)
1302 #ifdef CONFIG_X86_64
1303 return vmcs_readl(field
);
1305 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
1309 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
1311 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
1312 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
1316 static void vmcs_writel(unsigned long field
, unsigned long value
)
1320 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
1321 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
1322 if (unlikely(error
))
1323 vmwrite_error(field
, value
);
1326 static void vmcs_write16(unsigned long field
, u16 value
)
1328 vmcs_writel(field
, value
);
1331 static void vmcs_write32(unsigned long field
, u32 value
)
1333 vmcs_writel(field
, value
);
1336 static void vmcs_write64(unsigned long field
, u64 value
)
1338 vmcs_writel(field
, value
);
1339 #ifndef CONFIG_X86_64
1341 vmcs_writel(field
+1, value
>> 32);
1345 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
1347 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
1350 static void vmcs_set_bits(unsigned long field
, u32 mask
)
1352 vmcs_writel(field
, vmcs_readl(field
) | mask
);
1355 static inline void vm_entry_controls_init(struct vcpu_vmx
*vmx
, u32 val
)
1357 vmcs_write32(VM_ENTRY_CONTROLS
, val
);
1358 vmx
->vm_entry_controls_shadow
= val
;
1361 static inline void vm_entry_controls_set(struct vcpu_vmx
*vmx
, u32 val
)
1363 if (vmx
->vm_entry_controls_shadow
!= val
)
1364 vm_entry_controls_init(vmx
, val
);
1367 static inline u32
vm_entry_controls_get(struct vcpu_vmx
*vmx
)
1369 return vmx
->vm_entry_controls_shadow
;
1373 static inline void vm_entry_controls_setbit(struct vcpu_vmx
*vmx
, u32 val
)
1375 vm_entry_controls_set(vmx
, vm_entry_controls_get(vmx
) | val
);
1378 static inline void vm_entry_controls_clearbit(struct vcpu_vmx
*vmx
, u32 val
)
1380 vm_entry_controls_set(vmx
, vm_entry_controls_get(vmx
) & ~val
);
1383 static inline void vm_exit_controls_init(struct vcpu_vmx
*vmx
, u32 val
)
1385 vmcs_write32(VM_EXIT_CONTROLS
, val
);
1386 vmx
->vm_exit_controls_shadow
= val
;
1389 static inline void vm_exit_controls_set(struct vcpu_vmx
*vmx
, u32 val
)
1391 if (vmx
->vm_exit_controls_shadow
!= val
)
1392 vm_exit_controls_init(vmx
, val
);
1395 static inline u32
vm_exit_controls_get(struct vcpu_vmx
*vmx
)
1397 return vmx
->vm_exit_controls_shadow
;
1401 static inline void vm_exit_controls_setbit(struct vcpu_vmx
*vmx
, u32 val
)
1403 vm_exit_controls_set(vmx
, vm_exit_controls_get(vmx
) | val
);
1406 static inline void vm_exit_controls_clearbit(struct vcpu_vmx
*vmx
, u32 val
)
1408 vm_exit_controls_set(vmx
, vm_exit_controls_get(vmx
) & ~val
);
1411 static void vmx_segment_cache_clear(struct vcpu_vmx
*vmx
)
1413 vmx
->segment_cache
.bitmask
= 0;
1416 static bool vmx_segment_cache_test_set(struct vcpu_vmx
*vmx
, unsigned seg
,
1420 u32 mask
= 1 << (seg
* SEG_FIELD_NR
+ field
);
1422 if (!(vmx
->vcpu
.arch
.regs_avail
& (1 << VCPU_EXREG_SEGMENTS
))) {
1423 vmx
->vcpu
.arch
.regs_avail
|= (1 << VCPU_EXREG_SEGMENTS
);
1424 vmx
->segment_cache
.bitmask
= 0;
1426 ret
= vmx
->segment_cache
.bitmask
& mask
;
1427 vmx
->segment_cache
.bitmask
|= mask
;
1431 static u16
vmx_read_guest_seg_selector(struct vcpu_vmx
*vmx
, unsigned seg
)
1433 u16
*p
= &vmx
->segment_cache
.seg
[seg
].selector
;
1435 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_SEL
))
1436 *p
= vmcs_read16(kvm_vmx_segment_fields
[seg
].selector
);
1440 static ulong
vmx_read_guest_seg_base(struct vcpu_vmx
*vmx
, unsigned seg
)
1442 ulong
*p
= &vmx
->segment_cache
.seg
[seg
].base
;
1444 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_BASE
))
1445 *p
= vmcs_readl(kvm_vmx_segment_fields
[seg
].base
);
1449 static u32
vmx_read_guest_seg_limit(struct vcpu_vmx
*vmx
, unsigned seg
)
1451 u32
*p
= &vmx
->segment_cache
.seg
[seg
].limit
;
1453 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_LIMIT
))
1454 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].limit
);
1458 static u32
vmx_read_guest_seg_ar(struct vcpu_vmx
*vmx
, unsigned seg
)
1460 u32
*p
= &vmx
->segment_cache
.seg
[seg
].ar
;
1462 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_AR
))
1463 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].ar_bytes
);
1467 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
1471 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
) |
1472 (1u << NM_VECTOR
) | (1u << DB_VECTOR
);
1473 if ((vcpu
->guest_debug
&
1474 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
)) ==
1475 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
))
1476 eb
|= 1u << BP_VECTOR
;
1477 if (to_vmx(vcpu
)->rmode
.vm86_active
)
1480 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
1481 if (vcpu
->fpu_active
)
1482 eb
&= ~(1u << NM_VECTOR
);
1484 /* When we are running a nested L2 guest and L1 specified for it a
1485 * certain exception bitmap, we must trap the same exceptions and pass
1486 * them to L1. When running L2, we will only handle the exceptions
1487 * specified above if L1 did not want them.
1489 if (is_guest_mode(vcpu
))
1490 eb
|= get_vmcs12(vcpu
)->exception_bitmap
;
1492 vmcs_write32(EXCEPTION_BITMAP
, eb
);
1495 static void clear_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
1496 unsigned long entry
, unsigned long exit
)
1498 vm_entry_controls_clearbit(vmx
, entry
);
1499 vm_exit_controls_clearbit(vmx
, exit
);
1502 static void clear_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
)
1505 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1509 if (cpu_has_load_ia32_efer
) {
1510 clear_atomic_switch_msr_special(vmx
,
1511 VM_ENTRY_LOAD_IA32_EFER
,
1512 VM_EXIT_LOAD_IA32_EFER
);
1516 case MSR_CORE_PERF_GLOBAL_CTRL
:
1517 if (cpu_has_load_perf_global_ctrl
) {
1518 clear_atomic_switch_msr_special(vmx
,
1519 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1520 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
1526 for (i
= 0; i
< m
->nr
; ++i
)
1527 if (m
->guest
[i
].index
== msr
)
1533 m
->guest
[i
] = m
->guest
[m
->nr
];
1534 m
->host
[i
] = m
->host
[m
->nr
];
1535 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1536 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1539 static void add_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
1540 unsigned long entry
, unsigned long exit
,
1541 unsigned long guest_val_vmcs
, unsigned long host_val_vmcs
,
1542 u64 guest_val
, u64 host_val
)
1544 vmcs_write64(guest_val_vmcs
, guest_val
);
1545 vmcs_write64(host_val_vmcs
, host_val
);
1546 vm_entry_controls_setbit(vmx
, entry
);
1547 vm_exit_controls_setbit(vmx
, exit
);
1550 static void add_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
,
1551 u64 guest_val
, u64 host_val
)
1554 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1558 if (cpu_has_load_ia32_efer
) {
1559 add_atomic_switch_msr_special(vmx
,
1560 VM_ENTRY_LOAD_IA32_EFER
,
1561 VM_EXIT_LOAD_IA32_EFER
,
1564 guest_val
, host_val
);
1568 case MSR_CORE_PERF_GLOBAL_CTRL
:
1569 if (cpu_has_load_perf_global_ctrl
) {
1570 add_atomic_switch_msr_special(vmx
,
1571 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1572 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
,
1573 GUEST_IA32_PERF_GLOBAL_CTRL
,
1574 HOST_IA32_PERF_GLOBAL_CTRL
,
1575 guest_val
, host_val
);
1581 for (i
= 0; i
< m
->nr
; ++i
)
1582 if (m
->guest
[i
].index
== msr
)
1585 if (i
== NR_AUTOLOAD_MSRS
) {
1586 printk_once(KERN_WARNING
"Not enough msr switch entries. "
1587 "Can't add msr %x\n", msr
);
1589 } else if (i
== m
->nr
) {
1591 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1592 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1595 m
->guest
[i
].index
= msr
;
1596 m
->guest
[i
].value
= guest_val
;
1597 m
->host
[i
].index
= msr
;
1598 m
->host
[i
].value
= host_val
;
1601 static void reload_tss(void)
1604 * VT restores TR but not its size. Useless.
1606 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
1607 struct desc_struct
*descs
;
1609 descs
= (void *)gdt
->address
;
1610 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
1614 static bool update_transition_efer(struct vcpu_vmx
*vmx
, int efer_offset
)
1619 guest_efer
= vmx
->vcpu
.arch
.efer
;
1622 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1625 ignore_bits
= EFER_NX
| EFER_SCE
;
1626 #ifdef CONFIG_X86_64
1627 ignore_bits
|= EFER_LMA
| EFER_LME
;
1628 /* SCE is meaningful only in long mode on Intel */
1629 if (guest_efer
& EFER_LMA
)
1630 ignore_bits
&= ~(u64
)EFER_SCE
;
1632 guest_efer
&= ~ignore_bits
;
1633 guest_efer
|= host_efer
& ignore_bits
;
1634 vmx
->guest_msrs
[efer_offset
].data
= guest_efer
;
1635 vmx
->guest_msrs
[efer_offset
].mask
= ~ignore_bits
;
1637 clear_atomic_switch_msr(vmx
, MSR_EFER
);
1638 /* On ept, can't emulate nx, and must switch nx atomically */
1639 if (enable_ept
&& ((vmx
->vcpu
.arch
.efer
^ host_efer
) & EFER_NX
)) {
1640 guest_efer
= vmx
->vcpu
.arch
.efer
;
1641 if (!(guest_efer
& EFER_LMA
))
1642 guest_efer
&= ~EFER_LME
;
1643 add_atomic_switch_msr(vmx
, MSR_EFER
, guest_efer
, host_efer
);
1650 static unsigned long segment_base(u16 selector
)
1652 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
1653 struct desc_struct
*d
;
1654 unsigned long table_base
;
1657 if (!(selector
& ~3))
1660 table_base
= gdt
->address
;
1662 if (selector
& 4) { /* from ldt */
1663 u16 ldt_selector
= kvm_read_ldt();
1665 if (!(ldt_selector
& ~3))
1668 table_base
= segment_base(ldt_selector
);
1670 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
1671 v
= get_desc_base(d
);
1672 #ifdef CONFIG_X86_64
1673 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
1674 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
1679 static inline unsigned long kvm_read_tr_base(void)
1682 asm("str %0" : "=g"(tr
));
1683 return segment_base(tr
);
1686 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
1688 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1691 if (vmx
->host_state
.loaded
)
1694 vmx
->host_state
.loaded
= 1;
1696 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1697 * allow segment selectors with cpl > 0 or ti == 1.
1699 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
1700 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
1701 savesegment(fs
, vmx
->host_state
.fs_sel
);
1702 if (!(vmx
->host_state
.fs_sel
& 7)) {
1703 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
1704 vmx
->host_state
.fs_reload_needed
= 0;
1706 vmcs_write16(HOST_FS_SELECTOR
, 0);
1707 vmx
->host_state
.fs_reload_needed
= 1;
1709 savesegment(gs
, vmx
->host_state
.gs_sel
);
1710 if (!(vmx
->host_state
.gs_sel
& 7))
1711 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
1713 vmcs_write16(HOST_GS_SELECTOR
, 0);
1714 vmx
->host_state
.gs_ldt_reload_needed
= 1;
1717 #ifdef CONFIG_X86_64
1718 savesegment(ds
, vmx
->host_state
.ds_sel
);
1719 savesegment(es
, vmx
->host_state
.es_sel
);
1722 #ifdef CONFIG_X86_64
1723 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
1724 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
1726 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
1727 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
1730 #ifdef CONFIG_X86_64
1731 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
1732 if (is_long_mode(&vmx
->vcpu
))
1733 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
1735 if (boot_cpu_has(X86_FEATURE_MPX
))
1736 rdmsrl(MSR_IA32_BNDCFGS
, vmx
->host_state
.msr_host_bndcfgs
);
1737 for (i
= 0; i
< vmx
->save_nmsrs
; ++i
)
1738 kvm_set_shared_msr(vmx
->guest_msrs
[i
].index
,
1739 vmx
->guest_msrs
[i
].data
,
1740 vmx
->guest_msrs
[i
].mask
);
1743 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
1745 if (!vmx
->host_state
.loaded
)
1748 ++vmx
->vcpu
.stat
.host_state_reload
;
1749 vmx
->host_state
.loaded
= 0;
1750 #ifdef CONFIG_X86_64
1751 if (is_long_mode(&vmx
->vcpu
))
1752 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
1754 if (vmx
->host_state
.gs_ldt_reload_needed
) {
1755 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
1756 #ifdef CONFIG_X86_64
1757 load_gs_index(vmx
->host_state
.gs_sel
);
1759 loadsegment(gs
, vmx
->host_state
.gs_sel
);
1762 if (vmx
->host_state
.fs_reload_needed
)
1763 loadsegment(fs
, vmx
->host_state
.fs_sel
);
1764 #ifdef CONFIG_X86_64
1765 if (unlikely(vmx
->host_state
.ds_sel
| vmx
->host_state
.es_sel
)) {
1766 loadsegment(ds
, vmx
->host_state
.ds_sel
);
1767 loadsegment(es
, vmx
->host_state
.es_sel
);
1771 #ifdef CONFIG_X86_64
1772 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
1774 if (vmx
->host_state
.msr_host_bndcfgs
)
1775 wrmsrl(MSR_IA32_BNDCFGS
, vmx
->host_state
.msr_host_bndcfgs
);
1777 * If the FPU is not active (through the host task or
1778 * the guest vcpu), then restore the cr0.TS bit.
1780 if (!user_has_fpu() && !vmx
->vcpu
.guest_fpu_loaded
)
1782 load_gdt(&__get_cpu_var(host_gdt
));
1785 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
1788 __vmx_load_host_state(vmx
);
1793 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1794 * vcpu mutex is already taken.
1796 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1798 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1799 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
1802 kvm_cpu_vmxon(phys_addr
);
1803 else if (vmx
->loaded_vmcs
->cpu
!= cpu
)
1804 loaded_vmcs_clear(vmx
->loaded_vmcs
);
1806 if (per_cpu(current_vmcs
, cpu
) != vmx
->loaded_vmcs
->vmcs
) {
1807 per_cpu(current_vmcs
, cpu
) = vmx
->loaded_vmcs
->vmcs
;
1808 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
1811 if (vmx
->loaded_vmcs
->cpu
!= cpu
) {
1812 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
1813 unsigned long sysenter_esp
;
1815 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
1816 local_irq_disable();
1817 crash_disable_local_vmclear(cpu
);
1820 * Read loaded_vmcs->cpu should be before fetching
1821 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1822 * See the comments in __loaded_vmcs_clear().
1826 list_add(&vmx
->loaded_vmcs
->loaded_vmcss_on_cpu_link
,
1827 &per_cpu(loaded_vmcss_on_cpu
, cpu
));
1828 crash_enable_local_vmclear(cpu
);
1832 * Linux uses per-cpu TSS and GDT, so set these when switching
1835 vmcs_writel(HOST_TR_BASE
, kvm_read_tr_base()); /* 22.2.4 */
1836 vmcs_writel(HOST_GDTR_BASE
, gdt
->address
); /* 22.2.4 */
1838 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
1839 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
1840 vmx
->loaded_vmcs
->cpu
= cpu
;
1844 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
1846 __vmx_load_host_state(to_vmx(vcpu
));
1847 if (!vmm_exclusive
) {
1848 __loaded_vmcs_clear(to_vmx(vcpu
)->loaded_vmcs
);
1854 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
1858 if (vcpu
->fpu_active
)
1860 vcpu
->fpu_active
= 1;
1861 cr0
= vmcs_readl(GUEST_CR0
);
1862 cr0
&= ~(X86_CR0_TS
| X86_CR0_MP
);
1863 cr0
|= kvm_read_cr0_bits(vcpu
, X86_CR0_TS
| X86_CR0_MP
);
1864 vmcs_writel(GUEST_CR0
, cr0
);
1865 update_exception_bitmap(vcpu
);
1866 vcpu
->arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
1867 if (is_guest_mode(vcpu
))
1868 vcpu
->arch
.cr0_guest_owned_bits
&=
1869 ~get_vmcs12(vcpu
)->cr0_guest_host_mask
;
1870 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
1873 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
);
1876 * Return the cr0 value that a nested guest would read. This is a combination
1877 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1878 * its hypervisor (cr0_read_shadow).
1880 static inline unsigned long nested_read_cr0(struct vmcs12
*fields
)
1882 return (fields
->guest_cr0
& ~fields
->cr0_guest_host_mask
) |
1883 (fields
->cr0_read_shadow
& fields
->cr0_guest_host_mask
);
1885 static inline unsigned long nested_read_cr4(struct vmcs12
*fields
)
1887 return (fields
->guest_cr4
& ~fields
->cr4_guest_host_mask
) |
1888 (fields
->cr4_read_shadow
& fields
->cr4_guest_host_mask
);
1891 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
1893 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1894 * set this *before* calling this function.
1896 vmx_decache_cr0_guest_bits(vcpu
);
1897 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
| X86_CR0_MP
);
1898 update_exception_bitmap(vcpu
);
1899 vcpu
->arch
.cr0_guest_owned_bits
= 0;
1900 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
1901 if (is_guest_mode(vcpu
)) {
1903 * L1's specified read shadow might not contain the TS bit,
1904 * so now that we turned on shadowing of this bit, we need to
1905 * set this bit of the shadow. Like in nested_vmx_run we need
1906 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1907 * up-to-date here because we just decached cr0.TS (and we'll
1908 * only update vmcs12->guest_cr0 on nested exit).
1910 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
1911 vmcs12
->guest_cr0
= (vmcs12
->guest_cr0
& ~X86_CR0_TS
) |
1912 (vcpu
->arch
.cr0
& X86_CR0_TS
);
1913 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
1915 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
1918 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
1920 unsigned long rflags
, save_rflags
;
1922 if (!test_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
)) {
1923 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
1924 rflags
= vmcs_readl(GUEST_RFLAGS
);
1925 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
1926 rflags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
1927 save_rflags
= to_vmx(vcpu
)->rmode
.save_rflags
;
1928 rflags
|= save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
1930 to_vmx(vcpu
)->rflags
= rflags
;
1932 return to_vmx(vcpu
)->rflags
;
1935 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
1937 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
1938 to_vmx(vcpu
)->rflags
= rflags
;
1939 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
1940 to_vmx(vcpu
)->rmode
.save_rflags
= rflags
;
1941 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
1943 vmcs_writel(GUEST_RFLAGS
, rflags
);
1946 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
1948 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
1951 if (interruptibility
& GUEST_INTR_STATE_STI
)
1952 ret
|= KVM_X86_SHADOW_INT_STI
;
1953 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
1954 ret
|= KVM_X86_SHADOW_INT_MOV_SS
;
1959 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
1961 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
1962 u32 interruptibility
= interruptibility_old
;
1964 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
1966 if (mask
& KVM_X86_SHADOW_INT_MOV_SS
)
1967 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
1968 else if (mask
& KVM_X86_SHADOW_INT_STI
)
1969 interruptibility
|= GUEST_INTR_STATE_STI
;
1971 if ((interruptibility
!= interruptibility_old
))
1972 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
1975 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
1979 rip
= kvm_rip_read(vcpu
);
1980 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
1981 kvm_rip_write(vcpu
, rip
);
1983 /* skipping an emulated instruction also counts */
1984 vmx_set_interrupt_shadow(vcpu
, 0);
1988 * KVM wants to inject page-faults which it got to the guest. This function
1989 * checks whether in a nested guest, we need to inject them to L1 or L2.
1991 static int nested_vmx_check_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
1993 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
1995 if (!(vmcs12
->exception_bitmap
& (1u << nr
)))
1998 nested_vmx_vmexit(vcpu
, to_vmx(vcpu
)->exit_reason
,
1999 vmcs_read32(VM_EXIT_INTR_INFO
),
2000 vmcs_readl(EXIT_QUALIFICATION
));
2004 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
2005 bool has_error_code
, u32 error_code
,
2008 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2009 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
2011 if (!reinject
&& is_guest_mode(vcpu
) &&
2012 nested_vmx_check_exception(vcpu
, nr
))
2015 if (has_error_code
) {
2016 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
2017 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
2020 if (vmx
->rmode
.vm86_active
) {
2022 if (kvm_exception_is_soft(nr
))
2023 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
2024 if (kvm_inject_realmode_interrupt(vcpu
, nr
, inc_eip
) != EMULATE_DONE
)
2025 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2029 if (kvm_exception_is_soft(nr
)) {
2030 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2031 vmx
->vcpu
.arch
.event_exit_inst_len
);
2032 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
2034 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
2036 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
2039 static bool vmx_rdtscp_supported(void)
2041 return cpu_has_vmx_rdtscp();
2044 static bool vmx_invpcid_supported(void)
2046 return cpu_has_vmx_invpcid() && enable_ept
;
2050 * Swap MSR entry in host/guest MSR entry array.
2052 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
2054 struct shared_msr_entry tmp
;
2056 tmp
= vmx
->guest_msrs
[to
];
2057 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
2058 vmx
->guest_msrs
[from
] = tmp
;
2061 static void vmx_set_msr_bitmap(struct kvm_vcpu
*vcpu
)
2063 unsigned long *msr_bitmap
;
2065 if (irqchip_in_kernel(vcpu
->kvm
) && apic_x2apic_mode(vcpu
->arch
.apic
)) {
2066 if (is_long_mode(vcpu
))
2067 msr_bitmap
= vmx_msr_bitmap_longmode_x2apic
;
2069 msr_bitmap
= vmx_msr_bitmap_legacy_x2apic
;
2071 if (is_long_mode(vcpu
))
2072 msr_bitmap
= vmx_msr_bitmap_longmode
;
2074 msr_bitmap
= vmx_msr_bitmap_legacy
;
2077 vmcs_write64(MSR_BITMAP
, __pa(msr_bitmap
));
2081 * Set up the vmcs to automatically save and restore system
2082 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2083 * mode, as fiddling with msrs is very expensive.
2085 static void setup_msrs(struct vcpu_vmx
*vmx
)
2087 int save_nmsrs
, index
;
2090 #ifdef CONFIG_X86_64
2091 if (is_long_mode(&vmx
->vcpu
)) {
2092 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
2094 move_msr_up(vmx
, index
, save_nmsrs
++);
2095 index
= __find_msr_index(vmx
, MSR_LSTAR
);
2097 move_msr_up(vmx
, index
, save_nmsrs
++);
2098 index
= __find_msr_index(vmx
, MSR_CSTAR
);
2100 move_msr_up(vmx
, index
, save_nmsrs
++);
2101 index
= __find_msr_index(vmx
, MSR_TSC_AUX
);
2102 if (index
>= 0 && vmx
->rdtscp_enabled
)
2103 move_msr_up(vmx
, index
, save_nmsrs
++);
2105 * MSR_STAR is only needed on long mode guests, and only
2106 * if efer.sce is enabled.
2108 index
= __find_msr_index(vmx
, MSR_STAR
);
2109 if ((index
>= 0) && (vmx
->vcpu
.arch
.efer
& EFER_SCE
))
2110 move_msr_up(vmx
, index
, save_nmsrs
++);
2113 index
= __find_msr_index(vmx
, MSR_EFER
);
2114 if (index
>= 0 && update_transition_efer(vmx
, index
))
2115 move_msr_up(vmx
, index
, save_nmsrs
++);
2117 vmx
->save_nmsrs
= save_nmsrs
;
2119 if (cpu_has_vmx_msr_bitmap())
2120 vmx_set_msr_bitmap(&vmx
->vcpu
);
2124 * reads and returns guest's timestamp counter "register"
2125 * guest_tsc = host_tsc + tsc_offset -- 21.3
2127 static u64
guest_read_tsc(void)
2129 u64 host_tsc
, tsc_offset
;
2132 tsc_offset
= vmcs_read64(TSC_OFFSET
);
2133 return host_tsc
+ tsc_offset
;
2137 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2138 * counter, even if a nested guest (L2) is currently running.
2140 u64
vmx_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
2144 tsc_offset
= is_guest_mode(vcpu
) ?
2145 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
:
2146 vmcs_read64(TSC_OFFSET
);
2147 return host_tsc
+ tsc_offset
;
2151 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2152 * software catchup for faster rates on slower CPUs.
2154 static void vmx_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
2159 if (user_tsc_khz
> tsc_khz
) {
2160 vcpu
->arch
.tsc_catchup
= 1;
2161 vcpu
->arch
.tsc_always_catchup
= 1;
2163 WARN(1, "user requested TSC rate below hardware speed\n");
2166 static u64
vmx_read_tsc_offset(struct kvm_vcpu
*vcpu
)
2168 return vmcs_read64(TSC_OFFSET
);
2172 * writes 'offset' into guest's timestamp counter offset register
2174 static void vmx_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
2176 if (is_guest_mode(vcpu
)) {
2178 * We're here if L1 chose not to trap WRMSR to TSC. According
2179 * to the spec, this should set L1's TSC; The offset that L1
2180 * set for L2 remains unchanged, and still needs to be added
2181 * to the newly set TSC to get L2's TSC.
2183 struct vmcs12
*vmcs12
;
2184 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
= offset
;
2185 /* recalculate vmcs02.TSC_OFFSET: */
2186 vmcs12
= get_vmcs12(vcpu
);
2187 vmcs_write64(TSC_OFFSET
, offset
+
2188 (nested_cpu_has(vmcs12
, CPU_BASED_USE_TSC_OFFSETING
) ?
2189 vmcs12
->tsc_offset
: 0));
2191 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
2192 vmcs_read64(TSC_OFFSET
), offset
);
2193 vmcs_write64(TSC_OFFSET
, offset
);
2197 static void vmx_adjust_tsc_offset(struct kvm_vcpu
*vcpu
, s64 adjustment
, bool host
)
2199 u64 offset
= vmcs_read64(TSC_OFFSET
);
2201 vmcs_write64(TSC_OFFSET
, offset
+ adjustment
);
2202 if (is_guest_mode(vcpu
)) {
2203 /* Even when running L2, the adjustment needs to apply to L1 */
2204 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
+= adjustment
;
2206 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
, offset
,
2207 offset
+ adjustment
);
2210 static u64
vmx_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
2212 return target_tsc
- native_read_tsc();
2215 static bool guest_cpuid_has_vmx(struct kvm_vcpu
*vcpu
)
2217 struct kvm_cpuid_entry2
*best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
2218 return best
&& (best
->ecx
& (1 << (X86_FEATURE_VMX
& 31)));
2222 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2223 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2224 * all guests if the "nested" module option is off, and can also be disabled
2225 * for a single guest by disabling its VMX cpuid bit.
2227 static inline bool nested_vmx_allowed(struct kvm_vcpu
*vcpu
)
2229 return nested
&& guest_cpuid_has_vmx(vcpu
);
2233 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2234 * returned for the various VMX controls MSRs when nested VMX is enabled.
2235 * The same values should also be used to verify that vmcs12 control fields are
2236 * valid during nested entry from L1 to L2.
2237 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2238 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2239 * bit in the high half is on if the corresponding bit in the control field
2240 * may be on. See also vmx_control_verify().
2241 * TODO: allow these variables to be modified (downgraded) by module options
2244 static u32 nested_vmx_procbased_ctls_low
, nested_vmx_procbased_ctls_high
;
2245 static u32 nested_vmx_true_procbased_ctls_low
;
2246 static u32 nested_vmx_secondary_ctls_low
, nested_vmx_secondary_ctls_high
;
2247 static u32 nested_vmx_pinbased_ctls_low
, nested_vmx_pinbased_ctls_high
;
2248 static u32 nested_vmx_exit_ctls_low
, nested_vmx_exit_ctls_high
;
2249 static u32 nested_vmx_true_exit_ctls_low
;
2250 static u32 nested_vmx_entry_ctls_low
, nested_vmx_entry_ctls_high
;
2251 static u32 nested_vmx_true_entry_ctls_low
;
2252 static u32 nested_vmx_misc_low
, nested_vmx_misc_high
;
2253 static u32 nested_vmx_ept_caps
;
2254 static __init
void nested_vmx_setup_ctls_msrs(void)
2257 * Note that as a general rule, the high half of the MSRs (bits in
2258 * the control fields which may be 1) should be initialized by the
2259 * intersection of the underlying hardware's MSR (i.e., features which
2260 * can be supported) and the list of features we want to expose -
2261 * because they are known to be properly supported in our code.
2262 * Also, usually, the low half of the MSRs (bits which must be 1) can
2263 * be set to 0, meaning that L1 may turn off any of these bits. The
2264 * reason is that if one of these bits is necessary, it will appear
2265 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2266 * fields of vmcs01 and vmcs02, will turn these bits off - and
2267 * nested_vmx_exit_handled() will not pass related exits to L1.
2268 * These rules have exceptions below.
