KVM: nVMX: Fix returned value of MSR_IA32_VMX_VMCS_ENUM
[linux/fpc-iii.git] / drivers / md / raid1.c
blob56e24c072b629324ec382037ab17fd43310ec3ef
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
67 static int max_queued_requests = 1024;
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
82 static void r1bio_pool_free(void *r1_bio, void *data)
84 kfree(r1_bio);
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
97 struct pool_info *pi = data;
98 struct r1bio *r1_bio;
99 struct bio *bio;
100 int need_pages;
101 int i, j;
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 if (!r1_bio)
105 return NULL;
108 * Allocate bios : 1 for reading, n-1 for writing
110 for (j = pi->raid_disks ; j-- ; ) {
111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 if (!bio)
113 goto out_free_bio;
114 r1_bio->bios[j] = bio;
117 * Allocate RESYNC_PAGES data pages and attach them to
118 * the first bio.
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 need_pages = pi->raid_disks;
124 else
125 need_pages = 1;
126 for (j = 0; j < need_pages; j++) {
127 bio = r1_bio->bios[j];
128 bio->bi_vcnt = RESYNC_PAGES;
130 if (bio_alloc_pages(bio, gfp_flags))
131 goto out_free_pages;
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 r1_bio->master_bio = NULL;
143 return r1_bio;
145 out_free_pages:
146 while (--j >= 0) {
147 struct bio_vec *bv;
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
153 out_free_bio:
154 while (++j < pi->raid_disks)
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
157 return NULL;
160 static void r1buf_pool_free(void *__r1_bio, void *data)
162 struct pool_info *pi = data;
163 int i,j;
164 struct r1bio *r1bio = __r1_bio;
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
168 if (j == 0 ||
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
176 r1bio_pool_free(r1bio, data);
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
181 int i;
183 for (i = 0; i < conf->raid_disks * 2; i++) {
184 struct bio **bio = r1_bio->bios + i;
185 if (!BIO_SPECIAL(*bio))
186 bio_put(*bio);
187 *bio = NULL;
191 static void free_r1bio(struct r1bio *r1_bio)
193 struct r1conf *conf = r1_bio->mddev->private;
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
199 static void put_buf(struct r1bio *r1_bio)
201 struct r1conf *conf = r1_bio->mddev->private;
202 int i;
204 for (i = 0; i < conf->raid_disks * 2; i++) {
205 struct bio *bio = r1_bio->bios[i];
206 if (bio->bi_end_io)
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210 mempool_free(r1_bio, conf->r1buf_pool);
212 lower_barrier(conf);
215 static void reschedule_retry(struct r1bio *r1_bio)
217 unsigned long flags;
218 struct mddev *mddev = r1_bio->mddev;
219 struct r1conf *conf = mddev->private;
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
223 conf->nr_queued ++;
224 spin_unlock_irqrestore(&conf->device_lock, flags);
226 wake_up(&conf->wait_barrier);
227 md_wakeup_thread(mddev->thread);
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
235 static void call_bio_endio(struct r1bio *r1_bio)
237 struct bio *bio = r1_bio->master_bio;
238 int done;
239 struct r1conf *conf = r1_bio->mddev->private;
240 sector_t start_next_window = r1_bio->start_next_window;
241 sector_t bi_sector = bio->bi_iter.bi_sector;
243 if (bio->bi_phys_segments) {
244 unsigned long flags;
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
253 wake_up(&conf->wait_barrier);
254 } else
255 done = 1;
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 if (done) {
260 bio_endio(bio, 0);
262 * Wake up any possible resync thread that waits for the device
263 * to go idle.
265 allow_barrier(conf, start_next_window, bi_sector);
269 static void raid_end_bio_io(struct r1bio *r1_bio)
271 struct bio *bio = r1_bio->master_bio;
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 (unsigned long long) bio->bi_iter.bi_sector,
278 (unsigned long long) bio_end_sector(bio) - 1);
280 call_bio_endio(r1_bio);
282 free_r1bio(r1_bio);
286 * Update disk head position estimator based on IRQ completion info.
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
290 struct r1conf *conf = r1_bio->mddev->private;
292 conf->mirrors[disk].head_position =
293 r1_bio->sector + (r1_bio->sectors);
297 * Find the disk number which triggered given bio
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
301 int mirror;
302 struct r1conf *conf = r1_bio->mddev->private;
303 int raid_disks = conf->raid_disks;
305 for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 if (r1_bio->bios[mirror] == bio)
307 break;
309 BUG_ON(mirror == raid_disks * 2);
310 update_head_pos(mirror, r1_bio);
312 return mirror;
315 static void raid1_end_read_request(struct bio *bio, int error)
317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 struct r1bio *r1_bio = bio->bi_private;
319 int mirror;
320 struct r1conf *conf = r1_bio->mddev->private;
322 mirror = r1_bio->read_disk;
324 * this branch is our 'one mirror IO has finished' event handler:
326 update_head_pos(mirror, r1_bio);
328 if (uptodate)
329 set_bit(R1BIO_Uptodate, &r1_bio->state);
330 else {
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
335 unsigned long flags;
336 spin_lock_irqsave(&conf->device_lock, flags);
337 if (r1_bio->mddev->degraded == conf->raid_disks ||
338 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 uptodate = 1;
341 spin_unlock_irqrestore(&conf->device_lock, flags);
344 if (uptodate) {
345 raid_end_bio_io(r1_bio);
346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 } else {
349 * oops, read error:
351 char b[BDEVNAME_SIZE];
352 printk_ratelimited(
353 KERN_ERR "md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
355 mdname(conf->mddev),
356 bdevname(conf->mirrors[mirror].rdev->bdev,
358 (unsigned long long)r1_bio->sector);
359 set_bit(R1BIO_ReadError, &r1_bio->state);
360 reschedule_retry(r1_bio);
361 /* don't drop the reference on read_disk yet */
365 static void close_write(struct r1bio *r1_bio)
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 /* free extra copy of the data pages */
370 int i = r1_bio->behind_page_count;
371 while (i--)
372 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 kfree(r1_bio->behind_bvecs);
374 r1_bio->behind_bvecs = NULL;
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 r1_bio->sectors,
379 !test_bit(R1BIO_Degraded, &r1_bio->state),
380 test_bit(R1BIO_BehindIO, &r1_bio->state));
381 md_write_end(r1_bio->mddev);
384 static void r1_bio_write_done(struct r1bio *r1_bio)
386 if (!atomic_dec_and_test(&r1_bio->remaining))
387 return;
389 if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 reschedule_retry(r1_bio);
391 else {
392 close_write(r1_bio);
393 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 reschedule_retry(r1_bio);
395 else
396 raid_end_bio_io(r1_bio);
400 static void raid1_end_write_request(struct bio *bio, int error)
402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 struct r1bio *r1_bio = bio->bi_private;
404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 struct r1conf *conf = r1_bio->mddev->private;
406 struct bio *to_put = NULL;
408 mirror = find_bio_disk(r1_bio, bio);
411 * 'one mirror IO has finished' event handler:
413 if (!uptodate) {
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
421 set_bit(R1BIO_WriteError, &r1_bio->state);
422 } else {
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
427 * fails.
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
433 sector_t first_bad;
434 int bad_sectors;
436 r1_bio->bios[mirror] = NULL;
437 to_put = bio;
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
444 * check this here.
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
459 if (behind) {
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
475 pr_debug("raid1: behind end write sectors"
476 " %llu-%llu\n",
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
479 call_bio_endio(r1_bio);
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
485 conf->mddev);
488 * Let's see if all mirrored write operations have finished
489 * already.
491 r1_bio_write_done(r1_bio);
493 if (to_put)
494 bio_put(to_put);
499 * This routine returns the disk from which the requested read should
500 * be done. There is a per-array 'next expected sequential IO' sector
501 * number - if this matches on the next IO then we use the last disk.
502 * There is also a per-disk 'last know head position' sector that is
503 * maintained from IRQ contexts, both the normal and the resync IO
504 * completion handlers update this position correctly. If there is no
505 * perfect sequential match then we pick the disk whose head is closest.
507 * If there are 2 mirrors in the same 2 devices, performance degrades
508 * because position is mirror, not device based.
510 * The rdev for the device selected will have nr_pending incremented.
512 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
514 const sector_t this_sector = r1_bio->sector;
515 int sectors;
516 int best_good_sectors;
517 int best_disk, best_dist_disk, best_pending_disk;
518 int has_nonrot_disk;
519 int disk;
520 sector_t best_dist;
521 unsigned int min_pending;
522 struct md_rdev *rdev;
523 int choose_first;
524 int choose_next_idle;
526 rcu_read_lock();
528 * Check if we can balance. We can balance on the whole
529 * device if no resync is going on, or below the resync window.
530 * We take the first readable disk when above the resync window.
532 retry:
533 sectors = r1_bio->sectors;
534 best_disk = -1;
535 best_dist_disk = -1;
536 best_dist = MaxSector;
537 best_pending_disk = -1;
538 min_pending = UINT_MAX;
539 best_good_sectors = 0;
540 has_nonrot_disk = 0;
541 choose_next_idle = 0;
543 if (conf->mddev->recovery_cp < MaxSector &&
544 (this_sector + sectors >= conf->next_resync))
545 choose_first = 1;
546 else
547 choose_first = 0;
549 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
550 sector_t dist;
551 sector_t first_bad;
552 int bad_sectors;
553 unsigned int pending;
554 bool nonrot;
556 rdev = rcu_dereference(conf->mirrors[disk].rdev);
557 if (r1_bio->bios[disk] == IO_BLOCKED
558 || rdev == NULL
559 || test_bit(Unmerged, &rdev->flags)
560 || test_bit(Faulty, &rdev->flags))
561 continue;
562 if (!test_bit(In_sync, &rdev->flags) &&
563 rdev->recovery_offset < this_sector + sectors)
564 continue;
565 if (test_bit(WriteMostly, &rdev->flags)) {
566 /* Don't balance among write-mostly, just
567 * use the first as a last resort */
568 if (best_disk < 0) {
569 if (is_badblock(rdev, this_sector, sectors,
570 &first_bad, &bad_sectors)) {
571 if (first_bad < this_sector)
572 /* Cannot use this */
573 continue;
574 best_good_sectors = first_bad - this_sector;
575 } else
576 best_good_sectors = sectors;
577 best_disk = disk;
579 continue;
581 /* This is a reasonable device to use. It might
582 * even be best.
584 if (is_badblock(rdev, this_sector, sectors,
585 &first_bad, &bad_sectors)) {
586 if (best_dist < MaxSector)
587 /* already have a better device */
588 continue;
589 if (first_bad <= this_sector) {
590 /* cannot read here. If this is the 'primary'
591 * device, then we must not read beyond
592 * bad_sectors from another device..
