2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
23 #include <trace/events/block.h>
25 #define DM_MSG_PREFIX "core"
29 * ratelimit state to be used in DMXXX_LIMIT().
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state
,
32 DEFAULT_RATELIMIT_INTERVAL
,
33 DEFAULT_RATELIMIT_BURST
);
34 EXPORT_SYMBOL(dm_ratelimit_state
);
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
44 static const char *_name
= DM_NAME
;
46 static unsigned int major
= 0;
47 static unsigned int _major
= 0;
49 static DEFINE_IDR(_minor_idr
);
51 static DEFINE_SPINLOCK(_minor_lock
);
53 static void do_deferred_remove(struct work_struct
*w
);
55 static DECLARE_WORK(deferred_remove_work
, do_deferred_remove
);
59 * One of these is allocated per bio.
62 struct mapped_device
*md
;
66 unsigned long start_time
;
67 spinlock_t endio_lock
;
68 struct dm_stats_aux stats_aux
;
72 * For request-based dm.
73 * One of these is allocated per request.
75 struct dm_rq_target_io
{
76 struct mapped_device
*md
;
78 struct request
*orig
, clone
;
84 * For request-based dm - the bio clones we allocate are embedded in these
87 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
88 * the bioset is created - this means the bio has to come at the end of the
91 struct dm_rq_clone_bio_info
{
93 struct dm_rq_target_io
*tio
;
97 union map_info
*dm_get_rq_mapinfo(struct request
*rq
)
99 if (rq
&& rq
->end_io_data
)
100 return &((struct dm_rq_target_io
*)rq
->end_io_data
)->info
;
103 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo
);
105 #define MINOR_ALLOCED ((void *)-1)
108 * Bits for the md->flags field.
110 #define DMF_BLOCK_IO_FOR_SUSPEND 0
111 #define DMF_SUSPENDED 1
113 #define DMF_FREEING 3
114 #define DMF_DELETING 4
115 #define DMF_NOFLUSH_SUSPENDING 5
116 #define DMF_MERGE_IS_OPTIONAL 6
117 #define DMF_DEFERRED_REMOVE 7
120 * A dummy definition to make RCU happy.
121 * struct dm_table should never be dereferenced in this file.
128 * Work processed by per-device workqueue.
130 struct mapped_device
{
131 struct srcu_struct io_barrier
;
132 struct mutex suspend_lock
;
137 * The current mapping.
138 * Use dm_get_live_table{_fast} or take suspend_lock for
141 struct dm_table
*map
;
145 struct request_queue
*queue
;
147 /* Protect queue and type against concurrent access. */
148 struct mutex type_lock
;
150 struct target_type
*immutable_target_type
;
152 struct gendisk
*disk
;
158 * A list of ios that arrived while we were suspended.
161 wait_queue_head_t wait
;
162 struct work_struct work
;
163 struct bio_list deferred
;
164 spinlock_t deferred_lock
;
167 * Processing queue (flush)
169 struct workqueue_struct
*wq
;
172 * io objects are allocated from here.
182 wait_queue_head_t eventq
;
184 struct list_head uevent_list
;
185 spinlock_t uevent_lock
; /* Protect access to uevent_list */
188 * freeze/thaw support require holding onto a super block
190 struct super_block
*frozen_sb
;
191 struct block_device
*bdev
;
193 /* forced geometry settings */
194 struct hd_geometry geometry
;
196 /* kobject and completion */
197 struct dm_kobject_holder kobj_holder
;
199 /* zero-length flush that will be cloned and submitted to targets */
200 struct bio flush_bio
;
202 struct dm_stats stats
;
206 * For mempools pre-allocation at the table loading time.
208 struct dm_md_mempools
{
213 #define RESERVED_BIO_BASED_IOS 16
214 #define RESERVED_REQUEST_BASED_IOS 256
215 #define RESERVED_MAX_IOS 1024
216 static struct kmem_cache
*_io_cache
;
217 static struct kmem_cache
*_rq_tio_cache
;
220 * Bio-based DM's mempools' reserved IOs set by the user.
222 static unsigned reserved_bio_based_ios
= RESERVED_BIO_BASED_IOS
;
225 * Request-based DM's mempools' reserved IOs set by the user.
227 static unsigned reserved_rq_based_ios
= RESERVED_REQUEST_BASED_IOS
;
229 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios
,
230 unsigned def
, unsigned max
)
232 unsigned ios
= ACCESS_ONCE(*reserved_ios
);
233 unsigned modified_ios
= 0;
241 (void)cmpxchg(reserved_ios
, ios
, modified_ios
);
248 unsigned dm_get_reserved_bio_based_ios(void)
250 return __dm_get_reserved_ios(&reserved_bio_based_ios
,
251 RESERVED_BIO_BASED_IOS
, RESERVED_MAX_IOS
);
253 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios
);
255 unsigned dm_get_reserved_rq_based_ios(void)
257 return __dm_get_reserved_ios(&reserved_rq_based_ios
,
258 RESERVED_REQUEST_BASED_IOS
, RESERVED_MAX_IOS
);
260 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios
);
262 static int __init
local_init(void)
266 /* allocate a slab for the dm_ios */
267 _io_cache
= KMEM_CACHE(dm_io
, 0);
271 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
273 goto out_free_io_cache
;
275 r
= dm_uevent_init();
277 goto out_free_rq_tio_cache
;
280 r
= register_blkdev(_major
, _name
);
282 goto out_uevent_exit
;
291 out_free_rq_tio_cache
:
292 kmem_cache_destroy(_rq_tio_cache
);
294 kmem_cache_destroy(_io_cache
);
299 static void local_exit(void)
301 flush_scheduled_work();
303 kmem_cache_destroy(_rq_tio_cache
);
304 kmem_cache_destroy(_io_cache
);
305 unregister_blkdev(_major
, _name
);
310 DMINFO("cleaned up");
313 static int (*_inits
[])(void) __initdata
= {
324 static void (*_exits
[])(void) = {
335 static int __init
dm_init(void)
337 const int count
= ARRAY_SIZE(_inits
);
341 for (i
= 0; i
< count
; i
++) {
356 static void __exit
dm_exit(void)
358 int i
= ARRAY_SIZE(_exits
);
364 * Should be empty by this point.
366 idr_destroy(&_minor_idr
);
370 * Block device functions
372 int dm_deleting_md(struct mapped_device
*md
)
374 return test_bit(DMF_DELETING
, &md
->flags
);
377 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
379 struct mapped_device
*md
;
381 spin_lock(&_minor_lock
);
383 md
= bdev
->bd_disk
->private_data
;
387 if (test_bit(DMF_FREEING
, &md
->flags
) ||
388 dm_deleting_md(md
)) {
394 atomic_inc(&md
->open_count
);
397 spin_unlock(&_minor_lock
);
399 return md
? 0 : -ENXIO
;
402 static void dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
404 struct mapped_device
*md
= disk
->private_data
;
406 spin_lock(&_minor_lock
);
408 if (atomic_dec_and_test(&md
->open_count
) &&
409 (test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
)))
410 schedule_work(&deferred_remove_work
);
414 spin_unlock(&_minor_lock
);
417 int dm_open_count(struct mapped_device
*md
)
419 return atomic_read(&md
->open_count
);
423 * Guarantees nothing is using the device before it's deleted.
