5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
8 * Additional technical information is available on
9 * http://www.linux-mtd.infradead.org/doc/nand.html
11 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
12 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
15 * David Woodhouse for adding multichip support
17 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18 * rework for 2K page size chips
21 * Enable cached programming for 2k page size chips
22 * Check, if mtd->ecctype should be set to MTD_ECC_HW
23 * if we have HW ECC support.
24 * BBT table is not serialized, has to be fixed
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License version 2 as
28 * published by the Free Software Foundation.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
50 #include <linux/mtd/partitions.h>
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8
= {
63 static struct nand_ecclayout nand_oob_16
= {
65 .eccpos
= {0, 1, 2, 3, 6, 7},
71 static struct nand_ecclayout nand_oob_64
= {
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
82 static struct nand_ecclayout nand_oob_128
= {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
96 static int nand_get_device(struct mtd_info
*mtd
, int new_state
);
98 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
99 struct mtd_oob_ops
*ops
);
102 * For devices which display every fart in the system on a separate LED. Is
103 * compiled away when LED support is disabled.
105 DEFINE_LED_TRIGGER(nand_led_trigger
);
107 static int check_offs_len(struct mtd_info
*mtd
,
108 loff_t ofs
, uint64_t len
)
110 struct nand_chip
*chip
= mtd
->priv
;
113 /* Start address must align on block boundary */
114 if (ofs
& ((1ULL << chip
->phys_erase_shift
) - 1)) {
115 pr_debug("%s: unaligned address\n", __func__
);
119 /* Length must align on block boundary */
120 if (len
& ((1ULL << chip
->phys_erase_shift
) - 1)) {
121 pr_debug("%s: length not block aligned\n", __func__
);
129 * nand_release_device - [GENERIC] release chip
130 * @mtd: MTD device structure
132 * Release chip lock and wake up anyone waiting on the device.
134 static void nand_release_device(struct mtd_info
*mtd
)
136 struct nand_chip
*chip
= mtd
->priv
;
138 /* Release the controller and the chip */
139 spin_lock(&chip
->controller
->lock
);
140 chip
->controller
->active
= NULL
;
141 chip
->state
= FL_READY
;
142 wake_up(&chip
->controller
->wq
);
143 spin_unlock(&chip
->controller
->lock
);
147 * nand_read_byte - [DEFAULT] read one byte from the chip
148 * @mtd: MTD device structure
150 * Default read function for 8bit buswidth
152 static uint8_t nand_read_byte(struct mtd_info
*mtd
)
154 struct nand_chip
*chip
= mtd
->priv
;
155 return readb(chip
->IO_ADDR_R
);
159 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
160 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
161 * @mtd: MTD device structure
163 * Default read function for 16bit buswidth with endianness conversion.
166 static uint8_t nand_read_byte16(struct mtd_info
*mtd
)
168 struct nand_chip
*chip
= mtd
->priv
;
169 return (uint8_t) cpu_to_le16(readw(chip
->IO_ADDR_R
));
173 * nand_read_word - [DEFAULT] read one word from the chip
174 * @mtd: MTD device structure
176 * Default read function for 16bit buswidth without endianness conversion.
178 static u16
nand_read_word(struct mtd_info
*mtd
)
180 struct nand_chip
*chip
= mtd
->priv
;
181 return readw(chip
->IO_ADDR_R
);
185 * nand_select_chip - [DEFAULT] control CE line
186 * @mtd: MTD device structure
187 * @chipnr: chipnumber to select, -1 for deselect
189 * Default select function for 1 chip devices.
191 static void nand_select_chip(struct mtd_info
*mtd
, int chipnr
)
193 struct nand_chip
*chip
= mtd
->priv
;
197 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
208 * nand_write_byte - [DEFAULT] write single byte to chip
209 * @mtd: MTD device structure
210 * @byte: value to write
212 * Default function to write a byte to I/O[7:0]
214 static void nand_write_byte(struct mtd_info
*mtd
, uint8_t byte
)
216 struct nand_chip
*chip
= mtd
->priv
;
218 chip
->write_buf(mtd
, &byte
, 1);
222 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
223 * @mtd: MTD device structure
224 * @byte: value to write
226 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
228 static void nand_write_byte16(struct mtd_info
*mtd
, uint8_t byte
)
230 struct nand_chip
*chip
= mtd
->priv
;
231 uint16_t word
= byte
;
234 * It's not entirely clear what should happen to I/O[15:8] when writing
235 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
237 * When the host supports a 16-bit bus width, only data is
238 * transferred at the 16-bit width. All address and command line
239 * transfers shall use only the lower 8-bits of the data bus. During
240 * command transfers, the host may place any value on the upper
241 * 8-bits of the data bus. During address transfers, the host shall
242 * set the upper 8-bits of the data bus to 00h.
244 * One user of the write_byte callback is nand_onfi_set_features. The
245 * four parameters are specified to be written to I/O[7:0], but this is
246 * neither an address nor a command transfer. Let's assume a 0 on the
247 * upper I/O lines is OK.
249 chip
->write_buf(mtd
, (uint8_t *)&word
, 2);
253 * nand_write_buf - [DEFAULT] write buffer to chip
254 * @mtd: MTD device structure
256 * @len: number of bytes to write
258 * Default write function for 8bit buswidth.
260 static void nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
262 struct nand_chip
*chip
= mtd
->priv
;
264 iowrite8_rep(chip
->IO_ADDR_W
, buf
, len
);
268 * nand_read_buf - [DEFAULT] read chip data into buffer
269 * @mtd: MTD device structure
270 * @buf: buffer to store date
271 * @len: number of bytes to read
273 * Default read function for 8bit buswidth.
275 static void nand_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
277 struct nand_chip
*chip
= mtd
->priv
;
279 ioread8_rep(chip
->IO_ADDR_R
, buf
, len
);
283 * nand_write_buf16 - [DEFAULT] write buffer to chip
284 * @mtd: MTD device structure
286 * @len: number of bytes to write
288 * Default write function for 16bit buswidth.
290 static void nand_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
292 struct nand_chip
*chip
= mtd
->priv
;
293 u16
*p
= (u16
*) buf
;
295 iowrite16_rep(chip
->IO_ADDR_W
, p
, len
>> 1);
299 * nand_read_buf16 - [DEFAULT] read chip data into buffer
300 * @mtd: MTD device structure
301 * @buf: buffer to store date
302 * @len: number of bytes to read
304 * Default read function for 16bit buswidth.
306 static void nand_read_buf16(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
308 struct nand_chip
*chip
= mtd
->priv
;
309 u16
*p
= (u16
*) buf
;
311 ioread16_rep(chip
->IO_ADDR_R
, p
, len
>> 1);
315 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
316 * @mtd: MTD device structure
317 * @ofs: offset from device start
318 * @getchip: 0, if the chip is already selected
320 * Check, if the block is bad.
322 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
324 int page
, chipnr
, res
= 0, i
= 0;
325 struct nand_chip
*chip
= mtd
->priv
;
328 if (chip
->bbt_options
& NAND_BBT_SCANLASTPAGE
)
329 ofs
+= mtd
->erasesize
- mtd
->writesize
;
331 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
334 chipnr
= (int)(ofs
>> chip
->chip_shift
);
336 nand_get_device(mtd
, FL_READING
);
338 /* Select the NAND device */
339 chip
->select_chip(mtd
, chipnr
);
343 if (chip
->options
& NAND_BUSWIDTH_16
) {
344 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
,
345 chip
->badblockpos
& 0xFE, page
);
346 bad
= cpu_to_le16(chip
->read_word(mtd
));
347 if (chip
->badblockpos
& 0x1)
352 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
,
354 bad
= chip
->read_byte(mtd
);
357 if (likely(chip
->badblockbits
== 8))
360 res
= hweight8(bad
) < chip
->badblockbits
;
361 ofs
+= mtd
->writesize
;
362 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
364 } while (!res
&& i
< 2 && (chip
->bbt_options
& NAND_BBT_SCAN2NDPAGE
));
367 chip
->select_chip(mtd
, -1);
368 nand_release_device(mtd
);
375 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
376 * @mtd: MTD device structure
377 * @ofs: offset from device start
379 * This is the default implementation, which can be overridden by a hardware
380 * specific driver. It provides the details for writing a bad block marker to a
383 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
385 struct nand_chip
*chip
= mtd
->priv
;
386 struct mtd_oob_ops ops
;
387 uint8_t buf
[2] = { 0, 0 };
388 int ret
= 0, res
, i
= 0;
392 ops
.ooboffs
= chip
->badblockpos
;
393 if (chip
->options
& NAND_BUSWIDTH_16
) {
394 ops
.ooboffs
&= ~0x01;
395 ops
.len
= ops
.ooblen
= 2;
397 ops
.len
= ops
.ooblen
= 1;
399 ops
.mode
= MTD_OPS_PLACE_OOB
;
401 /* Write to first/last page(s) if necessary */
402 if (chip
->bbt_options
& NAND_BBT_SCANLASTPAGE
)
403 ofs
+= mtd
->erasesize
- mtd
->writesize
;
405 res
= nand_do_write_oob(mtd
, ofs
, &ops
);
410 ofs
+= mtd
->writesize
;
411 } while ((chip
->bbt_options
& NAND_BBT_SCAN2NDPAGE
) && i
< 2);
417 * nand_block_markbad_lowlevel - mark a block bad
418 * @mtd: MTD device structure
419 * @ofs: offset from device start
421 * This function performs the generic NAND bad block marking steps (i.e., bad
422 * block table(s) and/or marker(s)). We only allow the hardware driver to
423 * specify how to write bad block markers to OOB (chip->block_markbad).
425 * We try operations in the following order:
426 * (1) erase the affected block, to allow OOB marker to be written cleanly
427 * (2) write bad block marker to OOB area of affected block (unless flag
428 * NAND_BBT_NO_OOB_BBM is present)
430 * Note that we retain the first error encountered in (2) or (3), finish the
431 * procedures, and dump the error in the end.
433 static int nand_block_markbad_lowlevel(struct mtd_info
*mtd
, loff_t ofs
)
435 struct nand_chip
*chip
= mtd
->priv
;
438 if (!(chip
->bbt_options
& NAND_BBT_NO_OOB_BBM
)) {
439 struct erase_info einfo
;
441 /* Attempt erase before marking OOB */
442 memset(&einfo
, 0, sizeof(einfo
));
445 einfo
.len
= 1ULL << chip
->phys_erase_shift
;
446 nand_erase_nand(mtd
, &einfo
, 0);
448 /* Write bad block marker to OOB */
449 nand_get_device(mtd
, FL_WRITING
);
450 ret
= chip
->block_markbad(mtd
, ofs
);
451 nand_release_device(mtd
);
454 /* Mark block bad in BBT */
456 res
= nand_markbad_bbt(mtd
, ofs
);
462 mtd
->ecc_stats
.badblocks
++;
468 * nand_check_wp - [GENERIC] check if the chip is write protected
469 * @mtd: MTD device structure
471 * Check, if the device is write protected. The function expects, that the
472 * device is already selected.
474 static int nand_check_wp(struct mtd_info
*mtd
)
476 struct nand_chip
*chip
= mtd
->priv
;
478 /* Broken xD cards report WP despite being writable */
479 if (chip
->options
& NAND_BROKEN_XD
)
482 /* Check the WP bit */
483 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
484 return (chip
->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
488 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
489 * @mtd: MTD device structure
490 * @ofs: offset from device start
491 * @getchip: 0, if the chip is already selected
492 * @allowbbt: 1, if its allowed to access the bbt area
494 * Check, if the block is bad. Either by reading the bad block table or
495 * calling of the scan function.
497 static int nand_block_checkbad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
,
500 struct nand_chip
*chip
= mtd
->priv
;
503 return chip
->block_bad(mtd
, ofs
, getchip
);
505 /* Return info from the table */
506 return nand_isbad_bbt(mtd
, ofs
, allowbbt
);
510 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
511 * @mtd: MTD device structure
514 * Helper function for nand_wait_ready used when needing to wait in interrupt
517 static void panic_nand_wait_ready(struct mtd_info
*mtd
, unsigned long timeo
)
519 struct nand_chip
*chip
= mtd
->priv
;
522 /* Wait for the device to get ready */
523 for (i
= 0; i
< timeo
; i
++) {
524 if (chip
->dev_ready(mtd
))
526 touch_softlockup_watchdog();
531 /* Wait for the ready pin, after a command. The timeout is caught later. */
532 void nand_wait_ready(struct mtd_info
*mtd
)
534 struct nand_chip
*chip
= mtd
->priv
;
535 unsigned long timeo
= jiffies
+ msecs_to_jiffies(20);
538 if (in_interrupt() || oops_in_progress
)
539 return panic_nand_wait_ready(mtd
, 400);
541 led_trigger_event(nand_led_trigger
, LED_FULL
);
542 /* Wait until command is processed or timeout occurs */
544 if (chip
->dev_ready(mtd
))
546 touch_softlockup_watchdog();
547 } while (time_before(jiffies
, timeo
));
548 led_trigger_event(nand_led_trigger
, LED_OFF
);
550 EXPORT_SYMBOL_GPL(nand_wait_ready
);
553 * nand_command - [DEFAULT] Send command to NAND device
554 * @mtd: MTD device structure
555 * @command: the command to be sent
556 * @column: the column address for this command, -1 if none
557 * @page_addr: the page address for this command, -1 if none
559 * Send command to NAND device. This function is used for small page devices
560 * (512 Bytes per page).
562 static void nand_command(struct mtd_info
*mtd
, unsigned int command
,
563 int column
, int page_addr
)
565 register struct nand_chip
*chip
= mtd
->priv
;
566 int ctrl
= NAND_CTRL_CLE
| NAND_CTRL_CHANGE
;
568 /* Write out the command to the device */
569 if (command
== NAND_CMD_SEQIN
) {
572 if (column
>= mtd
->writesize
) {
574 column
-= mtd
->writesize
;
575 readcmd
= NAND_CMD_READOOB
;
576 } else if (column
< 256) {
577 /* First 256 bytes --> READ0 */
578 readcmd
= NAND_CMD_READ0
;
581 readcmd
= NAND_CMD_READ1
;
583 chip
->cmd_ctrl(mtd
, readcmd
, ctrl
);
584 ctrl
&= ~NAND_CTRL_CHANGE
;
586 chip
->cmd_ctrl(mtd
, command
, ctrl
);
588 /* Address cycle, when necessary */
589 ctrl
= NAND_CTRL_ALE
| NAND_CTRL_CHANGE
;
590 /* Serially input address */
592 /* Adjust columns for 16 bit buswidth */
593 if (chip
->options
& NAND_BUSWIDTH_16
&&
594 !nand_opcode_8bits(command
))
596 chip
->cmd_ctrl(mtd
, column
, ctrl
);
597 ctrl
&= ~NAND_CTRL_CHANGE
;
599 if (page_addr
!= -1) {
600 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
601 ctrl
&= ~NAND_CTRL_CHANGE
;
602 chip
->cmd_ctrl(mtd
, page_addr
>> 8, ctrl
);
603 /* One more address cycle for devices > 32MiB */
604 if (chip
->chipsize
> (32 << 20))
605 chip
->cmd_ctrl(mtd
, page_addr
>> 16, ctrl
);
607 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
610 * Program and erase have their own busy handlers status and sequential
615 case NAND_CMD_PAGEPROG
:
616 case NAND_CMD_ERASE1
:
617 case NAND_CMD_ERASE2
:
619 case NAND_CMD_STATUS
:
625 udelay(chip
->chip_delay
);
626 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
627 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
629 NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
630 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
))
634 /* This applies to read commands */
637 * If we don't have access to the busy pin, we apply the given
640 if (!chip
->dev_ready
) {
641 udelay(chip
->chip_delay
);
646 * Apply this short delay always to ensure that we do wait tWB in
647 * any case on any machine.