594 bad_sectors -= (this_sector - first_bad);
595 if (choose_first && sectors > bad_sectors)
596 sectors = bad_sectors;
597 if (best_good_sectors > sectors)
598 best_good_sectors = sectors;
600 } else {
601 sector_t good_sectors = first_bad - this_sector;
602 if (good_sectors > best_good_sectors) {
603 best_good_sectors = good_sectors;
604 best_disk = disk;
606 if (choose_first)
607 break;
609 continue;
610 } else
611 best_good_sectors = sectors;
613 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
614 has_nonrot_disk |= nonrot;
615 pending = atomic_read(&rdev->nr_pending);
616 dist = abs(this_sector - conf->mirrors[disk].head_position);
617 if (choose_first) {
618 best_disk = disk;
619 break;
621 /* Don't change to another disk for sequential reads */
622 if (conf->mirrors[disk].next_seq_sect == this_sector
623 || dist == 0) {
624 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
625 struct raid1_info *mirror = &conf->mirrors[disk];
627 best_disk = disk;
629 * If buffered sequential IO size exceeds optimal
630 * iosize, check if there is idle disk. If yes, choose
631 * the idle disk. read_balance could already choose an
632 * idle disk before noticing it's a sequential IO in
633 * this disk. This doesn't matter because this disk
634 * will idle, next time it will be utilized after the
635 * first disk has IO size exceeds optimal iosize. In
636 * this way, iosize of the first disk will be optimal
637 * iosize at least. iosize of the second disk might be
638 * small, but not a big deal since when the second disk
639 * starts IO, the first disk is likely still busy.
641 if (nonrot && opt_iosize > 0 &&
642 mirror->seq_start != MaxSector &&
643 mirror->next_seq_sect > opt_iosize &&
644 mirror->next_seq_sect - opt_iosize >=
645 mirror->seq_start) {
646 choose_next_idle = 1;
647 continue;
649 break;
651 /* If device is idle, use it */
652 if (pending == 0) {
653 best_disk = disk;
654 break;
657 if (choose_next_idle)
658 continue;
660 if (min_pending > pending) {
661 min_pending = pending;
662 best_pending_disk = disk;
665 if (dist < best_dist) {
666 best_dist = dist;
667 best_dist_disk = disk;
672 * If all disks are rotational, choose the closest disk. If any disk is
673 * non-rotational, choose the disk with less pending request even the
674 * disk is rotational, which might/might not be optimal for raids with
675 * mixed ratation/non-rotational disks depending on workload.
677 if (best_disk == -1) {
678 if (has_nonrot_disk)
679 best_disk = best_pending_disk;
680 else
681 best_disk = best_dist_disk;
684 if (best_disk >= 0) {
685 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
686 if (!rdev)
687 goto retry;
688 atomic_inc(&rdev->nr_pending);
689 if (test_bit(Faulty, &rdev->flags)) {
690 /* cannot risk returning a device that failed
691 * before we inc'ed nr_pending
693 rdev_dec_pending(rdev, conf->mddev);
694 goto retry;
696 sectors = best_good_sectors;
698 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
699 conf->mirrors[best_disk].seq_start = this_sector;
701 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
703 rcu_read_unlock();
704 *max_sectors = sectors;
706 return best_disk;
709 static int raid1_mergeable_bvec(struct request_queue *q,
710 struct bvec_merge_data *bvm,
711 struct bio_vec *biovec)
713 struct mddev *mddev = q->queuedata;
714 struct r1conf *conf = mddev->private;
715 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
716 int max = biovec->bv_len;
718 if (mddev->merge_check_needed) {
719 int disk;
720 rcu_read_lock();
721 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
722 struct md_rdev *rdev = rcu_dereference(
723 conf->mirrors[disk].rdev);
724 if (rdev && !test_bit(Faulty, &rdev->flags)) {
725 struct request_queue *q =
726 bdev_get_queue(rdev->bdev);
727 if (q->merge_bvec_fn) {
728 bvm->bi_sector = sector +
729 rdev->data_offset;
730 bvm->bi_bdev = rdev->bdev;
731 max = min(max, q->merge_bvec_fn(
732 q, bvm, biovec));
736 rcu_read_unlock();
738 return max;
742 int md_raid1_congested(struct mddev *mddev, int bits)
744 struct r1conf *conf = mddev->private;
745 int i, ret = 0;
747 if ((bits & (1 << BDI_async_congested)) &&
748 conf->pending_count >= max_queued_requests)
749 return 1;
751 rcu_read_lock();
752 for (i = 0; i < conf->raid_disks * 2; i++) {
753 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
754 if (rdev && !test_bit(Faulty, &rdev->flags)) {
755 struct request_queue *q = bdev_get_queue(rdev->bdev);
757 BUG_ON(!q);
759 /* Note the '|| 1' - when read_balance prefers
760 * non-congested targets, it can be removed
762 if ((bits & (1<<BDI_async_congested)) || 1)
763 ret |= bdi_congested(&q->backing_dev_info, bits);
764 else
765 ret &= bdi_congested(&q->backing_dev_info, bits);
768 rcu_read_unlock();
769 return ret;
771 EXPORT_SYMBOL_GPL(md_raid1_congested);
773 static int raid1_congested(void *data, int bits)
775 struct mddev *mddev = data;
777 return mddev_congested(mddev, bits) ||
778 md_raid1_congested(mddev, bits);
781 static void flush_pending_writes(struct r1conf *conf)
783 /* Any writes that have been queued but are awaiting
784 * bitmap updates get flushed here.
786 spin_lock_irq(&conf->device_lock);
788 if (conf->pending_bio_list.head) {
789 struct bio *bio;
790 bio = bio_list_get(&conf->pending_bio_list);
791 conf->pending_count = 0;
792 spin_unlock_irq(&conf->device_lock);
793 /* flush any pending bitmap writes to
794 * disk before proceeding w/ I/O */
795 bitmap_unplug(conf->mddev->bitmap);
796 wake_up(&conf->wait_barrier);
798 while (bio) { /* submit pending writes */
799 struct bio *next = bio->bi_next;
800 bio->bi_next = NULL;
801 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
802 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
803 /* Just ignore it */
804 bio_endio(bio, 0);
805 else
806 generic_make_request(bio);
807 bio = next;
809 } else
810 spin_unlock_irq(&conf->device_lock);
813 /* Barriers....
814 * Sometimes we need to suspend IO while we do something else,
815 * either some resync/recovery, or reconfigure the array.
816 * To do this we raise a 'barrier'.
817 * The 'barrier' is a counter that can be raised multiple times
818 * to count how many activities are happening which preclude
819 * normal IO.
820 * We can only raise the barrier if there is no pending IO.
821 * i.e. if nr_pending == 0.
822 * We choose only to raise the barrier if no-one is waiting for the
823 * barrier to go down. This means that as soon as an IO request
824 * is ready, no other operations which require a barrier will start
825 * until the IO request has had a chance.
827 * So: regular IO calls 'wait_barrier'. When that returns there
828 * is no backgroup IO happening, It must arrange to call
829 * allow_barrier when it has finished its IO.
830 * backgroup IO calls must call raise_barrier. Once that returns
831 * there is no normal IO happeing. It must arrange to call
832 * lower_barrier when the particular background IO completes.
834 static void raise_barrier(struct r1conf *conf)
836 spin_lock_irq(&conf->resync_lock);
838 /* Wait until no block IO is waiting */
839 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
840 conf->resync_lock);
842 /* block any new IO from starting */
843 conf->barrier++;
845 /* For these conditions we must wait:
846 * A: while the array is in frozen state
847 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
848 * the max count which allowed.
849 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
850 * next resync will reach to the window which normal bios are
851 * handling.
853 wait_event_lock_irq(conf->wait_barrier,
854 !conf->array_frozen &&
855 conf->barrier < RESYNC_DEPTH &&
856 (conf->start_next_window >=
857 conf->next_resync + RESYNC_SECTORS),
858 conf->resync_lock);
860 spin_unlock_irq(&conf->resync_lock);
863 static void lower_barrier(struct r1conf *conf)
865 unsigned long flags;
866 BUG_ON(conf->barrier <= 0);
867 spin_lock_irqsave(&conf->resync_lock, flags);
868 conf->barrier--;
869 spin_unlock_irqrestore(&conf->resync_lock, flags);
870 wake_up(&conf->wait_barrier);
873 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
875 bool wait = false;
877 if (conf->array_frozen || !bio)
878 wait = true;
879 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
880 if (conf->next_resync < RESYNC_WINDOW_SECTORS)
881 wait = true;
882 else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
883 >= bio_end_sector(bio)) ||
884 (conf->next_resync + NEXT_NORMALIO_DISTANCE
885 <= bio->bi_iter.bi_sector))
886 wait = false;
887 else
888 wait = true;
891 return wait;
894 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
896 sector_t sector = 0;
898 spin_lock_irq(&conf->resync_lock);
899 if (need_to_wait_for_sync(conf, bio)) {
900 conf->nr_waiting++;
901 /* Wait for the barrier to drop.
902 * However if there are already pending
903 * requests (preventing the barrier from
904 * rising completely), and the
905 * pre-process bio queue isn't empty,
906 * then don't wait, as we need to empty
907 * that queue to get the nr_pending
908 * count down.
910 wait_event_lock_irq(conf->wait_barrier,
911 !conf->array_frozen &&
912 (!conf->barrier ||
913 ((conf->start_next_window <
914 conf->next_resync + RESYNC_SECTORS) &&
915 current->bio_list &&
916 !bio_list_empty(current->bio_list))),
917 conf->resync_lock);
918 conf->nr_waiting--;
921 if (bio && bio_data_dir(bio) == WRITE) {
922 if (conf->next_resync + NEXT_NORMALIO_DISTANCE
923 <= bio->bi_iter.bi_sector) {
924 if (conf->start_next_window == MaxSector)
925 conf->start_next_window =
926 conf->next_resync +
927 NEXT_NORMALIO_DISTANCE;
929 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
930 <= bio->bi_iter.bi_sector)
931 conf->next_window_requests++;
932 else
933 conf->current_window_requests++;
934 sector = conf->start_next_window;
938 conf->nr_pending++;
939 spin_unlock_irq(&conf->resync_lock);
940 return sector;
943 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
944 sector_t bi_sector)
946 unsigned long flags;
948 spin_lock_irqsave(&conf->resync_lock, flags);
949 conf->nr_pending--;
950 if (start_next_window) {
951 if (start_next_window == conf->start_next_window) {
952 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
953 <= bi_sector)
954 conf->next_window_requests--;
955 else
956 conf->current_window_requests--;
957 } else
958 conf->current_window_requests--;
960 if (!conf->current_window_requests) {
961 if (conf->next_window_requests) {
962 conf->current_window_requests =
963 conf->next_window_requests;
964 conf->next_window_requests = 0;
965 conf->start_next_window +=
966 NEXT_NORMALIO_DISTANCE;
967 } else
968 conf->start_next_window = MaxSector;
971 spin_unlock_irqrestore(&conf->resync_lock, flags);
972 wake_up(&conf->wait_barrier);
975 static void freeze_array(struct r1conf *conf, int extra)
977 /* stop syncio and normal IO and wait for everything to
978 * go quite.
979 * We wait until nr_pending match nr_queued+extra
980 * This is called in the context of one normal IO request
981 * that has failed. Thus any sync request that might be pending
982 * will be blocked by nr_pending, and we need to wait for
983 * pending IO requests to complete or be queued for re-try.
984 * Thus the number queued (nr_queued) plus this request (extra)
985 * must match the number of pending IOs (nr_pending) before
986 * we continue.
