2 * Core registration and callback routines for MTD
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/partitions.h>
47 * backing device capabilities for non-mappable devices (such as NAND flash)
48 * - permits private mappings, copies are taken of the data
50 static struct backing_dev_info mtd_bdi_unmappable
= {
51 .capabilities
= BDI_CAP_MAP_COPY
,
55 * backing device capabilities for R/O mappable devices (such as ROM)
56 * - permits private mappings, copies are taken of the data
57 * - permits non-writable shared mappings
59 static struct backing_dev_info mtd_bdi_ro_mappable
= {
60 .capabilities
= (BDI_CAP_MAP_COPY
| BDI_CAP_MAP_DIRECT
|
61 BDI_CAP_EXEC_MAP
| BDI_CAP_READ_MAP
),
65 * backing device capabilities for writable mappable devices (such as RAM)
66 * - permits private mappings, copies are taken of the data
67 * - permits non-writable shared mappings
69 static struct backing_dev_info mtd_bdi_rw_mappable
= {
70 .capabilities
= (BDI_CAP_MAP_COPY
| BDI_CAP_MAP_DIRECT
|
71 BDI_CAP_EXEC_MAP
| BDI_CAP_READ_MAP
|
75 static int mtd_cls_suspend(struct device
*dev
, pm_message_t state
);
76 static int mtd_cls_resume(struct device
*dev
);
78 static struct class mtd_class
= {
81 .suspend
= mtd_cls_suspend
,
82 .resume
= mtd_cls_resume
,
85 static DEFINE_IDR(mtd_idr
);
87 /* These are exported solely for the purpose of mtd_blkdevs.c. You
88 should not use them for _anything_ else */
89 DEFINE_MUTEX(mtd_table_mutex
);
90 EXPORT_SYMBOL_GPL(mtd_table_mutex
);
92 struct mtd_info
*__mtd_next_device(int i
)
94 return idr_get_next(&mtd_idr
, &i
);
96 EXPORT_SYMBOL_GPL(__mtd_next_device
);
98 static LIST_HEAD(mtd_notifiers
);
101 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
103 /* REVISIT once MTD uses the driver model better, whoever allocates
104 * the mtd_info will probably want to use the release() hook...
106 static void mtd_release(struct device
*dev
)
108 struct mtd_info __maybe_unused
*mtd
= dev_get_drvdata(dev
);
109 dev_t index
= MTD_DEVT(mtd
->index
);
111 /* remove /dev/mtdXro node if needed */
113 device_destroy(&mtd_class
, index
+ 1);
116 static int mtd_cls_suspend(struct device
*dev
, pm_message_t state
)
118 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
120 return mtd
? mtd_suspend(mtd
) : 0;
123 static int mtd_cls_resume(struct device
*dev
)
125 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
132 static ssize_t
mtd_type_show(struct device
*dev
,
133 struct device_attribute
*attr
, char *buf
)
135 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
160 case MTD_MLCNANDFLASH
:
167 return snprintf(buf
, PAGE_SIZE
, "%s\n", type
);
169 static DEVICE_ATTR(type
, S_IRUGO
, mtd_type_show
, NULL
);
171 static ssize_t
mtd_flags_show(struct device
*dev
,
172 struct device_attribute
*attr
, char *buf
)
174 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
176 return snprintf(buf
, PAGE_SIZE
, "0x%lx\n", (unsigned long)mtd
->flags
);
179 static DEVICE_ATTR(flags
, S_IRUGO
, mtd_flags_show
, NULL
);
181 static ssize_t
mtd_size_show(struct device
*dev
,
182 struct device_attribute
*attr
, char *buf
)
184 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
186 return snprintf(buf
, PAGE_SIZE
, "%llu\n",
187 (unsigned long long)mtd
->size
);
190 static DEVICE_ATTR(size
, S_IRUGO
, mtd_size_show
, NULL
);
192 static ssize_t
mtd_erasesize_show(struct device
*dev
,
193 struct device_attribute
*attr
, char *buf
)
195 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
197 return snprintf(buf
, PAGE_SIZE
, "%lu\n", (unsigned long)mtd
->erasesize
);
200 static DEVICE_ATTR(erasesize
, S_IRUGO
, mtd_erasesize_show
, NULL
);
202 static ssize_t
mtd_writesize_show(struct device
*dev
,
203 struct device_attribute
*attr
, char *buf
)