2271 /* pin-based controls */
2272 rdmsr(MSR_IA32_VMX_PINBASED_CTLS
,
2273 nested_vmx_pinbased_ctls_low
, nested_vmx_pinbased_ctls_high
);
2274 nested_vmx_pinbased_ctls_low
|= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
2275 nested_vmx_pinbased_ctls_high
&= PIN_BASED_EXT_INTR_MASK
|
2276 PIN_BASED_NMI_EXITING
| PIN_BASED_VIRTUAL_NMIS
;
2277 nested_vmx_pinbased_ctls_high
|= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
2278 PIN_BASED_VMX_PREEMPTION_TIMER
;
2281 rdmsr(MSR_IA32_VMX_EXIT_CTLS
,
2282 nested_vmx_exit_ctls_low
, nested_vmx_exit_ctls_high
);
2283 nested_vmx_exit_ctls_low
= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
;
2285 nested_vmx_exit_ctls_high
&=
2286 #ifdef CONFIG_X86_64
2287 VM_EXIT_HOST_ADDR_SPACE_SIZE
|
2289 VM_EXIT_LOAD_IA32_PAT
| VM_EXIT_SAVE_IA32_PAT
;
2290 nested_vmx_exit_ctls_high
|= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
|
2291 VM_EXIT_LOAD_IA32_EFER
| VM_EXIT_SAVE_IA32_EFER
|
2292 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
| VM_EXIT_ACK_INTR_ON_EXIT
;
2294 if (vmx_mpx_supported())
2295 nested_vmx_exit_ctls_high
|= VM_EXIT_CLEAR_BNDCFGS
;
2297 /* We support free control of debug control saving. */
2298 nested_vmx_true_exit_ctls_low
= nested_vmx_exit_ctls_low
&
2299 ~VM_EXIT_SAVE_DEBUG_CONTROLS
;
2301 /* entry controls */
2302 rdmsr(MSR_IA32_VMX_ENTRY_CTLS
,
2303 nested_vmx_entry_ctls_low
, nested_vmx_entry_ctls_high
);
2304 nested_vmx_entry_ctls_low
= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
;
2305 nested_vmx_entry_ctls_high
&=
2306 #ifdef CONFIG_X86_64
2307 VM_ENTRY_IA32E_MODE
|
2309 VM_ENTRY_LOAD_IA32_PAT
;
2310 nested_vmx_entry_ctls_high
|= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
|
2311 VM_ENTRY_LOAD_IA32_EFER
);
2312 if (vmx_mpx_supported())
2313 nested_vmx_entry_ctls_high
|= VM_ENTRY_LOAD_BNDCFGS
;
2315 /* We support free control of debug control loading. */
2316 nested_vmx_true_entry_ctls_low
= nested_vmx_entry_ctls_low
&
2317 ~VM_ENTRY_LOAD_DEBUG_CONTROLS
;
2319 /* cpu-based controls */
2320 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS
,
2321 nested_vmx_procbased_ctls_low
, nested_vmx_procbased_ctls_high
);
2322 nested_vmx_procbased_ctls_low
= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
2323 nested_vmx_procbased_ctls_high
&=
2324 CPU_BASED_VIRTUAL_INTR_PENDING
|
2325 CPU_BASED_VIRTUAL_NMI_PENDING
| CPU_BASED_USE_TSC_OFFSETING
|
2326 CPU_BASED_HLT_EXITING
| CPU_BASED_INVLPG_EXITING
|
2327 CPU_BASED_MWAIT_EXITING
| CPU_BASED_CR3_LOAD_EXITING
|
2328 CPU_BASED_CR3_STORE_EXITING
|
2329 #ifdef CONFIG_X86_64
2330 CPU_BASED_CR8_LOAD_EXITING
| CPU_BASED_CR8_STORE_EXITING
|
2332 CPU_BASED_MOV_DR_EXITING
| CPU_BASED_UNCOND_IO_EXITING
|
2333 CPU_BASED_USE_IO_BITMAPS
| CPU_BASED_MONITOR_EXITING
|
2334 CPU_BASED_RDPMC_EXITING
| CPU_BASED_RDTSC_EXITING
|
2335 CPU_BASED_PAUSE_EXITING
|
2336 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
2338 * We can allow some features even when not supported by the
2339 * hardware. For example, L1 can specify an MSR bitmap - and we
2340 * can use it to avoid exits to L1 - even when L0 runs L2
2341 * without MSR bitmaps.
2343 nested_vmx_procbased_ctls_high
|= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
2344 CPU_BASED_USE_MSR_BITMAPS
;
2346 /* We support free control of CR3 access interception. */
2347 nested_vmx_true_procbased_ctls_low
= nested_vmx_procbased_ctls_low
&
2348 ~(CPU_BASED_CR3_LOAD_EXITING
| CPU_BASED_CR3_STORE_EXITING
);
2350 /* secondary cpu-based controls */
2351 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2
,
2352 nested_vmx_secondary_ctls_low
, nested_vmx_secondary_ctls_high
);
2353 nested_vmx_secondary_ctls_low
= 0;
2354 nested_vmx_secondary_ctls_high
&=
2355 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
2356 SECONDARY_EXEC_UNRESTRICTED_GUEST
|
2357 SECONDARY_EXEC_WBINVD_EXITING
;
2360 /* nested EPT: emulate EPT also to L1 */
2361 nested_vmx_secondary_ctls_high
|= SECONDARY_EXEC_ENABLE_EPT
;
2362 nested_vmx_ept_caps
= VMX_EPT_PAGE_WALK_4_BIT
|
2363 VMX_EPTP_WB_BIT
| VMX_EPT_2MB_PAGE_BIT
|
2365 nested_vmx_ept_caps
&= vmx_capability
.ept
;
2367 * For nested guests, we don't do anything specific
2368 * for single context invalidation. Hence, only advertise
2369 * support for global context invalidation.
2371 nested_vmx_ept_caps
|= VMX_EPT_EXTENT_GLOBAL_BIT
;
2373 nested_vmx_ept_caps
= 0;
2375 /* miscellaneous data */
2376 rdmsr(MSR_IA32_VMX_MISC
, nested_vmx_misc_low
, nested_vmx_misc_high
);
2377 nested_vmx_misc_low
&= VMX_MISC_SAVE_EFER_LMA
;
2378 nested_vmx_misc_low
|= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
|
2379 VMX_MISC_ACTIVITY_HLT
;
2380 nested_vmx_misc_high
= 0;
2383 static inline bool vmx_control_verify(u32 control
, u32 low
, u32 high
)
2386 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2388 return ((control
& high
) | low
) == control
;
2391 static inline u64
vmx_control_msr(u32 low
, u32 high
)
2393 return low
| ((u64
)high
<< 32);
2396 /* Returns 0 on success, non-0 otherwise. */
2397 static int vmx_get_vmx_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2399 switch (msr_index
) {
2400 case MSR_IA32_VMX_BASIC
:
2402 * This MSR reports some information about VMX support. We
2403 * should return information about the VMX we emulate for the
2404 * guest, and the VMCS structure we give it - not about the
2405 * VMX support of the underlying hardware.
2407 *pdata
= VMCS12_REVISION
| VMX_BASIC_TRUE_CTLS
|
2408 ((u64
)VMCS12_SIZE
<< VMX_BASIC_VMCS_SIZE_SHIFT
) |
2409 (VMX_BASIC_MEM_TYPE_WB
<< VMX_BASIC_MEM_TYPE_SHIFT
);
2411 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
2412 case MSR_IA32_VMX_PINBASED_CTLS
:
2413 *pdata
= vmx_control_msr(nested_vmx_pinbased_ctls_low
,
2414 nested_vmx_pinbased_ctls_high
);
2416 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
2417 *pdata
= vmx_control_msr(nested_vmx_true_procbased_ctls_low
,
2418 nested_vmx_procbased_ctls_high
);
2420 case MSR_IA32_VMX_PROCBASED_CTLS
:
2421 *pdata
= vmx_control_msr(nested_vmx_procbased_ctls_low
,
2422 nested_vmx_procbased_ctls_high
);
2424 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
2425 *pdata
= vmx_control_msr(nested_vmx_true_exit_ctls_low
,
2426 nested_vmx_exit_ctls_high
);
2428 case MSR_IA32_VMX_EXIT_CTLS
:
2429 *pdata
= vmx_control_msr(nested_vmx_exit_ctls_low
,
2430 nested_vmx_exit_ctls_high
);
2432 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
2433 *pdata
= vmx_control_msr(nested_vmx_true_entry_ctls_low
,
2434 nested_vmx_entry_ctls_high
);
2436 case MSR_IA32_VMX_ENTRY_CTLS
:
2437 *pdata
= vmx_control_msr(nested_vmx_entry_ctls_low
,
2438 nested_vmx_entry_ctls_high
);
2440 case MSR_IA32_VMX_MISC
:
2441 *pdata
= vmx_control_msr(nested_vmx_misc_low
,
2442 nested_vmx_misc_high
);
2445 * These MSRs specify bits which the guest must keep fixed (on or off)
2446 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2447 * We picked the standard core2 setting.
2449 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2450 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2451 case MSR_IA32_VMX_CR0_FIXED0
:
2452 *pdata
= VMXON_CR0_ALWAYSON
;
2454 case MSR_IA32_VMX_CR0_FIXED1
:
2457 case MSR_IA32_VMX_CR4_FIXED0
:
2458 *pdata
= VMXON_CR4_ALWAYSON
;
2460 case MSR_IA32_VMX_CR4_FIXED1
:
2463 case MSR_IA32_VMX_VMCS_ENUM
:
2464 *pdata
= 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2466 case MSR_IA32_VMX_PROCBASED_CTLS2
:
2467 *pdata
= vmx_control_msr(nested_vmx_secondary_ctls_low
,
2468 nested_vmx_secondary_ctls_high
);
2470 case MSR_IA32_VMX_EPT_VPID_CAP
:
2471 /* Currently, no nested vpid support */
2472 *pdata
= nested_vmx_ept_caps
;
2482 * Reads an msr value (of 'msr_index') into 'pdata'.
2483 * Returns 0 on success, non-0 otherwise.
2484 * Assumes vcpu_load() was already called.
2486 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2489 struct shared_msr_entry
*msr
;
2492 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
2496 switch (msr_index
) {
2497 #ifdef CONFIG_X86_64
2499 data
= vmcs_readl(GUEST_FS_BASE
);
2502 data
= vmcs_readl(GUEST_GS_BASE
);
2504 case MSR_KERNEL_GS_BASE
:
2505 vmx_load_host_state(to_vmx(vcpu
));
2506 data
= to_vmx(vcpu
)->msr_guest_kernel_gs_base
;
2510 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
2512 data
= guest_read_tsc();
2514 case MSR_IA32_SYSENTER_CS
:
2515 data
= vmcs_read32(GUEST_SYSENTER_CS
);
2517 case MSR_IA32_SYSENTER_EIP
:
2518 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
2520 case MSR_IA32_SYSENTER_ESP
:
2521 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
2523 case MSR_IA32_BNDCFGS
:
2524 if (!vmx_mpx_supported())
2526 data
= vmcs_read64(GUEST_BNDCFGS
);
2528 case MSR_IA32_FEATURE_CONTROL
:
2529 if (!nested_vmx_allowed(vcpu
))
2531 data
= to_vmx(vcpu
)->nested
.msr_ia32_feature_control
;
2533 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
2534 if (!nested_vmx_allowed(vcpu
))
2536 return vmx_get_vmx_msr(vcpu
, msr_index
, pdata
);
2538 if (!to_vmx(vcpu
)->rdtscp_enabled
)
2540 /* Otherwise falls through */
2542 msr
= find_msr_entry(to_vmx(vcpu
), msr_index
);
2547 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
2554 static void vmx_leave_nested(struct kvm_vcpu
*vcpu
);
2557 * Writes msr value into into the appropriate "register".
2558 * Returns 0 on success, non-0 otherwise.
2559 * Assumes vcpu_load() was already called.
2561 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2563 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2564 struct shared_msr_entry
*msr
;
2566 u32 msr_index
= msr_info
->index
;
2567 u64 data
= msr_info
->data
;
2569 switch (msr_index
) {
2571 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2573 #ifdef CONFIG_X86_64
2575 vmx_segment_cache_clear(vmx
);
2576 vmcs_writel(GUEST_FS_BASE
, data
);
2579 vmx_segment_cache_clear(vmx
);
2580 vmcs_writel(GUEST_GS_BASE
, data
);
2582 case MSR_KERNEL_GS_BASE
:
2583 vmx_load_host_state(vmx
);
2584 vmx
->msr_guest_kernel_gs_base
= data
;
2587 case MSR_IA32_SYSENTER_CS
:
2588 vmcs_write32(GUEST_SYSENTER_CS
, data
);
2590 case MSR_IA32_SYSENTER_EIP
:
2591 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
2593 case MSR_IA32_SYSENTER_ESP
:
2594 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
2596 case MSR_IA32_BNDCFGS
:
2597 if (!vmx_mpx_supported())
2599 vmcs_write64(GUEST_BNDCFGS
, data
);
2602 kvm_write_tsc(vcpu
, msr_info
);
2604 case MSR_IA32_CR_PAT
:
2605 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
2606 vmcs_write64(GUEST_IA32_PAT
, data
);
2607 vcpu
->arch
.pat
= data
;
2610 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2612 case MSR_IA32_TSC_ADJUST
:
2613 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2615 case MSR_IA32_FEATURE_CONTROL
:
2616 if (!nested_vmx_allowed(vcpu
) ||
2617 (to_vmx(vcpu
)->nested
.msr_ia32_feature_control
&
2618 FEATURE_CONTROL_LOCKED
&& !msr_info
->host_initiated
))
2620 vmx
->nested
.msr_ia32_feature_control
= data
;
2621 if (msr_info
->host_initiated
&& data
== 0)
2622 vmx_leave_nested(vcpu
);
2624 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
2625 return 1; /* they are read-only */
2627 if (!vmx
->rdtscp_enabled
)
2629 /* Check reserved bit, higher 32 bits should be zero */
2630 if ((data
>> 32) != 0)
2632 /* Otherwise falls through */
2634 msr
= find_msr_entry(vmx
, msr_index
);
2637 if (msr
- vmx
->guest_msrs
< vmx
->save_nmsrs
) {
2639 kvm_set_shared_msr(msr
->index
, msr
->data
,
2645 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2651 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
2653 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
2656 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
2659 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
2661 case VCPU_EXREG_PDPTR
:
2663 ept_save_pdptrs(vcpu
);
2670 static __init
int cpu_has_kvm_support(void)
2672 return cpu_has_vmx();
2675 static __init
int vmx_disabled_by_bios(void)
2679 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
2680 if (msr
& FEATURE_CONTROL_LOCKED
) {
2681 /* launched w/ TXT and VMX disabled */
2682 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
2685 /* launched w/o TXT and VMX only enabled w/ TXT */
2686 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
2687 && (msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
2688 && !tboot_enabled()) {
2689 printk(KERN_WARNING
"kvm: disable TXT in the BIOS or "
2690 "activate TXT before enabling KVM\n");
2693 /* launched w/o TXT and VMX disabled */
2694 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
2695 && !tboot_enabled())
2702 static void kvm_cpu_vmxon(u64 addr
)
2704 asm volatile (ASM_VMX_VMXON_RAX
2705 : : "a"(&addr
), "m"(addr
)
2709 static int hardware_enable(void *garbage
)
2711 int cpu
= raw_smp_processor_id();
2712 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
2715 if (read_cr4() & X86_CR4_VMXE
)
2718 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu
, cpu
));
2721 * Now we can enable the vmclear operation in kdump
2722 * since the loaded_vmcss_on_cpu list on this cpu
2723 * has been initialized.
2725 * Though the cpu is not in VMX operation now, there
2726 * is no problem to enable the vmclear operation
2727 * for the loaded_vmcss_on_cpu list is empty!
2729 crash_enable_local_vmclear(cpu
);
2731 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
2733 test_bits
= FEATURE_CONTROL_LOCKED
;
2734 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
2735 if (tboot_enabled())
2736 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
;
2738 if ((old
& test_bits
) != test_bits
) {
2739 /* enable and lock */
2740 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
| test_bits
);
2742 write_cr4(read_cr4() | X86_CR4_VMXE
); /* FIXME: not cpu hotplug safe */
2744 if (vmm_exclusive
) {
2745 kvm_cpu_vmxon(phys_addr
);
2749 native_store_gdt(&__get_cpu_var(host_gdt
));
2754 static void vmclear_local_loaded_vmcss(void)
2756 int cpu
= raw_smp_processor_id();
2757 struct loaded_vmcs
*v
, *n
;
2759 list_for_each_entry_safe(v
, n
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
2760 loaded_vmcss_on_cpu_link
)
2761 __loaded_vmcs_clear(v
);
2765 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2768 static void kvm_cpu_vmxoff(void)
2770 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
2773 static void hardware_disable(void *garbage
)
2775 if (vmm_exclusive
) {
2776 vmclear_local_loaded_vmcss();
2779 write_cr4(read_cr4() & ~X86_CR4_VMXE
);
2782 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
2783 u32 msr
, u32
*result
)
2785 u32 vmx_msr_low
, vmx_msr_high
;
2786 u32 ctl
= ctl_min
| ctl_opt
;
2788 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
2790 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
2791 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
2793 /* Ensure minimum (required) set of control bits are supported. */
2801 static __init
bool allow_1_setting(u32 msr
, u32 ctl
)
2803 u32 vmx_msr_low
, vmx_msr_high
;
2805 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
2806 return vmx_msr_high
& ctl
;
2809 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
2811 u32 vmx_msr_low
, vmx_msr_high
;
2812 u32 min
, opt
, min2
, opt2
;
2813 u32 _pin_based_exec_control
= 0;
2814 u32 _cpu_based_exec_control
= 0;
2815 u32 _cpu_based_2nd_exec_control
= 0;
2816 u32 _vmexit_control
= 0;
2817 u32 _vmentry_control
= 0;
2819 min
= CPU_BASED_HLT_EXITING
|
2820 #ifdef CONFIG_X86_64
2821 CPU_BASED_CR8_LOAD_EXITING
|
2822 CPU_BASED_CR8_STORE_EXITING
|
2824 CPU_BASED_CR3_LOAD_EXITING
|
2825 CPU_BASED_CR3_STORE_EXITING
|
2826 CPU_BASED_USE_IO_BITMAPS
|
2827 CPU_BASED_MOV_DR_EXITING
|
2828 CPU_BASED_USE_TSC_OFFSETING
|
2829 CPU_BASED_MWAIT_EXITING
|
2830 CPU_BASED_MONITOR_EXITING
|
2831 CPU_BASED_INVLPG_EXITING
|
2832 CPU_BASED_RDPMC_EXITING
;
2834 opt
= CPU_BASED_TPR_SHADOW
|
2835 CPU_BASED_USE_MSR_BITMAPS
|
2836 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
2837 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
2838 &_cpu_based_exec_control
) < 0)
2840 #ifdef CONFIG_X86_64
2841 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
2842 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
2843 ~CPU_BASED_CR8_STORE_EXITING
;
2845 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
2847 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
2848 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
2849 SECONDARY_EXEC_WBINVD_EXITING
|
2850 SECONDARY_EXEC_ENABLE_VPID
|
2851 SECONDARY_EXEC_ENABLE_EPT
|
2852 SECONDARY_EXEC_UNRESTRICTED_GUEST
|
2853 SECONDARY_EXEC_PAUSE_LOOP_EXITING
|
2854 SECONDARY_EXEC_RDTSCP
|
2855 SECONDARY_EXEC_ENABLE_INVPCID
|
2856 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
2857 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
2858 SECONDARY_EXEC_SHADOW_VMCS
;
2859 if (adjust_vmx_controls(min2
, opt2
,
2860 MSR_IA32_VMX_PROCBASED_CTLS2
,
2861 &_cpu_based_2nd_exec_control
) < 0)
2864 #ifndef CONFIG_X86_64
2865 if (!(_cpu_based_2nd_exec_control
&
2866 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
2867 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
2870 if (!(_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
2871 _cpu_based_2nd_exec_control
&= ~(
2872 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
2873 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
2874 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
2876 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
2877 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2879 _cpu_based_exec_control
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
2880 CPU_BASED_CR3_STORE_EXITING
|
2881 CPU_BASED_INVLPG_EXITING
);
2882 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
2883 vmx_capability
.ept
, vmx_capability
.vpid
);
2886 min
= VM_EXIT_SAVE_DEBUG_CONTROLS
;
2887 #ifdef CONFIG_X86_64
2888 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
2890 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
|
2891 VM_EXIT_ACK_INTR_ON_EXIT
| VM_EXIT_CLEAR_BNDCFGS
;
2892 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
2893 &_vmexit_control
) < 0)
2896 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
2897 opt
= PIN_BASED_VIRTUAL_NMIS
| PIN_BASED_POSTED_INTR
;
2898 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
2899 &_pin_based_exec_control
) < 0)
2902 if (!(_cpu_based_2nd_exec_control
&
2903 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
) ||
2904 !(_vmexit_control
& VM_EXIT_ACK_INTR_ON_EXIT
))
2905 _pin_based_exec_control
&= ~PIN_BASED_POSTED_INTR
;
2907 min
= VM_ENTRY_LOAD_DEBUG_CONTROLS
;
2908 opt
= VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_LOAD_BNDCFGS
;
2909 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
2910 &_vmentry_control
) < 0)
2913 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
2915 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2916 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
2919 #ifdef CONFIG_X86_64
2920 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2921 if (vmx_msr_high
& (1u<<16))
2925 /* Require Write-Back (WB) memory type for VMCS accesses. */
2926 if (((vmx_msr_high
>> 18) & 15) != 6)
2929 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
2930 vmcs_conf
->order
= get_order(vmcs_config
.size
);
2931 vmcs_conf
->revision_id
= vmx_msr_low
;
2933 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
2934 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
2935 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
2936 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
2937 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
2939 cpu_has_load_ia32_efer
=
2940 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
2941 VM_ENTRY_LOAD_IA32_EFER
)
2942 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
2943 VM_EXIT_LOAD_IA32_EFER
);
2945 cpu_has_load_perf_global_ctrl
=
2946 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
2947 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
2948 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
2949 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
2952 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2953 * but due to arrata below it can't be used. Workaround is to use
2954 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2956 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2961 * BC86,AAY89,BD102 (model 44)
2965 if (cpu_has_load_perf_global_ctrl
&& boot_cpu_data
.x86
== 0x6) {
2966 switch (boot_cpu_data
.x86_model
) {
2972 cpu_has_load_perf_global_ctrl
= false;
2973 printk_once(KERN_WARNING
"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2974 "does not work properly. Using workaround\n");
2984 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
2986 int node
= cpu_to_node(cpu
);
2990 pages
= alloc_pages_exact_node(node
, GFP_KERNEL
, vmcs_config
.order
);
2993 vmcs
= page_address(pages
);
2994 memset(vmcs
, 0, vmcs_config
.size
);
2995 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
2999 static struct vmcs
*alloc_vmcs(void)
3001 return alloc_vmcs_cpu(raw_smp_processor_id());
3004 static void free_vmcs(struct vmcs
*vmcs
)
3006 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
3010 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3012 static void free_loaded_vmcs(struct loaded_vmcs
*loaded_vmcs
)
3014 if (!loaded_vmcs
->vmcs
)
3016 loaded_vmcs_clear(loaded_vmcs
);
3017 free_vmcs(loaded_vmcs
->vmcs
);
3018 loaded_vmcs
->vmcs
= NULL
;
3021 static void free_kvm_area(void)
3025 for_each_possible_cpu(cpu
) {
3026 free_vmcs(per_cpu(vmxarea
, cpu
));
3027 per_cpu(vmxarea
, cpu
) = NULL
;
3031 static void init_vmcs_shadow_fields(void)
3035 /* No checks for read only fields yet */
3037 for (i
= j
= 0; i
< max_shadow_read_write_fields
; i
++) {
3038 switch (shadow_read_write_fields
[i
]) {
3040 if (!vmx_mpx_supported())
3048 shadow_read_write_fields
[j
] =
3049 shadow_read_write_fields
[i
];
3052 max_shadow_read_write_fields
= j
;
3054 /* shadowed fields guest access without vmexit */
3055 for (i
= 0; i
< max_shadow_read_write_fields
; i
++) {
3056 clear_bit(shadow_read_write_fields
[i
],
3057 vmx_vmwrite_bitmap
);
3058 clear_bit(shadow_read_write_fields
[i
],
3061 for (i
= 0; i
< max_shadow_read_only_fields
; i
++)
3062 clear_bit(shadow_read_only_fields
[i
],
3066 static __init
int alloc_kvm_area(void)
3070 for_each_possible_cpu(cpu
) {
3073 vmcs
= alloc_vmcs_cpu(cpu
);
3079 per_cpu(vmxarea
, cpu
) = vmcs
;
3084 static __init
int hardware_setup(void)
3086 if (setup_vmcs_config(&vmcs_config
) < 0)
3089 if (boot_cpu_has(X86_FEATURE_NX
))
3090 kvm_enable_efer_bits(EFER_NX
);
3092 if (!cpu_has_vmx_vpid())
3094 if (!cpu_has_vmx_shadow_vmcs())
3095 enable_shadow_vmcs
= 0;
3096 if (enable_shadow_vmcs
)
3097 init_vmcs_shadow_fields();
3099 if (!cpu_has_vmx_ept() ||
3100 !cpu_has_vmx_ept_4levels()) {
3102 enable_unrestricted_guest
= 0;
3103 enable_ept_ad_bits
= 0;
3106 if (!cpu_has_vmx_ept_ad_bits())
3107 enable_ept_ad_bits
= 0;
3109 if (!cpu_has_vmx_unrestricted_guest())
3110 enable_unrestricted_guest
= 0;
3112 if (!cpu_has_vmx_flexpriority())
3113 flexpriority_enabled
= 0;
3115 if (!cpu_has_vmx_tpr_shadow())
3116 kvm_x86_ops
->update_cr8_intercept
= NULL
;
3118 if (enable_ept
&& !cpu_has_vmx_ept_2m_page())
3119 kvm_disable_largepages();
3121 if (!cpu_has_vmx_ple())
3124 if (!cpu_has_vmx_apicv())
3128 kvm_x86_ops
->update_cr8_intercept
= NULL
;
3130 kvm_x86_ops
->hwapic_irr_update
= NULL
;
3131 kvm_x86_ops
->deliver_posted_interrupt
= NULL
;
3132 kvm_x86_ops
->sync_pir_to_irr
= vmx_sync_pir_to_irr_dummy
;
3136 nested_vmx_setup_ctls_msrs();
3138 return alloc_kvm_area();
3141 static __exit
void hardware_unsetup(void)
3146 static bool emulation_required(struct kvm_vcpu
*vcpu
)
3148 return emulate_invalid_guest_state
&& !guest_state_valid(vcpu
);
3151 static void fix_pmode_seg(struct kvm_vcpu
*vcpu
, int seg
,
3152 struct kvm_segment
*save
)
3154 if (!emulate_invalid_guest_state
) {
3156 * CS and SS RPL should be equal during guest entry according
3157 * to VMX spec, but in reality it is not always so. Since vcpu
3158 * is in the middle of the transition from real mode to
3159 * protected mode it is safe to assume that RPL 0 is a good
3162 if (seg
== VCPU_SREG_CS
|| seg
== VCPU_SREG_SS
)
3163 save
->selector
&= ~SELECTOR_RPL_MASK
;
3164 save
->dpl
= save
->selector
& SELECTOR_RPL_MASK
;
3167 vmx_set_segment(vcpu
, save
, seg
);
3170 static void enter_pmode(struct kvm_vcpu
*vcpu
)
3172 unsigned long flags
;
3173 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3176 * Update real mode segment cache. It may be not up-to-date if sement
3177 * register was written while vcpu was in a guest mode.
3179 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
3180 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
3181 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
3182 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
3183 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
3184 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
3186 vmx
->rmode
.vm86_active
= 0;
3188 vmx_segment_cache_clear(vmx
);
3190 vmx_set_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
3192 flags
= vmcs_readl(GUEST_RFLAGS
);
3193 flags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
3194 flags
|= vmx
->rmode
.save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
3195 vmcs_writel(GUEST_RFLAGS
, flags
);
3197 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
3198 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
3200 update_exception_bitmap(vcpu
);
3202 fix_pmode_seg(vcpu
, VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
3203 fix_pmode_seg(vcpu
, VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
3204 fix_pmode_seg(vcpu
, VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
3205 fix_pmode_seg(vcpu
, VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
3206 fix_pmode_seg(vcpu
, VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
3207 fix_pmode_seg(vcpu
, VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
3210 static void fix_rmode_seg(int seg
, struct kvm_segment
*save
)
3212 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3213 struct kvm_segment var
= *save
;
3216 if (seg
== VCPU_SREG_CS
)
3219 if (!emulate_invalid_guest_state
) {
3220 var
.selector
= var
.base
>> 4;
3221 var
.base
= var
.base
& 0xffff0;
3231 if (save
->base
& 0xf)
3232 printk_once(KERN_WARNING
"kvm: segment base is not "
3233 "paragraph aligned when entering "
3234 "protected mode (seg=%d)", seg
);
3237 vmcs_write16(sf
->selector
, var
.selector
);
3238 vmcs_write32(sf
->base
, var
.base
);
3239 vmcs_write32(sf
->limit
, var
.limit
);
3240 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(&var
));
3243 static void enter_rmode(struct kvm_vcpu
*vcpu
)
3245 unsigned long flags
;
3246 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3248 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
3249 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
3250 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
3251 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
3252 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
3253 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
3254 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
3256 vmx
->rmode
.vm86_active
= 1;
3259 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3260 * vcpu. Warn the user that an update is overdue.
3262 if (!vcpu
->kvm
->arch
.tss_addr
)
3263 printk_once(KERN_WARNING
"kvm: KVM_SET_TSS_ADDR need to be "
3264 "called before entering vcpu\n");
3266 vmx_segment_cache_clear(vmx
);
3268 vmcs_writel(GUEST_TR_BASE
, vcpu
->kvm
->arch
.tss_addr
);
3269 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
3270 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
3272 flags
= vmcs_readl(GUEST_RFLAGS
);
3273 vmx
->rmode
.save_rflags
= flags
;
3275 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
3277 vmcs_writel(GUEST_RFLAGS
, flags
);
3278 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
3279 update_exception_bitmap(vcpu
);
3281 fix_rmode_seg(VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
3282 fix_rmode_seg(VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
3283 fix_rmode_seg(VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
3284 fix_rmode_seg(VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
3285 fix_rmode_seg(VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
3286 fix_rmode_seg(VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
3288 kvm_mmu_reset_context(vcpu
);
3291 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
3293 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3294 struct shared_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
3300 * Force kernel_gs_base reloading before EFER changes, as control
3301 * of this msr depends on is_long_mode().