988 spin_lock_irq(&conf->resync_lock);
989 conf->array_frozen = 1;
990 wait_event_lock_irq_cmd(conf->wait_barrier,
991 conf->nr_pending == conf->nr_queued+extra,
992 conf->resync_lock,
993 flush_pending_writes(conf));
994 spin_unlock_irq(&conf->resync_lock);
996 static void unfreeze_array(struct r1conf *conf)
998 /* reverse the effect of the freeze */
999 spin_lock_irq(&conf->resync_lock);
1000 conf->array_frozen = 0;
1001 wake_up(&conf->wait_barrier);
1002 spin_unlock_irq(&conf->resync_lock);
1006 /* duplicate the data pages for behind I/O
1008 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1010 int i;
1011 struct bio_vec *bvec;
1012 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1013 GFP_NOIO);
1014 if (unlikely(!bvecs))
1015 return;
1017 bio_for_each_segment_all(bvec, bio, i) {
1018 bvecs[i] = *bvec;
1019 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1020 if (unlikely(!bvecs[i].bv_page))
1021 goto do_sync_io;
1022 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1023 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1024 kunmap(bvecs[i].bv_page);
1025 kunmap(bvec->bv_page);
1027 r1_bio->behind_bvecs = bvecs;
1028 r1_bio->behind_page_count = bio->bi_vcnt;
1029 set_bit(R1BIO_BehindIO, &r1_bio->state);
1030 return;
1032 do_sync_io:
1033 for (i = 0; i < bio->bi_vcnt; i++)
1034 if (bvecs[i].bv_page)
1035 put_page(bvecs[i].bv_page);
1036 kfree(bvecs);
1037 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1038 bio->bi_iter.bi_size);
1041 struct raid1_plug_cb {
1042 struct blk_plug_cb cb;
1043 struct bio_list pending;
1044 int pending_cnt;
1047 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1049 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1050 cb);
1051 struct mddev *mddev = plug->cb.data;
1052 struct r1conf *conf = mddev->private;
1053 struct bio *bio;
1055 if (from_schedule || current->bio_list) {
1056 spin_lock_irq(&conf->device_lock);
1057 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1058 conf->pending_count += plug->pending_cnt;
1059 spin_unlock_irq(&conf->device_lock);
1060 wake_up(&conf->wait_barrier);
1061 md_wakeup_thread(mddev->thread);
1062 kfree(plug);
1063 return;
1066 /* we aren't scheduling, so we can do the write-out directly. */
1067 bio = bio_list_get(&plug->pending);
1068 bitmap_unplug(mddev->bitmap);
1069 wake_up(&conf->wait_barrier);
1071 while (bio) { /* submit pending writes */
1072 struct bio *next = bio->bi_next;
1073 bio->bi_next = NULL;
1074 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1075 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1076 /* Just ignore it */
1077 bio_endio(bio, 0);
1078 else
1079 generic_make_request(bio);
1080 bio = next;
1082 kfree(plug);
1085 static void make_request(struct mddev *mddev, struct bio * bio)
1087 struct r1conf *conf = mddev->private;
1088 struct raid1_info *mirror;
1089 struct r1bio *r1_bio;
1090 struct bio *read_bio;
1091 int i, disks;
1092 struct bitmap *bitmap;
1093 unsigned long flags;
1094 const int rw = bio_data_dir(bio);
1095 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1096 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1097 const unsigned long do_discard = (bio->bi_rw
1098 & (REQ_DISCARD | REQ_SECURE));
1099 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1100 struct md_rdev *blocked_rdev;
1101 struct blk_plug_cb *cb;
1102 struct raid1_plug_cb *plug = NULL;
1103 int first_clone;
1104 int sectors_handled;
1105 int max_sectors;
1106 sector_t start_next_window;
1109 * Register the new request and wait if the reconstruction
1110 * thread has put up a bar for new requests.
1111 * Continue immediately if no resync is active currently.
1114 md_write_start(mddev, bio); /* wait on superblock update early */
1116 if (bio_data_dir(bio) == WRITE &&
1117 bio_end_sector(bio) > mddev->suspend_lo &&
1118 bio->bi_iter.bi_sector < mddev->suspend_hi) {
1119 /* As the suspend_* range is controlled by
1120 * userspace, we want an interruptible
1121 * wait.
1123 DEFINE_WAIT(w);
1124 for (;;) {
1125 flush_signals(current);
1126 prepare_to_wait(&conf->wait_barrier,
1127 &w, TASK_INTERRUPTIBLE);
1128 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1129 bio->bi_iter.bi_sector >= mddev->suspend_hi)
1130 break;
1131 schedule();
1133 finish_wait(&conf->wait_barrier, &w);
1136 start_next_window = wait_barrier(conf, bio);
1138 bitmap = mddev->bitmap;
1141 * make_request() can abort the operation when READA is being
1142 * used and no empty request is available.
1145 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1147 r1_bio->master_bio = bio;
1148 r1_bio->sectors = bio_sectors(bio);
1149 r1_bio->state = 0;
1150 r1_bio->mddev = mddev;
1151 r1_bio->sector = bio->bi_iter.bi_sector;
1153 /* We might need to issue multiple reads to different
1154 * devices if there are bad blocks around, so we keep
1155 * track of the number of reads in bio->bi_phys_segments.
1156 * If this is 0, there is only one r1_bio and no locking
1157 * will be needed when requests complete. If it is
1158 * non-zero, then it is the number of not-completed requests.
1160 bio->bi_phys_segments = 0;
1161 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1163 if (rw == READ) {
1165 * read balancing logic:
1167 int rdisk;
1169 read_again:
1170 rdisk = read_balance(conf, r1_bio, &max_sectors);
1172 if (rdisk < 0) {
1173 /* couldn't find anywhere to read from */
1174 raid_end_bio_io(r1_bio);
1175 return;
1177 mirror = conf->mirrors + rdisk;
1179 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1180 bitmap) {
1181 /* Reading from a write-mostly device must
1182 * take care not to over-take any writes
1183 * that are 'behind'
1185 wait_event(bitmap->behind_wait,
1186 atomic_read(&bitmap->behind_writes) == 0);
1188 r1_bio->read_disk = rdisk;
1190 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1191 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1192 max_sectors);
1194 r1_bio->bios[rdisk] = read_bio;
1196 read_bio->bi_iter.bi_sector = r1_bio->sector +
1197 mirror->rdev->data_offset;
1198 read_bio->bi_bdev = mirror->rdev->bdev;
1199 read_bio->bi_end_io = raid1_end_read_request;
1200 read_bio->bi_rw = READ | do_sync;
1201 read_bio->bi_private = r1_bio;
1203 if (max_sectors < r1_bio->sectors) {
1204 /* could not read all from this device, so we will
1205 * need another r1_bio.
1208 sectors_handled = (r1_bio->sector + max_sectors
1209 - bio->bi_iter.bi_sector);
1210 r1_bio->sectors = max_sectors;
1211 spin_lock_irq(&conf->device_lock);
1212 if (bio->bi_phys_segments == 0)
1213 bio->bi_phys_segments = 2;
1214 else
1215 bio->bi_phys_segments++;
1216 spin_unlock_irq(&conf->device_lock);
1217 /* Cannot call generic_make_request directly
1218 * as that will be queued in __make_request
1219 * and subsequent mempool_alloc might block waiting
1220 * for it. So hand bio over to raid1d.
1222 reschedule_retry(r1_bio);
1224 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1226 r1_bio->master_bio = bio;
1227 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1228 r1_bio->state = 0;
1229 r1_bio->mddev = mddev;
1230 r1_bio->sector = bio->bi_iter.bi_sector +
1231 sectors_handled;
1232 goto read_again;
1233 } else
1234 generic_make_request(read_bio);
1235 return;
1239 * WRITE:
1241 if (conf->pending_count >= max_queued_requests) {
1242 md_wakeup_thread(mddev->thread);
1243 wait_event(conf->wait_barrier,
1244 conf->pending_count < max_queued_requests);
1246 /* first select target devices under rcu_lock and
1247 * inc refcount on their rdev. Record them by setting
1248 * bios[x] to bio
1249 * If there are known/acknowledged bad blocks on any device on
1250 * which we have seen a write error, we want to avoid writing those
1251 * blocks.
1252 * This potentially requires several writes to write around
1253 * the bad blocks. Each set of writes gets it's own r1bio
1254 * with a set of bios attached.
1257 disks = conf->raid_disks * 2;
1258 retry_write:
1259 r1_bio->start_next_window = start_next_window;
1260 blocked_rdev = NULL;
1261 rcu_read_lock();
1262 max_sectors = r1_bio->sectors;
1263 for (i = 0; i < disks; i++) {
1264 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1265 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1266 atomic_inc(&rdev->nr_pending);
1267 blocked_rdev = rdev;
1268 break;
1270 r1_bio->bios[i] = NULL;
1271 if (!rdev || test_bit(Faulty, &rdev->flags)
1272 || test_bit(Unmerged, &rdev->flags)) {
1273 if (i < conf->raid_disks)
1274 set_bit(R1BIO_Degraded, &r1_bio->state);
1275 continue;
1278 atomic_inc(&rdev->nr_pending);
1279 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1280 sector_t first_bad;
1281 int bad_sectors;
1282 int is_bad;
1284 is_bad = is_badblock(rdev, r1_bio->sector,
1285 max_sectors,
1286 &first_bad, &bad_sectors);
1287 if (is_bad < 0) {
1288 /* mustn't write here until the bad block is
1289 * acknowledged*/
1290 set_bit(BlockedBadBlocks, &rdev->flags);
1291 blocked_rdev = rdev;
1292 break;
1294 if (is_bad && first_bad <= r1_bio->sector) {
1295 /* Cannot write here at all */
1296 bad_sectors -= (r1_bio->sector - first_bad);
1297 if (bad_sectors < max_sectors)
1298 /* mustn't write more than bad_sectors
1299 * to other devices yet
1301 max_sectors = bad_sectors;
1302 rdev_dec_pending(rdev, mddev);
1303 /* We don't set R1BIO_Degraded as that
1304 * only applies if the disk is
1305 * missing, so it might be re-added,
1306 * and we want to know to recover this
1307 * chunk.
1308 * In this case the device is here,
1309 * and the fact that this chunk is not
1310 * in-sync is recorded in the bad
1311 * block log
1313 continue;
1315 if (is_bad) {
1316 int good_sectors = first_bad - r1_bio->sector;
1317 if (good_sectors < max_sectors)
1318 max_sectors = good_sectors;
1321 r1_bio->bios[i] = bio;
1323 rcu_read_unlock();
1325 if (unlikely(blocked_rdev)) {
1326 /* Wait for this device to become unblocked */
1327 int j;
1328 sector_t old = start_next_window;
1330 for (j = 0; j < i; j++)
1331 if (r1_bio->bios[j])
1332 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1333 r1_bio->state = 0;
1334 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1335 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1336 start_next_window = wait_barrier(conf, bio);
1338 * We must make sure the multi r1bios of bio have
1339 * the same value of bi_phys_segments
1341 if (bio->bi_phys_segments && old &&
1342 old != start_next_window)
1343 /* Wait for the former r1bio(s) to complete */
1344 wait_event(conf->wait_barrier,
1345 bio->bi_phys_segments == 1);
1346 goto retry_write;
1349 if (max_sectors < r1_bio->sectors) {
1350 /* We are splitting this write into multiple parts, so
1351 * we need to prepare for allocating another r1_bio.