425 int dm_lock_for_deletion(struct mapped_device
*md
, bool mark_deferred
, bool only_deferred
)
429 spin_lock(&_minor_lock
);
431 if (dm_open_count(md
)) {
434 set_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
435 } else if (only_deferred
&& !test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
))
438 set_bit(DMF_DELETING
, &md
->flags
);
440 spin_unlock(&_minor_lock
);
445 int dm_cancel_deferred_remove(struct mapped_device
*md
)
449 spin_lock(&_minor_lock
);
451 if (test_bit(DMF_DELETING
, &md
->flags
))
454 clear_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
456 spin_unlock(&_minor_lock
);
461 static void do_deferred_remove(struct work_struct
*w
)
463 dm_deferred_remove();
466 sector_t
dm_get_size(struct mapped_device
*md
)
468 return get_capacity(md
->disk
);
471 struct request_queue
*dm_get_md_queue(struct mapped_device
*md
)
476 struct dm_stats
*dm_get_stats(struct mapped_device
*md
)
481 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
483 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
485 return dm_get_geometry(md
, geo
);
488 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
489 unsigned int cmd
, unsigned long arg
)
491 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
493 struct dm_table
*map
;
494 struct dm_target
*tgt
;
498 map
= dm_get_live_table(md
, &srcu_idx
);
500 if (!map
|| !dm_table_get_size(map
))
503 /* We only support devices that have a single target */
504 if (dm_table_get_num_targets(map
) != 1)
507 tgt
= dm_table_get_target(map
, 0);
509 if (dm_suspended_md(md
)) {
514 if (tgt
->type
->ioctl
)
515 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
518 dm_put_live_table(md
, srcu_idx
);
520 if (r
== -ENOTCONN
) {
528 static struct dm_io
*alloc_io(struct mapped_device
*md
)
530 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
533 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
535 mempool_free(io
, md
->io_pool
);
538 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
540 bio_put(&tio
->clone
);
543 static struct dm_rq_target_io
*alloc_rq_tio(struct mapped_device
*md
,
546 return mempool_alloc(md
->io_pool
, gfp_mask
);
549 static void free_rq_tio(struct dm_rq_target_io
*tio
)
551 mempool_free(tio
, tio
->md
->io_pool
);
554 static int md_in_flight(struct mapped_device
*md
)
556 return atomic_read(&md
->pending
[READ
]) +
557 atomic_read(&md
->pending
[WRITE
]);
560 static void start_io_acct(struct dm_io
*io
)
562 struct mapped_device
*md
= io
->md
;
563 struct bio
*bio
= io
->bio
;
565 int rw
= bio_data_dir(bio
);
567 io
->start_time
= jiffies
;
569 cpu
= part_stat_lock();
570 part_round_stats(cpu
, &dm_disk(md
)->part0
);
572 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
],
573 atomic_inc_return(&md
->pending
[rw
]));
575 if (unlikely(dm_stats_used(&md
->stats
)))
576 dm_stats_account_io(&md
->stats
, bio
->bi_rw
, bio
->bi_iter
.bi_sector
,
577 bio_sectors(bio
), false, 0, &io
->stats_aux
);
580 static void end_io_acct(struct dm_io
*io
)
582 struct mapped_device
*md
= io
->md
;
583 struct bio
*bio
= io
->bio
;
584 unsigned long duration
= jiffies
- io
->start_time
;
586 int rw
= bio_data_dir(bio
);
588 cpu
= part_stat_lock();
589 part_round_stats(cpu
, &dm_disk(md
)->part0
);
590 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
593 if (unlikely(dm_stats_used(&md
->stats
)))
594 dm_stats_account_io(&md
->stats
, bio
->bi_rw
, bio
->bi_iter
.bi_sector
,
595 bio_sectors(bio
), true, duration
, &io
->stats_aux
);
598 * After this is decremented the bio must not be touched if it is
601 pending
= atomic_dec_return(&md
->pending
[rw
]);
602 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
], pending
);
603 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
605 /* nudge anyone waiting on suspend queue */
611 * Add the bio to the list of deferred io.
613 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
617 spin_lock_irqsave(&md
->deferred_lock
, flags
);
618 bio_list_add(&md
->deferred
, bio
);
619 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
620 queue_work(md
->wq
, &md
->work
);
624 * Everyone (including functions in this file), should use this
625 * function to access the md->map field, and make sure they call
626 * dm_put_live_table() when finished.
628 struct dm_table
*dm_get_live_table(struct mapped_device
*md
, int *srcu_idx
) __acquires(md
->io_barrier
)
630 *srcu_idx
= srcu_read_lock(&md
->io_barrier
);
632 return srcu_dereference(md
->map
, &md
->io_barrier
);
635 void dm_put_live_table(struct mapped_device
*md
, int srcu_idx
) __releases(md
->io_barrier
)
637 srcu_read_unlock(&md
->io_barrier
, srcu_idx
);
640 void dm_sync_table(struct mapped_device
*md
)
642 synchronize_srcu(&md
->io_barrier
);
643 synchronize_rcu_expedited();
647 * A fast alternative to dm_get_live_table/dm_put_live_table.
648 * The caller must not block between these two functions.
650 static struct dm_table
*dm_get_live_table_fast(struct mapped_device
*md
) __acquires(RCU
)
653 return rcu_dereference(md
->map
);
656 static void dm_put_live_table_fast(struct mapped_device
*md
) __releases(RCU
)
662 * Get the geometry associated with a dm device
664 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
672 * Set the geometry of a device.
674 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
676 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
678 if (geo
->start
> sz
) {
679 DMWARN("Start sector is beyond the geometry limits.");
688 /*-----------------------------------------------------------------
690 * A more elegant soln is in the works that uses the queue
691 * merge fn, unfortunately there are a couple of changes to
692 * the block layer that I want to make for this. So in the
693 * interests of getting something for people to use I give
694 * you this clearly demarcated crap.
695 *---------------------------------------------------------------*/
697 static int __noflush_suspending(struct mapped_device
*md
)
699 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
703 * Decrements the number of outstanding ios that a bio has been
704 * cloned into, completing the original io if necc.
706 static void dec_pending(struct dm_io
*io
, int error
)
711 struct mapped_device
*md
= io
->md
;
713 /* Push-back supersedes any I/O errors */
714 if (unlikely(error
)) {
715 spin_lock_irqsave(&io
->endio_lock
, flags
);
716 if (!(io
->error
> 0 && __noflush_suspending(md
)))
718 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
721 if (atomic_dec_and_test(&io
->io_count
)) {
722 if (io
->error
== DM_ENDIO_REQUEUE
) {
724 * Target requested pushing back the I/O.
726 spin_lock_irqsave(&md
->deferred_lock
, flags
);
727 if (__noflush_suspending(md
))
728 bio_list_add_head(&md
->deferred
, io
->bio
);
730 /* noflush suspend was interrupted. */
732 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
735 io_error
= io
->error
;
740 if (io_error
== DM_ENDIO_REQUEUE
)
743 if ((bio
->bi_rw
& REQ_FLUSH
) && bio
->bi_iter
.bi_size
) {
745 * Preflush done for flush with data, reissue
748 bio
->bi_rw
&= ~REQ_FLUSH
;
751 /* done with normal IO or empty flush */
752 trace_block_bio_complete(md
->queue
, bio
, io_error
);
753 bio_endio(bio
, io_error
);
758 static void disable_write_same(struct mapped_device
*md
)
760 struct queue_limits
*limits
= dm_get_queue_limits(md
);
762 /* device doesn't really support WRITE SAME, disable it */
763 limits
->max_write_same_sectors
= 0;
766 static void clone_endio(struct bio
*bio
, int error
)
769 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
770 struct dm_io
*io
= tio
->io
;
771 struct mapped_device
*md
= tio
->io
->md
;
772 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
774 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
778 r
= endio(tio
->ti
, bio
, error
);
779 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
781 * error and requeue request are handled
785 else if (r
== DM_ENDIO_INCOMPLETE
)
786 /* The target will handle the io */
789 DMWARN("unimplemented target endio return value: %d", r
);
794 if (unlikely(r
== -EREMOTEIO
&& (bio
->bi_rw
& REQ_WRITE_SAME
) &&
795 !bdev_get_queue(bio
->bi_bdev
)->limits
.max_write_same_sectors
))
796 disable_write_same(md
);
799 dec_pending(io
, error
);
803 * Partial completion handling for request-based dm
805 static void end_clone_bio(struct bio
*clone
, int error
)
807 struct dm_rq_clone_bio_info
*info
=
808 container_of(clone
, struct dm_rq_clone_bio_info
, clone
);
809 struct dm_rq_target_io
*tio
= info
->tio
;
810 struct bio
*bio
= info
->orig
;
811 unsigned int nr_bytes
= info
->orig
->bi_iter
.bi_size
;
817 * An error has already been detected on the request.
818 * Once error occurred, just let clone->end_io() handle
824 * Don't notice the error to the upper layer yet.
825 * The error handling decision is made by the target driver,
826 * when the request is completed.
833 * I/O for the bio successfully completed.
834 * Notice the data completion to the upper layer.
838 * bios are processed from the head of the list.
839 * So the completing bio should always be rq->bio.
840 * If it's not, something wrong is happening.
842 if (tio
->orig
->bio
!= bio
)
843 DMERR("bio completion is going in the middle of the request");
846 * Update the original request.
847 * Do not use blk_end_request() here, because it may complete
848 * the original request before the clone, and break the ordering.
850 blk_update_request(tio
->orig
, 0, nr_bytes
);
854 * Don't touch any member of the md after calling this function because
855 * the md may be freed in dm_put() at the end of this function.
856 * Or do dm_get() before calling this function and dm_put() later.
