2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
67 static int max_queued_requests
= 1024;
69 static void allow_barrier(struct r1conf
*conf
, sector_t start_next_window
,
71 static void lower_barrier(struct r1conf
*conf
);
73 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
75 struct pool_info
*pi
= data
;
76 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size
, gfp_flags
);
82 static void r1bio_pool_free(void *r1_bio
, void *data
)
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
95 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
97 struct pool_info
*pi
= data
;
103 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
108 * Allocate bios : 1 for reading, n-1 for writing
110 for (j
= pi
->raid_disks
; j
-- ; ) {
111 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
114 r1_bio
->bios
[j
] = bio
;
117 * Allocate RESYNC_PAGES data pages and attach them to
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
122 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
123 need_pages
= pi
->raid_disks
;
126 for (j
= 0; j
< need_pages
; j
++) {
127 bio
= r1_bio
->bios
[j
];
128 bio
->bi_vcnt
= RESYNC_PAGES
;
130 if (bio_alloc_pages(bio
, gfp_flags
))
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
135 for (i
=0; i
<RESYNC_PAGES
; i
++)
136 for (j
=1; j
<pi
->raid_disks
; j
++)
137 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
138 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
141 r1_bio
->master_bio
= NULL
;
149 bio_for_each_segment_all(bv
, r1_bio
->bios
[j
], i
)
150 __free_page(bv
->bv_page
);
154 while (++j
< pi
->raid_disks
)
155 bio_put(r1_bio
->bios
[j
]);
156 r1bio_pool_free(r1_bio
, data
);
160 static void r1buf_pool_free(void *__r1_bio
, void *data
)
162 struct pool_info
*pi
= data
;
164 struct r1bio
*r1bio
= __r1_bio
;
166 for (i
= 0; i
< RESYNC_PAGES
; i
++)
167 for (j
= pi
->raid_disks
; j
-- ;) {
169 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
170 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
171 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
173 for (i
=0 ; i
< pi
->raid_disks
; i
++)
174 bio_put(r1bio
->bios
[i
]);
176 r1bio_pool_free(r1bio
, data
);
179 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
183 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
184 struct bio
**bio
= r1_bio
->bios
+ i
;
185 if (!BIO_SPECIAL(*bio
))
191 static void free_r1bio(struct r1bio
*r1_bio
)
193 struct r1conf
*conf
= r1_bio
->mddev
->private;
195 put_all_bios(conf
, r1_bio
);
196 mempool_free(r1_bio
, conf
->r1bio_pool
);
199 static void put_buf(struct r1bio
*r1_bio
)
201 struct r1conf
*conf
= r1_bio
->mddev
->private;
204 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
205 struct bio
*bio
= r1_bio
->bios
[i
];
207 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
210 mempool_free(r1_bio
, conf
->r1buf_pool
);
215 static void reschedule_retry(struct r1bio
*r1_bio
)
218 struct mddev
*mddev
= r1_bio
->mddev
;
219 struct r1conf
*conf
= mddev
->private;
221 spin_lock_irqsave(&conf
->device_lock
, flags
);
222 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
224 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
226 wake_up(&conf
->wait_barrier
);
227 md_wakeup_thread(mddev
->thread
);
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
235 static void call_bio_endio(struct r1bio
*r1_bio
)
237 struct bio
*bio
= r1_bio
->master_bio
;
239 struct r1conf
*conf
= r1_bio
->mddev
->private;
240 sector_t start_next_window
= r1_bio
->start_next_window
;
241 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
243 if (bio
->bi_phys_segments
) {
245 spin_lock_irqsave(&conf
->device_lock
, flags
);
246 bio
->bi_phys_segments
--;
247 done
= (bio
->bi_phys_segments
== 0);
248 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
253 wake_up(&conf
->wait_barrier
);
257 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
258 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
262 * Wake up any possible resync thread that waits for the device
265 allow_barrier(conf
, start_next_window
, bi_sector
);
269 static void raid_end_bio_io(struct r1bio
*r1_bio
)
271 struct bio
*bio
= r1_bio
->master_bio
;
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
277 (unsigned long long) bio
->bi_iter
.bi_sector
,
278 (unsigned long long) bio_end_sector(bio
) - 1);
280 call_bio_endio(r1_bio
);
286 * Update disk head position estimator based on IRQ completion info.
288 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
290 struct r1conf
*conf
= r1_bio
->mddev
->private;
292 conf
->mirrors
[disk
].head_position
=
293 r1_bio
->sector
+ (r1_bio
->sectors
);
297 * Find the disk number which triggered given bio
299 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
302 struct r1conf
*conf
= r1_bio
->mddev
->private;
303 int raid_disks
= conf
->raid_disks
;
305 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
306 if (r1_bio
->bios
[mirror
] == bio
)
309 BUG_ON(mirror
== raid_disks
* 2);
310 update_head_pos(mirror
, r1_bio
);
315 static void raid1_end_read_request(struct bio
*bio
, int error
)
317 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
318 struct r1bio
*r1_bio
= bio
->bi_private
;
320 struct r1conf
*conf
= r1_bio
->mddev
->private;
322 mirror
= r1_bio
->read_disk
;
324 * this branch is our 'one mirror IO has finished' event handler:
326 update_head_pos(mirror
, r1_bio
);
329 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
336 spin_lock_irqsave(&conf
->device_lock
, flags
);
337 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
338 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
339 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
)))
341 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
345 raid_end_bio_io(r1_bio
);
346 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
351 char b
[BDEVNAME_SIZE
];
353 KERN_ERR
"md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
356 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,
358 (unsigned long long)r1_bio
->sector
);
359 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
360 reschedule_retry(r1_bio
);
361 /* don't drop the reference on read_disk yet */
365 static void close_write(struct r1bio
*r1_bio
)
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
369 /* free extra copy of the data pages */
370 int i
= r1_bio
->behind_page_count
;
372 safe_put_page(r1_bio
->behind_bvecs
[i
].bv_page
);
373 kfree(r1_bio
->behind_bvecs
);
374 r1_bio
->behind_bvecs
= NULL
;
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
379 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
380 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
381 md_write_end(r1_bio
->mddev
);
384 static void r1_bio_write_done(struct r1bio
*r1_bio
)
386 if (!atomic_dec_and_test(&r1_bio
->remaining
))
389 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
390 reschedule_retry(r1_bio
);
393 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
394 reschedule_retry(r1_bio
);
396 raid_end_bio_io(r1_bio
);
400 static void raid1_end_write_request(struct bio
*bio
, int error
)
402 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
403 struct r1bio
*r1_bio
= bio
->bi_private
;
404 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
405 struct r1conf
*conf
= r1_bio
->mddev
->private;
406 struct bio
*to_put
= NULL
;
408 mirror
= find_bio_disk(r1_bio
, bio
);
411 * 'one mirror IO has finished' event handler:
414 set_bit(WriteErrorSeen
,
415 &conf
->mirrors
[mirror
].rdev
->flags
);
416 if (!test_and_set_bit(WantReplacement
,
417 &conf
->mirrors
[mirror
].rdev
->flags
))
418 set_bit(MD_RECOVERY_NEEDED
, &
419 conf
->mddev
->recovery
);
421 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
436 r1_bio
->bios
[mirror
] = NULL
;
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
446 if (test_bit(In_sync
, &conf
->mirrors
[mirror
].rdev
->flags
) &&
447 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
))
448 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf
->mirrors
[mirror
].rdev
,
452 r1_bio
->sector
, r1_bio
->sectors
,
453 &first_bad
, &bad_sectors
)) {
454 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
455 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
460 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
461 atomic_dec(&r1_bio
->behind_remaining
);
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
470 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
471 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
474 struct bio
*mbio
= r1_bio
->master_bio
;
475 pr_debug("raid1: behind end write sectors"
477 (unsigned long long) mbio
->bi_iter
.bi_sector
,
478 (unsigned long long) bio_end_sector(mbio
) - 1);
479 call_bio_endio(r1_bio
);
483 if (r1_bio
->bios
[mirror
] == NULL
)
484 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
,
488 * Let's see if all mirrored write operations have finished
491 r1_bio_write_done(r1_bio
);
499 * This routine returns the disk from which the requested read should
500 * be done. There is a per-array 'next expected sequential IO' sector
501 * number - if this matches on the next IO then we use the last disk.
502 * There is also a per-disk 'last know head position' sector that is
503 * maintained from IRQ contexts, both the normal and the resync IO
504 * completion handlers update this position correctly. If there is no
505 * perfect sequential match then we pick the disk whose head is closest.
507 * If there are 2 mirrors in the same 2 devices, performance degrades
508 * because position is mirror, not device based.
510 * The rdev for the device selected will have nr_pending incremented.
512 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
514 const sector_t this_sector
= r1_bio
->sector
;
516 int best_good_sectors
;
517 int best_disk
, best_dist_disk
, best_pending_disk
;
521 unsigned int min_pending
;
522 struct md_rdev
*rdev
;
524 int choose_next_idle
;
528 * Check if we can balance. We can balance on the whole
529 * device if no resync is going on, or below the resync window.
530 * We take the first readable disk when above the resync window.