3303 vmx_load_host_state(to_vmx(vcpu
));
3304 vcpu
->arch
.efer
= efer
;
3305 if (efer
& EFER_LMA
) {
3306 vm_entry_controls_setbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
3309 vm_entry_controls_clearbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
3311 msr
->data
= efer
& ~EFER_LME
;
3316 #ifdef CONFIG_X86_64
3318 static void enter_lmode(struct kvm_vcpu
*vcpu
)
3322 vmx_segment_cache_clear(to_vmx(vcpu
));
3324 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
3325 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
3326 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3328 vmcs_write32(GUEST_TR_AR_BYTES
,
3329 (guest_tr_ar
& ~AR_TYPE_MASK
)
3330 | AR_TYPE_BUSY_64_TSS
);
3332 vmx_set_efer(vcpu
, vcpu
->arch
.efer
| EFER_LMA
);
3335 static void exit_lmode(struct kvm_vcpu
*vcpu
)
3337 vm_entry_controls_clearbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
3338 vmx_set_efer(vcpu
, vcpu
->arch
.efer
& ~EFER_LMA
);
3343 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
3345 vpid_sync_context(to_vmx(vcpu
));
3347 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3349 ept_sync_context(construct_eptp(vcpu
->arch
.mmu
.root_hpa
));
3353 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
3355 ulong cr0_guest_owned_bits
= vcpu
->arch
.cr0_guest_owned_bits
;
3357 vcpu
->arch
.cr0
&= ~cr0_guest_owned_bits
;
3358 vcpu
->arch
.cr0
|= vmcs_readl(GUEST_CR0
) & cr0_guest_owned_bits
;
3361 static void vmx_decache_cr3(struct kvm_vcpu
*vcpu
)
3363 if (enable_ept
&& is_paging(vcpu
))
3364 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
3365 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
3368 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
3370 ulong cr4_guest_owned_bits
= vcpu
->arch
.cr4_guest_owned_bits
;
3372 vcpu
->arch
.cr4
&= ~cr4_guest_owned_bits
;
3373 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & cr4_guest_owned_bits
;
3376 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
3378 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
3380 if (!test_bit(VCPU_EXREG_PDPTR
,
3381 (unsigned long *)&vcpu
->arch
.regs_dirty
))
3384 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
3385 vmcs_write64(GUEST_PDPTR0
, mmu
->pdptrs
[0]);
3386 vmcs_write64(GUEST_PDPTR1
, mmu
->pdptrs
[1]);
3387 vmcs_write64(GUEST_PDPTR2
, mmu
->pdptrs
[2]);
3388 vmcs_write64(GUEST_PDPTR3
, mmu
->pdptrs
[3]);
3392 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
3394 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
3396 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
3397 mmu
->pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
3398 mmu
->pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
3399 mmu
->pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
3400 mmu
->pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
3403 __set_bit(VCPU_EXREG_PDPTR
,
3404 (unsigned long *)&vcpu
->arch
.regs_avail
);
3405 __set_bit(VCPU_EXREG_PDPTR
,
3406 (unsigned long *)&vcpu
->arch
.regs_dirty
);
3409 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
3411 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
3413 struct kvm_vcpu
*vcpu
)
3415 if (!test_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
))
3416 vmx_decache_cr3(vcpu
);
3417 if (!(cr0
& X86_CR0_PG
)) {
3418 /* From paging/starting to nonpaging */
3419 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
3420 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
3421 (CPU_BASED_CR3_LOAD_EXITING
|
3422 CPU_BASED_CR3_STORE_EXITING
));
3423 vcpu
->arch
.cr0
= cr0
;
3424 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
3425 } else if (!is_paging(vcpu
)) {
3426 /* From nonpaging to paging */
3427 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
3428 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
3429 ~(CPU_BASED_CR3_LOAD_EXITING
|
3430 CPU_BASED_CR3_STORE_EXITING
));
3431 vcpu
->arch
.cr0
= cr0
;
3432 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
3435 if (!(cr0
& X86_CR0_WP
))
3436 *hw_cr0
&= ~X86_CR0_WP
;
3439 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
3441 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3442 unsigned long hw_cr0
;
3444 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
);
3445 if (enable_unrestricted_guest
)
3446 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
3448 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON
;
3450 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
3453 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
3457 #ifdef CONFIG_X86_64
3458 if (vcpu
->arch
.efer
& EFER_LME
) {
3459 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
3461 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
3467 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
3469 if (!vcpu
->fpu_active
)
3470 hw_cr0
|= X86_CR0_TS
| X86_CR0_MP
;
3472 vmcs_writel(CR0_READ_SHADOW
, cr0
);
3473 vmcs_writel(GUEST_CR0
, hw_cr0
);
3474 vcpu
->arch
.cr0
= cr0
;
3476 /* depends on vcpu->arch.cr0 to be set to a new value */
3477 vmx
->emulation_required
= emulation_required(vcpu
);
3480 static u64
construct_eptp(unsigned long root_hpa
)
3484 /* TODO write the value reading from MSR */
3485 eptp
= VMX_EPT_DEFAULT_MT
|
3486 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
3487 if (enable_ept_ad_bits
)
3488 eptp
|= VMX_EPT_AD_ENABLE_BIT
;
3489 eptp
|= (root_hpa
& PAGE_MASK
);
3494 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
3496 unsigned long guest_cr3
;
3501 eptp
= construct_eptp(cr3
);
3502 vmcs_write64(EPT_POINTER
, eptp
);
3503 if (is_paging(vcpu
) || is_guest_mode(vcpu
))
3504 guest_cr3
= kvm_read_cr3(vcpu
);
3506 guest_cr3
= vcpu
->kvm
->arch
.ept_identity_map_addr
;
3507 ept_load_pdptrs(vcpu
);
3510 vmx_flush_tlb(vcpu
);
3511 vmcs_writel(GUEST_CR3
, guest_cr3
);
3514 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
3516 unsigned long hw_cr4
= cr4
| (to_vmx(vcpu
)->rmode
.vm86_active
?
3517 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
3519 if (cr4
& X86_CR4_VMXE
) {
3521 * To use VMXON (and later other VMX instructions), a guest
3522 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3523 * So basically the check on whether to allow nested VMX
3526 if (!nested_vmx_allowed(vcpu
))
3529 if (to_vmx(vcpu
)->nested
.vmxon
&&
3530 ((cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
))
3533 vcpu
->arch
.cr4
= cr4
;
3535 if (!is_paging(vcpu
)) {
3536 hw_cr4
&= ~X86_CR4_PAE
;
3537 hw_cr4
|= X86_CR4_PSE
;
3539 * SMEP/SMAP is disabled if CPU is in non-paging mode
3540 * in hardware. However KVM always uses paging mode to
3541 * emulate guest non-paging mode with TDP.
3542 * To emulate this behavior, SMEP/SMAP needs to be
3543 * manually disabled when guest switches to non-paging
3546 hw_cr4
&= ~(X86_CR4_SMEP
| X86_CR4_SMAP
);
3547 } else if (!(cr4
& X86_CR4_PAE
)) {
3548 hw_cr4
&= ~X86_CR4_PAE
;
3552 vmcs_writel(CR4_READ_SHADOW
, cr4
);
3553 vmcs_writel(GUEST_CR4
, hw_cr4
);
3557 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
3558 struct kvm_segment
*var
, int seg
)
3560 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3563 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
3564 *var
= vmx
->rmode
.segs
[seg
];
3565 if (seg
== VCPU_SREG_TR
3566 || var
->selector
== vmx_read_guest_seg_selector(vmx
, seg
))
3568 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
3569 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
3572 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
3573 var
->limit
= vmx_read_guest_seg_limit(vmx
, seg
);
3574 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
3575 ar
= vmx_read_guest_seg_ar(vmx
, seg
);
3576 var
->unusable
= (ar
>> 16) & 1;
3577 var
->type
= ar
& 15;
3578 var
->s
= (ar
>> 4) & 1;
3579 var
->dpl
= (ar
>> 5) & 3;
3581 * Some userspaces do not preserve unusable property. Since usable
3582 * segment has to be present according to VMX spec we can use present
3583 * property to amend userspace bug by making unusable segment always
3584 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3585 * segment as unusable.
3587 var
->present
= !var
->unusable
;
3588 var
->avl
= (ar
>> 12) & 1;
3589 var
->l
= (ar
>> 13) & 1;
3590 var
->db
= (ar
>> 14) & 1;
3591 var
->g
= (ar
>> 15) & 1;
3594 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
3596 struct kvm_segment s
;
3598 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
3599 vmx_get_segment(vcpu
, &s
, seg
);
3602 return vmx_read_guest_seg_base(to_vmx(vcpu
), seg
);
3605 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
3607 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3609 if (unlikely(vmx
->rmode
.vm86_active
))
3612 int ar
= vmx_read_guest_seg_ar(vmx
, VCPU_SREG_SS
);
3617 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
3621 if (var
->unusable
|| !var
->present
)
3624 ar
= var
->type
& 15;
3625 ar
|= (var
->s
& 1) << 4;
3626 ar
|= (var
->dpl
& 3) << 5;
3627 ar
|= (var
->present
& 1) << 7;
3628 ar
|= (var
->avl
& 1) << 12;
3629 ar
|= (var
->l
& 1) << 13;
3630 ar
|= (var
->db
& 1) << 14;
3631 ar
|= (var
->g
& 1) << 15;
3637 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
3638 struct kvm_segment
*var
, int seg
)
3640 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3641 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3643 vmx_segment_cache_clear(vmx
);
3645 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
3646 vmx
->rmode
.segs
[seg
] = *var
;
3647 if (seg
== VCPU_SREG_TR
)
3648 vmcs_write16(sf
->selector
, var
->selector
);
3650 fix_rmode_seg(seg
, &vmx
->rmode
.segs
[seg
]);
3654 vmcs_writel(sf
->base
, var
->base
);
3655 vmcs_write32(sf
->limit
, var
->limit
);
3656 vmcs_write16(sf
->selector
, var
->selector
);
3659 * Fix the "Accessed" bit in AR field of segment registers for older
3661 * IA32 arch specifies that at the time of processor reset the
3662 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3663 * is setting it to 0 in the userland code. This causes invalid guest
3664 * state vmexit when "unrestricted guest" mode is turned on.
3665 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3666 * tree. Newer qemu binaries with that qemu fix would not need this
3669 if (enable_unrestricted_guest
&& (seg
!= VCPU_SREG_LDTR
))
3670 var
->type
|= 0x1; /* Accessed */
3672 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(var
));
3675 vmx
->emulation_required
|= emulation_required(vcpu
);
3678 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3680 u32 ar
= vmx_read_guest_seg_ar(to_vmx(vcpu
), VCPU_SREG_CS
);
3682 *db
= (ar
>> 14) & 1;
3683 *l
= (ar
>> 13) & 1;
3686 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3688 dt
->size
= vmcs_read32(GUEST_IDTR_LIMIT
);
3689 dt
->address
= vmcs_readl(GUEST_IDTR_BASE
);
3692 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3694 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->size
);
3695 vmcs_writel(GUEST_IDTR_BASE
, dt
->address
);
3698 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3700 dt
->size
= vmcs_read32(GUEST_GDTR_LIMIT
);
3701 dt
->address
= vmcs_readl(GUEST_GDTR_BASE
);
3704 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3706 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->size
);
3707 vmcs_writel(GUEST_GDTR_BASE
, dt
->address
);
3710 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
3712 struct kvm_segment var
;
3715 vmx_get_segment(vcpu
, &var
, seg
);
3717 if (seg
== VCPU_SREG_CS
)
3719 ar
= vmx_segment_access_rights(&var
);
3721 if (var
.base
!= (var
.selector
<< 4))
3723 if (var
.limit
!= 0xffff)
3731 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
3733 struct kvm_segment cs
;
3734 unsigned int cs_rpl
;
3736 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3737 cs_rpl
= cs
.selector
& SELECTOR_RPL_MASK
;
3741 if (~cs
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_ACCESSES_MASK
))
3745 if (cs
.type
& AR_TYPE_WRITEABLE_MASK
) {
3746 if (cs
.dpl
> cs_rpl
)
3749 if (cs
.dpl
!= cs_rpl
)
3755 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3759 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
3761 struct kvm_segment ss
;
3762 unsigned int ss_rpl
;
3764 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
3765 ss_rpl
= ss
.selector
& SELECTOR_RPL_MASK
;
3769 if (ss
.type
!= 3 && ss
.type
!= 7)
3773 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
3781 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
3783 struct kvm_segment var
;
3786 vmx_get_segment(vcpu
, &var
, seg
);
3787 rpl
= var
.selector
& SELECTOR_RPL_MASK
;
3795 if (~var
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_WRITEABLE_MASK
)) {
3796 if (var
.dpl
< rpl
) /* DPL < RPL */
3800 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3806 static bool tr_valid(struct kvm_vcpu
*vcpu
)
3808 struct kvm_segment tr
;
3810 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
3814 if (tr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
3816 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
3824 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
3826 struct kvm_segment ldtr
;
3828 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
3832 if (ldtr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
3842 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
3844 struct kvm_segment cs
, ss
;
3846 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3847 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
3849 return ((cs
.selector
& SELECTOR_RPL_MASK
) ==
3850 (ss
.selector
& SELECTOR_RPL_MASK
));
3854 * Check if guest state is valid. Returns true if valid, false if
3856 * We assume that registers are always usable
3858 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
3860 if (enable_unrestricted_guest
)
3863 /* real mode guest state checks */
3864 if (!is_protmode(vcpu
) || (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
3865 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
3867 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
3869 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
3871 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
3873 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
3875 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
3878 /* protected mode guest state checks */
3879 if (!cs_ss_rpl_check(vcpu
))
3881 if (!code_segment_valid(vcpu
))
3883 if (!stack_segment_valid(vcpu
))
3885 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
3887 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
3889 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
3891 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
3893 if (!tr_valid(vcpu
))
3895 if (!ldtr_valid(vcpu
))
3899 * - Add checks on RIP
3900 * - Add checks on RFLAGS
3906 static int init_rmode_tss(struct kvm
*kvm
)
3910 int r
, idx
, ret
= 0;
3912 idx
= srcu_read_lock(&kvm
->srcu
);
3913 fn
= kvm
->arch
.tss_addr
>> PAGE_SHIFT
;
3914 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
3917 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
3918 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
3919 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
3922 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
3925 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
3929 r
= kvm_write_guest_page(kvm
, fn
, &data
,
3930 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
3937 srcu_read_unlock(&kvm
->srcu
, idx
);
3941 static int init_rmode_identity_map(struct kvm
*kvm
)
3944 pfn_t identity_map_pfn
;
3949 if (unlikely(!kvm
->arch
.ept_identity_pagetable
)) {
3950 printk(KERN_ERR
"EPT: identity-mapping pagetable "
3951 "haven't been allocated!\n");
3954 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
3957 identity_map_pfn
= kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
;
3958 idx
= srcu_read_lock(&kvm
->srcu
);
3959 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
3962 /* Set up identity-mapping pagetable for EPT in real mode */
3963 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
3964 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
3965 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
3966 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
3967 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
3971 kvm
->arch
.ept_identity_pagetable_done
= true;
3974 srcu_read_unlock(&kvm
->srcu
, idx
);
3978 static void seg_setup(int seg
)
3980 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3983 vmcs_write16(sf
->selector
, 0);
3984 vmcs_writel(sf
->base
, 0);
3985 vmcs_write32(sf
->limit
, 0xffff);
3987 if (seg
== VCPU_SREG_CS
)
3988 ar
|= 0x08; /* code segment */
3990 vmcs_write32(sf
->ar_bytes
, ar
);
3993 static int alloc_apic_access_page(struct kvm
*kvm
)
3996 struct kvm_userspace_memory_region kvm_userspace_mem
;
3999 mutex_lock(&kvm
->slots_lock
);
4000 if (kvm
->arch
.apic_access_page
)
4002 kvm_userspace_mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
4003 kvm_userspace_mem
.flags
= 0;
4004 kvm_userspace_mem
.guest_phys_addr
= 0xfee00000ULL
;
4005 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
4006 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
);
4010 page
= gfn_to_page(kvm
, 0xfee00);
4011 if (is_error_page(page
)) {
4016 kvm
->arch
.apic_access_page
= page
;
4018 mutex_unlock(&kvm
->slots_lock
);
4022 static int alloc_identity_pagetable(struct kvm
*kvm
)
4025 struct kvm_userspace_memory_region kvm_userspace_mem
;
4028 mutex_lock(&kvm
->slots_lock
);
4029 if (kvm
->arch
.ept_identity_pagetable
)
4031 kvm_userspace_mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
4032 kvm_userspace_mem
.flags
= 0;
4033 kvm_userspace_mem
.guest_phys_addr
=
4034 kvm
->arch
.ept_identity_map_addr
;
4035 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
4036 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
);
4040 page
= gfn_to_page(kvm
, kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
);
4041 if (is_error_page(page
)) {
4046 kvm
->arch
.ept_identity_pagetable
= page
;
4048 mutex_unlock(&kvm
->slots_lock
);
4052 static void allocate_vpid(struct vcpu_vmx
*vmx
)
4059 spin_lock(&vmx_vpid_lock
);
4060 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
4061 if (vpid
< VMX_NR_VPIDS
) {
4063 __set_bit(vpid
, vmx_vpid_bitmap
);
4065 spin_unlock(&vmx_vpid_lock
);
4068 static void free_vpid(struct vcpu_vmx
*vmx
)
4072 spin_lock(&vmx_vpid_lock
);
4074 __clear_bit(vmx
->vpid
, vmx_vpid_bitmap
);
4075 spin_unlock(&vmx_vpid_lock
);
4078 #define MSR_TYPE_R 1
4079 #define MSR_TYPE_W 2
4080 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
,
4083 int f
= sizeof(unsigned long);
4085 if (!cpu_has_vmx_msr_bitmap())
4089 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4090 * have the write-low and read-high bitmap offsets the wrong way round.
4091 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4093 if (msr
<= 0x1fff) {
4094 if (type
& MSR_TYPE_R
)
4096 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
);
4098 if (type
& MSR_TYPE_W
)
4100 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
);
4102 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
4104 if (type
& MSR_TYPE_R
)
4106 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
);
4108 if (type
& MSR_TYPE_W
)
4110 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
);
4115 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap
,
4118 int f
= sizeof(unsigned long);
4120 if (!cpu_has_vmx_msr_bitmap())
4124 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4125 * have the write-low and read-high bitmap offsets the wrong way round.
4126 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4128 if (msr
<= 0x1fff) {
4129 if (type
& MSR_TYPE_R
)
4131 __set_bit(msr
, msr_bitmap
+ 0x000 / f
);
4133 if (type
& MSR_TYPE_W
)
4135 __set_bit(msr
, msr_bitmap
+ 0x800 / f
);
4137 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
4139 if (type
& MSR_TYPE_R
)
4141 __set_bit(msr
, msr_bitmap
+ 0x400 / f
);
4143 if (type
& MSR_TYPE_W
)
4145 __set_bit(msr
, msr_bitmap
+ 0xc00 / f
);
4150 static void vmx_disable_intercept_for_msr(u32 msr
, bool longmode_only
)
4153 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy
,
4154 msr
, MSR_TYPE_R
| MSR_TYPE_W
);
4155 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode
,
4156 msr
, MSR_TYPE_R
| MSR_TYPE_W
);
4159 static void vmx_enable_intercept_msr_read_x2apic(u32 msr
)
4161 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4163 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4167 static void vmx_disable_intercept_msr_read_x2apic(u32 msr
)
4169 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4171 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4175 static void vmx_disable_intercept_msr_write_x2apic(u32 msr
)
4177 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4179 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4183 static int vmx_vm_has_apicv(struct kvm
*kvm
)
4185 return enable_apicv
&& irqchip_in_kernel(kvm
);
4189 * Send interrupt to vcpu via posted interrupt way.
4190 * 1. If target vcpu is running(non-root mode), send posted interrupt
4191 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4192 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4193 * interrupt from PIR in next vmentry.
4195 static void vmx_deliver_posted_interrupt(struct kvm_vcpu
*vcpu
, int vector
)
4197 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4200 if (pi_test_and_set_pir(vector
, &vmx
->pi_desc
))
4203 r
= pi_test_and_set_on(&vmx
->pi_desc
);
4204 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4206 if (!r
&& (vcpu
->mode
== IN_GUEST_MODE
))
4207 apic
->send_IPI_mask(get_cpu_mask(vcpu
->cpu
),
4208 POSTED_INTR_VECTOR
);
4211 kvm_vcpu_kick(vcpu
);
4214 static void vmx_sync_pir_to_irr(struct kvm_vcpu
*vcpu
)
4216 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4218 if (!pi_test_and_clear_on(&vmx
->pi_desc
))
4221 kvm_apic_update_irr(vcpu
, vmx
->pi_desc
.pir
);
4224 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu
*vcpu
)
4230 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4231 * will not change in the lifetime of the guest.
4232 * Note that host-state that does change is set elsewhere. E.g., host-state
4233 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4235 static void vmx_set_constant_host_state(struct vcpu_vmx
*vmx
)
4241 vmcs_writel(HOST_CR0
, read_cr0() & ~X86_CR0_TS
); /* 22.2.3 */
4242 vmcs_writel(HOST_CR4
, read_cr4()); /* 22.2.3, 22.2.5 */
4243 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4245 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
4246 #ifdef CONFIG_X86_64
4248 * Load null selectors, so we can avoid reloading them in
4249 * __vmx_load_host_state(), in case userspace uses the null selectors
4250 * too (the expected case).
4252 vmcs_write16(HOST_DS_SELECTOR
, 0);
4253 vmcs_write16(HOST_ES_SELECTOR
, 0);
4255 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4256 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4258 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4259 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
4261 native_store_idt(&dt
);
4262 vmcs_writel(HOST_IDTR_BASE
, dt
.address
); /* 22.2.4 */
4263 vmx
->host_idt_base
= dt
.address
;
4265 vmcs_writel(HOST_RIP
, vmx_return
); /* 22.2.5 */
4267 rdmsr(MSR_IA32_SYSENTER_CS
, low32
, high32
);
4268 vmcs_write32(HOST_IA32_SYSENTER_CS
, low32
);
4269 rdmsrl(MSR_IA32_SYSENTER_EIP
, tmpl
);
4270 vmcs_writel(HOST_IA32_SYSENTER_EIP
, tmpl
); /* 22.2.3 */
4272 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
4273 rdmsr(MSR_IA32_CR_PAT
, low32
, high32
);
4274 vmcs_write64(HOST_IA32_PAT
, low32
| ((u64
) high32
<< 32));
4278 static void set_cr4_guest_host_mask(struct vcpu_vmx
*vmx
)
4280 vmx
->vcpu
.arch
.cr4_guest_owned_bits
= KVM_CR4_GUEST_OWNED_BITS
;
4282 vmx
->vcpu
.arch
.cr4_guest_owned_bits
|= X86_CR4_PGE
;
4283 if (is_guest_mode(&vmx
->vcpu
))
4284 vmx
->vcpu
.arch
.cr4_guest_owned_bits
&=
4285 ~get_vmcs12(&vmx
->vcpu
)->cr4_guest_host_mask
;
4286 vmcs_writel(CR4_GUEST_HOST_MASK
, ~vmx
->vcpu
.arch
.cr4_guest_owned_bits
);
4289 static u32
vmx_pin_based_exec_ctrl(struct vcpu_vmx
*vmx
)
4291 u32 pin_based_exec_ctrl
= vmcs_config
.pin_based_exec_ctrl
;
4293 if (!vmx_vm_has_apicv(vmx
->vcpu
.kvm
))
4294 pin_based_exec_ctrl
&= ~PIN_BASED_POSTED_INTR
;
4295 return pin_based_exec_ctrl
;
4298 static u32
vmx_exec_control(struct vcpu_vmx
*vmx
)
4300 u32 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
4302 if (vmx
->vcpu
.arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)
4303 exec_control
&= ~CPU_BASED_MOV_DR_EXITING
;
4305 if (!vm_need_tpr_shadow(vmx
->vcpu
.kvm
)) {
4306 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
4307 #ifdef CONFIG_X86_64
4308 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
4309 CPU_BASED_CR8_LOAD_EXITING
;
4313 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
4314 CPU_BASED_CR3_LOAD_EXITING
|
4315 CPU_BASED_INVLPG_EXITING
;
4316 return exec_control
;
4319 static u32
vmx_secondary_exec_control(struct vcpu_vmx
*vmx
)
4321 u32 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
4322 if (!vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
4323 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
4325 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
4327 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
4328 enable_unrestricted_guest
= 0;
4329 /* Enable INVPCID for non-ept guests may cause performance regression. */
4330 exec_control
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
4332 if (!enable_unrestricted_guest
)
4333 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
4335 exec_control
&= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
4336 if (!vmx_vm_has_apicv(vmx
->vcpu
.kvm
))
4337 exec_control
&= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT
|
4338 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
4339 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
4340 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4342 We can NOT enable shadow_vmcs here because we don't have yet
4345 exec_control
&= ~SECONDARY_EXEC_SHADOW_VMCS
;
4346 return exec_control
;
4349 static void ept_set_mmio_spte_mask(void)
4352 * EPT Misconfigurations can be generated if the value of bits 2:0
4353 * of an EPT paging-structure entry is 110b (write/execute).
4354 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4357 kvm_mmu_set_mmio_spte_mask((0x3ull
<< 62) | 0x6ull
);
4361 * Sets up the vmcs for emulated real mode.
4363 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
4365 #ifdef CONFIG_X86_64
4371 vmcs_write64(IO_BITMAP_A
, __pa(vmx_io_bitmap_a
));
4372 vmcs_write64(IO_BITMAP_B
, __pa(vmx_io_bitmap_b
));
4374 if (enable_shadow_vmcs
) {
4375 vmcs_write64(VMREAD_BITMAP
, __pa(vmx_vmread_bitmap
));
4376 vmcs_write64(VMWRITE_BITMAP
, __pa(vmx_vmwrite_bitmap
));
4378 if (cpu_has_vmx_msr_bitmap())
4379 vmcs_write64(MSR_BITMAP
, __pa(vmx_msr_bitmap_legacy
));
4381 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
4384 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, vmx_pin_based_exec_ctrl(vmx
));
4386 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, vmx_exec_control(vmx
));
4388 if (cpu_has_secondary_exec_ctrls()) {
4389 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
4390 vmx_secondary_exec_control(vmx
));
4393 if (vmx_vm_has_apicv(vmx
->vcpu
.kvm
)) {
4394 vmcs_write64(EOI_EXIT_BITMAP0
, 0);
4395 vmcs_write64(EOI_EXIT_BITMAP1
, 0);
4396 vmcs_write64(EOI_EXIT_BITMAP2
, 0);
4397 vmcs_write64(EOI_EXIT_BITMAP3
, 0);
4399 vmcs_write16(GUEST_INTR_STATUS
, 0);
4401 vmcs_write64(POSTED_INTR_NV
, POSTED_INTR_VECTOR
);
4402 vmcs_write64(POSTED_INTR_DESC_ADDR
, __pa((&vmx
->pi_desc
)));
4406 vmcs_write32(PLE_GAP
, ple_gap
);
4407 vmcs_write32(PLE_WINDOW
, ple_window
);
4410 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, 0);
4411 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, 0);
4412 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
4414 vmcs_write16(HOST_FS_SELECTOR
, 0); /* 22.2.4 */
4415 vmcs_write16(HOST_GS_SELECTOR
, 0); /* 22.2.4 */
4416 vmx_set_constant_host_state(vmx
);
4417 #ifdef CONFIG_X86_64
4418 rdmsrl(MSR_FS_BASE
, a
);
4419 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
4420 rdmsrl(MSR_GS_BASE
, a
);
4421 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
4423 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
4424 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
4427 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
4428 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
4429 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
));
4430 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
4431 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
));
4433 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
4434 u32 msr_low
, msr_high
;
4436 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
4437 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
4438 /* Write the default value follow host pat */
4439 vmcs_write64(GUEST_IA32_PAT
, host_pat
);
4440 /* Keep arch.pat sync with GUEST_IA32_PAT */
4441 vmx
->vcpu
.arch
.pat
= host_pat
;
4444 for (i
= 0; i
< NR_VMX_MSR
; ++i
) {
4445 u32 index
= vmx_msr_index
[i
];
4446 u32 data_low
, data_high
;
4449 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
4451 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
4453 vmx
->guest_msrs
[j
].index
= i
;
4454 vmx
->guest_msrs
[j
].data
= 0;
4455 vmx
->guest_msrs
[j
].mask
= -1ull;
4460 vm_exit_controls_init(vmx
, vmcs_config
.vmexit_ctrl
);
4462 /* 22.2.1, 20.8.1 */
4463 vm_entry_controls_init(vmx
, vmcs_config
.vmentry_ctrl
);
4465 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
4466 set_cr4_guest_host_mask(vmx
);
4471 static void vmx_vcpu_reset(struct kvm_vcpu
*vcpu
)
4473 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4474 struct msr_data apic_base_msr
;
4476 vmx
->rmode
.vm86_active
= 0;
4478 vmx
->soft_vnmi_blocked
= 0;
4480 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
4481 kvm_set_cr8(&vmx
->vcpu
, 0);
4482 apic_base_msr
.data
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
4483 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
4484 apic_base_msr
.data
|= MSR_IA32_APICBASE_BSP
;
4485 apic_base_msr
.host_initiated
= true;
4486 kvm_set_apic_base(&vmx
->vcpu
, &apic_base_msr
);
4488 vmx_segment_cache_clear(vmx
);
4490 seg_setup(VCPU_SREG_CS
);
4491 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
4492 vmcs_write32(GUEST_CS_BASE
, 0xffff0000);
4494 seg_setup(VCPU_SREG_DS
);
4495 seg_setup(VCPU_SREG_ES
);
4496 seg_setup(VCPU_SREG_FS
);
4497 seg_setup(VCPU_SREG_GS
);
4498 seg_setup(VCPU_SREG_SS
);
4500 vmcs_write16(GUEST_TR_SELECTOR
, 0);
4501 vmcs_writel(GUEST_TR_BASE
, 0);
4502 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
4503 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
4505 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
4506 vmcs_writel(GUEST_LDTR_BASE
, 0);
4507 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
4508 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
4510 vmcs_write32(GUEST_SYSENTER_CS
, 0);
4511 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
4512 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
4514 vmcs_writel(GUEST_RFLAGS
, 0x02);
4515 kvm_rip_write(vcpu
, 0xfff0);
4517 vmcs_writel(GUEST_GDTR_BASE
, 0);
4518 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
4520 vmcs_writel(GUEST_IDTR_BASE
, 0);
4521 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
4523 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
4524 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
4525 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
4527 /* Special registers */
4528 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
4532 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
4534 if (cpu_has_vmx_tpr_shadow()) {
4535 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
4536 if (vm_need_tpr_shadow(vmx
->vcpu
.kvm
))
4537 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
4538 __pa(vmx
->vcpu
.arch
.apic
->regs
));
4539 vmcs_write32(TPR_THRESHOLD
, 0);
4542 if (vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
4543 vmcs_write64(APIC_ACCESS_ADDR
,
4544 page_to_phys(vmx
->vcpu
.kvm
->arch
.apic_access_page
));
4546 if (vmx_vm_has_apicv(vcpu
->kvm
))
4547 memset(&vmx
->pi_desc
, 0, sizeof(struct pi_desc
));
4550 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
4552 vmx
->vcpu
.arch
.cr0
= X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
;
4553 vmx_set_cr0(&vmx
->vcpu
, kvm_read_cr0(vcpu
)); /* enter rmode */
4554 vmx_set_cr4(&vmx
->vcpu
, 0);
4555 vmx_set_efer(&vmx
->vcpu
, 0);
4556 vmx_fpu_activate(&vmx
->vcpu
);
4557 update_exception_bitmap(&vmx
->vcpu
);
4559 vpid_sync_context(vmx
);
4563 * In nested virtualization, check if L1 asked to exit on external interrupts.