858 static void rq_completed(struct mapped_device
*md
, int rw
, int run_queue
)
860 atomic_dec(&md
->pending
[rw
]);
862 /* nudge anyone waiting on suspend queue */
863 if (!md_in_flight(md
))
867 * Run this off this callpath, as drivers could invoke end_io while
868 * inside their request_fn (and holding the queue lock). Calling
869 * back into ->request_fn() could deadlock attempting to grab the
873 blk_run_queue_async(md
->queue
);
876 * dm_put() must be at the end of this function. See the comment above
881 static void free_rq_clone(struct request
*clone
)
883 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
885 blk_rq_unprep_clone(clone
);
890 * Complete the clone and the original request.
891 * Must be called without queue lock.
893 static void dm_end_request(struct request
*clone
, int error
)
895 int rw
= rq_data_dir(clone
);
896 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
897 struct mapped_device
*md
= tio
->md
;
898 struct request
*rq
= tio
->orig
;
900 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
901 rq
->errors
= clone
->errors
;
902 rq
->resid_len
= clone
->resid_len
;
906 * We are using the sense buffer of the original
908 * So setting the length of the sense data is enough.
910 rq
->sense_len
= clone
->sense_len
;
913 free_rq_clone(clone
);
914 blk_end_request_all(rq
, error
);
915 rq_completed(md
, rw
, true);
918 static void dm_unprep_request(struct request
*rq
)
920 struct request
*clone
= rq
->special
;
923 rq
->cmd_flags
&= ~REQ_DONTPREP
;
925 free_rq_clone(clone
);
929 * Requeue the original request of a clone.
931 void dm_requeue_unmapped_request(struct request
*clone
)
933 int rw
= rq_data_dir(clone
);
934 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
935 struct mapped_device
*md
= tio
->md
;
936 struct request
*rq
= tio
->orig
;
937 struct request_queue
*q
= rq
->q
;
940 dm_unprep_request(rq
);
942 spin_lock_irqsave(q
->queue_lock
, flags
);
943 blk_requeue_request(q
, rq
);
944 spin_unlock_irqrestore(q
->queue_lock
, flags
);
946 rq_completed(md
, rw
, 0);
948 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request
);
950 static void __stop_queue(struct request_queue
*q
)
955 static void stop_queue(struct request_queue
*q
)
959 spin_lock_irqsave(q
->queue_lock
, flags
);
961 spin_unlock_irqrestore(q
->queue_lock
, flags
);
964 static void __start_queue(struct request_queue
*q
)
966 if (blk_queue_stopped(q
))
970 static void start_queue(struct request_queue
*q
)
974 spin_lock_irqsave(q
->queue_lock
, flags
);
976 spin_unlock_irqrestore(q
->queue_lock
, flags
);
979 static void dm_done(struct request
*clone
, int error
, bool mapped
)
982 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
983 dm_request_endio_fn rq_end_io
= NULL
;
986 rq_end_io
= tio
->ti
->type
->rq_end_io
;
988 if (mapped
&& rq_end_io
)
989 r
= rq_end_io(tio
->ti
, clone
, error
, &tio
->info
);
992 if (unlikely(r
== -EREMOTEIO
&& (clone
->cmd_flags
& REQ_WRITE_SAME
) &&
993 !clone
->q
->limits
.max_write_same_sectors
))
994 disable_write_same(tio
->md
);
997 /* The target wants to complete the I/O */
998 dm_end_request(clone
, r
);
999 else if (r
== DM_ENDIO_INCOMPLETE
)
1000 /* The target will handle the I/O */
1002 else if (r
== DM_ENDIO_REQUEUE
)
1003 /* The target wants to requeue the I/O */
1004 dm_requeue_unmapped_request(clone
);
1006 DMWARN("unimplemented target endio return value: %d", r
);
1012 * Request completion handler for request-based dm
1014 static void dm_softirq_done(struct request
*rq
)
1017 struct request
*clone
= rq
->completion_data
;
1018 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1020 if (rq
->cmd_flags
& REQ_FAILED
)
1023 dm_done(clone
, tio
->error
, mapped
);
1027 * Complete the clone and the original request with the error status
1028 * through softirq context.
1030 static void dm_complete_request(struct request
*clone
, int error
)
1032 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1033 struct request
*rq
= tio
->orig
;
1036 rq
->completion_data
= clone
;
1037 blk_complete_request(rq
);
1041 * Complete the not-mapped clone and the original request with the error status
1042 * through softirq context.
1043 * Target's rq_end_io() function isn't called.
1044 * This may be used when the target's map_rq() function fails.
1046 void dm_kill_unmapped_request(struct request
*clone
, int error
)
1048 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1049 struct request
*rq
= tio
->orig
;
1051 rq
->cmd_flags
|= REQ_FAILED
;
1052 dm_complete_request(clone
, error
);
1054 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request
);
1057 * Called with the queue lock held
1059 static void end_clone_request(struct request
*clone
, int error
)
1062 * For just cleaning up the information of the queue in which
1063 * the clone was dispatched.
1064 * The clone is *NOT* freed actually here because it is alloced from
1065 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1067 __blk_put_request(clone
->q
, clone
);
1070 * Actual request completion is done in a softirq context which doesn't
1071 * hold the queue lock. Otherwise, deadlock could occur because:
1072 * - another request may be submitted by the upper level driver
1073 * of the stacking during the completion
1074 * - the submission which requires queue lock may be done
1075 * against this queue
1077 dm_complete_request(clone
, error
);
1081 * Return maximum size of I/O possible at the supplied sector up to the current
1084 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
1086 sector_t target_offset
= dm_target_offset(ti
, sector
);
1088 return ti
->len
- target_offset
;
1091 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
1093 sector_t len
= max_io_len_target_boundary(sector
, ti
);
1094 sector_t offset
, max_len
;
1097 * Does the target need to split even further?
1099 if (ti
->max_io_len
) {
1100 offset
= dm_target_offset(ti
, sector
);
1101 if (unlikely(ti
->max_io_len
& (ti
->max_io_len
- 1)))
1102 max_len
= sector_div(offset
, ti
->max_io_len
);
1104 max_len
= offset
& (ti
->max_io_len
- 1);
1105 max_len
= ti
->max_io_len
- max_len
;
1114 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
1116 if (len
> UINT_MAX
) {
1117 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1118 (unsigned long long)len
, UINT_MAX
);
1119 ti
->error
= "Maximum size of target IO is too large";
1123 ti
->max_io_len
= (uint32_t) len
;
1127 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
1130 * A target may call dm_accept_partial_bio only from the map routine. It is
1131 * allowed for all bio types except REQ_FLUSH.
1133 * dm_accept_partial_bio informs the dm that the target only wants to process
1134 * additional n_sectors sectors of the bio and the rest of the data should be
1135 * sent in a next bio.
1137 * A diagram that explains the arithmetics:
1138 * +--------------------+---------------+-------+
1140 * +--------------------+---------------+-------+
1142 * <-------------- *tio->len_ptr --------------->
1143 * <------- bi_size ------->
1146 * Region 1 was already iterated over with bio_advance or similar function.
1147 * (it may be empty if the target doesn't use bio_advance)
1148 * Region 2 is the remaining bio size that the target wants to process.
1149 * (it may be empty if region 1 is non-empty, although there is no reason
1151 * The target requires that region 3 is to be sent in the next bio.
1153 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1154 * the partially processed part (the sum of regions 1+2) must be the same for all
1155 * copies of the bio.
1157 void dm_accept_partial_bio(struct bio
*bio
, unsigned n_sectors
)
1159 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1160 unsigned bi_size
= bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
;
1161 BUG_ON(bio
->bi_rw
& REQ_FLUSH
);
1162 BUG_ON(bi_size
> *tio
->len_ptr
);
1163 BUG_ON(n_sectors
> bi_size
);
1164 *tio
->len_ptr
-= bi_size
- n_sectors
;
1165 bio
->bi_iter
.bi_size
= n_sectors
<< SECTOR_SHIFT
;
1167 EXPORT_SYMBOL_GPL(dm_accept_partial_bio
);
1169 static void __map_bio(struct dm_target_io
*tio
)
1173 struct mapped_device
*md
;
1174 struct bio
*clone
= &tio
->clone
;
1175 struct dm_target
*ti
= tio
->ti
;
1177 clone
->bi_end_io
= clone_endio
;
1180 * Map the clone. If r == 0 we don't need to do
1181 * anything, the target has assumed ownership of
1184 atomic_inc(&tio
->io
->io_count
);
1185 sector
= clone
->bi_iter
.bi_sector
;
1186 r
= ti
->type
->map(ti
, clone
);
1187 if (r
== DM_MAPIO_REMAPPED
) {
1188 /* the bio has been remapped so dispatch it */
1190 trace_block_bio_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
1191 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
1193 generic_make_request(clone
);
1194 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
1195 /* error the io and bail out, or requeue it if needed */
1197 dec_pending(tio
->io
, r
);
1200 DMWARN("unimplemented target map return value: %d", r
);
1206 struct mapped_device
*md
;
1207 struct dm_table
*map
;
1211 unsigned sector_count
;
1214 static void bio_setup_sector(struct bio
*bio
, sector_t sector
, unsigned len
)
1216 bio
->bi_iter
.bi_sector
= sector
;
1217 bio
->bi_iter
.bi_size
= to_bytes(len
);
1221 * Creates a bio that consists of range of complete bvecs.