533 sectors
= r1_bio
->sectors
;
536 best_dist
= MaxSector
;
537 best_pending_disk
= -1;
538 min_pending
= UINT_MAX
;
539 best_good_sectors
= 0;
541 choose_next_idle
= 0;
543 if (conf
->mddev
->recovery_cp
< MaxSector
&&
544 (this_sector
+ sectors
>= conf
->next_resync
))
549 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
553 unsigned int pending
;
556 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
557 if (r1_bio
->bios
[disk
] == IO_BLOCKED
559 || test_bit(Unmerged
, &rdev
->flags
)
560 || test_bit(Faulty
, &rdev
->flags
))
562 if (!test_bit(In_sync
, &rdev
->flags
) &&
563 rdev
->recovery_offset
< this_sector
+ sectors
)
565 if (test_bit(WriteMostly
, &rdev
->flags
)) {
566 /* Don't balance among write-mostly, just
567 * use the first as a last resort */
569 if (is_badblock(rdev
, this_sector
, sectors
,
570 &first_bad
, &bad_sectors
)) {
571 if (first_bad
< this_sector
)
572 /* Cannot use this */
574 best_good_sectors
= first_bad
- this_sector
;
576 best_good_sectors
= sectors
;
581 /* This is a reasonable device to use. It might
584 if (is_badblock(rdev
, this_sector
, sectors
,
585 &first_bad
, &bad_sectors
)) {
586 if (best_dist
< MaxSector
)
587 /* already have a better device */
589 if (first_bad
<= this_sector
) {
590 /* cannot read here. If this is the 'primary'
591 * device, then we must not read beyond
592 * bad_sectors from another device..
594 bad_sectors
-= (this_sector
- first_bad
);
595 if (choose_first
&& sectors
> bad_sectors
)
596 sectors
= bad_sectors
;
597 if (best_good_sectors
> sectors
)
598 best_good_sectors
= sectors
;
601 sector_t good_sectors
= first_bad
- this_sector
;
602 if (good_sectors
> best_good_sectors
) {
603 best_good_sectors
= good_sectors
;
611 best_good_sectors
= sectors
;
613 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
614 has_nonrot_disk
|= nonrot
;
615 pending
= atomic_read(&rdev
->nr_pending
);
616 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
621 /* Don't change to another disk for sequential reads */
622 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
624 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
625 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
629 * If buffered sequential IO size exceeds optimal
630 * iosize, check if there is idle disk. If yes, choose
631 * the idle disk. read_balance could already choose an
632 * idle disk before noticing it's a sequential IO in
633 * this disk. This doesn't matter because this disk
634 * will idle, next time it will be utilized after the
635 * first disk has IO size exceeds optimal iosize. In
636 * this way, iosize of the first disk will be optimal
637 * iosize at least. iosize of the second disk might be
638 * small, but not a big deal since when the second disk
639 * starts IO, the first disk is likely still busy.
641 if (nonrot
&& opt_iosize
> 0 &&
642 mirror
->seq_start
!= MaxSector
&&
643 mirror
->next_seq_sect
> opt_iosize
&&
644 mirror
->next_seq_sect
- opt_iosize
>=
646 choose_next_idle
= 1;
651 /* If device is idle, use it */
657 if (choose_next_idle
)
660 if (min_pending
> pending
) {
661 min_pending
= pending
;
662 best_pending_disk
= disk
;
665 if (dist
< best_dist
) {
667 best_dist_disk
= disk
;
672 * If all disks are rotational, choose the closest disk. If any disk is
673 * non-rotational, choose the disk with less pending request even the
674 * disk is rotational, which might/might not be optimal for raids with
675 * mixed ratation/non-rotational disks depending on workload.
677 if (best_disk
== -1) {
679 best_disk
= best_pending_disk
;
681 best_disk
= best_dist_disk
;
684 if (best_disk
>= 0) {
685 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
688 atomic_inc(&rdev
->nr_pending
);
689 if (test_bit(Faulty
, &rdev
->flags
)) {
690 /* cannot risk returning a device that failed
691 * before we inc'ed nr_pending
693 rdev_dec_pending(rdev
, conf
->mddev
);
696 sectors
= best_good_sectors
;
698 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
699 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
701 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
704 *max_sectors
= sectors
;
709 static int raid1_mergeable_bvec(struct request_queue
*q
,
710 struct bvec_merge_data
*bvm
,
711 struct bio_vec
*biovec
)
713 struct mddev
*mddev
= q
->queuedata
;
714 struct r1conf
*conf
= mddev
->private;
715 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
716 int max
= biovec
->bv_len
;
718 if (mddev
->merge_check_needed
) {
721 for (disk
= 0; disk
< conf
->raid_disks
* 2; disk
++) {
722 struct md_rdev
*rdev
= rcu_dereference(
723 conf
->mirrors
[disk
].rdev
);
724 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
725 struct request_queue
*q
=
726 bdev_get_queue(rdev
->bdev
);
727 if (q
->merge_bvec_fn
) {
728 bvm
->bi_sector
= sector
+
730 bvm
->bi_bdev
= rdev
->bdev
;
731 max
= min(max
, q
->merge_bvec_fn(
742 int md_raid1_congested(struct mddev
*mddev
, int bits
)
744 struct r1conf
*conf
= mddev
->private;
747 if ((bits
& (1 << BDI_async_congested
)) &&
748 conf
->pending_count
>= max_queued_requests
)
752 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
753 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
754 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
755 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
759 /* Note the '|| 1' - when read_balance prefers
760 * non-congested targets, it can be removed
762 if ((bits
& (1<<BDI_async_congested
)) || 1)
763 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
765 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
771 EXPORT_SYMBOL_GPL(md_raid1_congested
);
773 static int raid1_congested(void *data
, int bits
)
775 struct mddev
*mddev
= data
;
777 return mddev_congested(mddev
, bits
) ||
778 md_raid1_congested(mddev
, bits
);
781 static void flush_pending_writes(struct r1conf
*conf
)
783 /* Any writes that have been queued but are awaiting
784 * bitmap updates get flushed here.
786 spin_lock_irq(&conf
->device_lock
);
788 if (conf
->pending_bio_list
.head
) {
790 bio
= bio_list_get(&conf
->pending_bio_list
);
791 conf
->pending_count
= 0;
792 spin_unlock_irq(&conf
->device_lock
);
793 /* flush any pending bitmap writes to
794 * disk before proceeding w/ I/O */
795 bitmap_unplug(conf
->mddev
->bitmap
);
796 wake_up(&conf
->wait_barrier
);
798 while (bio
) { /* submit pending writes */
799 struct bio
*next
= bio
->bi_next
;
801 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
802 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
806 generic_make_request(bio
);
810 spin_unlock_irq(&conf
->device_lock
);
814 * Sometimes we need to suspend IO while we do something else,
815 * either some resync/recovery, or reconfigure the array.
816 * To do this we raise a 'barrier'.
817 * The 'barrier' is a counter that can be raised multiple times
818 * to count how many activities are happening which preclude
820 * We can only raise the barrier if there is no pending IO.
821 * i.e. if nr_pending == 0.
822 * We choose only to raise the barrier if no-one is waiting for the
823 * barrier to go down. This means that as soon as an IO request
824 * is ready, no other operations which require a barrier will start
825 * until the IO request has had a chance.
827 * So: regular IO calls 'wait_barrier'. When that returns there
828 * is no backgroup IO happening, It must arrange to call
829 * allow_barrier when it has finished its IO.
830 * backgroup IO calls must call raise_barrier. Once that returns
831 * there is no normal IO happeing. It must arrange to call
832 * lower_barrier when the particular background IO completes.
834 static void raise_barrier(struct r1conf
*conf
)
836 spin_lock_irq(&conf
->resync_lock
);
838 /* Wait until no block IO is waiting */
839 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
842 /* block any new IO from starting */
845 /* For these conditions we must wait:
846 * A: while the array is in frozen state
847 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
848 * the max count which allowed.
849 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
850 * next resync will reach to the window which normal bios are
853 wait_event_lock_irq(conf
->wait_barrier
,
854 !conf
->array_frozen
&&
855 conf
->barrier
< RESYNC_DEPTH
&&
856 (conf
->start_next_window
>=
857 conf
->next_resync
+ RESYNC_SECTORS
),
860 spin_unlock_irq(&conf
->resync_lock
);
863 static void lower_barrier(struct r1conf
*conf
)
866 BUG_ON(conf
->barrier
<= 0);
867 spin_lock_irqsave(&conf
->resync_lock
, flags
);
869 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
870 wake_up(&conf
->wait_barrier
);
873 static bool need_to_wait_for_sync(struct r1conf
*conf
, struct bio
*bio
)
877 if (conf
->array_frozen
|| !bio
)
879 else if (conf
->barrier
&& bio_data_dir(bio
) == WRITE
) {
880 if (conf
->next_resync
< RESYNC_WINDOW_SECTORS
)
882 else if ((conf
->next_resync
- RESYNC_WINDOW_SECTORS
883 >= bio_end_sector(bio
)) ||
884 (conf
->next_resync
+ NEXT_NORMALIO_DISTANCE
885 <= bio
->bi_iter
.bi_sector
))
894 static sector_t
wait_barrier(struct r1conf
*conf
, struct bio
*bio
)
898 spin_lock_irq(&conf
->resync_lock
);
899 if (need_to_wait_for_sync(conf
, bio
)) {
901 /* Wait for the barrier to drop.