205 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
207 return snprintf(buf
, PAGE_SIZE
, "%lu\n", (unsigned long)mtd
->writesize
);
210 static DEVICE_ATTR(writesize
, S_IRUGO
, mtd_writesize_show
, NULL
);
212 static ssize_t
mtd_subpagesize_show(struct device
*dev
,
213 struct device_attribute
*attr
, char *buf
)
215 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
216 unsigned int subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
218 return snprintf(buf
, PAGE_SIZE
, "%u\n", subpagesize
);
221 static DEVICE_ATTR(subpagesize
, S_IRUGO
, mtd_subpagesize_show
, NULL
);
223 static ssize_t
mtd_oobsize_show(struct device
*dev
,
224 struct device_attribute
*attr
, char *buf
)
226 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
228 return snprintf(buf
, PAGE_SIZE
, "%lu\n", (unsigned long)mtd
->oobsize
);
231 static DEVICE_ATTR(oobsize
, S_IRUGO
, mtd_oobsize_show
, NULL
);
233 static ssize_t
mtd_numeraseregions_show(struct device
*dev
,
234 struct device_attribute
*attr
, char *buf
)
236 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
238 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->numeraseregions
);
241 static DEVICE_ATTR(numeraseregions
, S_IRUGO
, mtd_numeraseregions_show
,
244 static ssize_t
mtd_name_show(struct device
*dev
,
245 struct device_attribute
*attr
, char *buf
)
247 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
249 return snprintf(buf
, PAGE_SIZE
, "%s\n", mtd
->name
);
252 static DEVICE_ATTR(name
, S_IRUGO
, mtd_name_show
, NULL
);
254 static ssize_t
mtd_ecc_strength_show(struct device
*dev
,
255 struct device_attribute
*attr
, char *buf
)
257 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
259 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->ecc_strength
);
261 static DEVICE_ATTR(ecc_strength
, S_IRUGO
, mtd_ecc_strength_show
, NULL
);
263 static ssize_t
mtd_bitflip_threshold_show(struct device
*dev
,
264 struct device_attribute
*attr
,
267 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
269 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->bitflip_threshold
);
272 static ssize_t
mtd_bitflip_threshold_store(struct device
*dev
,
273 struct device_attribute
*attr
,
274 const char *buf
, size_t count
)
276 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
277 unsigned int bitflip_threshold
;
280 retval
= kstrtouint(buf
, 0, &bitflip_threshold
);
284 mtd
->bitflip_threshold
= bitflip_threshold
;
287 static DEVICE_ATTR(bitflip_threshold
, S_IRUGO
| S_IWUSR
,
288 mtd_bitflip_threshold_show
,
289 mtd_bitflip_threshold_store
);
291 static ssize_t
mtd_ecc_step_size_show(struct device
*dev
,
292 struct device_attribute
*attr
, char *buf
)
294 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
296 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->ecc_step_size
);
299 static DEVICE_ATTR(ecc_step_size
, S_IRUGO
, mtd_ecc_step_size_show
, NULL
);
301 static struct attribute
*mtd_attrs
[] = {
303 &dev_attr_flags
.attr
,
305 &dev_attr_erasesize
.attr
,
306 &dev_attr_writesize
.attr
,
307 &dev_attr_subpagesize
.attr
,
308 &dev_attr_oobsize
.attr
,
309 &dev_attr_numeraseregions
.attr
,
311 &dev_attr_ecc_strength
.attr
,
312 &dev_attr_ecc_step_size
.attr
,
313 &dev_attr_bitflip_threshold
.attr
,
316 ATTRIBUTE_GROUPS(mtd
);
318 static struct device_type mtd_devtype
= {
320 .groups
= mtd_groups
,
321 .release
= mtd_release
,
325 * add_mtd_device - register an MTD device
326 * @mtd: pointer to new MTD device info structure
328 * Add a device to the list of MTD devices present in the system, and
329 * notify each currently active MTD 'user' of its arrival. Returns
330 * zero on success or 1 on failure, which currently will only happen
331 * if there is insufficient memory or a sysfs error.