1223 static void clone_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1224 sector_t sector
, unsigned len
)
1226 struct bio
*clone
= &tio
->clone
;
1228 __bio_clone_fast(clone
, bio
);
1230 if (bio_integrity(bio
))
1231 bio_integrity_clone(clone
, bio
, GFP_NOIO
);
1233 bio_advance(clone
, to_bytes(sector
- clone
->bi_iter
.bi_sector
));
1234 clone
->bi_iter
.bi_size
= to_bytes(len
);
1236 if (bio_integrity(bio
))
1237 bio_integrity_trim(clone
, 0, len
);
1240 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1241 struct dm_target
*ti
, int nr_iovecs
,
1242 unsigned target_bio_nr
)
1244 struct dm_target_io
*tio
;
1247 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, ci
->md
->bs
);
1248 tio
= container_of(clone
, struct dm_target_io
, clone
);
1252 tio
->target_bio_nr
= target_bio_nr
;
1257 static void __clone_and_map_simple_bio(struct clone_info
*ci
,
1258 struct dm_target
*ti
,
1259 unsigned target_bio_nr
, unsigned *len
)
1261 struct dm_target_io
*tio
= alloc_tio(ci
, ti
, ci
->bio
->bi_max_vecs
, target_bio_nr
);
1262 struct bio
*clone
= &tio
->clone
;
1267 * Discard requests require the bio's inline iovecs be initialized.
1268 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1269 * and discard, so no need for concern about wasted bvec allocations.
1271 __bio_clone_fast(clone
, ci
->bio
);
1273 bio_setup_sector(clone
, ci
->sector
, *len
);
1278 static void __send_duplicate_bios(struct clone_info
*ci
, struct dm_target
*ti
,
1279 unsigned num_bios
, unsigned *len
)
1281 unsigned target_bio_nr
;
1283 for (target_bio_nr
= 0; target_bio_nr
< num_bios
; target_bio_nr
++)
1284 __clone_and_map_simple_bio(ci
, ti
, target_bio_nr
, len
);
1287 static int __send_empty_flush(struct clone_info
*ci
)
1289 unsigned target_nr
= 0;
1290 struct dm_target
*ti
;
1292 BUG_ON(bio_has_data(ci
->bio
));
1293 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1294 __send_duplicate_bios(ci
, ti
, ti
->num_flush_bios
, NULL
);
1299 static void __clone_and_map_data_bio(struct clone_info
*ci
, struct dm_target
*ti
,
1300 sector_t sector
, unsigned *len
)
1302 struct bio
*bio
= ci
->bio
;
1303 struct dm_target_io
*tio
;
1304 unsigned target_bio_nr
;
1305 unsigned num_target_bios
= 1;
1308 * Does the target want to receive duplicate copies of the bio?
1310 if (bio_data_dir(bio
) == WRITE
&& ti
->num_write_bios
)
1311 num_target_bios
= ti
->num_write_bios(ti
, bio
);
1313 for (target_bio_nr
= 0; target_bio_nr
< num_target_bios
; target_bio_nr
++) {
1314 tio
= alloc_tio(ci
, ti
, 0, target_bio_nr
);
1316 clone_bio(tio
, bio
, sector
, *len
);
1321 typedef unsigned (*get_num_bios_fn
)(struct dm_target
*ti
);
1323 static unsigned get_num_discard_bios(struct dm_target
*ti
)
1325 return ti
->num_discard_bios
;
1328 static unsigned get_num_write_same_bios(struct dm_target
*ti
)
1330 return ti
->num_write_same_bios
;
1333 typedef bool (*is_split_required_fn
)(struct dm_target
*ti
);
1335 static bool is_split_required_for_discard(struct dm_target
*ti
)
1337 return ti
->split_discard_bios
;
1340 static int __send_changing_extent_only(struct clone_info
*ci
,
1341 get_num_bios_fn get_num_bios
,
1342 is_split_required_fn is_split_required
)
1344 struct dm_target
*ti
;
1349 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1350 if (!dm_target_is_valid(ti
))
1354 * Even though the device advertised support for this type of
1355 * request, that does not mean every target supports it, and
1356 * reconfiguration might also have changed that since the
1357 * check was performed.
1359 num_bios
= get_num_bios
? get_num_bios(ti
) : 0;
1363 if (is_split_required
&& !is_split_required(ti
))
1364 len
= min((sector_t
)ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1366 len
= min((sector_t
)ci
->sector_count
, max_io_len(ci
->sector
, ti
));
1368 __send_duplicate_bios(ci
, ti
, num_bios
, &len
);
1371 } while (ci
->sector_count
-= len
);
1376 static int __send_discard(struct clone_info
*ci
)
1378 return __send_changing_extent_only(ci
, get_num_discard_bios
,
1379 is_split_required_for_discard
);
1382 static int __send_write_same(struct clone_info
*ci
)
1384 return __send_changing_extent_only(ci
, get_num_write_same_bios
, NULL
);
1388 * Select the correct strategy for processing a non-flush bio.
1390 static int __split_and_process_non_flush(struct clone_info
*ci
)
1392 struct bio
*bio
= ci
->bio
;
1393 struct dm_target
*ti
;
1396 if (unlikely(bio
->bi_rw
& REQ_DISCARD
))
1397 return __send_discard(ci
);
1398 else if (unlikely(bio
->bi_rw
& REQ_WRITE_SAME
))
1399 return __send_write_same(ci
);
1401 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1402 if (!dm_target_is_valid(ti
))
1405 len
= min_t(sector_t
, max_io_len(ci
->sector
, ti
), ci
->sector_count
);
1407 __clone_and_map_data_bio(ci
, ti
, ci
->sector
, &len
);
1410 ci
->sector_count
-= len
;
1416 * Entry point to split a bio into clones and submit them to the targets.