651 nand_wait_ready(mtd
);
655 * nand_command_lp - [DEFAULT] Send command to NAND large page device
656 * @mtd: MTD device structure
657 * @command: the command to be sent
658 * @column: the column address for this command, -1 if none
659 * @page_addr: the page address for this command, -1 if none
661 * Send command to NAND device. This is the version for the new large page
662 * devices. We don't have the separate regions as we have in the small page
663 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
665 static void nand_command_lp(struct mtd_info
*mtd
, unsigned int command
,
666 int column
, int page_addr
)
668 register struct nand_chip
*chip
= mtd
->priv
;
670 /* Emulate NAND_CMD_READOOB */
671 if (command
== NAND_CMD_READOOB
) {
672 column
+= mtd
->writesize
;
673 command
= NAND_CMD_READ0
;
676 /* Command latch cycle */
677 chip
->cmd_ctrl(mtd
, command
, NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
679 if (column
!= -1 || page_addr
!= -1) {
680 int ctrl
= NAND_CTRL_CHANGE
| NAND_NCE
| NAND_ALE
;
682 /* Serially input address */
684 /* Adjust columns for 16 bit buswidth */
685 if (chip
->options
& NAND_BUSWIDTH_16
&&
686 !nand_opcode_8bits(command
))
688 chip
->cmd_ctrl(mtd
, column
, ctrl
);
689 ctrl
&= ~NAND_CTRL_CHANGE
;
690 chip
->cmd_ctrl(mtd
, column
>> 8, ctrl
);
692 if (page_addr
!= -1) {
693 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
694 chip
->cmd_ctrl(mtd
, page_addr
>> 8,
695 NAND_NCE
| NAND_ALE
);
696 /* One more address cycle for devices > 128MiB */
697 if (chip
->chipsize
> (128 << 20))
698 chip
->cmd_ctrl(mtd
, page_addr
>> 16,
699 NAND_NCE
| NAND_ALE
);
702 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
705 * Program and erase have their own busy handlers status, sequential
706 * in, and deplete1 need no delay.
710 case NAND_CMD_CACHEDPROG
:
711 case NAND_CMD_PAGEPROG
:
712 case NAND_CMD_ERASE1
:
713 case NAND_CMD_ERASE2
:
716 case NAND_CMD_STATUS
:
722 udelay(chip
->chip_delay
);
723 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
724 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
725 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
726 NAND_NCE
| NAND_CTRL_CHANGE
);
727 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
))
731 case NAND_CMD_RNDOUT
:
732 /* No ready / busy check necessary */
733 chip
->cmd_ctrl(mtd
, NAND_CMD_RNDOUTSTART
,
734 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
735 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
736 NAND_NCE
| NAND_CTRL_CHANGE
);
740 chip
->cmd_ctrl(mtd
, NAND_CMD_READSTART
,
741 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
742 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
743 NAND_NCE
| NAND_CTRL_CHANGE
);
745 /* This applies to read commands */
748 * If we don't have access to the busy pin, we apply the given
751 if (!chip
->dev_ready
) {
752 udelay(chip
->chip_delay
);
758 * Apply this short delay always to ensure that we do wait tWB in
759 * any case on any machine.
763 nand_wait_ready(mtd
);
767 * panic_nand_get_device - [GENERIC] Get chip for selected access
768 * @chip: the nand chip descriptor
769 * @mtd: MTD device structure
770 * @new_state: the state which is requested
772 * Used when in panic, no locks are taken.
774 static void panic_nand_get_device(struct nand_chip
*chip
,
775 struct mtd_info
*mtd
, int new_state
)
777 /* Hardware controller shared among independent devices */
778 chip
->controller
->active
= chip
;
779 chip
->state
= new_state
;
783 * nand_get_device - [GENERIC] Get chip for selected access
784 * @mtd: MTD device structure
785 * @new_state: the state which is requested
787 * Get the device and lock it for exclusive access
790 nand_get_device(struct mtd_info
*mtd
, int new_state
)
792 struct nand_chip
*chip
= mtd
->priv
;
793 spinlock_t
*lock
= &chip
->controller
->lock
;
794 wait_queue_head_t
*wq
= &chip
->controller
->wq
;
795 DECLARE_WAITQUEUE(wait
, current
);
799 /* Hardware controller shared among independent devices */
800 if (!chip
->controller
->active
)
801 chip
->controller
->active
= chip
;
803 if (chip
->controller
->active
== chip
&& chip
->state
== FL_READY
) {
804 chip
->state
= new_state
;
808 if (new_state
== FL_PM_SUSPENDED
) {
809 if (chip
->controller
->active
->state
== FL_PM_SUSPENDED
) {
810 chip
->state
= FL_PM_SUSPENDED
;
815 set_current_state(TASK_UNINTERRUPTIBLE
);
816 add_wait_queue(wq
, &wait
);
819 remove_wait_queue(wq
, &wait
);
824 * panic_nand_wait - [GENERIC] wait until the command is done
825 * @mtd: MTD device structure
826 * @chip: NAND chip structure
829 * Wait for command done. This is a helper function for nand_wait used when
830 * we are in interrupt context. May happen when in panic and trying to write
831 * an oops through mtdoops.
833 static void panic_nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
,
837 for (i
= 0; i
< timeo
; i
++) {
838 if (chip
->dev_ready
) {
839 if (chip
->dev_ready(mtd
))
842 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
850 * nand_wait - [DEFAULT] wait until the command is done
851 * @mtd: MTD device structure
852 * @chip: NAND chip structure
854 * Wait for command done. This applies to erase and program only. Erase can
855 * take up to 400ms and program up to 20ms according to general NAND and
858 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
861 int status
, state
= chip
->state
;
862 unsigned long timeo
= (state
== FL_ERASING
? 400 : 20);
864 led_trigger_event(nand_led_trigger
, LED_FULL
);
867 * Apply this short delay always to ensure that we do wait tWB in any
868 * case on any machine.
872 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
874 if (in_interrupt() || oops_in_progress
)
875 panic_nand_wait(mtd
, chip
, timeo
);
877 timeo
= jiffies
+ msecs_to_jiffies(timeo
);
878 while (time_before(jiffies
, timeo
)) {
879 if (chip
->dev_ready
) {
880 if (chip
->dev_ready(mtd
))
883 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
889 led_trigger_event(nand_led_trigger
, LED_OFF
);
891 status
= (int)chip
->read_byte(mtd
);
892 /* This can happen if in case of timeout or buggy dev_ready */
893 WARN_ON(!(status
& NAND_STATUS_READY
));
898 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
900 * @ofs: offset to start unlock from
901 * @len: length to unlock
902 * @invert: when = 0, unlock the range of blocks within the lower and
903 * upper boundary address
904 * when = 1, unlock the range of blocks outside the boundaries
905 * of the lower and upper boundary address
907 * Returs unlock status.
909 static int __nand_unlock(struct mtd_info
*mtd
, loff_t ofs
,
910 uint64_t len
, int invert
)
914 struct nand_chip
*chip
= mtd
->priv
;
916 /* Submit address of first page to unlock */
917 page
= ofs
>> chip
->page_shift
;
918 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK1
, -1, page
& chip
->pagemask
);
920 /* Submit address of last page to unlock */
921 page
= (ofs
+ len
) >> chip
->page_shift
;
922 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK2
, -1,
923 (page
| invert
) & chip
->pagemask
);
925 /* Call wait ready function */
926 status
= chip
->waitfunc(mtd
, chip
);
927 /* See if device thinks it succeeded */
928 if (status
& NAND_STATUS_FAIL
) {
929 pr_debug("%s: error status = 0x%08x\n",
938 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
940 * @ofs: offset to start unlock from
941 * @len: length to unlock
943 * Returns unlock status.
945 int nand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
949 struct nand_chip
*chip
= mtd
->priv
;
951 pr_debug("%s: start = 0x%012llx, len = %llu\n",
952 __func__
, (unsigned long long)ofs
, len
);
954 if (check_offs_len(mtd
, ofs
, len
))
957 /* Align to last block address if size addresses end of the device */
958 if (ofs
+ len
== mtd
->size
)
959 len
-= mtd
->erasesize
;
961 nand_get_device(mtd
, FL_UNLOCKING
);
963 /* Shift to get chip number */
964 chipnr
= ofs
>> chip
->chip_shift
;
966 chip
->select_chip(mtd
, chipnr
);
968 /* Check, if it is write protected */
969 if (nand_check_wp(mtd
)) {
970 pr_debug("%s: device is write protected!\n",
976 ret
= __nand_unlock(mtd
, ofs
, len
, 0);
979 chip
->select_chip(mtd
, -1);
980 nand_release_device(mtd
);
984 EXPORT_SYMBOL(nand_unlock
);
987 * nand_lock - [REPLACEABLE] locks all blocks present in the device
989 * @ofs: offset to start unlock from
990 * @len: length to unlock
992 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
993 * have this feature, but it allows only to lock all blocks, not for specified
994 * range for block. Implementing 'lock' feature by making use of 'unlock', for
997 * Returns lock status.
999 int nand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1002 int chipnr
, status
, page
;
1003 struct nand_chip
*chip
= mtd
->priv
;
1005 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1006 __func__
, (unsigned long long)ofs
, len
);
1008 if (check_offs_len(mtd
, ofs
, len
))
1011 nand_get_device(mtd
, FL_LOCKING
);
1013 /* Shift to get chip number */
1014 chipnr
= ofs
>> chip
->chip_shift
;
1016 chip
->select_chip(mtd
, chipnr
);
1018 /* Check, if it is write protected */
1019 if (nand_check_wp(mtd
)) {
1020 pr_debug("%s: device is write protected!\n",
1022 status
= MTD_ERASE_FAILED
;
1027 /* Submit address of first page to lock */
1028 page
= ofs
>> chip
->page_shift
;
1029 chip
->cmdfunc(mtd
, NAND_CMD_LOCK
, -1, page
& chip
->pagemask
);
1031 /* Call wait ready function */
1032 status
= chip
->waitfunc(mtd
, chip
);
1033 /* See if device thinks it succeeded */
1034 if (status
& NAND_STATUS_FAIL
) {
1035 pr_debug("%s: error status = 0x%08x\n",
1041 ret
= __nand_unlock(mtd
, ofs
, len
, 0x1);
1044 chip
->select_chip(mtd
, -1);
1045 nand_release_device(mtd
);
1049 EXPORT_SYMBOL(nand_lock
);
1052 * nand_read_page_raw - [INTERN] read raw page data without ecc
1053 * @mtd: mtd info structure
1054 * @chip: nand chip info structure
1055 * @buf: buffer to store read data
1056 * @oob_required: caller requires OOB data read to chip->oob_poi
1057 * @page: page number to read
1059 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1061 static int nand_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1062 uint8_t *buf
, int oob_required
, int page
)
1064 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1066 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1071 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1072 * @mtd: mtd info structure
1073 * @chip: nand chip info structure
1074 * @buf: buffer to store read data
1075 * @oob_required: caller requires OOB data read to chip->oob_poi
1076 * @page: page number to read
1078 * We need a special oob layout and handling even when OOB isn't used.
1080 static int nand_read_page_raw_syndrome(struct mtd_info
*mtd
,
1081 struct nand_chip
*chip
, uint8_t *buf
,
1082 int oob_required
, int page
)
1084 int eccsize
= chip
->ecc
.size
;
1085 int eccbytes
= chip
->ecc
.bytes
;
1086 uint8_t *oob
= chip
->oob_poi
;
1089 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1090 chip
->read_buf(mtd
, buf
, eccsize
);
1093 if (chip
->ecc
.prepad
) {
1094 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1095 oob
+= chip
->ecc
.prepad
;
1098 chip
->read_buf(mtd
, oob
, eccbytes
);
1101 if (chip
->ecc
.postpad
) {
1102 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1103 oob
+= chip
->ecc
.postpad
;
1107 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1109 chip
->read_buf(mtd
, oob
, size
);
1115 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1116 * @mtd: mtd info structure
1117 * @chip: nand chip info structure
1118 * @buf: buffer to store read data
1119 * @oob_required: caller requires OOB data read to chip->oob_poi
1120 * @page: page number to read
1122 static int nand_read_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1123 uint8_t *buf
, int oob_required
, int page
)
1125 int i
, eccsize
= chip
->ecc
.size
;
1126 int eccbytes
= chip
->ecc
.bytes
;
1127 int eccsteps
= chip
->ecc
.steps
;
1129 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1130 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1131 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1132 unsigned int max_bitflips
= 0;
1134 chip
->ecc
.read_page_raw(mtd
, chip
, buf
, 1, page
);
1136 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1137 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1139 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1140 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1142 eccsteps
= chip
->ecc
.steps
;
1145 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1148 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1150 mtd
->ecc_stats
.failed
++;
1152 mtd
->ecc_stats
.corrected
+= stat
;
1153 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1156 return max_bitflips
;
1160 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1161 * @mtd: mtd info structure
1162 * @chip: nand chip info structure
1163 * @data_offs: offset of requested data within the page
1164 * @readlen: data length
1165 * @bufpoi: buffer to store read data
1166 * @page: page number to read
1168 static int nand_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1169 uint32_t data_offs
, uint32_t readlen
, uint8_t *bufpoi
,
1172 int start_step
, end_step
, num_steps
;
1173 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1175 int data_col_addr
, i
, gaps
= 0;
1176 int datafrag_len
, eccfrag_len
, aligned_len
, aligned_pos
;
1177 int busw
= (chip
->options
& NAND_BUSWIDTH_16
) ? 2 : 1;
1179 unsigned int max_bitflips
= 0;
1181 /* Column address within the page aligned to ECC size (256bytes) */
1182 start_step
= data_offs
/ chip
->ecc
.size
;
1183 end_step
= (data_offs
+ readlen
- 1) / chip
->ecc
.size
;
1184 num_steps
= end_step
- start_step
+ 1;
1185 index
= start_step
* chip
->ecc
.bytes
;
1187 /* Data size aligned to ECC ecc.size */
1188 datafrag_len
= num_steps
* chip
->ecc
.size
;
1189 eccfrag_len
= num_steps
* chip
->ecc
.bytes
;
1191 data_col_addr
= start_step
* chip
->ecc
.size
;
1192 /* If we read not a page aligned data */
1193 if (data_col_addr
!= 0)
1194 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, data_col_addr
, -1);
1196 p
= bufpoi
+ data_col_addr
;
1197 chip
->read_buf(mtd
, p
, datafrag_len
);
1200 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
)
1201 chip
->ecc
.calculate(mtd
, p
, &chip
->buffers
->ecccalc
[i
]);
1204 * The performance is faster if we position offsets according to
1205 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1207 for (i
= 0; i
< eccfrag_len
- 1; i
++) {
1208 if (eccpos
[i
+ index
] + 1 != eccpos
[i
+ index
+ 1]) {
1214 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
1215 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1218 * Send the command to read the particular ECC bytes take care
1219 * about buswidth alignment in read_buf.
