2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
53 #define CREATE_TRACE_POINTS
56 #include <asm/debugreg.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
80 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
82 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
89 static void process_nmi(struct kvm_vcpu
*vcpu
);
91 struct kvm_x86_ops
*kvm_x86_ops
;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
94 static bool ignore_msrs
= 0;
95 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
97 unsigned int min_timer_period_us
= 500;
98 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
100 bool kvm_has_tsc_control
;
101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
102 u32 kvm_max_guest_tsc_khz
;
103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
106 static u32 tsc_tolerance_ppm
= 250;
107 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
109 static bool backwards_tsc_observed
= false;
111 #define KVM_NR_SHARED_MSRS 16
113 struct kvm_shared_msrs_global
{
115 u32 msrs
[KVM_NR_SHARED_MSRS
];
118 struct kvm_shared_msrs
{
119 struct user_return_notifier urn
;
121 struct kvm_shared_msr_values
{
124 } values
[KVM_NR_SHARED_MSRS
];
127 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
128 static struct kvm_shared_msrs __percpu
*shared_msrs
;
130 struct kvm_stats_debugfs_item debugfs_entries
[] = {
131 { "pf_fixed", VCPU_STAT(pf_fixed
) },
132 { "pf_guest", VCPU_STAT(pf_guest
) },
133 { "tlb_flush", VCPU_STAT(tlb_flush
) },
134 { "invlpg", VCPU_STAT(invlpg
) },
135 { "exits", VCPU_STAT(exits
) },
136 { "io_exits", VCPU_STAT(io_exits
) },
137 { "mmio_exits", VCPU_STAT(mmio_exits
) },
138 { "signal_exits", VCPU_STAT(signal_exits
) },
139 { "irq_window", VCPU_STAT(irq_window_exits
) },
140 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
141 { "halt_exits", VCPU_STAT(halt_exits
) },
142 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
143 { "hypercalls", VCPU_STAT(hypercalls
) },
144 { "request_irq", VCPU_STAT(request_irq_exits
) },
145 { "irq_exits", VCPU_STAT(irq_exits
) },
146 { "host_state_reload", VCPU_STAT(host_state_reload
) },
147 { "efer_reload", VCPU_STAT(efer_reload
) },
148 { "fpu_reload", VCPU_STAT(fpu_reload
) },
149 { "insn_emulation", VCPU_STAT(insn_emulation
) },
150 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
151 { "irq_injections", VCPU_STAT(irq_injections
) },
152 { "nmi_injections", VCPU_STAT(nmi_injections
) },
153 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
154 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
155 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
156 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
157 { "mmu_flooded", VM_STAT(mmu_flooded
) },
158 { "mmu_recycled", VM_STAT(mmu_recycled
) },
159 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
160 { "mmu_unsync", VM_STAT(mmu_unsync
) },
161 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
162 { "largepages", VM_STAT(lpages
) },
166 u64 __read_mostly host_xcr0
;
168 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
170 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
173 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
174 vcpu
->arch
.apf
.gfns
[i
] = ~0;
177 static void kvm_on_user_return(struct user_return_notifier
*urn
)
180 struct kvm_shared_msrs
*locals
181 = container_of(urn
, struct kvm_shared_msrs
, urn
);
182 struct kvm_shared_msr_values
*values
;
184 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
185 values
= &locals
->values
[slot
];
186 if (values
->host
!= values
->curr
) {
187 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
188 values
->curr
= values
->host
;
191 locals
->registered
= false;
192 user_return_notifier_unregister(urn
);
195 static void shared_msr_update(unsigned slot
, u32 msr
)
198 unsigned int cpu
= smp_processor_id();
199 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
201 /* only read, and nobody should modify it at this time,
202 * so don't need lock */
203 if (slot
>= shared_msrs_global
.nr
) {
204 printk(KERN_ERR
"kvm: invalid MSR slot!");
207 rdmsrl_safe(msr
, &value
);
208 smsr
->values
[slot
].host
= value
;
209 smsr
->values
[slot
].curr
= value
;
212 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
214 if (slot
>= shared_msrs_global
.nr
)
215 shared_msrs_global
.nr
= slot
+ 1;
216 shared_msrs_global
.msrs
[slot
] = msr
;
217 /* we need ensured the shared_msr_global have been updated */
220 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
222 static void kvm_shared_msr_cpu_online(void)
226 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
227 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
230 void kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
232 unsigned int cpu
= smp_processor_id();
233 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
235 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
237 smsr
->values
[slot
].curr
= value
;
238 wrmsrl(shared_msrs_global
.msrs
[slot
], value
);
239 if (!smsr
->registered
) {
240 smsr
->urn
.on_user_return
= kvm_on_user_return
;
241 user_return_notifier_register(&smsr
->urn
);
242 smsr
->registered
= true;
245 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
247 static void drop_user_return_notifiers(void *ignore
)
249 unsigned int cpu
= smp_processor_id();
250 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
252 if (smsr
->registered
)
253 kvm_on_user_return(&smsr
->urn
);
256 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
258 return vcpu
->arch
.apic_base
;
260 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
262 int kvm_set_apic_base(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
264 u64 old_state
= vcpu
->arch
.apic_base
&
265 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
266 u64 new_state
= msr_info
->data
&
267 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
268 u64 reserved_bits
= ((~0ULL) << cpuid_maxphyaddr(vcpu
)) |
269 0x2ff | (guest_cpuid_has_x2apic(vcpu
) ? 0 : X2APIC_ENABLE
);
271 if (!msr_info
->host_initiated
&&
272 ((msr_info
->data
& reserved_bits
) != 0 ||
273 new_state
== X2APIC_ENABLE
||
274 (new_state
== MSR_IA32_APICBASE_ENABLE
&&
275 old_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
)) ||
276 (new_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
) &&
280 kvm_lapic_set_base(vcpu
, msr_info
->data
);
283 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
285 asmlinkage __visible
void kvm_spurious_fault(void)
287 /* Fault while not rebooting. We want the trace. */
290 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
292 #define EXCPT_BENIGN 0
293 #define EXCPT_CONTRIBUTORY 1
296 static int exception_class(int vector
)
306 return EXCPT_CONTRIBUTORY
;
313 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
314 unsigned nr
, bool has_error
, u32 error_code
,
320 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
322 if (!vcpu
->arch
.exception
.pending
) {
324 vcpu
->arch
.exception
.pending
= true;
325 vcpu
->arch
.exception
.has_error_code
= has_error
;
326 vcpu
->arch
.exception
.nr
= nr
;
327 vcpu
->arch
.exception
.error_code
= error_code
;
328 vcpu
->arch
.exception
.reinject
= reinject
;
332 /* to check exception */
333 prev_nr
= vcpu
->arch
.exception
.nr
;
334 if (prev_nr
== DF_VECTOR
) {
335 /* triple fault -> shutdown */
336 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
339 class1
= exception_class(prev_nr
);
340 class2
= exception_class(nr
);
341 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
342 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
343 /* generate double fault per SDM Table 5-5 */
344 vcpu
->arch
.exception
.pending
= true;
345 vcpu
->arch
.exception
.has_error_code
= true;
346 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
347 vcpu
->arch
.exception
.error_code
= 0;
349 /* replace previous exception with a new one in a hope
350 that instruction re-execution will regenerate lost
355 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
357 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
359 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
361 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
363 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
365 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
367 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
370 kvm_inject_gp(vcpu
, 0);
372 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
374 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
376 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
378 ++vcpu
->stat
.pf_guest
;
379 vcpu
->arch
.cr2
= fault
->address
;
380 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
382 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
384 void kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
386 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
387 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
389 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
392 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
394 atomic_inc(&vcpu
->arch
.nmi_queued
);
395 kvm_make_request(KVM_REQ_NMI
, vcpu
);
397 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
399 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
401 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
403 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
405 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
407 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
409 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
412 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
413 * a #GP and return false.
415 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
417 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
419 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
422 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
425 * This function will be used to read from the physical memory of the currently
426 * running guest. The difference to kvm_read_guest_page is that this function
427 * can read from guest physical or from the guest's guest physical memory.
429 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
430 gfn_t ngfn
, void *data
, int offset
, int len
,
436 ngpa
= gfn_to_gpa(ngfn
);
437 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
);
438 if (real_gfn
== UNMAPPED_GVA
)
441 real_gfn
= gpa_to_gfn(real_gfn
);
443 return kvm_read_guest_page(vcpu
->kvm
, real_gfn
, data
, offset
, len
);
445 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
447 int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
448 void *data
, int offset
, int len
, u32 access
)
450 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
451 data
, offset
, len
, access
);
455 * Load the pae pdptrs. Return true is they are all valid.
457 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
459 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
460 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
463 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
465 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
466 offset
* sizeof(u64
), sizeof(pdpte
),
467 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
472 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
473 if (is_present_gpte(pdpte
[i
]) &&
474 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
481 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
482 __set_bit(VCPU_EXREG_PDPTR
,
483 (unsigned long *)&vcpu
->arch
.regs_avail
);
484 __set_bit(VCPU_EXREG_PDPTR
,
485 (unsigned long *)&vcpu
->arch
.regs_dirty
);
490 EXPORT_SYMBOL_GPL(load_pdptrs
);
492 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
494 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
500 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
503 if (!test_bit(VCPU_EXREG_PDPTR
,
504 (unsigned long *)&vcpu
->arch
.regs_avail
))
507 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
508 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
509 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
510 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
513 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
519 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
521 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
522 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
|
523 X86_CR0_CD
| X86_CR0_NW
;
528 if (cr0
& 0xffffffff00000000UL
)
532 cr0
&= ~CR0_RESERVED_BITS
;
534 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
537 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
540 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
542 if ((vcpu
->arch
.efer
& EFER_LME
)) {
547 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
552 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
557 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
560 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
562 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
563 kvm_clear_async_pf_completion_queue(vcpu
);
564 kvm_async_pf_hash_reset(vcpu
);
567 if ((cr0
^ old_cr0
) & update_bits
)
568 kvm_mmu_reset_context(vcpu
);
571 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
573 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
575 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
577 EXPORT_SYMBOL_GPL(kvm_lmsw
);
579 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
581 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
582 !vcpu
->guest_xcr0_loaded
) {
583 /* kvm_set_xcr() also depends on this */
584 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
585 vcpu
->guest_xcr0_loaded
= 1;
589 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
591 if (vcpu
->guest_xcr0_loaded
) {
592 if (vcpu
->arch
.xcr0
!= host_xcr0
)
593 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
594 vcpu
->guest_xcr0_loaded
= 0;
598 int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
601 u64 old_xcr0
= vcpu
->arch
.xcr0
;
604 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
605 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
607 if (!(xcr0
& XSTATE_FP
))
609 if ((xcr0
& XSTATE_YMM
) && !(xcr0
& XSTATE_SSE
))
613 * Do not allow the guest to set bits that we do not support
614 * saving. However, xcr0 bit 0 is always set, even if the
615 * emulated CPU does not support XSAVE (see fx_init).
617 valid_bits
= vcpu
->arch
.guest_supported_xcr0
| XSTATE_FP
;
618 if (xcr0
& ~valid_bits
)
621 if ((!(xcr0
& XSTATE_BNDREGS
)) != (!(xcr0
& XSTATE_BNDCSR
)))
624 kvm_put_guest_xcr0(vcpu
);
625 vcpu
->arch
.xcr0
= xcr0
;
627 if ((xcr0
^ old_xcr0
) & XSTATE_EXTEND_MASK
)
628 kvm_update_cpuid(vcpu
);
632 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
634 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
635 __kvm_set_xcr(vcpu
, index
, xcr
)) {
636 kvm_inject_gp(vcpu
, 0);
641 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
643 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
645 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
646 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
|
647 X86_CR4_PAE
| X86_CR4_SMEP
;
648 if (cr4
& CR4_RESERVED_BITS
)
651 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
654 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
657 if (!guest_cpuid_has_smap(vcpu
) && (cr4
& X86_CR4_SMAP
))
660 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_FSGSBASE
))
663 if (is_long_mode(vcpu
)) {
664 if (!(cr4
& X86_CR4_PAE
))
666 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
667 && ((cr4
^ old_cr4
) & pdptr_bits
)
668 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
672 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
673 if (!guest_cpuid_has_pcid(vcpu
))
676 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
677 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
681 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
684 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
685 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
686 kvm_mmu_reset_context(vcpu
);
688 if ((cr4
^ old_cr4
) & X86_CR4_SMAP
)
689 update_permission_bitmask(vcpu
, vcpu
->arch
.walk_mmu
, false);
691 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
692 kvm_update_cpuid(vcpu
);
696 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
698 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
700 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
701 kvm_mmu_sync_roots(vcpu
);
702 kvm_mmu_flush_tlb(vcpu
);
706 if (is_long_mode(vcpu
)) {
707 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
709 } else if (is_pae(vcpu
) && is_paging(vcpu
) &&
710 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
713 vcpu
->arch
.cr3
= cr3
;
714 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
715 kvm_mmu_new_cr3(vcpu
);
718 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
720 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
722 if (cr8
& CR8_RESERVED_BITS
)
724 if (irqchip_in_kernel(vcpu
->kvm
))
725 kvm_lapic_set_tpr(vcpu
, cr8
);
727 vcpu
->arch
.cr8
= cr8
;
730 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
732 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
734 if (irqchip_in_kernel(vcpu
->kvm
))
735 return kvm_lapic_get_cr8(vcpu
);
737 return vcpu
->arch
.cr8
;
739 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
741 static void kvm_update_dr6(struct kvm_vcpu
*vcpu
)
743 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
744 kvm_x86_ops
->set_dr6(vcpu
, vcpu
->arch
.dr6
);
747 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
751 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
752 dr7
= vcpu
->arch
.guest_debug_dr7
;
754 dr7
= vcpu
->arch
.dr7
;
755 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
756 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_BP_ENABLED
;
757 if (dr7
& DR7_BP_EN_MASK
)
758 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_BP_ENABLED
;
761 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
765 vcpu
->arch
.db
[dr
] = val
;
766 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
767 vcpu
->arch
.eff_db
[dr
] = val
;
770 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
774 if (val
& 0xffffffff00000000ULL
)
776 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
777 kvm_update_dr6(vcpu
);
780 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
784 if (val
& 0xffffffff00000000ULL
)
786 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
787 kvm_update_dr7(vcpu
);
794 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
798 res
= __kvm_set_dr(vcpu
, dr
, val
);
800 kvm_queue_exception(vcpu
, UD_VECTOR
);
802 kvm_inject_gp(vcpu
, 0);
806 EXPORT_SYMBOL_GPL(kvm_set_dr
);
808 static int _kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
812 *val
= vcpu
->arch
.db
[dr
];
815 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
819 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
820 *val
= vcpu
->arch
.dr6
;
822 *val
= kvm_x86_ops
->get_dr6(vcpu
);
825 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
829 *val
= vcpu
->arch
.dr7
;
836 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
838 if (_kvm_get_dr(vcpu
, dr
, val
)) {
839 kvm_queue_exception(vcpu
, UD_VECTOR
);
844 EXPORT_SYMBOL_GPL(kvm_get_dr
);
846 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
848 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
852 err
= kvm_pmu_read_pmc(vcpu
, ecx
, &data
);
855 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
856 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
859 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
862 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
863 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
865 * This list is modified at module load time to reflect the
866 * capabilities of the host cpu. This capabilities test skips MSRs that are
867 * kvm-specific. Those are put in the beginning of the list.
870 #define KVM_SAVE_MSRS_BEGIN 12
871 static u32 msrs_to_save
[] = {
872 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
873 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
874 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
875 HV_X64_MSR_TIME_REF_COUNT
, HV_X64_MSR_REFERENCE_TSC
,
876 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
878 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
881 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
883 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
884 MSR_IA32_FEATURE_CONTROL
, MSR_IA32_BNDCFGS
887 static unsigned num_msrs_to_save
;
889 static const u32 emulated_msrs
[] = {
891 MSR_IA32_TSCDEADLINE
,
892 MSR_IA32_MISC_ENABLE
,
897 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
899 if (efer
& efer_reserved_bits
)
902 if (efer
& EFER_FFXSR
) {
903 struct kvm_cpuid_entry2
*feat
;
905 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
906 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
910 if (efer
& EFER_SVME
) {
911 struct kvm_cpuid_entry2
*feat
;
913 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
914 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
920 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
922 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
924 u64 old_efer
= vcpu
->arch
.efer
;
926 if (!kvm_valid_efer(vcpu
, efer
))
930 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
934 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
936 kvm_x86_ops
->set_efer(vcpu
, efer
);
938 /* Update reserved bits */
939 if ((efer
^ old_efer
) & EFER_NX
)
940 kvm_mmu_reset_context(vcpu
);
945 void kvm_enable_efer_bits(u64 mask
)
947 efer_reserved_bits
&= ~mask
;
949 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
953 * Writes msr value into into the appropriate "register".
954 * Returns 0 on success, non-0 otherwise.
955 * Assumes vcpu_load() was already called.
957 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
959 return kvm_x86_ops
->set_msr(vcpu
, msr
);
963 * Adapt set_msr() to msr_io()'s calling convention
965 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
971 msr
.host_initiated
= true;
972 return kvm_set_msr(vcpu
, &msr
);
976 struct pvclock_gtod_data
{
979 struct { /* extract of a clocksource struct */
987 /* open coded 'struct timespec' */
988 u64 monotonic_time_snsec
;
989 time_t monotonic_time_sec
;
992 static struct pvclock_gtod_data pvclock_gtod_data
;
994 static void update_pvclock_gtod(struct timekeeper
*tk
)
996 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
998 write_seqcount_begin(&vdata
->seq
);
1000 /* copy pvclock gtod data */
1001 vdata
->clock
.vclock_mode
= tk
->clock
->archdata
.vclock_mode
;
1002 vdata
->clock
.cycle_last
= tk
->clock
->cycle_last
;
1003 vdata
->clock
.mask
= tk
->clock
->mask
;
1004 vdata
->clock
.mult
= tk
->mult
;
1005 vdata
->clock
.shift
= tk
->shift
;
1007 vdata
->monotonic_time_sec
= tk
->xtime_sec
1008 + tk
->wall_to_monotonic
.tv_sec
;
1009 vdata
->monotonic_time_snsec
= tk
->xtime_nsec
1010 + (tk
->wall_to_monotonic
.tv_nsec
1012 while (vdata
->monotonic_time_snsec
>=
1013 (((u64
)NSEC_PER_SEC
) << tk
->shift
)) {
1014 vdata
->monotonic_time_snsec
-=
1015 ((u64
)NSEC_PER_SEC
) << tk
->shift
;
1016 vdata
->monotonic_time_sec
++;
1019 write_seqcount_end(&vdata
->seq
);
1024 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
1028 struct pvclock_wall_clock wc
;
1029 struct timespec boot
;
1034 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1039 ++version
; /* first time write, random junk */
1043 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1046 * The guest calculates current wall clock time by adding
1047 * system time (updated by kvm_guest_time_update below) to the
1048 * wall clock specified here. guest system time equals host
1049 * system time for us, thus we must fill in host boot time here.