1418 static void __split_and_process_bio(struct mapped_device
*md
,
1419 struct dm_table
*map
, struct bio
*bio
)
1421 struct clone_info ci
;
1424 if (unlikely(!map
)) {
1431 ci
.io
= alloc_io(md
);
1433 atomic_set(&ci
.io
->io_count
, 1);
1436 spin_lock_init(&ci
.io
->endio_lock
);
1437 ci
.sector
= bio
->bi_iter
.bi_sector
;
1439 start_io_acct(ci
.io
);
1441 if (bio
->bi_rw
& REQ_FLUSH
) {
1442 ci
.bio
= &ci
.md
->flush_bio
;
1443 ci
.sector_count
= 0;
1444 error
= __send_empty_flush(&ci
);
1445 /* dec_pending submits any data associated with flush */
1448 ci
.sector_count
= bio_sectors(bio
);
1449 while (ci
.sector_count
&& !error
)
1450 error
= __split_and_process_non_flush(&ci
);
1453 /* drop the extra reference count */
1454 dec_pending(ci
.io
, error
);
1456 /*-----------------------------------------------------------------
1458 *---------------------------------------------------------------*/
1460 static int dm_merge_bvec(struct request_queue
*q
,
1461 struct bvec_merge_data
*bvm
,
1462 struct bio_vec
*biovec
)
1464 struct mapped_device
*md
= q
->queuedata
;
1465 struct dm_table
*map
= dm_get_live_table_fast(md
);
1466 struct dm_target
*ti
;
1467 sector_t max_sectors
;
1473 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
1474 if (!dm_target_is_valid(ti
))
1478 * Find maximum amount of I/O that won't need splitting
1480 max_sectors
= min(max_io_len(bvm
->bi_sector
, ti
),
1481 (sector_t
) BIO_MAX_SECTORS
);
1482 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
1487 * merge_bvec_fn() returns number of bytes
1488 * it can accept at this offset
1489 * max is precomputed maximal io size
1491 if (max_size
&& ti
->type
->merge
)
1492 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
1494 * If the target doesn't support merge method and some of the devices
1495 * provided their merge_bvec method (we know this by looking at
1496 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1497 * entries. So always set max_size to 0, and the code below allows
1500 else if (queue_max_hw_sectors(q
) <= PAGE_SIZE
>> 9)
1504 dm_put_live_table_fast(md
);
1506 * Always allow an entire first page
1508 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
1509 max_size
= biovec
->bv_len
;
1515 * The request function that just remaps the bio built up by
1518 static void _dm_request(struct request_queue
*q
, struct bio
*bio
)
1520 int rw
= bio_data_dir(bio
);
1521 struct mapped_device
*md
= q
->queuedata
;
1524 struct dm_table
*map
;
1526 map
= dm_get_live_table(md
, &srcu_idx
);
1528 cpu
= part_stat_lock();
1529 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
1530 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
1533 /* if we're suspended, we have to queue this io for later */
1534 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1535 dm_put_live_table(md
, srcu_idx
);
1537 if (bio_rw(bio
) != READA
)
1544 __split_and_process_bio(md
, map
, bio
);
1545 dm_put_live_table(md
, srcu_idx
);
1549 int dm_request_based(struct mapped_device
*md
)
1551 return blk_queue_stackable(md
->queue
);
1554 static void dm_request(struct request_queue
*q
, struct bio
*bio
)
1556 struct mapped_device
*md
= q
->queuedata
;
1558 if (dm_request_based(md
))
1559 blk_queue_bio(q
, bio
);
1561 _dm_request(q
, bio
);
1564 void dm_dispatch_request(struct request
*rq
)
1568 if (blk_queue_io_stat(rq
->q
))
1569 rq
->cmd_flags
|= REQ_IO_STAT
;
1571 rq
->start_time
= jiffies
;
1572 r
= blk_insert_cloned_request(rq
->q
, rq
);
1574 dm_complete_request(rq
, r
);
1576 EXPORT_SYMBOL_GPL(dm_dispatch_request
);
1578 static int dm_rq_bio_constructor(struct bio
*bio
, struct bio
*bio_orig
,
1581 struct dm_rq_target_io
*tio
= data
;
1582 struct dm_rq_clone_bio_info
*info
=
1583 container_of(bio
, struct dm_rq_clone_bio_info
, clone
);
1585 info
->orig
= bio_orig
;
1587 bio
->bi_end_io
= end_clone_bio
;
1592 static int setup_clone(struct request
*clone
, struct request
*rq
,
1593 struct dm_rq_target_io
*tio
)
1597 r
= blk_rq_prep_clone(clone
, rq
, tio
->md
->bs
, GFP_ATOMIC
,
1598 dm_rq_bio_constructor
, tio
);
1602 clone
->cmd
= rq
->cmd
;
1603 clone
->cmd_len
= rq
->cmd_len
;
1604 clone
->sense
= rq
->sense
;
1605 clone
->end_io
= end_clone_request
;
1606 clone
->end_io_data
= tio
;
1611 static struct request
*clone_rq(struct request
*rq
, struct mapped_device
*md
,
1614 struct request
*clone
;
1615 struct dm_rq_target_io
*tio
;
1617 tio
= alloc_rq_tio(md
, gfp_mask
);
1625 memset(&tio
->info
, 0, sizeof(tio
->info
));
1627 clone
= &tio
->clone
;
1628 if (setup_clone(clone
, rq
, tio
)) {
1638 * Called with the queue lock held.
1640 static int dm_prep_fn(struct request_queue
*q
, struct request
*rq
)
1642 struct mapped_device
*md
= q
->queuedata
;
1643 struct request
*clone
;
1645 if (unlikely(rq
->special
)) {
1646 DMWARN("Already has something in rq->special.");
1647 return BLKPREP_KILL
;
1650 clone
= clone_rq(rq
, md
, GFP_ATOMIC
);
1652 return BLKPREP_DEFER
;
1654 rq
->special
= clone
;
1655 rq
->cmd_flags
|= REQ_DONTPREP
;
1662 * 0 : the request has been processed (not requeued)
1663 * !0 : the request has been requeued
1665 static int map_request(struct dm_target
*ti
, struct request
*clone
,
1666 struct mapped_device
*md
)
1668 int r
, requeued
= 0;
1669 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1672 r
= ti
->type
->map_rq(ti
, clone
, &tio
->info
);
1674 case DM_MAPIO_SUBMITTED
:
1675 /* The target has taken the I/O to submit by itself later */
1677 case DM_MAPIO_REMAPPED
:
1678 /* The target has remapped the I/O so dispatch it */
1679 trace_block_rq_remap(clone
->q
, clone
, disk_devt(dm_disk(md
)),
1680 blk_rq_pos(tio
->orig
));
1681 dm_dispatch_request(clone
);
1683 case DM_MAPIO_REQUEUE
:
1684 /* The target wants to requeue the I/O */
1685 dm_requeue_unmapped_request(clone
);
1690 DMWARN("unimplemented target map return value: %d", r
);
1694 /* The target wants to complete the I/O */
1695 dm_kill_unmapped_request(clone
, r
);
1702 static struct request
*dm_start_request(struct mapped_device
*md
, struct request
*orig
)
1704 struct request
*clone
;
1706 blk_start_request(orig
);
1707 clone
= orig
->special
;
1708 atomic_inc(&md
->pending
[rq_data_dir(clone
)]);
1711 * Hold the md reference here for the in-flight I/O.
1712 * We can't rely on the reference count by device opener,
1713 * because the device may be closed during the request completion
1714 * when all bios are completed.
1715 * See the comment in rq_completed() too.
1723 * q->request_fn for request-based dm.
1724 * Called with the queue lock held.
1726 static void dm_request_fn(struct request_queue
*q
)
1728 struct mapped_device
*md
= q
->queuedata
;
1730 struct dm_table
*map
= dm_get_live_table(md
, &srcu_idx
);
1731 struct dm_target
*ti
;
1732 struct request
*rq
, *clone
;
1736 * For suspend, check blk_queue_stopped() and increment
1737 * ->pending within a single queue_lock not to increment the
1738 * number of in-flight I/Os after the queue is stopped in
1741 while (!blk_queue_stopped(q
)) {
1742 rq
= blk_peek_request(q
);
1746 /* always use block 0 to find the target for flushes for now */
1748 if (!(rq
->cmd_flags
& REQ_FLUSH
))
1749 pos
= blk_rq_pos(rq
);
1751 ti
= dm_table_find_target(map
, pos
);
1752 if (!dm_target_is_valid(ti
)) {
1754 * Must perform setup, that dm_done() requires,
1755 * before calling dm_kill_unmapped_request
1757 DMERR_LIMIT("request attempted access beyond the end of device");
1758 clone
= dm_start_request(md
, rq
);
1759 dm_kill_unmapped_request(clone
, -EIO
);
1763 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
1766 clone
= dm_start_request(md
, rq
);
1768 spin_unlock(q
->queue_lock
);
1769 if (map_request(ti
, clone
, md
))
1772 BUG_ON(!irqs_disabled());
1773 spin_lock(q
->queue_lock
);
1779 BUG_ON(!irqs_disabled());
1780 spin_lock(q
->queue_lock
);
1783 blk_delay_queue(q
, HZ
/ 10);
1785 dm_put_live_table(md
, srcu_idx
);
1788 int dm_underlying_device_busy(struct request_queue
*q
)
1790 return blk_lld_busy(q
);
1792 EXPORT_SYMBOL_GPL(dm_underlying_device_busy
);
1794 static int dm_lld_busy(struct request_queue
*q
)
1797 struct mapped_device
*md
= q
->queuedata
;
1798 struct dm_table
*map
= dm_get_live_table_fast(md
);
1800 if (!map
|| test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))
1803 r
= dm_table_any_busy_target(map
);
1805 dm_put_live_table_fast(md
);
1810 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1813 struct mapped_device
*md
= congested_data
;
1814 struct dm_table
*map
;
1816 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1817 map
= dm_get_live_table_fast(md
);
1820 * Request-based dm cares about only own queue for
1821 * the query about congestion status of request_queue
1823 if (dm_request_based(md
))
1824 r
= md
->queue
->backing_dev_info
.state
&
1827 r
= dm_table_any_congested(map
, bdi_bits
);
1829 dm_put_live_table_fast(md
);
1835 /*-----------------------------------------------------------------
1836 * An IDR is used to keep track of allocated minor numbers.
1837 *---------------------------------------------------------------*/
1838 static void free_minor(int minor
)
1840 spin_lock(&_minor_lock
);
1841 idr_remove(&_minor_idr
, minor
);
1842 spin_unlock(&_minor_lock
);
1846 * See if the device with a specific minor # is free.