334 int add_mtd_device(struct mtd_info
*mtd
)
336 struct mtd_notifier
*not;
339 if (!mtd
->backing_dev_info
) {
342 mtd
->backing_dev_info
= &mtd_bdi_rw_mappable
;
345 mtd
->backing_dev_info
= &mtd_bdi_ro_mappable
;
348 mtd
->backing_dev_info
= &mtd_bdi_unmappable
;
353 BUG_ON(mtd
->writesize
== 0);
354 mutex_lock(&mtd_table_mutex
);
356 i
= idr_alloc(&mtd_idr
, mtd
, 0, 0, GFP_KERNEL
);
363 /* default value if not set by driver */
364 if (mtd
->bitflip_threshold
== 0)
365 mtd
->bitflip_threshold
= mtd
->ecc_strength
;
367 if (is_power_of_2(mtd
->erasesize
))
368 mtd
->erasesize_shift
= ffs(mtd
->erasesize
) - 1;
370 mtd
->erasesize_shift
= 0;
372 if (is_power_of_2(mtd
->writesize
))
373 mtd
->writesize_shift
= ffs(mtd
->writesize
) - 1;
375 mtd
->writesize_shift
= 0;
377 mtd
->erasesize_mask
= (1 << mtd
->erasesize_shift
) - 1;
378 mtd
->writesize_mask
= (1 << mtd
->writesize_shift
) - 1;
380 /* Some chips always power up locked. Unlock them now */
381 if ((mtd
->flags
& MTD_WRITEABLE
) && (mtd
->flags
& MTD_POWERUP_LOCK
)) {
382 error
= mtd_unlock(mtd
, 0, mtd
->size
);
383 if (error
&& error
!= -EOPNOTSUPP
)
385 "%s: unlock failed, writes may not work\n",
389 /* Caller should have set dev.parent to match the
392 mtd
->dev
.type
= &mtd_devtype
;
393 mtd
->dev
.class = &mtd_class
;
394 mtd
->dev
.devt
= MTD_DEVT(i
);
395 dev_set_name(&mtd
->dev
, "mtd%d", i
);
396 dev_set_drvdata(&mtd
->dev
, mtd
);
397 if (device_register(&mtd
->dev
) != 0)
401 device_create(&mtd_class
, mtd
->dev
.parent
,
405 pr_debug("mtd: Giving out device %d to %s\n", i
, mtd
->name
);
406 /* No need to get a refcount on the module containing
407 the notifier, since we hold the mtd_table_mutex */
408 list_for_each_entry(not, &mtd_notifiers
, list
)
411 mutex_unlock(&mtd_table_mutex
);
412 /* We _know_ we aren't being removed, because
413 our caller is still holding us here. So none
414 of this try_ nonsense, and no bitching about it
416 __module_get(THIS_MODULE
);
420 idr_remove(&mtd_idr
, i
);
422 mutex_unlock(&mtd_table_mutex
);
427 * del_mtd_device - unregister an MTD device
428 * @mtd: pointer to MTD device info structure
430 * Remove a device from the list of MTD devices present in the system,
431 * and notify each currently active MTD 'user' of its departure.
432 * Returns zero on success or 1 on failure, which currently will happen
433 * if the requested device does not appear to be present in the list.
436 int del_mtd_device(struct mtd_info
*mtd
)
439 struct mtd_notifier
*not;
441 mutex_lock(&mtd_table_mutex
);
443 if (idr_find(&mtd_idr
, mtd
->index
) != mtd
) {
448 /* No need to get a refcount on the module containing
449 the notifier, since we hold the mtd_table_mutex */
450 list_for_each_entry(not, &mtd_notifiers
, list
)
454 printk(KERN_NOTICE
"Removing MTD device #%d (%s) with use count %d\n",
455 mtd
->index
, mtd
->name
, mtd
->usecount
);
458 device_unregister(&mtd
->dev
);
460 idr_remove(&mtd_idr
, mtd
->index
);
462 module_put(THIS_MODULE
);
467 mutex_unlock(&mtd_table_mutex
);
472 * mtd_device_parse_register - parse partitions and register an MTD device.