1053 if (kvm
->arch
.kvmclock_offset
) {
1054 struct timespec ts
= ns_to_timespec(kvm
->arch
.kvmclock_offset
);
1055 boot
= timespec_sub(boot
, ts
);
1057 wc
.sec
= boot
.tv_sec
;
1058 wc
.nsec
= boot
.tv_nsec
;
1059 wc
.version
= version
;
1061 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1064 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1067 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1069 uint32_t quotient
, remainder
;
1071 /* Don't try to replace with do_div(), this one calculates
1072 * "(dividend << 32) / divisor" */
1074 : "=a" (quotient
), "=d" (remainder
)
1075 : "0" (0), "1" (dividend
), "r" (divisor
) );
1079 static void kvm_get_time_scale(uint32_t scaled_khz
, uint32_t base_khz
,
1080 s8
*pshift
, u32
*pmultiplier
)
1087 tps64
= base_khz
* 1000LL;
1088 scaled64
= scaled_khz
* 1000LL;
1089 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1094 tps32
= (uint32_t)tps64
;
1095 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1096 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1104 *pmultiplier
= div_frac(scaled64
, tps32
);
1106 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1107 __func__
, base_khz
, scaled_khz
, shift
, *pmultiplier
);
1110 static inline u64
get_kernel_ns(void)
1115 monotonic_to_bootbased(&ts
);
1116 return timespec_to_ns(&ts
);
1119 #ifdef CONFIG_X86_64
1120 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1123 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1124 unsigned long max_tsc_khz
;
1126 static inline u64
nsec_to_cycles(struct kvm_vcpu
*vcpu
, u64 nsec
)
1128 return pvclock_scale_delta(nsec
, vcpu
->arch
.virtual_tsc_mult
,
1129 vcpu
->arch
.virtual_tsc_shift
);
1132 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1134 u64 v
= (u64
)khz
* (1000000 + ppm
);
1139 static void kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 this_tsc_khz
)
1141 u32 thresh_lo
, thresh_hi
;
1142 int use_scaling
= 0;
1144 /* tsc_khz can be zero if TSC calibration fails */
1145 if (this_tsc_khz
== 0)
1148 /* Compute a scale to convert nanoseconds in TSC cycles */
1149 kvm_get_time_scale(this_tsc_khz
, NSEC_PER_SEC
/ 1000,
1150 &vcpu
->arch
.virtual_tsc_shift
,
1151 &vcpu
->arch
.virtual_tsc_mult
);
1152 vcpu
->arch
.virtual_tsc_khz
= this_tsc_khz
;
1155 * Compute the variation in TSC rate which is acceptable
1156 * within the range of tolerance and decide if the
1157 * rate being applied is within that bounds of the hardware
1158 * rate. If so, no scaling or compensation need be done.
1160 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1161 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1162 if (this_tsc_khz
< thresh_lo
|| this_tsc_khz
> thresh_hi
) {
1163 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz
, thresh_lo
, thresh_hi
);
1166 kvm_x86_ops
->set_tsc_khz(vcpu
, this_tsc_khz
, use_scaling
);
1169 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1171 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1172 vcpu
->arch
.virtual_tsc_mult
,
1173 vcpu
->arch
.virtual_tsc_shift
);
1174 tsc
+= vcpu
->arch
.this_tsc_write
;
1178 void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1180 #ifdef CONFIG_X86_64
1182 bool do_request
= false;
1183 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1184 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1186 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1187 atomic_read(&vcpu
->kvm
->online_vcpus
));
1189 if (vcpus_matched
&& gtod
->clock
.vclock_mode
== VCLOCK_TSC
)
1190 if (!ka
->use_master_clock
)
1193 if (!vcpus_matched
&& ka
->use_master_clock
)
1197 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1199 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1200 atomic_read(&vcpu
->kvm
->online_vcpus
),
1201 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1205 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1207 u64 curr_offset
= kvm_x86_ops
->read_tsc_offset(vcpu
);
1208 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1211 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1213 struct kvm
*kvm
= vcpu
->kvm
;
1214 u64 offset
, ns
, elapsed
;
1215 unsigned long flags
;
1218 u64 data
= msr
->data
;
1220 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1221 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1222 ns
= get_kernel_ns();
1223 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1225 if (vcpu
->arch
.virtual_tsc_khz
) {
1228 /* n.b - signed multiplication and division required */
1229 usdiff
= data
- kvm
->arch
.last_tsc_write
;
1230 #ifdef CONFIG_X86_64
1231 usdiff
= (usdiff
* 1000) / vcpu
->arch
.virtual_tsc_khz
;
1233 /* do_div() only does unsigned */
1234 asm("1: idivl %[divisor]\n"
1235 "2: xor %%edx, %%edx\n"
1236 " movl $0, %[faulted]\n"
1238 ".section .fixup,\"ax\"\n"
1239 "4: movl $1, %[faulted]\n"
1243 _ASM_EXTABLE(1b
, 4b
)
1245 : "=A"(usdiff
), [faulted
] "=r" (faulted
)
1246 : "A"(usdiff
* 1000), [divisor
] "rm"(vcpu
->arch
.virtual_tsc_khz
));
1249 do_div(elapsed
, 1000);
1254 /* idivl overflow => difference is larger than USEC_PER_SEC */
1256 usdiff
= USEC_PER_SEC
;
1258 usdiff
= USEC_PER_SEC
; /* disable TSC match window below */
1261 * Special case: TSC write with a small delta (1 second) of virtual
1262 * cycle time against real time is interpreted as an attempt to
1263 * synchronize the CPU.
1265 * For a reliable TSC, we can match TSC offsets, and for an unstable
1266 * TSC, we add elapsed time in this computation. We could let the
1267 * compensation code attempt to catch up if we fall behind, but
1268 * it's better to try to match offsets from the beginning.
1270 if (usdiff
< USEC_PER_SEC
&&
1271 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1272 if (!check_tsc_unstable()) {
1273 offset
= kvm
->arch
.cur_tsc_offset
;
1274 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1276 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1278 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1279 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1284 * We split periods of matched TSC writes into generations.
1285 * For each generation, we track the original measured
1286 * nanosecond time, offset, and write, so if TSCs are in
1287 * sync, we can match exact offset, and if not, we can match
1288 * exact software computation in compute_guest_tsc()
1290 * These values are tracked in kvm->arch.cur_xxx variables.
1292 kvm
->arch
.cur_tsc_generation
++;
1293 kvm
->arch
.cur_tsc_nsec
= ns
;
1294 kvm
->arch
.cur_tsc_write
= data
;
1295 kvm
->arch
.cur_tsc_offset
= offset
;
1297 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1298 kvm
->arch
.cur_tsc_generation
, data
);
1302 * We also track th most recent recorded KHZ, write and time to
1303 * allow the matching interval to be extended at each write.
1305 kvm
->arch
.last_tsc_nsec
= ns
;
1306 kvm
->arch
.last_tsc_write
= data
;
1307 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1309 vcpu
->arch
.last_guest_tsc
= data
;
1311 /* Keep track of which generation this VCPU has synchronized to */
1312 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1313 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1314 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1316 if (guest_cpuid_has_tsc_adjust(vcpu
) && !msr
->host_initiated
)
1317 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1318 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1319 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1321 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1323 kvm
->arch
.nr_vcpus_matched_tsc
++;
1325 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1327 kvm_track_tsc_matching(vcpu
);
1328 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1331 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1333 #ifdef CONFIG_X86_64
1335 static cycle_t
read_tsc(void)
1341 * Empirically, a fence (of type that depends on the CPU)
1342 * before rdtsc is enough to ensure that rdtsc is ordered
1343 * with respect to loads. The various CPU manuals are unclear
1344 * as to whether rdtsc can be reordered with later loads,
1345 * but no one has ever seen it happen.
1348 ret
= (cycle_t
)vget_cycles();
1350 last
= pvclock_gtod_data
.clock
.cycle_last
;
1352 if (likely(ret
>= last
))
1356 * GCC likes to generate cmov here, but this branch is extremely
1357 * predictable (it's just a funciton of time and the likely is
1358 * very likely) and there's a data dependence, so force GCC
1359 * to generate a branch instead. I don't barrier() because
1360 * we don't actually need a barrier, and if this function
1361 * ever gets inlined it will generate worse code.
1367 static inline u64
vgettsc(cycle_t
*cycle_now
)
1370 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1372 *cycle_now
= read_tsc();
1374 v
= (*cycle_now
- gtod
->clock
.cycle_last
) & gtod
->clock
.mask
;
1375 return v
* gtod
->clock
.mult
;
1378 static int do_monotonic(struct timespec
*ts
, cycle_t
*cycle_now
)
1383 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1387 seq
= read_seqcount_begin(>od
->seq
);
1388 mode
= gtod
->clock
.vclock_mode
;
1389 ts
->tv_sec
= gtod
->monotonic_time_sec
;
1390 ns
= gtod
->monotonic_time_snsec
;
1391 ns
+= vgettsc(cycle_now
);
1392 ns
>>= gtod
->clock
.shift
;
1393 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1394 timespec_add_ns(ts
, ns
);
1399 /* returns true if host is using tsc clocksource */
1400 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, cycle_t
*cycle_now
)
1404 /* checked again under seqlock below */
1405 if (pvclock_gtod_data
.clock
.vclock_mode
!= VCLOCK_TSC
)
1408 if (do_monotonic(&ts
, cycle_now
) != VCLOCK_TSC
)
1411 monotonic_to_bootbased(&ts
);
1412 *kernel_ns
= timespec_to_ns(&ts
);
1420 * Assuming a stable TSC across physical CPUS, and a stable TSC
1421 * across virtual CPUs, the following condition is possible.
1422 * Each numbered line represents an event visible to both
1423 * CPUs at the next numbered event.
1425 * "timespecX" represents host monotonic time. "tscX" represents
1428 * VCPU0 on CPU0 | VCPU1 on CPU1
1430 * 1. read timespec0,tsc0
1431 * 2. | timespec1 = timespec0 + N
1433 * 3. transition to guest | transition to guest
1434 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1435 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1436 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1438 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1441 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1443 * - 0 < N - M => M < N
1445 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1446 * always the case (the difference between two distinct xtime instances
1447 * might be smaller then the difference between corresponding TSC reads,
1448 * when updating guest vcpus pvclock areas).
1450 * To avoid that problem, do not allow visibility of distinct
1451 * system_timestamp/tsc_timestamp values simultaneously: use a master
1452 * copy of host monotonic time values. Update that master copy
1455 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1459 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1461 #ifdef CONFIG_X86_64
1462 struct kvm_arch
*ka
= &kvm
->arch
;
1464 bool host_tsc_clocksource
, vcpus_matched
;
1466 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1467 atomic_read(&kvm
->online_vcpus
));
1470 * If the host uses TSC clock, then passthrough TSC as stable
1473 host_tsc_clocksource
= kvm_get_time_and_clockread(
1474 &ka
->master_kernel_ns
,
1475 &ka
->master_cycle_now
);
1477 ka
->use_master_clock
= host_tsc_clocksource
&& vcpus_matched
1478 && !backwards_tsc_observed
;
1480 if (ka
->use_master_clock
)
1481 atomic_set(&kvm_guest_has_master_clock
, 1);
1483 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1484 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
1489 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
1491 #ifdef CONFIG_X86_64
1493 struct kvm_vcpu
*vcpu
;
1494 struct kvm_arch
*ka
= &kvm
->arch
;
1496 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1497 kvm_make_mclock_inprogress_request(kvm
);
1498 /* no guest entries from this point */
1499 pvclock_update_vm_gtod_copy(kvm
);
1501 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1502 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
1504 /* guest entries allowed */
1505 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1506 clear_bit(KVM_REQ_MCLOCK_INPROGRESS
, &vcpu
->requests
);
1508 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1512 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1514 unsigned long flags
, this_tsc_khz
;
1515 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1516 struct kvm_arch
*ka
= &v
->kvm
->arch
;
1518 u64 tsc_timestamp
, host_tsc
;
1519 struct pvclock_vcpu_time_info guest_hv_clock
;
1521 bool use_master_clock
;
1527 * If the host uses TSC clock, then passthrough TSC as stable
1530 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1531 use_master_clock
= ka
->use_master_clock
;
1532 if (use_master_clock
) {
1533 host_tsc
= ka
->master_cycle_now
;
1534 kernel_ns
= ka
->master_kernel_ns
;
1536 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1538 /* Keep irq disabled to prevent changes to the clock */
1539 local_irq_save(flags
);
1540 this_tsc_khz
= __get_cpu_var(cpu_tsc_khz
);
1541 if (unlikely(this_tsc_khz
== 0)) {
1542 local_irq_restore(flags
);
1543 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1546 if (!use_master_clock
) {
1547 host_tsc
= native_read_tsc();
1548 kernel_ns
= get_kernel_ns();
1551 tsc_timestamp
= kvm_x86_ops
->read_l1_tsc(v
, host_tsc
);
1554 * We may have to catch up the TSC to match elapsed wall clock
1555 * time for two reasons, even if kvmclock is used.
1556 * 1) CPU could have been running below the maximum TSC rate
1557 * 2) Broken TSC compensation resets the base at each VCPU
1558 * entry to avoid unknown leaps of TSC even when running
1559 * again on the same CPU. This may cause apparent elapsed
1560 * time to disappear, and the guest to stand still or run
1563 if (vcpu
->tsc_catchup
) {
1564 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1565 if (tsc
> tsc_timestamp
) {
1566 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
1567 tsc_timestamp
= tsc
;
1571 local_irq_restore(flags
);
1573 if (!vcpu
->pv_time_enabled
)
1576 if (unlikely(vcpu
->hw_tsc_khz
!= this_tsc_khz
)) {
1577 kvm_get_time_scale(NSEC_PER_SEC
/ 1000, this_tsc_khz
,
1578 &vcpu
->hv_clock
.tsc_shift
,
1579 &vcpu
->hv_clock
.tsc_to_system_mul
);
1580 vcpu
->hw_tsc_khz
= this_tsc_khz
;
1583 /* With all the info we got, fill in the values */
1584 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1585 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1586 vcpu
->last_guest_tsc
= tsc_timestamp
;
1589 * The interface expects us to write an even number signaling that the
1590 * update is finished. Since the guest won't see the intermediate
1591 * state, we just increase by 2 at the end.
1593 vcpu
->hv_clock
.version
+= 2;
1595 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1596 &guest_hv_clock
, sizeof(guest_hv_clock
))))
1599 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1600 pvclock_flags
= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
1602 if (vcpu
->pvclock_set_guest_stopped_request
) {
1603 pvclock_flags
|= PVCLOCK_GUEST_STOPPED
;
1604 vcpu
->pvclock_set_guest_stopped_request
= false;
1607 /* If the host uses TSC clocksource, then it is stable */
1608 if (use_master_clock
)
1609 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
1611 vcpu
->hv_clock
.flags
= pvclock_flags
;
1613 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1615 sizeof(vcpu
->hv_clock
));
1620 * kvmclock updates which are isolated to a given vcpu, such as
1621 * vcpu->cpu migration, should not allow system_timestamp from
1622 * the rest of the vcpus to remain static. Otherwise ntp frequency
1623 * correction applies to one vcpu's system_timestamp but not
1626 * So in those cases, request a kvmclock update for all vcpus.
1627 * We need to rate-limit these requests though, as they can
1628 * considerably slow guests that have a large number of vcpus.
1629 * The time for a remote vcpu to update its kvmclock is bound
1630 * by the delay we use to rate-limit the updates.