4564 * For most existing hypervisors, this will always return true.
4566 static bool nested_exit_on_intr(struct kvm_vcpu
*vcpu
)
4568 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
4569 PIN_BASED_EXT_INTR_MASK
;
4573 * In nested virtualization, check if L1 has set
4574 * VM_EXIT_ACK_INTR_ON_EXIT
4576 static bool nested_exit_intr_ack_set(struct kvm_vcpu
*vcpu
)
4578 return get_vmcs12(vcpu
)->vm_exit_controls
&
4579 VM_EXIT_ACK_INTR_ON_EXIT
;
4582 static bool nested_exit_on_nmi(struct kvm_vcpu
*vcpu
)
4584 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
4585 PIN_BASED_NMI_EXITING
;
4588 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
4590 u32 cpu_based_vm_exec_control
;
4592 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
4593 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
4594 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
4597 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
4599 u32 cpu_based_vm_exec_control
;
4601 if (!cpu_has_virtual_nmis() ||
4602 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_STI
) {
4603 enable_irq_window(vcpu
);
4607 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
4608 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_NMI_PENDING
;
4609 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
4612 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
4614 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4616 int irq
= vcpu
->arch
.interrupt
.nr
;
4618 trace_kvm_inj_virq(irq
);
4620 ++vcpu
->stat
.irq_injections
;
4621 if (vmx
->rmode
.vm86_active
) {
4623 if (vcpu
->arch
.interrupt
.soft
)
4624 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
4625 if (kvm_inject_realmode_interrupt(vcpu
, irq
, inc_eip
) != EMULATE_DONE
)
4626 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
4629 intr
= irq
| INTR_INFO_VALID_MASK
;
4630 if (vcpu
->arch
.interrupt
.soft
) {
4631 intr
|= INTR_TYPE_SOFT_INTR
;
4632 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
4633 vmx
->vcpu
.arch
.event_exit_inst_len
);
4635 intr
|= INTR_TYPE_EXT_INTR
;
4636 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
4639 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
4641 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4643 if (is_guest_mode(vcpu
))
4646 if (!cpu_has_virtual_nmis()) {
4648 * Tracking the NMI-blocked state in software is built upon
4649 * finding the next open IRQ window. This, in turn, depends on
4650 * well-behaving guests: They have to keep IRQs disabled at
4651 * least as long as the NMI handler runs. Otherwise we may
4652 * cause NMI nesting, maybe breaking the guest. But as this is
4653 * highly unlikely, we can live with the residual risk.
4655 vmx
->soft_vnmi_blocked
= 1;
4656 vmx
->vnmi_blocked_time
= 0;
4659 ++vcpu
->stat
.nmi_injections
;
4660 vmx
->nmi_known_unmasked
= false;
4661 if (vmx
->rmode
.vm86_active
) {
4662 if (kvm_inject_realmode_interrupt(vcpu
, NMI_VECTOR
, 0) != EMULATE_DONE
)
4663 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
4666 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
4667 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
4670 static bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
)
4672 if (!cpu_has_virtual_nmis())
4673 return to_vmx(vcpu
)->soft_vnmi_blocked
;
4674 if (to_vmx(vcpu
)->nmi_known_unmasked
)
4676 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_NMI
;
4679 static void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
4681 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4683 if (!cpu_has_virtual_nmis()) {
4684 if (vmx
->soft_vnmi_blocked
!= masked
) {
4685 vmx
->soft_vnmi_blocked
= masked
;
4686 vmx
->vnmi_blocked_time
= 0;
4689 vmx
->nmi_known_unmasked
= !masked
;
4691 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
4692 GUEST_INTR_STATE_NMI
);
4694 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
4695 GUEST_INTR_STATE_NMI
);
4699 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
4701 if (to_vmx(vcpu
)->nested
.nested_run_pending
)
4704 if (!cpu_has_virtual_nmis() && to_vmx(vcpu
)->soft_vnmi_blocked
)
4707 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
4708 (GUEST_INTR_STATE_MOV_SS
| GUEST_INTR_STATE_STI
4709 | GUEST_INTR_STATE_NMI
));
4712 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
4714 return (!to_vmx(vcpu
)->nested
.nested_run_pending
&&
4715 vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
4716 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
4717 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
4720 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
4723 struct kvm_userspace_memory_region tss_mem
= {
4724 .slot
= TSS_PRIVATE_MEMSLOT
,
4725 .guest_phys_addr
= addr
,
4726 .memory_size
= PAGE_SIZE
* 3,
4730 ret
= kvm_set_memory_region(kvm
, &tss_mem
);
4733 kvm
->arch
.tss_addr
= addr
;
4734 if (!init_rmode_tss(kvm
))
4740 static bool rmode_exception(struct kvm_vcpu
*vcpu
, int vec
)
4745 * Update instruction length as we may reinject the exception
4746 * from user space while in guest debugging mode.
4748 to_vmx(vcpu
)->vcpu
.arch
.event_exit_inst_len
=
4749 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
4750 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
4754 if (vcpu
->guest_debug
&
4755 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
4772 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
4773 int vec
, u32 err_code
)
4776 * Instruction with address size override prefix opcode 0x67
4777 * Cause the #SS fault with 0 error code in VM86 mode.
4779 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0) {
4780 if (emulate_instruction(vcpu
, 0) == EMULATE_DONE
) {
4781 if (vcpu
->arch
.halt_request
) {
4782 vcpu
->arch
.halt_request
= 0;
4783 return kvm_emulate_halt(vcpu
);
4791 * Forward all other exceptions that are valid in real mode.
4792 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4793 * the required debugging infrastructure rework.
4795 kvm_queue_exception(vcpu
, vec
);
4800 * Trigger machine check on the host. We assume all the MSRs are already set up
4801 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4802 * We pass a fake environment to the machine check handler because we want
4803 * the guest to be always treated like user space, no matter what context
4804 * it used internally.
4806 static void kvm_machine_check(void)
4808 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4809 struct pt_regs regs
= {
4810 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
4811 .flags
= X86_EFLAGS_IF
,
4814 do_machine_check(®s
, 0);
4818 static int handle_machine_check(struct kvm_vcpu
*vcpu
)
4820 /* already handled by vcpu_run */
4824 static int handle_exception(struct kvm_vcpu
*vcpu
)
4826 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4827 struct kvm_run
*kvm_run
= vcpu
->run
;
4828 u32 intr_info
, ex_no
, error_code
;
4829 unsigned long cr2
, rip
, dr6
;
4831 enum emulation_result er
;
4833 vect_info
= vmx
->idt_vectoring_info
;
4834 intr_info
= vmx
->exit_intr_info
;
4836 if (is_machine_check(intr_info
))
4837 return handle_machine_check(vcpu
);
4839 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
)
4840 return 1; /* already handled by vmx_vcpu_run() */
4842 if (is_no_device(intr_info
)) {
4843 vmx_fpu_activate(vcpu
);
4847 if (is_invalid_opcode(intr_info
)) {
4848 er
= emulate_instruction(vcpu
, EMULTYPE_TRAP_UD
);
4849 if (er
!= EMULATE_DONE
)
4850 kvm_queue_exception(vcpu
, UD_VECTOR
);
4855 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
4856 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
4859 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4860 * MMIO, it is better to report an internal error.
4861 * See the comments in vmx_handle_exit.
4863 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
4864 !(is_page_fault(intr_info
) && !(error_code
& PFERR_RSVD_MASK
))) {
4865 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4866 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_SIMUL_EX
;
4867 vcpu
->run
->internal
.ndata
= 2;
4868 vcpu
->run
->internal
.data
[0] = vect_info
;
4869 vcpu
->run
->internal
.data
[1] = intr_info
;
4873 if (is_page_fault(intr_info
)) {
4874 /* EPT won't cause page fault directly */
4876 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
4877 trace_kvm_page_fault(cr2
, error_code
);
4879 if (kvm_event_needs_reinjection(vcpu
))
4880 kvm_mmu_unprotect_page_virt(vcpu
, cr2
);
4881 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
, NULL
, 0);
4884 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
4886 if (vmx
->rmode
.vm86_active
&& rmode_exception(vcpu
, ex_no
))
4887 return handle_rmode_exception(vcpu
, ex_no
, error_code
);
4891 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
4892 if (!(vcpu
->guest_debug
&
4893 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
4894 vcpu
->arch
.dr6
&= ~15;
4895 vcpu
->arch
.dr6
|= dr6
;
4896 if (!(dr6
& ~DR6_RESERVED
)) /* icebp */
4897 skip_emulated_instruction(vcpu
);
4899 kvm_queue_exception(vcpu
, DB_VECTOR
);
4902 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
4903 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
4907 * Update instruction length as we may reinject #BP from
4908 * user space while in guest debugging mode. Reading it for
4909 * #DB as well causes no harm, it is not used in that case.
4911 vmx
->vcpu
.arch
.event_exit_inst_len
=
4912 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
4913 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
4914 rip
= kvm_rip_read(vcpu
);
4915 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
4916 kvm_run
->debug
.arch
.exception
= ex_no
;
4919 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
4920 kvm_run
->ex
.exception
= ex_no
;
4921 kvm_run
->ex
.error_code
= error_code
;
4927 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
)
4929 ++vcpu
->stat
.irq_exits
;
4933 static int handle_triple_fault(struct kvm_vcpu
*vcpu
)
4935 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
4939 static int handle_io(struct kvm_vcpu
*vcpu
)
4941 unsigned long exit_qualification
;
4942 int size
, in
, string
;
4945 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4946 string
= (exit_qualification
& 16) != 0;
4947 in
= (exit_qualification
& 8) != 0;
4949 ++vcpu
->stat
.io_exits
;
4952 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
4954 port
= exit_qualification
>> 16;
4955 size
= (exit_qualification
& 7) + 1;
4956 skip_emulated_instruction(vcpu
);
4958 return kvm_fast_pio_out(vcpu
, size
, port
);
4962 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
4965 * Patch in the VMCALL instruction:
4967 hypercall
[0] = 0x0f;
4968 hypercall
[1] = 0x01;
4969 hypercall
[2] = 0xc1;
4972 static bool nested_cr0_valid(struct vmcs12
*vmcs12
, unsigned long val
)
4974 unsigned long always_on
= VMXON_CR0_ALWAYSON
;
4976 if (nested_vmx_secondary_ctls_high
&
4977 SECONDARY_EXEC_UNRESTRICTED_GUEST
&&
4978 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_UNRESTRICTED_GUEST
))
4979 always_on
&= ~(X86_CR0_PE
| X86_CR0_PG
);
4980 return (val
& always_on
) == always_on
;
4983 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4984 static int handle_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long val
)
4986 if (is_guest_mode(vcpu
)) {
4987 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
4988 unsigned long orig_val
= val
;
4991 * We get here when L2 changed cr0 in a way that did not change
4992 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4993 * but did change L0 shadowed bits. So we first calculate the
4994 * effective cr0 value that L1 would like to write into the
4995 * hardware. It consists of the L2-owned bits from the new
4996 * value combined with the L1-owned bits from L1's guest_cr0.
4998 val
= (val
& ~vmcs12
->cr0_guest_host_mask
) |
4999 (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
);
5001 if (!nested_cr0_valid(vmcs12
, val
))
5004 if (kvm_set_cr0(vcpu
, val
))
5006 vmcs_writel(CR0_READ_SHADOW
, orig_val
);
5009 if (to_vmx(vcpu
)->nested
.vmxon
&&
5010 ((val
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
))
5012 return kvm_set_cr0(vcpu
, val
);
5016 static int handle_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long val
)
5018 if (is_guest_mode(vcpu
)) {
5019 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5020 unsigned long orig_val
= val
;
5022 /* analogously to handle_set_cr0 */
5023 val
= (val
& ~vmcs12
->cr4_guest_host_mask
) |
5024 (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
);
5025 if (kvm_set_cr4(vcpu
, val
))
5027 vmcs_writel(CR4_READ_SHADOW
, orig_val
);
5030 return kvm_set_cr4(vcpu
, val
);
5033 /* called to set cr0 as approriate for clts instruction exit. */
5034 static void handle_clts(struct kvm_vcpu
*vcpu
)
5036 if (is_guest_mode(vcpu
)) {
5038 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5039 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5040 * just pretend it's off (also in arch.cr0 for fpu_activate).
5042 vmcs_writel(CR0_READ_SHADOW
,
5043 vmcs_readl(CR0_READ_SHADOW
) & ~X86_CR0_TS
);
5044 vcpu
->arch
.cr0
&= ~X86_CR0_TS
;
5046 vmx_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~X86_CR0_TS
));
5049 static int handle_cr(struct kvm_vcpu
*vcpu
)
5051 unsigned long exit_qualification
, val
;
5056 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5057 cr
= exit_qualification
& 15;
5058 reg
= (exit_qualification
>> 8) & 15;
5059 switch ((exit_qualification
>> 4) & 3) {
5060 case 0: /* mov to cr */
5061 val
= kvm_register_read(vcpu
, reg
);
5062 trace_kvm_cr_write(cr
, val
);
5065 err
= handle_set_cr0(vcpu
, val
);
5066 kvm_complete_insn_gp(vcpu
, err
);
5069 err
= kvm_set_cr3(vcpu
, val
);
5070 kvm_complete_insn_gp(vcpu
, err
);
5073 err
= handle_set_cr4(vcpu
, val
);
5074 kvm_complete_insn_gp(vcpu
, err
);
5077 u8 cr8_prev
= kvm_get_cr8(vcpu
);
5078 u8 cr8
= kvm_register_read(vcpu
, reg
);
5079 err
= kvm_set_cr8(vcpu
, cr8
);
5080 kvm_complete_insn_gp(vcpu
, err
);
5081 if (irqchip_in_kernel(vcpu
->kvm
))
5083 if (cr8_prev
<= cr8
)
5085 vcpu
->run
->exit_reason
= KVM_EXIT_SET_TPR
;
5092 trace_kvm_cr_write(0, kvm_read_cr0(vcpu
));
5093 skip_emulated_instruction(vcpu
);
5094 vmx_fpu_activate(vcpu
);
5096 case 1: /*mov from cr*/
5099 val
= kvm_read_cr3(vcpu
);
5100 kvm_register_write(vcpu
, reg
, val
);
5101 trace_kvm_cr_read(cr
, val
);
5102 skip_emulated_instruction(vcpu
);
5105 val
= kvm_get_cr8(vcpu
);
5106 kvm_register_write(vcpu
, reg
, val
);
5107 trace_kvm_cr_read(cr
, val
);
5108 skip_emulated_instruction(vcpu
);
5113 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
5114 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu
) & ~0xful
) | val
);
5115 kvm_lmsw(vcpu
, val
);
5117 skip_emulated_instruction(vcpu
);
5122 vcpu
->run
->exit_reason
= 0;
5123 vcpu_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
5124 (int)(exit_qualification
>> 4) & 3, cr
);
5128 static int handle_dr(struct kvm_vcpu
*vcpu
)
5130 unsigned long exit_qualification
;
5133 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5134 if (!kvm_require_cpl(vcpu
, 0))
5136 dr
= vmcs_readl(GUEST_DR7
);
5139 * As the vm-exit takes precedence over the debug trap, we
5140 * need to emulate the latter, either for the host or the
5141 * guest debugging itself.
5143 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
5144 vcpu
->run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
5145 vcpu
->run
->debug
.arch
.dr7
= dr
;
5146 vcpu
->run
->debug
.arch
.pc
=
5147 vmcs_readl(GUEST_CS_BASE
) +
5148 vmcs_readl(GUEST_RIP
);
5149 vcpu
->run
->debug
.arch
.exception
= DB_VECTOR
;
5150 vcpu
->run
->exit_reason
= KVM_EXIT_DEBUG
;
5153 vcpu
->arch
.dr7
&= ~DR7_GD
;
5154 vcpu
->arch
.dr6
|= DR6_BD
;
5155 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
5156 kvm_queue_exception(vcpu
, DB_VECTOR
);
5161 if (vcpu
->guest_debug
== 0) {
5162 u32 cpu_based_vm_exec_control
;
5164 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5165 cpu_based_vm_exec_control
&= ~CPU_BASED_MOV_DR_EXITING
;
5166 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5169 * No more DR vmexits; force a reload of the debug registers
5170 * and reenter on this instruction. The next vmexit will
5171 * retrieve the full state of the debug registers.
5173 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_WONT_EXIT
;
5177 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5178 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
5179 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
5180 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
5183 if (kvm_get_dr(vcpu
, dr
, &val
))
5185 kvm_register_write(vcpu
, reg
, val
);
5187 if (kvm_set_dr(vcpu
, dr
, kvm_register_read(vcpu
, reg
)))
5190 skip_emulated_instruction(vcpu
);
5194 static u64
vmx_get_dr6(struct kvm_vcpu
*vcpu
)
5196 return vcpu
->arch
.dr6
;
5199 static void vmx_set_dr6(struct kvm_vcpu
*vcpu
, unsigned long val
)
5203 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu
*vcpu
)
5205 u32 cpu_based_vm_exec_control
;
5207 get_debugreg(vcpu
->arch
.db
[0], 0);
5208 get_debugreg(vcpu
->arch
.db
[1], 1);
5209 get_debugreg(vcpu
->arch
.db
[2], 2);
5210 get_debugreg(vcpu
->arch
.db
[3], 3);
5211 get_debugreg(vcpu
->arch
.dr6
, 6);
5212 vcpu
->arch
.dr7
= vmcs_readl(GUEST_DR7
);
5214 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_WONT_EXIT
;
5216 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5217 cpu_based_vm_exec_control
|= CPU_BASED_MOV_DR_EXITING
;
5218 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5221 static void vmx_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long val
)
5223 vmcs_writel(GUEST_DR7
, val
);
5226 static int handle_cpuid(struct kvm_vcpu
*vcpu
)
5228 kvm_emulate_cpuid(vcpu
);
5232 static int handle_rdmsr(struct kvm_vcpu
*vcpu
)
5234 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
5237 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
5238 trace_kvm_msr_read_ex(ecx
);
5239 kvm_inject_gp(vcpu
, 0);
5243 trace_kvm_msr_read(ecx
, data
);
5245 /* FIXME: handling of bits 32:63 of rax, rdx */
5246 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = data
& -1u;
5247 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
5248 skip_emulated_instruction(vcpu
);
5252 static int handle_wrmsr(struct kvm_vcpu
*vcpu
)
5254 struct msr_data msr
;
5255 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
5256 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
5257 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
5261 msr
.host_initiated
= false;
5262 if (vmx_set_msr(vcpu
, &msr
) != 0) {
5263 trace_kvm_msr_write_ex(ecx
, data
);
5264 kvm_inject_gp(vcpu
, 0);
5268 trace_kvm_msr_write(ecx
, data
);
5269 skip_emulated_instruction(vcpu
);
5273 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
)
5275 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5279 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
)
5281 u32 cpu_based_vm_exec_control
;
5283 /* clear pending irq */
5284 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5285 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
5286 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5288 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5290 ++vcpu
->stat
.irq_window_exits
;
5293 * If the user space waits to inject interrupts, exit as soon as
5296 if (!irqchip_in_kernel(vcpu
->kvm
) &&
5297 vcpu
->run
->request_interrupt_window
&&
5298 !kvm_cpu_has_interrupt(vcpu
)) {
5299 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
5305 static int handle_halt(struct kvm_vcpu
*vcpu
)
5307 skip_emulated_instruction(vcpu
);
5308 return kvm_emulate_halt(vcpu
);
5311 static int handle_vmcall(struct kvm_vcpu
*vcpu
)
5313 skip_emulated_instruction(vcpu
);
5314 kvm_emulate_hypercall(vcpu
);
5318 static int handle_invd(struct kvm_vcpu
*vcpu
)
5320 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
5323 static int handle_invlpg(struct kvm_vcpu
*vcpu
)
5325 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5327 kvm_mmu_invlpg(vcpu
, exit_qualification
);
5328 skip_emulated_instruction(vcpu
);
5332 static int handle_rdpmc(struct kvm_vcpu
*vcpu
)
5336 err
= kvm_rdpmc(vcpu
);
5337 kvm_complete_insn_gp(vcpu
, err
);
5342 static int handle_wbinvd(struct kvm_vcpu
*vcpu
)
5344 skip_emulated_instruction(vcpu
);
5345 kvm_emulate_wbinvd(vcpu
);
5349 static int handle_xsetbv(struct kvm_vcpu
*vcpu
)
5351 u64 new_bv
= kvm_read_edx_eax(vcpu
);
5352 u32 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5354 if (kvm_set_xcr(vcpu
, index
, new_bv
) == 0)
5355 skip_emulated_instruction(vcpu
);
5359 static int handle_apic_access(struct kvm_vcpu
*vcpu
)
5361 if (likely(fasteoi
)) {
5362 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5363 int access_type
, offset
;
5365 access_type
= exit_qualification
& APIC_ACCESS_TYPE
;
5366 offset
= exit_qualification
& APIC_ACCESS_OFFSET
;
5368 * Sane guest uses MOV to write EOI, with written value
5369 * not cared. So make a short-circuit here by avoiding
5370 * heavy instruction emulation.
5372 if ((access_type
== TYPE_LINEAR_APIC_INST_WRITE
) &&
5373 (offset
== APIC_EOI
)) {
5374 kvm_lapic_set_eoi(vcpu
);
5375 skip_emulated_instruction(vcpu
);
5379 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
5382 static int handle_apic_eoi_induced(struct kvm_vcpu
*vcpu
)
5384 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5385 int vector
= exit_qualification
& 0xff;
5387 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5388 kvm_apic_set_eoi_accelerated(vcpu
, vector
);
5392 static int handle_apic_write(struct kvm_vcpu
*vcpu
)
5394 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5395 u32 offset
= exit_qualification
& 0xfff;
5397 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5398 kvm_apic_write_nodecode(vcpu
, offset
);
5402 static int handle_task_switch(struct kvm_vcpu
*vcpu
)
5404 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5405 unsigned long exit_qualification
;
5406 bool has_error_code
= false;
5409 int reason
, type
, idt_v
, idt_index
;
5411 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
5412 idt_index
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
);
5413 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
5415 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5417 reason
= (u32
)exit_qualification
>> 30;
5418 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
5420 case INTR_TYPE_NMI_INTR
:
5421 vcpu
->arch
.nmi_injected
= false;
5422 vmx_set_nmi_mask(vcpu
, true);
5424 case INTR_TYPE_EXT_INTR
:
5425 case INTR_TYPE_SOFT_INTR
:
5426 kvm_clear_interrupt_queue(vcpu
);
5428 case INTR_TYPE_HARD_EXCEPTION
:
5429 if (vmx
->idt_vectoring_info
&
5430 VECTORING_INFO_DELIVER_CODE_MASK
) {
5431 has_error_code
= true;
5433 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
5436 case INTR_TYPE_SOFT_EXCEPTION
:
5437 kvm_clear_exception_queue(vcpu
);
5443 tss_selector
= exit_qualification
;
5445 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
5446 type
!= INTR_TYPE_EXT_INTR
&&
5447 type
!= INTR_TYPE_NMI_INTR
))
5448 skip_emulated_instruction(vcpu
);
5450 if (kvm_task_switch(vcpu
, tss_selector
,
5451 type
== INTR_TYPE_SOFT_INTR
? idt_index
: -1, reason
,
5452 has_error_code
, error_code
) == EMULATE_FAIL
) {
5453 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5454 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5455 vcpu
->run
->internal
.ndata
= 0;
5459 /* clear all local breakpoint enable flags */
5460 vmcs_writel(GUEST_DR7
, vmcs_readl(GUEST_DR7
) & ~0x55);
5463 * TODO: What about debug traps on tss switch?
5464 * Are we supposed to inject them and update dr6?
5470 static int handle_ept_violation(struct kvm_vcpu
*vcpu
)
5472 unsigned long exit_qualification
;
5477 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5479 gla_validity
= (exit_qualification
>> 7) & 0x3;
5480 if (gla_validity
!= 0x3 && gla_validity
!= 0x1 && gla_validity
!= 0) {
5481 printk(KERN_ERR
"EPT: Handling EPT violation failed!\n");
5482 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5483 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
5484 vmcs_readl(GUEST_LINEAR_ADDRESS
));
5485 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
5486 (long unsigned int)exit_qualification
);
5487 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
5488 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_VIOLATION
;
5493 * EPT violation happened while executing iret from NMI,
5494 * "blocked by NMI" bit has to be set before next VM entry.