1353 r1_bio->sectors = max_sectors;
1354 spin_lock_irq(&conf->device_lock);
1355 if (bio->bi_phys_segments == 0)
1356 bio->bi_phys_segments = 2;
1357 else
1358 bio->bi_phys_segments++;
1359 spin_unlock_irq(&conf->device_lock);
1361 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1363 atomic_set(&r1_bio->remaining, 1);
1364 atomic_set(&r1_bio->behind_remaining, 0);
1366 first_clone = 1;
1367 for (i = 0; i < disks; i++) {
1368 struct bio *mbio;
1369 if (!r1_bio->bios[i])
1370 continue;
1372 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1373 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1375 if (first_clone) {
1376 /* do behind I/O ?
1377 * Not if there are too many, or cannot
1378 * allocate memory, or a reader on WriteMostly
1379 * is waiting for behind writes to flush */
1380 if (bitmap &&
1381 (atomic_read(&bitmap->behind_writes)
1382 < mddev->bitmap_info.max_write_behind) &&
1383 !waitqueue_active(&bitmap->behind_wait))
1384 alloc_behind_pages(mbio, r1_bio);
1386 bitmap_startwrite(bitmap, r1_bio->sector,
1387 r1_bio->sectors,
1388 test_bit(R1BIO_BehindIO,
1389 &r1_bio->state));
1390 first_clone = 0;
1392 if (r1_bio->behind_bvecs) {
1393 struct bio_vec *bvec;
1394 int j;
1397 * We trimmed the bio, so _all is legit
1399 bio_for_each_segment_all(bvec, mbio, j)
1400 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1401 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1402 atomic_inc(&r1_bio->behind_remaining);
1405 r1_bio->bios[i] = mbio;
1407 mbio->bi_iter.bi_sector = (r1_bio->sector +
1408 conf->mirrors[i].rdev->data_offset);
1409 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1410 mbio->bi_end_io = raid1_end_write_request;
1411 mbio->bi_rw =
1412 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1413 mbio->bi_private = r1_bio;
1415 atomic_inc(&r1_bio->remaining);
1417 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1418 if (cb)
1419 plug = container_of(cb, struct raid1_plug_cb, cb);
1420 else
1421 plug = NULL;
1422 spin_lock_irqsave(&conf->device_lock, flags);
1423 if (plug) {
1424 bio_list_add(&plug->pending, mbio);
1425 plug->pending_cnt++;
1426 } else {
1427 bio_list_add(&conf->pending_bio_list, mbio);
1428 conf->pending_count++;
1430 spin_unlock_irqrestore(&conf->device_lock, flags);
1431 if (!plug)
1432 md_wakeup_thread(mddev->thread);
1434 /* Mustn't call r1_bio_write_done before this next test,
1435 * as it could result in the bio being freed.
1437 if (sectors_handled < bio_sectors(bio)) {
1438 r1_bio_write_done(r1_bio);
1439 /* We need another r1_bio. It has already been counted
1440 * in bio->bi_phys_segments
1442 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1443 r1_bio->master_bio = bio;
1444 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1445 r1_bio->state = 0;
1446 r1_bio->mddev = mddev;
1447 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1448 goto retry_write;
1451 r1_bio_write_done(r1_bio);
1453 /* In case raid1d snuck in to freeze_array */
1454 wake_up(&conf->wait_barrier);
1457 static void status(struct seq_file *seq, struct mddev *mddev)
1459 struct r1conf *conf = mddev->private;
1460 int i;
1462 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1463 conf->raid_disks - mddev->degraded);
1464 rcu_read_lock();
1465 for (i = 0; i < conf->raid_disks; i++) {
1466 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1467 seq_printf(seq, "%s",
1468 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1470 rcu_read_unlock();
1471 seq_printf(seq, "]");
1475 static void error(struct mddev *mddev, struct md_rdev *rdev)
1477 char b[BDEVNAME_SIZE];
1478 struct r1conf *conf = mddev->private;
1481 * If it is not operational, then we have already marked it as dead
1482 * else if it is the last working disks, ignore the error, let the
1483 * next level up know.
1484 * else mark the drive as failed
1486 if (test_bit(In_sync, &rdev->flags)
1487 && (conf->raid_disks - mddev->degraded) == 1) {
1489 * Don't fail the drive, act as though we were just a
1490 * normal single drive.
1491 * However don't try a recovery from this drive as
1492 * it is very likely to fail.
1494 conf->recovery_disabled = mddev->recovery_disabled;
1495 return;
1497 set_bit(Blocked, &rdev->flags);
1498 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1499 unsigned long flags;
1500 spin_lock_irqsave(&conf->device_lock, flags);
1501 mddev->degraded++;
1502 set_bit(Faulty, &rdev->flags);
1503 spin_unlock_irqrestore(&conf->device_lock, flags);
1505 * if recovery is running, make sure it aborts.
1507 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1508 } else
1509 set_bit(Faulty, &rdev->flags);
1510 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1511 printk(KERN_ALERT
1512 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1513 "md/raid1:%s: Operation continuing on %d devices.\n",
1514 mdname(mddev), bdevname(rdev->bdev, b),
1515 mdname(mddev), conf->raid_disks - mddev->degraded);
1518 static void print_conf(struct r1conf *conf)
1520 int i;
1522 printk(KERN_DEBUG "RAID1 conf printout:\n");
1523 if (!conf) {
1524 printk(KERN_DEBUG "(!conf)\n");
1525 return;
1527 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1528 conf->raid_disks);
1530 rcu_read_lock();
1531 for (i = 0; i < conf->raid_disks; i++) {
1532 char b[BDEVNAME_SIZE];
1533 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1534 if (rdev)
1535 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1536 i, !test_bit(In_sync, &rdev->flags),
1537 !test_bit(Faulty, &rdev->flags),
1538 bdevname(rdev->bdev,b));
1540 rcu_read_unlock();
1543 static void close_sync(struct r1conf *conf)
1545 wait_barrier(conf, NULL);
1546 allow_barrier(conf, 0, 0);
1548 mempool_destroy(conf->r1buf_pool);
1549 conf->r1buf_pool = NULL;
1551 conf->next_resync = 0;
1552 conf->start_next_window = MaxSector;
1555 static int raid1_spare_active(struct mddev *mddev)
1557 int i;
1558 struct r1conf *conf = mddev->private;
1559 int count = 0;
1560 unsigned long flags;
1563 * Find all failed disks within the RAID1 configuration
1564 * and mark them readable.
1565 * Called under mddev lock, so rcu protection not needed.
1567 for (i = 0; i < conf->raid_disks; i++) {
1568 struct md_rdev *rdev = conf->mirrors[i].rdev;
1569 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1570 if (repl
1571 && repl->recovery_offset == MaxSector
1572 && !test_bit(Faulty, &repl->flags)
1573 && !test_and_set_bit(In_sync, &repl->flags)) {
1574 /* replacement has just become active */
1575 if (!rdev ||
1576 !test_and_clear_bit(In_sync, &rdev->flags))
1577 count++;
1578 if (rdev) {
1579 /* Replaced device not technically
1580 * faulty, but we need to be sure
1581 * it gets removed and never re-added
1583 set_bit(Faulty, &rdev->flags);
1584 sysfs_notify_dirent_safe(
1585 rdev->sysfs_state);
1588 if (rdev
1589 && rdev->recovery_offset == MaxSector
1590 && !test_bit(Faulty, &rdev->flags)
1591 && !test_and_set_bit(In_sync, &rdev->flags)) {
1592 count++;
1593 sysfs_notify_dirent_safe(rdev->sysfs_state);
1596 spin_lock_irqsave(&conf->device_lock, flags);
1597 mddev->degraded -= count;
1598 spin_unlock_irqrestore(&conf->device_lock, flags);
1600 print_conf(conf);
1601 return count;
1605 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1607 struct r1conf *conf = mddev->private;
1608 int err = -EEXIST;
1609 int mirror = 0;
1610 struct raid1_info *p;
1611 int first = 0;
1612 int last = conf->raid_disks - 1;
1613 struct request_queue *q = bdev_get_queue(rdev->bdev);
1615 if (mddev->recovery_disabled == conf->recovery_disabled)
1616 return -EBUSY;
1618 if (rdev->raid_disk >= 0)
1619 first = last = rdev->raid_disk;
1621 if (q->merge_bvec_fn) {
1622 set_bit(Unmerged, &rdev->flags);
1623 mddev->merge_check_needed = 1;
1626 for (mirror = first; mirror <= last; mirror++) {
1627 p = conf->mirrors+mirror;
1628 if (!p->rdev) {
1630 if (mddev->gendisk)
1631 disk_stack_limits(mddev->gendisk, rdev->bdev,
1632 rdev->data_offset << 9);
1634 p->head_position = 0;
1635 rdev->raid_disk = mirror;
1636 err = 0;
1637 /* As all devices are equivalent, we don't need a full recovery
1638 * if this was recently any drive of the array
1640 if (rdev->saved_raid_disk < 0)
1641 conf->fullsync = 1;
1642 rcu_assign_pointer(p->rdev, rdev);
1643 break;
1645 if (test_bit(WantReplacement, &p->rdev->flags) &&
1646 p[conf->raid_disks].rdev == NULL) {
1647 /* Add this device as a replacement */
1648 clear_bit(In_sync, &rdev->flags);
1649 set_bit(Replacement, &rdev->flags);
1650 rdev->raid_disk = mirror;
1651 err = 0;
1652 conf->fullsync = 1;
1653 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1654 break;
1657 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1658 /* Some requests might not have seen this new
1659 * merge_bvec_fn. We must wait for them to complete
1660 * before merging the device fully.
1661 * First we make sure any code which has tested
1662 * our function has submitted the request, then
1663 * we wait for all outstanding requests to complete.
1665 synchronize_sched();
1666 freeze_array(conf, 0);
1667 unfreeze_array(conf);
1668 clear_bit(Unmerged, &rdev->flags);
1670 md_integrity_add_rdev(rdev, mddev);
1671 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1672 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1673 print_conf(conf);
1674 return err;
1677 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1679 struct r1conf *conf = mddev->private;
1680 int err = 0;
1681 int number = rdev->raid_disk;
1682 struct raid1_info *p = conf->mirrors + number;
1684 if (rdev != p->rdev)
1685 p = conf->mirrors + conf->raid_disks + number;
1687 print_conf(conf);
1688 if (rdev == p->rdev) {
1689 if (test_bit(In_sync, &rdev->flags) ||
1690 atomic_read(&rdev->nr_pending)) {
1691 err = -EBUSY;
1692 goto abort;
1694 /* Only remove non-faulty devices if recovery
1695 * is not possible.
1697 if (!test_bit(Faulty, &rdev->flags) &&
1698 mddev->recovery_disabled != conf->recovery_disabled &&
1699 mddev->degraded < conf->raid_disks) {
1700 err = -EBUSY;
1701 goto abort;
1703 p->rdev = NULL;
1704 synchronize_rcu();
1705 if (atomic_read(&rdev->nr_pending)) {
1706 /* lost the race, try later */
1707 err = -EBUSY;
1708 p->rdev = rdev;
1709 goto abort;
1710 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1711 /* We just removed a device that is being replaced.
1712 * Move down the replacement. We drain all IO before
1713 * doing this to avoid confusion.
1715 struct md_rdev *repl =
1716 conf->mirrors[conf->raid_disks + number].rdev;
1717 freeze_array(conf, 0);
1718 clear_bit(Replacement, &repl->flags);
1719 p->rdev = repl;
1720 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1721 unfreeze_array(conf);
1722 clear_bit(WantReplacement, &rdev->flags);
1723 } else
1724 clear_bit(WantReplacement, &rdev->flags);
1725 err = md_integrity_register(mddev);
1727 abort:
1729 print_conf(conf);
1730 return err;
1734 static void end_sync_read(struct bio *bio, int error)
1736 struct r1bio *r1_bio = bio->bi_private;
1738 update_head_pos(r1_bio->read_disk, r1_bio);
1741 * we have read a block, now it needs to be re-written,
1742 * or re-read if the read failed.