902 * However if there are already pending
903 * requests (preventing the barrier from
904 * rising completely), and the
905 * pre-process bio queue isn't empty,
906 * then don't wait, as we need to empty
907 * that queue to get the nr_pending
910 wait_event_lock_irq(conf
->wait_barrier
,
911 !conf
->array_frozen
&&
913 ((conf
->start_next_window
<
914 conf
->next_resync
+ RESYNC_SECTORS
) &&
916 !bio_list_empty(current
->bio_list
))),
921 if (bio
&& bio_data_dir(bio
) == WRITE
) {
922 if (conf
->next_resync
+ NEXT_NORMALIO_DISTANCE
923 <= bio
->bi_iter
.bi_sector
) {
924 if (conf
->start_next_window
== MaxSector
)
925 conf
->start_next_window
=
927 NEXT_NORMALIO_DISTANCE
;
929 if ((conf
->start_next_window
+ NEXT_NORMALIO_DISTANCE
)
930 <= bio
->bi_iter
.bi_sector
)
931 conf
->next_window_requests
++;
933 conf
->current_window_requests
++;
934 sector
= conf
->start_next_window
;
939 spin_unlock_irq(&conf
->resync_lock
);
943 static void allow_barrier(struct r1conf
*conf
, sector_t start_next_window
,
948 spin_lock_irqsave(&conf
->resync_lock
, flags
);
950 if (start_next_window
) {
951 if (start_next_window
== conf
->start_next_window
) {
952 if (conf
->start_next_window
+ NEXT_NORMALIO_DISTANCE
954 conf
->next_window_requests
--;
956 conf
->current_window_requests
--;
958 conf
->current_window_requests
--;
960 if (!conf
->current_window_requests
) {
961 if (conf
->next_window_requests
) {
962 conf
->current_window_requests
=
963 conf
->next_window_requests
;
964 conf
->next_window_requests
= 0;
965 conf
->start_next_window
+=
966 NEXT_NORMALIO_DISTANCE
;
968 conf
->start_next_window
= MaxSector
;
971 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
972 wake_up(&conf
->wait_barrier
);
975 static void freeze_array(struct r1conf
*conf
, int extra
)
977 /* stop syncio and normal IO and wait for everything to
979 * We wait until nr_pending match nr_queued+extra
980 * This is called in the context of one normal IO request
981 * that has failed. Thus any sync request that might be pending
982 * will be blocked by nr_pending, and we need to wait for
983 * pending IO requests to complete or be queued for re-try.
984 * Thus the number queued (nr_queued) plus this request (extra)
985 * must match the number of pending IOs (nr_pending) before
988 spin_lock_irq(&conf
->resync_lock
);
989 conf
->array_frozen
= 1;
990 wait_event_lock_irq_cmd(conf
->wait_barrier
,
991 conf
->nr_pending
== conf
->nr_queued
+extra
,
993 flush_pending_writes(conf
));
994 spin_unlock_irq(&conf
->resync_lock
);
996 static void unfreeze_array(struct r1conf
*conf
)
998 /* reverse the effect of the freeze */
999 spin_lock_irq(&conf
->resync_lock
);
1000 conf
->array_frozen
= 0;
1001 wake_up(&conf
->wait_barrier
);
1002 spin_unlock_irq(&conf
->resync_lock
);
1006 /* duplicate the data pages for behind I/O
1008 static void alloc_behind_pages(struct bio
*bio
, struct r1bio
*r1_bio
)
1011 struct bio_vec
*bvec
;
1012 struct bio_vec
*bvecs
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
1014 if (unlikely(!bvecs
))
1017 bio_for_each_segment_all(bvec
, bio
, i
) {
1019 bvecs
[i
].bv_page
= alloc_page(GFP_NOIO
);
1020 if (unlikely(!bvecs
[i
].bv_page
))
1022 memcpy(kmap(bvecs
[i
].bv_page
) + bvec
->bv_offset
,
1023 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
1024 kunmap(bvecs
[i
].bv_page
);
1025 kunmap(bvec
->bv_page
);
1027 r1_bio
->behind_bvecs
= bvecs
;
1028 r1_bio
->behind_page_count
= bio
->bi_vcnt
;
1029 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
1033 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
1034 if (bvecs
[i
].bv_page
)
1035 put_page(bvecs
[i
].bv_page
);
1037 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1038 bio
->bi_iter
.bi_size
);
1041 struct raid1_plug_cb
{
1042 struct blk_plug_cb cb
;
1043 struct bio_list pending
;
1047 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1049 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
1051 struct mddev
*mddev
= plug
->cb
.data
;
1052 struct r1conf
*conf
= mddev
->private;
1055 if (from_schedule
|| current
->bio_list
) {
1056 spin_lock_irq(&conf
->device_lock
);
1057 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1058 conf
->pending_count
+= plug
->pending_cnt
;
1059 spin_unlock_irq(&conf
->device_lock
);
1060 wake_up(&conf
->wait_barrier
);
1061 md_wakeup_thread(mddev
->thread
);
1066 /* we aren't scheduling, so we can do the write-out directly. */
1067 bio
= bio_list_get(&plug
->pending
);
1068 bitmap_unplug(mddev
->bitmap
);
1069 wake_up(&conf
->wait_barrier
);
1071 while (bio
) { /* submit pending writes */
1072 struct bio
*next
= bio
->bi_next
;
1073 bio
->bi_next
= NULL
;
1074 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
1075 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
1076 /* Just ignore it */
1079 generic_make_request(bio
);
1085 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
1087 struct r1conf
*conf
= mddev
->private;
1088 struct raid1_info
*mirror
;
1089 struct r1bio
*r1_bio
;
1090 struct bio
*read_bio
;
1092 struct bitmap
*bitmap
;
1093 unsigned long flags
;
1094 const int rw
= bio_data_dir(bio
);
1095 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
1096 const unsigned long do_flush_fua
= (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
));
1097 const unsigned long do_discard
= (bio
->bi_rw
1098 & (REQ_DISCARD
| REQ_SECURE
));
1099 const unsigned long do_same
= (bio
->bi_rw
& REQ_WRITE_SAME
);
1100 struct md_rdev
*blocked_rdev
;
1101 struct blk_plug_cb
*cb
;
1102 struct raid1_plug_cb
*plug
= NULL
;
1104 int sectors_handled
;
1106 sector_t start_next_window
;
1109 * Register the new request and wait if the reconstruction
1110 * thread has put up a bar for new requests.
1111 * Continue immediately if no resync is active currently.
1114 md_write_start(mddev
, bio
); /* wait on superblock update early */
1116 if (bio_data_dir(bio
) == WRITE
&&
1117 bio_end_sector(bio
) > mddev
->suspend_lo
&&
1118 bio
->bi_iter
.bi_sector
< mddev
->suspend_hi
) {
1119 /* As the suspend_* range is controlled by
1120 * userspace, we want an interruptible
1125 flush_signals(current
);
1126 prepare_to_wait(&conf
->wait_barrier
,
1127 &w
, TASK_INTERRUPTIBLE
);
1128 if (bio_end_sector(bio
) <= mddev
->suspend_lo
||
1129 bio
->bi_iter
.bi_sector
>= mddev
->suspend_hi
)
1133 finish_wait(&conf
->wait_barrier
, &w
);
1136 start_next_window
= wait_barrier(conf
, bio
);
1138 bitmap
= mddev
->bitmap
;
1141 * make_request() can abort the operation when READA is being
1142 * used and no empty request is available.
1145 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1147 r1_bio
->master_bio
= bio
;
1148 r1_bio
->sectors
= bio_sectors(bio
);
1150 r1_bio
->mddev
= mddev
;
1151 r1_bio
->sector
= bio
->bi_iter
.bi_sector
;
1153 /* We might need to issue multiple reads to different
1154 * devices if there are bad blocks around, so we keep
1155 * track of the number of reads in bio->bi_phys_segments.
1156 * If this is 0, there is only one r1_bio and no locking
1157 * will be needed when requests complete. If it is
1158 * non-zero, then it is the number of not-completed requests.
1160 bio
->bi_phys_segments
= 0;
1161 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
1165 * read balancing logic:
1170 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1173 /* couldn't find anywhere to read from */
1174 raid_end_bio_io(r1_bio
);
1177 mirror
= conf
->mirrors
+ rdisk
;
1179 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1181 /* Reading from a write-mostly device must
1182 * take care not to over-take any writes
1185 wait_event(bitmap
->behind_wait
,
1186 atomic_read(&bitmap
->behind_writes
) == 0);
1188 r1_bio
->read_disk
= rdisk
;
1190 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1191 bio_trim(read_bio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
,
1194 r1_bio
->bios
[rdisk
] = read_bio
;
1196 read_bio
->bi_iter
.bi_sector
= r1_bio
->sector
+
1197 mirror
->rdev
->data_offset
;
1198 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
1199 read_bio
->bi_end_io
= raid1_end_read_request
;
1200 read_bio
->bi_rw
= READ
| do_sync
;
1201 read_bio
->bi_private
= r1_bio
;
1203 if (max_sectors
< r1_bio
->sectors
) {
1204 /* could not read all from this device, so we will
1205 * need another r1_bio.
1208 sectors_handled
= (r1_bio
->sector
+ max_sectors
1209 - bio
->bi_iter
.bi_sector
);
1210 r1_bio
->sectors
= max_sectors
;
1211 spin_lock_irq(&conf
->device_lock
);
1212 if (bio
->bi_phys_segments
== 0)
1213 bio
->bi_phys_segments
= 2;
1215 bio
->bi_phys_segments
++;
1216 spin_unlock_irq(&conf
->device_lock
);
1217 /* Cannot call generic_make_request directly
1218 * as that will be queued in __make_request
1219 * and subsequent mempool_alloc might block waiting
1220 * for it. So hand bio over to raid1d.
1222 reschedule_retry(r1_bio
);
1224 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1226 r1_bio
->master_bio
= bio
;
1227 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1229 r1_bio
->mddev
= mddev
;
1230 r1_bio
->sector
= bio
->bi_iter
.bi_sector
+
1234 generic_make_request(read_bio
);
1241 if (conf
->pending_count
>= max_queued_requests
) {
1242 md_wakeup_thread(mddev
->thread
);
1243 wait_event(conf
->wait_barrier
,
1244 conf
->pending_count
< max_queued_requests
);
1246 /* first select target devices under rcu_lock and
1247 * inc refcount on their rdev. Record them by setting
1249 * If there are known/acknowledged bad blocks on any device on
1250 * which we have seen a write error, we want to avoid writing those
1252 * This potentially requires several writes to write around
1253 * the bad blocks. Each set of writes gets it's own r1bio
1254 * with a set of bios attached.