5495 * There are errata that may cause this bit to not be set:
5498 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
5499 cpu_has_virtual_nmis() &&
5500 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
5501 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
, GUEST_INTR_STATE_NMI
);
5503 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
5504 trace_kvm_page_fault(gpa
, exit_qualification
);
5506 /* It is a write fault? */
5507 error_code
= exit_qualification
& (1U << 1);
5508 /* It is a fetch fault? */
5509 error_code
|= (exit_qualification
& (1U << 2)) << 2;
5510 /* ept page table is present? */
5511 error_code
|= (exit_qualification
>> 3) & 0x1;
5513 vcpu
->arch
.exit_qualification
= exit_qualification
;
5515 return kvm_mmu_page_fault(vcpu
, gpa
, error_code
, NULL
, 0);
5518 static u64
ept_rsvd_mask(u64 spte
, int level
)
5523 for (i
= 51; i
> boot_cpu_data
.x86_phys_bits
; i
--)
5524 mask
|= (1ULL << i
);
5527 /* bits 7:3 reserved */
5529 else if (level
== 2) {
5530 if (spte
& (1ULL << 7))
5531 /* 2MB ref, bits 20:12 reserved */
5534 /* bits 6:3 reserved */
5541 static void ept_misconfig_inspect_spte(struct kvm_vcpu
*vcpu
, u64 spte
,
5544 printk(KERN_ERR
"%s: spte 0x%llx level %d\n", __func__
, spte
, level
);
5546 /* 010b (write-only) */
5547 WARN_ON((spte
& 0x7) == 0x2);
5549 /* 110b (write/execute) */
5550 WARN_ON((spte
& 0x7) == 0x6);
5552 /* 100b (execute-only) and value not supported by logical processor */
5553 if (!cpu_has_vmx_ept_execute_only())
5554 WARN_ON((spte
& 0x7) == 0x4);
5558 u64 rsvd_bits
= spte
& ept_rsvd_mask(spte
, level
);
5560 if (rsvd_bits
!= 0) {
5561 printk(KERN_ERR
"%s: rsvd_bits = 0x%llx\n",
5562 __func__
, rsvd_bits
);
5566 if (level
== 1 || (level
== 2 && (spte
& (1ULL << 7)))) {
5567 u64 ept_mem_type
= (spte
& 0x38) >> 3;
5569 if (ept_mem_type
== 2 || ept_mem_type
== 3 ||
5570 ept_mem_type
== 7) {
5571 printk(KERN_ERR
"%s: ept_mem_type=0x%llx\n",
5572 __func__
, ept_mem_type
);
5579 static int handle_ept_misconfig(struct kvm_vcpu
*vcpu
)
5582 int nr_sptes
, i
, ret
;
5585 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
5586 if (!kvm_io_bus_write(vcpu
->kvm
, KVM_FAST_MMIO_BUS
, gpa
, 0, NULL
)) {
5587 skip_emulated_instruction(vcpu
);
5591 ret
= handle_mmio_page_fault_common(vcpu
, gpa
, true);
5592 if (likely(ret
== RET_MMIO_PF_EMULATE
))
5593 return x86_emulate_instruction(vcpu
, gpa
, 0, NULL
, 0) ==
5596 if (unlikely(ret
== RET_MMIO_PF_INVALID
))
5597 return kvm_mmu_page_fault(vcpu
, gpa
, 0, NULL
, 0);
5599 if (unlikely(ret
== RET_MMIO_PF_RETRY
))
5602 /* It is the real ept misconfig */
5603 printk(KERN_ERR
"EPT: Misconfiguration.\n");
5604 printk(KERN_ERR
"EPT: GPA: 0x%llx\n", gpa
);
5606 nr_sptes
= kvm_mmu_get_spte_hierarchy(vcpu
, gpa
, sptes
);
5608 for (i
= PT64_ROOT_LEVEL
; i
> PT64_ROOT_LEVEL
- nr_sptes
; --i
)
5609 ept_misconfig_inspect_spte(vcpu
, sptes
[i
-1], i
);
5611 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
5612 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
5617 static int handle_nmi_window(struct kvm_vcpu
*vcpu
)
5619 u32 cpu_based_vm_exec_control
;
5621 /* clear pending NMI */
5622 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5623 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
5624 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5625 ++vcpu
->stat
.nmi_window_exits
;
5626 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5631 static int handle_invalid_guest_state(struct kvm_vcpu
*vcpu
)
5633 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5634 enum emulation_result err
= EMULATE_DONE
;
5637 bool intr_window_requested
;
5638 unsigned count
= 130;
5640 cpu_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5641 intr_window_requested
= cpu_exec_ctrl
& CPU_BASED_VIRTUAL_INTR_PENDING
;
5643 while (!guest_state_valid(vcpu
) && count
-- != 0) {
5644 if (intr_window_requested
&& vmx_interrupt_allowed(vcpu
))
5645 return handle_interrupt_window(&vmx
->vcpu
);
5647 if (test_bit(KVM_REQ_EVENT
, &vcpu
->requests
))
5650 err
= emulate_instruction(vcpu
, EMULTYPE_NO_REEXECUTE
);
5652 if (err
== EMULATE_USER_EXIT
) {
5653 ++vcpu
->stat
.mmio_exits
;
5658 if (err
!= EMULATE_DONE
) {
5659 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5660 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5661 vcpu
->run
->internal
.ndata
= 0;
5665 if (vcpu
->arch
.halt_request
) {
5666 vcpu
->arch
.halt_request
= 0;
5667 ret
= kvm_emulate_halt(vcpu
);
5671 if (signal_pending(current
))
5677 vmx
->emulation_required
= emulation_required(vcpu
);
5683 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5684 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5686 static int handle_pause(struct kvm_vcpu
*vcpu
)
5688 skip_emulated_instruction(vcpu
);
5689 kvm_vcpu_on_spin(vcpu
);
5694 static int handle_nop(struct kvm_vcpu
*vcpu
)
5696 skip_emulated_instruction(vcpu
);
5700 static int handle_mwait(struct kvm_vcpu
*vcpu
)
5702 printk_once(KERN_WARNING
"kvm: MWAIT instruction emulated as NOP!\n");
5703 return handle_nop(vcpu
);
5706 static int handle_monitor(struct kvm_vcpu
*vcpu
)
5708 printk_once(KERN_WARNING
"kvm: MONITOR instruction emulated as NOP!\n");
5709 return handle_nop(vcpu
);
5713 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5714 * We could reuse a single VMCS for all the L2 guests, but we also want the
5715 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5716 * allows keeping them loaded on the processor, and in the future will allow
5717 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5718 * every entry if they never change.
5719 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5720 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5722 * The following functions allocate and free a vmcs02 in this pool.
5725 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5726 static struct loaded_vmcs
*nested_get_current_vmcs02(struct vcpu_vmx
*vmx
)
5728 struct vmcs02_list
*item
;
5729 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
5730 if (item
->vmptr
== vmx
->nested
.current_vmptr
) {
5731 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
5732 return &item
->vmcs02
;
5735 if (vmx
->nested
.vmcs02_num
>= max(VMCS02_POOL_SIZE
, 1)) {
5736 /* Recycle the least recently used VMCS. */
5737 item
= list_entry(vmx
->nested
.vmcs02_pool
.prev
,
5738 struct vmcs02_list
, list
);
5739 item
->vmptr
= vmx
->nested
.current_vmptr
;
5740 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
5741 return &item
->vmcs02
;
5744 /* Create a new VMCS */
5745 item
= kmalloc(sizeof(struct vmcs02_list
), GFP_KERNEL
);
5748 item
->vmcs02
.vmcs
= alloc_vmcs();
5749 if (!item
->vmcs02
.vmcs
) {
5753 loaded_vmcs_init(&item
->vmcs02
);
5754 item
->vmptr
= vmx
->nested
.current_vmptr
;
5755 list_add(&(item
->list
), &(vmx
->nested
.vmcs02_pool
));
5756 vmx
->nested
.vmcs02_num
++;
5757 return &item
->vmcs02
;
5760 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5761 static void nested_free_vmcs02(struct vcpu_vmx
*vmx
, gpa_t vmptr
)
5763 struct vmcs02_list
*item
;
5764 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
5765 if (item
->vmptr
== vmptr
) {
5766 free_loaded_vmcs(&item
->vmcs02
);
5767 list_del(&item
->list
);
5769 vmx
->nested
.vmcs02_num
--;
5775 * Free all VMCSs saved for this vcpu, except the one pointed by
5776 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5777 * currently used, if running L2), and vmcs01 when running L2.
5779 static void nested_free_all_saved_vmcss(struct vcpu_vmx
*vmx
)
5781 struct vmcs02_list
*item
, *n
;
5782 list_for_each_entry_safe(item
, n
, &vmx
->nested
.vmcs02_pool
, list
) {
5783 if (vmx
->loaded_vmcs
!= &item
->vmcs02
)
5784 free_loaded_vmcs(&item
->vmcs02
);
5785 list_del(&item
->list
);
5788 vmx
->nested
.vmcs02_num
= 0;
5790 if (vmx
->loaded_vmcs
!= &vmx
->vmcs01
)
5791 free_loaded_vmcs(&vmx
->vmcs01
);
5795 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5796 * set the success or error code of an emulated VMX instruction, as specified
5797 * by Vol 2B, VMX Instruction Reference, "Conventions".
5799 static void nested_vmx_succeed(struct kvm_vcpu
*vcpu
)
5801 vmx_set_rflags(vcpu
, vmx_get_rflags(vcpu
)
5802 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
5803 X86_EFLAGS_ZF
| X86_EFLAGS_SF
| X86_EFLAGS_OF
));
5806 static void nested_vmx_failInvalid(struct kvm_vcpu
*vcpu
)
5808 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
5809 & ~(X86_EFLAGS_PF
| X86_EFLAGS_AF
| X86_EFLAGS_ZF
|
5810 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
5814 static void nested_vmx_failValid(struct kvm_vcpu
*vcpu
,
5815 u32 vm_instruction_error
)
5817 if (to_vmx(vcpu
)->nested
.current_vmptr
== -1ull) {
5819 * failValid writes the error number to the current VMCS, which
5820 * can't be done there isn't a current VMCS.
5822 nested_vmx_failInvalid(vcpu
);
5825 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
5826 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
5827 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
5829 get_vmcs12(vcpu
)->vm_instruction_error
= vm_instruction_error
;
5831 * We don't need to force a shadow sync because
5832 * VM_INSTRUCTION_ERROR is not shadowed
5836 static enum hrtimer_restart
vmx_preemption_timer_fn(struct hrtimer
*timer
)
5838 struct vcpu_vmx
*vmx
=
5839 container_of(timer
, struct vcpu_vmx
, nested
.preemption_timer
);
5841 vmx
->nested
.preemption_timer_expired
= true;
5842 kvm_make_request(KVM_REQ_EVENT
, &vmx
->vcpu
);
5843 kvm_vcpu_kick(&vmx
->vcpu
);
5845 return HRTIMER_NORESTART
;
5849 * Decode the memory-address operand of a vmx instruction, as recorded on an
5850 * exit caused by such an instruction (run by a guest hypervisor).
5851 * On success, returns 0. When the operand is invalid, returns 1 and throws
5854 static int get_vmx_mem_address(struct kvm_vcpu
*vcpu
,
5855 unsigned long exit_qualification
,
5856 u32 vmx_instruction_info
, gva_t
*ret
)
5859 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5860 * Execution", on an exit, vmx_instruction_info holds most of the
5861 * addressing components of the operand. Only the displacement part
5862 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5863 * For how an actual address is calculated from all these components,
5864 * refer to Vol. 1, "Operand Addressing".
5866 int scaling
= vmx_instruction_info
& 3;
5867 int addr_size
= (vmx_instruction_info
>> 7) & 7;
5868 bool is_reg
= vmx_instruction_info
& (1u << 10);
5869 int seg_reg
= (vmx_instruction_info
>> 15) & 7;
5870 int index_reg
= (vmx_instruction_info
>> 18) & 0xf;
5871 bool index_is_valid
= !(vmx_instruction_info
& (1u << 22));
5872 int base_reg
= (vmx_instruction_info
>> 23) & 0xf;
5873 bool base_is_valid
= !(vmx_instruction_info
& (1u << 27));
5876 kvm_queue_exception(vcpu
, UD_VECTOR
);
5880 /* Addr = segment_base + offset */
5881 /* offset = base + [index * scale] + displacement */
5882 *ret
= vmx_get_segment_base(vcpu
, seg_reg
);
5884 *ret
+= kvm_register_read(vcpu
, base_reg
);
5886 *ret
+= kvm_register_read(vcpu
, index_reg
)<<scaling
;
5887 *ret
+= exit_qualification
; /* holds the displacement */
5889 if (addr_size
== 1) /* 32 bit */
5893 * TODO: throw #GP (and return 1) in various cases that the VM*
5894 * instructions require it - e.g., offset beyond segment limit,
5895 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5896 * address, and so on. Currently these are not checked.
5902 * This function performs the various checks including
5903 * - if it's 4KB aligned
5904 * - No bits beyond the physical address width are set
5905 * - Returns 0 on success or else 1
5906 * (Intel SDM Section 30.3)
5908 static int nested_vmx_check_vmptr(struct kvm_vcpu
*vcpu
, int exit_reason
,
5913 struct x86_exception e
;
5915 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5916 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
5918 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
5919 vmcs_read32(VMX_INSTRUCTION_INFO
), &gva
))
5922 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &vmptr
,
5923 sizeof(vmptr
), &e
)) {
5924 kvm_inject_page_fault(vcpu
, &e
);
5928 switch (exit_reason
) {
5929 case EXIT_REASON_VMON
:
5932 * The first 4 bytes of VMXON region contain the supported
5933 * VMCS revision identifier
5935 * Note - IA32_VMX_BASIC[48] will never be 1
5936 * for the nested case;
5937 * which replaces physical address width with 32
5940 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> maxphyaddr
)) {
5941 nested_vmx_failInvalid(vcpu
);
5942 skip_emulated_instruction(vcpu
);
5946 page
= nested_get_page(vcpu
, vmptr
);
5948 *(u32
*)kmap(page
) != VMCS12_REVISION
) {
5949 nested_vmx_failInvalid(vcpu
);
5951 skip_emulated_instruction(vcpu
);
5955 vmx
->nested
.vmxon_ptr
= vmptr
;
5957 case EXIT_REASON_VMCLEAR
:
5958 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> maxphyaddr
)) {
5959 nested_vmx_failValid(vcpu
,
5960 VMXERR_VMCLEAR_INVALID_ADDRESS
);
5961 skip_emulated_instruction(vcpu
);
5965 if (vmptr
== vmx
->nested
.vmxon_ptr
) {
5966 nested_vmx_failValid(vcpu
,
5967 VMXERR_VMCLEAR_VMXON_POINTER
);
5968 skip_emulated_instruction(vcpu
);
5972 case EXIT_REASON_VMPTRLD
:
5973 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> maxphyaddr
)) {
5974 nested_vmx_failValid(vcpu
,
5975 VMXERR_VMPTRLD_INVALID_ADDRESS
);
5976 skip_emulated_instruction(vcpu
);
5980 if (vmptr
== vmx
->nested
.vmxon_ptr
) {
5981 nested_vmx_failValid(vcpu
,
5982 VMXERR_VMCLEAR_VMXON_POINTER
);
5983 skip_emulated_instruction(vcpu
);
5988 return 1; /* shouldn't happen */
5997 * Emulate the VMXON instruction.
5998 * Currently, we just remember that VMX is active, and do not save or even
5999 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6000 * do not currently need to store anything in that guest-allocated memory
6001 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6002 * argument is different from the VMXON pointer (which the spec says they do).
6004 static int handle_vmon(struct kvm_vcpu
*vcpu
)
6006 struct kvm_segment cs
;
6007 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6008 struct vmcs
*shadow_vmcs
;
6009 const u64 VMXON_NEEDED_FEATURES
= FEATURE_CONTROL_LOCKED
6010 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
6012 /* The Intel VMX Instruction Reference lists a bunch of bits that
6013 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6014 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6015 * Otherwise, we should fail with #UD. We test these now:
6017 if (!kvm_read_cr4_bits(vcpu
, X86_CR4_VMXE
) ||
6018 !kvm_read_cr0_bits(vcpu
, X86_CR0_PE
) ||
6019 (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
6020 kvm_queue_exception(vcpu
, UD_VECTOR
);
6024 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6025 if (is_long_mode(vcpu
) && !cs
.l
) {
6026 kvm_queue_exception(vcpu
, UD_VECTOR
);
6030 if (vmx_get_cpl(vcpu
)) {
6031 kvm_inject_gp(vcpu
, 0);
6035 if (nested_vmx_check_vmptr(vcpu
, EXIT_REASON_VMON
, NULL
))
6038 if (vmx
->nested
.vmxon
) {
6039 nested_vmx_failValid(vcpu
, VMXERR_VMXON_IN_VMX_ROOT_OPERATION
);
6040 skip_emulated_instruction(vcpu
);
6044 if ((vmx
->nested
.msr_ia32_feature_control
& VMXON_NEEDED_FEATURES
)
6045 != VMXON_NEEDED_FEATURES
) {
6046 kvm_inject_gp(vcpu
, 0);
6050 if (enable_shadow_vmcs
) {
6051 shadow_vmcs
= alloc_vmcs();
6054 /* mark vmcs as shadow */
6055 shadow_vmcs
->revision_id
|= (1u << 31);
6056 /* init shadow vmcs */
6057 vmcs_clear(shadow_vmcs
);
6058 vmx
->nested
.current_shadow_vmcs
= shadow_vmcs
;
6061 INIT_LIST_HEAD(&(vmx
->nested
.vmcs02_pool
));
6062 vmx
->nested
.vmcs02_num
= 0;
6064 hrtimer_init(&vmx
->nested
.preemption_timer
, CLOCK_MONOTONIC
,
6066 vmx
->nested
.preemption_timer
.function
= vmx_preemption_timer_fn
;
6068 vmx
->nested
.vmxon
= true;
6070 skip_emulated_instruction(vcpu
);
6071 nested_vmx_succeed(vcpu
);
6076 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6077 * for running VMX instructions (except VMXON, whose prerequisites are
6078 * slightly different). It also specifies what exception to inject otherwise.
6080 static int nested_vmx_check_permission(struct kvm_vcpu
*vcpu
)
6082 struct kvm_segment cs
;
6083 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6085 if (!vmx
->nested
.vmxon
) {
6086 kvm_queue_exception(vcpu
, UD_VECTOR
);
6090 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6091 if ((vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
) ||
6092 (is_long_mode(vcpu
) && !cs
.l
)) {
6093 kvm_queue_exception(vcpu
, UD_VECTOR
);
6097 if (vmx_get_cpl(vcpu
)) {
6098 kvm_inject_gp(vcpu
, 0);
6105 static inline void nested_release_vmcs12(struct vcpu_vmx
*vmx
)
6108 if (enable_shadow_vmcs
) {
6109 if (vmx
->nested
.current_vmcs12
!= NULL
) {
6110 /* copy to memory all shadowed fields in case
6111 they were modified */
6112 copy_shadow_to_vmcs12(vmx
);
6113 vmx
->nested
.sync_shadow_vmcs
= false;
6114 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
6115 exec_control
&= ~SECONDARY_EXEC_SHADOW_VMCS
;
6116 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
6117 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
6120 kunmap(vmx
->nested
.current_vmcs12_page
);
6121 nested_release_page(vmx
->nested
.current_vmcs12_page
);
6125 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6126 * just stops using VMX.
6128 static void free_nested(struct vcpu_vmx
*vmx
)
6130 if (!vmx
->nested
.vmxon
)
6132 vmx
->nested
.vmxon
= false;
6133 if (vmx
->nested
.current_vmptr
!= -1ull) {
6134 nested_release_vmcs12(vmx
);
6135 vmx
->nested
.current_vmptr
= -1ull;
6136 vmx
->nested
.current_vmcs12
= NULL
;
6138 if (enable_shadow_vmcs
)
6139 free_vmcs(vmx
->nested
.current_shadow_vmcs
);
6140 /* Unpin physical memory we referred to in current vmcs02 */
6141 if (vmx
->nested
.apic_access_page
) {
6142 nested_release_page(vmx
->nested
.apic_access_page
);
6143 vmx
->nested
.apic_access_page
= 0;
6146 nested_free_all_saved_vmcss(vmx
);
6149 /* Emulate the VMXOFF instruction */
6150 static int handle_vmoff(struct kvm_vcpu
*vcpu
)
6152 if (!nested_vmx_check_permission(vcpu
))
6154 free_nested(to_vmx(vcpu
));
6155 skip_emulated_instruction(vcpu
);
6156 nested_vmx_succeed(vcpu
);
6160 /* Emulate the VMCLEAR instruction */
6161 static int handle_vmclear(struct kvm_vcpu
*vcpu
)
6163 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6165 struct vmcs12
*vmcs12
;
6168 if (!nested_vmx_check_permission(vcpu
))
6171 if (nested_vmx_check_vmptr(vcpu
, EXIT_REASON_VMCLEAR
, &vmptr
))
6174 if (vmptr
== vmx
->nested
.current_vmptr
) {
6175 nested_release_vmcs12(vmx
);
6176 vmx
->nested
.current_vmptr
= -1ull;
6177 vmx
->nested
.current_vmcs12
= NULL
;
6180 page
= nested_get_page(vcpu
, vmptr
);
6183 * For accurate processor emulation, VMCLEAR beyond available
6184 * physical memory should do nothing at all. However, it is
6185 * possible that a nested vmx bug, not a guest hypervisor bug,
6186 * resulted in this case, so let's shut down before doing any
6189 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
6192 vmcs12
= kmap(page
);
6193 vmcs12
->launch_state
= 0;
6195 nested_release_page(page
);
6197 nested_free_vmcs02(vmx
, vmptr
);
6199 skip_emulated_instruction(vcpu
);
6200 nested_vmx_succeed(vcpu
);
6204 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
);
6206 /* Emulate the VMLAUNCH instruction */
6207 static int handle_vmlaunch(struct kvm_vcpu
*vcpu
)
6209 return nested_vmx_run(vcpu
, true);
6212 /* Emulate the VMRESUME instruction */
6213 static int handle_vmresume(struct kvm_vcpu
*vcpu
)
6216 return nested_vmx_run(vcpu
, false);
6219 enum vmcs_field_type
{
6220 VMCS_FIELD_TYPE_U16
= 0,
6221 VMCS_FIELD_TYPE_U64
= 1,
6222 VMCS_FIELD_TYPE_U32
= 2,
6223 VMCS_FIELD_TYPE_NATURAL_WIDTH
= 3
6226 static inline int vmcs_field_type(unsigned long field
)
6228 if (0x1 & field
) /* the *_HIGH fields are all 32 bit */
6229 return VMCS_FIELD_TYPE_U32
;
6230 return (field
>> 13) & 0x3 ;
6233 static inline int vmcs_field_readonly(unsigned long field
)
6235 return (((field
>> 10) & 0x3) == 1);
6239 * Read a vmcs12 field. Since these can have varying lengths and we return
6240 * one type, we chose the biggest type (u64) and zero-extend the return value
6241 * to that size. Note that the caller, handle_vmread, might need to use only
6242 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6243 * 64-bit fields are to be returned).
6245 static inline bool vmcs12_read_any(struct kvm_vcpu
*vcpu
,
6246 unsigned long field
, u64
*ret
)
6248 short offset
= vmcs_field_to_offset(field
);
6254 p
= ((char *)(get_vmcs12(vcpu
))) + offset
;
6256 switch (vmcs_field_type(field
)) {
6257 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
6258 *ret
= *((natural_width
*)p
);
6260 case VMCS_FIELD_TYPE_U16
:
6263 case VMCS_FIELD_TYPE_U32
:
6266 case VMCS_FIELD_TYPE_U64
:
6270 return 0; /* can never happen. */
6275 static inline bool vmcs12_write_any(struct kvm_vcpu
*vcpu
,
6276 unsigned long field
, u64 field_value
){
6277 short offset
= vmcs_field_to_offset(field
);
6278 char *p
= ((char *) get_vmcs12(vcpu
)) + offset
;
6282 switch (vmcs_field_type(field
)) {
6283 case VMCS_FIELD_TYPE_U16
:
6284 *(u16
*)p
= field_value
;
6286 case VMCS_FIELD_TYPE_U32
:
6287 *(u32
*)p
= field_value
;
6289 case VMCS_FIELD_TYPE_U64
:
6290 *(u64
*)p
= field_value
;
6292 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
6293 *(natural_width
*)p
= field_value
;
6296 return false; /* can never happen. */
6301 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
)
6304 unsigned long field
;
6306 struct vmcs
*shadow_vmcs
= vmx
->nested
.current_shadow_vmcs
;
6307 const unsigned long *fields
= shadow_read_write_fields
;
6308 const int num_fields
= max_shadow_read_write_fields
;
6310 vmcs_load(shadow_vmcs
);
6312 for (i
= 0; i
< num_fields
; i
++) {
6314 switch (vmcs_field_type(field
)) {
6315 case VMCS_FIELD_TYPE_U16
:
6316 field_value
= vmcs_read16(field
);
6318 case VMCS_FIELD_TYPE_U32
:
6319 field_value
= vmcs_read32(field
);
6321 case VMCS_FIELD_TYPE_U64
:
6322 field_value
= vmcs_read64(field
);
6324 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
6325 field_value
= vmcs_readl(field
);
6328 vmcs12_write_any(&vmx
->vcpu
, field
, field_value
);
6331 vmcs_clear(shadow_vmcs
);
6332 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
6335 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
)
6337 const unsigned long *fields
[] = {
6338 shadow_read_write_fields
,
6339 shadow_read_only_fields
6341 const int max_fields
[] = {
6342 max_shadow_read_write_fields
,
6343 max_shadow_read_only_fields
6346 unsigned long field
;
6347 u64 field_value
= 0;
6348 struct vmcs
*shadow_vmcs
= vmx
->nested
.current_shadow_vmcs
;
6350 vmcs_load(shadow_vmcs
);
6352 for (q
= 0; q
< ARRAY_SIZE(fields
); q
++) {
6353 for (i
= 0; i
< max_fields
[q
]; i
++) {
6354 field
= fields
[q
][i
];
6355 vmcs12_read_any(&vmx
->vcpu
, field
, &field_value
);
6357 switch (vmcs_field_type(field
)) {
6358 case VMCS_FIELD_TYPE_U16
:
6359 vmcs_write16(field
, (u16
)field_value
);
6361 case VMCS_FIELD_TYPE_U32
:
6362 vmcs_write32(field
, (u32
)field_value
);
6364 case VMCS_FIELD_TYPE_U64
:
6365 vmcs_write64(field
, (u64
)field_value
);
6367 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
6368 vmcs_writel(field
, (long)field_value
);
6374 vmcs_clear(shadow_vmcs
);
6375 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
6379 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6380 * used before) all generate the same failure when it is missing.
6382 static int nested_vmx_check_vmcs12(struct kvm_vcpu
*vcpu
)
6384 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6385 if (vmx
->nested
.current_vmptr
== -1ull) {
6386 nested_vmx_failInvalid(vcpu
);
6387 skip_emulated_instruction(vcpu
);
6393 static int handle_vmread(struct kvm_vcpu
*vcpu
)
6395 unsigned long field
;
6397 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6398 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
6401 if (!nested_vmx_check_permission(vcpu
) ||
6402 !nested_vmx_check_vmcs12(vcpu
))
6405 /* Decode instruction info and find the field to read */
6406 field
= kvm_register_read(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
6407 /* Read the field, zero-extended to a u64 field_value */
6408 if (!vmcs12_read_any(vcpu
, field
, &field_value
)) {
6409 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
6410 skip_emulated_instruction(vcpu
);
6414 * Now copy part of this value to register or memory, as requested.
6415 * Note that the number of bits actually copied is 32 or 64 depending
6416 * on the guest's mode (32 or 64 bit), not on the given field's length.
6418 if (vmx_instruction_info
& (1u << 10)) {
6419 kvm_register_write(vcpu
, (((vmx_instruction_info
) >> 3) & 0xf),
6422 if (get_vmx_mem_address(vcpu
, exit_qualification
,
6423 vmx_instruction_info
, &gva
))
6425 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6426 kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, gva
,
6427 &field_value
, (is_long_mode(vcpu
) ? 8 : 4), NULL
);
6430 nested_vmx_succeed(vcpu
);
6431 skip_emulated_instruction(vcpu
);
6436 static int handle_vmwrite(struct kvm_vcpu
*vcpu
)
6438 unsigned long field
;
6440 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6441 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
6442 /* The value to write might be 32 or 64 bits, depending on L1's long
6443 * mode, and eventually we need to write that into a field of several
6444 * possible lengths. The code below first zero-extends the value to 64
6445 * bit (field_value), and then copies only the approriate number of
6446 * bits into the vmcs12 field.
6448 u64 field_value
= 0;
6449 struct x86_exception e
;
6451 if (!nested_vmx_check_permission(vcpu
) ||
6452 !nested_vmx_check_vmcs12(vcpu
))
6455 if (vmx_instruction_info
& (1u << 10))
6456 field_value
= kvm_register_read(vcpu
,
6457 (((vmx_instruction_info
) >> 3) & 0xf));
6459 if (get_vmx_mem_address(vcpu
, exit_qualification
,
6460 vmx_instruction_info
, &gva
))
6462 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
,
6463 &field_value
, (is_long_mode(vcpu
) ? 8 : 4), &e
)) {
6464 kvm_inject_page_fault(vcpu
, &e
);
6470 field
= kvm_register_read(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
6471 if (vmcs_field_readonly(field
)) {
6472 nested_vmx_failValid(vcpu
,
6473 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT
);
6474 skip_emulated_instruction(vcpu
);
6478 if (!vmcs12_write_any(vcpu
, field
, field_value
)) {
6479 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
6480 skip_emulated_instruction(vcpu
);
6484 nested_vmx_succeed(vcpu
);
6485 skip_emulated_instruction(vcpu
);
6489 /* Emulate the VMPTRLD instruction */
6490 static int handle_vmptrld(struct kvm_vcpu
*vcpu
)
6492 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6496 if (!nested_vmx_check_permission(vcpu
))
6499 if (nested_vmx_check_vmptr(vcpu
, EXIT_REASON_VMPTRLD
, &vmptr
))
6502 if (vmx
->nested
.current_vmptr
!= vmptr
) {
6503 struct vmcs12
*new_vmcs12
;
6505 page
= nested_get_page(vcpu
, vmptr
);
6507 nested_vmx_failInvalid(vcpu
);
6508 skip_emulated_instruction(vcpu
);
6511 new_vmcs12
= kmap(page
);
6512 if (new_vmcs12
->revision_id
!= VMCS12_REVISION
) {
6514 nested_release_page_clean(page
);
6515 nested_vmx_failValid(vcpu
,
6516 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID
);
6517 skip_emulated_instruction(vcpu
);
6520 if (vmx
->nested
.current_vmptr
!= -1ull)
6521 nested_release_vmcs12(vmx
);
6523 vmx
->nested
.current_vmptr
= vmptr
;
6524 vmx
->nested
.current_vmcs12
= new_vmcs12
;
6525 vmx
->nested
.current_vmcs12_page
= page
;
6526 if (enable_shadow_vmcs
) {
6527 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
6528 exec_control
|= SECONDARY_EXEC_SHADOW_VMCS
;
6529 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
6530 vmcs_write64(VMCS_LINK_POINTER
,
6531 __pa(vmx
->nested
.current_shadow_vmcs
));
6532 vmx
->nested
.sync_shadow_vmcs
= true;
6536 nested_vmx_succeed(vcpu
);
6537 skip_emulated_instruction(vcpu
);
6541 /* Emulate the VMPTRST instruction */
6542 static int handle_vmptrst(struct kvm_vcpu
*vcpu
)
6544 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6545 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
6547 struct x86_exception e
;
6549 if (!nested_vmx_check_permission(vcpu
))
6552 if (get_vmx_mem_address(vcpu
, exit_qualification
,
6553 vmx_instruction_info
, &vmcs_gva
))
6555 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6556 if (kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, vmcs_gva
,
6557 (void *)&to_vmx(vcpu
)->nested
.current_vmptr
,
6559 kvm_inject_page_fault(vcpu
, &e
);
6562 nested_vmx_succeed(vcpu
);
6563 skip_emulated_instruction(vcpu
);
6567 /* Emulate the INVEPT instruction */
6568 static int handle_invept(struct kvm_vcpu
*vcpu
)
6570 u32 vmx_instruction_info
, types
;
6573 struct x86_exception e
;
6578 if (!(nested_vmx_secondary_ctls_high
& SECONDARY_EXEC_ENABLE_EPT
) ||
6579 !(nested_vmx_ept_caps
& VMX_EPT_INVEPT_BIT
)) {
6580 kvm_queue_exception(vcpu
, UD_VECTOR
);
6584 if (!nested_vmx_check_permission(vcpu
))
6587 if (!kvm_read_cr0_bits(vcpu
, X86_CR0_PE
)) {
6588 kvm_queue_exception(vcpu
, UD_VECTOR
);
6592 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
6593 type
= kvm_register_read(vcpu
, (vmx_instruction_info
>> 28) & 0xf);
6595 types
= (nested_vmx_ept_caps
>> VMX_EPT_EXTENT_SHIFT
) & 6;
6597 if (!(types
& (1UL << type
))) {
6598 nested_vmx_failValid(vcpu
,
6599 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
6603 /* According to the Intel VMX instruction reference, the memory
6604 * operand is read even if it isn't needed (e.g., for type==global)
6606 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
6607 vmx_instruction_info
, &gva
))
6609 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &operand
,
6610 sizeof(operand
), &e
)) {
6611 kvm_inject_page_fault(vcpu
, &e
);
6616 case VMX_EPT_EXTENT_GLOBAL
:
6617 kvm_mmu_sync_roots(vcpu
);
6618 kvm_mmu_flush_tlb(vcpu
);
6619 nested_vmx_succeed(vcpu
);
6622 /* Trap single context invalidation invept calls */
6627 skip_emulated_instruction(vcpu
);
6632 * The exit handlers return 1 if the exit was handled fully and guest execution
6633 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6634 * to be done to userspace and return 0.