474 * @mtd: the MTD device to register
475 * @types: the list of MTD partition probes to try, see
476 * 'parse_mtd_partitions()' for more information
477 * @parser_data: MTD partition parser-specific data
478 * @parts: fallback partition information to register, if parsing fails;
479 * only valid if %nr_parts > %0
480 * @nr_parts: the number of partitions in parts, if zero then the full
481 * MTD device is registered if no partition info is found
483 * This function aggregates MTD partitions parsing (done by
484 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
485 * basically follows the most common pattern found in many MTD drivers:
487 * * It first tries to probe partitions on MTD device @mtd using parsers
488 * specified in @types (if @types is %NULL, then the default list of parsers
489 * is used, see 'parse_mtd_partitions()' for more information). If none are
490 * found this functions tries to fallback to information specified in
492 * * If any partitioning info was found, this function registers the found
494 * * If no partitions were found this function just registers the MTD device
497 * Returns zero in case of success and a negative error code in case of failure.
499 int mtd_device_parse_register(struct mtd_info
*mtd
, const char * const *types
,
500 struct mtd_part_parser_data
*parser_data
,
501 const struct mtd_partition
*parts
,
505 struct mtd_partition
*real_parts
;
507 err
= parse_mtd_partitions(mtd
, types
, &real_parts
, parser_data
);
508 if (err
<= 0 && nr_parts
&& parts
) {
509 real_parts
= kmemdup(parts
, sizeof(*parts
) * nr_parts
,
518 err
= add_mtd_partitions(mtd
, real_parts
, err
);
520 } else if (err
== 0) {
521 err
= add_mtd_device(mtd
);
528 EXPORT_SYMBOL_GPL(mtd_device_parse_register
);
531 * mtd_device_unregister - unregister an existing MTD device.
533 * @master: the MTD device to unregister. This will unregister both the master
534 * and any partitions if registered.
536 int mtd_device_unregister(struct mtd_info
*master
)
540 err
= del_mtd_partitions(master
);
544 if (!device_is_registered(&master
->dev
))
547 return del_mtd_device(master
);
549 EXPORT_SYMBOL_GPL(mtd_device_unregister
);
552 * register_mtd_user - register a 'user' of MTD devices.
553 * @new: pointer to notifier info structure
555 * Registers a pair of callbacks function to be called upon addition
556 * or removal of MTD devices. Causes the 'add' callback to be immediately
557 * invoked for each MTD device currently present in the system.
559 void register_mtd_user (struct mtd_notifier
*new)
561 struct mtd_info
*mtd
;
563 mutex_lock(&mtd_table_mutex
);
565 list_add(&new->list
, &mtd_notifiers
);
567 __module_get(THIS_MODULE
);
569 mtd_for_each_device(mtd
)
572 mutex_unlock(&mtd_table_mutex
);
574 EXPORT_SYMBOL_GPL(register_mtd_user
);
577 * unregister_mtd_user - unregister a 'user' of MTD devices.
578 * @old: pointer to notifier info structure
580 * Removes a callback function pair from the list of 'users' to be
581 * notified upon addition or removal of MTD devices. Causes the
582 * 'remove' callback to be immediately invoked for each MTD device
583 * currently present in the system.