1633 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1635 static void kvmclock_update_fn(struct work_struct
*work
)
1638 struct delayed_work
*dwork
= to_delayed_work(work
);
1639 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1640 kvmclock_update_work
);
1641 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1642 struct kvm_vcpu
*vcpu
;
1644 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1645 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
1646 kvm_vcpu_kick(vcpu
);
1650 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
1652 struct kvm
*kvm
= v
->kvm
;
1654 set_bit(KVM_REQ_CLOCK_UPDATE
, &v
->requests
);
1655 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
,
1656 KVMCLOCK_UPDATE_DELAY
);
1659 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1661 static void kvmclock_sync_fn(struct work_struct
*work
)
1663 struct delayed_work
*dwork
= to_delayed_work(work
);
1664 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1665 kvmclock_sync_work
);
1666 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1668 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
, 0);
1669 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
1670 KVMCLOCK_SYNC_PERIOD
);
1673 static bool msr_mtrr_valid(unsigned msr
)
1676 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
1677 case MSR_MTRRfix64K_00000
:
1678 case MSR_MTRRfix16K_80000
:
1679 case MSR_MTRRfix16K_A0000
:
1680 case MSR_MTRRfix4K_C0000
:
1681 case MSR_MTRRfix4K_C8000
:
1682 case MSR_MTRRfix4K_D0000
:
1683 case MSR_MTRRfix4K_D8000
:
1684 case MSR_MTRRfix4K_E0000
:
1685 case MSR_MTRRfix4K_E8000
:
1686 case MSR_MTRRfix4K_F0000
:
1687 case MSR_MTRRfix4K_F8000
:
1688 case MSR_MTRRdefType
:
1689 case MSR_IA32_CR_PAT
:
1697 static bool valid_pat_type(unsigned t
)
1699 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1702 static bool valid_mtrr_type(unsigned t
)
1704 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
1707 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1711 if (!msr_mtrr_valid(msr
))
1714 if (msr
== MSR_IA32_CR_PAT
) {
1715 for (i
= 0; i
< 8; i
++)
1716 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
1719 } else if (msr
== MSR_MTRRdefType
) {
1722 return valid_mtrr_type(data
& 0xff);
1723 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
1724 for (i
= 0; i
< 8 ; i
++)
1725 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
1730 /* variable MTRRs */
1731 return valid_mtrr_type(data
& 0xff);
1734 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1736 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1738 if (!mtrr_valid(vcpu
, msr
, data
))
1741 if (msr
== MSR_MTRRdefType
) {
1742 vcpu
->arch
.mtrr_state
.def_type
= data
;
1743 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
1744 } else if (msr
== MSR_MTRRfix64K_00000
)
1746 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1747 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
1748 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1749 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
1750 else if (msr
== MSR_IA32_CR_PAT
)
1751 vcpu
->arch
.pat
= data
;
1752 else { /* Variable MTRRs */
1753 int idx
, is_mtrr_mask
;
1756 idx
= (msr
- 0x200) / 2;
1757 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1760 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1763 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1767 kvm_mmu_reset_context(vcpu
);
1771 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1773 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1774 unsigned bank_num
= mcg_cap
& 0xff;
1777 case MSR_IA32_MCG_STATUS
:
1778 vcpu
->arch
.mcg_status
= data
;
1780 case MSR_IA32_MCG_CTL
:
1781 if (!(mcg_cap
& MCG_CTL_P
))
1783 if (data
!= 0 && data
!= ~(u64
)0)
1785 vcpu
->arch
.mcg_ctl
= data
;
1788 if (msr
>= MSR_IA32_MC0_CTL
&&
1789 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1790 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1791 /* only 0 or all 1s can be written to IA32_MCi_CTL
1792 * some Linux kernels though clear bit 10 in bank 4 to
1793 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1794 * this to avoid an uncatched #GP in the guest
1796 if ((offset
& 0x3) == 0 &&
1797 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1799 vcpu
->arch
.mce_banks
[offset
] = data
;
1807 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1809 struct kvm
*kvm
= vcpu
->kvm
;
1810 int lm
= is_long_mode(vcpu
);
1811 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1812 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1813 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1814 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1815 u32 page_num
= data
& ~PAGE_MASK
;
1816 u64 page_addr
= data
& PAGE_MASK
;
1821 if (page_num
>= blob_size
)
1824 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
1829 if (kvm_write_guest(kvm
, page_addr
, page
, PAGE_SIZE
))
1838 static bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1840 return kvm
->arch
.hv_hypercall
& HV_X64_MSR_HYPERCALL_ENABLE
;
1843 static bool kvm_hv_msr_partition_wide(u32 msr
)
1847 case HV_X64_MSR_GUEST_OS_ID
:
1848 case HV_X64_MSR_HYPERCALL
:
1849 case HV_X64_MSR_REFERENCE_TSC
:
1850 case HV_X64_MSR_TIME_REF_COUNT
:
1858 static int set_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1860 struct kvm
*kvm
= vcpu
->kvm
;
1863 case HV_X64_MSR_GUEST_OS_ID
:
1864 kvm
->arch
.hv_guest_os_id
= data
;
1865 /* setting guest os id to zero disables hypercall page */
1866 if (!kvm
->arch
.hv_guest_os_id
)
1867 kvm
->arch
.hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1869 case HV_X64_MSR_HYPERCALL
: {
1874 /* if guest os id is not set hypercall should remain disabled */
1875 if (!kvm
->arch
.hv_guest_os_id
)
1877 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1878 kvm
->arch
.hv_hypercall
= data
;
1881 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
1882 addr
= gfn_to_hva(kvm
, gfn
);
1883 if (kvm_is_error_hva(addr
))
1885 kvm_x86_ops
->patch_hypercall(vcpu
, instructions
);
1886 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
1887 if (__copy_to_user((void __user
*)addr
, instructions
, 4))
1889 kvm
->arch
.hv_hypercall
= data
;
1890 mark_page_dirty(kvm
, gfn
);
1893 case HV_X64_MSR_REFERENCE_TSC
: {
1895 HV_REFERENCE_TSC_PAGE tsc_ref
;
1896 memset(&tsc_ref
, 0, sizeof(tsc_ref
));
1897 kvm
->arch
.hv_tsc_page
= data
;
1898 if (!(data
& HV_X64_MSR_TSC_REFERENCE_ENABLE
))
1900 gfn
= data
>> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT
;
1901 if (kvm_write_guest(kvm
, data
,
1902 &tsc_ref
, sizeof(tsc_ref
)))
1904 mark_page_dirty(kvm
, gfn
);
1908 vcpu_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1909 "data 0x%llx\n", msr
, data
);
1915 static int set_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1918 case HV_X64_MSR_APIC_ASSIST_PAGE
: {
1922 if (!(data
& HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE
)) {
1923 vcpu
->arch
.hv_vapic
= data
;
1924 if (kvm_lapic_enable_pv_eoi(vcpu
, 0))
1928 gfn
= data
>> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT
;
1929 addr
= gfn_to_hva(vcpu
->kvm
, gfn
);
1930 if (kvm_is_error_hva(addr
))
1932 if (__clear_user((void __user
*)addr
, PAGE_SIZE
))
1934 vcpu
->arch
.hv_vapic
= data
;
1935 mark_page_dirty(vcpu
->kvm
, gfn
);
1936 if (kvm_lapic_enable_pv_eoi(vcpu
, gfn_to_gpa(gfn
) | KVM_MSR_ENABLED
))
1940 case HV_X64_MSR_EOI
:
1941 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
1942 case HV_X64_MSR_ICR
:
1943 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
1944 case HV_X64_MSR_TPR
:
1945 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
1947 vcpu_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1948 "data 0x%llx\n", msr
, data
);
1955 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
1957 gpa_t gpa
= data
& ~0x3f;
1959 /* Bits 2:5 are reserved, Should be zero */
1963 vcpu
->arch
.apf
.msr_val
= data
;
1965 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
1966 kvm_clear_async_pf_completion_queue(vcpu
);
1967 kvm_async_pf_hash_reset(vcpu
);
1971 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
1975 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
1976 kvm_async_pf_wakeup_all(vcpu
);
1980 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
1982 vcpu
->arch
.pv_time_enabled
= false;
1985 static void accumulate_steal_time(struct kvm_vcpu
*vcpu
)
1989 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1992 delta
= current
->sched_info
.run_delay
- vcpu
->arch
.st
.last_steal
;
1993 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1994 vcpu
->arch
.st
.accum_steal
= delta
;
1997 static void record_steal_time(struct kvm_vcpu
*vcpu
)
1999 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2002 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2003 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
2006 vcpu
->arch
.st
.steal
.steal
+= vcpu
->arch
.st
.accum_steal
;
2007 vcpu
->arch
.st
.steal
.version
+= 2;
2008 vcpu
->arch
.st
.accum_steal
= 0;
2010 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2011 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2014 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2017 u32 msr
= msr_info
->index
;
2018 u64 data
= msr_info
->data
;
2021 case MSR_AMD64_NB_CFG
:
2022 case MSR_IA32_UCODE_REV
:
2023 case MSR_IA32_UCODE_WRITE
:
2024 case MSR_VM_HSAVE_PA
:
2025 case MSR_AMD64_PATCH_LOADER
:
2026 case MSR_AMD64_BU_CFG2
:
2030 return set_efer(vcpu
, data
);
2032 data
&= ~(u64
)0x40; /* ignore flush filter disable */
2033 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
2034 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
2036 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
2041 case MSR_FAM10H_MMIO_CONF_BASE
:
2043 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
2048 case MSR_IA32_DEBUGCTLMSR
:
2050 /* We support the non-activated case already */
2052 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2053 /* Values other than LBR and BTF are vendor-specific,
2054 thus reserved and should throw a #GP */
2057 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2060 case 0x200 ... 0x2ff:
2061 return set_msr_mtrr(vcpu
, msr
, data
);
2062 case MSR_IA32_APICBASE
:
2063 return kvm_set_apic_base(vcpu
, msr_info
);
2064 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2065 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2066 case MSR_IA32_TSCDEADLINE
:
2067 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2069 case MSR_IA32_TSC_ADJUST
:
2070 if (guest_cpuid_has_tsc_adjust(vcpu
)) {
2071 if (!msr_info
->host_initiated
) {
2072 u64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2073 kvm_x86_ops
->adjust_tsc_offset(vcpu
, adj
, true);
2075 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2078 case MSR_IA32_MISC_ENABLE
:
2079 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2081 case MSR_KVM_WALL_CLOCK_NEW
:
2082 case MSR_KVM_WALL_CLOCK
:
2083 vcpu
->kvm
->arch
.wall_clock
= data
;
2084 kvm_write_wall_clock(vcpu
->kvm
, data
);
2086 case MSR_KVM_SYSTEM_TIME_NEW
:
2087 case MSR_KVM_SYSTEM_TIME
: {
2089 kvmclock_reset(vcpu
);
2091 vcpu
->arch
.time
= data
;
2092 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2094 /* we verify if the enable bit is set... */
2098 gpa_offset
= data
& ~(PAGE_MASK
| 1);
2100 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2101 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2102 sizeof(struct pvclock_vcpu_time_info
)))
2103 vcpu
->arch
.pv_time_enabled
= false;
2105 vcpu
->arch
.pv_time_enabled
= true;
2109 case MSR_KVM_ASYNC_PF_EN
:
2110 if (kvm_pv_enable_async_pf(vcpu
, data
))
2113 case MSR_KVM_STEAL_TIME
:
2115 if (unlikely(!sched_info_on()))
2118 if (data
& KVM_STEAL_RESERVED_MASK
)
2121 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2122 data
& KVM_STEAL_VALID_BITS
,
2123 sizeof(struct kvm_steal_time
)))
2126 vcpu
->arch
.st
.msr_val
= data
;
2128 if (!(data
& KVM_MSR_ENABLED
))
2131 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2134 accumulate_steal_time(vcpu
);
2137 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2140 case MSR_KVM_PV_EOI_EN
:
2141 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
2145 case MSR_IA32_MCG_CTL
:
2146 case MSR_IA32_MCG_STATUS
:
2147 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
2148 return set_msr_mce(vcpu
, msr
, data
);
2150 /* Performance counters are not protected by a CPUID bit,
2151 * so we should check all of them in the generic path for the sake of
2152 * cross vendor migration.
2153 * Writing a zero into the event select MSRs disables them,
2154 * which we perfectly emulate ;-). Any other value should be at least
2155 * reported, some guests depend on them.
2157 case MSR_K7_EVNTSEL0
:
2158 case MSR_K7_EVNTSEL1
:
2159 case MSR_K7_EVNTSEL2
:
2160 case MSR_K7_EVNTSEL3
:
2162 vcpu_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
2163 "0x%x data 0x%llx\n", msr
, data
);
2165 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2166 * so we ignore writes to make it happy.
2168 case MSR_K7_PERFCTR0
:
2169 case MSR_K7_PERFCTR1
:
2170 case MSR_K7_PERFCTR2
:
2171 case MSR_K7_PERFCTR3
:
2172 vcpu_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
2173 "0x%x data 0x%llx\n", msr
, data
);
2175 case MSR_P6_PERFCTR0
:
2176 case MSR_P6_PERFCTR1
:
2178 case MSR_P6_EVNTSEL0
:
2179 case MSR_P6_EVNTSEL1
:
2180 if (kvm_pmu_msr(vcpu
, msr
))
2181 return kvm_pmu_set_msr(vcpu
, msr_info
);
2183 if (pr
|| data
!= 0)
2184 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2185 "0x%x data 0x%llx\n", msr
, data
);
2187 case MSR_K7_CLK_CTL
:
2189 * Ignore all writes to this no longer documented MSR.
2190 * Writes are only relevant for old K7 processors,
2191 * all pre-dating SVM, but a recommended workaround from
2192 * AMD for these chips. It is possible to specify the
2193 * affected processor models on the command line, hence
2194 * the need to ignore the workaround.
2197 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2198 if (kvm_hv_msr_partition_wide(msr
)) {
2200 mutex_lock(&vcpu
->kvm
->lock
);
2201 r
= set_msr_hyperv_pw(vcpu
, msr
, data
);
2202 mutex_unlock(&vcpu
->kvm
->lock
);
2205 return set_msr_hyperv(vcpu
, msr
, data
);
2207 case MSR_IA32_BBL_CR_CTL3
:
2208 /* Drop writes to this legacy MSR -- see rdmsr
2209 * counterpart for further detail.
2211 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
2213 case MSR_AMD64_OSVW_ID_LENGTH
:
2214 if (!guest_cpuid_has_osvw(vcpu
))
2216 vcpu
->arch
.osvw
.length
= data
;
2218 case MSR_AMD64_OSVW_STATUS
:
2219 if (!guest_cpuid_has_osvw(vcpu
))
2221 vcpu
->arch
.osvw
.status
= data
;
2224 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2225 return xen_hvm_config(vcpu
, data
);
2226 if (kvm_pmu_msr(vcpu
, msr
))
2227 return kvm_pmu_set_msr(vcpu
, msr_info
);
2229 vcpu_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
2233 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
2240 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2244 * Reads an msr value (of 'msr_index') into 'pdata'.
2245 * Returns 0 on success, non-0 otherwise.
2246 * Assumes vcpu_load() was already called.
2248 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2250 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
2253 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2255 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
2257 if (!msr_mtrr_valid(msr
))
2260 if (msr
== MSR_MTRRdefType
)
2261 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
2262 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
2263 else if (msr
== MSR_MTRRfix64K_00000
)
2265 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
2266 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
2267 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
2268 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
2269 else if (msr
== MSR_IA32_CR_PAT
)
2270 *pdata
= vcpu
->arch
.pat
;
2271 else { /* Variable MTRRs */
2272 int idx
, is_mtrr_mask
;
2275 idx
= (msr
- 0x200) / 2;
2276 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
2279 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
2282 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
2289 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2292 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2293 unsigned bank_num
= mcg_cap
& 0xff;
2296 case MSR_IA32_P5_MC_ADDR
:
2297 case MSR_IA32_P5_MC_TYPE
:
2300 case MSR_IA32_MCG_CAP
:
2301 data
= vcpu
->arch
.mcg_cap
;
2303 case MSR_IA32_MCG_CTL
:
2304 if (!(mcg_cap
& MCG_CTL_P
))
2306 data
= vcpu
->arch
.mcg_ctl
;
2308 case MSR_IA32_MCG_STATUS
:
2309 data
= vcpu
->arch
.mcg_status
;
2312 if (msr
>= MSR_IA32_MC0_CTL
&&
2313 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
2314 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2315 data
= vcpu
->arch
.mce_banks
[offset
];
2324 static int get_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2327 struct kvm
*kvm
= vcpu
->kvm
;
2330 case HV_X64_MSR_GUEST_OS_ID
:
2331 data
= kvm
->arch
.hv_guest_os_id
;
2333 case HV_X64_MSR_HYPERCALL
:
2334 data
= kvm
->arch
.hv_hypercall
;
2336 case HV_X64_MSR_TIME_REF_COUNT
: {
2338 div_u64(get_kernel_ns() + kvm
->arch
.kvmclock_offset
, 100);
2341 case HV_X64_MSR_REFERENCE_TSC
:
2342 data
= kvm
->arch
.hv_tsc_page
;
2345 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
2353 static int get_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2358 case HV_X64_MSR_VP_INDEX
: {
2361 kvm_for_each_vcpu(r
, v
, vcpu
->kvm
) {
2369 case HV_X64_MSR_EOI
:
2370 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
2371 case HV_X64_MSR_ICR
:
2372 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
2373 case HV_X64_MSR_TPR
:
2374 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
2375 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2376 data
= vcpu
->arch
.hv_vapic
;
2379 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
2386 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2391 case MSR_IA32_PLATFORM_ID
:
2392 case MSR_IA32_EBL_CR_POWERON
:
2393 case MSR_IA32_DEBUGCTLMSR
:
2394 case MSR_IA32_LASTBRANCHFROMIP
:
2395 case MSR_IA32_LASTBRANCHTOIP
:
2396 case MSR_IA32_LASTINTFROMIP
:
2397 case MSR_IA32_LASTINTTOIP
:
2400 case MSR_VM_HSAVE_PA
:
2401 case MSR_K7_EVNTSEL0
:
2402 case MSR_K7_PERFCTR0
:
2403 case MSR_K8_INT_PENDING_MSG
:
2404 case MSR_AMD64_NB_CFG
:
2405 case MSR_FAM10H_MMIO_CONF_BASE
:
2406 case MSR_AMD64_BU_CFG2
:
2409 case MSR_P6_PERFCTR0
:
2410 case MSR_P6_PERFCTR1
:
2411 case MSR_P6_EVNTSEL0
:
2412 case MSR_P6_EVNTSEL1
:
2413 if (kvm_pmu_msr(vcpu
, msr
))
2414 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
2417 case MSR_IA32_UCODE_REV
:
2418 data
= 0x100000000ULL
;
2421 data
= 0x500 | KVM_NR_VAR_MTRR
;
2423 case 0x200 ... 0x2ff:
2424 return get_msr_mtrr(vcpu
, msr
, pdata
);
2425 case 0xcd: /* fsb frequency */
2429 * MSR_EBC_FREQUENCY_ID
2430 * Conservative value valid for even the basic CPU models.
2431 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2432 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2433 * and 266MHz for model 3, or 4. Set Core Clock
2434 * Frequency to System Bus Frequency Ratio to 1 (bits
2435 * 31:24) even though these are only valid for CPU
2436 * models > 2, however guests may end up dividing or
2437 * multiplying by zero otherwise.
2439 case MSR_EBC_FREQUENCY_ID
:
2442 case MSR_IA32_APICBASE
:
2443 data
= kvm_get_apic_base(vcpu
);
2445 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2446 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
2448 case MSR_IA32_TSCDEADLINE
:
2449 data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2451 case MSR_IA32_TSC_ADJUST
:
2452 data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2454 case MSR_IA32_MISC_ENABLE
:
2455 data
= vcpu
->arch
.ia32_misc_enable_msr
;
2457 case MSR_IA32_PERF_STATUS
:
2458 /* TSC increment by tick */
2460 /* CPU multiplier */
2461 data
|= (((uint64_t)4ULL) << 40);
2464 data
= vcpu
->arch
.efer
;
2466 case MSR_KVM_WALL_CLOCK
:
2467 case MSR_KVM_WALL_CLOCK_NEW
:
2468 data
= vcpu
->kvm
->arch
.wall_clock
;
2470 case MSR_KVM_SYSTEM_TIME
:
2471 case MSR_KVM_SYSTEM_TIME_NEW
:
2472 data
= vcpu
->arch
.time
;
2474 case MSR_KVM_ASYNC_PF_EN
:
2475 data
= vcpu
->arch
.apf
.msr_val
;
2477 case MSR_KVM_STEAL_TIME
:
2478 data
= vcpu
->arch
.st
.msr_val
;
2480 case MSR_KVM_PV_EOI_EN
:
2481 data
= vcpu
->arch
.pv_eoi
.msr_val
;
2483 case MSR_IA32_P5_MC_ADDR
:
2484 case MSR_IA32_P5_MC_TYPE
:
2485 case MSR_IA32_MCG_CAP
:
2486 case MSR_IA32_MCG_CTL
:
2487 case MSR_IA32_MCG_STATUS
:
2488 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
2489 return get_msr_mce(vcpu
, msr
, pdata
);
2490 case MSR_K7_CLK_CTL
:
2492 * Provide expected ramp-up count for K7. All other
2493 * are set to zero, indicating minimum divisors for
2496 * This prevents guest kernels on AMD host with CPU
2497 * type 6, model 8 and higher from exploding due to
2498 * the rdmsr failing.
2502 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2503 if (kvm_hv_msr_partition_wide(msr
)) {
2505 mutex_lock(&vcpu
->kvm
->lock
);
2506 r
= get_msr_hyperv_pw(vcpu
, msr
, pdata
);
2507 mutex_unlock(&vcpu
->kvm
->lock
);
2510 return get_msr_hyperv(vcpu
, msr
, pdata
);
2512 case MSR_IA32_BBL_CR_CTL3
:
2513 /* This legacy MSR exists but isn't fully documented in current
2514 * silicon. It is however accessed by winxp in very narrow
2515 * scenarios where it sets bit #19, itself documented as
2516 * a "reserved" bit. Best effort attempt to source coherent
2517 * read data here should the balance of the register be
2518 * interpreted by the guest:
2520 * L2 cache control register 3: 64GB range, 256KB size,
2521 * enabled, latency 0x1, configured
2525 case MSR_AMD64_OSVW_ID_LENGTH
:
2526 if (!guest_cpuid_has_osvw(vcpu
))
2528 data
= vcpu
->arch
.osvw
.length
;
2530 case MSR_AMD64_OSVW_STATUS
:
2531 if (!guest_cpuid_has_osvw(vcpu
))
2533 data
= vcpu
->arch
.osvw
.status
;
2536 if (kvm_pmu_msr(vcpu
, msr
))
2537 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
2539 vcpu_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
2542 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
2550 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2553 * Read or write a bunch of msrs. All parameters are kernel addresses.
2555 * @return number of msrs set successfully.
2557 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2558 struct kvm_msr_entry
*entries
,
2559 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2560 unsigned index
, u64
*data
))
2564 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2565 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2566 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2568 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2574 * Read or write a bunch of msrs. Parameters are user addresses.
2576 * @return number of msrs set successfully.