1848 static int specific_minor(int minor
)
1852 if (minor
>= (1 << MINORBITS
))
1855 idr_preload(GFP_KERNEL
);
1856 spin_lock(&_minor_lock
);
1858 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, minor
, minor
+ 1, GFP_NOWAIT
);
1860 spin_unlock(&_minor_lock
);
1863 return r
== -ENOSPC
? -EBUSY
: r
;
1867 static int next_free_minor(int *minor
)
1871 idr_preload(GFP_KERNEL
);
1872 spin_lock(&_minor_lock
);
1874 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, 0, 1 << MINORBITS
, GFP_NOWAIT
);
1876 spin_unlock(&_minor_lock
);
1884 static const struct block_device_operations dm_blk_dops
;
1886 static void dm_wq_work(struct work_struct
*work
);
1888 static void dm_init_md_queue(struct mapped_device
*md
)
1891 * Request-based dm devices cannot be stacked on top of bio-based dm
1892 * devices. The type of this dm device has not been decided yet.
1893 * The type is decided at the first table loading time.
1894 * To prevent problematic device stacking, clear the queue flag
1895 * for request stacking support until then.
1897 * This queue is new, so no concurrency on the queue_flags.
1899 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
1901 md
->queue
->queuedata
= md
;
1902 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1903 md
->queue
->backing_dev_info
.congested_data
= md
;
1904 blk_queue_make_request(md
->queue
, dm_request
);
1905 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1906 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1910 * Allocate and initialise a blank device with a given minor.
1912 static struct mapped_device
*alloc_dev(int minor
)
1915 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1919 DMWARN("unable to allocate device, out of memory.");
1923 if (!try_module_get(THIS_MODULE
))
1924 goto bad_module_get
;
1926 /* get a minor number for the dev */
1927 if (minor
== DM_ANY_MINOR
)
1928 r
= next_free_minor(&minor
);
1930 r
= specific_minor(minor
);
1934 r
= init_srcu_struct(&md
->io_barrier
);
1936 goto bad_io_barrier
;
1938 md
->type
= DM_TYPE_NONE
;
1939 mutex_init(&md
->suspend_lock
);
1940 mutex_init(&md
->type_lock
);
1941 spin_lock_init(&md
->deferred_lock
);
1942 atomic_set(&md
->holders
, 1);
1943 atomic_set(&md
->open_count
, 0);
1944 atomic_set(&md
->event_nr
, 0);
1945 atomic_set(&md
->uevent_seq
, 0);
1946 INIT_LIST_HEAD(&md
->uevent_list
);
1947 spin_lock_init(&md
->uevent_lock
);
1949 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
1953 dm_init_md_queue(md
);
1955 md
->disk
= alloc_disk(1);
1959 atomic_set(&md
->pending
[0], 0);
1960 atomic_set(&md
->pending
[1], 0);
1961 init_waitqueue_head(&md
->wait
);
1962 INIT_WORK(&md
->work
, dm_wq_work
);
1963 init_waitqueue_head(&md
->eventq
);
1964 init_completion(&md
->kobj_holder
.completion
);
1966 md
->disk
->major
= _major
;
1967 md
->disk
->first_minor
= minor
;
1968 md
->disk
->fops
= &dm_blk_dops
;
1969 md
->disk
->queue
= md
->queue
;
1970 md
->disk
->private_data
= md
;
1971 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1973 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1975 md
->wq
= alloc_workqueue("kdmflush", WQ_MEM_RECLAIM
, 0);
1979 md
->bdev
= bdget_disk(md
->disk
, 0);
1983 bio_init(&md
->flush_bio
);
1984 md
->flush_bio
.bi_bdev
= md
->bdev
;
1985 md
->flush_bio
.bi_rw
= WRITE_FLUSH
;
1987 dm_stats_init(&md
->stats
);
1989 /* Populate the mapping, nobody knows we exist yet */
1990 spin_lock(&_minor_lock
);
1991 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1992 spin_unlock(&_minor_lock
);
1994 BUG_ON(old_md
!= MINOR_ALLOCED
);
1999 destroy_workqueue(md
->wq
);
2001 del_gendisk(md
->disk
);
2004 blk_cleanup_queue(md
->queue
);
2006 cleanup_srcu_struct(&md
->io_barrier
);
2010 module_put(THIS_MODULE
);
2016 static void unlock_fs(struct mapped_device
*md
);
2018 static void free_dev(struct mapped_device
*md
)
2020 int minor
= MINOR(disk_devt(md
->disk
));
2024 destroy_workqueue(md
->wq
);
2026 mempool_destroy(md
->io_pool
);
2028 bioset_free(md
->bs
);
2029 blk_integrity_unregister(md
->disk
);
2030 del_gendisk(md
->disk
);
2031 cleanup_srcu_struct(&md
->io_barrier
);
2034 spin_lock(&_minor_lock
);
2035 md
->disk
->private_data
= NULL
;
2036 spin_unlock(&_minor_lock
);
2039 blk_cleanup_queue(md
->queue
);
2040 dm_stats_cleanup(&md
->stats
);
2041 module_put(THIS_MODULE
);
2045 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
2047 struct dm_md_mempools
*p
= dm_table_get_md_mempools(t
);
2049 if (md
->io_pool
&& md
->bs
) {
2050 /* The md already has necessary mempools. */
2051 if (dm_table_get_type(t
) == DM_TYPE_BIO_BASED
) {
2053 * Reload bioset because front_pad may have changed
2054 * because a different table was loaded.
2056 bioset_free(md
->bs
);
2059 } else if (dm_table_get_type(t
) == DM_TYPE_REQUEST_BASED
) {
2061 * There's no need to reload with request-based dm
2062 * because the size of front_pad doesn't change.
2063 * Note for future: If you are to reload bioset,
2064 * prep-ed requests in the queue may refer
2065 * to bio from the old bioset, so you must walk
2066 * through the queue to unprep.
2072 BUG_ON(!p
|| md
->io_pool
|| md
->bs
);
2074 md
->io_pool
= p
->io_pool
;
2080 /* mempool bind completed, now no need any mempools in the table */
2081 dm_table_free_md_mempools(t
);
2085 * Bind a table to the device.
2087 static void event_callback(void *context
)
2089 unsigned long flags
;
2091 struct mapped_device
*md
= (struct mapped_device
*) context
;
2093 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2094 list_splice_init(&md
->uevent_list
, &uevents
);
2095 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2097 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
2099 atomic_inc(&md
->event_nr
);
2100 wake_up(&md
->eventq
);
2104 * Protected by md->suspend_lock obtained by dm_swap_table().
2106 static void __set_size(struct mapped_device
*md
, sector_t size
)
2108 set_capacity(md
->disk
, size
);
2110 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2114 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2116 * If this function returns 0, then the device is either a non-dm
2117 * device without a merge_bvec_fn, or it is a dm device that is
2118 * able to split any bios it receives that are too big.
2120 int dm_queue_merge_is_compulsory(struct request_queue
*q
)
2122 struct mapped_device
*dev_md
;
2124 if (!q
->merge_bvec_fn
)
2127 if (q
->make_request_fn
== dm_request
) {
2128 dev_md
= q
->queuedata
;
2129 if (test_bit(DMF_MERGE_IS_OPTIONAL
, &dev_md
->flags
))
2136 static int dm_device_merge_is_compulsory(struct dm_target
*ti
,
2137 struct dm_dev
*dev
, sector_t start
,
2138 sector_t len
, void *data
)
2140 struct block_device
*bdev
= dev
->bdev
;
2141 struct request_queue
*q
= bdev_get_queue(bdev
);
2143 return dm_queue_merge_is_compulsory(q
);
2147 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2148 * on the properties of the underlying devices.
2150 static int dm_table_merge_is_optional(struct dm_table
*table
)
2153 struct dm_target
*ti
;
2155 while (i
< dm_table_get_num_targets(table
)) {
2156 ti
= dm_table_get_target(table
, i
++);
2158 if (ti
->type
->iterate_devices
&&
2159 ti
->type
->iterate_devices(ti
, dm_device_merge_is_compulsory
, NULL
))
2167 * Returns old map, which caller must destroy.
2169 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2170 struct queue_limits
*limits
)
2172 struct dm_table
*old_map
;
2173 struct request_queue
*q
= md
->queue
;
2175 int merge_is_optional
;
2177 size
= dm_table_get_size(t
);
2180 * Wipe any geometry if the size of the table changed.