1743 * We don't do much here, just schedule handling by raid1d
1745 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1746 set_bit(R1BIO_Uptodate, &r1_bio->state);
1748 if (atomic_dec_and_test(&r1_bio->remaining))
1749 reschedule_retry(r1_bio);
1752 static void end_sync_write(struct bio *bio, int error)
1754 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1755 struct r1bio *r1_bio = bio->bi_private;
1756 struct mddev *mddev = r1_bio->mddev;
1757 struct r1conf *conf = mddev->private;
1758 int mirror=0;
1759 sector_t first_bad;
1760 int bad_sectors;
1762 mirror = find_bio_disk(r1_bio, bio);
1764 if (!uptodate) {
1765 sector_t sync_blocks = 0;
1766 sector_t s = r1_bio->sector;
1767 long sectors_to_go = r1_bio->sectors;
1768 /* make sure these bits doesn't get cleared. */
1769 do {
1770 bitmap_end_sync(mddev->bitmap, s,
1771 &sync_blocks, 1);
1772 s += sync_blocks;
1773 sectors_to_go -= sync_blocks;
1774 } while (sectors_to_go > 0);
1775 set_bit(WriteErrorSeen,
1776 &conf->mirrors[mirror].rdev->flags);
1777 if (!test_and_set_bit(WantReplacement,
1778 &conf->mirrors[mirror].rdev->flags))
1779 set_bit(MD_RECOVERY_NEEDED, &
1780 mddev->recovery);
1781 set_bit(R1BIO_WriteError, &r1_bio->state);
1782 } else if (is_badblock(conf->mirrors[mirror].rdev,
1783 r1_bio->sector,
1784 r1_bio->sectors,
1785 &first_bad, &bad_sectors) &&
1786 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1787 r1_bio->sector,
1788 r1_bio->sectors,
1789 &first_bad, &bad_sectors)
1791 set_bit(R1BIO_MadeGood, &r1_bio->state);
1793 if (atomic_dec_and_test(&r1_bio->remaining)) {
1794 int s = r1_bio->sectors;
1795 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1796 test_bit(R1BIO_WriteError, &r1_bio->state))
1797 reschedule_retry(r1_bio);
1798 else {
1799 put_buf(r1_bio);
1800 md_done_sync(mddev, s, uptodate);
1805 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1806 int sectors, struct page *page, int rw)
1808 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1809 /* success */
1810 return 1;
1811 if (rw == WRITE) {
1812 set_bit(WriteErrorSeen, &rdev->flags);
1813 if (!test_and_set_bit(WantReplacement,
1814 &rdev->flags))
1815 set_bit(MD_RECOVERY_NEEDED, &
1816 rdev->mddev->recovery);
1818 /* need to record an error - either for the block or the device */
1819 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1820 md_error(rdev->mddev, rdev);
1821 return 0;
1824 static int fix_sync_read_error(struct r1bio *r1_bio)
1826 /* Try some synchronous reads of other devices to get
1827 * good data, much like with normal read errors. Only
1828 * read into the pages we already have so we don't
1829 * need to re-issue the read request.
1830 * We don't need to freeze the array, because being in an
1831 * active sync request, there is no normal IO, and
1832 * no overlapping syncs.
1833 * We don't need to check is_badblock() again as we
1834 * made sure that anything with a bad block in range
1835 * will have bi_end_io clear.
1837 struct mddev *mddev = r1_bio->mddev;
1838 struct r1conf *conf = mddev->private;
1839 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1840 sector_t sect = r1_bio->sector;
1841 int sectors = r1_bio->sectors;
1842 int idx = 0;
1844 while(sectors) {
1845 int s = sectors;
1846 int d = r1_bio->read_disk;
1847 int success = 0;
1848 struct md_rdev *rdev;
1849 int start;
1851 if (s > (PAGE_SIZE>>9))
1852 s = PAGE_SIZE >> 9;
1853 do {
1854 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1855 /* No rcu protection needed here devices
1856 * can only be removed when no resync is
1857 * active, and resync is currently active
1859 rdev = conf->mirrors[d].rdev;
1860 if (sync_page_io(rdev, sect, s<<9,
1861 bio->bi_io_vec[idx].bv_page,
1862 READ, false)) {
1863 success = 1;
1864 break;
1867 d++;
1868 if (d == conf->raid_disks * 2)
1869 d = 0;
1870 } while (!success && d != r1_bio->read_disk);
1872 if (!success) {
1873 char b[BDEVNAME_SIZE];
1874 int abort = 0;
1875 /* Cannot read from anywhere, this block is lost.
1876 * Record a bad block on each device. If that doesn't
1877 * work just disable and interrupt the recovery.
1878 * Don't fail devices as that won't really help.
1880 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1881 " for block %llu\n",
1882 mdname(mddev),
1883 bdevname(bio->bi_bdev, b),
1884 (unsigned long long)r1_bio->sector);
1885 for (d = 0; d < conf->raid_disks * 2; d++) {
1886 rdev = conf->mirrors[d].rdev;
1887 if (!rdev || test_bit(Faulty, &rdev->flags))
1888 continue;
1889 if (!rdev_set_badblocks(rdev, sect, s, 0))
1890 abort = 1;
1892 if (abort) {
1893 conf->recovery_disabled =
1894 mddev->recovery_disabled;
1895 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1896 md_done_sync(mddev, r1_bio->sectors, 0);
1897 put_buf(r1_bio);
1898 return 0;
1900 /* Try next page */
1901 sectors -= s;
1902 sect += s;
1903 idx++;
1904 continue;
1907 start = d;
1908 /* write it back and re-read */
1909 while (d != r1_bio->read_disk) {
1910 if (d == 0)
1911 d = conf->raid_disks * 2;
1912 d--;
1913 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1914 continue;
1915 rdev = conf->mirrors[d].rdev;
1916 if (r1_sync_page_io(rdev, sect, s,
1917 bio->bi_io_vec[idx].bv_page,
1918 WRITE) == 0) {
1919 r1_bio->bios[d]->bi_end_io = NULL;
1920 rdev_dec_pending(rdev, mddev);
1923 d = start;
1924 while (d != r1_bio->read_disk) {
1925 if (d == 0)
1926 d = conf->raid_disks * 2;
1927 d--;
1928 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1929 continue;
1930 rdev = conf->mirrors[d].rdev;
1931 if (r1_sync_page_io(rdev, sect, s,
1932 bio->bi_io_vec[idx].bv_page,
1933 READ) != 0)
1934 atomic_add(s, &rdev->corrected_errors);
1936 sectors -= s;
1937 sect += s;
1938 idx ++;
1940 set_bit(R1BIO_Uptodate, &r1_bio->state);
1941 set_bit(BIO_UPTODATE, &bio->bi_flags);
1942 return 1;
1945 static int process_checks(struct r1bio *r1_bio)
1947 /* We have read all readable devices. If we haven't
1948 * got the block, then there is no hope left.
1949 * If we have, then we want to do a comparison
1950 * and skip the write if everything is the same.
1951 * If any blocks failed to read, then we need to
1952 * attempt an over-write
1954 struct mddev *mddev = r1_bio->mddev;
1955 struct r1conf *conf = mddev->private;
1956 int primary;
1957 int i;
1958 int vcnt;
1960 /* Fix variable parts of all bios */
1961 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1962 for (i = 0; i < conf->raid_disks * 2; i++) {
1963 int j;
1964 int size;
1965 int uptodate;
1966 struct bio *b = r1_bio->bios[i];
1967 if (b->bi_end_io != end_sync_read)
1968 continue;
1969 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1970 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1971 bio_reset(b);
1972 if (!uptodate)
1973 clear_bit(BIO_UPTODATE, &b->bi_flags);
1974 b->bi_vcnt = vcnt;
1975 b->bi_iter.bi_size = r1_bio->sectors << 9;
1976 b->bi_iter.bi_sector = r1_bio->sector +
1977 conf->mirrors[i].rdev->data_offset;
1978 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1979 b->bi_end_io = end_sync_read;
1980 b->bi_private = r1_bio;
1982 size = b->bi_iter.bi_size;
1983 for (j = 0; j < vcnt ; j++) {
1984 struct bio_vec *bi;
1985 bi = &b->bi_io_vec[j];
1986 bi->bv_offset = 0;
1987 if (size > PAGE_SIZE)
1988 bi->bv_len = PAGE_SIZE;
1989 else
1990 bi->bv_len = size;
1991 size -= PAGE_SIZE;
1994 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1995 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1996 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1997 r1_bio->bios[primary]->bi_end_io = NULL;
1998 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1999 break;
2001 r1_bio->read_disk = primary;
2002 for (i = 0; i < conf->raid_disks * 2; i++) {
2003 int j;
2004 struct bio *pbio = r1_bio->bios[primary];
2005 struct bio *sbio = r1_bio->bios[i];
2006 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2008 if (sbio->bi_end_io != end_sync_read)
2009 continue;
2010 /* Now we can 'fixup' the BIO_UPTODATE flag */
2011 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2013 if (uptodate) {
2014 for (j = vcnt; j-- ; ) {
2015 struct page *p, *s;
2016 p = pbio->bi_io_vec[j].bv_page;
2017 s = sbio->bi_io_vec[j].bv_page;
2018 if (memcmp(page_address(p),
2019 page_address(s),
2020 sbio->bi_io_vec[j].bv_len))
2021 break;
2023 } else
2024 j = 0;
2025 if (j >= 0)
2026 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2027 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2028 && uptodate)) {
2029 /* No need to write to this device. */
2030 sbio->bi_end_io = NULL;
2031 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2032 continue;
2035 bio_copy_data(sbio, pbio);
2037 return 0;
2040 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2042 struct r1conf *conf = mddev->private;
2043 int i;
2044 int disks = conf->raid_disks * 2;
2045 struct bio *bio, *wbio;
2047 bio = r1_bio->bios[r1_bio->read_disk];
2049 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2050 /* ouch - failed to read all of that. */
2051 if (!fix_sync_read_error(r1_bio))
2052 return;
2054 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2055 if (process_checks(r1_bio) < 0)
2056 return;
2058 * schedule writes
2060 atomic_set(&r1_bio->remaining, 1);
2061 for (i = 0; i < disks ; i++) {
2062 wbio = r1_bio->bios[i];
2063 if (wbio->bi_end_io == NULL ||
2064 (wbio->bi_end_io == end_sync_read &&
2065 (i == r1_bio->read_disk ||
2066 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2067 continue;
2069 wbio->bi_rw = WRITE;
2070 wbio->bi_end_io = end_sync_write;
2071 atomic_inc(&r1_bio->remaining);
2072 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2074 generic_make_request(wbio);
2077 if (atomic_dec_and_test(&r1_bio->remaining)) {
2078 /* if we're here, all write(s) have completed, so clean up */
2079 int s = r1_bio->sectors;
2080 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2081 test_bit(R1BIO_WriteError, &r1_bio->state))
2082 reschedule_retry(r1_bio);
2083 else {
2084 put_buf(r1_bio);
2085 md_done_sync(mddev, s, 1);
2091 * This is a kernel thread which:
2093 * 1. Retries failed read operations on working mirrors.