1221 aligned_pos
= eccpos
[index
] & ~(busw
- 1);
1222 aligned_len
= eccfrag_len
;
1223 if (eccpos
[index
] & (busw
- 1))
1225 if (eccpos
[index
+ (num_steps
* chip
->ecc
.bytes
)] & (busw
- 1))
1228 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
1229 mtd
->writesize
+ aligned_pos
, -1);
1230 chip
->read_buf(mtd
, &chip
->oob_poi
[aligned_pos
], aligned_len
);
1233 for (i
= 0; i
< eccfrag_len
; i
++)
1234 chip
->buffers
->ecccode
[i
] = chip
->oob_poi
[eccpos
[i
+ index
]];
1236 p
= bufpoi
+ data_col_addr
;
1237 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
) {
1240 stat
= chip
->ecc
.correct(mtd
, p
,
1241 &chip
->buffers
->ecccode
[i
], &chip
->buffers
->ecccalc
[i
]);
1243 mtd
->ecc_stats
.failed
++;
1245 mtd
->ecc_stats
.corrected
+= stat
;
1246 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1249 return max_bitflips
;
1253 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1254 * @mtd: mtd info structure
1255 * @chip: nand chip info structure
1256 * @buf: buffer to store read data
1257 * @oob_required: caller requires OOB data read to chip->oob_poi
1258 * @page: page number to read
1260 * Not for syndrome calculating ECC controllers which need a special oob layout.
1262 static int nand_read_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1263 uint8_t *buf
, int oob_required
, int page
)
1265 int i
, eccsize
= chip
->ecc
.size
;
1266 int eccbytes
= chip
->ecc
.bytes
;
1267 int eccsteps
= chip
->ecc
.steps
;
1269 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1270 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1271 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1272 unsigned int max_bitflips
= 0;
1274 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1275 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1276 chip
->read_buf(mtd
, p
, eccsize
);
1277 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1279 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1281 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1282 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1284 eccsteps
= chip
->ecc
.steps
;
1287 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1290 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1292 mtd
->ecc_stats
.failed
++;
1294 mtd
->ecc_stats
.corrected
+= stat
;
1295 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1298 return max_bitflips
;
1302 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1303 * @mtd: mtd info structure
1304 * @chip: nand chip info structure
1305 * @buf: buffer to store read data
1306 * @oob_required: caller requires OOB data read to chip->oob_poi
1307 * @page: page number to read
1309 * Hardware ECC for large page chips, require OOB to be read first. For this
1310 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1311 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1312 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1313 * the data area, by overwriting the NAND manufacturer bad block markings.
1315 static int nand_read_page_hwecc_oob_first(struct mtd_info
*mtd
,
1316 struct nand_chip
*chip
, uint8_t *buf
, int oob_required
, int page
)
1318 int i
, eccsize
= chip
->ecc
.size
;
1319 int eccbytes
= chip
->ecc
.bytes
;
1320 int eccsteps
= chip
->ecc
.steps
;
1322 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1323 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1324 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1325 unsigned int max_bitflips
= 0;
1327 /* Read the OOB area first */
1328 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1329 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1330 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1332 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1333 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1335 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1338 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1339 chip
->read_buf(mtd
, p
, eccsize
);
1340 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1342 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], NULL
);
1344 mtd
->ecc_stats
.failed
++;
1346 mtd
->ecc_stats
.corrected
+= stat
;
1347 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1350 return max_bitflips
;
1354 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1355 * @mtd: mtd info structure
1356 * @chip: nand chip info structure
1357 * @buf: buffer to store read data
1358 * @oob_required: caller requires OOB data read to chip->oob_poi
1359 * @page: page number to read
1361 * The hw generator calculates the error syndrome automatically. Therefore we
1362 * need a special oob layout and handling.
1364 static int nand_read_page_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1365 uint8_t *buf
, int oob_required
, int page
)
1367 int i
, eccsize
= chip
->ecc
.size
;
1368 int eccbytes
= chip
->ecc
.bytes
;
1369 int eccsteps
= chip
->ecc
.steps
;
1371 uint8_t *oob
= chip
->oob_poi
;
1372 unsigned int max_bitflips
= 0;
1374 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1377 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1378 chip
->read_buf(mtd
, p
, eccsize
);
1380 if (chip
->ecc
.prepad
) {
1381 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1382 oob
+= chip
->ecc
.prepad
;
1385 chip
->ecc
.hwctl(mtd
, NAND_ECC_READSYN
);
1386 chip
->read_buf(mtd
, oob
, eccbytes
);
1387 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
1390 mtd
->ecc_stats
.failed
++;
1392 mtd
->ecc_stats
.corrected
+= stat
;
1393 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1398 if (chip
->ecc
.postpad
) {
1399 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1400 oob
+= chip
->ecc
.postpad
;
1404 /* Calculate remaining oob bytes */
1405 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1407 chip
->read_buf(mtd
, oob
, i
);
1409 return max_bitflips
;
1413 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1414 * @chip: nand chip structure
1415 * @oob: oob destination address
1416 * @ops: oob ops structure
1417 * @len: size of oob to transfer
1419 static uint8_t *nand_transfer_oob(struct nand_chip
*chip
, uint8_t *oob
,
1420 struct mtd_oob_ops
*ops
, size_t len
)
1422 switch (ops
->mode
) {
1424 case MTD_OPS_PLACE_OOB
:
1426 memcpy(oob
, chip
->oob_poi
+ ops
->ooboffs
, len
);
1429 case MTD_OPS_AUTO_OOB
: {
1430 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1431 uint32_t boffs
= 0, roffs
= ops
->ooboffs
;
1434 for (; free
->length
&& len
; free
++, len
-= bytes
) {
1435 /* Read request not from offset 0? */
1436 if (unlikely(roffs
)) {
1437 if (roffs
>= free
->length
) {
1438 roffs
-= free
->length
;
1441 boffs
= free
->offset
+ roffs
;
1442 bytes
= min_t(size_t, len
,
1443 (free
->length
- roffs
));
1446 bytes
= min_t(size_t, len
, free
->length
);
1447 boffs
= free
->offset
;
1449 memcpy(oob
, chip
->oob_poi
+ boffs
, bytes
);
1461 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1462 * @mtd: MTD device structure
1463 * @retry_mode: the retry mode to use
1465 * Some vendors supply a special command to shift the Vt threshold, to be used
1466 * when there are too many bitflips in a page (i.e., ECC error). After setting
1467 * a new threshold, the host should retry reading the page.
1469 static int nand_setup_read_retry(struct mtd_info
*mtd
, int retry_mode
)
1471 struct nand_chip
*chip
= mtd
->priv
;
1473 pr_debug("setting READ RETRY mode %d\n", retry_mode
);
1475 if (retry_mode
>= chip
->read_retries
)
1478 if (!chip
->setup_read_retry
)
1481 return chip
->setup_read_retry(mtd
, retry_mode
);
1485 * nand_do_read_ops - [INTERN] Read data with ECC
1486 * @mtd: MTD device structure
1487 * @from: offset to read from
1488 * @ops: oob ops structure
1490 * Internal function. Called with chip held.
1492 static int nand_do_read_ops(struct mtd_info
*mtd
, loff_t from
,
1493 struct mtd_oob_ops
*ops
)
1495 int chipnr
, page
, realpage
, col
, bytes
, aligned
, oob_required
;
1496 struct nand_chip
*chip
= mtd
->priv
;
1498 uint32_t readlen
= ops
->len
;
1499 uint32_t oobreadlen
= ops
->ooblen
;
1500 uint32_t max_oobsize
= ops
->mode
== MTD_OPS_AUTO_OOB
?
1501 mtd
->oobavail
: mtd
->oobsize
;
1503 uint8_t *bufpoi
, *oob
, *buf
;
1505 unsigned int max_bitflips
= 0;
1507 bool ecc_fail
= false;
1509 chipnr
= (int)(from
>> chip
->chip_shift
);
1510 chip
->select_chip(mtd
, chipnr
);
1512 realpage
= (int)(from
>> chip
->page_shift
);
1513 page
= realpage
& chip
->pagemask
;
1515 col
= (int)(from
& (mtd
->writesize
- 1));
1519 oob_required
= oob
? 1 : 0;
1522 unsigned int ecc_failures
= mtd
->ecc_stats
.failed
;
1524 bytes
= min(mtd
->writesize
- col
, readlen
);
1525 aligned
= (bytes
== mtd
->writesize
);
1529 else if (chip
->options
& NAND_USE_BOUNCE_BUFFER
)
1530 use_bufpoi
= !virt_addr_valid(buf
);
1534 /* Is the current page in the buffer? */
1535 if (realpage
!= chip
->pagebuf
|| oob
) {
1536 bufpoi
= use_bufpoi
? chip
->buffers
->databuf
: buf
;
1538 if (use_bufpoi
&& aligned
)
1539 pr_debug("%s: using read bounce buffer for buf@%p\n",
1543 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
1546 * Now read the page into the buffer. Absent an error,
1547 * the read methods return max bitflips per ecc step.
1549 if (unlikely(ops
->mode
== MTD_OPS_RAW
))
1550 ret
= chip
->ecc
.read_page_raw(mtd
, chip
, bufpoi
,
1553 else if (!aligned
&& NAND_HAS_SUBPAGE_READ(chip
) &&
1555 ret
= chip
->ecc
.read_subpage(mtd
, chip
,
1559 ret
= chip
->ecc
.read_page(mtd
, chip
, bufpoi
,
1560 oob_required
, page
);
1563 /* Invalidate page cache */
1568 max_bitflips
= max_t(unsigned int, max_bitflips
, ret
);
1570 /* Transfer not aligned data */
1572 if (!NAND_HAS_SUBPAGE_READ(chip
) && !oob
&&
1573 !(mtd
->ecc_stats
.failed
- ecc_failures
) &&
1574 (ops
->mode
!= MTD_OPS_RAW
)) {
1575 chip
->pagebuf
= realpage
;
1576 chip
->pagebuf_bitflips
= ret
;
1578 /* Invalidate page cache */
1581 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1584 if (unlikely(oob
)) {
1585 int toread
= min(oobreadlen
, max_oobsize
);
1588 oob
= nand_transfer_oob(chip
,
1590 oobreadlen
-= toread
;
1594 if (chip
->options
& NAND_NEED_READRDY
) {
1595 /* Apply delay or wait for ready/busy pin */
1596 if (!chip
->dev_ready
)
1597 udelay(chip
->chip_delay
);
1599 nand_wait_ready(mtd
);
1602 if (mtd
->ecc_stats
.failed
- ecc_failures
) {
1603 if (retry_mode
+ 1 < chip
->read_retries
) {
1605 ret
= nand_setup_read_retry(mtd
,
1610 /* Reset failures; retry */
1611 mtd
->ecc_stats
.failed
= ecc_failures
;
1614 /* No more retry modes; real failure */
1621 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1623 max_bitflips
= max_t(unsigned int, max_bitflips
,
1624 chip
->pagebuf_bitflips
);
1629 /* Reset to retry mode 0 */
1631 ret
= nand_setup_read_retry(mtd
, 0);
1640 /* For subsequent reads align to page boundary */
1642 /* Increment page address */
1645 page
= realpage
& chip
->pagemask
;
1646 /* Check, if we cross a chip boundary */
1649 chip
->select_chip(mtd
, -1);
1650 chip
->select_chip(mtd
, chipnr
);
1653 chip
->select_chip(mtd
, -1);
1655 ops
->retlen
= ops
->len
- (size_t) readlen
;
1657 ops
->oobretlen
= ops
->ooblen
- oobreadlen
;
1665 return max_bitflips
;
1669 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1670 * @mtd: MTD device structure
1671 * @from: offset to read from
1672 * @len: number of bytes to read
1673 * @retlen: pointer to variable to store the number of read bytes
1674 * @buf: the databuffer to put data
1676 * Get hold of the chip and call nand_do_read.