6636 static int (*const kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
) = {
6637 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
6638 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
6639 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
6640 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
6641 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
6642 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
6643 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
6644 [EXIT_REASON_CPUID
] = handle_cpuid
,
6645 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
6646 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
6647 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
6648 [EXIT_REASON_HLT
] = handle_halt
,
6649 [EXIT_REASON_INVD
] = handle_invd
,
6650 [EXIT_REASON_INVLPG
] = handle_invlpg
,
6651 [EXIT_REASON_RDPMC
] = handle_rdpmc
,
6652 [EXIT_REASON_VMCALL
] = handle_vmcall
,
6653 [EXIT_REASON_VMCLEAR
] = handle_vmclear
,
6654 [EXIT_REASON_VMLAUNCH
] = handle_vmlaunch
,
6655 [EXIT_REASON_VMPTRLD
] = handle_vmptrld
,
6656 [EXIT_REASON_VMPTRST
] = handle_vmptrst
,
6657 [EXIT_REASON_VMREAD
] = handle_vmread
,
6658 [EXIT_REASON_VMRESUME
] = handle_vmresume
,
6659 [EXIT_REASON_VMWRITE
] = handle_vmwrite
,
6660 [EXIT_REASON_VMOFF
] = handle_vmoff
,
6661 [EXIT_REASON_VMON
] = handle_vmon
,
6662 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
6663 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
6664 [EXIT_REASON_APIC_WRITE
] = handle_apic_write
,
6665 [EXIT_REASON_EOI_INDUCED
] = handle_apic_eoi_induced
,
6666 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
6667 [EXIT_REASON_XSETBV
] = handle_xsetbv
,
6668 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
6669 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
6670 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
6671 [EXIT_REASON_EPT_MISCONFIG
] = handle_ept_misconfig
,
6672 [EXIT_REASON_PAUSE_INSTRUCTION
] = handle_pause
,
6673 [EXIT_REASON_MWAIT_INSTRUCTION
] = handle_mwait
,
6674 [EXIT_REASON_MONITOR_INSTRUCTION
] = handle_monitor
,
6675 [EXIT_REASON_INVEPT
] = handle_invept
,
6678 static const int kvm_vmx_max_exit_handlers
=
6679 ARRAY_SIZE(kvm_vmx_exit_handlers
);
6681 static bool nested_vmx_exit_handled_io(struct kvm_vcpu
*vcpu
,
6682 struct vmcs12
*vmcs12
)
6684 unsigned long exit_qualification
;
6685 gpa_t bitmap
, last_bitmap
;
6690 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_IO_BITMAPS
))
6691 return nested_cpu_has(vmcs12
, CPU_BASED_UNCOND_IO_EXITING
);
6693 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6695 port
= exit_qualification
>> 16;
6696 size
= (exit_qualification
& 7) + 1;
6698 last_bitmap
= (gpa_t
)-1;
6703 bitmap
= vmcs12
->io_bitmap_a
;
6704 else if (port
< 0x10000)
6705 bitmap
= vmcs12
->io_bitmap_b
;
6708 bitmap
+= (port
& 0x7fff) / 8;
6710 if (last_bitmap
!= bitmap
)
6711 if (kvm_read_guest(vcpu
->kvm
, bitmap
, &b
, 1))
6713 if (b
& (1 << (port
& 7)))
6718 last_bitmap
= bitmap
;
6725 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6726 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6727 * disinterest in the current event (read or write a specific MSR) by using an
6728 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6730 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu
*vcpu
,
6731 struct vmcs12
*vmcs12
, u32 exit_reason
)
6733 u32 msr_index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
6736 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
6740 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6741 * for the four combinations of read/write and low/high MSR numbers.
6742 * First we need to figure out which of the four to use:
6744 bitmap
= vmcs12
->msr_bitmap
;
6745 if (exit_reason
== EXIT_REASON_MSR_WRITE
)
6747 if (msr_index
>= 0xc0000000) {
6748 msr_index
-= 0xc0000000;
6752 /* Then read the msr_index'th bit from this bitmap: */
6753 if (msr_index
< 1024*8) {
6755 if (kvm_read_guest(vcpu
->kvm
, bitmap
+ msr_index
/8, &b
, 1))
6757 return 1 & (b
>> (msr_index
& 7));
6759 return 1; /* let L1 handle the wrong parameter */
6763 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6764 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6765 * intercept (via guest_host_mask etc.) the current event.
6767 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu
*vcpu
,
6768 struct vmcs12
*vmcs12
)
6770 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6771 int cr
= exit_qualification
& 15;
6772 int reg
= (exit_qualification
>> 8) & 15;
6773 unsigned long val
= kvm_register_read(vcpu
, reg
);
6775 switch ((exit_qualification
>> 4) & 3) {
6776 case 0: /* mov to cr */
6779 if (vmcs12
->cr0_guest_host_mask
&
6780 (val
^ vmcs12
->cr0_read_shadow
))
6784 if ((vmcs12
->cr3_target_count
>= 1 &&
6785 vmcs12
->cr3_target_value0
== val
) ||
6786 (vmcs12
->cr3_target_count
>= 2 &&
6787 vmcs12
->cr3_target_value1
== val
) ||
6788 (vmcs12
->cr3_target_count
>= 3 &&
6789 vmcs12
->cr3_target_value2
== val
) ||
6790 (vmcs12
->cr3_target_count
>= 4 &&
6791 vmcs12
->cr3_target_value3
== val
))
6793 if (nested_cpu_has(vmcs12
, CPU_BASED_CR3_LOAD_EXITING
))
6797 if (vmcs12
->cr4_guest_host_mask
&
6798 (vmcs12
->cr4_read_shadow
^ val
))
6802 if (nested_cpu_has(vmcs12
, CPU_BASED_CR8_LOAD_EXITING
))
6808 if ((vmcs12
->cr0_guest_host_mask
& X86_CR0_TS
) &&
6809 (vmcs12
->cr0_read_shadow
& X86_CR0_TS
))
6812 case 1: /* mov from cr */
6815 if (vmcs12
->cpu_based_vm_exec_control
&
6816 CPU_BASED_CR3_STORE_EXITING
)
6820 if (vmcs12
->cpu_based_vm_exec_control
&
6821 CPU_BASED_CR8_STORE_EXITING
)
6828 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6829 * cr0. Other attempted changes are ignored, with no exit.
6831 if (vmcs12
->cr0_guest_host_mask
& 0xe &
6832 (val
^ vmcs12
->cr0_read_shadow
))
6834 if ((vmcs12
->cr0_guest_host_mask
& 0x1) &&
6835 !(vmcs12
->cr0_read_shadow
& 0x1) &&
6844 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6845 * should handle it ourselves in L0 (and then continue L2). Only call this
6846 * when in is_guest_mode (L2).
6848 static bool nested_vmx_exit_handled(struct kvm_vcpu
*vcpu
)
6850 u32 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
6851 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6852 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
6853 u32 exit_reason
= vmx
->exit_reason
;
6855 trace_kvm_nested_vmexit(kvm_rip_read(vcpu
), exit_reason
,
6856 vmcs_readl(EXIT_QUALIFICATION
),
6857 vmx
->idt_vectoring_info
,
6859 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
),
6862 if (vmx
->nested
.nested_run_pending
)
6865 if (unlikely(vmx
->fail
)) {
6866 pr_info_ratelimited("%s failed vm entry %x\n", __func__
,
6867 vmcs_read32(VM_INSTRUCTION_ERROR
));
6871 switch (exit_reason
) {
6872 case EXIT_REASON_EXCEPTION_NMI
:
6873 if (!is_exception(intr_info
))
6875 else if (is_page_fault(intr_info
))
6877 else if (is_no_device(intr_info
) &&
6878 !(vmcs12
->guest_cr0
& X86_CR0_TS
))
6880 return vmcs12
->exception_bitmap
&
6881 (1u << (intr_info
& INTR_INFO_VECTOR_MASK
));
6882 case EXIT_REASON_EXTERNAL_INTERRUPT
:
6884 case EXIT_REASON_TRIPLE_FAULT
:
6886 case EXIT_REASON_PENDING_INTERRUPT
:
6887 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_INTR_PENDING
);
6888 case EXIT_REASON_NMI_WINDOW
:
6889 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_NMI_PENDING
);
6890 case EXIT_REASON_TASK_SWITCH
:
6892 case EXIT_REASON_CPUID
:
6894 case EXIT_REASON_HLT
:
6895 return nested_cpu_has(vmcs12
, CPU_BASED_HLT_EXITING
);
6896 case EXIT_REASON_INVD
:
6898 case EXIT_REASON_INVLPG
:
6899 return nested_cpu_has(vmcs12
, CPU_BASED_INVLPG_EXITING
);
6900 case EXIT_REASON_RDPMC
:
6901 return nested_cpu_has(vmcs12
, CPU_BASED_RDPMC_EXITING
);
6902 case EXIT_REASON_RDTSC
:
6903 return nested_cpu_has(vmcs12
, CPU_BASED_RDTSC_EXITING
);
6904 case EXIT_REASON_VMCALL
: case EXIT_REASON_VMCLEAR
:
6905 case EXIT_REASON_VMLAUNCH
: case EXIT_REASON_VMPTRLD
:
6906 case EXIT_REASON_VMPTRST
: case EXIT_REASON_VMREAD
:
6907 case EXIT_REASON_VMRESUME
: case EXIT_REASON_VMWRITE
:
6908 case EXIT_REASON_VMOFF
: case EXIT_REASON_VMON
:
6909 case EXIT_REASON_INVEPT
:
6911 * VMX instructions trap unconditionally. This allows L1 to
6912 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6915 case EXIT_REASON_CR_ACCESS
:
6916 return nested_vmx_exit_handled_cr(vcpu
, vmcs12
);
6917 case EXIT_REASON_DR_ACCESS
:
6918 return nested_cpu_has(vmcs12
, CPU_BASED_MOV_DR_EXITING
);
6919 case EXIT_REASON_IO_INSTRUCTION
:
6920 return nested_vmx_exit_handled_io(vcpu
, vmcs12
);
6921 case EXIT_REASON_MSR_READ
:
6922 case EXIT_REASON_MSR_WRITE
:
6923 return nested_vmx_exit_handled_msr(vcpu
, vmcs12
, exit_reason
);
6924 case EXIT_REASON_INVALID_STATE
:
6926 case EXIT_REASON_MWAIT_INSTRUCTION
:
6927 return nested_cpu_has(vmcs12
, CPU_BASED_MWAIT_EXITING
);
6928 case EXIT_REASON_MONITOR_INSTRUCTION
:
6929 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_EXITING
);
6930 case EXIT_REASON_PAUSE_INSTRUCTION
:
6931 return nested_cpu_has(vmcs12
, CPU_BASED_PAUSE_EXITING
) ||
6932 nested_cpu_has2(vmcs12
,
6933 SECONDARY_EXEC_PAUSE_LOOP_EXITING
);
6934 case EXIT_REASON_MCE_DURING_VMENTRY
:
6936 case EXIT_REASON_TPR_BELOW_THRESHOLD
:
6938 case EXIT_REASON_APIC_ACCESS
:
6939 return nested_cpu_has2(vmcs12
,
6940 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
6941 case EXIT_REASON_EPT_VIOLATION
:
6943 * L0 always deals with the EPT violation. If nested EPT is
6944 * used, and the nested mmu code discovers that the address is
6945 * missing in the guest EPT table (EPT12), the EPT violation
6946 * will be injected with nested_ept_inject_page_fault()
6949 case EXIT_REASON_EPT_MISCONFIG
:
6951 * L2 never uses directly L1's EPT, but rather L0's own EPT
6952 * table (shadow on EPT) or a merged EPT table that L0 built
6953 * (EPT on EPT). So any problems with the structure of the
6954 * table is L0's fault.
6957 case EXIT_REASON_WBINVD
:
6958 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_WBINVD_EXITING
);
6959 case EXIT_REASON_XSETBV
:
6966 static void vmx_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
6968 *info1
= vmcs_readl(EXIT_QUALIFICATION
);
6969 *info2
= vmcs_read32(VM_EXIT_INTR_INFO
);
6973 * The guest has exited. See if we can fix it or if we need userspace
6976 static int vmx_handle_exit(struct kvm_vcpu
*vcpu
)
6978 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6979 u32 exit_reason
= vmx
->exit_reason
;
6980 u32 vectoring_info
= vmx
->idt_vectoring_info
;
6982 /* If guest state is invalid, start emulating */
6983 if (vmx
->emulation_required
)
6984 return handle_invalid_guest_state(vcpu
);
6986 if (is_guest_mode(vcpu
) && nested_vmx_exit_handled(vcpu
)) {
6987 nested_vmx_vmexit(vcpu
, exit_reason
,
6988 vmcs_read32(VM_EXIT_INTR_INFO
),
6989 vmcs_readl(EXIT_QUALIFICATION
));
6993 if (exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
) {
6994 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
6995 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
7000 if (unlikely(vmx
->fail
)) {
7001 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
7002 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
7003 = vmcs_read32(VM_INSTRUCTION_ERROR
);
7009 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7010 * delivery event since it indicates guest is accessing MMIO.
7011 * The vm-exit can be triggered again after return to guest that
7012 * will cause infinite loop.
7014 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
7015 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
7016 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
7017 exit_reason
!= EXIT_REASON_TASK_SWITCH
)) {
7018 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
7019 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_DELIVERY_EV
;
7020 vcpu
->run
->internal
.ndata
= 2;
7021 vcpu
->run
->internal
.data
[0] = vectoring_info
;
7022 vcpu
->run
->internal
.data
[1] = exit_reason
;
7026 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
&&
7027 !(is_guest_mode(vcpu
) && nested_cpu_has_virtual_nmis(
7028 get_vmcs12(vcpu
))))) {
7029 if (vmx_interrupt_allowed(vcpu
)) {
7030 vmx
->soft_vnmi_blocked
= 0;
7031 } else if (vmx
->vnmi_blocked_time
> 1000000000LL &&
7032 vcpu
->arch
.nmi_pending
) {
7034 * This CPU don't support us in finding the end of an
7035 * NMI-blocked window if the guest runs with IRQs
7036 * disabled. So we pull the trigger after 1 s of
7037 * futile waiting, but inform the user about this.
7039 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
7040 "state on VCPU %d after 1 s timeout\n",
7041 __func__
, vcpu
->vcpu_id
);
7042 vmx
->soft_vnmi_blocked
= 0;
7046 if (exit_reason
< kvm_vmx_max_exit_handlers
7047 && kvm_vmx_exit_handlers
[exit_reason
])
7048 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
);
7050 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
7051 vcpu
->run
->hw
.hardware_exit_reason
= exit_reason
;
7056 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
7058 if (irr
== -1 || tpr
< irr
) {
7059 vmcs_write32(TPR_THRESHOLD
, 0);
7063 vmcs_write32(TPR_THRESHOLD
, irr
);
7066 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu
*vcpu
, bool set
)
7068 u32 sec_exec_control
;
7071 * There is not point to enable virtualize x2apic without enable
7074 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7075 !vmx_vm_has_apicv(vcpu
->kvm
))
7078 if (!vm_need_tpr_shadow(vcpu
->kvm
))
7081 sec_exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
7084 sec_exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
7085 sec_exec_control
|= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
7087 sec_exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
7088 sec_exec_control
|= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
7090 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, sec_exec_control
);
7092 vmx_set_msr_bitmap(vcpu
);
7095 static void vmx_hwapic_isr_update(struct kvm
*kvm
, int isr
)
7100 if (!vmx_vm_has_apicv(kvm
))
7106 status
= vmcs_read16(GUEST_INTR_STATUS
);
7111 vmcs_write16(GUEST_INTR_STATUS
, status
);
7115 static void vmx_set_rvi(int vector
)
7120 status
= vmcs_read16(GUEST_INTR_STATUS
);
7121 old
= (u8
)status
& 0xff;
7122 if ((u8
)vector
!= old
) {
7124 status
|= (u8
)vector
;
7125 vmcs_write16(GUEST_INTR_STATUS
, status
);
7129 static void vmx_hwapic_irr_update(struct kvm_vcpu
*vcpu
, int max_irr
)
7134 vmx_set_rvi(max_irr
);
7137 static void vmx_load_eoi_exitmap(struct kvm_vcpu
*vcpu
, u64
*eoi_exit_bitmap
)
7139 if (!vmx_vm_has_apicv(vcpu
->kvm
))
7142 vmcs_write64(EOI_EXIT_BITMAP0
, eoi_exit_bitmap
[0]);
7143 vmcs_write64(EOI_EXIT_BITMAP1
, eoi_exit_bitmap
[1]);
7144 vmcs_write64(EOI_EXIT_BITMAP2
, eoi_exit_bitmap
[2]);
7145 vmcs_write64(EOI_EXIT_BITMAP3
, eoi_exit_bitmap
[3]);
7148 static void vmx_complete_atomic_exit(struct vcpu_vmx
*vmx
)
7152 if (!(vmx
->exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
7153 || vmx
->exit_reason
== EXIT_REASON_EXCEPTION_NMI
))
7156 vmx
->exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
7157 exit_intr_info
= vmx
->exit_intr_info
;
7159 /* Handle machine checks before interrupts are enabled */
7160 if (is_machine_check(exit_intr_info
))
7161 kvm_machine_check();
7163 /* We need to handle NMIs before interrupts are enabled */
7164 if ((exit_intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
&&
7165 (exit_intr_info
& INTR_INFO_VALID_MASK
)) {
7166 kvm_before_handle_nmi(&vmx
->vcpu
);
7168 kvm_after_handle_nmi(&vmx
->vcpu
);
7172 static void vmx_handle_external_intr(struct kvm_vcpu
*vcpu
)
7174 u32 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
7177 * If external interrupt exists, IF bit is set in rflags/eflags on the
7178 * interrupt stack frame, and interrupt will be enabled on a return
7179 * from interrupt handler.
7181 if ((exit_intr_info
& (INTR_INFO_VALID_MASK
| INTR_INFO_INTR_TYPE_MASK
))
7182 == (INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
)) {
7183 unsigned int vector
;
7184 unsigned long entry
;
7186 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7187 #ifdef CONFIG_X86_64
7191 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
7192 desc
= (gate_desc
*)vmx
->host_idt_base
+ vector
;
7193 entry
= gate_offset(*desc
);
7195 #ifdef CONFIG_X86_64
7196 "mov %%" _ASM_SP
", %[sp]\n\t"
7197 "and $0xfffffffffffffff0, %%" _ASM_SP
"\n\t"
7202 "orl $0x200, (%%" _ASM_SP
")\n\t"
7203 __ASM_SIZE(push
) " $%c[cs]\n\t"
7204 "call *%[entry]\n\t"
7206 #ifdef CONFIG_X86_64
7211 [ss
]"i"(__KERNEL_DS
),
7212 [cs
]"i"(__KERNEL_CS
)
7218 static bool vmx_mpx_supported(void)
7220 return (vmcs_config
.vmexit_ctrl
& VM_EXIT_CLEAR_BNDCFGS
) &&
7221 (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_BNDCFGS
);
7224 static void vmx_recover_nmi_blocking(struct vcpu_vmx
*vmx
)
7229 bool idtv_info_valid
;
7231 idtv_info_valid
= vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
7233 if (cpu_has_virtual_nmis()) {
7234 if (vmx
->nmi_known_unmasked
)
7237 * Can't use vmx->exit_intr_info since we're not sure what
7238 * the exit reason is.
7240 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
7241 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
7242 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
7244 * SDM 3: 27.7.1.2 (September 2008)
7245 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7246 * a guest IRET fault.
7247 * SDM 3: 23.2.2 (September 2008)
7248 * Bit 12 is undefined in any of the following cases:
7249 * If the VM exit sets the valid bit in the IDT-vectoring
7250 * information field.
7251 * If the VM exit is due to a double fault.
7253 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
7254 vector
!= DF_VECTOR
&& !idtv_info_valid
)
7255 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
7256 GUEST_INTR_STATE_NMI
);
7258 vmx
->nmi_known_unmasked
=
7259 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
)
7260 & GUEST_INTR_STATE_NMI
);
7261 } else if (unlikely(vmx
->soft_vnmi_blocked
))
7262 vmx
->vnmi_blocked_time
+=
7263 ktime_to_ns(ktime_sub(ktime_get(), vmx
->entry_time
));
7266 static void __vmx_complete_interrupts(struct kvm_vcpu
*vcpu
,
7267 u32 idt_vectoring_info
,
7268 int instr_len_field
,
7269 int error_code_field
)
7273 bool idtv_info_valid
;
7275 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
7277 vcpu
->arch
.nmi_injected
= false;
7278 kvm_clear_exception_queue(vcpu
);
7279 kvm_clear_interrupt_queue(vcpu
);
7281 if (!idtv_info_valid
)
7284 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7286 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
7287 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
7290 case INTR_TYPE_NMI_INTR
:
7291 vcpu
->arch
.nmi_injected
= true;
7293 * SDM 3: 27.7.1.2 (September 2008)
7294 * Clear bit "block by NMI" before VM entry if a NMI
7297 vmx_set_nmi_mask(vcpu
, false);
7299 case INTR_TYPE_SOFT_EXCEPTION
:
7300 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
7302 case INTR_TYPE_HARD_EXCEPTION
:
7303 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
7304 u32 err
= vmcs_read32(error_code_field
);
7305 kvm_requeue_exception_e(vcpu
, vector
, err
);
7307 kvm_requeue_exception(vcpu
, vector
);
7309 case INTR_TYPE_SOFT_INTR
:
7310 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
7312 case INTR_TYPE_EXT_INTR
:
7313 kvm_queue_interrupt(vcpu
, vector
, type
== INTR_TYPE_SOFT_INTR
);
7320 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
7322 __vmx_complete_interrupts(&vmx
->vcpu
, vmx
->idt_vectoring_info
,
7323 VM_EXIT_INSTRUCTION_LEN
,
7324 IDT_VECTORING_ERROR_CODE
);
7327 static void vmx_cancel_injection(struct kvm_vcpu
*vcpu
)
7329 __vmx_complete_interrupts(vcpu
,
7330 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
7331 VM_ENTRY_INSTRUCTION_LEN
,
7332 VM_ENTRY_EXCEPTION_ERROR_CODE
);
7334 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
7337 static void atomic_switch_perf_msrs(struct vcpu_vmx
*vmx
)
7340 struct perf_guest_switch_msr
*msrs
;
7342 msrs
= perf_guest_get_msrs(&nr_msrs
);
7347 for (i
= 0; i
< nr_msrs
; i
++)
7348 if (msrs
[i
].host
== msrs
[i
].guest
)
7349 clear_atomic_switch_msr(vmx
, msrs
[i
].msr
);
7351 add_atomic_switch_msr(vmx
, msrs
[i
].msr
, msrs
[i
].guest
,
7355 static void __noclone
vmx_vcpu_run(struct kvm_vcpu
*vcpu
)
7357 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7358 unsigned long debugctlmsr
;
7360 /* Record the guest's net vcpu time for enforced NMI injections. */
7361 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
))
7362 vmx
->entry_time
= ktime_get();
7364 /* Don't enter VMX if guest state is invalid, let the exit handler
7365 start emulation until we arrive back to a valid state */
7366 if (vmx
->emulation_required
)
7369 if (vmx
->nested
.sync_shadow_vmcs
) {
7370 copy_vmcs12_to_shadow(vmx
);
7371 vmx
->nested
.sync_shadow_vmcs
= false;
7374 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
7375 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
7376 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
7377 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
7379 /* When single-stepping over STI and MOV SS, we must clear the
7380 * corresponding interruptibility bits in the guest state. Otherwise
7381 * vmentry fails as it then expects bit 14 (BS) in pending debug
7382 * exceptions being set, but that's not correct for the guest debugging
7384 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7385 vmx_set_interrupt_shadow(vcpu
, 0);
7387 atomic_switch_perf_msrs(vmx
);
7388 debugctlmsr
= get_debugctlmsr();
7390 vmx
->__launched
= vmx
->loaded_vmcs
->launched
;
7392 /* Store host registers */
7393 "push %%" _ASM_DX
"; push %%" _ASM_BP
";"
7394 "push %%" _ASM_CX
" \n\t" /* placeholder for guest rcx */
7395 "push %%" _ASM_CX
" \n\t"
7396 "cmp %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
7398 "mov %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
7399 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
7401 /* Reload cr2 if changed */
7402 "mov %c[cr2](%0), %%" _ASM_AX
" \n\t"
7403 "mov %%cr2, %%" _ASM_DX
" \n\t"
7404 "cmp %%" _ASM_AX
", %%" _ASM_DX
" \n\t"
7406 "mov %%" _ASM_AX
", %%cr2 \n\t"
7408 /* Check if vmlaunch of vmresume is needed */
7409 "cmpl $0, %c[launched](%0) \n\t"
7410 /* Load guest registers. Don't clobber flags. */
7411 "mov %c[rax](%0), %%" _ASM_AX
" \n\t"
7412 "mov %c[rbx](%0), %%" _ASM_BX
" \n\t"
7413 "mov %c[rdx](%0), %%" _ASM_DX
" \n\t"
7414 "mov %c[rsi](%0), %%" _ASM_SI
" \n\t"
7415 "mov %c[rdi](%0), %%" _ASM_DI
" \n\t"
7416 "mov %c[rbp](%0), %%" _ASM_BP
" \n\t"
7417 #ifdef CONFIG_X86_64
7418 "mov %c[r8](%0), %%r8 \n\t"
7419 "mov %c[r9](%0), %%r9 \n\t"
7420 "mov %c[r10](%0), %%r10 \n\t"
7421 "mov %c[r11](%0), %%r11 \n\t"
7422 "mov %c[r12](%0), %%r12 \n\t"
7423 "mov %c[r13](%0), %%r13 \n\t"
7424 "mov %c[r14](%0), %%r14 \n\t"
7425 "mov %c[r15](%0), %%r15 \n\t"
7427 "mov %c[rcx](%0), %%" _ASM_CX
" \n\t" /* kills %0 (ecx) */
7429 /* Enter guest mode */
7431 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
7433 "1: " __ex(ASM_VMX_VMRESUME
) "\n\t"
7435 /* Save guest registers, load host registers, keep flags */
7436 "mov %0, %c[wordsize](%%" _ASM_SP
") \n\t"
7438 "mov %%" _ASM_AX
", %c[rax](%0) \n\t"
7439 "mov %%" _ASM_BX
", %c[rbx](%0) \n\t"
7440 __ASM_SIZE(pop
) " %c[rcx](%0) \n\t"
7441 "mov %%" _ASM_DX
", %c[rdx](%0) \n\t"
7442 "mov %%" _ASM_SI
", %c[rsi](%0) \n\t"
7443 "mov %%" _ASM_DI
", %c[rdi](%0) \n\t"
7444 "mov %%" _ASM_BP
", %c[rbp](%0) \n\t"
7445 #ifdef CONFIG_X86_64
7446 "mov %%r8, %c[r8](%0) \n\t"
7447 "mov %%r9, %c[r9](%0) \n\t"
7448 "mov %%r10, %c[r10](%0) \n\t"
7449 "mov %%r11, %c[r11](%0) \n\t"
7450 "mov %%r12, %c[r12](%0) \n\t"
7451 "mov %%r13, %c[r13](%0) \n\t"
7452 "mov %%r14, %c[r14](%0) \n\t"
7453 "mov %%r15, %c[r15](%0) \n\t"
7455 "mov %%cr2, %%" _ASM_AX
" \n\t"
7456 "mov %%" _ASM_AX
", %c[cr2](%0) \n\t"
7458 "pop %%" _ASM_BP
"; pop %%" _ASM_DX
" \n\t"
7459 "setbe %c[fail](%0) \n\t"
7460 ".pushsection .rodata \n\t"
7461 ".global vmx_return \n\t"
7462 "vmx_return: " _ASM_PTR
" 2b \n\t"
7464 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
7465 [launched
]"i"(offsetof(struct vcpu_vmx
, __launched
)),
7466 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
7467 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
7468 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
7469 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
7470 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
7471 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
7472 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
7473 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
7474 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
7475 #ifdef CONFIG_X86_64
7476 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
7477 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
7478 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
7479 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
7480 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
7481 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
7482 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
7483 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
7485 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
)),
7486 [wordsize
]"i"(sizeof(ulong
))
7488 #ifdef CONFIG_X86_64
7489 , "rax", "rbx", "rdi", "rsi"
7490 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7492 , "eax", "ebx", "edi", "esi"
7496 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7498 update_debugctlmsr(debugctlmsr
);
7500 #ifndef CONFIG_X86_64
7502 * The sysexit path does not restore ds/es, so we must set them to
7503 * a reasonable value ourselves.
7505 * We can't defer this to vmx_load_host_state() since that function
7506 * may be executed in interrupt context, which saves and restore segments
7507 * around it, nullifying its effect.