2578 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2579 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2580 unsigned index
, u64
*data
),
2583 struct kvm_msrs msrs
;
2584 struct kvm_msr_entry
*entries
;
2589 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2593 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2596 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2597 entries
= memdup_user(user_msrs
->entries
, size
);
2598 if (IS_ERR(entries
)) {
2599 r
= PTR_ERR(entries
);
2603 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2608 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2619 int kvm_dev_ioctl_check_extension(long ext
)
2624 case KVM_CAP_IRQCHIP
:
2626 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2627 case KVM_CAP_SET_TSS_ADDR
:
2628 case KVM_CAP_EXT_CPUID
:
2629 case KVM_CAP_EXT_EMUL_CPUID
:
2630 case KVM_CAP_CLOCKSOURCE
:
2632 case KVM_CAP_NOP_IO_DELAY
:
2633 case KVM_CAP_MP_STATE
:
2634 case KVM_CAP_SYNC_MMU
:
2635 case KVM_CAP_USER_NMI
:
2636 case KVM_CAP_REINJECT_CONTROL
:
2637 case KVM_CAP_IRQ_INJECT_STATUS
:
2639 case KVM_CAP_IOEVENTFD
:
2640 case KVM_CAP_IOEVENTFD_NO_LENGTH
:
2642 case KVM_CAP_PIT_STATE2
:
2643 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2644 case KVM_CAP_XEN_HVM
:
2645 case KVM_CAP_ADJUST_CLOCK
:
2646 case KVM_CAP_VCPU_EVENTS
:
2647 case KVM_CAP_HYPERV
:
2648 case KVM_CAP_HYPERV_VAPIC
:
2649 case KVM_CAP_HYPERV_SPIN
:
2650 case KVM_CAP_PCI_SEGMENT
:
2651 case KVM_CAP_DEBUGREGS
:
2652 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2654 case KVM_CAP_ASYNC_PF
:
2655 case KVM_CAP_GET_TSC_KHZ
:
2656 case KVM_CAP_KVMCLOCK_CTRL
:
2657 case KVM_CAP_READONLY_MEM
:
2658 case KVM_CAP_HYPERV_TIME
:
2659 case KVM_CAP_IOAPIC_POLARITY_IGNORED
:
2660 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2661 case KVM_CAP_ASSIGN_DEV_IRQ
:
2662 case KVM_CAP_PCI_2_3
:
2666 case KVM_CAP_COALESCED_MMIO
:
2667 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2670 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2672 case KVM_CAP_NR_VCPUS
:
2673 r
= KVM_SOFT_MAX_VCPUS
;
2675 case KVM_CAP_MAX_VCPUS
:
2678 case KVM_CAP_NR_MEMSLOTS
:
2679 r
= KVM_USER_MEM_SLOTS
;
2681 case KVM_CAP_PV_MMU
: /* obsolete */
2684 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2686 r
= iommu_present(&pci_bus_type
);
2690 r
= KVM_MAX_MCE_BANKS
;
2695 case KVM_CAP_TSC_CONTROL
:
2696 r
= kvm_has_tsc_control
;
2698 case KVM_CAP_TSC_DEADLINE_TIMER
:
2699 r
= boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER
);
2709 long kvm_arch_dev_ioctl(struct file
*filp
,
2710 unsigned int ioctl
, unsigned long arg
)
2712 void __user
*argp
= (void __user
*)arg
;
2716 case KVM_GET_MSR_INDEX_LIST
: {
2717 struct kvm_msr_list __user
*user_msr_list
= argp
;
2718 struct kvm_msr_list msr_list
;
2722 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2725 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
2726 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2729 if (n
< msr_list
.nmsrs
)
2732 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2733 num_msrs_to_save
* sizeof(u32
)))
2735 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2737 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
2742 case KVM_GET_SUPPORTED_CPUID
:
2743 case KVM_GET_EMULATED_CPUID
: {
2744 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2745 struct kvm_cpuid2 cpuid
;
2748 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2751 r
= kvm_dev_ioctl_get_cpuid(&cpuid
, cpuid_arg
->entries
,
2757 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2762 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2765 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2767 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2779 static void wbinvd_ipi(void *garbage
)
2784 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2786 return kvm_arch_has_noncoherent_dma(vcpu
->kvm
);
2789 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2791 /* Address WBINVD may be executed by guest */
2792 if (need_emulate_wbinvd(vcpu
)) {
2793 if (kvm_x86_ops
->has_wbinvd_exit())
2794 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2795 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2796 smp_call_function_single(vcpu
->cpu
,
2797 wbinvd_ipi
, NULL
, 1);
2800 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2802 /* Apply any externally detected TSC adjustments (due to suspend) */
2803 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
2804 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
2805 vcpu
->arch
.tsc_offset_adjustment
= 0;
2806 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
2809 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2810 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2811 native_read_tsc() - vcpu
->arch
.last_host_tsc
;
2813 mark_tsc_unstable("KVM discovered backwards TSC");
2814 if (check_tsc_unstable()) {
2815 u64 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
,
2816 vcpu
->arch
.last_guest_tsc
);
2817 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
2818 vcpu
->arch
.tsc_catchup
= 1;
2821 * On a host with synchronized TSC, there is no need to update
2822 * kvmclock on vcpu->cpu migration
2824 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
2825 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2826 if (vcpu
->cpu
!= cpu
)
2827 kvm_migrate_timers(vcpu
);
2831 accumulate_steal_time(vcpu
);
2832 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2835 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2837 kvm_x86_ops
->vcpu_put(vcpu
);
2838 kvm_put_guest_fpu(vcpu
);
2839 vcpu
->arch
.last_host_tsc
= native_read_tsc();
2842 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2843 struct kvm_lapic_state
*s
)
2845 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
2846 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2851 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2852 struct kvm_lapic_state
*s
)
2854 kvm_apic_post_state_restore(vcpu
, s
);
2855 update_cr8_intercept(vcpu
);
2860 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2861 struct kvm_interrupt
*irq
)
2863 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
2865 if (irqchip_in_kernel(vcpu
->kvm
))
2868 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2869 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2874 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2876 kvm_inject_nmi(vcpu
);
2881 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2882 struct kvm_tpr_access_ctl
*tac
)
2886 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2890 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2894 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2897 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2899 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2902 vcpu
->arch
.mcg_cap
= mcg_cap
;
2903 /* Init IA32_MCG_CTL to all 1s */
2904 if (mcg_cap
& MCG_CTL_P
)
2905 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2906 /* Init IA32_MCi_CTL to all 1s */
2907 for (bank
= 0; bank
< bank_num
; bank
++)
2908 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2913 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2914 struct kvm_x86_mce
*mce
)
2916 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2917 unsigned bank_num
= mcg_cap
& 0xff;
2918 u64
*banks
= vcpu
->arch
.mce_banks
;
2920 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2923 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2924 * reporting is disabled
2926 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2927 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2929 banks
+= 4 * mce
->bank
;
2931 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2932 * reporting is disabled for the bank
2934 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2936 if (mce
->status
& MCI_STATUS_UC
) {
2937 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2938 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2939 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2942 if (banks
[1] & MCI_STATUS_VAL
)
2943 mce
->status
|= MCI_STATUS_OVER
;
2944 banks
[2] = mce
->addr
;
2945 banks
[3] = mce
->misc
;
2946 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2947 banks
[1] = mce
->status
;
2948 kvm_queue_exception(vcpu
, MC_VECTOR
);
2949 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2950 || !(banks
[1] & MCI_STATUS_UC
)) {
2951 if (banks
[1] & MCI_STATUS_VAL
)
2952 mce
->status
|= MCI_STATUS_OVER
;
2953 banks
[2] = mce
->addr
;
2954 banks
[3] = mce
->misc
;
2955 banks
[1] = mce
->status
;
2957 banks
[1] |= MCI_STATUS_OVER
;
2961 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2962 struct kvm_vcpu_events
*events
)
2965 events
->exception
.injected
=
2966 vcpu
->arch
.exception
.pending
&&
2967 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2968 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2969 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2970 events
->exception
.pad
= 0;
2971 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2973 events
->interrupt
.injected
=
2974 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2975 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2976 events
->interrupt
.soft
= 0;
2977 events
->interrupt
.shadow
=
2978 kvm_x86_ops
->get_interrupt_shadow(vcpu
,
2979 KVM_X86_SHADOW_INT_MOV_SS
| KVM_X86_SHADOW_INT_STI
);
2981 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2982 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
2983 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2984 events
->nmi
.pad
= 0;
2986 events
->sipi_vector
= 0; /* never valid when reporting to user space */
2988 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
2989 | KVM_VCPUEVENT_VALID_SHADOW
);
2990 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
2993 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
2994 struct kvm_vcpu_events
*events
)
2996 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2997 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2998 | KVM_VCPUEVENT_VALID_SHADOW
))
3002 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
3003 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
3004 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
3005 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
3007 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
3008 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
3009 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
3010 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
3011 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
3012 events
->interrupt
.shadow
);
3014 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
3015 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
3016 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
3017 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
3019 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
3020 kvm_vcpu_has_lapic(vcpu
))
3021 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
3023 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3028 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
3029 struct kvm_debugregs
*dbgregs
)
3033 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
3034 _kvm_get_dr(vcpu
, 6, &val
);
3036 dbgregs
->dr7
= vcpu
->arch
.dr7
;
3038 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
3041 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
3042 struct kvm_debugregs
*dbgregs
)
3047 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
3048 vcpu
->arch
.dr6
= dbgregs
->dr6
;
3049 kvm_update_dr6(vcpu
);
3050 vcpu
->arch
.dr7
= dbgregs
->dr7
;
3051 kvm_update_dr7(vcpu
);
3056 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
3057 struct kvm_xsave
*guest_xsave
)
3059 if (cpu_has_xsave
) {
3060 memcpy(guest_xsave
->region
,
3061 &vcpu
->arch
.guest_fpu
.state
->xsave
,
3062 vcpu
->arch
.guest_xstate_size
);
3063 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] &=
3064 vcpu
->arch
.guest_supported_xcr0
| XSTATE_FPSSE
;
3066 memcpy(guest_xsave
->region
,
3067 &vcpu
->arch
.guest_fpu
.state
->fxsave
,
3068 sizeof(struct i387_fxsave_struct
));
3069 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
3074 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
3075 struct kvm_xsave
*guest_xsave
)
3078 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
3080 if (cpu_has_xsave
) {
3082 * Here we allow setting states that are not present in
3083 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3084 * with old userspace.
3086 if (xstate_bv
& ~kvm_supported_xcr0())
3088 memcpy(&vcpu
->arch
.guest_fpu
.state
->xsave
,
3089 guest_xsave
->region
, vcpu
->arch
.guest_xstate_size
);
3091 if (xstate_bv
& ~XSTATE_FPSSE
)
3093 memcpy(&vcpu
->arch
.guest_fpu
.state
->fxsave
,
3094 guest_xsave
->region
, sizeof(struct i387_fxsave_struct
));
3099 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
3100 struct kvm_xcrs
*guest_xcrs
)
3102 if (!cpu_has_xsave
) {
3103 guest_xcrs
->nr_xcrs
= 0;
3107 guest_xcrs
->nr_xcrs
= 1;
3108 guest_xcrs
->flags
= 0;
3109 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
3110 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
3113 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
3114 struct kvm_xcrs
*guest_xcrs
)
3121 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
3124 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
3125 /* Only support XCR0 currently */
3126 if (guest_xcrs
->xcrs
[i
].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3127 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3128 guest_xcrs
->xcrs
[i
].value
);
3137 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3138 * stopped by the hypervisor. This function will be called from the host only.
3139 * EINVAL is returned when the host attempts to set the flag for a guest that
3140 * does not support pv clocks.
3142 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
3144 if (!vcpu
->arch
.pv_time_enabled
)
3146 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
3147 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3151 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3152 unsigned int ioctl
, unsigned long arg
)
3154 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3155 void __user
*argp
= (void __user
*)arg
;
3158 struct kvm_lapic_state
*lapic
;
3159 struct kvm_xsave
*xsave
;
3160 struct kvm_xcrs
*xcrs
;
3166 case KVM_GET_LAPIC
: {
3168 if (!vcpu
->arch
.apic
)
3170 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3175 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3179 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3184 case KVM_SET_LAPIC
: {
3186 if (!vcpu
->arch
.apic
)
3188 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3189 if (IS_ERR(u
.lapic
))
3190 return PTR_ERR(u
.lapic
);
3192 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3195 case KVM_INTERRUPT
: {
3196 struct kvm_interrupt irq
;
3199 if (copy_from_user(&irq
, argp
, sizeof irq
))
3201 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3205 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3208 case KVM_SET_CPUID
: {
3209 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3210 struct kvm_cpuid cpuid
;
3213 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3215 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3218 case KVM_SET_CPUID2
: {
3219 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3220 struct kvm_cpuid2 cpuid
;
3223 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3225 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3226 cpuid_arg
->entries
);
3229 case KVM_GET_CPUID2
: {
3230 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3231 struct kvm_cpuid2 cpuid
;
3234 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3236 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3237 cpuid_arg
->entries
);
3241 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3247 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
3250 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3252 case KVM_TPR_ACCESS_REPORTING
: {
3253 struct kvm_tpr_access_ctl tac
;
3256 if (copy_from_user(&tac
, argp
, sizeof tac
))
3258 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3262 if (copy_to_user(argp
, &tac
, sizeof tac
))
3267 case KVM_SET_VAPIC_ADDR
: {
3268 struct kvm_vapic_addr va
;
3271 if (!irqchip_in_kernel(vcpu
->kvm
))
3274 if (copy_from_user(&va
, argp
, sizeof va
))
3276 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3279 case KVM_X86_SETUP_MCE
: {
3283 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3285 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3288 case KVM_X86_SET_MCE
: {
3289 struct kvm_x86_mce mce
;
3292 if (copy_from_user(&mce
, argp
, sizeof mce
))
3294 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3297 case KVM_GET_VCPU_EVENTS
: {
3298 struct kvm_vcpu_events events
;
3300 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3303 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3308 case KVM_SET_VCPU_EVENTS
: {
3309 struct kvm_vcpu_events events
;
3312 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3315 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3318 case KVM_GET_DEBUGREGS
: {
3319 struct kvm_debugregs dbgregs
;
3321 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3324 if (copy_to_user(argp
, &dbgregs
,
3325 sizeof(struct kvm_debugregs
)))
3330 case KVM_SET_DEBUGREGS
: {
3331 struct kvm_debugregs dbgregs
;
3334 if (copy_from_user(&dbgregs
, argp
,
3335 sizeof(struct kvm_debugregs
)))
3338 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3341 case KVM_GET_XSAVE
: {
3342 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3347 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3350 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3355 case KVM_SET_XSAVE
: {
3356 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
3357 if (IS_ERR(u
.xsave
))
3358 return PTR_ERR(u
.xsave
);
3360 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3363 case KVM_GET_XCRS
: {
3364 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3369 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3372 if (copy_to_user(argp
, u
.xcrs
,
3373 sizeof(struct kvm_xcrs
)))
3378 case KVM_SET_XCRS
: {
3379 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
3381 return PTR_ERR(u
.xcrs
);
3383 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3386 case KVM_SET_TSC_KHZ
: {
3390 user_tsc_khz
= (u32
)arg
;
3392 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3395 if (user_tsc_khz
== 0)
3396 user_tsc_khz
= tsc_khz
;
3398 kvm_set_tsc_khz(vcpu
, user_tsc_khz
);
3403 case KVM_GET_TSC_KHZ
: {
3404 r
= vcpu
->arch
.virtual_tsc_khz
;
3407 case KVM_KVMCLOCK_CTRL
: {
3408 r
= kvm_set_guest_paused(vcpu
);
3419 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
3421 return VM_FAULT_SIGBUS
;
3424 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3428 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3430 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3434 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3437 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3441 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3442 u32 kvm_nr_mmu_pages
)
3444 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3447 mutex_lock(&kvm
->slots_lock
);
3449 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3450 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3452 mutex_unlock(&kvm
->slots_lock
);
3456 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3458 return kvm
->arch
.n_max_mmu_pages
;
3461 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3466 switch (chip
->chip_id
) {
3467 case KVM_IRQCHIP_PIC_MASTER
:
3468 memcpy(&chip
->chip
.pic
,
3469 &pic_irqchip(kvm
)->pics
[0],
3470 sizeof(struct kvm_pic_state
));
3472 case KVM_IRQCHIP_PIC_SLAVE
:
3473 memcpy(&chip
->chip
.pic
,
3474 &pic_irqchip(kvm
)->pics
[1],
3475 sizeof(struct kvm_pic_state
));
3477 case KVM_IRQCHIP_IOAPIC
:
3478 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3487 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3492 switch (chip
->chip_id
) {
3493 case KVM_IRQCHIP_PIC_MASTER
:
3494 spin_lock(&pic_irqchip(kvm
)->lock
);
3495 memcpy(&pic_irqchip(kvm
)->pics
[0],
3497 sizeof(struct kvm_pic_state
));
3498 spin_unlock(&pic_irqchip(kvm
)->lock
);
3500 case KVM_IRQCHIP_PIC_SLAVE
:
3501 spin_lock(&pic_irqchip(kvm
)->lock
);
3502 memcpy(&pic_irqchip(kvm
)->pics
[1],
3504 sizeof(struct kvm_pic_state
));
3505 spin_unlock(&pic_irqchip(kvm
)->lock
);
3507 case KVM_IRQCHIP_IOAPIC
:
3508 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3514 kvm_pic_update_irq(pic_irqchip(kvm
));
3518 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3522 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3523 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
3524 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3528 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3532 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3533 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
3534 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
3535 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3539 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3543 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3544 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3545 sizeof(ps
->channels
));
3546 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3547 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3548 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3552 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3554 int r
= 0, start
= 0;
3555 u32 prev_legacy
, cur_legacy
;
3556 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3557 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3558 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3559 if (!prev_legacy
&& cur_legacy
)
3561 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
3562 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
3563 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
3564 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
3565 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3569 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3570 struct kvm_reinject_control
*control
)
3572 if (!kvm
->arch
.vpit
)
3574 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3575 kvm
->arch
.vpit
->pit_state
.reinject
= control
->pit_reinject
;
3576 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3581 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3582 * @kvm: kvm instance
3583 * @log: slot id and address to which we copy the log
3585 * We need to keep it in mind that VCPU threads can write to the bitmap
3586 * concurrently. So, to avoid losing data, we keep the following order for
3589 * 1. Take a snapshot of the bit and clear it if needed.
3590 * 2. Write protect the corresponding page.
3591 * 3. Flush TLB's if needed.
3592 * 4. Copy the snapshot to the userspace.
3594 * Between 2 and 3, the guest may write to the page using the remaining TLB
3595 * entry. This is not a problem because the page will be reported dirty at
3596 * step 4 using the snapshot taken before and step 3 ensures that successive
3597 * writes will be logged for the next call.
3599 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
3602 struct kvm_memory_slot
*memslot
;
3604 unsigned long *dirty_bitmap
;
3605 unsigned long *dirty_bitmap_buffer
;
3606 bool is_dirty
= false;
3608 mutex_lock(&kvm
->slots_lock
);
3611 if (log
->slot
>= KVM_USER_MEM_SLOTS
)
3614 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
3616 dirty_bitmap
= memslot
->dirty_bitmap
;
3621 n
= kvm_dirty_bitmap_bytes(memslot
);
3623 dirty_bitmap_buffer
= dirty_bitmap
+ n
/ sizeof(long);
3624 memset(dirty_bitmap_buffer
, 0, n
);
3626 spin_lock(&kvm
->mmu_lock
);
3628 for (i
= 0; i
< n
/ sizeof(long); i
++) {
3632 if (!dirty_bitmap
[i
])
3637 mask
= xchg(&dirty_bitmap
[i
], 0);
3638 dirty_bitmap_buffer
[i
] = mask
;
3640 offset
= i
* BITS_PER_LONG
;
3641 kvm_mmu_write_protect_pt_masked(kvm
, memslot
, offset
, mask
);
3644 spin_unlock(&kvm
->mmu_lock
);
3646 /* See the comments in kvm_mmu_slot_remove_write_access(). */
3647 lockdep_assert_held(&kvm
->slots_lock
);
3650 * All the TLBs can be flushed out of mmu lock, see the comments in
3651 * kvm_mmu_slot_remove_write_access().
3654 kvm_flush_remote_tlbs(kvm
);
3657 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
3662 mutex_unlock(&kvm
->slots_lock
);
3666 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
3669 if (!irqchip_in_kernel(kvm
))
3672 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3673 irq_event
->irq
, irq_event
->level
,
3678 long kvm_arch_vm_ioctl(struct file
*filp
,
3679 unsigned int ioctl
, unsigned long arg
)
3681 struct kvm
*kvm
= filp
->private_data
;
3682 void __user
*argp
= (void __user
*)arg
;
3685 * This union makes it completely explicit to gcc-3.x
3686 * that these two variables' stack usage should be
3687 * combined, not added together.