1678 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1679 size_t *retlen
, uint8_t *buf
)
1681 struct mtd_oob_ops ops
;
1684 nand_get_device(mtd
, FL_READING
);
1688 ops
.mode
= MTD_OPS_PLACE_OOB
;
1689 ret
= nand_do_read_ops(mtd
, from
, &ops
);
1690 *retlen
= ops
.retlen
;
1691 nand_release_device(mtd
);
1696 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1697 * @mtd: mtd info structure
1698 * @chip: nand chip info structure
1699 * @page: page number to read
1701 static int nand_read_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1704 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1705 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1710 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1712 * @mtd: mtd info structure
1713 * @chip: nand chip info structure
1714 * @page: page number to read
1716 static int nand_read_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1719 uint8_t *buf
= chip
->oob_poi
;
1720 int length
= mtd
->oobsize
;
1721 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1722 int eccsize
= chip
->ecc
.size
;
1723 uint8_t *bufpoi
= buf
;
1724 int i
, toread
, sndrnd
= 0, pos
;
1726 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, chip
->ecc
.size
, page
);
1727 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
1729 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1730 if (mtd
->writesize
> 512)
1731 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, pos
, -1);
1733 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, pos
, page
);
1736 toread
= min_t(int, length
, chunk
);
1737 chip
->read_buf(mtd
, bufpoi
, toread
);
1742 chip
->read_buf(mtd
, bufpoi
, length
);
1748 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1749 * @mtd: mtd info structure
1750 * @chip: nand chip info structure
1751 * @page: page number to write
1753 static int nand_write_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1757 const uint8_t *buf
= chip
->oob_poi
;
1758 int length
= mtd
->oobsize
;
1760 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
1761 chip
->write_buf(mtd
, buf
, length
);
1762 /* Send command to program the OOB data */
1763 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1765 status
= chip
->waitfunc(mtd
, chip
);
1767 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1771 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1772 * with syndrome - only for large page flash
1773 * @mtd: mtd info structure
1774 * @chip: nand chip info structure
1775 * @page: page number to write
1777 static int nand_write_oob_syndrome(struct mtd_info
*mtd
,
1778 struct nand_chip
*chip
, int page
)
1780 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1781 int eccsize
= chip
->ecc
.size
, length
= mtd
->oobsize
;
1782 int i
, len
, pos
, status
= 0, sndcmd
= 0, steps
= chip
->ecc
.steps
;
1783 const uint8_t *bufpoi
= chip
->oob_poi
;
1786 * data-ecc-data-ecc ... ecc-oob
1788 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1790 if (!chip
->ecc
.prepad
&& !chip
->ecc
.postpad
) {
1791 pos
= steps
* (eccsize
+ chunk
);
1796 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, pos
, page
);
1797 for (i
= 0; i
< steps
; i
++) {
1799 if (mtd
->writesize
<= 512) {
1800 uint32_t fill
= 0xFFFFFFFF;
1804 int num
= min_t(int, len
, 4);
1805 chip
->write_buf(mtd
, (uint8_t *)&fill
,
1810 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1811 chip
->cmdfunc(mtd
, NAND_CMD_RNDIN
, pos
, -1);
1815 len
= min_t(int, length
, chunk
);
1816 chip
->write_buf(mtd
, bufpoi
, len
);
1821 chip
->write_buf(mtd
, bufpoi
, length
);
1823 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1824 status
= chip
->waitfunc(mtd
, chip
);
1826 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1830 * nand_do_read_oob - [INTERN] NAND read out-of-band
1831 * @mtd: MTD device structure
1832 * @from: offset to read from
1833 * @ops: oob operations description structure
1835 * NAND read out-of-band data from the spare area.
1837 static int nand_do_read_oob(struct mtd_info
*mtd
, loff_t from
,
1838 struct mtd_oob_ops
*ops
)
1840 int page
, realpage
, chipnr
;
1841 struct nand_chip
*chip
= mtd
->priv
;
1842 struct mtd_ecc_stats stats
;
1843 int readlen
= ops
->ooblen
;
1845 uint8_t *buf
= ops
->oobbuf
;
1848 pr_debug("%s: from = 0x%08Lx, len = %i\n",
1849 __func__
, (unsigned long long)from
, readlen
);
1851 stats
= mtd
->ecc_stats
;
1853 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1854 len
= chip
->ecc
.layout
->oobavail
;
1858 if (unlikely(ops
->ooboffs
>= len
)) {
1859 pr_debug("%s: attempt to start read outside oob\n",
1864 /* Do not allow reads past end of device */
1865 if (unlikely(from
>= mtd
->size
||
1866 ops
->ooboffs
+ readlen
> ((mtd
->size
>> chip
->page_shift
) -
1867 (from
>> chip
->page_shift
)) * len
)) {
1868 pr_debug("%s: attempt to read beyond end of device\n",
1873 chipnr
= (int)(from
>> chip
->chip_shift
);
1874 chip
->select_chip(mtd
, chipnr
);
1876 /* Shift to get page */
1877 realpage
= (int)(from
>> chip
->page_shift
);
1878 page
= realpage
& chip
->pagemask
;
1881 if (ops
->mode
== MTD_OPS_RAW
)
1882 ret
= chip
->ecc
.read_oob_raw(mtd
, chip
, page
);
1884 ret
= chip
->ecc
.read_oob(mtd
, chip
, page
);
1889 len
= min(len
, readlen
);
1890 buf
= nand_transfer_oob(chip
, buf
, ops
, len
);
1892 if (chip
->options
& NAND_NEED_READRDY
) {
1893 /* Apply delay or wait for ready/busy pin */
1894 if (!chip
->dev_ready
)
1895 udelay(chip
->chip_delay
);
1897 nand_wait_ready(mtd
);
1904 /* Increment page address */
1907 page
= realpage
& chip
->pagemask
;
1908 /* Check, if we cross a chip boundary */
1911 chip
->select_chip(mtd
, -1);
1912 chip
->select_chip(mtd
, chipnr
);
1915 chip
->select_chip(mtd
, -1);
1917 ops
->oobretlen
= ops
->ooblen
- readlen
;
1922 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1925 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1929 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1930 * @mtd: MTD device structure
1931 * @from: offset to read from
1932 * @ops: oob operation description structure
1934 * NAND read data and/or out-of-band data.
1936 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1937 struct mtd_oob_ops
*ops
)
1939 int ret
= -ENOTSUPP
;
1943 /* Do not allow reads past end of device */
1944 if (ops
->datbuf
&& (from
+ ops
->len
) > mtd
->size
) {
1945 pr_debug("%s: attempt to read beyond end of device\n",
1950 nand_get_device(mtd
, FL_READING
);
1952 switch (ops
->mode
) {
1953 case MTD_OPS_PLACE_OOB
:
1954 case MTD_OPS_AUTO_OOB
:
1963 ret
= nand_do_read_oob(mtd
, from
, ops
);
1965 ret
= nand_do_read_ops(mtd
, from
, ops
);
1968 nand_release_device(mtd
);
1974 * nand_write_page_raw - [INTERN] raw page write function
1975 * @mtd: mtd info structure
1976 * @chip: nand chip info structure
1978 * @oob_required: must write chip->oob_poi to OOB
1980 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1982 static int nand_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1983 const uint8_t *buf
, int oob_required
)
1985 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1987 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1993 * nand_write_page_raw_syndrome - [INTERN] raw page write function
1994 * @mtd: mtd info structure
1995 * @chip: nand chip info structure
1997 * @oob_required: must write chip->oob_poi to OOB
1999 * We need a special oob layout and handling even when ECC isn't checked.
2001 static int nand_write_page_raw_syndrome(struct mtd_info
*mtd
,
2002 struct nand_chip
*chip
,
2003 const uint8_t *buf
, int oob_required
)
2005 int eccsize
= chip
->ecc
.size
;
2006 int eccbytes
= chip
->ecc
.bytes
;
2007 uint8_t *oob
= chip
->oob_poi
;
2010 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
2011 chip
->write_buf(mtd
, buf
, eccsize
);
2014 if (chip
->ecc
.prepad
) {
2015 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
2016 oob
+= chip
->ecc
.prepad
;
2019 chip
->write_buf(mtd
, oob
, eccbytes
);
2022 if (chip
->ecc
.postpad
) {
2023 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
2024 oob
+= chip
->ecc
.postpad
;
2028 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
2030 chip
->write_buf(mtd
, oob
, size
);
2035 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2036 * @mtd: mtd info structure
2037 * @chip: nand chip info structure
2039 * @oob_required: must write chip->oob_poi to OOB
2041 static int nand_write_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2042 const uint8_t *buf
, int oob_required
)
2044 int i
, eccsize
= chip
->ecc
.size
;
2045 int eccbytes
= chip
->ecc
.bytes
;
2046 int eccsteps
= chip
->ecc
.steps
;
2047 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
2048 const uint8_t *p
= buf
;
2049 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
2051 /* Software ECC calculation */
2052 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
2053 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
2055 for (i
= 0; i
< chip
->ecc
.total
; i
++)
2056 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
2058 return chip
->ecc
.write_page_raw(mtd
, chip
, buf
, 1);
2062 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2063 * @mtd: mtd info structure
2064 * @chip: nand chip info structure
2066 * @oob_required: must write chip->oob_poi to OOB
2068 static int nand_write_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2069 const uint8_t *buf
, int oob_required
)
2071 int i
, eccsize
= chip
->ecc
.size
;
2072 int eccbytes
= chip
->ecc
.bytes
;
2073 int eccsteps
= chip
->ecc
.steps
;
2074 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
2075 const uint8_t *p
= buf
;
2076 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
2078 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
2079 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2080 chip
->write_buf(mtd
, p
, eccsize
);
2081 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
2084 for (i
= 0; i
< chip
->ecc
.total
; i
++)
2085 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
2087 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
2094 * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
2095 * @mtd: mtd info structure
2096 * @chip: nand chip info structure
2097 * @offset: column address of subpage within the page
2098 * @data_len: data length
2100 * @oob_required: must write chip->oob_poi to OOB
2102 static int nand_write_subpage_hwecc(struct mtd_info
*mtd
,
2103 struct nand_chip
*chip
, uint32_t offset
,
2104 uint32_t data_len
, const uint8_t *buf
,
2107 uint8_t *oob_buf
= chip
->oob_poi
;
2108 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
2109 int ecc_size
= chip
->ecc
.size
;
2110 int ecc_bytes
= chip
->ecc
.bytes
;
2111 int ecc_steps
= chip
->ecc
.steps
;
2112 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
2113 uint32_t start_step
= offset
/ ecc_size
;
2114 uint32_t end_step
= (offset
+ data_len
- 1) / ecc_size
;
2115 int oob_bytes
= mtd
->oobsize
/ ecc_steps
;
2118 for (step
= 0; step
< ecc_steps
; step
++) {
2119 /* configure controller for WRITE access */
2120 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2122 /* write data (untouched subpages already masked by 0xFF) */
2123 chip
->write_buf(mtd
, buf
, ecc_size
);
2125 /* mask ECC of un-touched subpages by padding 0xFF */
2126 if ((step
< start_step
) || (step
> end_step
))
2127 memset(ecc_calc
, 0xff, ecc_bytes
);
2129 chip
->ecc
.calculate(mtd
, buf
, ecc_calc
);
2131 /* mask OOB of un-touched subpages by padding 0xFF */
2132 /* if oob_required, preserve OOB metadata of written subpage */
2133 if (!oob_required
|| (step
< start_step
) || (step
> end_step
))
2134 memset(oob_buf
, 0xff, oob_bytes
);
2137 ecc_calc
+= ecc_bytes
;
2138 oob_buf
+= oob_bytes
;
2141 /* copy calculated ECC for whole page to chip->buffer->oob */
2142 /* this include masked-value(0xFF) for unwritten subpages */
2143 ecc_calc
= chip
->buffers
->ecccalc
;
2144 for (i
= 0; i
< chip
->ecc
.total
; i
++)
2145 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
2147 /* write OOB buffer to NAND device */
2148 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
2155 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2156 * @mtd: mtd info structure
2157 * @chip: nand chip info structure
2159 * @oob_required: must write chip->oob_poi to OOB
2161 * The hw generator calculates the error syndrome automatically. Therefore we
2162 * need a special oob layout and handling.
2164 static int nand_write_page_syndrome(struct mtd_info
*mtd
,
2165 struct nand_chip
*chip
,
2166 const uint8_t *buf
, int oob_required
)
2168 int i
, eccsize
= chip
->ecc
.size
;
2169 int eccbytes
= chip
->ecc
.bytes
;
2170 int eccsteps
= chip
->ecc
.steps
;
2171 const uint8_t *p
= buf
;
2172 uint8_t *oob
= chip
->oob_poi
;
2174 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
2176 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2177 chip
->write_buf(mtd
, p
, eccsize
);
2179 if (chip
->ecc
.prepad
) {
2180 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
2181 oob
+= chip
->ecc
.prepad
;
2184 chip
->ecc
.calculate(mtd
, p
, oob
);
2185 chip
->write_buf(mtd
, oob
, eccbytes
);
2188 if (chip
->ecc
.postpad
) {
2189 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
2190 oob
+= chip
->ecc
.postpad
;
2194 /* Calculate remaining oob bytes */
2195 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
2197 chip
->write_buf(mtd
, oob
, i
);
2203 * nand_write_page - [REPLACEABLE] write one page
2204 * @mtd: MTD device structure
2205 * @chip: NAND chip descriptor
2206 * @offset: address offset within the page
2207 * @data_len: length of actual data to be written
2208 * @buf: the data to write
2209 * @oob_required: must write chip->oob_poi to OOB
2210 * @page: page number to write
2211 * @cached: cached programming
2212 * @raw: use _raw version of write_page
2214 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2215 uint32_t offset
, int data_len
, const uint8_t *buf
,
2216 int oob_required
, int page
, int cached
, int raw
)
2218 int status
, subpage
;
2220 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) &&
2221 chip
->ecc
.write_subpage
)
2222 subpage
= offset
|| (data_len
< mtd
->writesize
);
2226 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
2229 status
= chip
->ecc
.write_page_raw(mtd
, chip
, buf
,
2232 status
= chip
->ecc
.write_subpage(mtd
, chip
, offset
, data_len
,
2235 status
= chip
->ecc
.write_page(mtd
, chip
, buf
, oob_required
);
2241 * Cached progamming disabled for now. Not sure if it's worth the
2242 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2246 if (!cached
|| !NAND_HAS_CACHEPROG(chip
)) {
2248 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
2249 status
= chip
->waitfunc(mtd
, chip
);
2251 * See if operation failed and additional status checks are
2254 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2255 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
2258 if (status
& NAND_STATUS_FAIL
)
2261 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
2262 status
= chip
->waitfunc(mtd
, chip
);
2269 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2270 * @mtd: MTD device structure
2271 * @oob: oob data buffer
2272 * @len: oob data write length
2273 * @ops: oob ops structure
2275 static uint8_t *nand_fill_oob(struct mtd_info
*mtd
, uint8_t *oob
, size_t len
,
2276 struct mtd_oob_ops
*ops
)
2278 struct nand_chip
*chip
= mtd
->priv
;
2281 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2282 * data from a previous OOB read.
2284 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2286 switch (ops
->mode
) {
2288 case MTD_OPS_PLACE_OOB
:
2290 memcpy(chip
->oob_poi
+ ops
->ooboffs
, oob
, len
);
2293 case MTD_OPS_AUTO_OOB
: {
2294 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
2295 uint32_t boffs
= 0, woffs
= ops
->ooboffs
;
2298 for (; free
->length
&& len
; free
++, len
-= bytes
) {
2299 /* Write request not from offset 0? */
2300 if (unlikely(woffs
)) {
2301 if (woffs
>= free
->length
) {
2302 woffs
-= free
->length
;
2305 boffs
= free
->offset
+ woffs
;
2306 bytes
= min_t(size_t, len
,
2307 (free
->length
- woffs
));
2310 bytes
= min_t(size_t, len
, free
->length
);
2311 boffs
= free
->offset
;
2313 memcpy(chip
->oob_poi
+ boffs
, oob
, bytes
);
2324 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2327 * nand_do_write_ops - [INTERN] NAND write with ECC
2328 * @mtd: MTD device structure
2329 * @to: offset to write to
2330 * @ops: oob operations description structure
2332 * NAND write with ECC.