2094 * 2. Updates the raid superblock when problems encounter.
2095 * 3. Performs writes following reads for array synchronising.
2098 static void fix_read_error(struct r1conf *conf, int read_disk,
2099 sector_t sect, int sectors)
2101 struct mddev *mddev = conf->mddev;
2102 while(sectors) {
2103 int s = sectors;
2104 int d = read_disk;
2105 int success = 0;
2106 int start;
2107 struct md_rdev *rdev;
2109 if (s > (PAGE_SIZE>>9))
2110 s = PAGE_SIZE >> 9;
2112 do {
2113 /* Note: no rcu protection needed here
2114 * as this is synchronous in the raid1d thread
2115 * which is the thread that might remove
2116 * a device. If raid1d ever becomes multi-threaded....
2118 sector_t first_bad;
2119 int bad_sectors;
2121 rdev = conf->mirrors[d].rdev;
2122 if (rdev &&
2123 (test_bit(In_sync, &rdev->flags) ||
2124 (!test_bit(Faulty, &rdev->flags) &&
2125 rdev->recovery_offset >= sect + s)) &&
2126 is_badblock(rdev, sect, s,
2127 &first_bad, &bad_sectors) == 0 &&
2128 sync_page_io(rdev, sect, s<<9,
2129 conf->tmppage, READ, false))
2130 success = 1;
2131 else {
2132 d++;
2133 if (d == conf->raid_disks * 2)
2134 d = 0;
2136 } while (!success && d != read_disk);
2138 if (!success) {
2139 /* Cannot read from anywhere - mark it bad */
2140 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2141 if (!rdev_set_badblocks(rdev, sect, s, 0))
2142 md_error(mddev, rdev);
2143 break;
2145 /* write it back and re-read */
2146 start = d;
2147 while (d != read_disk) {
2148 if (d==0)
2149 d = conf->raid_disks * 2;
2150 d--;
2151 rdev = conf->mirrors[d].rdev;
2152 if (rdev &&
2153 test_bit(In_sync, &rdev->flags))
2154 r1_sync_page_io(rdev, sect, s,
2155 conf->tmppage, WRITE);
2157 d = start;
2158 while (d != read_disk) {
2159 char b[BDEVNAME_SIZE];
2160 if (d==0)
2161 d = conf->raid_disks * 2;
2162 d--;
2163 rdev = conf->mirrors[d].rdev;
2164 if (rdev &&
2165 test_bit(In_sync, &rdev->flags)) {
2166 if (r1_sync_page_io(rdev, sect, s,
2167 conf->tmppage, READ)) {
2168 atomic_add(s, &rdev->corrected_errors);
2169 printk(KERN_INFO
2170 "md/raid1:%s: read error corrected "
2171 "(%d sectors at %llu on %s)\n",
2172 mdname(mddev), s,
2173 (unsigned long long)(sect +
2174 rdev->data_offset),
2175 bdevname(rdev->bdev, b));
2179 sectors -= s;
2180 sect += s;
2184 static int narrow_write_error(struct r1bio *r1_bio, int i)
2186 struct mddev *mddev = r1_bio->mddev;
2187 struct r1conf *conf = mddev->private;
2188 struct md_rdev *rdev = conf->mirrors[i].rdev;
2190 /* bio has the data to be written to device 'i' where
2191 * we just recently had a write error.
2192 * We repeatedly clone the bio and trim down to one block,
2193 * then try the write. Where the write fails we record
2194 * a bad block.
2195 * It is conceivable that the bio doesn't exactly align with
2196 * blocks. We must handle this somehow.
2198 * We currently own a reference on the rdev.
2201 int block_sectors;
2202 sector_t sector;
2203 int sectors;
2204 int sect_to_write = r1_bio->sectors;
2205 int ok = 1;
2207 if (rdev->badblocks.shift < 0)
2208 return 0;
2210 block_sectors = 1 << rdev->badblocks.shift;
2211 sector = r1_bio->sector;
2212 sectors = ((sector + block_sectors)
2213 & ~(sector_t)(block_sectors - 1))
2214 - sector;
2216 while (sect_to_write) {
2217 struct bio *wbio;
2218 if (sectors > sect_to_write)
2219 sectors = sect_to_write;
2220 /* Write at 'sector' for 'sectors'*/
2222 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2223 unsigned vcnt = r1_bio->behind_page_count;
2224 struct bio_vec *vec = r1_bio->behind_bvecs;
2226 while (!vec->bv_page) {
2227 vec++;
2228 vcnt--;
2231 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2232 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2234 wbio->bi_vcnt = vcnt;
2235 } else {
2236 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2239 wbio->bi_rw = WRITE;
2240 wbio->bi_iter.bi_sector = r1_bio->sector;
2241 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2243 bio_trim(wbio, sector - r1_bio->sector, sectors);
2244 wbio->bi_iter.bi_sector += rdev->data_offset;
2245 wbio->bi_bdev = rdev->bdev;
2246 if (submit_bio_wait(WRITE, wbio) == 0)
2247 /* failure! */
2248 ok = rdev_set_badblocks(rdev, sector,
2249 sectors, 0)
2250 && ok;
2252 bio_put(wbio);
2253 sect_to_write -= sectors;
2254 sector += sectors;
2255 sectors = block_sectors;
2257 return ok;
2260 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2262 int m;
2263 int s = r1_bio->sectors;
2264 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2265 struct md_rdev *rdev = conf->mirrors[m].rdev;
2266 struct bio *bio = r1_bio->bios[m];
2267 if (bio->bi_end_io == NULL)
2268 continue;
2269 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2270 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2271 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2273 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2274 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2275 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2276 md_error(conf->mddev, rdev);
2279 put_buf(r1_bio);
2280 md_done_sync(conf->mddev, s, 1);
2283 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2285 int m;
2286 for (m = 0; m < conf->raid_disks * 2 ; m++)
2287 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2288 struct md_rdev *rdev = conf->mirrors[m].rdev;
2289 rdev_clear_badblocks(rdev,
2290 r1_bio->sector,
2291 r1_bio->sectors, 0);
2292 rdev_dec_pending(rdev, conf->mddev);
2293 } else if (r1_bio->bios[m] != NULL) {
2294 /* This drive got a write error. We need to
2295 * narrow down and record precise write
2296 * errors.
2298 if (!narrow_write_error(r1_bio, m)) {
2299 md_error(conf->mddev,
2300 conf->mirrors[m].rdev);
2301 /* an I/O failed, we can't clear the bitmap */
2302 set_bit(R1BIO_Degraded, &r1_bio->state);
2304 rdev_dec_pending(conf->mirrors[m].rdev,
2305 conf->mddev);
2307 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2308 close_write(r1_bio);
2309 raid_end_bio_io(r1_bio);
2312 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2314 int disk;
2315 int max_sectors;
2316 struct mddev *mddev = conf->mddev;
2317 struct bio *bio;
2318 char b[BDEVNAME_SIZE];
2319 struct md_rdev *rdev;
2321 clear_bit(R1BIO_ReadError, &r1_bio->state);
2322 /* we got a read error. Maybe the drive is bad. Maybe just
2323 * the block and we can fix it.
2324 * We freeze all other IO, and try reading the block from
2325 * other devices. When we find one, we re-write
2326 * and check it that fixes the read error.
2327 * This is all done synchronously while the array is
2328 * frozen
2330 if (mddev->ro == 0) {
2331 freeze_array(conf, 1);
2332 fix_read_error(conf, r1_bio->read_disk,
2333 r1_bio->sector, r1_bio->sectors);
2334 unfreeze_array(conf);
2335 } else
2336 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2337 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2339 bio = r1_bio->bios[r1_bio->read_disk];
2340 bdevname(bio->bi_bdev, b);
2341 read_more:
2342 disk = read_balance(conf, r1_bio, &max_sectors);
2343 if (disk == -1) {
2344 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2345 " read error for block %llu\n",
2346 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2347 raid_end_bio_io(r1_bio);
2348 } else {
2349 const unsigned long do_sync
2350 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2351 if (bio) {
2352 r1_bio->bios[r1_bio->read_disk] =
2353 mddev->ro ? IO_BLOCKED : NULL;
2354 bio_put(bio);
2356 r1_bio->read_disk = disk;
2357 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2358 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2359 max_sectors);
2360 r1_bio->bios[r1_bio->read_disk] = bio;
2361 rdev = conf->mirrors[disk].rdev;
2362 printk_ratelimited(KERN_ERR
2363 "md/raid1:%s: redirecting sector %llu"
2364 " to other mirror: %s\n",
2365 mdname(mddev),
2366 (unsigned long long)r1_bio->sector,
2367 bdevname(rdev->bdev, b));
2368 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2369 bio->bi_bdev = rdev->bdev;
2370 bio->bi_end_io = raid1_end_read_request;
2371 bio->bi_rw = READ | do_sync;
2372 bio->bi_private = r1_bio;
2373 if (max_sectors < r1_bio->sectors) {
2374 /* Drat - have to split this up more */
2375 struct bio *mbio = r1_bio->master_bio;
2376 int sectors_handled = (r1_bio->sector + max_sectors
2377 - mbio->bi_iter.bi_sector);
2378 r1_bio->sectors = max_sectors;
2379 spin_lock_irq(&conf->device_lock);
2380 if (mbio->bi_phys_segments == 0)
2381 mbio->bi_phys_segments = 2;
2382 else
2383 mbio->bi_phys_segments++;
2384 spin_unlock_irq(&conf->device_lock);
2385 generic_make_request(bio);
2386 bio = NULL;
2388 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2390 r1_bio->master_bio = mbio;
2391 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2392 r1_bio->state = 0;
2393 set_bit(R1BIO_ReadError, &r1_bio->state);
2394 r1_bio->mddev = mddev;
2395 r1_bio->sector = mbio->bi_iter.bi_sector +
2396 sectors_handled;
2398 goto read_more;
2399 } else
2400 generic_make_request(bio);
2404 static void raid1d(struct md_thread *thread)
2406 struct mddev *mddev = thread->mddev;
2407 struct r1bio *r1_bio;
2408 unsigned long flags;
2409 struct r1conf *conf = mddev->private;
2410 struct list_head *head = &conf->retry_list;
2411 struct blk_plug plug;
2413 md_check_recovery(mddev);
2415 blk_start_plug(&plug);
2416 for (;;) {
2418 flush_pending_writes(conf);
2420 spin_lock_irqsave(&conf->device_lock, flags);
2421 if (list_empty(head)) {
2422 spin_unlock_irqrestore(&conf->device_lock, flags);
2423 break;
2425 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2426 list_del(head->prev);
2427 conf->nr_queued--;
2428 spin_unlock_irqrestore(&conf->device_lock, flags);
2430 mddev = r1_bio->mddev;
2431 conf = mddev->private;
2432 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2433 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2434 test_bit(R1BIO_WriteError, &r1_bio->state))
2435 handle_sync_write_finished(conf, r1_bio);
2436 else
2437 sync_request_write(mddev, r1_bio);
2438 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2439 test_bit(R1BIO_WriteError, &r1_bio->state))
2440 handle_write_finished(conf, r1_bio);
2441 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2442 handle_read_error(conf, r1_bio);
2443 else
2444 /* just a partial read to be scheduled from separate
2445 * context
2447 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2449 cond_resched();
2450 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2451 md_check_recovery(mddev);
2453 blk_finish_plug(&plug);
2457 static int init_resync(struct r1conf *conf)
2459 int buffs;
2461 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2462 BUG_ON(conf->r1buf_pool);
2463 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2464 conf->poolinfo);
2465 if (!conf->r1buf_pool)
2466 return -ENOMEM;
2467 conf->next_resync = 0;
2468 return 0;
2472 * perform a "sync" on one "block"
2474 * We need to make sure that no normal I/O request - particularly write
2475 * requests - conflict with active sync requests.