2182 if (size
!= dm_get_size(md
))
2183 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2185 __set_size(md
, size
);
2187 dm_table_event_callback(t
, event_callback
, md
);
2190 * The queue hasn't been stopped yet, if the old table type wasn't
2191 * for request-based during suspension. So stop it to prevent
2192 * I/O mapping before resume.
2193 * This must be done before setting the queue restrictions,
2194 * because request-based dm may be run just after the setting.
2196 if (dm_table_request_based(t
) && !blk_queue_stopped(q
))
2199 __bind_mempools(md
, t
);
2201 merge_is_optional
= dm_table_merge_is_optional(t
);
2204 rcu_assign_pointer(md
->map
, t
);
2205 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2207 dm_table_set_restrictions(t
, q
, limits
);
2208 if (merge_is_optional
)
2209 set_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2211 clear_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2218 * Returns unbound table for the caller to free.
2220 static struct dm_table
*__unbind(struct mapped_device
*md
)
2222 struct dm_table
*map
= md
->map
;
2227 dm_table_event_callback(map
, NULL
, NULL
);
2228 RCU_INIT_POINTER(md
->map
, NULL
);
2235 * Constructor for a new device.
2237 int dm_create(int minor
, struct mapped_device
**result
)
2239 struct mapped_device
*md
;
2241 md
= alloc_dev(minor
);
2252 * Functions to manage md->type.
2253 * All are required to hold md->type_lock.
2255 void dm_lock_md_type(struct mapped_device
*md
)
2257 mutex_lock(&md
->type_lock
);
2260 void dm_unlock_md_type(struct mapped_device
*md
)
2262 mutex_unlock(&md
->type_lock
);
2265 void dm_set_md_type(struct mapped_device
*md
, unsigned type
)
2267 BUG_ON(!mutex_is_locked(&md
->type_lock
));
2271 unsigned dm_get_md_type(struct mapped_device
*md
)
2273 BUG_ON(!mutex_is_locked(&md
->type_lock
));
2277 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2279 return md
->immutable_target_type
;
2283 * The queue_limits are only valid as long as you have a reference
2286 struct queue_limits
*dm_get_queue_limits(struct mapped_device
*md
)
2288 BUG_ON(!atomic_read(&md
->holders
));
2289 return &md
->queue
->limits
;
2291 EXPORT_SYMBOL_GPL(dm_get_queue_limits
);
2294 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2296 static int dm_init_request_based_queue(struct mapped_device
*md
)
2298 struct request_queue
*q
= NULL
;
2300 if (md
->queue
->elevator
)
2303 /* Fully initialize the queue */
2304 q
= blk_init_allocated_queue(md
->queue
, dm_request_fn
, NULL
);
2309 dm_init_md_queue(md
);
2310 blk_queue_softirq_done(md
->queue
, dm_softirq_done
);
2311 blk_queue_prep_rq(md
->queue
, dm_prep_fn
);
2312 blk_queue_lld_busy(md
->queue
, dm_lld_busy
);
2314 elv_register_queue(md
->queue
);
2320 * Setup the DM device's queue based on md's type
2322 int dm_setup_md_queue(struct mapped_device
*md
)
2324 if ((dm_get_md_type(md
) == DM_TYPE_REQUEST_BASED
) &&
2325 !dm_init_request_based_queue(md
)) {
2326 DMWARN("Cannot initialize queue for request-based mapped device");
2333 static struct mapped_device
*dm_find_md(dev_t dev
)
2335 struct mapped_device
*md
;
2336 unsigned minor
= MINOR(dev
);
2338 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2341 spin_lock(&_minor_lock
);
2343 md
= idr_find(&_minor_idr
, minor
);
2344 if (md
&& (md
== MINOR_ALLOCED
||
2345 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2346 dm_deleting_md(md
) ||
2347 test_bit(DMF_FREEING
, &md
->flags
))) {
2353 spin_unlock(&_minor_lock
);
2358 struct mapped_device
*dm_get_md(dev_t dev
)
2360 struct mapped_device
*md
= dm_find_md(dev
);
2367 EXPORT_SYMBOL_GPL(dm_get_md
);
2369 void *dm_get_mdptr(struct mapped_device
*md
)
2371 return md
->interface_ptr
;
2374 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2376 md
->interface_ptr
= ptr
;
2379 void dm_get(struct mapped_device
*md
)
2381 atomic_inc(&md
->holders
);
2382 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2385 const char *dm_device_name(struct mapped_device
*md
)
2389 EXPORT_SYMBOL_GPL(dm_device_name
);
2391 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2393 struct dm_table
*map
;
2398 spin_lock(&_minor_lock
);
2399 map
= dm_get_live_table(md
, &srcu_idx
);
2400 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2401 set_bit(DMF_FREEING
, &md
->flags
);
2402 spin_unlock(&_minor_lock
);
2404 if (!dm_suspended_md(md
)) {
2405 dm_table_presuspend_targets(map
);
2406 dm_table_postsuspend_targets(map
);
2409 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2410 dm_put_live_table(md
, srcu_idx
);
2413 * Rare, but there may be I/O requests still going to complete,
2414 * for example. Wait for all references to disappear.
2415 * No one should increment the reference count of the mapped_device,
2416 * after the mapped_device state becomes DMF_FREEING.
2419 while (atomic_read(&md
->holders
))
2421 else if (atomic_read(&md
->holders
))
2422 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2423 dm_device_name(md
), atomic_read(&md
->holders
));
2426 dm_table_destroy(__unbind(md
));
2430 void dm_destroy(struct mapped_device
*md
)
2432 __dm_destroy(md
, true);
2435 void dm_destroy_immediate(struct mapped_device
*md
)
2437 __dm_destroy(md
, false);
2440 void dm_put(struct mapped_device
*md
)
2442 atomic_dec(&md
->holders
);
2444 EXPORT_SYMBOL_GPL(dm_put
);
2446 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
2449 DECLARE_WAITQUEUE(wait
, current
);
2451 add_wait_queue(&md
->wait
, &wait
);
2454 set_current_state(interruptible
);
2456 if (!md_in_flight(md
))
2459 if (interruptible
== TASK_INTERRUPTIBLE
&&
2460 signal_pending(current
)) {
2467 set_current_state(TASK_RUNNING
);
2469 remove_wait_queue(&md
->wait
, &wait
);
2475 * Process the deferred bios
2477 static void dm_wq_work(struct work_struct
*work
)
2479 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2483 struct dm_table
*map
;
2485 map
= dm_get_live_table(md
, &srcu_idx
);
2487 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2488 spin_lock_irq(&md
->deferred_lock
);
2489 c
= bio_list_pop(&md
->deferred
);
2490 spin_unlock_irq(&md
->deferred_lock
);
2495 if (dm_request_based(md
))
2496 generic_make_request(c
);
2498 __split_and_process_bio(md
, map
, c
);
2501 dm_put_live_table(md
, srcu_idx
);
2504 static void dm_queue_flush(struct mapped_device
*md
)
2506 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2507 smp_mb__after_atomic();
2508 queue_work(md
->wq
, &md
->work
);
2512 * Swap in a new table, returning the old one for the caller to destroy.
2514 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2516 struct dm_table
*live_map
= NULL
, *map
= ERR_PTR(-EINVAL
);
2517 struct queue_limits limits
;
2520 mutex_lock(&md
->suspend_lock
);
2522 /* device must be suspended */
2523 if (!dm_suspended_md(md
))
2527 * If the new table has no data devices, retain the existing limits.
2528 * This helps multipath with queue_if_no_path if all paths disappear,
2529 * then new I/O is queued based on these limits, and then some paths
2532 if (dm_table_has_no_data_devices(table
)) {
2533 live_map
= dm_get_live_table_fast(md
);
2535 limits
= md
->queue
->limits
;
2536 dm_put_live_table_fast(md
);
2540 r
= dm_calculate_queue_limits(table
, &limits
);
2547 map
= __bind(md
, table
, &limits
);
2550 mutex_unlock(&md
->suspend_lock
);
2555 * Functions to lock and unlock any filesystem running on the
2558 static int lock_fs(struct mapped_device
*md
)
2562 WARN_ON(md
->frozen_sb
);
2564 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2565 if (IS_ERR(md
->frozen_sb
)) {
2566 r
= PTR_ERR(md
->frozen_sb
);
2567 md
->frozen_sb
= NULL
;
2571 set_bit(DMF_FROZEN
, &md
->flags
);
2576 static void unlock_fs(struct mapped_device
*md
)
2578 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2581 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2582 md
->frozen_sb
= NULL
;
2583 clear_bit(DMF_FROZEN
, &md
->flags
);
2587 * We need to be able to change a mapping table under a mounted
2588 * filesystem. For example we might want to move some data in
2589 * the background. Before the table can be swapped with
2590 * dm_bind_table, dm_suspend must be called to flush any in
2591 * flight bios and ensure that any further io gets deferred.