1257 disks
= conf
->raid_disks
* 2;
1259 r1_bio
->start_next_window
= start_next_window
;
1260 blocked_rdev
= NULL
;
1262 max_sectors
= r1_bio
->sectors
;
1263 for (i
= 0; i
< disks
; i
++) {
1264 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1265 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1266 atomic_inc(&rdev
->nr_pending
);
1267 blocked_rdev
= rdev
;
1270 r1_bio
->bios
[i
] = NULL
;
1271 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)
1272 || test_bit(Unmerged
, &rdev
->flags
)) {
1273 if (i
< conf
->raid_disks
)
1274 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1278 atomic_inc(&rdev
->nr_pending
);
1279 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1284 is_bad
= is_badblock(rdev
, r1_bio
->sector
,
1286 &first_bad
, &bad_sectors
);
1288 /* mustn't write here until the bad block is
1290 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1291 blocked_rdev
= rdev
;
1294 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1295 /* Cannot write here at all */
1296 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1297 if (bad_sectors
< max_sectors
)
1298 /* mustn't write more than bad_sectors
1299 * to other devices yet
1301 max_sectors
= bad_sectors
;
1302 rdev_dec_pending(rdev
, mddev
);
1303 /* We don't set R1BIO_Degraded as that
1304 * only applies if the disk is
1305 * missing, so it might be re-added,
1306 * and we want to know to recover this
1308 * In this case the device is here,
1309 * and the fact that this chunk is not
1310 * in-sync is recorded in the bad
1316 int good_sectors
= first_bad
- r1_bio
->sector
;
1317 if (good_sectors
< max_sectors
)
1318 max_sectors
= good_sectors
;
1321 r1_bio
->bios
[i
] = bio
;
1325 if (unlikely(blocked_rdev
)) {
1326 /* Wait for this device to become unblocked */
1328 sector_t old
= start_next_window
;
1330 for (j
= 0; j
< i
; j
++)
1331 if (r1_bio
->bios
[j
])
1332 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1334 allow_barrier(conf
, start_next_window
, bio
->bi_iter
.bi_sector
);
1335 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1336 start_next_window
= wait_barrier(conf
, bio
);
1338 * We must make sure the multi r1bios of bio have
1339 * the same value of bi_phys_segments
1341 if (bio
->bi_phys_segments
&& old
&&
1342 old
!= start_next_window
)
1343 /* Wait for the former r1bio(s) to complete */
1344 wait_event(conf
->wait_barrier
,
1345 bio
->bi_phys_segments
== 1);
1349 if (max_sectors
< r1_bio
->sectors
) {
1350 /* We are splitting this write into multiple parts, so
1351 * we need to prepare for allocating another r1_bio.
1353 r1_bio
->sectors
= max_sectors
;
1354 spin_lock_irq(&conf
->device_lock
);
1355 if (bio
->bi_phys_segments
== 0)
1356 bio
->bi_phys_segments
= 2;
1358 bio
->bi_phys_segments
++;
1359 spin_unlock_irq(&conf
->device_lock
);
1361 sectors_handled
= r1_bio
->sector
+ max_sectors
- bio
->bi_iter
.bi_sector
;
1363 atomic_set(&r1_bio
->remaining
, 1);
1364 atomic_set(&r1_bio
->behind_remaining
, 0);
1367 for (i
= 0; i
< disks
; i
++) {
1369 if (!r1_bio
->bios
[i
])
1372 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1373 bio_trim(mbio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
, max_sectors
);
1377 * Not if there are too many, or cannot
1378 * allocate memory, or a reader on WriteMostly
1379 * is waiting for behind writes to flush */
1381 (atomic_read(&bitmap
->behind_writes
)
1382 < mddev
->bitmap_info
.max_write_behind
) &&
1383 !waitqueue_active(&bitmap
->behind_wait
))
1384 alloc_behind_pages(mbio
, r1_bio
);
1386 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1388 test_bit(R1BIO_BehindIO
,
1392 if (r1_bio
->behind_bvecs
) {
1393 struct bio_vec
*bvec
;
1397 * We trimmed the bio, so _all is legit
1399 bio_for_each_segment_all(bvec
, mbio
, j
)
1400 bvec
->bv_page
= r1_bio
->behind_bvecs
[j
].bv_page
;
1401 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1402 atomic_inc(&r1_bio
->behind_remaining
);
1405 r1_bio
->bios
[i
] = mbio
;
1407 mbio
->bi_iter
.bi_sector
= (r1_bio
->sector
+
1408 conf
->mirrors
[i
].rdev
->data_offset
);
1409 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1410 mbio
->bi_end_io
= raid1_end_write_request
;
1412 WRITE
| do_flush_fua
| do_sync
| do_discard
| do_same
;
1413 mbio
->bi_private
= r1_bio
;
1415 atomic_inc(&r1_bio
->remaining
);
1417 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1419 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1422 spin_lock_irqsave(&conf
->device_lock
, flags
);
1424 bio_list_add(&plug
->pending
, mbio
);
1425 plug
->pending_cnt
++;
1427 bio_list_add(&conf
->pending_bio_list
, mbio
);
1428 conf
->pending_count
++;
1430 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1432 md_wakeup_thread(mddev
->thread
);
1434 /* Mustn't call r1_bio_write_done before this next test,
1435 * as it could result in the bio being freed.
1437 if (sectors_handled
< bio_sectors(bio
)) {
1438 r1_bio_write_done(r1_bio
);
1439 /* We need another r1_bio. It has already been counted
1440 * in bio->bi_phys_segments
1442 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1443 r1_bio
->master_bio
= bio
;
1444 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1446 r1_bio
->mddev
= mddev
;
1447 r1_bio
->sector
= bio
->bi_iter
.bi_sector
+ sectors_handled
;
1451 r1_bio_write_done(r1_bio
);
1453 /* In case raid1d snuck in to freeze_array */
1454 wake_up(&conf
->wait_barrier
);
1457 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1459 struct r1conf
*conf
= mddev
->private;
1462 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1463 conf
->raid_disks
- mddev
->degraded
);
1465 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1466 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1467 seq_printf(seq
, "%s",
1468 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1471 seq_printf(seq
, "]");
1475 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1477 char b
[BDEVNAME_SIZE
];
1478 struct r1conf
*conf
= mddev
->private;
1481 * If it is not operational, then we have already marked it as dead
1482 * else if it is the last working disks, ignore the error, let the
1483 * next level up know.
1484 * else mark the drive as failed
1486 if (test_bit(In_sync
, &rdev
->flags
)
1487 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1489 * Don't fail the drive, act as though we were just a
1490 * normal single drive.
1491 * However don't try a recovery from this drive as
1492 * it is very likely to fail.
1494 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1497 set_bit(Blocked
, &rdev
->flags
);
1498 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1499 unsigned long flags
;
1500 spin_lock_irqsave(&conf
->device_lock
, flags
);
1502 set_bit(Faulty
, &rdev
->flags
);
1503 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1505 * if recovery is running, make sure it aborts.
1507 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1509 set_bit(Faulty
, &rdev
->flags
);
1510 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1512 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1513 "md/raid1:%s: Operation continuing on %d devices.\n",
1514 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1515 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1518 static void print_conf(struct r1conf
*conf
)
1522 printk(KERN_DEBUG
"RAID1 conf printout:\n");
1524 printk(KERN_DEBUG
"(!conf)\n");
1527 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1531 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1532 char b
[BDEVNAME_SIZE
];
1533 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1535 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1536 i
, !test_bit(In_sync
, &rdev
->flags
),
1537 !test_bit(Faulty
, &rdev
->flags
),
1538 bdevname(rdev
->bdev
,b
));
1543 static void close_sync(struct r1conf
*conf
)
1545 wait_barrier(conf
, NULL
);
1546 allow_barrier(conf
, 0, 0);
1548 mempool_destroy(conf
->r1buf_pool
);
1549 conf
->r1buf_pool
= NULL
;
1551 conf
->next_resync
= 0;
1552 conf
->start_next_window
= MaxSector
;
1555 static int raid1_spare_active(struct mddev
*mddev
)
1558 struct r1conf
*conf
= mddev
->private;
1560 unsigned long flags
;
1563 * Find all failed disks within the RAID1 configuration
1564 * and mark them readable.
1565 * Called under mddev lock, so rcu protection not needed.
1567 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1568 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1569 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1571 && repl
->recovery_offset
== MaxSector
1572 && !test_bit(Faulty
, &repl
->flags
)
1573 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1574 /* replacement has just become active */
1576 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1579 /* Replaced device not technically
1580 * faulty, but we need to be sure
1581 * it gets removed and never re-added
1583 set_bit(Faulty
, &rdev
->flags
);
1584 sysfs_notify_dirent_safe(
1589 && rdev
->recovery_offset
== MaxSector
1590 && !test_bit(Faulty
, &rdev
->flags
)
1591 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1593 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1596 spin_lock_irqsave(&conf
->device_lock
, flags
);
1597 mddev
->degraded
-= count
;
1598 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1605 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1607 struct r1conf
*conf
= mddev
->private;
1610 struct raid1_info
*p
;
1612 int last
= conf
->raid_disks
- 1;
1613 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
1615 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1618 if (rdev
->raid_disk
>= 0)
1619 first
= last
= rdev
->raid_disk
;
1621 if (q
->merge_bvec_fn
) {
1622 set_bit(Unmerged
, &rdev
->flags
);
1623 mddev
->merge_check_needed
= 1;
1626 for (mirror
= first
; mirror
<= last
; mirror
++) {
1627 p
= conf
->mirrors
+mirror
;
1631 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1632 rdev
->data_offset
<< 9);
1634 p
->head_position
= 0;
1635 rdev
->raid_disk
= mirror
;
1637 /* As all devices are equivalent, we don't need a full recovery
1638 * if this was recently any drive of the array
1640 if (rdev
->saved_raid_disk
< 0)
1642 rcu_assign_pointer(p
->rdev
, rdev
);
1645 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1646 p
[conf
->raid_disks
].rdev
== NULL
) {
1647 /* Add this device as a replacement */
1648 clear_bit(In_sync
, &rdev
->flags
);
1649 set_bit(Replacement
, &rdev
->flags
);
1650 rdev
->raid_disk
= mirror
;
1653 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1657 if (err
== 0 && test_bit(Unmerged
, &rdev
->flags
)) {
1658 /* Some requests might not have seen this new
1659 * merge_bvec_fn. We must wait for them to complete
1660 * before merging the device fully.