2477 * This is achieved by tracking pending requests and a 'barrier' concept
2478 * that can be installed to exclude normal IO requests.
2481 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2483 struct r1conf *conf = mddev->private;
2484 struct r1bio *r1_bio;
2485 struct bio *bio;
2486 sector_t max_sector, nr_sectors;
2487 int disk = -1;
2488 int i;
2489 int wonly = -1;
2490 int write_targets = 0, read_targets = 0;
2491 sector_t sync_blocks;
2492 int still_degraded = 0;
2493 int good_sectors = RESYNC_SECTORS;
2494 int min_bad = 0; /* number of sectors that are bad in all devices */
2496 if (!conf->r1buf_pool)
2497 if (init_resync(conf))
2498 return 0;
2500 max_sector = mddev->dev_sectors;
2501 if (sector_nr >= max_sector) {
2502 /* If we aborted, we need to abort the
2503 * sync on the 'current' bitmap chunk (there will
2504 * only be one in raid1 resync.
2505 * We can find the current addess in mddev->curr_resync
2507 if (mddev->curr_resync < max_sector) /* aborted */
2508 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2509 &sync_blocks, 1);
2510 else /* completed sync */
2511 conf->fullsync = 0;
2513 bitmap_close_sync(mddev->bitmap);
2514 close_sync(conf);
2515 return 0;
2518 if (mddev->bitmap == NULL &&
2519 mddev->recovery_cp == MaxSector &&
2520 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2521 conf->fullsync == 0) {
2522 *skipped = 1;
2523 return max_sector - sector_nr;
2525 /* before building a request, check if we can skip these blocks..
2526 * This call the bitmap_start_sync doesn't actually record anything
2528 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2529 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2530 /* We can skip this block, and probably several more */
2531 *skipped = 1;
2532 return sync_blocks;
2535 * If there is non-resync activity waiting for a turn,
2536 * and resync is going fast enough,
2537 * then let it though before starting on this new sync request.
2539 if (!go_faster && conf->nr_waiting)
2540 msleep_interruptible(1000);
2542 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2543 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2544 raise_barrier(conf);
2546 conf->next_resync = sector_nr;
2548 rcu_read_lock();
2550 * If we get a correctably read error during resync or recovery,
2551 * we might want to read from a different device. So we
2552 * flag all drives that could conceivably be read from for READ,
2553 * and any others (which will be non-In_sync devices) for WRITE.
2554 * If a read fails, we try reading from something else for which READ
2555 * is OK.
2558 r1_bio->mddev = mddev;
2559 r1_bio->sector = sector_nr;
2560 r1_bio->state = 0;
2561 set_bit(R1BIO_IsSync, &r1_bio->state);
2563 for (i = 0; i < conf->raid_disks * 2; i++) {
2564 struct md_rdev *rdev;
2565 bio = r1_bio->bios[i];
2566 bio_reset(bio);
2568 rdev = rcu_dereference(conf->mirrors[i].rdev);
2569 if (rdev == NULL ||
2570 test_bit(Faulty, &rdev->flags)) {
2571 if (i < conf->raid_disks)
2572 still_degraded = 1;
2573 } else if (!test_bit(In_sync, &rdev->flags)) {
2574 bio->bi_rw = WRITE;
2575 bio->bi_end_io = end_sync_write;
2576 write_targets ++;
2577 } else {
2578 /* may need to read from here */
2579 sector_t first_bad = MaxSector;
2580 int bad_sectors;
2582 if (is_badblock(rdev, sector_nr, good_sectors,
2583 &first_bad, &bad_sectors)) {
2584 if (first_bad > sector_nr)
2585 good_sectors = first_bad - sector_nr;
2586 else {
2587 bad_sectors -= (sector_nr - first_bad);
2588 if (min_bad == 0 ||
2589 min_bad > bad_sectors)
2590 min_bad = bad_sectors;
2593 if (sector_nr < first_bad) {
2594 if (test_bit(WriteMostly, &rdev->flags)) {
2595 if (wonly < 0)
2596 wonly = i;
2597 } else {
2598 if (disk < 0)
2599 disk = i;
2601 bio->bi_rw = READ;
2602 bio->bi_end_io = end_sync_read;
2603 read_targets++;
2604 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2605 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2606 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2608 * The device is suitable for reading (InSync),
2609 * but has bad block(s) here. Let's try to correct them,
2610 * if we are doing resync or repair. Otherwise, leave
2611 * this device alone for this sync request.
2613 bio->bi_rw = WRITE;
2614 bio->bi_end_io = end_sync_write;
2615 write_targets++;
2618 if (bio->bi_end_io) {
2619 atomic_inc(&rdev->nr_pending);
2620 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2621 bio->bi_bdev = rdev->bdev;
2622 bio->bi_private = r1_bio;
2625 rcu_read_unlock();
2626 if (disk < 0)
2627 disk = wonly;
2628 r1_bio->read_disk = disk;
2630 if (read_targets == 0 && min_bad > 0) {
2631 /* These sectors are bad on all InSync devices, so we
2632 * need to mark them bad on all write targets
2634 int ok = 1;
2635 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2636 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2637 struct md_rdev *rdev = conf->mirrors[i].rdev;
2638 ok = rdev_set_badblocks(rdev, sector_nr,
2639 min_bad, 0
2640 ) && ok;
2642 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2643 *skipped = 1;
2644 put_buf(r1_bio);
2646 if (!ok) {
2647 /* Cannot record the badblocks, so need to
2648 * abort the resync.
2649 * If there are multiple read targets, could just
2650 * fail the really bad ones ???
2652 conf->recovery_disabled = mddev->recovery_disabled;
2653 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2654 return 0;
2655 } else
2656 return min_bad;
2659 if (min_bad > 0 && min_bad < good_sectors) {
2660 /* only resync enough to reach the next bad->good
2661 * transition */
2662 good_sectors = min_bad;
2665 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2666 /* extra read targets are also write targets */
2667 write_targets += read_targets-1;
2669 if (write_targets == 0 || read_targets == 0) {
2670 /* There is nowhere to write, so all non-sync
2671 * drives must be failed - so we are finished
2673 sector_t rv;
2674 if (min_bad > 0)
2675 max_sector = sector_nr + min_bad;
2676 rv = max_sector - sector_nr;
2677 *skipped = 1;
2678 put_buf(r1_bio);
2679 return rv;
2682 if (max_sector > mddev->resync_max)
2683 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2684 if (max_sector > sector_nr + good_sectors)
2685 max_sector = sector_nr + good_sectors;
2686 nr_sectors = 0;
2687 sync_blocks = 0;
2688 do {
2689 struct page *page;
2690 int len = PAGE_SIZE;
2691 if (sector_nr + (len>>9) > max_sector)
2692 len = (max_sector - sector_nr) << 9;
2693 if (len == 0)
2694 break;
2695 if (sync_blocks == 0) {
2696 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2697 &sync_blocks, still_degraded) &&
2698 !conf->fullsync &&
2699 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2700 break;
2701 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2702 if ((len >> 9) > sync_blocks)
2703 len = sync_blocks<<9;
2706 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2707 bio = r1_bio->bios[i];
2708 if (bio->bi_end_io) {
2709 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2710 if (bio_add_page(bio, page, len, 0) == 0) {
2711 /* stop here */
2712 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2713 while (i > 0) {
2714 i--;
2715 bio = r1_bio->bios[i];
2716 if (bio->bi_end_io==NULL)
2717 continue;
2718 /* remove last page from this bio */
2719 bio->bi_vcnt--;
2720 bio->bi_iter.bi_size -= len;
2721 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2723 goto bio_full;
2727 nr_sectors += len>>9;
2728 sector_nr += len>>9;
2729 sync_blocks -= (len>>9);
2730 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2731 bio_full:
2732 r1_bio->sectors = nr_sectors;
2734 /* For a user-requested sync, we read all readable devices and do a
2735 * compare
2737 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2738 atomic_set(&r1_bio->remaining, read_targets);
2739 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2740 bio = r1_bio->bios[i];
2741 if (bio->bi_end_io == end_sync_read) {
2742 read_targets--;
2743 md_sync_acct(bio->bi_bdev, nr_sectors);
2744 generic_make_request(bio);
2747 } else {
2748 atomic_set(&r1_bio->remaining, 1);
2749 bio = r1_bio->bios[r1_bio->read_disk];
2750 md_sync_acct(bio->bi_bdev, nr_sectors);
2751 generic_make_request(bio);
2754 return nr_sectors;
2757 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2759 if (sectors)
2760 return sectors;
2762 return mddev->dev_sectors;
2765 static struct r1conf *setup_conf(struct mddev *mddev)
2767 struct r1conf *conf;
2768 int i;
2769 struct raid1_info *disk;
2770 struct md_rdev *rdev;
2771 int err = -ENOMEM;
2773 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2774 if (!conf)
2775 goto abort;
2777 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2778 * mddev->raid_disks * 2,
2779 GFP_KERNEL);
2780 if (!conf->mirrors)
2781 goto abort;
2783 conf->tmppage = alloc_page(GFP_KERNEL);
2784 if (!conf->tmppage)
2785 goto abort;
2787 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2788 if (!conf->poolinfo)
2789 goto abort;
2790 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2791 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2792 r1bio_pool_free,
2793 conf->poolinfo);
2794 if (!conf->r1bio_pool)
2795 goto abort;
2797 conf->poolinfo->mddev = mddev;
2799 err = -EINVAL;
2800 spin_lock_init(&conf->device_lock);
2801 rdev_for_each(rdev, mddev) {
2802 struct request_queue *q;
2803 int disk_idx = rdev->raid_disk;
2804 if (disk_idx >= mddev->raid_disks
2805 || disk_idx < 0)
2806 continue;
2807 if (test_bit(Replacement, &rdev->flags))
2808 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2809 else
2810 disk = conf->mirrors + disk_idx;
2812 if (disk->rdev)
2813 goto abort;
2814 disk->rdev = rdev;
2815 q = bdev_get_queue(rdev->bdev);
2816 if (q->merge_bvec_fn)
2817 mddev->merge_check_needed = 1;
2819 disk->head_position = 0;
2820 disk->seq_start = MaxSector;
2822 conf->raid_disks = mddev->raid_disks;
2823 conf->mddev = mddev;
2824 INIT_LIST_HEAD(&conf->retry_list);
2826 spin_lock_init(&conf->resync_lock);
2827 init_waitqueue_head(&conf->wait_barrier);
2829 bio_list_init(&conf->pending_bio_list);
2830 conf->pending_count = 0;
2831 conf->recovery_disabled = mddev->recovery_disabled - 1;
2833 conf->start_next_window = MaxSector;
2834 conf->current_window_requests = conf->next_window_requests = 0;