3690 struct kvm_pit_state ps
;
3691 struct kvm_pit_state2 ps2
;
3692 struct kvm_pit_config pit_config
;
3696 case KVM_SET_TSS_ADDR
:
3697 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3699 case KVM_SET_IDENTITY_MAP_ADDR
: {
3703 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3705 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3708 case KVM_SET_NR_MMU_PAGES
:
3709 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3711 case KVM_GET_NR_MMU_PAGES
:
3712 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3714 case KVM_CREATE_IRQCHIP
: {
3715 struct kvm_pic
*vpic
;
3717 mutex_lock(&kvm
->lock
);
3720 goto create_irqchip_unlock
;
3722 if (atomic_read(&kvm
->online_vcpus
))
3723 goto create_irqchip_unlock
;
3725 vpic
= kvm_create_pic(kvm
);
3727 r
= kvm_ioapic_init(kvm
);
3729 mutex_lock(&kvm
->slots_lock
);
3730 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3732 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3734 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3736 mutex_unlock(&kvm
->slots_lock
);
3738 goto create_irqchip_unlock
;
3741 goto create_irqchip_unlock
;
3743 kvm
->arch
.vpic
= vpic
;
3745 r
= kvm_setup_default_irq_routing(kvm
);
3747 mutex_lock(&kvm
->slots_lock
);
3748 mutex_lock(&kvm
->irq_lock
);
3749 kvm_ioapic_destroy(kvm
);
3750 kvm_destroy_pic(kvm
);
3751 mutex_unlock(&kvm
->irq_lock
);
3752 mutex_unlock(&kvm
->slots_lock
);
3754 create_irqchip_unlock
:
3755 mutex_unlock(&kvm
->lock
);
3758 case KVM_CREATE_PIT
:
3759 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3761 case KVM_CREATE_PIT2
:
3763 if (copy_from_user(&u
.pit_config
, argp
,
3764 sizeof(struct kvm_pit_config
)))
3767 mutex_lock(&kvm
->slots_lock
);
3770 goto create_pit_unlock
;
3772 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3776 mutex_unlock(&kvm
->slots_lock
);
3778 case KVM_GET_IRQCHIP
: {
3779 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3780 struct kvm_irqchip
*chip
;
3782 chip
= memdup_user(argp
, sizeof(*chip
));
3789 if (!irqchip_in_kernel(kvm
))
3790 goto get_irqchip_out
;
3791 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3793 goto get_irqchip_out
;
3795 if (copy_to_user(argp
, chip
, sizeof *chip
))
3796 goto get_irqchip_out
;
3802 case KVM_SET_IRQCHIP
: {
3803 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3804 struct kvm_irqchip
*chip
;
3806 chip
= memdup_user(argp
, sizeof(*chip
));
3813 if (!irqchip_in_kernel(kvm
))
3814 goto set_irqchip_out
;
3815 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3817 goto set_irqchip_out
;
3825 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3828 if (!kvm
->arch
.vpit
)
3830 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3834 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3841 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3844 if (!kvm
->arch
.vpit
)
3846 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3849 case KVM_GET_PIT2
: {
3851 if (!kvm
->arch
.vpit
)
3853 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3857 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
3862 case KVM_SET_PIT2
: {
3864 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
3867 if (!kvm
->arch
.vpit
)
3869 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
3872 case KVM_REINJECT_CONTROL
: {
3873 struct kvm_reinject_control control
;
3875 if (copy_from_user(&control
, argp
, sizeof(control
)))
3877 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
3880 case KVM_XEN_HVM_CONFIG
: {
3882 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
3883 sizeof(struct kvm_xen_hvm_config
)))
3886 if (kvm
->arch
.xen_hvm_config
.flags
)
3891 case KVM_SET_CLOCK
: {
3892 struct kvm_clock_data user_ns
;
3897 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
3905 local_irq_disable();
3906 now_ns
= get_kernel_ns();
3907 delta
= user_ns
.clock
- now_ns
;
3909 kvm
->arch
.kvmclock_offset
= delta
;
3910 kvm_gen_update_masterclock(kvm
);
3913 case KVM_GET_CLOCK
: {
3914 struct kvm_clock_data user_ns
;
3917 local_irq_disable();
3918 now_ns
= get_kernel_ns();
3919 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
3922 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
3925 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
3938 static void kvm_init_msr_list(void)
3943 /* skip the first msrs in the list. KVM-specific */
3944 for (i
= j
= KVM_SAVE_MSRS_BEGIN
; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
3945 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
3949 * Even MSRs that are valid in the host may not be exposed
3950 * to the guests in some cases. We could work around this
3951 * in VMX with the generic MSR save/load machinery, but it
3952 * is not really worthwhile since it will really only
3953 * happen with nested virtualization.
3955 switch (msrs_to_save
[i
]) {
3956 case MSR_IA32_BNDCFGS
:
3957 if (!kvm_x86_ops
->mpx_supported())
3965 msrs_to_save
[j
] = msrs_to_save
[i
];
3968 num_msrs_to_save
= j
;
3971 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
3979 if (!(vcpu
->arch
.apic
&&
3980 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3981 && kvm_io_bus_write(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3992 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
3999 if (!(vcpu
->arch
.apic
&&
4000 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
4001 && kvm_io_bus_read(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
4003 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
4013 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
4014 struct kvm_segment
*var
, int seg
)
4016 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
4019 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
4020 struct kvm_segment
*var
, int seg
)
4022 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
4025 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
4028 struct x86_exception exception
;
4030 BUG_ON(!mmu_is_nested(vcpu
));
4032 /* NPT walks are always user-walks */
4033 access
|= PFERR_USER_MASK
;
4034 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, &exception
);
4039 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
4040 struct x86_exception
*exception
)
4042 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4043 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4046 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
4047 struct x86_exception
*exception
)
4049 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4050 access
|= PFERR_FETCH_MASK
;
4051 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4054 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
4055 struct x86_exception
*exception
)
4057 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4058 access
|= PFERR_WRITE_MASK
;
4059 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4062 /* uses this to access any guest's mapped memory without checking CPL */
4063 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
4064 struct x86_exception
*exception
)
4066 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
4069 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
4070 struct kvm_vcpu
*vcpu
, u32 access
,
4071 struct x86_exception
*exception
)
4074 int r
= X86EMUL_CONTINUE
;
4077 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
4079 unsigned offset
= addr
& (PAGE_SIZE
-1);
4080 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4083 if (gpa
== UNMAPPED_GVA
)
4084 return X86EMUL_PROPAGATE_FAULT
;
4085 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
4087 r
= X86EMUL_IO_NEEDED
;
4099 /* used for instruction fetching */
4100 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4101 gva_t addr
, void *val
, unsigned int bytes
,
4102 struct x86_exception
*exception
)
4104 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4105 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4107 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
,
4108 access
| PFERR_FETCH_MASK
,
4112 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4113 gva_t addr
, void *val
, unsigned int bytes
,
4114 struct x86_exception
*exception
)
4116 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4117 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4119 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
4122 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
4124 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4125 gva_t addr
, void *val
, unsigned int bytes
,
4126 struct x86_exception
*exception
)
4128 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4129 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
4132 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4133 gva_t addr
, void *val
,
4135 struct x86_exception
*exception
)
4137 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4139 int r
= X86EMUL_CONTINUE
;
4142 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4145 unsigned offset
= addr
& (PAGE_SIZE
-1);
4146 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4149 if (gpa
== UNMAPPED_GVA
)
4150 return X86EMUL_PROPAGATE_FAULT
;
4151 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
4153 r
= X86EMUL_IO_NEEDED
;
4164 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4166 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4167 gpa_t
*gpa
, struct x86_exception
*exception
,
4170 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
4171 | (write
? PFERR_WRITE_MASK
: 0);
4173 if (vcpu_match_mmio_gva(vcpu
, gva
)
4174 && !permission_fault(vcpu
, vcpu
->arch
.walk_mmu
,
4175 vcpu
->arch
.access
, access
)) {
4176 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4177 (gva
& (PAGE_SIZE
- 1));
4178 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4182 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4184 if (*gpa
== UNMAPPED_GVA
)
4187 /* For APIC access vmexit */
4188 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4191 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
4192 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
4199 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4200 const void *val
, int bytes
)
4204 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4207 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
4211 struct read_write_emulator_ops
{
4212 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4214 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4215 void *val
, int bytes
);
4216 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4217 int bytes
, void *val
);
4218 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4219 void *val
, int bytes
);
4223 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4225 if (vcpu
->mmio_read_completed
) {
4226 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4227 vcpu
->mmio_fragments
[0].gpa
, *(u64
*)val
);
4228 vcpu
->mmio_read_completed
= 0;
4235 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4236 void *val
, int bytes
)
4238 return !kvm_read_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4241 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4242 void *val
, int bytes
)
4244 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4247 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4249 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
4250 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4253 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4254 void *val
, int bytes
)
4256 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
4257 return X86EMUL_IO_NEEDED
;
4260 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4261 void *val
, int bytes
)
4263 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
4265 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
4266 return X86EMUL_CONTINUE
;
4269 static const struct read_write_emulator_ops read_emultor
= {
4270 .read_write_prepare
= read_prepare
,
4271 .read_write_emulate
= read_emulate
,
4272 .read_write_mmio
= vcpu_mmio_read
,
4273 .read_write_exit_mmio
= read_exit_mmio
,
4276 static const struct read_write_emulator_ops write_emultor
= {
4277 .read_write_emulate
= write_emulate
,
4278 .read_write_mmio
= write_mmio
,
4279 .read_write_exit_mmio
= write_exit_mmio
,
4283 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4285 struct x86_exception
*exception
,
4286 struct kvm_vcpu
*vcpu
,
4287 const struct read_write_emulator_ops
*ops
)
4291 bool write
= ops
->write
;
4292 struct kvm_mmio_fragment
*frag
;
4294 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4297 return X86EMUL_PROPAGATE_FAULT
;
4299 /* For APIC access vmexit */
4303 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4304 return X86EMUL_CONTINUE
;
4308 * Is this MMIO handled locally?
4310 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4311 if (handled
== bytes
)
4312 return X86EMUL_CONTINUE
;
4318 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
4319 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
4323 return X86EMUL_CONTINUE
;
4326 int emulator_read_write(struct x86_emulate_ctxt
*ctxt
, unsigned long addr
,
4327 void *val
, unsigned int bytes
,
4328 struct x86_exception
*exception
,
4329 const struct read_write_emulator_ops
*ops
)
4331 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4335 if (ops
->read_write_prepare
&&
4336 ops
->read_write_prepare(vcpu
, val
, bytes
))
4337 return X86EMUL_CONTINUE
;
4339 vcpu
->mmio_nr_fragments
= 0;
4341 /* Crossing a page boundary? */
4342 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4345 now
= -addr
& ~PAGE_MASK
;
4346 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4349 if (rc
!= X86EMUL_CONTINUE
)
4356 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4358 if (rc
!= X86EMUL_CONTINUE
)
4361 if (!vcpu
->mmio_nr_fragments
)
4364 gpa
= vcpu
->mmio_fragments
[0].gpa
;
4366 vcpu
->mmio_needed
= 1;
4367 vcpu
->mmio_cur_fragment
= 0;
4369 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
4370 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
4371 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4372 vcpu
->run
->mmio
.phys_addr
= gpa
;
4374 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4377 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4381 struct x86_exception
*exception
)
4383 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4384 exception
, &read_emultor
);
4387 int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4391 struct x86_exception
*exception
)
4393 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4394 exception
, &write_emultor
);
4397 #define CMPXCHG_TYPE(t, ptr, old, new) \
4398 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4400 #ifdef CONFIG_X86_64
4401 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4403 # define CMPXCHG64(ptr, old, new) \
4404 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4407 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4412 struct x86_exception
*exception
)
4414 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4420 /* guests cmpxchg8b have to be emulated atomically */
4421 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4424 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4426 if (gpa
== UNMAPPED_GVA
||
4427 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4430 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4433 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4434 if (is_error_page(page
))
4437 kaddr
= kmap_atomic(page
);
4438 kaddr
+= offset_in_page(gpa
);
4441 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4444 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4447 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4450 exchanged
= CMPXCHG64(kaddr
, old
, new);
4455 kunmap_atomic(kaddr
);
4456 kvm_release_page_dirty(page
);
4459 return X86EMUL_CMPXCHG_FAILED
;
4461 mark_page_dirty(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4462 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
);
4464 return X86EMUL_CONTINUE
;
4467 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4469 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4472 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4474 /* TODO: String I/O for in kernel device */
4477 if (vcpu
->arch
.pio
.in
)
4478 r
= kvm_io_bus_read(vcpu
->kvm
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4479 vcpu
->arch
.pio
.size
, pd
);
4481 r
= kvm_io_bus_write(vcpu
->kvm
, KVM_PIO_BUS
,
4482 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4487 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
4488 unsigned short port
, void *val
,
4489 unsigned int count
, bool in
)
4491 vcpu
->arch
.pio
.port
= port
;
4492 vcpu
->arch
.pio
.in
= in
;
4493 vcpu
->arch
.pio
.count
= count
;
4494 vcpu
->arch
.pio
.size
= size
;
4496 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4497 vcpu
->arch
.pio
.count
= 0;
4501 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4502 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
4503 vcpu
->run
->io
.size
= size
;
4504 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4505 vcpu
->run
->io
.count
= count
;
4506 vcpu
->run
->io
.port
= port
;
4511 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4512 int size
, unsigned short port
, void *val
,
4515 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4518 if (vcpu
->arch
.pio
.count
)
4521 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
4524 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4525 trace_kvm_pio(KVM_PIO_IN
, port
, size
, count
, vcpu
->arch
.pio_data
);
4526 vcpu
->arch
.pio
.count
= 0;
4533 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4534 int size
, unsigned short port
,
4535 const void *val
, unsigned int count
)
4537 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4539 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4540 trace_kvm_pio(KVM_PIO_OUT
, port
, size
, count
, vcpu
->arch
.pio_data
);
4541 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
4544 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4546 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4549 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4551 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4554 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4556 if (!need_emulate_wbinvd(vcpu
))
4557 return X86EMUL_CONTINUE
;
4559 if (kvm_x86_ops
->has_wbinvd_exit()) {
4560 int cpu
= get_cpu();
4562 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4563 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4564 wbinvd_ipi
, NULL
, 1);
4566 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4569 return X86EMUL_CONTINUE
;
4571 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4573 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4575 kvm_emulate_wbinvd(emul_to_vcpu(ctxt
));
4578 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
4580 return _kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4583 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
4586 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4589 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4591 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4594 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4596 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4597 unsigned long value
;
4601 value
= kvm_read_cr0(vcpu
);
4604 value
= vcpu
->arch
.cr2
;
4607 value
= kvm_read_cr3(vcpu
);
4610 value
= kvm_read_cr4(vcpu
);
4613 value
= kvm_get_cr8(vcpu
);
4616 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4623 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4625 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4630 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4633 vcpu
->arch
.cr2
= val
;
4636 res
= kvm_set_cr3(vcpu
, val
);
4639 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4642 res
= kvm_set_cr8(vcpu
, val
);
4645 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4652 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4654 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4657 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4659 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4662 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4664 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4667 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4669 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4672 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4674 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4677 static unsigned long emulator_get_cached_segment_base(
4678 struct x86_emulate_ctxt
*ctxt
, int seg
)
4680 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4683 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4684 struct desc_struct
*desc
, u32
*base3
,
4687 struct kvm_segment var
;
4689 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4690 *selector
= var
.selector
;
4693 memset(desc
, 0, sizeof(*desc
));
4699 set_desc_limit(desc
, var
.limit
);
4700 set_desc_base(desc
, (unsigned long)var
.base
);
4701 #ifdef CONFIG_X86_64
4703 *base3
= var
.base
>> 32;
4705 desc
->type
= var
.type
;
4707 desc
->dpl
= var
.dpl
;
4708 desc
->p
= var
.present
;
4709 desc
->avl
= var
.avl
;
4717 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
4718 struct desc_struct
*desc
, u32 base3
,
4721 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4722 struct kvm_segment var
;
4724 var
.selector
= selector
;
4725 var
.base
= get_desc_base(desc
);
4726 #ifdef CONFIG_X86_64
4727 var
.base
|= ((u64
)base3
) << 32;
4729 var
.limit
= get_desc_limit(desc
);
4731 var
.limit
= (var
.limit
<< 12) | 0xfff;
4732 var
.type
= desc
->type
;
4733 var
.present
= desc
->p
;
4734 var
.dpl
= desc
->dpl
;
4739 var
.avl
= desc
->avl
;
4740 var
.present
= desc
->p
;
4741 var
.unusable
= !var
.present
;
4744 kvm_set_segment(vcpu
, &var
, seg
);
4748 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
4749 u32 msr_index
, u64
*pdata
)
4751 return kvm_get_msr(emul_to_vcpu(ctxt
), msr_index
, pdata
);
4754 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
4755 u32 msr_index
, u64 data
)
4757 struct msr_data msr
;
4760 msr
.index
= msr_index
;
4761 msr
.host_initiated
= false;
4762 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
4765 static int emulator_check_pmc(struct x86_emulate_ctxt
*ctxt
,
4768 return kvm_pmu_check_pmc(emul_to_vcpu(ctxt
), pmc
);
4771 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
4772 u32 pmc
, u64
*pdata
)
4774 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
4777 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
4779 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
4782 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
4785 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
4787 * CR0.TS may reference the host fpu state, not the guest fpu state,
4788 * so it may be clear at this point.
4793 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
4798 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
4799 struct x86_instruction_info
*info
,
4800 enum x86_intercept_stage stage
)
4802 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
4805 static void emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
4806 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
4808 kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
);
4811 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
4813 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
4816 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
4818 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
4821 static const struct x86_emulate_ops emulate_ops
= {
4822 .read_gpr
= emulator_read_gpr
,
4823 .write_gpr
= emulator_write_gpr
,
4824 .read_std
= kvm_read_guest_virt_system
,
4825 .write_std
= kvm_write_guest_virt_system
,
4826 .fetch
= kvm_fetch_guest_virt
,
4827 .read_emulated
= emulator_read_emulated
,
4828 .write_emulated
= emulator_write_emulated
,
4829 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
4830 .invlpg
= emulator_invlpg
,
4831 .pio_in_emulated
= emulator_pio_in_emulated
,
4832 .pio_out_emulated
= emulator_pio_out_emulated
,
4833 .get_segment
= emulator_get_segment
,
4834 .set_segment
= emulator_set_segment
,
4835 .get_cached_segment_base
= emulator_get_cached_segment_base
,
4836 .get_gdt
= emulator_get_gdt
,
4837 .get_idt
= emulator_get_idt
,
4838 .set_gdt
= emulator_set_gdt
,
4839 .set_idt
= emulator_set_idt
,
4840 .get_cr
= emulator_get_cr
,
4841 .set_cr
= emulator_set_cr
,
4842 .cpl
= emulator_get_cpl
,
4843 .get_dr
= emulator_get_dr
,
4844 .set_dr
= emulator_set_dr
,
4845 .set_msr
= emulator_set_msr
,
4846 .get_msr
= emulator_get_msr
,
4847 .check_pmc
= emulator_check_pmc
,
4848 .read_pmc
= emulator_read_pmc
,
4849 .halt
= emulator_halt
,
4850 .wbinvd
= emulator_wbinvd
,
4851 .fix_hypercall
= emulator_fix_hypercall
,
4852 .get_fpu
= emulator_get_fpu
,
4853 .put_fpu
= emulator_put_fpu
,
4854 .intercept
= emulator_intercept
,
4855 .get_cpuid
= emulator_get_cpuid
,
4858 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
4860 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
, mask
);
4862 * an sti; sti; sequence only disable interrupts for the first
4863 * instruction. So, if the last instruction, be it emulated or
4864 * not, left the system with the INT_STI flag enabled, it
4865 * means that the last instruction is an sti. We should not
4866 * leave the flag on in this case. The same goes for mov ss
4868 if (!(int_shadow
& mask
))
4869 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
4872 static void inject_emulated_exception(struct kvm_vcpu
*vcpu
)
4874 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4875 if (ctxt
->exception
.vector
== PF_VECTOR
)
4876 kvm_propagate_fault(vcpu
, &ctxt
->exception
);
4877 else if (ctxt
->exception
.error_code_valid
)
4878 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
4879 ctxt
->exception
.error_code
);
4881 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
4884 static void init_decode_cache(struct x86_emulate_ctxt
*ctxt
)
4886 memset(&ctxt
->opcode_len
, 0,
4887 (void *)&ctxt
->_regs
- (void *)&ctxt
->opcode_len
);
4889 ctxt
->fetch
.start
= 0;
4890 ctxt
->fetch
.end
= 0;
4891 ctxt
->io_read
.pos
= 0;
4892 ctxt
->io_read
.end
= 0;
4893 ctxt
->mem_read
.pos
= 0;
4894 ctxt
->mem_read
.end
= 0;
4897 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
4899 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4902 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4904 ctxt
->eflags
= kvm_get_rflags(vcpu
);
4905 ctxt
->eip
= kvm_rip_read(vcpu
);
4906 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
4907 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
4908 (cs_l
&& is_long_mode(vcpu
)) ? X86EMUL_MODE_PROT64
:
4909 cs_db
? X86EMUL_MODE_PROT32
:
4910 X86EMUL_MODE_PROT16
;
4911 ctxt
->guest_mode
= is_guest_mode(vcpu
);
4913 init_decode_cache(ctxt
);
4914 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4917 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
4919 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4922 init_emulate_ctxt(vcpu
);
4926 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
4927 ret
= emulate_int_real(ctxt
, irq
);
4929 if (ret
!= X86EMUL_CONTINUE
)
4930 return EMULATE_FAIL
;
4932 ctxt
->eip
= ctxt
->_eip
;
4933 kvm_rip_write(vcpu
, ctxt
->eip
);
4934 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4936 if (irq
== NMI_VECTOR
)
4937 vcpu
->arch
.nmi_pending
= 0;
4939 vcpu
->arch
.interrupt
.pending
= false;
4941 return EMULATE_DONE
;
4943 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
4945 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
4947 int r
= EMULATE_DONE
;
4949 ++vcpu
->stat
.insn_emulation_fail
;
4950 trace_kvm_emulate_insn_failed(vcpu
);
4951 if (!is_guest_mode(vcpu
)) {
4952 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4953 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
4954 vcpu
->run
->internal
.ndata
= 0;
4957 kvm_queue_exception(vcpu
, UD_VECTOR
);
4962 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t cr2
,
4963 bool write_fault_to_shadow_pgtable
,
4969 if (emulation_type
& EMULTYPE_NO_REEXECUTE
)
4972 if (!vcpu
->arch
.mmu
.direct_map
) {
4974 * Write permission should be allowed since only
4975 * write access need to be emulated.