1661 * First we make sure any code which has tested
1662 * our function has submitted the request, then
1663 * we wait for all outstanding requests to complete.
1665 synchronize_sched();
1666 freeze_array(conf
, 0);
1667 unfreeze_array(conf
);
1668 clear_bit(Unmerged
, &rdev
->flags
);
1670 md_integrity_add_rdev(rdev
, mddev
);
1671 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1672 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1677 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1679 struct r1conf
*conf
= mddev
->private;
1681 int number
= rdev
->raid_disk
;
1682 struct raid1_info
*p
= conf
->mirrors
+ number
;
1684 if (rdev
!= p
->rdev
)
1685 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1688 if (rdev
== p
->rdev
) {
1689 if (test_bit(In_sync
, &rdev
->flags
) ||
1690 atomic_read(&rdev
->nr_pending
)) {
1694 /* Only remove non-faulty devices if recovery
1697 if (!test_bit(Faulty
, &rdev
->flags
) &&
1698 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1699 mddev
->degraded
< conf
->raid_disks
) {
1705 if (atomic_read(&rdev
->nr_pending
)) {
1706 /* lost the race, try later */
1710 } else if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1711 /* We just removed a device that is being replaced.
1712 * Move down the replacement. We drain all IO before
1713 * doing this to avoid confusion.
1715 struct md_rdev
*repl
=
1716 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1717 freeze_array(conf
, 0);
1718 clear_bit(Replacement
, &repl
->flags
);
1720 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1721 unfreeze_array(conf
);
1722 clear_bit(WantReplacement
, &rdev
->flags
);
1724 clear_bit(WantReplacement
, &rdev
->flags
);
1725 err
= md_integrity_register(mddev
);
1734 static void end_sync_read(struct bio
*bio
, int error
)
1736 struct r1bio
*r1_bio
= bio
->bi_private
;
1738 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1741 * we have read a block, now it needs to be re-written,
1742 * or re-read if the read failed.
1743 * We don't do much here, just schedule handling by raid1d
1745 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1746 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1748 if (atomic_dec_and_test(&r1_bio
->remaining
))
1749 reschedule_retry(r1_bio
);
1752 static void end_sync_write(struct bio
*bio
, int error
)
1754 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1755 struct r1bio
*r1_bio
= bio
->bi_private
;
1756 struct mddev
*mddev
= r1_bio
->mddev
;
1757 struct r1conf
*conf
= mddev
->private;
1762 mirror
= find_bio_disk(r1_bio
, bio
);
1765 sector_t sync_blocks
= 0;
1766 sector_t s
= r1_bio
->sector
;
1767 long sectors_to_go
= r1_bio
->sectors
;
1768 /* make sure these bits doesn't get cleared. */
1770 bitmap_end_sync(mddev
->bitmap
, s
,
1773 sectors_to_go
-= sync_blocks
;
1774 } while (sectors_to_go
> 0);
1775 set_bit(WriteErrorSeen
,
1776 &conf
->mirrors
[mirror
].rdev
->flags
);
1777 if (!test_and_set_bit(WantReplacement
,
1778 &conf
->mirrors
[mirror
].rdev
->flags
))
1779 set_bit(MD_RECOVERY_NEEDED
, &
1781 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1782 } else if (is_badblock(conf
->mirrors
[mirror
].rdev
,
1785 &first_bad
, &bad_sectors
) &&
1786 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1789 &first_bad
, &bad_sectors
)
1791 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1793 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1794 int s
= r1_bio
->sectors
;
1795 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1796 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1797 reschedule_retry(r1_bio
);
1800 md_done_sync(mddev
, s
, uptodate
);
1805 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1806 int sectors
, struct page
*page
, int rw
)
1808 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
1812 set_bit(WriteErrorSeen
, &rdev
->flags
);
1813 if (!test_and_set_bit(WantReplacement
,
1815 set_bit(MD_RECOVERY_NEEDED
, &
1816 rdev
->mddev
->recovery
);
1818 /* need to record an error - either for the block or the device */
1819 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1820 md_error(rdev
->mddev
, rdev
);
1824 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1826 /* Try some synchronous reads of other devices to get
1827 * good data, much like with normal read errors. Only
1828 * read into the pages we already have so we don't
1829 * need to re-issue the read request.
1830 * We don't need to freeze the array, because being in an
1831 * active sync request, there is no normal IO, and
1832 * no overlapping syncs.
1833 * We don't need to check is_badblock() again as we
1834 * made sure that anything with a bad block in range
1835 * will have bi_end_io clear.
1837 struct mddev
*mddev
= r1_bio
->mddev
;
1838 struct r1conf
*conf
= mddev
->private;
1839 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1840 sector_t sect
= r1_bio
->sector
;
1841 int sectors
= r1_bio
->sectors
;
1846 int d
= r1_bio
->read_disk
;
1848 struct md_rdev
*rdev
;
1851 if (s
> (PAGE_SIZE
>>9))
1854 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1855 /* No rcu protection needed here devices
1856 * can only be removed when no resync is
1857 * active, and resync is currently active
1859 rdev
= conf
->mirrors
[d
].rdev
;
1860 if (sync_page_io(rdev
, sect
, s
<<9,
1861 bio
->bi_io_vec
[idx
].bv_page
,
1868 if (d
== conf
->raid_disks
* 2)
1870 } while (!success
&& d
!= r1_bio
->read_disk
);
1873 char b
[BDEVNAME_SIZE
];
1875 /* Cannot read from anywhere, this block is lost.
1876 * Record a bad block on each device. If that doesn't
1877 * work just disable and interrupt the recovery.
1878 * Don't fail devices as that won't really help.
1880 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O read error"
1881 " for block %llu\n",
1883 bdevname(bio
->bi_bdev
, b
),
1884 (unsigned long long)r1_bio
->sector
);
1885 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
1886 rdev
= conf
->mirrors
[d
].rdev
;
1887 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1889 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1893 conf
->recovery_disabled
=
1894 mddev
->recovery_disabled
;
1895 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1896 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1908 /* write it back and re-read */
1909 while (d
!= r1_bio
->read_disk
) {
1911 d
= conf
->raid_disks
* 2;
1913 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1915 rdev
= conf
->mirrors
[d
].rdev
;
1916 if (r1_sync_page_io(rdev
, sect
, s
,
1917 bio
->bi_io_vec
[idx
].bv_page
,
1919 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
1920 rdev_dec_pending(rdev
, mddev
);
1924 while (d
!= r1_bio
->read_disk
) {
1926 d
= conf
->raid_disks
* 2;
1928 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1930 rdev
= conf
->mirrors
[d
].rdev
;
1931 if (r1_sync_page_io(rdev
, sect
, s
,
1932 bio
->bi_io_vec
[idx
].bv_page
,
1934 atomic_add(s
, &rdev
->corrected_errors
);
1940 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1941 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1945 static int process_checks(struct r1bio
*r1_bio
)
1947 /* We have read all readable devices. If we haven't
1948 * got the block, then there is no hope left.
1949 * If we have, then we want to do a comparison
1950 * and skip the write if everything is the same.
1951 * If any blocks failed to read, then we need to
1952 * attempt an over-write
1954 struct mddev
*mddev
= r1_bio
->mddev
;
1955 struct r1conf
*conf
= mddev
->private;
1960 /* Fix variable parts of all bios */
1961 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
1962 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1966 struct bio
*b
= r1_bio
->bios
[i
];
1967 if (b
->bi_end_io
!= end_sync_read
)
1969 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1970 uptodate
= test_bit(BIO_UPTODATE
, &b
->bi_flags
);
1973 clear_bit(BIO_UPTODATE
, &b
->bi_flags
);
1975 b
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
1976 b
->bi_iter
.bi_sector
= r1_bio
->sector
+
1977 conf
->mirrors
[i
].rdev
->data_offset
;
1978 b
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1979 b
->bi_end_io
= end_sync_read
;
1980 b
->bi_private
= r1_bio
;
1982 size
= b
->bi_iter
.bi_size
;
1983 for (j
= 0; j
< vcnt
; j
++) {
1985 bi
= &b
->bi_io_vec
[j
];
1987 if (size
> PAGE_SIZE
)
1988 bi
->bv_len
= PAGE_SIZE
;
1994 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
1995 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1996 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[primary
]->bi_flags
)) {
1997 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1998 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
2001 r1_bio
->read_disk
= primary
;
2002 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2004 struct bio
*pbio
= r1_bio
->bios
[primary
];
2005 struct bio
*sbio
= r1_bio
->bios
[i
];
2006 int uptodate
= test_bit(BIO_UPTODATE
, &sbio
->bi_flags
);
2008 if (sbio
->bi_end_io
!= end_sync_read
)
2010 /* Now we can 'fixup' the BIO_UPTODATE flag */
2011 set_bit(BIO_UPTODATE
, &sbio
->bi_flags
);
2014 for (j
= vcnt
; j
-- ; ) {
2016 p
= pbio
->bi_io_vec
[j
].bv_page
;
2017 s
= sbio
->bi_io_vec
[j
].bv_page
;
2018 if (memcmp(page_address(p
),
2020 sbio
->bi_io_vec
[j
].bv_len
))
2026 atomic64_add(r1_bio
->sectors
, &mddev
->resync_mismatches
);
2027 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
2029 /* No need to write to this device. */
2030 sbio
->bi_end_io
= NULL
;
2031 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
2035 bio_copy_data(sbio
, pbio
);
2040 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
2042 struct r1conf
*conf
= mddev
->private;
2044 int disks
= conf
->raid_disks
* 2;
2045 struct bio
*bio
, *wbio
;
2047 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2049 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
2050 /* ouch - failed to read all of that. */
2051 if (!fix_sync_read_error(r1_bio
))
2054 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2055 if (process_checks(r1_bio
) < 0)
2060 atomic_set(&r1_bio
->remaining
, 1);
2061 for (i
= 0; i
< disks
; i
++) {
2062 wbio
= r1_bio
->bios
[i
];
2063 if (wbio
->bi_end_io
== NULL
||
2064 (wbio
->bi_end_io
== end_sync_read
&&
2065 (i
== r1_bio
->read_disk
||
2066 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
2069 wbio
->bi_rw
= WRITE
;
2070 wbio
->bi_end_io
= end_sync_write
;
2071 atomic_inc(&r1_bio
->remaining
);
2072 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, bio_sectors(wbio
));
2074 generic_make_request(wbio
);
2077 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
2078 /* if we're here, all write(s) have completed, so clean up */
2079 int s
= r1_bio
->sectors
;
2080 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2081 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2082 reschedule_retry(r1_bio
);
2085 md_done_sync(mddev
, s
, 1);
2091 * This is a kernel thread which:
2093 * 1. Retries failed read operations on working mirrors.