585 int unregister_mtd_user (struct mtd_notifier
*old
)
587 struct mtd_info
*mtd
;
589 mutex_lock(&mtd_table_mutex
);
591 module_put(THIS_MODULE
);
593 mtd_for_each_device(mtd
)
596 list_del(&old
->list
);
597 mutex_unlock(&mtd_table_mutex
);
600 EXPORT_SYMBOL_GPL(unregister_mtd_user
);
603 * get_mtd_device - obtain a validated handle for an MTD device
604 * @mtd: last known address of the required MTD device
605 * @num: internal device number of the required MTD device
607 * Given a number and NULL address, return the num'th entry in the device
608 * table, if any. Given an address and num == -1, search the device table
609 * for a device with that address and return if it's still present. Given
610 * both, return the num'th driver only if its address matches. Return
613 struct mtd_info
*get_mtd_device(struct mtd_info
*mtd
, int num
)
615 struct mtd_info
*ret
= NULL
, *other
;
618 mutex_lock(&mtd_table_mutex
);
621 mtd_for_each_device(other
) {
627 } else if (num
>= 0) {
628 ret
= idr_find(&mtd_idr
, num
);
629 if (mtd
&& mtd
!= ret
)
638 err
= __get_mtd_device(ret
);
642 mutex_unlock(&mtd_table_mutex
);
645 EXPORT_SYMBOL_GPL(get_mtd_device
);
648 int __get_mtd_device(struct mtd_info
*mtd
)
652 if (!try_module_get(mtd
->owner
))
655 if (mtd
->_get_device
) {
656 err
= mtd
->_get_device(mtd
);
659 module_put(mtd
->owner
);
666 EXPORT_SYMBOL_GPL(__get_mtd_device
);
669 * get_mtd_device_nm - obtain a validated handle for an MTD device by
671 * @name: MTD device name to open
673 * This function returns MTD device description structure in case of
674 * success and an error code in case of failure.
676 struct mtd_info
*get_mtd_device_nm(const char *name
)
679 struct mtd_info
*mtd
= NULL
, *other
;
681 mutex_lock(&mtd_table_mutex
);
683 mtd_for_each_device(other
) {
684 if (!strcmp(name
, other
->name
)) {
693 err
= __get_mtd_device(mtd
);
697 mutex_unlock(&mtd_table_mutex
);
701 mutex_unlock(&mtd_table_mutex
);
704 EXPORT_SYMBOL_GPL(get_mtd_device_nm
);
706 void put_mtd_device(struct mtd_info
*mtd
)
708 mutex_lock(&mtd_table_mutex
);
709 __put_mtd_device(mtd
);
710 mutex_unlock(&mtd_table_mutex
);
713 EXPORT_SYMBOL_GPL(put_mtd_device
);
715 void __put_mtd_device(struct mtd_info
*mtd
)
718 BUG_ON(mtd
->usecount
< 0);
720 if (mtd
->_put_device
)
721 mtd
->_put_device(mtd
);
723 module_put(mtd
->owner
);
725 EXPORT_SYMBOL_GPL(__put_mtd_device
);
728 * Erase is an asynchronous operation. Device drivers are supposed
729 * to call instr->callback() whenever the operation completes, even
730 * if it completes with a failure.
731 * Callers are supposed to pass a callback function and wait for it
732 * to be called before writing to the block.
734 int mtd_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
736 if (instr
->addr
> mtd
->size
|| instr
->len
> mtd
->size
- instr
->addr
)
738 if (!(mtd
->flags
& MTD_WRITEABLE
))
740 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
742 instr
->state
= MTD_ERASE_DONE
;
743 mtd_erase_callback(instr
);
746 return mtd
->_erase(mtd
, instr
);
748 EXPORT_SYMBOL_GPL(mtd_erase
);
751 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
753 int mtd_point(struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
,
754 void **virt
, resource_size_t
*phys
)
762 if (from
< 0 || from
> mtd
->size
|| len
> mtd
->size
- from
)
766 return mtd
->_point(mtd
, from
, len
, retlen
, virt
, phys
);
768 EXPORT_SYMBOL_GPL(mtd_point
);
770 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
771 int mtd_unpoint(struct mtd_info
*mtd
, loff_t from
, size_t len
)
775 if (from
< 0 || from
> mtd
->size
|| len
> mtd
->size
- from
)
779 return mtd
->_unpoint(mtd
, from
, len
);
781 EXPORT_SYMBOL_GPL(mtd_unpoint
);
784 * Allow NOMMU mmap() to directly map the device (if not NULL)
785 * - return the address to which the offset maps
786 * - return -ENOSYS to indicate refusal to do the mapping
788 unsigned long mtd_get_unmapped_area(struct mtd_info
*mtd
, unsigned long len
,
789 unsigned long offset
, unsigned long flags
)
791 if (!mtd
->_get_unmapped_area
)
793 if (offset
> mtd
->size
|| len
> mtd
->size
- offset
)
795 return mtd
->_get_unmapped_area(mtd
, len
, offset
, flags
);
797 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area
);
799 int mtd_read(struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
,
804 if (from
< 0 || from
> mtd
->size
|| len
> mtd
->size
- from
)
810 * In the absence of an error, drivers return a non-negative integer
811 * representing the maximum number of bitflips that were corrected on
812 * any one ecc region (if applicable; zero otherwise).