2836 err = -EIO;
2837 for (i = 0; i < conf->raid_disks * 2; i++) {
2839 disk = conf->mirrors + i;
2841 if (i < conf->raid_disks &&
2842 disk[conf->raid_disks].rdev) {
2843 /* This slot has a replacement. */
2844 if (!disk->rdev) {
2845 /* No original, just make the replacement
2846 * a recovering spare
2848 disk->rdev =
2849 disk[conf->raid_disks].rdev;
2850 disk[conf->raid_disks].rdev = NULL;
2851 } else if (!test_bit(In_sync, &disk->rdev->flags))
2852 /* Original is not in_sync - bad */
2853 goto abort;
2856 if (!disk->rdev ||
2857 !test_bit(In_sync, &disk->rdev->flags)) {
2858 disk->head_position = 0;
2859 if (disk->rdev &&
2860 (disk->rdev->saved_raid_disk < 0))
2861 conf->fullsync = 1;
2865 err = -ENOMEM;
2866 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2867 if (!conf->thread) {
2868 printk(KERN_ERR
2869 "md/raid1:%s: couldn't allocate thread\n",
2870 mdname(mddev));
2871 goto abort;
2874 return conf;
2876 abort:
2877 if (conf) {
2878 if (conf->r1bio_pool)
2879 mempool_destroy(conf->r1bio_pool);
2880 kfree(conf->mirrors);
2881 safe_put_page(conf->tmppage);
2882 kfree(conf->poolinfo);
2883 kfree(conf);
2885 return ERR_PTR(err);
2888 static int stop(struct mddev *mddev);
2889 static int run(struct mddev *mddev)
2891 struct r1conf *conf;
2892 int i;
2893 struct md_rdev *rdev;
2894 int ret;
2895 bool discard_supported = false;
2897 if (mddev->level != 1) {
2898 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2899 mdname(mddev), mddev->level);
2900 return -EIO;
2902 if (mddev->reshape_position != MaxSector) {
2903 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2904 mdname(mddev));
2905 return -EIO;
2908 * copy the already verified devices into our private RAID1
2909 * bookkeeping area. [whatever we allocate in run(),
2910 * should be freed in stop()]
2912 if (mddev->private == NULL)
2913 conf = setup_conf(mddev);
2914 else
2915 conf = mddev->private;
2917 if (IS_ERR(conf))
2918 return PTR_ERR(conf);
2920 if (mddev->queue)
2921 blk_queue_max_write_same_sectors(mddev->queue, 0);
2923 rdev_for_each(rdev, mddev) {
2924 if (!mddev->gendisk)
2925 continue;
2926 disk_stack_limits(mddev->gendisk, rdev->bdev,
2927 rdev->data_offset << 9);
2928 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2929 discard_supported = true;
2932 mddev->degraded = 0;
2933 for (i=0; i < conf->raid_disks; i++)
2934 if (conf->mirrors[i].rdev == NULL ||
2935 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2936 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2937 mddev->degraded++;
2939 if (conf->raid_disks - mddev->degraded == 1)
2940 mddev->recovery_cp = MaxSector;
2942 if (mddev->recovery_cp != MaxSector)
2943 printk(KERN_NOTICE "md/raid1:%s: not clean"
2944 " -- starting background reconstruction\n",
2945 mdname(mddev));
2946 printk(KERN_INFO
2947 "md/raid1:%s: active with %d out of %d mirrors\n",
2948 mdname(mddev), mddev->raid_disks - mddev->degraded,
2949 mddev->raid_disks);
2952 * Ok, everything is just fine now
2954 mddev->thread = conf->thread;
2955 conf->thread = NULL;
2956 mddev->private = conf;
2958 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2960 if (mddev->queue) {
2961 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2962 mddev->queue->backing_dev_info.congested_data = mddev;
2963 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2965 if (discard_supported)
2966 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2967 mddev->queue);
2968 else
2969 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2970 mddev->queue);
2973 ret = md_integrity_register(mddev);
2974 if (ret)
2975 stop(mddev);
2976 return ret;
2979 static int stop(struct mddev *mddev)
2981 struct r1conf *conf = mddev->private;
2982 struct bitmap *bitmap = mddev->bitmap;
2984 /* wait for behind writes to complete */
2985 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2986 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2987 mdname(mddev));
2988 /* need to kick something here to make sure I/O goes? */
2989 wait_event(bitmap->behind_wait,
2990 atomic_read(&bitmap->behind_writes) == 0);
2993 freeze_array(conf, 0);
2994 unfreeze_array(conf);
2996 md_unregister_thread(&mddev->thread);
2997 if (conf->r1bio_pool)
2998 mempool_destroy(conf->r1bio_pool);
2999 kfree(conf->mirrors);
3000 safe_put_page(conf->tmppage);
3001 kfree(conf->poolinfo);
3002 kfree(conf);
3003 mddev->private = NULL;
3004 return 0;
3007 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3009 /* no resync is happening, and there is enough space
3010 * on all devices, so we can resize.
3011 * We need to make sure resync covers any new space.
3012 * If the array is shrinking we should possibly wait until
3013 * any io in the removed space completes, but it hardly seems
3014 * worth it.
3016 sector_t newsize = raid1_size(mddev, sectors, 0);
3017 if (mddev->external_size &&
3018 mddev->array_sectors > newsize)
3019 return -EINVAL;
3020 if (mddev->bitmap) {
3021 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3022 if (ret)
3023 return ret;
3025 md_set_array_sectors(mddev, newsize);
3026 set_capacity(mddev->gendisk, mddev->array_sectors);
3027 revalidate_disk(mddev->gendisk);
3028 if (sectors > mddev->dev_sectors &&
3029 mddev->recovery_cp > mddev->dev_sectors) {
3030 mddev->recovery_cp = mddev->dev_sectors;
3031 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3033 mddev->dev_sectors = sectors;
3034 mddev->resync_max_sectors = sectors;
3035 return 0;
3038 static int raid1_reshape(struct mddev *mddev)
3040 /* We need to:
3041 * 1/ resize the r1bio_pool
3042 * 2/ resize conf->mirrors
3044 * We allocate a new r1bio_pool if we can.
3045 * Then raise a device barrier and wait until all IO stops.
3046 * Then resize conf->mirrors and swap in the new r1bio pool.
3048 * At the same time, we "pack" the devices so that all the missing
3049 * devices have the higher raid_disk numbers.
3051 mempool_t *newpool, *oldpool;
3052 struct pool_info *newpoolinfo;
3053 struct raid1_info *newmirrors;
3054 struct r1conf *conf = mddev->private;
3055 int cnt, raid_disks;
3056 unsigned long flags;
3057 int d, d2, err;
3059 /* Cannot change chunk_size, layout, or level */
3060 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3061 mddev->layout != mddev->new_layout ||
3062 mddev->level != mddev->new_level) {
3063 mddev->new_chunk_sectors = mddev->chunk_sectors;
3064 mddev->new_layout = mddev->layout;
3065 mddev->new_level = mddev->level;
3066 return -EINVAL;
3069 err = md_allow_write(mddev);
3070 if (err)
3071 return err;
3073 raid_disks = mddev->raid_disks + mddev->delta_disks;
3075 if (raid_disks < conf->raid_disks) {
3076 cnt=0;
3077 for (d= 0; d < conf->raid_disks; d++)
3078 if (conf->mirrors[d].rdev)
3079 cnt++;
3080 if (cnt > raid_disks)
3081 return -EBUSY;
3084 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3085 if (!newpoolinfo)
3086 return -ENOMEM;
3087 newpoolinfo->mddev = mddev;
3088 newpoolinfo->raid_disks = raid_disks * 2;
3090 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3091 r1bio_pool_free, newpoolinfo);
3092 if (!newpool) {
3093 kfree(newpoolinfo);
3094 return -ENOMEM;
3096 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3097 GFP_KERNEL);
3098 if (!newmirrors) {
3099 kfree(newpoolinfo);
3100 mempool_destroy(newpool);
3101 return -ENOMEM;
3104 freeze_array(conf, 0);
3106 /* ok, everything is stopped */
3107 oldpool = conf->r1bio_pool;
3108 conf->r1bio_pool = newpool;
3110 for (d = d2 = 0; d < conf->raid_disks; d++) {
3111 struct md_rdev *rdev = conf->mirrors[d].rdev;
3112 if (rdev && rdev->raid_disk != d2) {
3113 sysfs_unlink_rdev(mddev, rdev);
3114 rdev->raid_disk = d2;
3115 sysfs_unlink_rdev(mddev, rdev);
3116 if (sysfs_link_rdev(mddev, rdev))
3117 printk(KERN_WARNING
3118 "md/raid1:%s: cannot register rd%d\n",
3119 mdname(mddev), rdev->raid_disk);
3121 if (rdev)
3122 newmirrors[d2++].rdev = rdev;
3124 kfree(conf->mirrors);
3125 conf->mirrors = newmirrors;
3126 kfree(conf->poolinfo);
3127 conf->poolinfo = newpoolinfo;
3129 spin_lock_irqsave(&conf->device_lock, flags);
3130 mddev->degraded += (raid_disks - conf->raid_disks);
3131 spin_unlock_irqrestore(&conf->device_lock, flags);
3132 conf->raid_disks = mddev->raid_disks = raid_disks;
3133 mddev->delta_disks = 0;
3135 unfreeze_array(conf);
3137 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3138 md_wakeup_thread(mddev->thread);
3140 mempool_destroy(oldpool);
3141 return 0;
3144 static void raid1_quiesce(struct mddev *mddev, int state)
3146 struct r1conf *conf = mddev->private;
3148 switch(state) {
3149 case 2: /* wake for suspend */
3150 wake_up(&conf->wait_barrier);
3151 break;
3152 case 1:
3153 freeze_array(conf, 0);
3154 break;
3155 case 0:
3156 unfreeze_array(conf);
3157 break;
3161 static void *raid1_takeover(struct mddev *mddev)
3163 /* raid1 can take over:
3164 * raid5 with 2 devices, any layout or chunk size
3166 if (mddev->level == 5 && mddev->raid_disks == 2) {
3167 struct r1conf *conf;
3168 mddev->new_level = 1;
3169 mddev->new_layout = 0;
3170 mddev->new_chunk_sectors = 0;
3171 conf = setup_conf(mddev);
3172 if (!IS_ERR(conf))
3173 /* Array must appear to be quiesced */
3174 conf->array_frozen = 1;
3175 return conf;
3177 return ERR_PTR(-EINVAL);
3180 static struct md_personality raid1_personality =
3182 .name = "raid1",
3183 .level = 1,
3184 .owner = THIS_MODULE,
3185 .make_request = make_request,
3186 .run = run,
3187 .stop = stop,
3188 .status = status,
3189 .error_handler = error,
3190 .hot_add_disk = raid1_add_disk,
3191 .hot_remove_disk= raid1_remove_disk,
3192 .spare_active = raid1_spare_active,
3193 .sync_request = sync_request,
3194 .resize = raid1_resize,
3195 .size = raid1_size,
3196 .check_reshape = raid1_reshape,
3197 .quiesce = raid1_quiesce,
3198 .takeover = raid1_takeover,
3201 static int __init raid_init(void)
3203 return register_md_personality(&raid1_personality);
3206 static void raid_exit(void)
3208 unregister_md_personality(&raid1_personality);
3211 module_init(raid_init);
3212 module_exit(raid_exit);
3213 MODULE_LICENSE("GPL");
3214 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3215 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3216 MODULE_ALIAS("md-raid1");
3217 MODULE_ALIAS("md-level-1");
3219 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);