4977 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
4980 * If the mapping is invalid in guest, let cpu retry
4981 * it to generate fault.
4983 if (gpa
== UNMAPPED_GVA
)
4988 * Do not retry the unhandleable instruction if it faults on the
4989 * readonly host memory, otherwise it will goto a infinite loop:
4990 * retry instruction -> write #PF -> emulation fail -> retry
4991 * instruction -> ...
4993 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
4996 * If the instruction failed on the error pfn, it can not be fixed,
4997 * report the error to userspace.
4999 if (is_error_noslot_pfn(pfn
))
5002 kvm_release_pfn_clean(pfn
);
5004 /* The instructions are well-emulated on direct mmu. */
5005 if (vcpu
->arch
.mmu
.direct_map
) {
5006 unsigned int indirect_shadow_pages
;
5008 spin_lock(&vcpu
->kvm
->mmu_lock
);
5009 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
5010 spin_unlock(&vcpu
->kvm
->mmu_lock
);
5012 if (indirect_shadow_pages
)
5013 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5019 * if emulation was due to access to shadowed page table
5020 * and it failed try to unshadow page and re-enter the
5021 * guest to let CPU execute the instruction.
5023 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5026 * If the access faults on its page table, it can not
5027 * be fixed by unprotecting shadow page and it should
5028 * be reported to userspace.
5030 return !write_fault_to_shadow_pgtable
;
5033 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
5034 unsigned long cr2
, int emulation_type
)
5036 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5037 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
5039 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
5040 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
5043 * If the emulation is caused by #PF and it is non-page_table
5044 * writing instruction, it means the VM-EXIT is caused by shadow
5045 * page protected, we can zap the shadow page and retry this
5046 * instruction directly.
5048 * Note: if the guest uses a non-page-table modifying instruction
5049 * on the PDE that points to the instruction, then we will unmap
5050 * the instruction and go to an infinite loop. So, we cache the
5051 * last retried eip and the last fault address, if we meet the eip
5052 * and the address again, we can break out of the potential infinite
5055 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
5057 if (!(emulation_type
& EMULTYPE_RETRY
))
5060 if (x86_page_table_writing_insn(ctxt
))
5063 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
5066 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
5067 vcpu
->arch
.last_retry_addr
= cr2
;
5069 if (!vcpu
->arch
.mmu
.direct_map
)
5070 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5072 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5077 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
5078 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
5080 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
5089 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
5090 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
5095 static void kvm_vcpu_check_singlestep(struct kvm_vcpu
*vcpu
, int *r
)
5097 struct kvm_run
*kvm_run
= vcpu
->run
;
5100 * Use the "raw" value to see if TF was passed to the processor.
5101 * Note that the new value of the flags has not been saved yet.
5103 * This is correct even for TF set by the guest, because "the
5104 * processor will not generate this exception after the instruction
5105 * that sets the TF flag".
5107 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5109 if (unlikely(rflags
& X86_EFLAGS_TF
)) {
5110 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
5111 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
;
5112 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
5113 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5114 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5115 *r
= EMULATE_USER_EXIT
;
5117 vcpu
->arch
.emulate_ctxt
.eflags
&= ~X86_EFLAGS_TF
;
5119 * "Certain debug exceptions may clear bit 0-3. The
5120 * remaining contents of the DR6 register are never
5121 * cleared by the processor".
5123 vcpu
->arch
.dr6
&= ~15;
5124 vcpu
->arch
.dr6
|= DR6_BS
;
5125 kvm_queue_exception(vcpu
, DB_VECTOR
);
5130 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
5132 struct kvm_run
*kvm_run
= vcpu
->run
;
5133 unsigned long eip
= vcpu
->arch
.emulate_ctxt
.eip
;
5136 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
5137 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
5138 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5139 vcpu
->arch
.guest_debug_dr7
,
5143 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
5144 kvm_run
->debug
.arch
.pc
= kvm_rip_read(vcpu
) +
5145 get_segment_base(vcpu
, VCPU_SREG_CS
);
5147 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5148 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5149 *r
= EMULATE_USER_EXIT
;
5154 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
)) {
5155 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5160 vcpu
->arch
.dr6
&= ~15;
5161 vcpu
->arch
.dr6
|= dr6
;
5162 kvm_queue_exception(vcpu
, DB_VECTOR
);
5171 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
5178 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5179 bool writeback
= true;
5180 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
5183 * Clear write_fault_to_shadow_pgtable here to ensure it is
5186 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
5187 kvm_clear_exception_queue(vcpu
);
5189 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
5190 init_emulate_ctxt(vcpu
);
5193 * We will reenter on the same instruction since
5194 * we do not set complete_userspace_io. This does not
5195 * handle watchpoints yet, those would be handled in
5198 if (kvm_vcpu_check_breakpoint(vcpu
, &r
))
5201 ctxt
->interruptibility
= 0;
5202 ctxt
->have_exception
= false;
5203 ctxt
->perm_ok
= false;
5205 ctxt
->ud
= emulation_type
& EMULTYPE_TRAP_UD
;
5207 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
5209 trace_kvm_emulate_insn_start(vcpu
);
5210 ++vcpu
->stat
.insn_emulation
;
5211 if (r
!= EMULATION_OK
) {
5212 if (emulation_type
& EMULTYPE_TRAP_UD
)
5213 return EMULATE_FAIL
;
5214 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5216 return EMULATE_DONE
;
5217 if (emulation_type
& EMULTYPE_SKIP
)
5218 return EMULATE_FAIL
;
5219 return handle_emulation_failure(vcpu
);
5223 if (emulation_type
& EMULTYPE_SKIP
) {
5224 kvm_rip_write(vcpu
, ctxt
->_eip
);
5225 return EMULATE_DONE
;
5228 if (retry_instruction(ctxt
, cr2
, emulation_type
))
5229 return EMULATE_DONE
;
5231 /* this is needed for vmware backdoor interface to work since it
5232 changes registers values during IO operation */
5233 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
5234 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5235 emulator_invalidate_register_cache(ctxt
);
5239 r
= x86_emulate_insn(ctxt
);
5241 if (r
== EMULATION_INTERCEPTED
)
5242 return EMULATE_DONE
;
5244 if (r
== EMULATION_FAILED
) {
5245 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5247 return EMULATE_DONE
;
5249 return handle_emulation_failure(vcpu
);
5252 if (ctxt
->have_exception
) {
5253 inject_emulated_exception(vcpu
);
5255 } else if (vcpu
->arch
.pio
.count
) {
5256 if (!vcpu
->arch
.pio
.in
) {
5257 /* FIXME: return into emulator if single-stepping. */
5258 vcpu
->arch
.pio
.count
= 0;
5261 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
5263 r
= EMULATE_USER_EXIT
;
5264 } else if (vcpu
->mmio_needed
) {
5265 if (!vcpu
->mmio_is_write
)
5267 r
= EMULATE_USER_EXIT
;
5268 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
5269 } else if (r
== EMULATION_RESTART
)
5275 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
5276 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5277 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5278 kvm_rip_write(vcpu
, ctxt
->eip
);
5279 if (r
== EMULATE_DONE
)
5280 kvm_vcpu_check_singlestep(vcpu
, &r
);
5281 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5283 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
5287 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
5289 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5291 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5292 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
5293 size
, port
, &val
, 1);
5294 /* do not return to emulator after return from userspace */
5295 vcpu
->arch
.pio
.count
= 0;
5298 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
5300 static void tsc_bad(void *info
)
5302 __this_cpu_write(cpu_tsc_khz
, 0);
5305 static void tsc_khz_changed(void *data
)
5307 struct cpufreq_freqs
*freq
= data
;
5308 unsigned long khz
= 0;
5312 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5313 khz
= cpufreq_quick_get(raw_smp_processor_id());
5316 __this_cpu_write(cpu_tsc_khz
, khz
);
5319 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
5322 struct cpufreq_freqs
*freq
= data
;
5324 struct kvm_vcpu
*vcpu
;
5325 int i
, send_ipi
= 0;
5328 * We allow guests to temporarily run on slowing clocks,
5329 * provided we notify them after, or to run on accelerating
5330 * clocks, provided we notify them before. Thus time never
5333 * However, we have a problem. We can't atomically update
5334 * the frequency of a given CPU from this function; it is
5335 * merely a notifier, which can be called from any CPU.
5336 * Changing the TSC frequency at arbitrary points in time
5337 * requires a recomputation of local variables related to
5338 * the TSC for each VCPU. We must flag these local variables
5339 * to be updated and be sure the update takes place with the
5340 * new frequency before any guests proceed.
5342 * Unfortunately, the combination of hotplug CPU and frequency
5343 * change creates an intractable locking scenario; the order
5344 * of when these callouts happen is undefined with respect to
5345 * CPU hotplug, and they can race with each other. As such,
5346 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5347 * undefined; you can actually have a CPU frequency change take
5348 * place in between the computation of X and the setting of the
5349 * variable. To protect against this problem, all updates of
5350 * the per_cpu tsc_khz variable are done in an interrupt
5351 * protected IPI, and all callers wishing to update the value
5352 * must wait for a synchronous IPI to complete (which is trivial
5353 * if the caller is on the CPU already). This establishes the
5354 * necessary total order on variable updates.
5356 * Note that because a guest time update may take place
5357 * anytime after the setting of the VCPU's request bit, the
5358 * correct TSC value must be set before the request. However,
5359 * to ensure the update actually makes it to any guest which
5360 * starts running in hardware virtualization between the set
5361 * and the acquisition of the spinlock, we must also ping the
5362 * CPU after setting the request bit.
5366 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
5368 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
5371 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5373 spin_lock(&kvm_lock
);
5374 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
5375 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5376 if (vcpu
->cpu
!= freq
->cpu
)
5378 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5379 if (vcpu
->cpu
!= smp_processor_id())
5383 spin_unlock(&kvm_lock
);
5385 if (freq
->old
< freq
->new && send_ipi
) {
5387 * We upscale the frequency. Must make the guest
5388 * doesn't see old kvmclock values while running with
5389 * the new frequency, otherwise we risk the guest sees
5390 * time go backwards.
5392 * In case we update the frequency for another cpu
5393 * (which might be in guest context) send an interrupt
5394 * to kick the cpu out of guest context. Next time
5395 * guest context is entered kvmclock will be updated,
5396 * so the guest will not see stale values.
5398 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5403 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
5404 .notifier_call
= kvmclock_cpufreq_notifier
5407 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
5408 unsigned long action
, void *hcpu
)
5410 unsigned int cpu
= (unsigned long)hcpu
;
5414 case CPU_DOWN_FAILED
:
5415 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5417 case CPU_DOWN_PREPARE
:
5418 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
5424 static struct notifier_block kvmclock_cpu_notifier_block
= {
5425 .notifier_call
= kvmclock_cpu_notifier
,
5426 .priority
= -INT_MAX
5429 static void kvm_timer_init(void)
5433 max_tsc_khz
= tsc_khz
;
5435 cpu_notifier_register_begin();
5436 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5437 #ifdef CONFIG_CPU_FREQ
5438 struct cpufreq_policy policy
;
5439 memset(&policy
, 0, sizeof(policy
));
5441 cpufreq_get_policy(&policy
, cpu
);
5442 if (policy
.cpuinfo
.max_freq
)
5443 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
5446 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
5447 CPUFREQ_TRANSITION_NOTIFIER
);
5449 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
5450 for_each_online_cpu(cpu
)
5451 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5453 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5454 cpu_notifier_register_done();
5458 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
5460 int kvm_is_in_guest(void)
5462 return __this_cpu_read(current_vcpu
) != NULL
;
5465 static int kvm_is_user_mode(void)
5469 if (__this_cpu_read(current_vcpu
))
5470 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
5472 return user_mode
!= 0;
5475 static unsigned long kvm_get_guest_ip(void)
5477 unsigned long ip
= 0;
5479 if (__this_cpu_read(current_vcpu
))
5480 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
5485 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
5486 .is_in_guest
= kvm_is_in_guest
,
5487 .is_user_mode
= kvm_is_user_mode
,
5488 .get_guest_ip
= kvm_get_guest_ip
,
5491 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
5493 __this_cpu_write(current_vcpu
, vcpu
);
5495 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
5497 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
5499 __this_cpu_write(current_vcpu
, NULL
);
5501 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
5503 static void kvm_set_mmio_spte_mask(void)
5506 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
5509 * Set the reserved bits and the present bit of an paging-structure
5510 * entry to generate page fault with PFER.RSV = 1.
5512 /* Mask the reserved physical address bits. */
5513 mask
= ((1ull << (51 - maxphyaddr
+ 1)) - 1) << maxphyaddr
;
5515 /* Bit 62 is always reserved for 32bit host. */
5516 mask
|= 0x3ull
<< 62;
5518 /* Set the present bit. */
5521 #ifdef CONFIG_X86_64
5523 * If reserved bit is not supported, clear the present bit to disable
5526 if (maxphyaddr
== 52)
5530 kvm_mmu_set_mmio_spte_mask(mask
);
5533 #ifdef CONFIG_X86_64
5534 static void pvclock_gtod_update_fn(struct work_struct
*work
)
5538 struct kvm_vcpu
*vcpu
;
5541 spin_lock(&kvm_lock
);
5542 list_for_each_entry(kvm
, &vm_list
, vm_list
)
5543 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5544 set_bit(KVM_REQ_MASTERCLOCK_UPDATE
, &vcpu
->requests
);
5545 atomic_set(&kvm_guest_has_master_clock
, 0);
5546 spin_unlock(&kvm_lock
);
5549 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
5552 * Notification about pvclock gtod data update.
5554 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
5557 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
5558 struct timekeeper
*tk
= priv
;
5560 update_pvclock_gtod(tk
);
5562 /* disable master clock if host does not trust, or does not
5563 * use, TSC clocksource
5565 if (gtod
->clock
.vclock_mode
!= VCLOCK_TSC
&&
5566 atomic_read(&kvm_guest_has_master_clock
) != 0)
5567 queue_work(system_long_wq
, &pvclock_gtod_work
);
5572 static struct notifier_block pvclock_gtod_notifier
= {
5573 .notifier_call
= pvclock_gtod_notify
,
5577 int kvm_arch_init(void *opaque
)
5580 struct kvm_x86_ops
*ops
= opaque
;
5583 printk(KERN_ERR
"kvm: already loaded the other module\n");
5588 if (!ops
->cpu_has_kvm_support()) {
5589 printk(KERN_ERR
"kvm: no hardware support\n");
5593 if (ops
->disabled_by_bios()) {
5594 printk(KERN_ERR
"kvm: disabled by bios\n");
5600 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
5602 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
5606 r
= kvm_mmu_module_init();
5608 goto out_free_percpu
;
5610 kvm_set_mmio_spte_mask();
5613 kvm_init_msr_list();
5615 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
5616 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
5620 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
5623 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
5626 #ifdef CONFIG_X86_64
5627 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
5633 free_percpu(shared_msrs
);
5638 void kvm_arch_exit(void)
5640 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
5642 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5643 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
5644 CPUFREQ_TRANSITION_NOTIFIER
);
5645 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5646 #ifdef CONFIG_X86_64
5647 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
5650 kvm_mmu_module_exit();
5651 free_percpu(shared_msrs
);
5654 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
5656 ++vcpu
->stat
.halt_exits
;
5657 if (irqchip_in_kernel(vcpu
->kvm
)) {
5658 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
5661 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
5665 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
5667 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
5669 u64 param
, ingpa
, outgpa
, ret
;
5670 uint16_t code
, rep_idx
, rep_cnt
, res
= HV_STATUS_SUCCESS
, rep_done
= 0;
5671 bool fast
, longmode
;
5675 * hypercall generates UD from non zero cpl and real mode
5678 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
5679 kvm_queue_exception(vcpu
, UD_VECTOR
);
5683 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5684 longmode
= is_long_mode(vcpu
) && cs_l
== 1;
5687 param
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDX
) << 32) |
5688 (kvm_register_read(vcpu
, VCPU_REGS_RAX
) & 0xffffffff);
5689 ingpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RBX
) << 32) |
5690 (kvm_register_read(vcpu
, VCPU_REGS_RCX
) & 0xffffffff);
5691 outgpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDI
) << 32) |
5692 (kvm_register_read(vcpu
, VCPU_REGS_RSI
) & 0xffffffff);
5694 #ifdef CONFIG_X86_64
5696 param
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5697 ingpa
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5698 outgpa
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5702 code
= param
& 0xffff;
5703 fast
= (param
>> 16) & 0x1;
5704 rep_cnt
= (param
>> 32) & 0xfff;
5705 rep_idx
= (param
>> 48) & 0xfff;
5707 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
5710 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT
:
5711 kvm_vcpu_on_spin(vcpu
);
5714 res
= HV_STATUS_INVALID_HYPERCALL_CODE
;
5718 ret
= res
| (((u64
)rep_done
& 0xfff) << 32);
5720 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5722 kvm_register_write(vcpu
, VCPU_REGS_RDX
, ret
>> 32);
5723 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
& 0xffffffff);
5730 * kvm_pv_kick_cpu_op: Kick a vcpu.
5732 * @apicid - apicid of vcpu to be kicked.
5734 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
5736 struct kvm_lapic_irq lapic_irq
;
5738 lapic_irq
.shorthand
= 0;
5739 lapic_irq
.dest_mode
= 0;
5740 lapic_irq
.dest_id
= apicid
;
5742 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
5743 kvm_irq_delivery_to_apic(kvm
, 0, &lapic_irq
, NULL
);
5746 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
5748 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
5751 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
5752 return kvm_hv_hypercall(vcpu
);
5754 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5755 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5756 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5757 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5758 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5760 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
5762 if (!is_long_mode(vcpu
)) {
5770 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
5776 case KVM_HC_VAPIC_POLL_IRQ
:
5779 case KVM_HC_KICK_CPU
:
5780 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
5788 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5789 ++vcpu
->stat
.hypercalls
;
5792 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
5794 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
5796 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5797 char instruction
[3];
5798 unsigned long rip
= kvm_rip_read(vcpu
);
5800 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
5802 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
5806 * Check if userspace requested an interrupt window, and that the
5807 * interrupt window is open.
5809 * No need to exit to userspace if we already have an interrupt queued.