814 ret_code
= mtd
->_read(mtd
, from
, len
, retlen
, buf
);
815 if (unlikely(ret_code
< 0))
817 if (mtd
->ecc_strength
== 0)
818 return 0; /* device lacks ecc */
819 return ret_code
>= mtd
->bitflip_threshold
? -EUCLEAN
: 0;
821 EXPORT_SYMBOL_GPL(mtd_read
);
823 int mtd_write(struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
,
827 if (to
< 0 || to
> mtd
->size
|| len
> mtd
->size
- to
)
829 if (!mtd
->_write
|| !(mtd
->flags
& MTD_WRITEABLE
))
833 return mtd
->_write(mtd
, to
, len
, retlen
, buf
);
835 EXPORT_SYMBOL_GPL(mtd_write
);
838 * In blackbox flight recorder like scenarios we want to make successful writes
839 * in interrupt context. panic_write() is only intended to be called when its
840 * known the kernel is about to panic and we need the write to succeed. Since
841 * the kernel is not going to be running for much longer, this function can
842 * break locks and delay to ensure the write succeeds (but not sleep).
844 int mtd_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
,
848 if (!mtd
->_panic_write
)
850 if (to
< 0 || to
> mtd
->size
|| len
> mtd
->size
- to
)
852 if (!(mtd
->flags
& MTD_WRITEABLE
))
856 return mtd
->_panic_write(mtd
, to
, len
, retlen
, buf
);
858 EXPORT_SYMBOL_GPL(mtd_panic_write
);
860 int mtd_read_oob(struct mtd_info
*mtd
, loff_t from
, struct mtd_oob_ops
*ops
)
863 ops
->retlen
= ops
->oobretlen
= 0;
867 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
868 * similar to mtd->_read(), returning a non-negative integer
869 * representing max bitflips. In other cases, mtd->_read_oob() may
870 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
872 ret_code
= mtd
->_read_oob(mtd
, from
, ops
);
873 if (unlikely(ret_code
< 0))
875 if (mtd
->ecc_strength
== 0)
876 return 0; /* device lacks ecc */
877 return ret_code
>= mtd
->bitflip_threshold
? -EUCLEAN
: 0;
879 EXPORT_SYMBOL_GPL(mtd_read_oob
);
882 * Method to access the protection register area, present in some flash
883 * devices. The user data is one time programmable but the factory data is read
886 int mtd_get_fact_prot_info(struct mtd_info
*mtd
, size_t len
, size_t *retlen
,
887 struct otp_info
*buf
)
889 if (!mtd
->_get_fact_prot_info
)
893 return mtd
->_get_fact_prot_info(mtd
, len
, retlen
, buf
);
895 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info
);
897 int mtd_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
, size_t len
,
898 size_t *retlen
, u_char
*buf
)
901 if (!mtd
->_read_fact_prot_reg
)
905 return mtd
->_read_fact_prot_reg(mtd
, from
, len
, retlen
, buf
);
907 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg
);
909 int mtd_get_user_prot_info(struct mtd_info
*mtd
, size_t len
, size_t *retlen
,
910 struct otp_info
*buf
)
912 if (!mtd
->_get_user_prot_info
)
916 return mtd
->_get_user_prot_info(mtd
, len
, retlen
, buf
);
918 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info
);
920 int mtd_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
, size_t len
,
921 size_t *retlen
, u_char
*buf
)
924 if (!mtd
->_read_user_prot_reg
)
928 return mtd
->_read_user_prot_reg(mtd
, from
, len
, retlen
, buf
);
930 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg
);
932 int mtd_write_user_prot_reg(struct mtd_info
*mtd
, loff_t to
, size_t len
,
933 size_t *retlen
, u_char
*buf
)
938 if (!mtd
->_write_user_prot_reg
)
942 ret
= mtd
->_write_user_prot_reg(mtd
, to
, len
, retlen
, buf
);
947 * If no data could be written at all, we are out of memory and
948 * must return -ENOSPC.