2334 static int nand_do_write_ops(struct mtd_info
*mtd
, loff_t to
,
2335 struct mtd_oob_ops
*ops
)
2337 int chipnr
, realpage
, page
, blockmask
, column
;
2338 struct nand_chip
*chip
= mtd
->priv
;
2339 uint32_t writelen
= ops
->len
;
2341 uint32_t oobwritelen
= ops
->ooblen
;
2342 uint32_t oobmaxlen
= ops
->mode
== MTD_OPS_AUTO_OOB
?
2343 mtd
->oobavail
: mtd
->oobsize
;
2345 uint8_t *oob
= ops
->oobbuf
;
2346 uint8_t *buf
= ops
->datbuf
;
2348 int oob_required
= oob
? 1 : 0;
2354 /* Reject writes, which are not page aligned */
2355 if (NOTALIGNED(to
) || NOTALIGNED(ops
->len
)) {
2356 pr_notice("%s: attempt to write non page aligned data\n",
2361 column
= to
& (mtd
->writesize
- 1);
2363 chipnr
= (int)(to
>> chip
->chip_shift
);
2364 chip
->select_chip(mtd
, chipnr
);
2366 /* Check, if it is write protected */
2367 if (nand_check_wp(mtd
)) {
2372 realpage
= (int)(to
>> chip
->page_shift
);
2373 page
= realpage
& chip
->pagemask
;
2374 blockmask
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
2376 /* Invalidate the page cache, when we write to the cached page */
2377 if (to
<= (chip
->pagebuf
<< chip
->page_shift
) &&
2378 (chip
->pagebuf
<< chip
->page_shift
) < (to
+ ops
->len
))
2381 /* Don't allow multipage oob writes with offset */
2382 if (oob
&& ops
->ooboffs
&& (ops
->ooboffs
+ ops
->ooblen
> oobmaxlen
)) {
2388 int bytes
= mtd
->writesize
;
2389 int cached
= writelen
> bytes
&& page
!= blockmask
;
2390 uint8_t *wbuf
= buf
;
2392 int part_pagewr
= (column
|| writelen
< (mtd
->writesize
- 1));
2396 else if (chip
->options
& NAND_USE_BOUNCE_BUFFER
)
2397 use_bufpoi
= !virt_addr_valid(buf
);
2401 /* Partial page write?, or need to use bounce buffer */
2403 pr_debug("%s: using write bounce buffer for buf@%p\n",
2407 bytes
= min_t(int, bytes
- column
, writelen
);
2409 memset(chip
->buffers
->databuf
, 0xff, mtd
->writesize
);
2410 memcpy(&chip
->buffers
->databuf
[column
], buf
, bytes
);
2411 wbuf
= chip
->buffers
->databuf
;
2414 if (unlikely(oob
)) {
2415 size_t len
= min(oobwritelen
, oobmaxlen
);
2416 oob
= nand_fill_oob(mtd
, oob
, len
, ops
);
2419 /* We still need to erase leftover OOB data */
2420 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2422 ret
= chip
->write_page(mtd
, chip
, column
, bytes
, wbuf
,
2423 oob_required
, page
, cached
,
2424 (ops
->mode
== MTD_OPS_RAW
));
2436 page
= realpage
& chip
->pagemask
;
2437 /* Check, if we cross a chip boundary */
2440 chip
->select_chip(mtd
, -1);
2441 chip
->select_chip(mtd
, chipnr
);
2445 ops
->retlen
= ops
->len
- writelen
;
2447 ops
->oobretlen
= ops
->ooblen
;
2450 chip
->select_chip(mtd
, -1);
2455 * panic_nand_write - [MTD Interface] NAND write with ECC
2456 * @mtd: MTD device structure
2457 * @to: offset to write to
2458 * @len: number of bytes to write
2459 * @retlen: pointer to variable to store the number of written bytes
2460 * @buf: the data to write
2462 * NAND write with ECC. Used when performing writes in interrupt context, this
2463 * may for example be called by mtdoops when writing an oops while in panic.
2465 static int panic_nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2466 size_t *retlen
, const uint8_t *buf
)
2468 struct nand_chip
*chip
= mtd
->priv
;
2469 struct mtd_oob_ops ops
;
2472 /* Wait for the device to get ready */
2473 panic_nand_wait(mtd
, chip
, 400);
2475 /* Grab the device */
2476 panic_nand_get_device(chip
, mtd
, FL_WRITING
);
2479 ops
.datbuf
= (uint8_t *)buf
;
2481 ops
.mode
= MTD_OPS_PLACE_OOB
;
2483 ret
= nand_do_write_ops(mtd
, to
, &ops
);
2485 *retlen
= ops
.retlen
;
2490 * nand_write - [MTD Interface] NAND write with ECC
2491 * @mtd: MTD device structure
2492 * @to: offset to write to
2493 * @len: number of bytes to write
2494 * @retlen: pointer to variable to store the number of written bytes
2495 * @buf: the data to write
2497 * NAND write with ECC.
2499 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2500 size_t *retlen
, const uint8_t *buf
)
2502 struct mtd_oob_ops ops
;
2505 nand_get_device(mtd
, FL_WRITING
);
2507 ops
.datbuf
= (uint8_t *)buf
;
2509 ops
.mode
= MTD_OPS_PLACE_OOB
;
2510 ret
= nand_do_write_ops(mtd
, to
, &ops
);
2511 *retlen
= ops
.retlen
;
2512 nand_release_device(mtd
);
2517 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2518 * @mtd: MTD device structure
2519 * @to: offset to write to
2520 * @ops: oob operation description structure
2522 * NAND write out-of-band.
2524 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
2525 struct mtd_oob_ops
*ops
)
2527 int chipnr
, page
, status
, len
;
2528 struct nand_chip
*chip
= mtd
->priv
;
2530 pr_debug("%s: to = 0x%08x, len = %i\n",
2531 __func__
, (unsigned int)to
, (int)ops
->ooblen
);
2533 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
2534 len
= chip
->ecc
.layout
->oobavail
;
2538 /* Do not allow write past end of page */
2539 if ((ops
->ooboffs
+ ops
->ooblen
) > len
) {
2540 pr_debug("%s: attempt to write past end of page\n",
2545 if (unlikely(ops
->ooboffs
>= len
)) {
2546 pr_debug("%s: attempt to start write outside oob\n",
2551 /* Do not allow write past end of device */
2552 if (unlikely(to
>= mtd
->size
||
2553 ops
->ooboffs
+ ops
->ooblen
>
2554 ((mtd
->size
>> chip
->page_shift
) -
2555 (to
>> chip
->page_shift
)) * len
)) {
2556 pr_debug("%s: attempt to write beyond end of device\n",
2561 chipnr
= (int)(to
>> chip
->chip_shift
);
2562 chip
->select_chip(mtd
, chipnr
);
2564 /* Shift to get page */
2565 page
= (int)(to
>> chip
->page_shift
);
2568 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2569 * of my DiskOnChip 2000 test units) will clear the whole data page too
2570 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2571 * it in the doc2000 driver in August 1999. dwmw2.
2573 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2575 /* Check, if it is write protected */
2576 if (nand_check_wp(mtd
)) {
2577 chip
->select_chip(mtd
, -1);
2581 /* Invalidate the page cache, if we write to the cached page */
2582 if (page
== chip
->pagebuf
)
2585 nand_fill_oob(mtd
, ops
->oobbuf
, ops
->ooblen
, ops
);
2587 if (ops
->mode
== MTD_OPS_RAW
)
2588 status
= chip
->ecc
.write_oob_raw(mtd
, chip
, page
& chip
->pagemask
);
2590 status
= chip
->ecc
.write_oob(mtd
, chip
, page
& chip
->pagemask
);
2592 chip
->select_chip(mtd
, -1);
2597 ops
->oobretlen
= ops
->ooblen
;
2603 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2604 * @mtd: MTD device structure
2605 * @to: offset to write to
2606 * @ops: oob operation description structure
2608 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2609 struct mtd_oob_ops
*ops
)
2611 int ret
= -ENOTSUPP
;
2615 /* Do not allow writes past end of device */
2616 if (ops
->datbuf
&& (to
+ ops
->len
) > mtd
->size
) {
2617 pr_debug("%s: attempt to write beyond end of device\n",
2622 nand_get_device(mtd
, FL_WRITING
);
2624 switch (ops
->mode
) {
2625 case MTD_OPS_PLACE_OOB
:
2626 case MTD_OPS_AUTO_OOB
:
2635 ret
= nand_do_write_oob(mtd
, to
, ops
);
2637 ret
= nand_do_write_ops(mtd
, to
, ops
);
2640 nand_release_device(mtd
);
2645 * single_erase - [GENERIC] NAND standard block erase command function
2646 * @mtd: MTD device structure
2647 * @page: the page address of the block which will be erased
2649 * Standard erase command for NAND chips. Returns NAND status.
2651 static int single_erase(struct mtd_info
*mtd
, int page
)
2653 struct nand_chip
*chip
= mtd
->priv
;
2654 /* Send commands to erase a block */
2655 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2656 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2658 return chip
->waitfunc(mtd
, chip
);
2662 * nand_erase - [MTD Interface] erase block(s)
2663 * @mtd: MTD device structure
2664 * @instr: erase instruction
2666 * Erase one ore more blocks.
2668 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2670 return nand_erase_nand(mtd
, instr
, 0);
2674 * nand_erase_nand - [INTERN] erase block(s)
2675 * @mtd: MTD device structure
2676 * @instr: erase instruction
2677 * @allowbbt: allow erasing the bbt area
2679 * Erase one ore more blocks.
2681 int nand_erase_nand(struct mtd_info
*mtd
, struct erase_info
*instr
,
2684 int page
, status
, pages_per_block
, ret
, chipnr
;
2685 struct nand_chip
*chip
= mtd
->priv
;
2688 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2689 __func__
, (unsigned long long)instr
->addr
,
2690 (unsigned long long)instr
->len
);
2692 if (check_offs_len(mtd
, instr
->addr
, instr
->len
))
2695 /* Grab the lock and see if the device is available */
2696 nand_get_device(mtd
, FL_ERASING
);
2698 /* Shift to get first page */
2699 page
= (int)(instr
->addr
>> chip
->page_shift
);
2700 chipnr
= (int)(instr
->addr
>> chip
->chip_shift
);
2702 /* Calculate pages in each block */
2703 pages_per_block
= 1 << (chip
->phys_erase_shift
- chip
->page_shift
);
2705 /* Select the NAND device */
2706 chip
->select_chip(mtd
, chipnr
);
2708 /* Check, if it is write protected */
2709 if (nand_check_wp(mtd
)) {
2710 pr_debug("%s: device is write protected!\n",
2712 instr
->state
= MTD_ERASE_FAILED
;
2716 /* Loop through the pages */
2719 instr
->state
= MTD_ERASING
;
2722 /* Check if we have a bad block, we do not erase bad blocks! */
2723 if (nand_block_checkbad(mtd
, ((loff_t
) page
) <<
2724 chip
->page_shift
, 0, allowbbt
)) {
2725 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2727 instr
->state
= MTD_ERASE_FAILED
;
2732 * Invalidate the page cache, if we erase the block which
2733 * contains the current cached page.
2735 if (page
<= chip
->pagebuf
&& chip
->pagebuf
<
2736 (page
+ pages_per_block
))
2739 status
= chip
->erase(mtd
, page
& chip
->pagemask
);
2742 * See if operation failed and additional status checks are
2745 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2746 status
= chip
->errstat(mtd
, chip
, FL_ERASING
,
2749 /* See if block erase succeeded */
2750 if (status
& NAND_STATUS_FAIL
) {
2751 pr_debug("%s: failed erase, page 0x%08x\n",
2753 instr
->state
= MTD_ERASE_FAILED
;
2755 ((loff_t
)page
<< chip
->page_shift
);
2759 /* Increment page address and decrement length */
2760 len
-= (1ULL << chip
->phys_erase_shift
);
2761 page
+= pages_per_block
;
2763 /* Check, if we cross a chip boundary */
2764 if (len
&& !(page
& chip
->pagemask
)) {
2766 chip
->select_chip(mtd
, -1);
2767 chip
->select_chip(mtd
, chipnr
);
2770 instr
->state
= MTD_ERASE_DONE
;
2774 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
2776 /* Deselect and wake up anyone waiting on the device */
2777 chip
->select_chip(mtd
, -1);
2778 nand_release_device(mtd
);
2780 /* Do call back function */
2782 mtd_erase_callback(instr
);
2784 /* Return more or less happy */
2789 * nand_sync - [MTD Interface] sync
2790 * @mtd: MTD device structure
2792 * Sync is actually a wait for chip ready function.
2794 static void nand_sync(struct mtd_info
*mtd
)
2796 pr_debug("%s: called\n", __func__
);
2798 /* Grab the lock and see if the device is available */
2799 nand_get_device(mtd
, FL_SYNCING
);
2800 /* Release it and go back */
2801 nand_release_device(mtd
);
2805 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2806 * @mtd: MTD device structure
2807 * @offs: offset relative to mtd start
2809 static int nand_block_isbad(struct mtd_info
*mtd
, loff_t offs
)
2811 return nand_block_checkbad(mtd
, offs
, 1, 0);
2815 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2816 * @mtd: MTD device structure
2817 * @ofs: offset relative to mtd start
2819 static int nand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2823 ret
= nand_block_isbad(mtd
, ofs
);
2825 /* If it was bad already, return success and do nothing */
2831 return nand_block_markbad_lowlevel(mtd
, ofs
);
2835 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2836 * @mtd: MTD device structure
2837 * @chip: nand chip info structure
2838 * @addr: feature address.
2839 * @subfeature_param: the subfeature parameters, a four bytes array.
2841 static int nand_onfi_set_features(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2842 int addr
, uint8_t *subfeature_param
)
2847 if (!chip
->onfi_version
||
2848 !(le16_to_cpu(chip
->onfi_params
.opt_cmd
)
2849 & ONFI_OPT_CMD_SET_GET_FEATURES
))
2852 chip
->cmdfunc(mtd
, NAND_CMD_SET_FEATURES
, addr
, -1);
2853 for (i
= 0; i
< ONFI_SUBFEATURE_PARAM_LEN
; ++i
)
2854 chip
->write_byte(mtd
, subfeature_param
[i
]);
2856 status
= chip
->waitfunc(mtd
, chip
);
2857 if (status
& NAND_STATUS_FAIL
)
2863 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2864 * @mtd: MTD device structure
2865 * @chip: nand chip info structure
2866 * @addr: feature address.