2094 * 2. Updates the raid superblock when problems encounter.
2095 * 3. Performs writes following reads for array synchronising.
2098 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
2099 sector_t sect
, int sectors
)
2101 struct mddev
*mddev
= conf
->mddev
;
2107 struct md_rdev
*rdev
;
2109 if (s
> (PAGE_SIZE
>>9))
2113 /* Note: no rcu protection needed here
2114 * as this is synchronous in the raid1d thread
2115 * which is the thread that might remove
2116 * a device. If raid1d ever becomes multi-threaded....
2121 rdev
= conf
->mirrors
[d
].rdev
;
2123 (test_bit(In_sync
, &rdev
->flags
) ||
2124 (!test_bit(Faulty
, &rdev
->flags
) &&
2125 rdev
->recovery_offset
>= sect
+ s
)) &&
2126 is_badblock(rdev
, sect
, s
,
2127 &first_bad
, &bad_sectors
) == 0 &&
2128 sync_page_io(rdev
, sect
, s
<<9,
2129 conf
->tmppage
, READ
, false))
2133 if (d
== conf
->raid_disks
* 2)
2136 } while (!success
&& d
!= read_disk
);
2139 /* Cannot read from anywhere - mark it bad */
2140 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2141 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2142 md_error(mddev
, rdev
);
2145 /* write it back and re-read */
2147 while (d
!= read_disk
) {
2149 d
= conf
->raid_disks
* 2;
2151 rdev
= conf
->mirrors
[d
].rdev
;
2153 test_bit(In_sync
, &rdev
->flags
))
2154 r1_sync_page_io(rdev
, sect
, s
,
2155 conf
->tmppage
, WRITE
);
2158 while (d
!= read_disk
) {
2159 char b
[BDEVNAME_SIZE
];
2161 d
= conf
->raid_disks
* 2;
2163 rdev
= conf
->mirrors
[d
].rdev
;
2165 test_bit(In_sync
, &rdev
->flags
)) {
2166 if (r1_sync_page_io(rdev
, sect
, s
,
2167 conf
->tmppage
, READ
)) {
2168 atomic_add(s
, &rdev
->corrected_errors
);
2170 "md/raid1:%s: read error corrected "
2171 "(%d sectors at %llu on %s)\n",
2173 (unsigned long long)(sect
+
2175 bdevname(rdev
->bdev
, b
));
2184 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2186 struct mddev
*mddev
= r1_bio
->mddev
;
2187 struct r1conf
*conf
= mddev
->private;
2188 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2190 /* bio has the data to be written to device 'i' where
2191 * we just recently had a write error.
2192 * We repeatedly clone the bio and trim down to one block,
2193 * then try the write. Where the write fails we record
2195 * It is conceivable that the bio doesn't exactly align with
2196 * blocks. We must handle this somehow.
2198 * We currently own a reference on the rdev.
2204 int sect_to_write
= r1_bio
->sectors
;
2207 if (rdev
->badblocks
.shift
< 0)
2210 block_sectors
= 1 << rdev
->badblocks
.shift
;
2211 sector
= r1_bio
->sector
;
2212 sectors
= ((sector
+ block_sectors
)
2213 & ~(sector_t
)(block_sectors
- 1))
2216 while (sect_to_write
) {
2218 if (sectors
> sect_to_write
)
2219 sectors
= sect_to_write
;
2220 /* Write at 'sector' for 'sectors'*/
2222 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2223 unsigned vcnt
= r1_bio
->behind_page_count
;
2224 struct bio_vec
*vec
= r1_bio
->behind_bvecs
;
2226 while (!vec
->bv_page
) {
2231 wbio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, mddev
);
2232 memcpy(wbio
->bi_io_vec
, vec
, vcnt
* sizeof(struct bio_vec
));
2234 wbio
->bi_vcnt
= vcnt
;
2236 wbio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2239 wbio
->bi_rw
= WRITE
;
2240 wbio
->bi_iter
.bi_sector
= r1_bio
->sector
;
2241 wbio
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
2243 bio_trim(wbio
, sector
- r1_bio
->sector
, sectors
);
2244 wbio
->bi_iter
.bi_sector
+= rdev
->data_offset
;
2245 wbio
->bi_bdev
= rdev
->bdev
;
2246 if (submit_bio_wait(WRITE
, wbio
) == 0)
2248 ok
= rdev_set_badblocks(rdev
, sector
,
2253 sect_to_write
-= sectors
;
2255 sectors
= block_sectors
;
2260 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2263 int s
= r1_bio
->sectors
;
2264 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2265 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2266 struct bio
*bio
= r1_bio
->bios
[m
];
2267 if (bio
->bi_end_io
== NULL
)
2269 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
2270 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2271 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2273 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
2274 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2275 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2276 md_error(conf
->mddev
, rdev
);
2280 md_done_sync(conf
->mddev
, s
, 1);
2283 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2286 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2287 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2288 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2289 rdev_clear_badblocks(rdev
,
2291 r1_bio
->sectors
, 0);
2292 rdev_dec_pending(rdev
, conf
->mddev
);
2293 } else if (r1_bio
->bios
[m
] != NULL
) {
2294 /* This drive got a write error. We need to
2295 * narrow down and record precise write
2298 if (!narrow_write_error(r1_bio
, m
)) {
2299 md_error(conf
->mddev
,
2300 conf
->mirrors
[m
].rdev
);
2301 /* an I/O failed, we can't clear the bitmap */
2302 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2304 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2307 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2308 close_write(r1_bio
);
2309 raid_end_bio_io(r1_bio
);
2312 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2316 struct mddev
*mddev
= conf
->mddev
;
2318 char b
[BDEVNAME_SIZE
];
2319 struct md_rdev
*rdev
;
2321 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2322 /* we got a read error. Maybe the drive is bad. Maybe just
2323 * the block and we can fix it.
2324 * We freeze all other IO, and try reading the block from
2325 * other devices. When we find one, we re-write
2326 * and check it that fixes the read error.
2327 * This is all done synchronously while the array is
2330 if (mddev
->ro
== 0) {
2331 freeze_array(conf
, 1);
2332 fix_read_error(conf
, r1_bio
->read_disk
,
2333 r1_bio
->sector
, r1_bio
->sectors
);
2334 unfreeze_array(conf
);
2336 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
2337 rdev_dec_pending(conf
->mirrors
[r1_bio
->read_disk
].rdev
, conf
->mddev
);
2339 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2340 bdevname(bio
->bi_bdev
, b
);
2342 disk
= read_balance(conf
, r1_bio
, &max_sectors
);
2344 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O"
2345 " read error for block %llu\n",
2346 mdname(mddev
), b
, (unsigned long long)r1_bio
->sector
);
2347 raid_end_bio_io(r1_bio
);
2349 const unsigned long do_sync
2350 = r1_bio
->master_bio
->bi_rw
& REQ_SYNC
;
2352 r1_bio
->bios
[r1_bio
->read_disk
] =
2353 mddev
->ro
? IO_BLOCKED
: NULL
;
2356 r1_bio
->read_disk
= disk
;
2357 bio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2358 bio_trim(bio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
,
2360 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
2361 rdev
= conf
->mirrors
[disk
].rdev
;
2362 printk_ratelimited(KERN_ERR
2363 "md/raid1:%s: redirecting sector %llu"
2364 " to other mirror: %s\n",
2366 (unsigned long long)r1_bio
->sector
,
2367 bdevname(rdev
->bdev
, b
));
2368 bio
->bi_iter
.bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
2369 bio
->bi_bdev
= rdev
->bdev
;
2370 bio
->bi_end_io
= raid1_end_read_request
;
2371 bio
->bi_rw
= READ
| do_sync
;
2372 bio
->bi_private
= r1_bio
;
2373 if (max_sectors
< r1_bio
->sectors
) {
2374 /* Drat - have to split this up more */
2375 struct bio
*mbio
= r1_bio
->master_bio
;
2376 int sectors_handled
= (r1_bio
->sector
+ max_sectors
2377 - mbio
->bi_iter
.bi_sector
);
2378 r1_bio
->sectors
= max_sectors
;
2379 spin_lock_irq(&conf
->device_lock
);
2380 if (mbio
->bi_phys_segments
== 0)
2381 mbio
->bi_phys_segments
= 2;
2383 mbio
->bi_phys_segments
++;
2384 spin_unlock_irq(&conf
->device_lock
);
2385 generic_make_request(bio
);
2388 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
2390 r1_bio
->master_bio
= mbio
;
2391 r1_bio
->sectors
= bio_sectors(mbio
) - sectors_handled
;
2393 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
2394 r1_bio
->mddev
= mddev
;
2395 r1_bio
->sector
= mbio
->bi_iter
.bi_sector
+
2400 generic_make_request(bio
);
2404 static void raid1d(struct md_thread
*thread
)
2406 struct mddev
*mddev
= thread
->mddev
;
2407 struct r1bio
*r1_bio
;
2408 unsigned long flags
;
2409 struct r1conf
*conf
= mddev
->private;
2410 struct list_head
*head
= &conf
->retry_list
;
2411 struct blk_plug plug
;
2413 md_check_recovery(mddev
);
2415 blk_start_plug(&plug
);
2418 flush_pending_writes(conf
);
2420 spin_lock_irqsave(&conf
->device_lock
, flags
);
2421 if (list_empty(head
)) {
2422 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2425 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2426 list_del(head
->prev
);
2428 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2430 mddev
= r1_bio
->mddev
;
2431 conf
= mddev
->private;
2432 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2433 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2434 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2435 handle_sync_write_finished(conf
, r1_bio
);
2437 sync_request_write(mddev
, r1_bio
);
2438 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2439 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2440 handle_write_finished(conf
, r1_bio
);
2441 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2442 handle_read_error(conf
, r1_bio
);
2444 /* just a partial read to be scheduled from separate
2447 generic_make_request(r1_bio
->bios
[r1_bio
->read_disk
]);
2450 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2451 md_check_recovery(mddev
);
2453 blk_finish_plug(&plug
);
2457 static int init_resync(struct r1conf
*conf
)
2461 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2462 BUG_ON(conf
->r1buf_pool
);
2463 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2465 if (!conf
->r1buf_pool
)
2467 conf
->next_resync
= 0;
2472 * perform a "sync" on one "block"
2474 * We need to make sure that no normal I/O request - particularly write
2475 * requests - conflict with active sync requests.