950 return (*retlen
) ? 0 : -ENOSPC
;
952 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg
);
954 int mtd_lock_user_prot_reg(struct mtd_info
*mtd
, loff_t from
, size_t len
)
956 if (!mtd
->_lock_user_prot_reg
)
960 return mtd
->_lock_user_prot_reg(mtd
, from
, len
);
962 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg
);
964 /* Chip-supported device locking */
965 int mtd_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
969 if (ofs
< 0 || ofs
> mtd
->size
|| len
> mtd
->size
- ofs
)
973 return mtd
->_lock(mtd
, ofs
, len
);
975 EXPORT_SYMBOL_GPL(mtd_lock
);
977 int mtd_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
981 if (ofs
< 0 || ofs
> mtd
->size
|| len
> mtd
->size
- ofs
)
985 return mtd
->_unlock(mtd
, ofs
, len
);
987 EXPORT_SYMBOL_GPL(mtd_unlock
);
989 int mtd_is_locked(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
991 if (!mtd
->_is_locked
)
993 if (ofs
< 0 || ofs
> mtd
->size
|| len
> mtd
->size
- ofs
)
997 return mtd
->_is_locked(mtd
, ofs
, len
);
999 EXPORT_SYMBOL_GPL(mtd_is_locked
);
1001 int mtd_block_isbad(struct mtd_info
*mtd
, loff_t ofs
)
1003 if (!mtd
->_block_isbad
)
1005 if (ofs
< 0 || ofs
> mtd
->size
)
1007 return mtd
->_block_isbad(mtd
, ofs
);
1009 EXPORT_SYMBOL_GPL(mtd_block_isbad
);
1011 int mtd_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
1013 if (!mtd
->_block_markbad
)
1015 if (ofs
< 0 || ofs
> mtd
->size
)
1017 if (!(mtd
->flags
& MTD_WRITEABLE
))
1019 return mtd
->_block_markbad(mtd
, ofs
);
1021 EXPORT_SYMBOL_GPL(mtd_block_markbad
);
1024 * default_mtd_writev - the default writev method
1025 * @mtd: mtd device description object pointer
1026 * @vecs: the vectors to write
1027 * @count: count of vectors in @vecs
1028 * @to: the MTD device offset to write to
1029 * @retlen: on exit contains the count of bytes written to the MTD device.
1031 * This function returns zero in case of success and a negative error code in
1034 static int default_mtd_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
1035 unsigned long count
, loff_t to
, size_t *retlen
)
1038 size_t totlen
= 0, thislen
;
1041 for (i
= 0; i
< count
; i
++) {
1042 if (!vecs
[i
].iov_len
)
1044 ret
= mtd_write(mtd
, to
, vecs
[i
].iov_len
, &thislen
,
1047 if (ret
|| thislen
!= vecs
[i
].iov_len
)
1049 to
+= vecs
[i
].iov_len
;
1056 * mtd_writev - the vector-based MTD write method
1057 * @mtd: mtd device description object pointer
1058 * @vecs: the vectors to write
1059 * @count: count of vectors in @vecs
1060 * @to: the MTD device offset to write to
1061 * @retlen: on exit contains the count of bytes written to the MTD device.
1063 * This function returns zero in case of success and a negative error code in
1066 int mtd_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
1067 unsigned long count
, loff_t to
, size_t *retlen
)
1070 if (!(mtd
->flags
& MTD_WRITEABLE
))
1073 return default_mtd_writev(mtd
, vecs
, count
, to
, retlen
);
1074 return mtd
->_writev(mtd
, vecs
, count
, to
, retlen
);
1076 EXPORT_SYMBOL_GPL(mtd_writev
);
1079 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1080 * @mtd: mtd device description object pointer
1081 * @size: a pointer to the ideal or maximum size of the allocation, points
1082 * to the actual allocation size on success.