7509 loadsegment(ds
, __USER_DS
);
7510 loadsegment(es
, __USER_DS
);
7513 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
)
7514 | (1 << VCPU_EXREG_RFLAGS
)
7515 | (1 << VCPU_EXREG_PDPTR
)
7516 | (1 << VCPU_EXREG_SEGMENTS
)
7517 | (1 << VCPU_EXREG_CR3
));
7518 vcpu
->arch
.regs_dirty
= 0;
7520 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
7522 vmx
->loaded_vmcs
->launched
= 1;
7524 vmx
->exit_reason
= vmcs_read32(VM_EXIT_REASON
);
7525 trace_kvm_exit(vmx
->exit_reason
, vcpu
, KVM_ISA_VMX
);
7528 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7529 * we did not inject a still-pending event to L1 now because of
7530 * nested_run_pending, we need to re-enable this bit.
7532 if (vmx
->nested
.nested_run_pending
)
7533 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7535 vmx
->nested
.nested_run_pending
= 0;
7537 vmx_complete_atomic_exit(vmx
);
7538 vmx_recover_nmi_blocking(vmx
);
7539 vmx_complete_interrupts(vmx
);
7542 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
7544 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7547 free_loaded_vmcs(vmx
->loaded_vmcs
);
7549 kfree(vmx
->guest_msrs
);
7550 kvm_vcpu_uninit(vcpu
);
7551 kmem_cache_free(kvm_vcpu_cache
, vmx
);
7554 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
7557 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
7561 return ERR_PTR(-ENOMEM
);
7565 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
7569 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
7571 if (!vmx
->guest_msrs
) {
7575 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
7576 vmx
->loaded_vmcs
->vmcs
= alloc_vmcs();
7577 if (!vmx
->loaded_vmcs
->vmcs
)
7580 kvm_cpu_vmxon(__pa(per_cpu(vmxarea
, raw_smp_processor_id())));
7581 loaded_vmcs_init(vmx
->loaded_vmcs
);
7586 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
7587 vmx
->vcpu
.cpu
= cpu
;
7588 err
= vmx_vcpu_setup(vmx
);
7589 vmx_vcpu_put(&vmx
->vcpu
);
7593 if (vm_need_virtualize_apic_accesses(kvm
)) {
7594 err
= alloc_apic_access_page(kvm
);
7600 if (!kvm
->arch
.ept_identity_map_addr
)
7601 kvm
->arch
.ept_identity_map_addr
=
7602 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
7604 if (alloc_identity_pagetable(kvm
) != 0)
7606 if (!init_rmode_identity_map(kvm
))
7610 vmx
->nested
.current_vmptr
= -1ull;
7611 vmx
->nested
.current_vmcs12
= NULL
;
7616 free_loaded_vmcs(vmx
->loaded_vmcs
);
7618 kfree(vmx
->guest_msrs
);
7620 kvm_vcpu_uninit(&vmx
->vcpu
);
7623 kmem_cache_free(kvm_vcpu_cache
, vmx
);
7624 return ERR_PTR(err
);
7627 static void __init
vmx_check_processor_compat(void *rtn
)
7629 struct vmcs_config vmcs_conf
;
7632 if (setup_vmcs_config(&vmcs_conf
) < 0)
7634 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
7635 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
7636 smp_processor_id());
7641 static int get_ept_level(void)
7643 return VMX_EPT_DEFAULT_GAW
+ 1;
7646 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
7650 /* For VT-d and EPT combination
7651 * 1. MMIO: always map as UC
7653 * a. VT-d without snooping control feature: can't guarantee the
7654 * result, try to trust guest.
7655 * b. VT-d with snooping control feature: snooping control feature of
7656 * VT-d engine can guarantee the cache correctness. Just set it
7657 * to WB to keep consistent with host. So the same as item 3.
7658 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7659 * consistent with host MTRR
7662 ret
= MTRR_TYPE_UNCACHABLE
<< VMX_EPT_MT_EPTE_SHIFT
;
7663 else if (kvm_arch_has_noncoherent_dma(vcpu
->kvm
))
7664 ret
= kvm_get_guest_memory_type(vcpu
, gfn
) <<
7665 VMX_EPT_MT_EPTE_SHIFT
;
7667 ret
= (MTRR_TYPE_WRBACK
<< VMX_EPT_MT_EPTE_SHIFT
)
7673 static int vmx_get_lpage_level(void)
7675 if (enable_ept
&& !cpu_has_vmx_ept_1g_page())
7676 return PT_DIRECTORY_LEVEL
;
7678 /* For shadow and EPT supported 1GB page */
7679 return PT_PDPE_LEVEL
;
7682 static void vmx_cpuid_update(struct kvm_vcpu
*vcpu
)
7684 struct kvm_cpuid_entry2
*best
;
7685 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7688 vmx
->rdtscp_enabled
= false;
7689 if (vmx_rdtscp_supported()) {
7690 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
7691 if (exec_control
& SECONDARY_EXEC_RDTSCP
) {
7692 best
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
7693 if (best
&& (best
->edx
& bit(X86_FEATURE_RDTSCP
)))
7694 vmx
->rdtscp_enabled
= true;
7696 exec_control
&= ~SECONDARY_EXEC_RDTSCP
;
7697 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
7703 /* Exposing INVPCID only when PCID is exposed */
7704 best
= kvm_find_cpuid_entry(vcpu
, 0x7, 0);
7705 if (vmx_invpcid_supported() &&
7706 best
&& (best
->ebx
& bit(X86_FEATURE_INVPCID
)) &&
7707 guest_cpuid_has_pcid(vcpu
)) {
7708 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
7709 exec_control
|= SECONDARY_EXEC_ENABLE_INVPCID
;
7710 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
7713 if (cpu_has_secondary_exec_ctrls()) {
7714 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
7715 exec_control
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
7716 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
7720 best
->ebx
&= ~bit(X86_FEATURE_INVPCID
);
7724 static void vmx_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
7726 if (func
== 1 && nested
)
7727 entry
->ecx
|= bit(X86_FEATURE_VMX
);
7730 static void nested_ept_inject_page_fault(struct kvm_vcpu
*vcpu
,
7731 struct x86_exception
*fault
)
7733 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
7736 if (fault
->error_code
& PFERR_RSVD_MASK
)
7737 exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
7739 exit_reason
= EXIT_REASON_EPT_VIOLATION
;
7740 nested_vmx_vmexit(vcpu
, exit_reason
, 0, vcpu
->arch
.exit_qualification
);
7741 vmcs12
->guest_physical_address
= fault
->address
;
7744 /* Callbacks for nested_ept_init_mmu_context: */
7746 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
)
7748 /* return the page table to be shadowed - in our case, EPT12 */
7749 return get_vmcs12(vcpu
)->ept_pointer
;
7752 static void nested_ept_init_mmu_context(struct kvm_vcpu
*vcpu
)
7754 kvm_init_shadow_ept_mmu(vcpu
, &vcpu
->arch
.mmu
,
7755 nested_vmx_ept_caps
& VMX_EPT_EXECUTE_ONLY_BIT
);
7757 vcpu
->arch
.mmu
.set_cr3
= vmx_set_cr3
;
7758 vcpu
->arch
.mmu
.get_cr3
= nested_ept_get_cr3
;
7759 vcpu
->arch
.mmu
.inject_page_fault
= nested_ept_inject_page_fault
;
7761 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
7764 static void nested_ept_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
7766 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
7769 static void vmx_inject_page_fault_nested(struct kvm_vcpu
*vcpu
,
7770 struct x86_exception
*fault
)
7772 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
7774 WARN_ON(!is_guest_mode(vcpu
));
7776 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7777 if (vmcs12
->exception_bitmap
& (1u << PF_VECTOR
))
7778 nested_vmx_vmexit(vcpu
, to_vmx(vcpu
)->exit_reason
,
7779 vmcs_read32(VM_EXIT_INTR_INFO
),
7780 vmcs_readl(EXIT_QUALIFICATION
));
7782 kvm_inject_page_fault(vcpu
, fault
);
7785 static void vmx_start_preemption_timer(struct kvm_vcpu
*vcpu
)
7787 u64 preemption_timeout
= get_vmcs12(vcpu
)->vmx_preemption_timer_value
;
7788 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7790 if (vcpu
->arch
.virtual_tsc_khz
== 0)
7793 /* Make sure short timeouts reliably trigger an immediate vmexit.
7794 * hrtimer_start does not guarantee this. */
7795 if (preemption_timeout
<= 1) {
7796 vmx_preemption_timer_fn(&vmx
->nested
.preemption_timer
);
7800 preemption_timeout
<<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
7801 preemption_timeout
*= 1000000;
7802 do_div(preemption_timeout
, vcpu
->arch
.virtual_tsc_khz
);
7803 hrtimer_start(&vmx
->nested
.preemption_timer
,
7804 ns_to_ktime(preemption_timeout
), HRTIMER_MODE_REL
);
7808 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7809 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7810 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7811 * guest in a way that will both be appropriate to L1's requests, and our
7812 * needs. In addition to modifying the active vmcs (which is vmcs02), this
7813 * function also has additional necessary side-effects, like setting various
7814 * vcpu->arch fields.
7816 static void prepare_vmcs02(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
7818 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7821 vmcs_write16(GUEST_ES_SELECTOR
, vmcs12
->guest_es_selector
);
7822 vmcs_write16(GUEST_CS_SELECTOR
, vmcs12
->guest_cs_selector
);
7823 vmcs_write16(GUEST_SS_SELECTOR
, vmcs12
->guest_ss_selector
);
7824 vmcs_write16(GUEST_DS_SELECTOR
, vmcs12
->guest_ds_selector
);
7825 vmcs_write16(GUEST_FS_SELECTOR
, vmcs12
->guest_fs_selector
);
7826 vmcs_write16(GUEST_GS_SELECTOR
, vmcs12
->guest_gs_selector
);
7827 vmcs_write16(GUEST_LDTR_SELECTOR
, vmcs12
->guest_ldtr_selector
);
7828 vmcs_write16(GUEST_TR_SELECTOR
, vmcs12
->guest_tr_selector
);
7829 vmcs_write32(GUEST_ES_LIMIT
, vmcs12
->guest_es_limit
);
7830 vmcs_write32(GUEST_CS_LIMIT
, vmcs12
->guest_cs_limit
);
7831 vmcs_write32(GUEST_SS_LIMIT
, vmcs12
->guest_ss_limit
);
7832 vmcs_write32(GUEST_DS_LIMIT
, vmcs12
->guest_ds_limit
);
7833 vmcs_write32(GUEST_FS_LIMIT
, vmcs12
->guest_fs_limit
);
7834 vmcs_write32(GUEST_GS_LIMIT
, vmcs12
->guest_gs_limit
);
7835 vmcs_write32(GUEST_LDTR_LIMIT
, vmcs12
->guest_ldtr_limit
);
7836 vmcs_write32(GUEST_TR_LIMIT
, vmcs12
->guest_tr_limit
);
7837 vmcs_write32(GUEST_GDTR_LIMIT
, vmcs12
->guest_gdtr_limit
);
7838 vmcs_write32(GUEST_IDTR_LIMIT
, vmcs12
->guest_idtr_limit
);
7839 vmcs_write32(GUEST_ES_AR_BYTES
, vmcs12
->guest_es_ar_bytes
);
7840 vmcs_write32(GUEST_CS_AR_BYTES
, vmcs12
->guest_cs_ar_bytes
);
7841 vmcs_write32(GUEST_SS_AR_BYTES
, vmcs12
->guest_ss_ar_bytes
);
7842 vmcs_write32(GUEST_DS_AR_BYTES
, vmcs12
->guest_ds_ar_bytes
);
7843 vmcs_write32(GUEST_FS_AR_BYTES
, vmcs12
->guest_fs_ar_bytes
);
7844 vmcs_write32(GUEST_GS_AR_BYTES
, vmcs12
->guest_gs_ar_bytes
);
7845 vmcs_write32(GUEST_LDTR_AR_BYTES
, vmcs12
->guest_ldtr_ar_bytes
);
7846 vmcs_write32(GUEST_TR_AR_BYTES
, vmcs12
->guest_tr_ar_bytes
);
7847 vmcs_writel(GUEST_ES_BASE
, vmcs12
->guest_es_base
);
7848 vmcs_writel(GUEST_CS_BASE
, vmcs12
->guest_cs_base
);
7849 vmcs_writel(GUEST_SS_BASE
, vmcs12
->guest_ss_base
);
7850 vmcs_writel(GUEST_DS_BASE
, vmcs12
->guest_ds_base
);
7851 vmcs_writel(GUEST_FS_BASE
, vmcs12
->guest_fs_base
);
7852 vmcs_writel(GUEST_GS_BASE
, vmcs12
->guest_gs_base
);
7853 vmcs_writel(GUEST_LDTR_BASE
, vmcs12
->guest_ldtr_base
);
7854 vmcs_writel(GUEST_TR_BASE
, vmcs12
->guest_tr_base
);
7855 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->guest_gdtr_base
);
7856 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->guest_idtr_base
);
7858 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
) {
7859 kvm_set_dr(vcpu
, 7, vmcs12
->guest_dr7
);
7860 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmcs12
->guest_ia32_debugctl
);
7862 kvm_set_dr(vcpu
, 7, vcpu
->arch
.dr7
);
7863 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmx
->nested
.vmcs01_debugctl
);
7865 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
7866 vmcs12
->vm_entry_intr_info_field
);
7867 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
7868 vmcs12
->vm_entry_exception_error_code
);
7869 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
7870 vmcs12
->vm_entry_instruction_len
);
7871 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
7872 vmcs12
->guest_interruptibility_info
);
7873 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->guest_sysenter_cs
);
7874 vmx_set_rflags(vcpu
, vmcs12
->guest_rflags
);
7875 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
,
7876 vmcs12
->guest_pending_dbg_exceptions
);
7877 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->guest_sysenter_esp
);
7878 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->guest_sysenter_eip
);
7880 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
7882 exec_control
= vmcs12
->pin_based_vm_exec_control
;
7883 exec_control
|= vmcs_config
.pin_based_exec_ctrl
;
7884 exec_control
&= ~(PIN_BASED_VMX_PREEMPTION_TIMER
|
7885 PIN_BASED_POSTED_INTR
);
7886 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, exec_control
);
7888 vmx
->nested
.preemption_timer_expired
= false;
7889 if (nested_cpu_has_preemption_timer(vmcs12
))
7890 vmx_start_preemption_timer(vcpu
);
7893 * Whether page-faults are trapped is determined by a combination of
7894 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7895 * If enable_ept, L0 doesn't care about page faults and we should
7896 * set all of these to L1's desires. However, if !enable_ept, L0 does
7897 * care about (at least some) page faults, and because it is not easy
7898 * (if at all possible?) to merge L0 and L1's desires, we simply ask
7899 * to exit on each and every L2 page fault. This is done by setting
7900 * MASK=MATCH=0 and (see below) EB.PF=1.
7901 * Note that below we don't need special code to set EB.PF beyond the
7902 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7903 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7904 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7906 * A problem with this approach (when !enable_ept) is that L1 may be
7907 * injected with more page faults than it asked for. This could have
7908 * caused problems, but in practice existing hypervisors don't care.
7909 * To fix this, we will need to emulate the PFEC checking (on the L1
7910 * page tables), using walk_addr(), when injecting PFs to L1.
7912 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
,
7913 enable_ept
? vmcs12
->page_fault_error_code_mask
: 0);
7914 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
,
7915 enable_ept
? vmcs12
->page_fault_error_code_match
: 0);
7917 if (cpu_has_secondary_exec_ctrls()) {
7918 exec_control
= vmx_secondary_exec_control(vmx
);
7919 if (!vmx
->rdtscp_enabled
)
7920 exec_control
&= ~SECONDARY_EXEC_RDTSCP
;
7921 /* Take the following fields only from vmcs12 */
7922 exec_control
&= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
7923 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
7924 SECONDARY_EXEC_APIC_REGISTER_VIRT
);
7925 if (nested_cpu_has(vmcs12
,
7926 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
))
7927 exec_control
|= vmcs12
->secondary_vm_exec_control
;
7929 if (exec_control
& SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
) {
7931 * Translate L1 physical address to host physical
7932 * address for vmcs02. Keep the page pinned, so this
7933 * physical address remains valid. We keep a reference
7934 * to it so we can release it later.
7936 if (vmx
->nested
.apic_access_page
) /* shouldn't happen */
7937 nested_release_page(vmx
->nested
.apic_access_page
);
7938 vmx
->nested
.apic_access_page
=
7939 nested_get_page(vcpu
, vmcs12
->apic_access_addr
);
7941 * If translation failed, no matter: This feature asks
7942 * to exit when accessing the given address, and if it
7943 * can never be accessed, this feature won't do
7946 if (!vmx
->nested
.apic_access_page
)
7948 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
7950 vmcs_write64(APIC_ACCESS_ADDR
,
7951 page_to_phys(vmx
->nested
.apic_access_page
));
7952 } else if (vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
)) {
7954 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
7955 vmcs_write64(APIC_ACCESS_ADDR
,
7956 page_to_phys(vcpu
->kvm
->arch
.apic_access_page
));
7959 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
7964 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7965 * Some constant fields are set here by vmx_set_constant_host_state().
7966 * Other fields are different per CPU, and will be set later when
7967 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7969 vmx_set_constant_host_state(vmx
);
7972 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7973 * entry, but only if the current (host) sp changed from the value
7974 * we wrote last (vmx->host_rsp). This cache is no longer relevant
7975 * if we switch vmcs, and rather than hold a separate cache per vmcs,
7976 * here we just force the write to happen on entry.
7980 exec_control
= vmx_exec_control(vmx
); /* L0's desires */
7981 exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
7982 exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
7983 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
7984 exec_control
|= vmcs12
->cpu_based_vm_exec_control
;
7986 * Merging of IO and MSR bitmaps not currently supported.
7987 * Rather, exit every time.
7989 exec_control
&= ~CPU_BASED_USE_MSR_BITMAPS
;
7990 exec_control
&= ~CPU_BASED_USE_IO_BITMAPS
;
7991 exec_control
|= CPU_BASED_UNCOND_IO_EXITING
;
7993 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
7995 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7996 * bitwise-or of what L1 wants to trap for L2, and what we want to
7997 * trap. Note that CR0.TS also needs updating - we do this later.
7999 update_exception_bitmap(vcpu
);
8000 vcpu
->arch
.cr0_guest_owned_bits
&= ~vmcs12
->cr0_guest_host_mask
;
8001 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
8003 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
8004 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
8005 * bits are further modified by vmx_set_efer() below.
8007 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
8009 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
8010 * emulated by vmx_set_efer(), below.
8012 vm_entry_controls_init(vmx
,
8013 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_LOAD_IA32_EFER
&
8014 ~VM_ENTRY_IA32E_MODE
) |
8015 (vmcs_config
.vmentry_ctrl
& ~VM_ENTRY_IA32E_MODE
));
8017 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_PAT
) {
8018 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->guest_ia32_pat
);
8019 vcpu
->arch
.pat
= vmcs12
->guest_ia32_pat
;
8020 } else if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
)
8021 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
8024 set_cr4_guest_host_mask(vmx
);
8026 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_BNDCFGS
)
8027 vmcs_write64(GUEST_BNDCFGS
, vmcs12
->guest_bndcfgs
);
8029 if (vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_TSC_OFFSETING
)
8030 vmcs_write64(TSC_OFFSET
,
8031 vmx
->nested
.vmcs01_tsc_offset
+ vmcs12
->tsc_offset
);
8033 vmcs_write64(TSC_OFFSET
, vmx
->nested
.vmcs01_tsc_offset
);
8037 * Trivially support vpid by letting L2s share their parent
8038 * L1's vpid. TODO: move to a more elaborate solution, giving
8039 * each L2 its own vpid and exposing the vpid feature to L1.
8041 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
8042 vmx_flush_tlb(vcpu
);
8045 if (nested_cpu_has_ept(vmcs12
)) {
8046 kvm_mmu_unload(vcpu
);
8047 nested_ept_init_mmu_context(vcpu
);
8050 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
)
8051 vcpu
->arch
.efer
= vmcs12
->guest_ia32_efer
;
8052 else if (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
)
8053 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
8055 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
8056 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
8057 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
8060 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
8061 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
8062 * The CR0_READ_SHADOW is what L2 should have expected to read given
8063 * the specifications by L1; It's not enough to take
8064 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
8065 * have more bits than L1 expected.
8067 vmx_set_cr0(vcpu
, vmcs12
->guest_cr0
);
8068 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
8070 vmx_set_cr4(vcpu
, vmcs12
->guest_cr4
);
8071 vmcs_writel(CR4_READ_SHADOW
, nested_read_cr4(vmcs12
));
8073 /* shadow page tables on either EPT or shadow page tables */
8074 kvm_set_cr3(vcpu
, vmcs12
->guest_cr3
);
8075 kvm_mmu_reset_context(vcpu
);
8078 vcpu
->arch
.walk_mmu
->inject_page_fault
= vmx_inject_page_fault_nested
;
8081 * L1 may access the L2's PDPTR, so save them to construct vmcs12
8084 vmcs_write64(GUEST_PDPTR0
, vmcs12
->guest_pdptr0
);
8085 vmcs_write64(GUEST_PDPTR1
, vmcs12
->guest_pdptr1
);
8086 vmcs_write64(GUEST_PDPTR2
, vmcs12
->guest_pdptr2
);
8087 vmcs_write64(GUEST_PDPTR3
, vmcs12
->guest_pdptr3
);
8090 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->guest_rsp
);
8091 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->guest_rip
);
8095 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
8096 * for running an L2 nested guest.
8098 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
)
8100 struct vmcs12
*vmcs12
;
8101 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8103 struct loaded_vmcs
*vmcs02
;
8106 if (!nested_vmx_check_permission(vcpu
) ||
8107 !nested_vmx_check_vmcs12(vcpu
))
8110 skip_emulated_instruction(vcpu
);
8111 vmcs12
= get_vmcs12(vcpu
);
8113 if (enable_shadow_vmcs
)
8114 copy_shadow_to_vmcs12(vmx
);
8117 * The nested entry process starts with enforcing various prerequisites
8118 * on vmcs12 as required by the Intel SDM, and act appropriately when
8119 * they fail: As the SDM explains, some conditions should cause the
8120 * instruction to fail, while others will cause the instruction to seem
8121 * to succeed, but return an EXIT_REASON_INVALID_STATE.
8122 * To speed up the normal (success) code path, we should avoid checking
8123 * for misconfigurations which will anyway be caught by the processor
8124 * when using the merged vmcs02.
8126 if (vmcs12
->launch_state
== launch
) {
8127 nested_vmx_failValid(vcpu
,
8128 launch
? VMXERR_VMLAUNCH_NONCLEAR_VMCS
8129 : VMXERR_VMRESUME_NONLAUNCHED_VMCS
);
8133 if (vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_ACTIVE
&&
8134 vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_HLT
) {
8135 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
8139 if ((vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_MSR_BITMAPS
) &&
8140 !PAGE_ALIGNED(vmcs12
->msr_bitmap
)) {
8141 /*TODO: Also verify bits beyond physical address width are 0*/
8142 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
8146 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
) &&
8147 !PAGE_ALIGNED(vmcs12
->apic_access_addr
)) {
8148 /*TODO: Also verify bits beyond physical address width are 0*/
8149 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
8153 if (vmcs12
->vm_entry_msr_load_count
> 0 ||
8154 vmcs12
->vm_exit_msr_load_count
> 0 ||
8155 vmcs12
->vm_exit_msr_store_count
> 0) {
8156 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
8158 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
8162 if (!vmx_control_verify(vmcs12
->cpu_based_vm_exec_control
,
8163 nested_vmx_true_procbased_ctls_low
,
8164 nested_vmx_procbased_ctls_high
) ||
8165 !vmx_control_verify(vmcs12
->secondary_vm_exec_control
,
8166 nested_vmx_secondary_ctls_low
, nested_vmx_secondary_ctls_high
) ||
8167 !vmx_control_verify(vmcs12
->pin_based_vm_exec_control
,
8168 nested_vmx_pinbased_ctls_low
, nested_vmx_pinbased_ctls_high
) ||
8169 !vmx_control_verify(vmcs12
->vm_exit_controls
,
8170 nested_vmx_true_exit_ctls_low
,
8171 nested_vmx_exit_ctls_high
) ||
8172 !vmx_control_verify(vmcs12
->vm_entry_controls
,
8173 nested_vmx_true_entry_ctls_low
,
8174 nested_vmx_entry_ctls_high
))
8176 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
8180 if (((vmcs12
->host_cr0
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
) ||
8181 ((vmcs12
->host_cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
)) {
8182 nested_vmx_failValid(vcpu
,
8183 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD
);
8187 if (!nested_cr0_valid(vmcs12
, vmcs12
->guest_cr0
) ||
8188 ((vmcs12
->guest_cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
)) {
8189 nested_vmx_entry_failure(vcpu
, vmcs12
,
8190 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
8193 if (vmcs12
->vmcs_link_pointer
!= -1ull) {
8194 nested_vmx_entry_failure(vcpu
, vmcs12
,
8195 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_VMCS_LINK_PTR
);
8200 * If the load IA32_EFER VM-entry control is 1, the following checks
8201 * are performed on the field for the IA32_EFER MSR:
8202 * - Bits reserved in the IA32_EFER MSR must be 0.
8203 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8204 * the IA-32e mode guest VM-exit control. It must also be identical
8205 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8208 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
) {
8209 ia32e
= (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
) != 0;
8210 if (!kvm_valid_efer(vcpu
, vmcs12
->guest_ia32_efer
) ||
8211 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LMA
) ||
8212 ((vmcs12
->guest_cr0
& X86_CR0_PG
) &&
8213 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LME
))) {
8214 nested_vmx_entry_failure(vcpu
, vmcs12
,
8215 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
8221 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8222 * IA32_EFER MSR must be 0 in the field for that register. In addition,
8223 * the values of the LMA and LME bits in the field must each be that of
8224 * the host address-space size VM-exit control.
8226 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
) {
8227 ia32e
= (vmcs12
->vm_exit_controls
&
8228 VM_EXIT_HOST_ADDR_SPACE_SIZE
) != 0;
8229 if (!kvm_valid_efer(vcpu
, vmcs12
->host_ia32_efer
) ||
8230 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LMA
) ||
8231 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LME
)) {
8232 nested_vmx_entry_failure(vcpu
, vmcs12
,
8233 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
8239 * We're finally done with prerequisite checking, and can start with
8243 vmcs02
= nested_get_current_vmcs02(vmx
);
8247 enter_guest_mode(vcpu
);
8249 vmx
->nested
.vmcs01_tsc_offset
= vmcs_read64(TSC_OFFSET
);
8251 if (!(vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
))
8252 vmx
->nested
.vmcs01_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
8255 vmx
->loaded_vmcs
= vmcs02
;
8257 vmx_vcpu_load(vcpu
, cpu
);
8261 vmx_segment_cache_clear(vmx
);
8263 vmcs12
->launch_state
= 1;
8265 prepare_vmcs02(vcpu
, vmcs12
);
8267 if (vmcs12
->guest_activity_state
== GUEST_ACTIVITY_HLT
)
8268 return kvm_emulate_halt(vcpu
);
8270 vmx
->nested
.nested_run_pending
= 1;
8273 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8274 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8275 * returned as far as L1 is concerned. It will only return (and set
8276 * the success flag) when L2 exits (see nested_vmx_vmexit()).
8282 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8283 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8284 * This function returns the new value we should put in vmcs12.guest_cr0.
8285 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8286 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8287 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8288 * didn't trap the bit, because if L1 did, so would L0).
8289 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8290 * been modified by L2, and L1 knows it. So just leave the old value of
8291 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8292 * isn't relevant, because if L0 traps this bit it can set it to anything.
8293 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8294 * changed these bits, and therefore they need to be updated, but L0
8295 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8296 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8298 static inline unsigned long
8299 vmcs12_guest_cr0(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
8302 /*1*/ (vmcs_readl(GUEST_CR0
) & vcpu
->arch
.cr0_guest_owned_bits
) |
8303 /*2*/ (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
) |
8304 /*3*/ (vmcs_readl(CR0_READ_SHADOW
) & ~(vmcs12
->cr0_guest_host_mask
|
8305 vcpu
->arch
.cr0_guest_owned_bits
));
8308 static inline unsigned long
8309 vmcs12_guest_cr4(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
8312 /*1*/ (vmcs_readl(GUEST_CR4
) & vcpu
->arch
.cr4_guest_owned_bits
) |
8313 /*2*/ (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
) |
8314 /*3*/ (vmcs_readl(CR4_READ_SHADOW
) & ~(vmcs12
->cr4_guest_host_mask
|
8315 vcpu
->arch
.cr4_guest_owned_bits
));
8318 static void vmcs12_save_pending_event(struct kvm_vcpu
*vcpu
,
8319 struct vmcs12
*vmcs12
)
8324 if (vcpu
->arch
.exception
.pending
&& vcpu
->arch
.exception
.reinject
) {
8325 nr
= vcpu
->arch
.exception
.nr
;
8326 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
8328 if (kvm_exception_is_soft(nr
)) {
8329 vmcs12
->vm_exit_instruction_len
=
8330 vcpu
->arch
.event_exit_inst_len
;
8331 idt_vectoring
|= INTR_TYPE_SOFT_EXCEPTION
;
8333 idt_vectoring
|= INTR_TYPE_HARD_EXCEPTION
;
8335 if (vcpu
->arch
.exception
.has_error_code
) {
8336 idt_vectoring
|= VECTORING_INFO_DELIVER_CODE_MASK
;
8337 vmcs12
->idt_vectoring_error_code
=
8338 vcpu
->arch
.exception
.error_code
;
8341 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
8342 } else if (vcpu
->arch
.nmi_injected
) {
8343 vmcs12
->idt_vectoring_info_field
=
8344 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
;
8345 } else if (vcpu
->arch
.interrupt
.pending
) {
8346 nr
= vcpu
->arch
.interrupt
.nr
;
8347 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
8349 if (vcpu
->arch
.interrupt
.soft
) {
8350 idt_vectoring
|= INTR_TYPE_SOFT_INTR
;
8351 vmcs12
->vm_entry_instruction_len
=
8352 vcpu
->arch
.event_exit_inst_len
;
8354 idt_vectoring
|= INTR_TYPE_EXT_INTR
;
8356 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
8360 static int vmx_check_nested_events(struct kvm_vcpu
*vcpu
, bool external_intr
)
8362 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8364 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu
)) &&
8365 vmx
->nested
.preemption_timer_expired
) {
8366 if (vmx
->nested
.nested_run_pending
)
8368 nested_vmx_vmexit(vcpu
, EXIT_REASON_PREEMPTION_TIMER
, 0, 0);
8372 if (vcpu
->arch
.nmi_pending
&& nested_exit_on_nmi(vcpu
)) {
8373 if (vmx
->nested
.nested_run_pending
||
8374 vcpu
->arch
.interrupt
.pending
)
8376 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXCEPTION_NMI
,
8377 NMI_VECTOR
| INTR_TYPE_NMI_INTR
|
8378 INTR_INFO_VALID_MASK
, 0);
8380 * The NMI-triggered VM exit counts as injection:
8381 * clear this one and block further NMIs.