5811 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
5813 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
5814 vcpu
->run
->request_interrupt_window
&&
5815 kvm_arch_interrupt_allowed(vcpu
));
5818 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
5820 struct kvm_run
*kvm_run
= vcpu
->run
;
5822 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
5823 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
5824 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
5825 if (irqchip_in_kernel(vcpu
->kvm
))
5826 kvm_run
->ready_for_interrupt_injection
= 1;
5828 kvm_run
->ready_for_interrupt_injection
=
5829 kvm_arch_interrupt_allowed(vcpu
) &&
5830 !kvm_cpu_has_interrupt(vcpu
) &&
5831 !kvm_event_needs_reinjection(vcpu
);
5834 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
5838 if (!kvm_x86_ops
->update_cr8_intercept
)
5841 if (!vcpu
->arch
.apic
)
5844 if (!vcpu
->arch
.apic
->vapic_addr
)
5845 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
5852 tpr
= kvm_lapic_get_cr8(vcpu
);
5854 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
5857 static int inject_pending_event(struct kvm_vcpu
*vcpu
, bool req_int_win
)
5861 /* try to reinject previous events if any */
5862 if (vcpu
->arch
.exception
.pending
) {
5863 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
5864 vcpu
->arch
.exception
.has_error_code
,
5865 vcpu
->arch
.exception
.error_code
);
5866 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
5867 vcpu
->arch
.exception
.has_error_code
,
5868 vcpu
->arch
.exception
.error_code
,
5869 vcpu
->arch
.exception
.reinject
);
5873 if (vcpu
->arch
.nmi_injected
) {
5874 kvm_x86_ops
->set_nmi(vcpu
);
5878 if (vcpu
->arch
.interrupt
.pending
) {
5879 kvm_x86_ops
->set_irq(vcpu
);
5883 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
5884 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
5889 /* try to inject new event if pending */
5890 if (vcpu
->arch
.nmi_pending
) {
5891 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
5892 --vcpu
->arch
.nmi_pending
;
5893 vcpu
->arch
.nmi_injected
= true;
5894 kvm_x86_ops
->set_nmi(vcpu
);
5896 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
5897 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
5898 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
5900 kvm_x86_ops
->set_irq(vcpu
);
5906 static void process_nmi(struct kvm_vcpu
*vcpu
)
5911 * x86 is limited to one NMI running, and one NMI pending after it.
5912 * If an NMI is already in progress, limit further NMIs to just one.
5913 * Otherwise, allow two (and we'll inject the first one immediately).
5915 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
5918 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
5919 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
5920 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5923 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
5925 u64 eoi_exit_bitmap
[4];
5928 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
5931 memset(eoi_exit_bitmap
, 0, 32);
5934 kvm_ioapic_scan_entry(vcpu
, eoi_exit_bitmap
, tmr
);
5935 kvm_x86_ops
->load_eoi_exitmap(vcpu
, eoi_exit_bitmap
);
5936 kvm_apic_update_tmr(vcpu
, tmr
);
5940 * Returns 1 to let __vcpu_run() continue the guest execution loop without
5941 * exiting to the userspace. Otherwise, the value will be returned to the
5944 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
5947 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
5948 vcpu
->run
->request_interrupt_window
;
5949 bool req_immediate_exit
= false;
5951 if (vcpu
->requests
) {
5952 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
5953 kvm_mmu_unload(vcpu
);
5954 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
5955 __kvm_migrate_timers(vcpu
);
5956 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
5957 kvm_gen_update_masterclock(vcpu
->kvm
);
5958 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
5959 kvm_gen_kvmclock_update(vcpu
);
5960 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
5961 r
= kvm_guest_time_update(vcpu
);
5965 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
5966 kvm_mmu_sync_roots(vcpu
);
5967 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
5968 kvm_x86_ops
->tlb_flush(vcpu
);
5969 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
5970 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
5974 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
5975 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5979 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
5980 vcpu
->fpu_active
= 0;
5981 kvm_x86_ops
->fpu_deactivate(vcpu
);
5983 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
5984 /* Page is swapped out. Do synthetic halt */
5985 vcpu
->arch
.apf
.halted
= true;
5989 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
5990 record_steal_time(vcpu
);
5991 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
5993 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
5994 kvm_handle_pmu_event(vcpu
);
5995 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
5996 kvm_deliver_pmi(vcpu
);
5997 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
5998 vcpu_scan_ioapic(vcpu
);
6001 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
6002 kvm_apic_accept_events(vcpu
);
6003 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
6008 if (inject_pending_event(vcpu
, req_int_win
) != 0)
6009 req_immediate_exit
= true;
6010 /* enable NMI/IRQ window open exits if needed */
6011 else if (vcpu
->arch
.nmi_pending
)
6012 kvm_x86_ops
->enable_nmi_window(vcpu
);
6013 else if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
6014 kvm_x86_ops
->enable_irq_window(vcpu
);
6016 if (kvm_lapic_enabled(vcpu
)) {
6018 * Update architecture specific hints for APIC
6019 * virtual interrupt delivery.
6021 if (kvm_x86_ops
->hwapic_irr_update
)
6022 kvm_x86_ops
->hwapic_irr_update(vcpu
,
6023 kvm_lapic_find_highest_irr(vcpu
));
6024 update_cr8_intercept(vcpu
);
6025 kvm_lapic_sync_to_vapic(vcpu
);
6029 r
= kvm_mmu_reload(vcpu
);
6031 goto cancel_injection
;
6036 kvm_x86_ops
->prepare_guest_switch(vcpu
);
6037 if (vcpu
->fpu_active
)
6038 kvm_load_guest_fpu(vcpu
);
6039 kvm_load_guest_xcr0(vcpu
);
6041 vcpu
->mode
= IN_GUEST_MODE
;
6043 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6045 /* We should set ->mode before check ->requests,
6046 * see the comment in make_all_cpus_request.
6048 smp_mb__after_srcu_read_unlock();
6050 local_irq_disable();
6052 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
6053 || need_resched() || signal_pending(current
)) {
6054 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6058 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6060 goto cancel_injection
;
6063 if (req_immediate_exit
)
6064 smp_send_reschedule(vcpu
->cpu
);
6068 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
6070 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
6071 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
6072 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
6073 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
6074 set_debugreg(vcpu
->arch
.dr6
, 6);
6077 trace_kvm_entry(vcpu
->vcpu_id
);
6078 kvm_x86_ops
->run(vcpu
);
6081 * Do this here before restoring debug registers on the host. And
6082 * since we do this before handling the vmexit, a DR access vmexit
6083 * can (a) read the correct value of the debug registers, (b) set
6084 * KVM_DEBUGREG_WONT_EXIT again.
6086 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)) {
6089 WARN_ON(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
);
6090 kvm_x86_ops
->sync_dirty_debug_regs(vcpu
);
6091 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
6092 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
6096 * If the guest has used debug registers, at least dr7
6097 * will be disabled while returning to the host.
6098 * If we don't have active breakpoints in the host, we don't
6099 * care about the messed up debug address registers. But if
6100 * we have some of them active, restore the old state.
6102 if (hw_breakpoint_active())
6103 hw_breakpoint_restore();
6105 vcpu
->arch
.last_guest_tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
,
6108 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6111 /* Interrupt is enabled by handle_external_intr() */
6112 kvm_x86_ops
->handle_external_intr(vcpu
);
6117 * We must have an instruction between local_irq_enable() and
6118 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6119 * the interrupt shadow. The stat.exits increment will do nicely.
6120 * But we need to prevent reordering, hence this barrier():
6128 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6131 * Profile KVM exit RIPs:
6133 if (unlikely(prof_on
== KVM_PROFILING
)) {
6134 unsigned long rip
= kvm_rip_read(vcpu
);
6135 profile_hit(KVM_PROFILING
, (void *)rip
);
6138 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
6139 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6141 if (vcpu
->arch
.apic_attention
)
6142 kvm_lapic_sync_from_vapic(vcpu
);
6144 r
= kvm_x86_ops
->handle_exit(vcpu
);
6148 kvm_x86_ops
->cancel_injection(vcpu
);
6149 if (unlikely(vcpu
->arch
.apic_attention
))
6150 kvm_lapic_sync_from_vapic(vcpu
);
6156 static int __vcpu_run(struct kvm_vcpu
*vcpu
)
6159 struct kvm
*kvm
= vcpu
->kvm
;
6161 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6165 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6166 !vcpu
->arch
.apf
.halted
)
6167 r
= vcpu_enter_guest(vcpu
);
6169 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6170 kvm_vcpu_block(vcpu
);
6171 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6172 if (kvm_check_request(KVM_REQ_UNHALT
, vcpu
)) {
6173 kvm_apic_accept_events(vcpu
);
6174 switch(vcpu
->arch
.mp_state
) {
6175 case KVM_MP_STATE_HALTED
:
6176 vcpu
->arch
.pv
.pv_unhalted
= false;
6177 vcpu
->arch
.mp_state
=
6178 KVM_MP_STATE_RUNNABLE
;
6179 case KVM_MP_STATE_RUNNABLE
:
6180 vcpu
->arch
.apf
.halted
= false;
6182 case KVM_MP_STATE_INIT_RECEIVED
:
6194 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
6195 if (kvm_cpu_has_pending_timer(vcpu
))
6196 kvm_inject_pending_timer_irqs(vcpu
);
6198 if (dm_request_for_irq_injection(vcpu
)) {
6200 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6201 ++vcpu
->stat
.request_irq_exits
;
6204 kvm_check_async_pf_completion(vcpu
);
6206 if (signal_pending(current
)) {
6208 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6209 ++vcpu
->stat
.signal_exits
;
6211 if (need_resched()) {
6212 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6214 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6218 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6223 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
6226 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6227 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
6228 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6229 if (r
!= EMULATE_DONE
)
6234 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
6236 BUG_ON(!vcpu
->arch
.pio
.count
);
6238 return complete_emulated_io(vcpu
);
6242 * Implements the following, as a state machine:
6246 * for each mmio piece in the fragment
6254 * for each mmio piece in the fragment
6259 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
6261 struct kvm_run
*run
= vcpu
->run
;
6262 struct kvm_mmio_fragment
*frag
;
6265 BUG_ON(!vcpu
->mmio_needed
);
6267 /* Complete previous fragment */
6268 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
6269 len
= min(8u, frag
->len
);
6270 if (!vcpu
->mmio_is_write
)
6271 memcpy(frag
->data
, run
->mmio
.data
, len
);
6273 if (frag
->len
<= 8) {
6274 /* Switch to the next fragment. */
6276 vcpu
->mmio_cur_fragment
++;
6278 /* Go forward to the next mmio piece. */
6284 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
6285 vcpu
->mmio_needed
= 0;
6287 /* FIXME: return into emulator if single-stepping. */
6288 if (vcpu
->mmio_is_write
)
6290 vcpu
->mmio_read_completed
= 1;
6291 return complete_emulated_io(vcpu
);
6294 run
->exit_reason
= KVM_EXIT_MMIO
;
6295 run
->mmio
.phys_addr
= frag
->gpa
;
6296 if (vcpu
->mmio_is_write
)
6297 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
6298 run
->mmio
.len
= min(8u, frag
->len
);
6299 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
6300 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
6305 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
6310 if (!tsk_used_math(current
) && init_fpu(current
))
6313 if (vcpu
->sigset_active
)
6314 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
6316 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
6317 kvm_vcpu_block(vcpu
);
6318 kvm_apic_accept_events(vcpu
);
6319 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
6324 /* re-sync apic's tpr */
6325 if (!irqchip_in_kernel(vcpu
->kvm
)) {
6326 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
6332 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
6333 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
6334 vcpu
->arch
.complete_userspace_io
= NULL
;
6339 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
6341 r
= __vcpu_run(vcpu
);
6344 post_kvm_run_save(vcpu
);
6345 if (vcpu
->sigset_active
)
6346 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
6351 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6353 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
6355 * We are here if userspace calls get_regs() in the middle of
6356 * instruction emulation. Registers state needs to be copied
6357 * back from emulation context to vcpu. Userspace shouldn't do
6358 * that usually, but some bad designed PV devices (vmware
6359 * backdoor interface) need this to work
6361 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
6362 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6364 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6365 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6366 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6367 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6368 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6369 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
6370 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
6371 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
6372 #ifdef CONFIG_X86_64
6373 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
6374 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
6375 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
6376 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
6377 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
6378 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
6379 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
6380 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
6383 regs
->rip
= kvm_rip_read(vcpu
);
6384 regs
->rflags
= kvm_get_rflags(vcpu
);
6389 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6391 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
6392 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6394 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
6395 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
6396 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
6397 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
6398 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
6399 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
6400 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
6401 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
6402 #ifdef CONFIG_X86_64
6403 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
6404 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
6405 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
6406 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
6407 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
6408 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
6409 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
6410 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
6413 kvm_rip_write(vcpu
, regs
->rip
);
6414 kvm_set_rflags(vcpu
, regs
->rflags
);
6416 vcpu
->arch
.exception
.pending
= false;
6418 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6423 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
6425 struct kvm_segment cs
;
6427 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6431 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
6433 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
6434 struct kvm_sregs
*sregs
)
6438 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6439 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6440 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6441 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6442 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6443 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6445 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6446 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6448 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6449 sregs
->idt
.limit
= dt
.size
;
6450 sregs
->idt
.base
= dt
.address
;
6451 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6452 sregs
->gdt
.limit
= dt
.size
;
6453 sregs
->gdt
.base
= dt
.address
;
6455 sregs
->cr0
= kvm_read_cr0(vcpu
);
6456 sregs
->cr2
= vcpu
->arch
.cr2
;
6457 sregs
->cr3
= kvm_read_cr3(vcpu
);
6458 sregs
->cr4
= kvm_read_cr4(vcpu
);
6459 sregs
->cr8
= kvm_get_cr8(vcpu
);
6460 sregs
->efer
= vcpu
->arch
.efer
;
6461 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
6463 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
6465 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
6466 set_bit(vcpu
->arch
.interrupt
.nr
,
6467 (unsigned long *)sregs
->interrupt_bitmap
);
6472 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
6473 struct kvm_mp_state
*mp_state
)
6475 kvm_apic_accept_events(vcpu
);
6476 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
6477 vcpu
->arch
.pv
.pv_unhalted
)
6478 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
6480 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
6485 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
6486 struct kvm_mp_state
*mp_state
)
6488 if (!kvm_vcpu_has_lapic(vcpu
) &&
6489 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
6492 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
6493 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
6494 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
6496 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
6497 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6501 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
6502 int reason
, bool has_error_code
, u32 error_code
)
6504 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
6507 init_emulate_ctxt(vcpu
);
6509 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
6510 has_error_code
, error_code
);
6513 return EMULATE_FAIL
;
6515 kvm_rip_write(vcpu
, ctxt
->eip
);
6516 kvm_set_rflags(vcpu
, ctxt
->eflags
);
6517 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6518 return EMULATE_DONE
;
6520 EXPORT_SYMBOL_GPL(kvm_task_switch
);
6522 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
6523 struct kvm_sregs
*sregs
)
6525 struct msr_data apic_base_msr
;
6526 int mmu_reset_needed
= 0;
6527 int pending_vec
, max_bits
, idx
;
6530 if (!guest_cpuid_has_xsave(vcpu
) && (sregs
->cr4
& X86_CR4_OSXSAVE
))
6533 dt
.size
= sregs
->idt
.limit
;
6534 dt
.address
= sregs
->idt
.base
;
6535 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6536 dt
.size
= sregs
->gdt
.limit
;
6537 dt
.address
= sregs
->gdt
.base
;
6538 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
6540 vcpu
->arch
.cr2
= sregs
->cr2
;
6541 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
6542 vcpu
->arch
.cr3
= sregs
->cr3
;
6543 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
6545 kvm_set_cr8(vcpu
, sregs
->cr8
);
6547 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
6548 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
6549 apic_base_msr
.data
= sregs
->apic_base
;
6550 apic_base_msr
.host_initiated
= true;
6551 kvm_set_apic_base(vcpu
, &apic_base_msr
);
6553 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
6554 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
6555 vcpu
->arch
.cr0
= sregs
->cr0
;
6557 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
6558 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
6559 if (sregs
->cr4
& X86_CR4_OSXSAVE
)
6560 kvm_update_cpuid(vcpu
);
6562 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6563 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
6564 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
6565 mmu_reset_needed
= 1;
6567 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6569 if (mmu_reset_needed
)
6570 kvm_mmu_reset_context(vcpu
);
6572 max_bits
= KVM_NR_INTERRUPTS
;
6573 pending_vec
= find_first_bit(
6574 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
6575 if (pending_vec
< max_bits
) {
6576 kvm_queue_interrupt(vcpu
, pending_vec
, false);
6577 pr_debug("Set back pending irq %d\n", pending_vec
);
6580 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6581 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6582 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6583 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6584 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6585 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6587 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6588 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6590 update_cr8_intercept(vcpu
);
6592 /* Older userspace won't unhalt the vcpu on reset. */
6593 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
6594 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
6596 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6598 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6603 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
6604 struct kvm_guest_debug
*dbg
)
6606 unsigned long rflags
;
6609 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
6611 if (vcpu
->arch
.exception
.pending
)
6613 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
6614 kvm_queue_exception(vcpu
, DB_VECTOR
);
6616 kvm_queue_exception(vcpu
, BP_VECTOR
);
6620 * Read rflags as long as potentially injected trace flags are still
6623 rflags
= kvm_get_rflags(vcpu
);
6625 vcpu
->guest_debug
= dbg
->control
;
6626 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
6627 vcpu
->guest_debug
= 0;
6629 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
6630 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
6631 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
6632 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
6634 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
6635 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
6637 kvm_update_dr7(vcpu
);
6639 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6640 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
6641 get_segment_base(vcpu
, VCPU_SREG_CS
);
6644 * Trigger an rflags update that will inject or remove the trace
6647 kvm_set_rflags(vcpu
, rflags
);
6649 kvm_x86_ops
->update_db_bp_intercept(vcpu
);
6659 * Translate a guest virtual address to a guest physical address.
6661 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
6662 struct kvm_translation
*tr
)
6664 unsigned long vaddr
= tr
->linear_address
;
6668 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6669 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
6670 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6671 tr
->physical_address
= gpa
;
6672 tr
->valid
= gpa
!= UNMAPPED_GVA
;
6679 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6681 struct i387_fxsave_struct
*fxsave
=
6682 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6684 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
6685 fpu
->fcw
= fxsave
->cwd
;
6686 fpu
->fsw
= fxsave
->swd
;
6687 fpu
->ftwx
= fxsave
->twd
;
6688 fpu
->last_opcode
= fxsave
->fop
;
6689 fpu
->last_ip
= fxsave
->rip
;
6690 fpu
->last_dp
= fxsave
->rdp
;
6691 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
6696 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6698 struct i387_fxsave_struct
*fxsave
=
6699 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6701 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
6702 fxsave
->cwd
= fpu
->fcw
;
6703 fxsave
->swd
= fpu
->fsw
;
6704 fxsave
->twd
= fpu
->ftwx
;
6705 fxsave
->fop
= fpu
->last_opcode
;
6706 fxsave
->rip
= fpu
->last_ip
;
6707 fxsave
->rdp
= fpu
->last_dp
;
6708 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
6713 int fx_init(struct kvm_vcpu
*vcpu
)
6717 err
= fpu_alloc(&vcpu
->arch
.guest_fpu
);
6721 fpu_finit(&vcpu
->arch
.guest_fpu
);
6724 * Ensure guest xcr0 is valid for loading
6726 vcpu
->arch
.xcr0
= XSTATE_FP
;
6728 vcpu
->arch
.cr0
|= X86_CR0_ET
;
6732 EXPORT_SYMBOL_GPL(fx_init
);
6734 static void fx_free(struct kvm_vcpu
*vcpu
)
6736 fpu_free(&vcpu
->arch
.guest_fpu
);
6739 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
6741 if (vcpu
->guest_fpu_loaded
)
6745 * Restore all possible states in the guest,
6746 * and assume host would use all available bits.