1084 * This routine attempts to allocate a contiguous kernel buffer up to
1085 * the specified size, backing off the size of the request exponentially
1086 * until the request succeeds or until the allocation size falls below
1087 * the system page size. This attempts to make sure it does not adversely
1088 * impact system performance, so when allocating more than one page, we
1089 * ask the memory allocator to avoid re-trying, swapping, writing back
1090 * or performing I/O.
1092 * Note, this function also makes sure that the allocated buffer is aligned to
1093 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1095 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1096 * to handle smaller (i.e. degraded) buffer allocations under low- or
1097 * fragmented-memory situations where such reduced allocations, from a
1098 * requested ideal, are allowed.
1100 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1102 void *mtd_kmalloc_up_to(const struct mtd_info
*mtd
, size_t *size
)
1104 gfp_t flags
= __GFP_NOWARN
| __GFP_WAIT
|
1105 __GFP_NORETRY
| __GFP_NO_KSWAPD
;
1106 size_t min_alloc
= max_t(size_t, mtd
->writesize
, PAGE_SIZE
);
1109 *size
= min_t(size_t, *size
, KMALLOC_MAX_SIZE
);
1111 while (*size
> min_alloc
) {
1112 kbuf
= kmalloc(*size
, flags
);
1117 *size
= ALIGN(*size
, mtd
->writesize
);
1121 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1122 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1124 return kmalloc(*size
, GFP_KERNEL
);
1126 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to
);
1128 #ifdef CONFIG_PROC_FS
1130 /*====================================================================*/
1131 /* Support for /proc/mtd */
1133 static int mtd_proc_show(struct seq_file
*m
, void *v
)
1135 struct mtd_info
*mtd
;
1137 seq_puts(m
, "dev: size erasesize name\n");
1138 mutex_lock(&mtd_table_mutex
);
1139 mtd_for_each_device(mtd
) {
1140 seq_printf(m
, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1141 mtd
->index
, (unsigned long long)mtd
->size
,
1142 mtd
->erasesize
, mtd
->name
);
1144 mutex_unlock(&mtd_table_mutex
);
1148 static int mtd_proc_open(struct inode
*inode
, struct file
*file
)
1150 return single_open(file
, mtd_proc_show
, NULL
);
1153 static const struct file_operations mtd_proc_ops
= {
1154 .open
= mtd_proc_open
,
1156 .llseek
= seq_lseek
,
1157 .release
= single_release
,
1159 #endif /* CONFIG_PROC_FS */
1161 /*====================================================================*/
1164 static int __init
mtd_bdi_init(struct backing_dev_info
*bdi
, const char *name
)
1168 ret
= bdi_init(bdi
);
1170 ret
= bdi_register(bdi
, NULL
, "%s", name
);
1178 static struct proc_dir_entry
*proc_mtd
;
1180 static int __init
init_mtd(void)
1184 ret
= class_register(&mtd_class
);
1188 ret
= mtd_bdi_init(&mtd_bdi_unmappable
, "mtd-unmap");
1192 ret
= mtd_bdi_init(&mtd_bdi_ro_mappable
, "mtd-romap");
1196 ret
= mtd_bdi_init(&mtd_bdi_rw_mappable
, "mtd-rwmap");
1200 proc_mtd
= proc_create("mtd", 0, NULL
, &mtd_proc_ops
);
1202 ret
= init_mtdchar();
1210 remove_proc_entry("mtd", NULL
);
1212 bdi_destroy(&mtd_bdi_ro_mappable
);
1214 bdi_destroy(&mtd_bdi_unmappable
);
1216 class_unregister(&mtd_class
);
1218 pr_err("Error registering mtd class or bdi: %d\n", ret
);
1222 static void __exit
cleanup_mtd(void)
1226 remove_proc_entry("mtd", NULL
);
1227 class_unregister(&mtd_class
);
1228 bdi_destroy(&mtd_bdi_unmappable
);
1229 bdi_destroy(&mtd_bdi_ro_mappable
);
1230 bdi_destroy(&mtd_bdi_rw_mappable
);
1233 module_init(init_mtd
);
1234 module_exit(cleanup_mtd
);
1236 MODULE_LICENSE("GPL");
1237 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1238 MODULE_DESCRIPTION("Core MTD registration and access routines");