8383 vcpu
->arch
.nmi_pending
= 0;
8384 vmx_set_nmi_mask(vcpu
, true);
8388 if ((kvm_cpu_has_interrupt(vcpu
) || external_intr
) &&
8389 nested_exit_on_intr(vcpu
)) {
8390 if (vmx
->nested
.nested_run_pending
)
8392 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXTERNAL_INTERRUPT
, 0, 0);
8398 static u32
vmx_get_preemption_timer_value(struct kvm_vcpu
*vcpu
)
8401 hrtimer_get_remaining(&to_vmx(vcpu
)->nested
.preemption_timer
);
8404 if (ktime_to_ns(remaining
) <= 0)
8407 value
= ktime_to_ns(remaining
) * vcpu
->arch
.virtual_tsc_khz
;
8408 do_div(value
, 1000000);
8409 return value
>> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
8413 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8414 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8415 * and this function updates it to reflect the changes to the guest state while
8416 * L2 was running (and perhaps made some exits which were handled directly by L0
8417 * without going back to L1), and to reflect the exit reason.
8418 * Note that we do not have to copy here all VMCS fields, just those that
8419 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8420 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8421 * which already writes to vmcs12 directly.
8423 static void prepare_vmcs12(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
8424 u32 exit_reason
, u32 exit_intr_info
,
8425 unsigned long exit_qualification
)
8427 /* update guest state fields: */
8428 vmcs12
->guest_cr0
= vmcs12_guest_cr0(vcpu
, vmcs12
);
8429 vmcs12
->guest_cr4
= vmcs12_guest_cr4(vcpu
, vmcs12
);
8431 vmcs12
->guest_rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
8432 vmcs12
->guest_rip
= kvm_register_read(vcpu
, VCPU_REGS_RIP
);
8433 vmcs12
->guest_rflags
= vmcs_readl(GUEST_RFLAGS
);
8435 vmcs12
->guest_es_selector
= vmcs_read16(GUEST_ES_SELECTOR
);
8436 vmcs12
->guest_cs_selector
= vmcs_read16(GUEST_CS_SELECTOR
);
8437 vmcs12
->guest_ss_selector
= vmcs_read16(GUEST_SS_SELECTOR
);
8438 vmcs12
->guest_ds_selector
= vmcs_read16(GUEST_DS_SELECTOR
);
8439 vmcs12
->guest_fs_selector
= vmcs_read16(GUEST_FS_SELECTOR
);
8440 vmcs12
->guest_gs_selector
= vmcs_read16(GUEST_GS_SELECTOR
);
8441 vmcs12
->guest_ldtr_selector
= vmcs_read16(GUEST_LDTR_SELECTOR
);
8442 vmcs12
->guest_tr_selector
= vmcs_read16(GUEST_TR_SELECTOR
);
8443 vmcs12
->guest_es_limit
= vmcs_read32(GUEST_ES_LIMIT
);
8444 vmcs12
->guest_cs_limit
= vmcs_read32(GUEST_CS_LIMIT
);
8445 vmcs12
->guest_ss_limit
= vmcs_read32(GUEST_SS_LIMIT
);
8446 vmcs12
->guest_ds_limit
= vmcs_read32(GUEST_DS_LIMIT
);
8447 vmcs12
->guest_fs_limit
= vmcs_read32(GUEST_FS_LIMIT
);
8448 vmcs12
->guest_gs_limit
= vmcs_read32(GUEST_GS_LIMIT
);
8449 vmcs12
->guest_ldtr_limit
= vmcs_read32(GUEST_LDTR_LIMIT
);
8450 vmcs12
->guest_tr_limit
= vmcs_read32(GUEST_TR_LIMIT
);
8451 vmcs12
->guest_gdtr_limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
8452 vmcs12
->guest_idtr_limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
8453 vmcs12
->guest_es_ar_bytes
= vmcs_read32(GUEST_ES_AR_BYTES
);
8454 vmcs12
->guest_cs_ar_bytes
= vmcs_read32(GUEST_CS_AR_BYTES
);
8455 vmcs12
->guest_ss_ar_bytes
= vmcs_read32(GUEST_SS_AR_BYTES
);
8456 vmcs12
->guest_ds_ar_bytes
= vmcs_read32(GUEST_DS_AR_BYTES
);
8457 vmcs12
->guest_fs_ar_bytes
= vmcs_read32(GUEST_FS_AR_BYTES
);
8458 vmcs12
->guest_gs_ar_bytes
= vmcs_read32(GUEST_GS_AR_BYTES
);
8459 vmcs12
->guest_ldtr_ar_bytes
= vmcs_read32(GUEST_LDTR_AR_BYTES
);
8460 vmcs12
->guest_tr_ar_bytes
= vmcs_read32(GUEST_TR_AR_BYTES
);
8461 vmcs12
->guest_es_base
= vmcs_readl(GUEST_ES_BASE
);
8462 vmcs12
->guest_cs_base
= vmcs_readl(GUEST_CS_BASE
);
8463 vmcs12
->guest_ss_base
= vmcs_readl(GUEST_SS_BASE
);
8464 vmcs12
->guest_ds_base
= vmcs_readl(GUEST_DS_BASE
);
8465 vmcs12
->guest_fs_base
= vmcs_readl(GUEST_FS_BASE
);
8466 vmcs12
->guest_gs_base
= vmcs_readl(GUEST_GS_BASE
);
8467 vmcs12
->guest_ldtr_base
= vmcs_readl(GUEST_LDTR_BASE
);
8468 vmcs12
->guest_tr_base
= vmcs_readl(GUEST_TR_BASE
);
8469 vmcs12
->guest_gdtr_base
= vmcs_readl(GUEST_GDTR_BASE
);
8470 vmcs12
->guest_idtr_base
= vmcs_readl(GUEST_IDTR_BASE
);
8472 vmcs12
->guest_interruptibility_info
=
8473 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
8474 vmcs12
->guest_pending_dbg_exceptions
=
8475 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
);
8476 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
)
8477 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_HLT
;
8479 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_ACTIVE
;
8481 if (nested_cpu_has_preemption_timer(vmcs12
)) {
8482 if (vmcs12
->vm_exit_controls
&
8483 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
)
8484 vmcs12
->vmx_preemption_timer_value
=
8485 vmx_get_preemption_timer_value(vcpu
);
8486 hrtimer_cancel(&to_vmx(vcpu
)->nested
.preemption_timer
);
8490 * In some cases (usually, nested EPT), L2 is allowed to change its
8491 * own CR3 without exiting. If it has changed it, we must keep it.
8492 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8493 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8495 * Additionally, restore L2's PDPTR to vmcs12.
8498 vmcs12
->guest_cr3
= vmcs_read64(GUEST_CR3
);
8499 vmcs12
->guest_pdptr0
= vmcs_read64(GUEST_PDPTR0
);
8500 vmcs12
->guest_pdptr1
= vmcs_read64(GUEST_PDPTR1
);
8501 vmcs12
->guest_pdptr2
= vmcs_read64(GUEST_PDPTR2
);
8502 vmcs12
->guest_pdptr3
= vmcs_read64(GUEST_PDPTR3
);
8505 vmcs12
->vm_entry_controls
=
8506 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_IA32E_MODE
) |
8507 (vm_entry_controls_get(to_vmx(vcpu
)) & VM_ENTRY_IA32E_MODE
);
8509 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_DEBUG_CONTROLS
) {
8510 kvm_get_dr(vcpu
, 7, (unsigned long *)&vmcs12
->guest_dr7
);
8511 vmcs12
->guest_ia32_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
8514 /* TODO: These cannot have changed unless we have MSR bitmaps and
8515 * the relevant bit asks not to trap the change */
8516 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_PAT
)
8517 vmcs12
->guest_ia32_pat
= vmcs_read64(GUEST_IA32_PAT
);
8518 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_EFER
)
8519 vmcs12
->guest_ia32_efer
= vcpu
->arch
.efer
;
8520 vmcs12
->guest_sysenter_cs
= vmcs_read32(GUEST_SYSENTER_CS
);
8521 vmcs12
->guest_sysenter_esp
= vmcs_readl(GUEST_SYSENTER_ESP
);
8522 vmcs12
->guest_sysenter_eip
= vmcs_readl(GUEST_SYSENTER_EIP
);
8523 if (vmx_mpx_supported())
8524 vmcs12
->guest_bndcfgs
= vmcs_read64(GUEST_BNDCFGS
);
8526 /* update exit information fields: */
8528 vmcs12
->vm_exit_reason
= exit_reason
;
8529 vmcs12
->exit_qualification
= exit_qualification
;
8531 vmcs12
->vm_exit_intr_info
= exit_intr_info
;
8532 if ((vmcs12
->vm_exit_intr_info
&
8533 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
)) ==
8534 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
))
8535 vmcs12
->vm_exit_intr_error_code
=
8536 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
8537 vmcs12
->idt_vectoring_info_field
= 0;
8538 vmcs12
->vm_exit_instruction_len
= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
8539 vmcs12
->vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
8541 if (!(vmcs12
->vm_exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
)) {
8542 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8543 * instead of reading the real value. */
8544 vmcs12
->vm_entry_intr_info_field
&= ~INTR_INFO_VALID_MASK
;
8547 * Transfer the event that L0 or L1 may wanted to inject into
8548 * L2 to IDT_VECTORING_INFO_FIELD.
8550 vmcs12_save_pending_event(vcpu
, vmcs12
);
8554 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8555 * preserved above and would only end up incorrectly in L1.
8557 vcpu
->arch
.nmi_injected
= false;
8558 kvm_clear_exception_queue(vcpu
);
8559 kvm_clear_interrupt_queue(vcpu
);
8563 * A part of what we need to when the nested L2 guest exits and we want to
8564 * run its L1 parent, is to reset L1's guest state to the host state specified
8566 * This function is to be called not only on normal nested exit, but also on
8567 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8568 * Failures During or After Loading Guest State").
8569 * This function should be called when the active VMCS is L1's (vmcs01).
8571 static void load_vmcs12_host_state(struct kvm_vcpu
*vcpu
,
8572 struct vmcs12
*vmcs12
)
8574 struct kvm_segment seg
;
8576 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
)
8577 vcpu
->arch
.efer
= vmcs12
->host_ia32_efer
;
8578 else if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
8579 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
8581 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
8582 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
8584 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->host_rsp
);
8585 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->host_rip
);
8586 vmx_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
8588 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8589 * actually changed, because it depends on the current state of
8590 * fpu_active (which may have changed).
8591 * Note that vmx_set_cr0 refers to efer set above.
8593 vmx_set_cr0(vcpu
, vmcs12
->host_cr0
);
8595 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8596 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8597 * but we also need to update cr0_guest_host_mask and exception_bitmap.
8599 update_exception_bitmap(vcpu
);
8600 vcpu
->arch
.cr0_guest_owned_bits
= (vcpu
->fpu_active
? X86_CR0_TS
: 0);
8601 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
8604 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8605 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8607 vcpu
->arch
.cr4_guest_owned_bits
= ~vmcs_readl(CR4_GUEST_HOST_MASK
);
8608 kvm_set_cr4(vcpu
, vmcs12
->host_cr4
);
8610 nested_ept_uninit_mmu_context(vcpu
);
8612 kvm_set_cr3(vcpu
, vmcs12
->host_cr3
);
8613 kvm_mmu_reset_context(vcpu
);
8616 vcpu
->arch
.walk_mmu
->inject_page_fault
= kvm_inject_page_fault
;
8620 * Trivially support vpid by letting L2s share their parent
8621 * L1's vpid. TODO: move to a more elaborate solution, giving
8622 * each L2 its own vpid and exposing the vpid feature to L1.
8624 vmx_flush_tlb(vcpu
);
8628 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->host_ia32_sysenter_cs
);
8629 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->host_ia32_sysenter_esp
);
8630 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->host_ia32_sysenter_eip
);
8631 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->host_idtr_base
);
8632 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->host_gdtr_base
);
8634 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
8635 if (vmcs12
->vm_exit_controls
& VM_EXIT_CLEAR_BNDCFGS
)
8636 vmcs_write64(GUEST_BNDCFGS
, 0);
8638 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PAT
) {
8639 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->host_ia32_pat
);
8640 vcpu
->arch
.pat
= vmcs12
->host_ia32_pat
;
8642 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
8643 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL
,
8644 vmcs12
->host_ia32_perf_global_ctrl
);
8646 /* Set L1 segment info according to Intel SDM
8647 27.5.2 Loading Host Segment and Descriptor-Table Registers */
8648 seg
= (struct kvm_segment
) {
8650 .limit
= 0xFFFFFFFF,
8651 .selector
= vmcs12
->host_cs_selector
,
8657 if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
8661 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_CS
);
8662 seg
= (struct kvm_segment
) {
8664 .limit
= 0xFFFFFFFF,
8671 seg
.selector
= vmcs12
->host_ds_selector
;
8672 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_DS
);
8673 seg
.selector
= vmcs12
->host_es_selector
;
8674 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_ES
);
8675 seg
.selector
= vmcs12
->host_ss_selector
;
8676 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_SS
);
8677 seg
.selector
= vmcs12
->host_fs_selector
;
8678 seg
.base
= vmcs12
->host_fs_base
;
8679 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_FS
);
8680 seg
.selector
= vmcs12
->host_gs_selector
;
8681 seg
.base
= vmcs12
->host_gs_base
;
8682 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_GS
);
8683 seg
= (struct kvm_segment
) {
8684 .base
= vmcs12
->host_tr_base
,
8686 .selector
= vmcs12
->host_tr_selector
,
8690 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_TR
);
8692 kvm_set_dr(vcpu
, 7, 0x400);
8693 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
8697 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8698 * and modify vmcs12 to make it see what it would expect to see there if
8699 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8701 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
,
8703 unsigned long exit_qualification
)
8705 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8707 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
8709 /* trying to cancel vmlaunch/vmresume is a bug */
8710 WARN_ON_ONCE(vmx
->nested
.nested_run_pending
);
8712 leave_guest_mode(vcpu
);
8713 prepare_vmcs12(vcpu
, vmcs12
, exit_reason
, exit_intr_info
,
8714 exit_qualification
);
8716 if ((exit_reason
== EXIT_REASON_EXTERNAL_INTERRUPT
)
8717 && nested_exit_intr_ack_set(vcpu
)) {
8718 int irq
= kvm_cpu_get_interrupt(vcpu
);
8720 vmcs12
->vm_exit_intr_info
= irq
|
8721 INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
;
8724 trace_kvm_nested_vmexit_inject(vmcs12
->vm_exit_reason
,
8725 vmcs12
->exit_qualification
,
8726 vmcs12
->idt_vectoring_info_field
,
8727 vmcs12
->vm_exit_intr_info
,
8728 vmcs12
->vm_exit_intr_error_code
,
8732 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
8734 vmx_vcpu_load(vcpu
, cpu
);
8738 vm_entry_controls_init(vmx
, vmcs_read32(VM_ENTRY_CONTROLS
));
8739 vm_exit_controls_init(vmx
, vmcs_read32(VM_EXIT_CONTROLS
));
8740 vmx_segment_cache_clear(vmx
);
8742 /* if no vmcs02 cache requested, remove the one we used */
8743 if (VMCS02_POOL_SIZE
== 0)
8744 nested_free_vmcs02(vmx
, vmx
->nested
.current_vmptr
);
8746 load_vmcs12_host_state(vcpu
, vmcs12
);
8748 /* Update TSC_OFFSET if TSC was changed while L2 ran */
8749 vmcs_write64(TSC_OFFSET
, vmx
->nested
.vmcs01_tsc_offset
);
8751 /* This is needed for same reason as it was needed in prepare_vmcs02 */
8754 /* Unpin physical memory we referred to in vmcs02 */
8755 if (vmx
->nested
.apic_access_page
) {
8756 nested_release_page(vmx
->nested
.apic_access_page
);
8757 vmx
->nested
.apic_access_page
= 0;
8761 * Exiting from L2 to L1, we're now back to L1 which thinks it just
8762 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8763 * success or failure flag accordingly.
8765 if (unlikely(vmx
->fail
)) {
8767 nested_vmx_failValid(vcpu
, vmcs_read32(VM_INSTRUCTION_ERROR
));
8769 nested_vmx_succeed(vcpu
);
8770 if (enable_shadow_vmcs
)
8771 vmx
->nested
.sync_shadow_vmcs
= true;
8773 /* in case we halted in L2 */
8774 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
8778 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
8780 static void vmx_leave_nested(struct kvm_vcpu
*vcpu
)
8782 if (is_guest_mode(vcpu
))
8783 nested_vmx_vmexit(vcpu
, -1, 0, 0);
8784 free_nested(to_vmx(vcpu
));
8788 * L1's failure to enter L2 is a subset of a normal exit, as explained in
8789 * 23.7 "VM-entry failures during or after loading guest state" (this also
8790 * lists the acceptable exit-reason and exit-qualification parameters).
8791 * It should only be called before L2 actually succeeded to run, and when
8792 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8794 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
8795 struct vmcs12
*vmcs12
,
8796 u32 reason
, unsigned long qualification
)
8798 load_vmcs12_host_state(vcpu
, vmcs12
);
8799 vmcs12
->vm_exit_reason
= reason
| VMX_EXIT_REASONS_FAILED_VMENTRY
;
8800 vmcs12
->exit_qualification
= qualification
;
8801 nested_vmx_succeed(vcpu
);
8802 if (enable_shadow_vmcs
)
8803 to_vmx(vcpu
)->nested
.sync_shadow_vmcs
= true;
8806 static int vmx_check_intercept(struct kvm_vcpu
*vcpu
,
8807 struct x86_instruction_info
*info
,
8808 enum x86_intercept_stage stage
)
8810 return X86EMUL_CONTINUE
;
8813 static struct kvm_x86_ops vmx_x86_ops
= {
8814 .cpu_has_kvm_support
= cpu_has_kvm_support
,
8815 .disabled_by_bios
= vmx_disabled_by_bios
,
8816 .hardware_setup
= hardware_setup
,
8817 .hardware_unsetup
= hardware_unsetup
,
8818 .check_processor_compatibility
= vmx_check_processor_compat
,
8819 .hardware_enable
= hardware_enable
,
8820 .hardware_disable
= hardware_disable
,
8821 .cpu_has_accelerated_tpr
= report_flexpriority
,
8823 .vcpu_create
= vmx_create_vcpu
,
8824 .vcpu_free
= vmx_free_vcpu
,
8825 .vcpu_reset
= vmx_vcpu_reset
,
8827 .prepare_guest_switch
= vmx_save_host_state
,
8828 .vcpu_load
= vmx_vcpu_load
,
8829 .vcpu_put
= vmx_vcpu_put
,
8831 .update_db_bp_intercept
= update_exception_bitmap
,
8832 .get_msr
= vmx_get_msr
,
8833 .set_msr
= vmx_set_msr
,
8834 .get_segment_base
= vmx_get_segment_base
,
8835 .get_segment
= vmx_get_segment
,
8836 .set_segment
= vmx_set_segment
,
8837 .get_cpl
= vmx_get_cpl
,
8838 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
8839 .decache_cr0_guest_bits
= vmx_decache_cr0_guest_bits
,
8840 .decache_cr3
= vmx_decache_cr3
,
8841 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
8842 .set_cr0
= vmx_set_cr0
,
8843 .set_cr3
= vmx_set_cr3
,
8844 .set_cr4
= vmx_set_cr4
,
8845 .set_efer
= vmx_set_efer
,
8846 .get_idt
= vmx_get_idt
,
8847 .set_idt
= vmx_set_idt
,
8848 .get_gdt
= vmx_get_gdt
,
8849 .set_gdt
= vmx_set_gdt
,
8850 .get_dr6
= vmx_get_dr6
,
8851 .set_dr6
= vmx_set_dr6
,
8852 .set_dr7
= vmx_set_dr7
,
8853 .sync_dirty_debug_regs
= vmx_sync_dirty_debug_regs
,
8854 .cache_reg
= vmx_cache_reg
,
8855 .get_rflags
= vmx_get_rflags
,
8856 .set_rflags
= vmx_set_rflags
,
8857 .fpu_activate
= vmx_fpu_activate
,
8858 .fpu_deactivate
= vmx_fpu_deactivate
,
8860 .tlb_flush
= vmx_flush_tlb
,
8862 .run
= vmx_vcpu_run
,
8863 .handle_exit
= vmx_handle_exit
,
8864 .skip_emulated_instruction
= skip_emulated_instruction
,
8865 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
8866 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
8867 .patch_hypercall
= vmx_patch_hypercall
,
8868 .set_irq
= vmx_inject_irq
,
8869 .set_nmi
= vmx_inject_nmi
,
8870 .queue_exception
= vmx_queue_exception
,
8871 .cancel_injection
= vmx_cancel_injection
,
8872 .interrupt_allowed
= vmx_interrupt_allowed
,
8873 .nmi_allowed
= vmx_nmi_allowed
,
8874 .get_nmi_mask
= vmx_get_nmi_mask
,
8875 .set_nmi_mask
= vmx_set_nmi_mask
,
8876 .enable_nmi_window
= enable_nmi_window
,
8877 .enable_irq_window
= enable_irq_window
,
8878 .update_cr8_intercept
= update_cr8_intercept
,
8879 .set_virtual_x2apic_mode
= vmx_set_virtual_x2apic_mode
,
8880 .vm_has_apicv
= vmx_vm_has_apicv
,
8881 .load_eoi_exitmap
= vmx_load_eoi_exitmap
,
8882 .hwapic_irr_update
= vmx_hwapic_irr_update
,
8883 .hwapic_isr_update
= vmx_hwapic_isr_update
,
8884 .sync_pir_to_irr
= vmx_sync_pir_to_irr
,
8885 .deliver_posted_interrupt
= vmx_deliver_posted_interrupt
,
8887 .set_tss_addr
= vmx_set_tss_addr
,
8888 .get_tdp_level
= get_ept_level
,
8889 .get_mt_mask
= vmx_get_mt_mask
,
8891 .get_exit_info
= vmx_get_exit_info
,
8893 .get_lpage_level
= vmx_get_lpage_level
,
8895 .cpuid_update
= vmx_cpuid_update
,
8897 .rdtscp_supported
= vmx_rdtscp_supported
,
8898 .invpcid_supported
= vmx_invpcid_supported
,
8900 .set_supported_cpuid
= vmx_set_supported_cpuid
,
8902 .has_wbinvd_exit
= cpu_has_vmx_wbinvd_exit
,
8904 .set_tsc_khz
= vmx_set_tsc_khz
,
8905 .read_tsc_offset
= vmx_read_tsc_offset
,
8906 .write_tsc_offset
= vmx_write_tsc_offset
,
8907 .adjust_tsc_offset
= vmx_adjust_tsc_offset
,
8908 .compute_tsc_offset
= vmx_compute_tsc_offset
,
8909 .read_l1_tsc
= vmx_read_l1_tsc
,
8911 .set_tdp_cr3
= vmx_set_cr3
,
8913 .check_intercept
= vmx_check_intercept
,
8914 .handle_external_intr
= vmx_handle_external_intr
,
8915 .mpx_supported
= vmx_mpx_supported
,
8917 .check_nested_events
= vmx_check_nested_events
,
8920 static int __init
vmx_init(void)
8924 rdmsrl_safe(MSR_EFER
, &host_efer
);
8926 for (i
= 0; i
< NR_VMX_MSR
; ++i
)
8927 kvm_define_shared_msr(i
, vmx_msr_index
[i
]);
8929 vmx_io_bitmap_a
= (unsigned long *)__get_free_page(GFP_KERNEL
);
8930 if (!vmx_io_bitmap_a
)
8935 vmx_io_bitmap_b
= (unsigned long *)__get_free_page(GFP_KERNEL
);
8936 if (!vmx_io_bitmap_b
)
8939 vmx_msr_bitmap_legacy
= (unsigned long *)__get_free_page(GFP_KERNEL
);
8940 if (!vmx_msr_bitmap_legacy
)
8943 vmx_msr_bitmap_legacy_x2apic
=
8944 (unsigned long *)__get_free_page(GFP_KERNEL
);
8945 if (!vmx_msr_bitmap_legacy_x2apic
)
8948 vmx_msr_bitmap_longmode
= (unsigned long *)__get_free_page(GFP_KERNEL
);
8949 if (!vmx_msr_bitmap_longmode
)
8952 vmx_msr_bitmap_longmode_x2apic
=
8953 (unsigned long *)__get_free_page(GFP_KERNEL
);
8954 if (!vmx_msr_bitmap_longmode_x2apic
)
8956 vmx_vmread_bitmap
= (unsigned long *)__get_free_page(GFP_KERNEL
);
8957 if (!vmx_vmread_bitmap
)
8960 vmx_vmwrite_bitmap
= (unsigned long *)__get_free_page(GFP_KERNEL
);
8961 if (!vmx_vmwrite_bitmap
)
8964 memset(vmx_vmread_bitmap
, 0xff, PAGE_SIZE
);
8965 memset(vmx_vmwrite_bitmap
, 0xff, PAGE_SIZE
);
8968 * Allow direct access to the PC debug port (it is often used for I/O
8969 * delays, but the vmexits simply slow things down).
8971 memset(vmx_io_bitmap_a
, 0xff, PAGE_SIZE
);
8972 clear_bit(0x80, vmx_io_bitmap_a
);
8974 memset(vmx_io_bitmap_b
, 0xff, PAGE_SIZE
);
8976 memset(vmx_msr_bitmap_legacy
, 0xff, PAGE_SIZE
);
8977 memset(vmx_msr_bitmap_longmode
, 0xff, PAGE_SIZE
);
8979 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
8981 r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
),
8982 __alignof__(struct vcpu_vmx
), THIS_MODULE
);
8987 rcu_assign_pointer(crash_vmclear_loaded_vmcss
,
8988 crash_vmclear_local_loaded_vmcss
);
8991 vmx_disable_intercept_for_msr(MSR_FS_BASE
, false);
8992 vmx_disable_intercept_for_msr(MSR_GS_BASE
, false);
8993 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE
, true);
8994 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS
, false);
8995 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP
, false);
8996 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP
, false);
8997 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS
, true);
8999 memcpy(vmx_msr_bitmap_legacy_x2apic
,
9000 vmx_msr_bitmap_legacy
, PAGE_SIZE
);
9001 memcpy(vmx_msr_bitmap_longmode_x2apic
,
9002 vmx_msr_bitmap_longmode
, PAGE_SIZE
);
9005 for (msr
= 0x800; msr
<= 0x8ff; msr
++)
9006 vmx_disable_intercept_msr_read_x2apic(msr
);
9008 /* According SDM, in x2apic mode, the whole id reg is used.
9009 * But in KVM, it only use the highest eight bits. Need to
9011 vmx_enable_intercept_msr_read_x2apic(0x802);
9013 vmx_enable_intercept_msr_read_x2apic(0x839);
9015 vmx_disable_intercept_msr_write_x2apic(0x808);
9017 vmx_disable_intercept_msr_write_x2apic(0x80b);
9019 vmx_disable_intercept_msr_write_x2apic(0x83f);
9023 kvm_mmu_set_mask_ptes(0ull,
9024 (enable_ept_ad_bits
) ? VMX_EPT_ACCESS_BIT
: 0ull,
9025 (enable_ept_ad_bits
) ? VMX_EPT_DIRTY_BIT
: 0ull,
9026 0ull, VMX_EPT_EXECUTABLE_MASK
);
9027 ept_set_mmio_spte_mask();
9035 free_page((unsigned long)vmx_vmwrite_bitmap
);
9037 free_page((unsigned long)vmx_vmread_bitmap
);
9039 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic
);
9041 free_page((unsigned long)vmx_msr_bitmap_longmode
);
9043 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic
);
9045 free_page((unsigned long)vmx_msr_bitmap_legacy
);
9047 free_page((unsigned long)vmx_io_bitmap_b
);
9049 free_page((unsigned long)vmx_io_bitmap_a
);
9053 static void __exit
vmx_exit(void)
9055 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic
);
9056 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic
);
9057 free_page((unsigned long)vmx_msr_bitmap_legacy
);
9058 free_page((unsigned long)vmx_msr_bitmap_longmode
);
9059 free_page((unsigned long)vmx_io_bitmap_b
);
9060 free_page((unsigned long)vmx_io_bitmap_a
);
9061 free_page((unsigned long)vmx_vmwrite_bitmap
);
9062 free_page((unsigned long)vmx_vmread_bitmap
);
9065 rcu_assign_pointer(crash_vmclear_loaded_vmcss
, NULL
);
9072 module_init(vmx_init
)
9073 module_exit(vmx_exit
)