6747 * Guest xcr0 would be loaded later.
6749 kvm_put_guest_xcr0(vcpu
);
6750 vcpu
->guest_fpu_loaded
= 1;
6751 __kernel_fpu_begin();
6752 fpu_restore_checking(&vcpu
->arch
.guest_fpu
);
6756 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
6758 kvm_put_guest_xcr0(vcpu
);
6760 if (!vcpu
->guest_fpu_loaded
)
6763 vcpu
->guest_fpu_loaded
= 0;
6764 fpu_save_init(&vcpu
->arch
.guest_fpu
);
6766 ++vcpu
->stat
.fpu_reload
;
6767 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
6771 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
6773 kvmclock_reset(vcpu
);
6775 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
6777 kvm_x86_ops
->vcpu_free(vcpu
);
6780 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
6783 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
6784 printk_once(KERN_WARNING
6785 "kvm: SMP vm created on host with unstable TSC; "
6786 "guest TSC will not be reliable\n");
6787 return kvm_x86_ops
->vcpu_create(kvm
, id
);
6790 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
6794 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
6795 r
= vcpu_load(vcpu
);
6798 kvm_vcpu_reset(vcpu
);
6799 kvm_mmu_setup(vcpu
);
6805 int kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
6808 struct msr_data msr
;
6809 struct kvm
*kvm
= vcpu
->kvm
;
6811 r
= vcpu_load(vcpu
);
6815 msr
.index
= MSR_IA32_TSC
;
6816 msr
.host_initiated
= true;
6817 kvm_write_tsc(vcpu
, &msr
);
6820 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
6821 KVMCLOCK_SYNC_PERIOD
);
6826 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
6829 vcpu
->arch
.apf
.msr_val
= 0;
6831 r
= vcpu_load(vcpu
);
6833 kvm_mmu_unload(vcpu
);
6837 kvm_x86_ops
->vcpu_free(vcpu
);
6840 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
)
6842 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
6843 vcpu
->arch
.nmi_pending
= 0;
6844 vcpu
->arch
.nmi_injected
= false;
6846 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
6847 vcpu
->arch
.dr6
= DR6_FIXED_1
;
6848 kvm_update_dr6(vcpu
);
6849 vcpu
->arch
.dr7
= DR7_FIXED_1
;
6850 kvm_update_dr7(vcpu
);
6852 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6853 vcpu
->arch
.apf
.msr_val
= 0;
6854 vcpu
->arch
.st
.msr_val
= 0;
6856 kvmclock_reset(vcpu
);
6858 kvm_clear_async_pf_completion_queue(vcpu
);
6859 kvm_async_pf_hash_reset(vcpu
);
6860 vcpu
->arch
.apf
.halted
= false;
6862 kvm_pmu_reset(vcpu
);
6864 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
6865 vcpu
->arch
.regs_avail
= ~0;
6866 vcpu
->arch
.regs_dirty
= ~0;
6868 kvm_x86_ops
->vcpu_reset(vcpu
);
6871 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, unsigned int vector
)
6873 struct kvm_segment cs
;
6875 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6876 cs
.selector
= vector
<< 8;
6877 cs
.base
= vector
<< 12;
6878 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6879 kvm_rip_write(vcpu
, 0);
6882 int kvm_arch_hardware_enable(void *garbage
)
6885 struct kvm_vcpu
*vcpu
;
6890 bool stable
, backwards_tsc
= false;
6892 kvm_shared_msr_cpu_online();
6893 ret
= kvm_x86_ops
->hardware_enable(garbage
);
6897 local_tsc
= native_read_tsc();
6898 stable
= !check_tsc_unstable();
6899 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
6900 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6901 if (!stable
&& vcpu
->cpu
== smp_processor_id())
6902 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
6903 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
6904 backwards_tsc
= true;
6905 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
6906 max_tsc
= vcpu
->arch
.last_host_tsc
;
6912 * Sometimes, even reliable TSCs go backwards. This happens on
6913 * platforms that reset TSC during suspend or hibernate actions, but
6914 * maintain synchronization. We must compensate. Fortunately, we can
6915 * detect that condition here, which happens early in CPU bringup,
6916 * before any KVM threads can be running. Unfortunately, we can't
6917 * bring the TSCs fully up to date with real time, as we aren't yet far
6918 * enough into CPU bringup that we know how much real time has actually
6919 * elapsed; our helper function, get_kernel_ns() will be using boot
6920 * variables that haven't been updated yet.
6922 * So we simply find the maximum observed TSC above, then record the
6923 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6924 * the adjustment will be applied. Note that we accumulate
6925 * adjustments, in case multiple suspend cycles happen before some VCPU
6926 * gets a chance to run again. In the event that no KVM threads get a
6927 * chance to run, we will miss the entire elapsed period, as we'll have
6928 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6929 * loose cycle time. This isn't too big a deal, since the loss will be
6930 * uniform across all VCPUs (not to mention the scenario is extremely
6931 * unlikely). It is possible that a second hibernate recovery happens
6932 * much faster than a first, causing the observed TSC here to be
6933 * smaller; this would require additional padding adjustment, which is
6934 * why we set last_host_tsc to the local tsc observed here.
6936 * N.B. - this code below runs only on platforms with reliable TSC,
6937 * as that is the only way backwards_tsc is set above. Also note
6938 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6939 * have the same delta_cyc adjustment applied if backwards_tsc
6940 * is detected. Note further, this adjustment is only done once,
6941 * as we reset last_host_tsc on all VCPUs to stop this from being
6942 * called multiple times (one for each physical CPU bringup).
6944 * Platforms with unreliable TSCs don't have to deal with this, they
6945 * will be compensated by the logic in vcpu_load, which sets the TSC to
6946 * catchup mode. This will catchup all VCPUs to real time, but cannot
6947 * guarantee that they stay in perfect synchronization.
6949 if (backwards_tsc
) {
6950 u64 delta_cyc
= max_tsc
- local_tsc
;
6951 backwards_tsc_observed
= true;
6952 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
6953 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6954 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
6955 vcpu
->arch
.last_host_tsc
= local_tsc
;
6956 set_bit(KVM_REQ_MASTERCLOCK_UPDATE
,
6961 * We have to disable TSC offset matching.. if you were
6962 * booting a VM while issuing an S4 host suspend....
6963 * you may have some problem. Solving this issue is
6964 * left as an exercise to the reader.
6966 kvm
->arch
.last_tsc_nsec
= 0;
6967 kvm
->arch
.last_tsc_write
= 0;
6974 void kvm_arch_hardware_disable(void *garbage
)
6976 kvm_x86_ops
->hardware_disable(garbage
);
6977 drop_user_return_notifiers(garbage
);
6980 int kvm_arch_hardware_setup(void)
6982 return kvm_x86_ops
->hardware_setup();
6985 void kvm_arch_hardware_unsetup(void)
6987 kvm_x86_ops
->hardware_unsetup();
6990 void kvm_arch_check_processor_compat(void *rtn
)
6992 kvm_x86_ops
->check_processor_compatibility(rtn
);
6995 bool kvm_vcpu_compatible(struct kvm_vcpu
*vcpu
)
6997 return irqchip_in_kernel(vcpu
->kvm
) == (vcpu
->arch
.apic
!= NULL
);
7000 struct static_key kvm_no_apic_vcpu __read_mostly
;
7002 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
7008 BUG_ON(vcpu
->kvm
== NULL
);
7011 vcpu
->arch
.pv
.pv_unhalted
= false;
7012 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
7013 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
7014 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7016 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
7018 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
7023 vcpu
->arch
.pio_data
= page_address(page
);
7025 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
7027 r
= kvm_mmu_create(vcpu
);
7029 goto fail_free_pio_data
;
7031 if (irqchip_in_kernel(kvm
)) {
7032 r
= kvm_create_lapic(vcpu
);
7034 goto fail_mmu_destroy
;
7036 static_key_slow_inc(&kvm_no_apic_vcpu
);
7038 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
7040 if (!vcpu
->arch
.mce_banks
) {
7042 goto fail_free_lapic
;
7044 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
7046 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
)) {
7048 goto fail_free_mce_banks
;
7053 goto fail_free_wbinvd_dirty_mask
;
7055 vcpu
->arch
.ia32_tsc_adjust_msr
= 0x0;
7056 vcpu
->arch
.pv_time_enabled
= false;
7058 vcpu
->arch
.guest_supported_xcr0
= 0;
7059 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
7061 kvm_async_pf_hash_reset(vcpu
);
7065 fail_free_wbinvd_dirty_mask
:
7066 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
7067 fail_free_mce_banks
:
7068 kfree(vcpu
->arch
.mce_banks
);
7070 kvm_free_lapic(vcpu
);
7072 kvm_mmu_destroy(vcpu
);
7074 free_page((unsigned long)vcpu
->arch
.pio_data
);
7079 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
7083 kvm_pmu_destroy(vcpu
);
7084 kfree(vcpu
->arch
.mce_banks
);
7085 kvm_free_lapic(vcpu
);
7086 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7087 kvm_mmu_destroy(vcpu
);
7088 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7089 free_page((unsigned long)vcpu
->arch
.pio_data
);
7090 if (!irqchip_in_kernel(vcpu
->kvm
))
7091 static_key_slow_dec(&kvm_no_apic_vcpu
);
7094 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
7099 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
7100 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
7101 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
7102 atomic_set(&kvm
->arch
.noncoherent_dma_count
, 0);
7104 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7105 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
7106 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7107 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
7108 &kvm
->arch
.irq_sources_bitmap
);
7110 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
7111 mutex_init(&kvm
->arch
.apic_map_lock
);
7112 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
7114 pvclock_update_vm_gtod_copy(kvm
);
7116 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_update_work
, kvmclock_update_fn
);
7117 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_sync_work
, kvmclock_sync_fn
);
7122 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
7125 r
= vcpu_load(vcpu
);
7127 kvm_mmu_unload(vcpu
);
7131 static void kvm_free_vcpus(struct kvm
*kvm
)
7134 struct kvm_vcpu
*vcpu
;
7137 * Unpin any mmu pages first.
7139 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7140 kvm_clear_async_pf_completion_queue(vcpu
);
7141 kvm_unload_vcpu_mmu(vcpu
);
7143 kvm_for_each_vcpu(i
, vcpu
, kvm
)
7144 kvm_arch_vcpu_free(vcpu
);
7146 mutex_lock(&kvm
->lock
);
7147 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
7148 kvm
->vcpus
[i
] = NULL
;
7150 atomic_set(&kvm
->online_vcpus
, 0);
7151 mutex_unlock(&kvm
->lock
);
7154 void kvm_arch_sync_events(struct kvm
*kvm
)
7156 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_sync_work
);
7157 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_update_work
);
7158 kvm_free_all_assigned_devices(kvm
);
7162 void kvm_arch_destroy_vm(struct kvm
*kvm
)
7164 if (current
->mm
== kvm
->mm
) {
7166 * Free memory regions allocated on behalf of userspace,
7167 * unless the the memory map has changed due to process exit
7170 struct kvm_userspace_memory_region mem
;
7171 memset(&mem
, 0, sizeof(mem
));
7172 mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
7173 kvm_set_memory_region(kvm
, &mem
);
7175 mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
7176 kvm_set_memory_region(kvm
, &mem
);
7178 mem
.slot
= TSS_PRIVATE_MEMSLOT
;
7179 kvm_set_memory_region(kvm
, &mem
);
7181 kvm_iommu_unmap_guest(kvm
);
7182 kfree(kvm
->arch
.vpic
);
7183 kfree(kvm
->arch
.vioapic
);
7184 kvm_free_vcpus(kvm
);
7185 if (kvm
->arch
.apic_access_page
)
7186 put_page(kvm
->arch
.apic_access_page
);
7187 if (kvm
->arch
.ept_identity_pagetable
)
7188 put_page(kvm
->arch
.ept_identity_pagetable
);
7189 kfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
7192 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
7193 struct kvm_memory_slot
*dont
)
7197 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7198 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
7199 kvm_kvfree(free
->arch
.rmap
[i
]);
7200 free
->arch
.rmap
[i
] = NULL
;
7205 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
7206 dont
->arch
.lpage_info
[i
- 1]) {
7207 kvm_kvfree(free
->arch
.lpage_info
[i
- 1]);
7208 free
->arch
.lpage_info
[i
- 1] = NULL
;
7213 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
7214 unsigned long npages
)
7218 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7223 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
7224 slot
->base_gfn
, level
) + 1;
7226 slot
->arch
.rmap
[i
] =
7227 kvm_kvzalloc(lpages
* sizeof(*slot
->arch
.rmap
[i
]));
7228 if (!slot
->arch
.rmap
[i
])
7233 slot
->arch
.lpage_info
[i
- 1] = kvm_kvzalloc(lpages
*
7234 sizeof(*slot
->arch
.lpage_info
[i
- 1]));
7235 if (!slot
->arch
.lpage_info
[i
- 1])
7238 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
7239 slot
->arch
.lpage_info
[i
- 1][0].write_count
= 1;
7240 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
7241 slot
->arch
.lpage_info
[i
- 1][lpages
- 1].write_count
= 1;
7242 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
7244 * If the gfn and userspace address are not aligned wrt each
7245 * other, or if explicitly asked to, disable large page
7246 * support for this slot
7248 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
7249 !kvm_largepages_enabled()) {
7252 for (j
= 0; j
< lpages
; ++j
)
7253 slot
->arch
.lpage_info
[i
- 1][j
].write_count
= 1;
7260 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7261 kvm_kvfree(slot
->arch
.rmap
[i
]);
7262 slot
->arch
.rmap
[i
] = NULL
;
7266 kvm_kvfree(slot
->arch
.lpage_info
[i
- 1]);
7267 slot
->arch
.lpage_info
[i
- 1] = NULL
;
7272 void kvm_arch_memslots_updated(struct kvm
*kvm
)
7275 * memslots->generation has been incremented.
7276 * mmio generation may have reached its maximum value.
7278 kvm_mmu_invalidate_mmio_sptes(kvm
);
7281 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
7282 struct kvm_memory_slot
*memslot
,
7283 struct kvm_userspace_memory_region
*mem
,
7284 enum kvm_mr_change change
)
7287 * Only private memory slots need to be mapped here since
7288 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7290 if ((memslot
->id
>= KVM_USER_MEM_SLOTS
) && (change
== KVM_MR_CREATE
)) {
7291 unsigned long userspace_addr
;
7294 * MAP_SHARED to prevent internal slot pages from being moved
7297 userspace_addr
= vm_mmap(NULL
, 0, memslot
->npages
* PAGE_SIZE
,
7298 PROT_READ
| PROT_WRITE
,
7299 MAP_SHARED
| MAP_ANONYMOUS
, 0);
7301 if (IS_ERR((void *)userspace_addr
))
7302 return PTR_ERR((void *)userspace_addr
);
7304 memslot
->userspace_addr
= userspace_addr
;
7310 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
7311 struct kvm_userspace_memory_region
*mem
,
7312 const struct kvm_memory_slot
*old
,
7313 enum kvm_mr_change change
)
7316 int nr_mmu_pages
= 0;
7318 if ((mem
->slot
>= KVM_USER_MEM_SLOTS
) && (change
== KVM_MR_DELETE
)) {
7321 ret
= vm_munmap(old
->userspace_addr
,
7322 old
->npages
* PAGE_SIZE
);
7325 "kvm_vm_ioctl_set_memory_region: "
7326 "failed to munmap memory\n");
7329 if (!kvm
->arch
.n_requested_mmu_pages
)
7330 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
7333 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
7335 * Write protect all pages for dirty logging.
7337 * All the sptes including the large sptes which point to this
7338 * slot are set to readonly. We can not create any new large
7339 * spte on this slot until the end of the logging.
7341 * See the comments in fast_page_fault().
7343 if ((change
!= KVM_MR_DELETE
) && (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
7344 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
7347 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
7349 kvm_mmu_invalidate_zap_all_pages(kvm
);
7352 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
7353 struct kvm_memory_slot
*slot
)
7355 kvm_mmu_invalidate_zap_all_pages(kvm
);
7358 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
7360 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
)
7361 kvm_x86_ops
->check_nested_events(vcpu
, false);
7363 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
7364 !vcpu
->arch
.apf
.halted
)
7365 || !list_empty_careful(&vcpu
->async_pf
.done
)
7366 || kvm_apic_has_events(vcpu
)
7367 || vcpu
->arch
.pv
.pv_unhalted
7368 || atomic_read(&vcpu
->arch
.nmi_queued
) ||
7369 (kvm_arch_interrupt_allowed(vcpu
) &&
7370 kvm_cpu_has_interrupt(vcpu
));
7373 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
7375 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
7378 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
7380 return kvm_x86_ops
->interrupt_allowed(vcpu
);
7383 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
7385 unsigned long current_rip
= kvm_rip_read(vcpu
) +
7386 get_segment_base(vcpu
, VCPU_SREG_CS
);
7388 return current_rip
== linear_rip
;
7390 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
7392 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
7394 unsigned long rflags
;
7396 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
7397 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7398 rflags
&= ~X86_EFLAGS_TF
;
7401 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
7403 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
7405 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
7406 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
7407 rflags
|= X86_EFLAGS_TF
;
7408 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
7409 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7411 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
7413 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
7417 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
7421 r
= kvm_mmu_reload(vcpu
);
7425 if (!vcpu
->arch
.mmu
.direct_map
&&
7426 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
7429 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
7432 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
7434 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
7437 static inline u32
kvm_async_pf_next_probe(u32 key
)
7439 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
7442 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7444 u32 key
= kvm_async_pf_hash_fn(gfn
);
7446 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
7447 key
= kvm_async_pf_next_probe(key
);
7449 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
7452 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7455 u32 key
= kvm_async_pf_hash_fn(gfn
);
7457 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
7458 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
7459 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
7460 key
= kvm_async_pf_next_probe(key
);
7465 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7467 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
7470 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7474 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
7476 vcpu
->arch
.apf
.gfns
[i
] = ~0;
7478 j
= kvm_async_pf_next_probe(j
);
7479 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
7481 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
7483 * k lies cyclically in ]i,j]
7485 * |....j i.k.| or |.k..j i...|
7487 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
7488 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
7493 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
7496 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
7500 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
7501 struct kvm_async_pf
*work
)
7503 struct x86_exception fault
;
7505 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
7506 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
7508 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
7509 (vcpu
->arch
.apf
.send_user_only
&&
7510 kvm_x86_ops
->get_cpl(vcpu
) == 0))
7511 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
7512 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
7513 fault
.vector
= PF_VECTOR
;
7514 fault
.error_code_valid
= true;
7515 fault
.error_code
= 0;
7516 fault
.nested_page_fault
= false;
7517 fault
.address
= work
->arch
.token
;
7518 kvm_inject_page_fault(vcpu
, &fault
);
7522 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
7523 struct kvm_async_pf
*work
)
7525 struct x86_exception fault
;
7527 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
7528 if (work
->wakeup_all
)
7529 work
->arch
.token
= ~0; /* broadcast wakeup */
7531 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
7533 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
7534 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
7535 fault
.vector
= PF_VECTOR
;
7536 fault
.error_code_valid
= true;
7537 fault
.error_code
= 0;
7538 fault
.nested_page_fault
= false;
7539 fault
.address
= work
->arch
.token
;
7540 kvm_inject_page_fault(vcpu
, &fault
);
7542 vcpu
->arch
.apf
.halted
= false;
7543 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7546 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
7548 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
7551 return !kvm_event_needs_reinjection(vcpu
) &&
7552 kvm_x86_ops
->interrupt_allowed(vcpu
);
7555 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
7557 atomic_inc(&kvm
->arch
.noncoherent_dma_count
);
7559 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma
);
7561 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
7563 atomic_dec(&kvm
->arch
.noncoherent_dma_count
);
7565 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma
);
7567 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
7569 return atomic_read(&kvm
->arch
.noncoherent_dma_count
);
7571 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma
);
7573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
7574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
7575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
7576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
7577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
7578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
7579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
7580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
7581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
7582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
7583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
7584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
7585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);