2477 * This is achieved by tracking pending requests and a 'barrier' concept
2478 * that can be installed to exclude normal IO requests.
2481 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
2483 struct r1conf
*conf
= mddev
->private;
2484 struct r1bio
*r1_bio
;
2486 sector_t max_sector
, nr_sectors
;
2490 int write_targets
= 0, read_targets
= 0;
2491 sector_t sync_blocks
;
2492 int still_degraded
= 0;
2493 int good_sectors
= RESYNC_SECTORS
;
2494 int min_bad
= 0; /* number of sectors that are bad in all devices */
2496 if (!conf
->r1buf_pool
)
2497 if (init_resync(conf
))
2500 max_sector
= mddev
->dev_sectors
;
2501 if (sector_nr
>= max_sector
) {
2502 /* If we aborted, we need to abort the
2503 * sync on the 'current' bitmap chunk (there will
2504 * only be one in raid1 resync.
2505 * We can find the current addess in mddev->curr_resync
2507 if (mddev
->curr_resync
< max_sector
) /* aborted */
2508 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2510 else /* completed sync */
2513 bitmap_close_sync(mddev
->bitmap
);
2518 if (mddev
->bitmap
== NULL
&&
2519 mddev
->recovery_cp
== MaxSector
&&
2520 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2521 conf
->fullsync
== 0) {
2523 return max_sector
- sector_nr
;
2525 /* before building a request, check if we can skip these blocks..
2526 * This call the bitmap_start_sync doesn't actually record anything
2528 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2529 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2530 /* We can skip this block, and probably several more */
2535 * If there is non-resync activity waiting for a turn,
2536 * and resync is going fast enough,
2537 * then let it though before starting on this new sync request.
2539 if (!go_faster
&& conf
->nr_waiting
)
2540 msleep_interruptible(1000);
2542 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2543 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2544 raise_barrier(conf
);
2546 conf
->next_resync
= sector_nr
;
2550 * If we get a correctably read error during resync or recovery,
2551 * we might want to read from a different device. So we
2552 * flag all drives that could conceivably be read from for READ,
2553 * and any others (which will be non-In_sync devices) for WRITE.
2554 * If a read fails, we try reading from something else for which READ
2558 r1_bio
->mddev
= mddev
;
2559 r1_bio
->sector
= sector_nr
;
2561 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2563 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2564 struct md_rdev
*rdev
;
2565 bio
= r1_bio
->bios
[i
];
2568 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2570 test_bit(Faulty
, &rdev
->flags
)) {
2571 if (i
< conf
->raid_disks
)
2573 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2575 bio
->bi_end_io
= end_sync_write
;
2578 /* may need to read from here */
2579 sector_t first_bad
= MaxSector
;
2582 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2583 &first_bad
, &bad_sectors
)) {
2584 if (first_bad
> sector_nr
)
2585 good_sectors
= first_bad
- sector_nr
;
2587 bad_sectors
-= (sector_nr
- first_bad
);
2589 min_bad
> bad_sectors
)
2590 min_bad
= bad_sectors
;
2593 if (sector_nr
< first_bad
) {
2594 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2602 bio
->bi_end_io
= end_sync_read
;
2604 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2605 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2606 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2608 * The device is suitable for reading (InSync),
2609 * but has bad block(s) here. Let's try to correct them,
2610 * if we are doing resync or repair. Otherwise, leave
2611 * this device alone for this sync request.
2614 bio
->bi_end_io
= end_sync_write
;
2618 if (bio
->bi_end_io
) {
2619 atomic_inc(&rdev
->nr_pending
);
2620 bio
->bi_iter
.bi_sector
= sector_nr
+ rdev
->data_offset
;
2621 bio
->bi_bdev
= rdev
->bdev
;
2622 bio
->bi_private
= r1_bio
;
2628 r1_bio
->read_disk
= disk
;
2630 if (read_targets
== 0 && min_bad
> 0) {
2631 /* These sectors are bad on all InSync devices, so we
2632 * need to mark them bad on all write targets
2635 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2636 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2637 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2638 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2642 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2647 /* Cannot record the badblocks, so need to
2649 * If there are multiple read targets, could just
2650 * fail the really bad ones ???
2652 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2653 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2659 if (min_bad
> 0 && min_bad
< good_sectors
) {
2660 /* only resync enough to reach the next bad->good
2662 good_sectors
= min_bad
;
2665 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2666 /* extra read targets are also write targets */
2667 write_targets
+= read_targets
-1;
2669 if (write_targets
== 0 || read_targets
== 0) {
2670 /* There is nowhere to write, so all non-sync
2671 * drives must be failed - so we are finished
2675 max_sector
= sector_nr
+ min_bad
;
2676 rv
= max_sector
- sector_nr
;
2682 if (max_sector
> mddev
->resync_max
)
2683 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2684 if (max_sector
> sector_nr
+ good_sectors
)
2685 max_sector
= sector_nr
+ good_sectors
;
2690 int len
= PAGE_SIZE
;
2691 if (sector_nr
+ (len
>>9) > max_sector
)
2692 len
= (max_sector
- sector_nr
) << 9;
2695 if (sync_blocks
== 0) {
2696 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2697 &sync_blocks
, still_degraded
) &&
2699 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2701 BUG_ON(sync_blocks
< (PAGE_SIZE
>>9));
2702 if ((len
>> 9) > sync_blocks
)
2703 len
= sync_blocks
<<9;
2706 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2707 bio
= r1_bio
->bios
[i
];
2708 if (bio
->bi_end_io
) {
2709 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2710 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2712 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2715 bio
= r1_bio
->bios
[i
];
2716 if (bio
->bi_end_io
==NULL
)
2718 /* remove last page from this bio */
2720 bio
->bi_iter
.bi_size
-= len
;
2721 bio
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2727 nr_sectors
+= len
>>9;
2728 sector_nr
+= len
>>9;
2729 sync_blocks
-= (len
>>9);
2730 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
2732 r1_bio
->sectors
= nr_sectors
;
2734 /* For a user-requested sync, we read all readable devices and do a
2737 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2738 atomic_set(&r1_bio
->remaining
, read_targets
);
2739 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2740 bio
= r1_bio
->bios
[i
];
2741 if (bio
->bi_end_io
== end_sync_read
) {
2743 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2744 generic_make_request(bio
);
2748 atomic_set(&r1_bio
->remaining
, 1);
2749 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2750 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2751 generic_make_request(bio
);
2757 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2762 return mddev
->dev_sectors
;
2765 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2767 struct r1conf
*conf
;
2769 struct raid1_info
*disk
;
2770 struct md_rdev
*rdev
;
2773 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2777 conf
->mirrors
= kzalloc(sizeof(struct raid1_info
)
2778 * mddev
->raid_disks
* 2,
2783 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2787 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2788 if (!conf
->poolinfo
)
2790 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2791 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2794 if (!conf
->r1bio_pool
)
2797 conf
->poolinfo
->mddev
= mddev
;
2800 spin_lock_init(&conf
->device_lock
);
2801 rdev_for_each(rdev
, mddev
) {
2802 struct request_queue
*q
;
2803 int disk_idx
= rdev
->raid_disk
;
2804 if (disk_idx
>= mddev
->raid_disks
2807 if (test_bit(Replacement
, &rdev
->flags
))
2808 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
2810 disk
= conf
->mirrors
+ disk_idx
;
2815 q
= bdev_get_queue(rdev
->bdev
);
2816 if (q
->merge_bvec_fn
)
2817 mddev
->merge_check_needed
= 1;
2819 disk
->head_position
= 0;
2820 disk
->seq_start
= MaxSector
;
2822 conf
->raid_disks
= mddev
->raid_disks
;
2823 conf
->mddev
= mddev
;
2824 INIT_LIST_HEAD(&conf
->retry_list
);
2826 spin_lock_init(&conf
->resync_lock
);
2827 init_waitqueue_head(&conf
->wait_barrier
);
2829 bio_list_init(&conf
->pending_bio_list
);
2830 conf
->pending_count
= 0;
2831 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2833 conf
->start_next_window
= MaxSector
;
2834 conf
->current_window_requests
= conf
->next_window_requests
= 0;
2837 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2839 disk
= conf
->mirrors
+ i
;
2841 if (i
< conf
->raid_disks
&&
2842 disk
[conf
->raid_disks
].rdev
) {
2843 /* This slot has a replacement. */
2845 /* No original, just make the replacement