2867 * @subfeature_param: the subfeature parameters, a four bytes array.
2869 static int nand_onfi_get_features(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2870 int addr
, uint8_t *subfeature_param
)
2874 if (!chip
->onfi_version
||
2875 !(le16_to_cpu(chip
->onfi_params
.opt_cmd
)
2876 & ONFI_OPT_CMD_SET_GET_FEATURES
))
2879 /* clear the sub feature parameters */
2880 memset(subfeature_param
, 0, ONFI_SUBFEATURE_PARAM_LEN
);
2882 chip
->cmdfunc(mtd
, NAND_CMD_GET_FEATURES
, addr
, -1);
2883 for (i
= 0; i
< ONFI_SUBFEATURE_PARAM_LEN
; ++i
)
2884 *subfeature_param
++ = chip
->read_byte(mtd
);
2889 * nand_suspend - [MTD Interface] Suspend the NAND flash
2890 * @mtd: MTD device structure
2892 static int nand_suspend(struct mtd_info
*mtd
)
2894 return nand_get_device(mtd
, FL_PM_SUSPENDED
);
2898 * nand_resume - [MTD Interface] Resume the NAND flash
2899 * @mtd: MTD device structure
2901 static void nand_resume(struct mtd_info
*mtd
)
2903 struct nand_chip
*chip
= mtd
->priv
;
2905 if (chip
->state
== FL_PM_SUSPENDED
)
2906 nand_release_device(mtd
);
2908 pr_err("%s called for a chip which is not in suspended state\n",
2912 /* Set default functions */
2913 static void nand_set_defaults(struct nand_chip
*chip
, int busw
)
2915 /* check for proper chip_delay setup, set 20us if not */
2916 if (!chip
->chip_delay
)
2917 chip
->chip_delay
= 20;
2919 /* check, if a user supplied command function given */
2920 if (chip
->cmdfunc
== NULL
)
2921 chip
->cmdfunc
= nand_command
;
2923 /* check, if a user supplied wait function given */
2924 if (chip
->waitfunc
== NULL
)
2925 chip
->waitfunc
= nand_wait
;
2927 if (!chip
->select_chip
)
2928 chip
->select_chip
= nand_select_chip
;
2930 /* set for ONFI nand */
2931 if (!chip
->onfi_set_features
)
2932 chip
->onfi_set_features
= nand_onfi_set_features
;
2933 if (!chip
->onfi_get_features
)
2934 chip
->onfi_get_features
= nand_onfi_get_features
;
2936 /* If called twice, pointers that depend on busw may need to be reset */
2937 if (!chip
->read_byte
|| chip
->read_byte
== nand_read_byte
)
2938 chip
->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
2939 if (!chip
->read_word
)
2940 chip
->read_word
= nand_read_word
;
2941 if (!chip
->block_bad
)
2942 chip
->block_bad
= nand_block_bad
;
2943 if (!chip
->block_markbad
)
2944 chip
->block_markbad
= nand_default_block_markbad
;
2945 if (!chip
->write_buf
|| chip
->write_buf
== nand_write_buf
)
2946 chip
->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
2947 if (!chip
->write_byte
|| chip
->write_byte
== nand_write_byte
)
2948 chip
->write_byte
= busw
? nand_write_byte16
: nand_write_byte
;
2949 if (!chip
->read_buf
|| chip
->read_buf
== nand_read_buf
)
2950 chip
->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
2951 if (!chip
->scan_bbt
)
2952 chip
->scan_bbt
= nand_default_bbt
;
2954 if (!chip
->controller
) {
2955 chip
->controller
= &chip
->hwcontrol
;
2956 spin_lock_init(&chip
->controller
->lock
);
2957 init_waitqueue_head(&chip
->controller
->wq
);
2962 /* Sanitize ONFI strings so we can safely print them */
2963 static void sanitize_string(uint8_t *s
, size_t len
)
2967 /* Null terminate */
2970 /* Remove non printable chars */
2971 for (i
= 0; i
< len
- 1; i
++) {
2972 if (s
[i
] < ' ' || s
[i
] > 127)
2976 /* Remove trailing spaces */
2980 static u16
onfi_crc16(u16 crc
, u8
const *p
, size_t len
)
2985 for (i
= 0; i
< 8; i
++)
2986 crc
= (crc
<< 1) ^ ((crc
& 0x8000) ? 0x8005 : 0);
2992 /* Parse the Extended Parameter Page. */
2993 static int nand_flash_detect_ext_param_page(struct mtd_info
*mtd
,
2994 struct nand_chip
*chip
, struct nand_onfi_params
*p
)
2996 struct onfi_ext_param_page
*ep
;
2997 struct onfi_ext_section
*s
;
2998 struct onfi_ext_ecc_info
*ecc
;
3004 len
= le16_to_cpu(p
->ext_param_page_length
) * 16;
3005 ep
= kmalloc(len
, GFP_KERNEL
);
3009 /* Send our own NAND_CMD_PARAM. */
3010 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0, -1);
3012 /* Use the Change Read Column command to skip the ONFI param pages. */
3013 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
3014 sizeof(*p
) * p
->num_of_param_pages
, -1);
3016 /* Read out the Extended Parameter Page. */
3017 chip
->read_buf(mtd
, (uint8_t *)ep
, len
);
3018 if ((onfi_crc16(ONFI_CRC_BASE
, ((uint8_t *)ep
) + 2, len
- 2)
3019 != le16_to_cpu(ep
->crc
))) {
3020 pr_debug("fail in the CRC.\n");
3025 * Check the signature.
3026 * Do not strictly follow the ONFI spec, maybe changed in future.
3028 if (strncmp(ep
->sig
, "EPPS", 4)) {
3029 pr_debug("The signature is invalid.\n");
3033 /* find the ECC section. */
3034 cursor
= (uint8_t *)(ep
+ 1);
3035 for (i
= 0; i
< ONFI_EXT_SECTION_MAX
; i
++) {
3036 s
= ep
->sections
+ i
;
3037 if (s
->type
== ONFI_SECTION_TYPE_2
)
3039 cursor
+= s
->length
* 16;
3041 if (i
== ONFI_EXT_SECTION_MAX
) {
3042 pr_debug("We can not find the ECC section.\n");
3046 /* get the info we want. */
3047 ecc
= (struct onfi_ext_ecc_info
*)cursor
;
3049 if (!ecc
->codeword_size
) {
3050 pr_debug("Invalid codeword size\n");
3054 chip
->ecc_strength_ds
= ecc
->ecc_bits
;
3055 chip
->ecc_step_ds
= 1 << ecc
->codeword_size
;
3063 static int nand_setup_read_retry_micron(struct mtd_info
*mtd
, int retry_mode
)
3065 struct nand_chip
*chip
= mtd
->priv
;
3066 uint8_t feature
[ONFI_SUBFEATURE_PARAM_LEN
] = {retry_mode
};
3068 return chip
->onfi_set_features(mtd
, chip
, ONFI_FEATURE_ADDR_READ_RETRY
,
3073 * Configure chip properties from Micron vendor-specific ONFI table
3075 static void nand_onfi_detect_micron(struct nand_chip
*chip
,
3076 struct nand_onfi_params
*p
)
3078 struct nand_onfi_vendor_micron
*micron
= (void *)p
->vendor
;
3080 if (le16_to_cpu(p
->vendor_revision
) < 1)
3083 chip
->read_retries
= micron
->read_retry_options
;
3084 chip
->setup_read_retry
= nand_setup_read_retry_micron
;
3088 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3090 static int nand_flash_detect_onfi(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3093 struct nand_onfi_params
*p
= &chip
->onfi_params
;
3097 /* Try ONFI for unknown chip or LP */
3098 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x20, -1);
3099 if (chip
->read_byte(mtd
) != 'O' || chip
->read_byte(mtd
) != 'N' ||
3100 chip
->read_byte(mtd
) != 'F' || chip
->read_byte(mtd
) != 'I')
3103 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0, -1);
3104 for (i
= 0; i
< 3; i
++) {
3105 for (j
= 0; j
< sizeof(*p
); j
++)
3106 ((uint8_t *)p
)[j
] = chip
->read_byte(mtd
);
3107 if (onfi_crc16(ONFI_CRC_BASE
, (uint8_t *)p
, 254) ==
3108 le16_to_cpu(p
->crc
)) {
3114 pr_err("Could not find valid ONFI parameter page; aborting\n");
3119 val
= le16_to_cpu(p
->revision
);
3121 chip
->onfi_version
= 23;
3122 else if (val
& (1 << 4))
3123 chip
->onfi_version
= 22;
3124 else if (val
& (1 << 3))
3125 chip
->onfi_version
= 21;
3126 else if (val
& (1 << 2))
3127 chip
->onfi_version
= 20;
3128 else if (val
& (1 << 1))
3129 chip
->onfi_version
= 10;
3131 if (!chip
->onfi_version
) {
3132 pr_info("unsupported ONFI version: %d\n", val
);
3136 sanitize_string(p
->manufacturer
, sizeof(p
->manufacturer
));
3137 sanitize_string(p
->model
, sizeof(p
->model
));
3139 mtd
->name
= p
->model
;
3141 mtd
->writesize
= le32_to_cpu(p
->byte_per_page
);
3144 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3145 * (don't ask me who thought of this...). MTD assumes that these
3146 * dimensions will be power-of-2, so just truncate the remaining area.
3148 mtd
->erasesize
= 1 << (fls(le32_to_cpu(p
->pages_per_block
)) - 1);
3149 mtd
->erasesize
*= mtd
->writesize
;
3151 mtd
->oobsize
= le16_to_cpu(p
->spare_bytes_per_page
);
3153 /* See erasesize comment */
3154 chip
->chipsize
= 1 << (fls(le32_to_cpu(p
->blocks_per_lun
)) - 1);
3155 chip
->chipsize
*= (uint64_t)mtd
->erasesize
* p
->lun_count
;
3156 chip
->bits_per_cell
= p
->bits_per_cell
;
3158 if (onfi_feature(chip
) & ONFI_FEATURE_16_BIT_BUS
)
3159 *busw
= NAND_BUSWIDTH_16
;
3163 if (p
->ecc_bits
!= 0xff) {
3164 chip
->ecc_strength_ds
= p
->ecc_bits
;
3165 chip
->ecc_step_ds
= 512;
3166 } else if (chip
->onfi_version
>= 21 &&
3167 (onfi_feature(chip
) & ONFI_FEATURE_EXT_PARAM_PAGE
)) {
3170 * The nand_flash_detect_ext_param_page() uses the
3171 * Change Read Column command which maybe not supported
3172 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3173 * now. We do not replace user supplied command function.
3175 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
3176 chip
->cmdfunc
= nand_command_lp
;
3178 /* The Extended Parameter Page is supported since ONFI 2.1. */
3179 if (nand_flash_detect_ext_param_page(mtd
, chip
, p
))
3180 pr_warn("Failed to detect ONFI extended param page\n");
3182 pr_warn("Could not retrieve ONFI ECC requirements\n");
3185 if (p
->jedec_id
== NAND_MFR_MICRON
)
3186 nand_onfi_detect_micron(chip
, p
);
3192 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3194 static int nand_flash_detect_jedec(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3197 struct nand_jedec_params
*p
= &chip
->jedec_params
;
3198 struct jedec_ecc_info
*ecc
;
3202 /* Try JEDEC for unknown chip or LP */
3203 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x40, -1);
3204 if (chip
->read_byte(mtd
) != 'J' || chip
->read_byte(mtd
) != 'E' ||
3205 chip
->read_byte(mtd
) != 'D' || chip
->read_byte(mtd
) != 'E' ||
3206 chip
->read_byte(mtd
) != 'C')
3209 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0x40, -1);
3210 for (i
= 0; i
< 3; i
++) {
3211 for (j
= 0; j
< sizeof(*p
); j
++)
3212 ((uint8_t *)p
)[j
] = chip
->read_byte(mtd
);
3214 if (onfi_crc16(ONFI_CRC_BASE
, (uint8_t *)p
, 510) ==
3215 le16_to_cpu(p
->crc
))
3220 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3225 val
= le16_to_cpu(p
->revision
);
3227 chip
->jedec_version
= 10;
3228 else if (val
& (1 << 1))
3229 chip
->jedec_version
= 1; /* vendor specific version */
3231 if (!chip
->jedec_version
) {
3232 pr_info("unsupported JEDEC version: %d\n", val
);
3236 sanitize_string(p
->manufacturer
, sizeof(p
->manufacturer
));
3237 sanitize_string(p
->model
, sizeof(p
->model
));
3239 mtd
->name
= p
->model
;
3241 mtd
->writesize
= le32_to_cpu(p
->byte_per_page
);
3243 /* Please reference to the comment for nand_flash_detect_onfi. */
3244 mtd
->erasesize
= 1 << (fls(le32_to_cpu(p
->pages_per_block
)) - 1);
3245 mtd
->erasesize
*= mtd
->writesize
;
3247 mtd
->oobsize
= le16_to_cpu(p
->spare_bytes_per_page
);
3249 /* Please reference to the comment for nand_flash_detect_onfi. */
3250 chip
->chipsize
= 1 << (fls(le32_to_cpu(p
->blocks_per_lun
)) - 1);
3251 chip
->chipsize
*= (uint64_t)mtd
->erasesize
* p
->lun_count
;
3252 chip
->bits_per_cell
= p
->bits_per_cell
;
3254 if (jedec_feature(chip
) & JEDEC_FEATURE_16_BIT_BUS
)
3255 *busw
= NAND_BUSWIDTH_16
;
3260 ecc
= &p
->ecc_info
[0];
3262 if (ecc
->codeword_size
>= 9) {
3263 chip
->ecc_strength_ds
= ecc
->ecc_bits
;
3264 chip
->ecc_step_ds
= 1 << ecc
->codeword_size
;
3266 pr_warn("Invalid codeword size\n");
3273 * nand_id_has_period - Check if an ID string has a given wraparound period
3274 * @id_data: the ID string
3275 * @arrlen: the length of the @id_data array
3276 * @period: the period of repitition
3278 * Check if an ID string is repeated within a given sequence of bytes at
3279 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3280 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3281 * if the repetition has a period of @period; otherwise, returns zero.