2594 * Suspend mechanism in request-based dm.
2596 * 1. Flush all I/Os by lock_fs() if needed.
2597 * 2. Stop dispatching any I/O by stopping the request_queue.
2598 * 3. Wait for all in-flight I/Os to be completed or requeued.
2600 * To abort suspend, start the request_queue.
2602 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2604 struct dm_table
*map
= NULL
;
2606 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
2607 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
2609 mutex_lock(&md
->suspend_lock
);
2611 if (dm_suspended_md(md
)) {
2619 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2620 * This flag is cleared before dm_suspend returns.
2623 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2625 /* This does not get reverted if there's an error later. */
2626 dm_table_presuspend_targets(map
);
2629 * Flush I/O to the device.
2630 * Any I/O submitted after lock_fs() may not be flushed.
2631 * noflush takes precedence over do_lockfs.
2632 * (lock_fs() flushes I/Os and waits for them to complete.)
2634 if (!noflush
&& do_lockfs
) {
2641 * Here we must make sure that no processes are submitting requests
2642 * to target drivers i.e. no one may be executing
2643 * __split_and_process_bio. This is called from dm_request and
2646 * To get all processes out of __split_and_process_bio in dm_request,
2647 * we take the write lock. To prevent any process from reentering
2648 * __split_and_process_bio from dm_request and quiesce the thread
2649 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2650 * flush_workqueue(md->wq).
2652 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2653 synchronize_srcu(&md
->io_barrier
);
2656 * Stop md->queue before flushing md->wq in case request-based
2657 * dm defers requests to md->wq from md->queue.
2659 if (dm_request_based(md
))
2660 stop_queue(md
->queue
);
2662 flush_workqueue(md
->wq
);
2665 * At this point no more requests are entering target request routines.
2666 * We call dm_wait_for_completion to wait for all existing requests
2669 r
= dm_wait_for_completion(md
, TASK_INTERRUPTIBLE
);
2672 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2673 synchronize_srcu(&md
->io_barrier
);
2675 /* were we interrupted ? */
2679 if (dm_request_based(md
))
2680 start_queue(md
->queue
);
2683 goto out_unlock
; /* pushback list is already flushed, so skip flush */
2687 * If dm_wait_for_completion returned 0, the device is completely
2688 * quiescent now. There is no request-processing activity. All new
2689 * requests are being added to md->deferred list.
2692 set_bit(DMF_SUSPENDED
, &md
->flags
);
2694 dm_table_postsuspend_targets(map
);
2697 mutex_unlock(&md
->suspend_lock
);
2701 int dm_resume(struct mapped_device
*md
)
2704 struct dm_table
*map
= NULL
;
2706 mutex_lock(&md
->suspend_lock
);
2707 if (!dm_suspended_md(md
))
2711 if (!map
|| !dm_table_get_size(map
))
2714 r
= dm_table_resume_targets(map
);
2721 * Flushing deferred I/Os must be done after targets are resumed
2722 * so that mapping of targets can work correctly.
2723 * Request-based dm is queueing the deferred I/Os in its request_queue.
2725 if (dm_request_based(md
))
2726 start_queue(md
->queue
);
2730 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2734 mutex_unlock(&md
->suspend_lock
);
2740 * Internal suspend/resume works like userspace-driven suspend. It waits
2741 * until all bios finish and prevents issuing new bios to the target drivers.
2742 * It may be used only from the kernel.
2744 * Internal suspend holds md->suspend_lock, which prevents interaction with
2745 * userspace-driven suspend.
2748 void dm_internal_suspend(struct mapped_device
*md
)
2750 mutex_lock(&md
->suspend_lock
);
2751 if (dm_suspended_md(md
))
2754 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2755 synchronize_srcu(&md
->io_barrier
);
2756 flush_workqueue(md
->wq
);
2757 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2760 void dm_internal_resume(struct mapped_device
*md
)
2762 if (dm_suspended_md(md
))
2768 mutex_unlock(&md
->suspend_lock
);
2771 /*-----------------------------------------------------------------
2772 * Event notification.
2773 *---------------------------------------------------------------*/
2774 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2777 char udev_cookie
[DM_COOKIE_LENGTH
];
2778 char *envp
[] = { udev_cookie
, NULL
};
2781 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2783 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2784 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2785 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2790 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2792 return atomic_add_return(1, &md
->uevent_seq
);
2795 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2797 return atomic_read(&md
->event_nr
);
2800 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2802 return wait_event_interruptible(md
->eventq
,
2803 (event_nr
!= atomic_read(&md
->event_nr
)));
2806 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2808 unsigned long flags
;
2810 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2811 list_add(elist
, &md
->uevent_list
);
2812 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2816 * The gendisk is only valid as long as you have a reference
2819 struct gendisk
*dm_disk(struct mapped_device
*md
)
2824 struct kobject
*dm_kobject(struct mapped_device
*md
)
2826 return &md
->kobj_holder
.kobj
;
2829 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2831 struct mapped_device
*md
;
2833 md
= container_of(kobj
, struct mapped_device
, kobj_holder
.kobj
);
2835 if (test_bit(DMF_FREEING
, &md
->flags
) ||
2843 int dm_suspended_md(struct mapped_device
*md
)
2845 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2848 int dm_test_deferred_remove_flag(struct mapped_device
*md
)
2850 return test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
2853 int dm_suspended(struct dm_target
*ti
)
2855 return dm_suspended_md(dm_table_get_md(ti
->table
));
2857 EXPORT_SYMBOL_GPL(dm_suspended
);
2859 int dm_noflush_suspending(struct dm_target
*ti
)
2861 return __noflush_suspending(dm_table_get_md(ti
->table
));
2863 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2865 struct dm_md_mempools
*dm_alloc_md_mempools(unsigned type
, unsigned integrity
, unsigned per_bio_data_size
)
2867 struct dm_md_mempools
*pools
= kzalloc(sizeof(*pools
), GFP_KERNEL
);
2868 struct kmem_cache
*cachep
;
2869 unsigned int pool_size
;
2870 unsigned int front_pad
;
2875 if (type
== DM_TYPE_BIO_BASED
) {
2877 pool_size
= dm_get_reserved_bio_based_ios();
2878 front_pad
= roundup(per_bio_data_size
, __alignof__(struct dm_target_io
)) + offsetof(struct dm_target_io
, clone
);
2879 } else if (type
== DM_TYPE_REQUEST_BASED
) {
2880 cachep
= _rq_tio_cache
;
2881 pool_size
= dm_get_reserved_rq_based_ios();
2882 front_pad
= offsetof(struct dm_rq_clone_bio_info
, clone
);
2883 /* per_bio_data_size is not used. See __bind_mempools(). */
2884 WARN_ON(per_bio_data_size
!= 0);
2888 pools
->io_pool
= mempool_create_slab_pool(pool_size
, cachep
);
2889 if (!pools
->io_pool
)
2892 pools
->bs
= bioset_create(pool_size
, front_pad
);
2896 if (integrity
&& bioset_integrity_create(pools
->bs
, pool_size
))
2902 dm_free_md_mempools(pools
);
2907 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2913 mempool_destroy(pools
->io_pool
);
2916 bioset_free(pools
->bs
);
2921 static const struct block_device_operations dm_blk_dops
= {
2922 .open
= dm_blk_open
,
2923 .release
= dm_blk_close
,
2924 .ioctl
= dm_blk_ioctl
,
2925 .getgeo
= dm_blk_getgeo
,
2926 .owner
= THIS_MODULE
2932 module_init(dm_init
);
2933 module_exit(dm_exit
);
2935 module_param(major
, uint
, 0);
2936 MODULE_PARM_DESC(major
, "The major number of the device mapper");
2938 module_param(reserved_bio_based_ios
, uint
, S_IRUGO
| S_IWUSR
);
2939 MODULE_PARM_DESC(reserved_bio_based_ios
, "Reserved IOs in bio-based mempools");
2941 module_param(reserved_rq_based_ios
, uint
, S_IRUGO
| S_IWUSR
);
2942 MODULE_PARM_DESC(reserved_rq_based_ios
, "Reserved IOs in request-based mempools");
2944 MODULE_DESCRIPTION(DM_NAME
" driver");
2945 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2946 MODULE_LICENSE("GPL");