2846 * a recovering spare
2849 disk
[conf
->raid_disks
].rdev
;
2850 disk
[conf
->raid_disks
].rdev
= NULL
;
2851 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
2852 /* Original is not in_sync - bad */
2857 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2858 disk
->head_position
= 0;
2860 (disk
->rdev
->saved_raid_disk
< 0))
2866 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
2867 if (!conf
->thread
) {
2869 "md/raid1:%s: couldn't allocate thread\n",
2878 if (conf
->r1bio_pool
)
2879 mempool_destroy(conf
->r1bio_pool
);
2880 kfree(conf
->mirrors
);
2881 safe_put_page(conf
->tmppage
);
2882 kfree(conf
->poolinfo
);
2885 return ERR_PTR(err
);
2888 static int stop(struct mddev
*mddev
);
2889 static int run(struct mddev
*mddev
)
2891 struct r1conf
*conf
;
2893 struct md_rdev
*rdev
;
2895 bool discard_supported
= false;
2897 if (mddev
->level
!= 1) {
2898 printk(KERN_ERR
"md/raid1:%s: raid level not set to mirroring (%d)\n",
2899 mdname(mddev
), mddev
->level
);
2902 if (mddev
->reshape_position
!= MaxSector
) {
2903 printk(KERN_ERR
"md/raid1:%s: reshape_position set but not supported\n",
2908 * copy the already verified devices into our private RAID1
2909 * bookkeeping area. [whatever we allocate in run(),
2910 * should be freed in stop()]
2912 if (mddev
->private == NULL
)
2913 conf
= setup_conf(mddev
);
2915 conf
= mddev
->private;
2918 return PTR_ERR(conf
);
2921 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
2923 rdev_for_each(rdev
, mddev
) {
2924 if (!mddev
->gendisk
)
2926 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2927 rdev
->data_offset
<< 9);
2928 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
2929 discard_supported
= true;
2932 mddev
->degraded
= 0;
2933 for (i
=0; i
< conf
->raid_disks
; i
++)
2934 if (conf
->mirrors
[i
].rdev
== NULL
||
2935 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
2936 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2939 if (conf
->raid_disks
- mddev
->degraded
== 1)
2940 mddev
->recovery_cp
= MaxSector
;
2942 if (mddev
->recovery_cp
!= MaxSector
)
2943 printk(KERN_NOTICE
"md/raid1:%s: not clean"
2944 " -- starting background reconstruction\n",
2947 "md/raid1:%s: active with %d out of %d mirrors\n",
2948 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2952 * Ok, everything is just fine now
2954 mddev
->thread
= conf
->thread
;
2955 conf
->thread
= NULL
;
2956 mddev
->private = conf
;
2958 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2961 mddev
->queue
->backing_dev_info
.congested_fn
= raid1_congested
;
2962 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2963 blk_queue_merge_bvec(mddev
->queue
, raid1_mergeable_bvec
);
2965 if (discard_supported
)
2966 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
2969 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
2973 ret
= md_integrity_register(mddev
);
2979 static int stop(struct mddev
*mddev
)
2981 struct r1conf
*conf
= mddev
->private;
2982 struct bitmap
*bitmap
= mddev
->bitmap
;
2984 /* wait for behind writes to complete */
2985 if (bitmap
&& atomic_read(&bitmap
->behind_writes
) > 0) {
2986 printk(KERN_INFO
"md/raid1:%s: behind writes in progress - waiting to stop.\n",
2988 /* need to kick something here to make sure I/O goes? */
2989 wait_event(bitmap
->behind_wait
,
2990 atomic_read(&bitmap
->behind_writes
) == 0);
2993 freeze_array(conf
, 0);
2994 unfreeze_array(conf
);
2996 md_unregister_thread(&mddev
->thread
);
2997 if (conf
->r1bio_pool
)
2998 mempool_destroy(conf
->r1bio_pool
);
2999 kfree(conf
->mirrors
);
3000 safe_put_page(conf
->tmppage
);
3001 kfree(conf
->poolinfo
);
3003 mddev
->private = NULL
;
3007 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
3009 /* no resync is happening, and there is enough space
3010 * on all devices, so we can resize.
3011 * We need to make sure resync covers any new space.
3012 * If the array is shrinking we should possibly wait until
3013 * any io in the removed space completes, but it hardly seems
3016 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
3017 if (mddev
->external_size
&&
3018 mddev
->array_sectors
> newsize
)
3020 if (mddev
->bitmap
) {
3021 int ret
= bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
3025 md_set_array_sectors(mddev
, newsize
);
3026 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
3027 revalidate_disk(mddev
->gendisk
);
3028 if (sectors
> mddev
->dev_sectors
&&
3029 mddev
->recovery_cp
> mddev
->dev_sectors
) {
3030 mddev
->recovery_cp
= mddev
->dev_sectors
;
3031 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3033 mddev
->dev_sectors
= sectors
;
3034 mddev
->resync_max_sectors
= sectors
;
3038 static int raid1_reshape(struct mddev
*mddev
)
3041 * 1/ resize the r1bio_pool
3042 * 2/ resize conf->mirrors
3044 * We allocate a new r1bio_pool if we can.
3045 * Then raise a device barrier and wait until all IO stops.
3046 * Then resize conf->mirrors and swap in the new r1bio pool.
3048 * At the same time, we "pack" the devices so that all the missing
3049 * devices have the higher raid_disk numbers.
3051 mempool_t
*newpool
, *oldpool
;
3052 struct pool_info
*newpoolinfo
;
3053 struct raid1_info
*newmirrors
;
3054 struct r1conf
*conf
= mddev
->private;
3055 int cnt
, raid_disks
;
3056 unsigned long flags
;
3059 /* Cannot change chunk_size, layout, or level */
3060 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
3061 mddev
->layout
!= mddev
->new_layout
||
3062 mddev
->level
!= mddev
->new_level
) {
3063 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3064 mddev
->new_layout
= mddev
->layout
;
3065 mddev
->new_level
= mddev
->level
;
3069 err
= md_allow_write(mddev
);
3073 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3075 if (raid_disks
< conf
->raid_disks
) {
3077 for (d
= 0; d
< conf
->raid_disks
; d
++)
3078 if (conf
->mirrors
[d
].rdev
)
3080 if (cnt
> raid_disks
)
3084 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
3087 newpoolinfo
->mddev
= mddev
;
3088 newpoolinfo
->raid_disks
= raid_disks
* 2;
3090 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
3091 r1bio_pool_free
, newpoolinfo
);
3096 newmirrors
= kzalloc(sizeof(struct raid1_info
) * raid_disks
* 2,
3100 mempool_destroy(newpool
);
3104 freeze_array(conf
, 0);
3106 /* ok, everything is stopped */
3107 oldpool
= conf
->r1bio_pool
;
3108 conf
->r1bio_pool
= newpool
;
3110 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
3111 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
3112 if (rdev
&& rdev
->raid_disk
!= d2
) {
3113 sysfs_unlink_rdev(mddev
, rdev
);
3114 rdev
->raid_disk
= d2
;
3115 sysfs_unlink_rdev(mddev
, rdev
);
3116 if (sysfs_link_rdev(mddev
, rdev
))
3118 "md/raid1:%s: cannot register rd%d\n",
3119 mdname(mddev
), rdev
->raid_disk
);
3122 newmirrors
[d2
++].rdev
= rdev
;
3124 kfree(conf
->mirrors
);
3125 conf
->mirrors
= newmirrors
;
3126 kfree(conf
->poolinfo
);
3127 conf
->poolinfo
= newpoolinfo
;
3129 spin_lock_irqsave(&conf
->device_lock
, flags
);
3130 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3131 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3132 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3133 mddev
->delta_disks
= 0;
3135 unfreeze_array(conf
);
3137 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3138 md_wakeup_thread(mddev
->thread
);
3140 mempool_destroy(oldpool
);
3144 static void raid1_quiesce(struct mddev
*mddev
, int state
)
3146 struct r1conf
*conf
= mddev
->private;
3149 case 2: /* wake for suspend */
3150 wake_up(&conf
->wait_barrier
);
3153 freeze_array(conf
, 0);
3156 unfreeze_array(conf
);
3161 static void *raid1_takeover(struct mddev
*mddev
)
3163 /* raid1 can take over:
3164 * raid5 with 2 devices, any layout or chunk size
3166 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3167 struct r1conf
*conf
;
3168 mddev
->new_level
= 1;
3169 mddev
->new_layout
= 0;
3170 mddev
->new_chunk_sectors
= 0;
3171 conf
= setup_conf(mddev
);
3173 /* Array must appear to be quiesced */
3174 conf
->array_frozen
= 1;
3177 return ERR_PTR(-EINVAL
);
3180 static struct md_personality raid1_personality
=
3184 .owner
= THIS_MODULE
,
3185 .make_request
= make_request
,
3189 .error_handler
= error
,
3190 .hot_add_disk
= raid1_add_disk
,
3191 .hot_remove_disk
= raid1_remove_disk
,
3192 .spare_active
= raid1_spare_active
,
3193 .sync_request
= sync_request
,
3194 .resize
= raid1_resize
,
3196 .check_reshape
= raid1_reshape
,
3197 .quiesce
= raid1_quiesce
,
3198 .takeover
= raid1_takeover
,
3201 static int __init
raid_init(void)
3203 return register_md_personality(&raid1_personality
);
3206 static void raid_exit(void)
3208 unregister_md_personality(&raid1_personality
);
3211 module_init(raid_init
);
3212 module_exit(raid_exit
);
3213 MODULE_LICENSE("GPL");
3214 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3215 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3216 MODULE_ALIAS("md-raid1");
3217 MODULE_ALIAS("md-level-1");
3219 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);