3283 static int nand_id_has_period(u8
*id_data
, int arrlen
, int period
)
3286 for (i
= 0; i
< period
; i
++)
3287 for (j
= i
+ period
; j
< arrlen
; j
+= period
)
3288 if (id_data
[i
] != id_data
[j
])
3294 * nand_id_len - Get the length of an ID string returned by CMD_READID
3295 * @id_data: the ID string
3296 * @arrlen: the length of the @id_data array
3298 * Returns the length of the ID string, according to known wraparound/trailing
3299 * zero patterns. If no pattern exists, returns the length of the array.
3301 static int nand_id_len(u8
*id_data
, int arrlen
)
3303 int last_nonzero
, period
;
3305 /* Find last non-zero byte */
3306 for (last_nonzero
= arrlen
- 1; last_nonzero
>= 0; last_nonzero
--)
3307 if (id_data
[last_nonzero
])
3311 if (last_nonzero
< 0)
3314 /* Calculate wraparound period */
3315 for (period
= 1; period
< arrlen
; period
++)
3316 if (nand_id_has_period(id_data
, arrlen
, period
))
3319 /* There's a repeated pattern */
3320 if (period
< arrlen
)
3323 /* There are trailing zeros */
3324 if (last_nonzero
< arrlen
- 1)
3325 return last_nonzero
+ 1;
3327 /* No pattern detected */
3331 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3332 static int nand_get_bits_per_cell(u8 cellinfo
)
3336 bits
= cellinfo
& NAND_CI_CELLTYPE_MSK
;
3337 bits
>>= NAND_CI_CELLTYPE_SHIFT
;
3342 * Many new NAND share similar device ID codes, which represent the size of the
3343 * chip. The rest of the parameters must be decoded according to generic or
3344 * manufacturer-specific "extended ID" decoding patterns.
3346 static void nand_decode_ext_id(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3347 u8 id_data
[8], int *busw
)
3350 /* The 3rd id byte holds MLC / multichip data */
3351 chip
->bits_per_cell
= nand_get_bits_per_cell(id_data
[2]);
3352 /* The 4th id byte is the important one */
3355 id_len
= nand_id_len(id_data
, 8);
3358 * Field definitions are in the following datasheets:
3359 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3360 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3361 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3363 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3364 * ID to decide what to do.
3366 if (id_len
== 6 && id_data
[0] == NAND_MFR_SAMSUNG
&&
3367 !nand_is_slc(chip
) && id_data
[5] != 0x00) {
3369 mtd
->writesize
= 2048 << (extid
& 0x03);
3372 switch (((extid
>> 2) & 0x04) | (extid
& 0x03)) {
3392 default: /* Other cases are "reserved" (unknown) */
3393 mtd
->oobsize
= 1024;
3397 /* Calc blocksize */
3398 mtd
->erasesize
= (128 * 1024) <<
3399 (((extid
>> 1) & 0x04) | (extid
& 0x03));
3401 } else if (id_len
== 6 && id_data
[0] == NAND_MFR_HYNIX
&&
3402 !nand_is_slc(chip
)) {
3406 mtd
->writesize
= 2048 << (extid
& 0x03);
3409 switch (((extid
>> 2) & 0x04) | (extid
& 0x03)) {
3433 /* Calc blocksize */
3434 tmp
= ((extid
>> 1) & 0x04) | (extid
& 0x03);
3436 mtd
->erasesize
= (128 * 1024) << tmp
;
3437 else if (tmp
== 0x03)
3438 mtd
->erasesize
= 768 * 1024;
3440 mtd
->erasesize
= (64 * 1024) << tmp
;
3444 mtd
->writesize
= 1024 << (extid
& 0x03);
3447 mtd
->oobsize
= (8 << (extid
& 0x01)) *
3448 (mtd
->writesize
>> 9);
3450 /* Calc blocksize. Blocksize is multiples of 64KiB */
3451 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
3453 /* Get buswidth information */
3454 *busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
3457 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3458 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3460 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3462 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3464 if (id_len
>= 6 && id_data
[0] == NAND_MFR_TOSHIBA
&&
3465 nand_is_slc(chip
) &&
3466 (id_data
[5] & 0x7) == 0x6 /* 24nm */ &&
3467 !(id_data
[4] & 0x80) /* !BENAND */) {
3468 mtd
->oobsize
= 32 * mtd
->writesize
>> 9;
3475 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3476 * decodes a matching ID table entry and assigns the MTD size parameters for
3479 static void nand_decode_id(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3480 struct nand_flash_dev
*type
, u8 id_data
[8],
3483 int maf_id
= id_data
[0];
3485 mtd
->erasesize
= type
->erasesize
;
3486 mtd
->writesize
= type
->pagesize
;
3487 mtd
->oobsize
= mtd
->writesize
/ 32;
3488 *busw
= type
->options
& NAND_BUSWIDTH_16
;
3490 /* All legacy ID NAND are small-page, SLC */
3491 chip
->bits_per_cell
= 1;
3494 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3495 * some Spansion chips have erasesize that conflicts with size
3496 * listed in nand_ids table.
3497 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3499 if (maf_id
== NAND_MFR_AMD
&& id_data
[4] != 0x00 && id_data
[5] == 0x00
3500 && id_data
[6] == 0x00 && id_data
[7] == 0x00
3501 && mtd
->writesize
== 512) {
3502 mtd
->erasesize
= 128 * 1024;
3503 mtd
->erasesize
<<= ((id_data
[3] & 0x03) << 1);
3508 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3509 * heuristic patterns using various detected parameters (e.g., manufacturer,
3510 * page size, cell-type information).
3512 static void nand_decode_bbm_options(struct mtd_info
*mtd
,
3513 struct nand_chip
*chip
, u8 id_data
[8])
3515 int maf_id
= id_data
[0];
3517 /* Set the bad block position */
3518 if (mtd
->writesize
> 512 || (chip
->options
& NAND_BUSWIDTH_16
))
3519 chip
->badblockpos
= NAND_LARGE_BADBLOCK_POS
;
3521 chip
->badblockpos
= NAND_SMALL_BADBLOCK_POS
;
3524 * Bad block marker is stored in the last page of each block on Samsung
3525 * and Hynix MLC devices; stored in first two pages of each block on
3526 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3527 * AMD/Spansion, and Macronix. All others scan only the first page.
3529 if (!nand_is_slc(chip
) &&
3530 (maf_id
== NAND_MFR_SAMSUNG
||
3531 maf_id
== NAND_MFR_HYNIX
))
3532 chip
->bbt_options
|= NAND_BBT_SCANLASTPAGE
;
3533 else if ((nand_is_slc(chip
) &&
3534 (maf_id
== NAND_MFR_SAMSUNG
||
3535 maf_id
== NAND_MFR_HYNIX
||
3536 maf_id
== NAND_MFR_TOSHIBA
||
3537 maf_id
== NAND_MFR_AMD
||
3538 maf_id
== NAND_MFR_MACRONIX
)) ||
3539 (mtd
->writesize
== 2048 &&
3540 maf_id
== NAND_MFR_MICRON
))
3541 chip
->bbt_options
|= NAND_BBT_SCAN2NDPAGE
;
3544 static inline bool is_full_id_nand(struct nand_flash_dev
*type
)
3546 return type
->id_len
;
3549 static bool find_full_id_nand(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3550 struct nand_flash_dev
*type
, u8
*id_data
, int *busw
)
3552 if (!strncmp(type
->id
, id_data
, type
->id_len
)) {
3553 mtd
->writesize
= type
->pagesize
;
3554 mtd
->erasesize
= type
->erasesize
;
3555 mtd
->oobsize
= type
->oobsize
;
3557 chip
->bits_per_cell
= nand_get_bits_per_cell(id_data
[2]);
3558 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
3559 chip
->options
|= type
->options
;
3560 chip
->ecc_strength_ds
= NAND_ECC_STRENGTH(type
);
3561 chip
->ecc_step_ds
= NAND_ECC_STEP(type
);
3563 *busw
= type
->options
& NAND_BUSWIDTH_16
;
3566 mtd
->name
= type
->name
;
3574 * Get the flash and manufacturer id and lookup if the type is supported.
3576 static struct nand_flash_dev
*nand_get_flash_type(struct mtd_info
*mtd
,
3577 struct nand_chip
*chip
,
3578 int *maf_id
, int *dev_id
,
3579 struct nand_flash_dev
*type
)
3585 /* Select the device */
3586 chip
->select_chip(mtd
, 0);
3589 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3592 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
3594 /* Send the command for reading device ID */
3595 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3597 /* Read manufacturer and device IDs */
3598 *maf_id
= chip
->read_byte(mtd
);
3599 *dev_id
= chip
->read_byte(mtd
);
3602 * Try again to make sure, as some systems the bus-hold or other
3603 * interface concerns can cause random data which looks like a
3604 * possibly credible NAND flash to appear. If the two results do
3605 * not match, ignore the device completely.
3608 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3610 /* Read entire ID string */
3611 for (i
= 0; i
< 8; i
++)
3612 id_data
[i
] = chip
->read_byte(mtd
);
3614 if (id_data
[0] != *maf_id
|| id_data
[1] != *dev_id
) {
3615 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3616 *maf_id
, *dev_id
, id_data
[0], id_data
[1]);
3617 return ERR_PTR(-ENODEV
);
3621 type
= nand_flash_ids
;
3623 for (; type
->name
!= NULL
; type
++) {
3624 if (is_full_id_nand(type
)) {
3625 if (find_full_id_nand(mtd
, chip
, type
, id_data
, &busw
))
3627 } else if (*dev_id
== type
->dev_id
) {
3632 chip
->onfi_version
= 0;
3633 if (!type
->name
|| !type
->pagesize
) {
3634 /* Check if the chip is ONFI compliant */
3635 if (nand_flash_detect_onfi(mtd
, chip
, &busw
))
3638 /* Check if the chip is JEDEC compliant */
3639 if (nand_flash_detect_jedec(mtd
, chip
, &busw
))
3644 return ERR_PTR(-ENODEV
);
3647 mtd
->name
= type
->name
;
3649 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
3651 if (!type
->pagesize
&& chip
->init_size
) {
3652 /* Set the pagesize, oobsize, erasesize by the driver */
3653 busw
= chip
->init_size(mtd
, chip
, id_data
);
3654 } else if (!type
->pagesize
) {
3655 /* Decode parameters from extended ID */
3656 nand_decode_ext_id(mtd
, chip
, id_data
, &busw
);
3658 nand_decode_id(mtd
, chip
, type
, id_data
, &busw
);
3660 /* Get chip options */
3661 chip
->options
|= type
->options
;
3664 * Check if chip is not a Samsung device. Do not clear the
3665 * options for chips which do not have an extended id.
3667 if (*maf_id
!= NAND_MFR_SAMSUNG
&& !type
->pagesize
)
3668 chip
->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
3671 /* Try to identify manufacturer */
3672 for (maf_idx
= 0; nand_manuf_ids
[maf_idx
].id
!= 0x0; maf_idx
++) {
3673 if (nand_manuf_ids
[maf_idx
].id
== *maf_id
)
3677 if (chip
->options
& NAND_BUSWIDTH_AUTO
) {
3678 WARN_ON(chip
->options
& NAND_BUSWIDTH_16
);
3679 chip
->options
|= busw
;
3680 nand_set_defaults(chip
, busw
);
3681 } else if (busw
!= (chip
->options
& NAND_BUSWIDTH_16
)) {
3683 * Check, if buswidth is correct. Hardware drivers should set
3686 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3688 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
, mtd
->name
);
3689 pr_warn("bus width %d instead %d bit\n",
3690 (chip
->options
& NAND_BUSWIDTH_16
) ? 16 : 8,
3692 return ERR_PTR(-EINVAL
);
3695 nand_decode_bbm_options(mtd
, chip
, id_data
);
3697 /* Calculate the address shift from the page size */
3698 chip
->page_shift
= ffs(mtd
->writesize
) - 1;
3699 /* Convert chipsize to number of pages per chip -1 */
3700 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
3702 chip
->bbt_erase_shift
= chip
->phys_erase_shift
=
3703 ffs(mtd
->erasesize
) - 1;
3704 if (chip
->chipsize
& 0xffffffff)
3705 chip
->chip_shift
= ffs((unsigned)chip
->chipsize
) - 1;
3707 chip
->chip_shift
= ffs((unsigned)(chip
->chipsize
>> 32));
3708 chip
->chip_shift
+= 32 - 1;
3711 chip
->badblockbits
= 8;
3712 chip
->erase
= single_erase
;
3714 /* Do not replace user supplied command function! */
3715 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
3716 chip
->cmdfunc
= nand_command_lp
;
3718 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3721 if (chip
->onfi_version
)
3722 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
,
3723 chip
->onfi_params
.model
);
3724 else if (chip
->jedec_version
)
3725 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
,
3726 chip
->jedec_params
.model
);
3728 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
,
3731 pr_info("%dMiB, %s, page size: %d, OOB size: %d\n",
3732 (int)(chip
->chipsize
>> 20), nand_is_slc(chip
) ? "SLC" : "MLC",
3733 mtd
->writesize
, mtd
->oobsize
);
3738 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3739 * @mtd: MTD device structure
3740 * @maxchips: number of chips to scan for
3741 * @table: alternative NAND ID table
3743 * This is the first phase of the normal nand_scan() function. It reads the
3744 * flash ID and sets up MTD fields accordingly.
3746 * The mtd->owner field must be set to the module of the caller.
3748 int nand_scan_ident(struct mtd_info
*mtd
, int maxchips
,
3749 struct nand_flash_dev
*table
)
3751 int i
, nand_maf_id
, nand_dev_id
;
3752 struct nand_chip
*chip
= mtd
->priv
;
3753 struct nand_flash_dev
*type
;
3755 /* Set the default functions */
3756 nand_set_defaults(chip
, chip
->options
& NAND_BUSWIDTH_16
);
3758 /* Read the flash type */
3759 type
= nand_get_flash_type(mtd
, chip
, &nand_maf_id
,
3760 &nand_dev_id
, table
);
3763 if (!(chip
->options
& NAND_SCAN_SILENT_NODEV
))
3764 pr_warn("No NAND device found\n");
3765 chip
->select_chip(mtd
, -1);
3766 return PTR_ERR(type
);
3769 chip
->select_chip(mtd
, -1);
3771 /* Check for a chip array */
3772 for (i
= 1; i
< maxchips
; i
++) {
3773 chip
->select_chip(mtd
, i
);
3774 /* See comment in nand_get_flash_type for reset */
3775 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
3776 /* Send the command for reading device ID */
3777 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3778 /* Read manufacturer and device IDs */
3779 if (nand_maf_id
!= chip
->read_byte(mtd
) ||
3780 nand_dev_id
!= chip
->read_byte(mtd
)) {
3781 chip
->select_chip(mtd
, -1);
3784 chip
->select_chip(mtd
, -1);
3787 pr_info("%d chips detected\n", i
);
3789 /* Store the number of chips and calc total size for mtd */
3791 mtd
->size
= i
* chip
->chipsize
;
3795 EXPORT_SYMBOL(nand_scan_ident
);
3798 * Check if the chip configuration meet the datasheet requirements.
3800 * If our configuration corrects A bits per B bytes and the minimum
3801 * required correction level is X bits per Y bytes, then we must ensure
3802 * both of the following are true:
3804 * (1) A / B >= X / Y
3807 * Requirement (1) ensures we can correct for the required bitflip density.
3808 * Requirement (2) ensures we can correct even when all bitflips are clumped
3809 * in the same sector.
3811 static bool nand_ecc_strength_good(struct mtd_info
*mtd
)
3813 struct nand_chip
*chip
= mtd
->priv
;
3814 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
3817 if (ecc
->size
== 0 || chip
->ecc_step_ds
== 0)
3818 /* Not enough information */
3822 * We get the number of corrected bits per page to compare
3823 * the correction density.
3825 corr
= (mtd
->writesize
* ecc
->strength
) / ecc
->size
;
3826 ds_corr
= (mtd
->writesize
* chip
->ecc_strength_ds
) / chip
->ecc_step_ds
;
3828 return corr
>= ds_corr
&& ecc
->strength
>= chip
->ecc_strength_ds
;
3832 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3833 * @mtd: MTD device structure
3835 * This is the second phase of the normal nand_scan() function. It fills out
3836 * all the uninitialized function pointers with the defaults and scans for a
3837 * bad block table if appropriate.
3839 int nand_scan_tail(struct mtd_info
*mtd
)
3842 struct nand_chip
*chip
= mtd
->priv
;
3843 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
3844 struct nand_buffers
*nbuf
;
3846 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3847 BUG_ON((chip
->bbt_options
& NAND_BBT_NO_OOB_BBM
) &&
3848 !(chip
->bbt_options
& NAND_BBT_USE_FLASH
));
3850 if (!(chip
->options
& NAND_OWN_BUFFERS
)) {
3851 nbuf
= kzalloc(sizeof(*nbuf
) + mtd
->writesize
3852 + mtd
->oobsize
* 3, GFP_KERNEL
);
3855 nbuf
->ecccalc
= (uint8_t *)(nbuf
+ 1);
3856 nbuf
->ecccode
= nbuf
->ecccalc
+ mtd
->oobsize
;
3857 nbuf
->databuf
= nbuf
->ecccode
+ mtd
->oobsize
;
3859 chip
->buffers
= nbuf
;
3865 /* Set the internal oob buffer location, just after the page data */
3866 chip
->oob_poi
= chip
->buffers
->databuf
+ mtd
->writesize
;
3869 * If no default placement scheme is given, select an appropriate one.
3871 if (!ecc
->layout
&& (ecc
->mode
!= NAND_ECC_SOFT_BCH
)) {
3872 switch (mtd
->oobsize
) {
3874 ecc
->layout
= &nand_oob_8
;
3877 ecc
->layout
= &nand_oob_16
;
3880 ecc
->layout
= &nand_oob_64
;
3883 ecc
->layout
= &nand_oob_128
;
3886 pr_warn("No oob scheme defined for oobsize %d\n",
3892 if (!chip
->write_page
)
3893 chip
->write_page
= nand_write_page
;
3896 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3897 * selected and we have 256 byte pagesize fallback to software ECC
3900 switch (ecc
->mode
) {
3901 case NAND_ECC_HW_OOB_FIRST
:
3902 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3903 if (!ecc
->calculate
|| !ecc
->correct
|| !ecc
->hwctl
) {
3904 pr_warn("No ECC functions supplied; "
3905 "hardware ECC not possible\n");
3908 if (!ecc
->read_page
)
3909 ecc
->read_page
= nand_read_page_hwecc_oob_first
;
3912 /* Use standard hwecc read page function? */
3913 if (!ecc
->read_page
)
3914 ecc
->read_page
= nand_read_page_hwecc
;
3915 if (!ecc
->write_page
)
3916 ecc
->write_page
= nand_write_page_hwecc
;
3917 if (!ecc
->read_page_raw
)
3918 ecc
->read_page_raw
= nand_read_page_raw
;
3919 if (!ecc
->write_page_raw
)
3920 ecc
->write_page_raw
= nand_write_page_raw
;
3922 ecc
->read_oob
= nand_read_oob_std
;
3923 if (!ecc
->write_oob
)
3924 ecc
->write_oob
= nand_write_oob_std
;
3925 if (!ecc
->read_subpage
)
3926 ecc
->read_subpage
= nand_read_subpage
;
3927 if (!ecc
->write_subpage
)
3928 ecc
->write_subpage
= nand_write_subpage_hwecc
;
3930 case NAND_ECC_HW_SYNDROME
:
3931 if ((!ecc
->calculate
|| !ecc
->correct
|| !ecc
->hwctl
) &&
3933 ecc
->read_page
== nand_read_page_hwecc
||
3935 ecc
->write_page
== nand_write_page_hwecc
)) {
3936 pr_warn("No ECC functions supplied; "
3937 "hardware ECC not possible\n");
3940 /* Use standard syndrome read/write page function? */
3941 if (!ecc
->read_page
)
3942 ecc
->read_page
= nand_read_page_syndrome
;
3943 if (!ecc
->write_page
)
3944 ecc
->write_page
= nand_write_page_syndrome
;
3945 if (!ecc
->read_page_raw
)
3946 ecc
->read_page_raw
= nand_read_page_raw_syndrome
;
3947 if (!ecc
->write_page_raw
)
3948 ecc
->write_page_raw
= nand_write_page_raw_syndrome
;
3950 ecc
->read_oob
= nand_read_oob_syndrome
;
3951 if (!ecc
->write_oob
)
3952 ecc
->write_oob
= nand_write_oob_syndrome
;
3954 if (mtd
->writesize
>= ecc
->size
) {
3955 if (!ecc
->strength
) {
3956 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3961 pr_warn("%d byte HW ECC not possible on "
3962 "%d byte page size, fallback to SW ECC\n",
3963 ecc
->size
, mtd
->writesize
);
3964 ecc
->mode
= NAND_ECC_SOFT
;
3967 ecc
->calculate
= nand_calculate_ecc
;
3968 ecc
->correct
= nand_correct_data
;
3969 ecc
->read_page
= nand_read_page_swecc
;
3970 ecc
->read_subpage
= nand_read_subpage
;
3971 ecc
->write_page
= nand_write_page_swecc
;
3972 ecc
->read_page_raw
= nand_read_page_raw
;
3973 ecc
->write_page_raw
= nand_write_page_raw
;
3974 ecc
->read_oob
= nand_read_oob_std
;
3975 ecc
->write_oob
= nand_write_oob_std
;
3982 case NAND_ECC_SOFT_BCH
:
3983 if (!mtd_nand_has_bch()) {
3984 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
3987 ecc
->calculate
= nand_bch_calculate_ecc
;
3988 ecc
->correct
= nand_bch_correct_data
;
3989 ecc
->read_page
= nand_read_page_swecc
;
3990 ecc
->read_subpage
= nand_read_subpage
;
3991 ecc
->write_page
= nand_write_page_swecc
;
3992 ecc
->read_page_raw
= nand_read_page_raw
;
3993 ecc
->write_page_raw
= nand_write_page_raw
;
3994 ecc
->read_oob
= nand_read_oob_std
;
3995 ecc
->write_oob
= nand_write_oob_std
;
3997 * Board driver should supply ecc.size and ecc.bytes values to
3998 * select how many bits are correctable; see nand_bch_init()
3999 * for details. Otherwise, default to 4 bits for large page
4002 if (!ecc
->size
&& (mtd
->oobsize
>= 64)) {
4006 ecc
->priv
= nand_bch_init(mtd
, ecc
->size
, ecc
->bytes
,
4009 pr_warn("BCH ECC initialization failed!\n");
4012 ecc
->strength
= ecc
->bytes
* 8 / fls(8 * ecc
->size
);
4016 pr_warn("NAND_ECC_NONE selected by board driver. "
4017 "This is not recommended!\n");
4018 ecc
->read_page
= nand_read_page_raw
;
4019 ecc
->write_page
= nand_write_page_raw
;
4020 ecc
->read_oob
= nand_read_oob_std
;
4021 ecc
->read_page_raw
= nand_read_page_raw
;
4022 ecc
->write_page_raw
= nand_write_page_raw
;
4023 ecc
->write_oob
= nand_write_oob_std
;
4024 ecc
->size
= mtd
->writesize
;
4030 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc
->mode
);
4034 /* For many systems, the standard OOB write also works for raw */
4035 if (!ecc
->read_oob_raw
)
4036 ecc
->read_oob_raw
= ecc
->read_oob
;
4037 if (!ecc
->write_oob_raw
)
4038 ecc
->write_oob_raw
= ecc
->write_oob
;
4041 * The number of bytes available for a client to place data into
4042 * the out of band area.
4044 ecc
->layout
->oobavail
= 0;
4045 for (i
= 0; ecc
->layout
->oobfree
[i
].length
4046 && i
< ARRAY_SIZE(ecc
->layout
->oobfree
); i
++)
4047 ecc
->layout
->oobavail
+= ecc
->layout
->oobfree
[i
].length
;
4048 mtd
->oobavail
= ecc
->layout
->oobavail
;
4050 /* ECC sanity check: warn noisily if it's too weak */
4051 WARN_ON(!nand_ecc_strength_good(mtd
));
4054 * Set the number of read / write steps for one page depending on ECC
4057 ecc
->steps
= mtd
->writesize
/ ecc
->size
;
4058 if (ecc
->steps
* ecc
->size
!= mtd
->writesize
) {
4059 pr_warn("Invalid ECC parameters\n");
4062 ecc
->total
= ecc
->steps
* ecc
->bytes
;
4064 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4065 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) && nand_is_slc(chip
)) {
4066 switch (ecc
->steps
) {
4068 mtd
->subpage_sft
= 1;
4073 mtd
->subpage_sft
= 2;
4077 chip
->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
4079 /* Initialize state */
4080 chip
->state
= FL_READY
;
4082 /* Invalidate the pagebuffer reference */
4085 /* Large page NAND with SOFT_ECC should support subpage reads */
4086 switch (ecc
->mode
) {
4088 case NAND_ECC_SOFT_BCH
:
4089 if (chip
->page_shift
> 9)
4090 chip
->options
|= NAND_SUBPAGE_READ
;
4097 /* Fill in remaining MTD driver data */
4098 mtd
->type
= nand_is_slc(chip
) ? MTD_NANDFLASH
: MTD_MLCNANDFLASH
;
4099 mtd
->flags
= (chip
->options
& NAND_ROM
) ? MTD_CAP_ROM
:
4101 mtd
->_erase
= nand_erase
;
4103 mtd
->_unpoint
= NULL
;
4104 mtd
->_read
= nand_read
;
4105 mtd
->_write
= nand_write
;
4106 mtd
->_panic_write
= panic_nand_write
;
4107 mtd
->_read_oob
= nand_read_oob
;
4108 mtd
->_write_oob
= nand_write_oob
;
4109 mtd
->_sync
= nand_sync
;
4111 mtd
->_unlock
= NULL
;
4112 mtd
->_suspend
= nand_suspend
;
4113 mtd
->_resume
= nand_resume
;
4114 mtd
->_block_isbad
= nand_block_isbad
;
4115 mtd
->_block_markbad
= nand_block_markbad
;
4116 mtd
->writebufsize
= mtd
->writesize
;
4118 /* propagate ecc info to mtd_info */
4119 mtd
->ecclayout
= ecc
->layout
;
4120 mtd
->ecc_strength
= ecc
->strength
;
4121 mtd
->ecc_step_size
= ecc
->size
;
4123 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4124 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4127 if (!mtd
->bitflip_threshold
)
4128 mtd
->bitflip_threshold
= mtd
->ecc_strength
;
4130 /* Check, if we should skip the bad block table scan */
4131 if (chip
->options
& NAND_SKIP_BBTSCAN
)
4134 /* Build bad block table */
4135 return chip
->scan_bbt(mtd
);
4137 EXPORT_SYMBOL(nand_scan_tail
);
4140 * is_module_text_address() isn't exported, and it's mostly a pointless
4141 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4142 * to call us from in-kernel code if the core NAND support is modular.
4145 #define caller_is_module() (1)
4147 #define caller_is_module() \
4148 is_module_text_address((unsigned long)__builtin_return_address(0))
4152 * nand_scan - [NAND Interface] Scan for the NAND device
4153 * @mtd: MTD device structure
4154 * @maxchips: number of chips to scan for
4156 * This fills out all the uninitialized function pointers with the defaults.
4157 * The flash ID is read and the mtd/chip structures are filled with the
4158 * appropriate values. The mtd->owner field must be set to the module of the
4161 int nand_scan(struct mtd_info
*mtd
, int maxchips
)
4165 /* Many callers got this wrong, so check for it for a while... */
4166 if (!mtd
->owner
&& caller_is_module()) {
4167 pr_crit("%s called with NULL mtd->owner!\n", __func__
);
4171 ret
= nand_scan_ident(mtd
, maxchips
, NULL
);
4173 ret
= nand_scan_tail(mtd
);
4176 EXPORT_SYMBOL(nand_scan
);
4179 * nand_release - [NAND Interface] Free resources held by the NAND device
4180 * @mtd: MTD device structure
4182 void nand_release(struct mtd_info
*mtd
)
4184 struct nand_chip
*chip
= mtd
->priv
;
4186 if (chip
->ecc
.mode
== NAND_ECC_SOFT_BCH
)
4187 nand_bch_free((struct nand_bch_control
*)chip
->ecc
.priv
);
4189 mtd_device_unregister(mtd
);
4191 /* Free bad block table memory */
4193 if (!(chip
->options
& NAND_OWN_BUFFERS
))
4194 kfree(chip
->buffers
);
4196 /* Free bad block descriptor memory */
4197 if (chip
->badblock_pattern
&& chip
->badblock_pattern
->options
4198 & NAND_BBT_DYNAMICSTRUCT
)
4199 kfree(chip
->badblock_pattern
);
4201 EXPORT_SYMBOL_GPL(nand_release
);
4203 static int __init
nand_base_init(void)
4205 led_trigger_register_simple("nand-disk", &nand_led_trigger
);
4209 static void __exit
nand_base_exit(void)
4211 led_trigger_unregister_simple(nand_led_trigger
);
4214 module_init(nand_base_init
);
4215 module_exit(nand_base_exit
);
4217 MODULE_LICENSE("GPL");
4218 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4219 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4220 MODULE_DESCRIPTION("Generic NAND flash driver code");