1 /******************************************************************************
3 * Copyright(c) 2009-2010 Realtek Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
26 * Larry Finger <Larry.Finger@lwfinger.net>
28 *****************************************************************************/
31 #include "btcoexist/halbt_precomp.h"
32 #include <linux/export.h>
34 static const u8 MAX_PGPKT_SIZE
= 9;
35 static const u8 PGPKT_DATA_SIZE
= 8;
36 static const int EFUSE_MAX_SIZE
= 512;
38 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE
[] = {
54 static void efuse_shadow_read_1byte(struct ieee80211_hw
*hw
, u16 offset
,
56 static void efuse_shadow_read_2byte(struct ieee80211_hw
*hw
, u16 offset
,
58 static void efuse_shadow_read_4byte(struct ieee80211_hw
*hw
, u16 offset
,
60 static void efuse_shadow_write_1byte(struct ieee80211_hw
*hw
, u16 offset
,
62 static void efuse_shadow_write_2byte(struct ieee80211_hw
*hw
, u16 offset
,
64 static void efuse_shadow_write_4byte(struct ieee80211_hw
*hw
, u16 offset
,
66 static int efuse_one_byte_write(struct ieee80211_hw
*hw
, u16 addr
,
68 static void efuse_read_all_map(struct ieee80211_hw
*hw
, u8
* efuse
);
69 static int efuse_pg_packet_read(struct ieee80211_hw
*hw
, u8 offset
,
71 static int efuse_pg_packet_write(struct ieee80211_hw
*hw
, u8 offset
,
72 u8 word_en
, u8
* data
);
73 static void efuse_word_enable_data_read(u8 word_en
, u8
* sourdata
,
75 static u8
efuse_word_enable_data_write(struct ieee80211_hw
*hw
,
76 u16 efuse_addr
, u8 word_en
, u8
* data
);
77 static void efuse_power_switch(struct ieee80211_hw
*hw
, u8 bwrite
,
79 static u16
efuse_get_current_size(struct ieee80211_hw
*hw
);
80 static u8
efuse_calculate_word_cnts(u8 word_en
);
82 void efuse_initialize(struct ieee80211_hw
*hw
)
84 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
88 bytetemp
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_FUNC_EN
] + 1);
89 temp
= bytetemp
| 0x20;
90 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_FUNC_EN
] + 1, temp
);
92 bytetemp
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_ISO_CTRL
] + 1);
93 temp
= bytetemp
& 0xFE;
94 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_ISO_CTRL
] + 1, temp
);
96 bytetemp
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_TEST
] + 3);
97 temp
= bytetemp
| 0x80;
98 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_TEST
] + 3, temp
);
100 rtl_write_byte(rtlpriv
, 0x2F8, 0x3);
102 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3, 0x72);
106 u8
efuse_read_1byte(struct ieee80211_hw
*hw
, u16 address
)
108 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
113 const u32 efuse_real_content_len
=
114 rtlpriv
->cfg
->maps
[EFUSE_REAL_CONTENT_SIZE
];
116 if (address
< efuse_real_content_len
) {
117 temp
= address
& 0xFF;
118 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 1,
120 bytetemp
= rtl_read_byte(rtlpriv
,
121 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2);
122 temp
= ((address
>> 8) & 0x03) | (bytetemp
& 0xFC);
123 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2,
126 bytetemp
= rtl_read_byte(rtlpriv
,
127 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3);
128 temp
= bytetemp
& 0x7F;
129 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3,
132 bytetemp
= rtl_read_byte(rtlpriv
,
133 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3);
134 while (!(bytetemp
& 0x80)) {
135 bytetemp
= rtl_read_byte(rtlpriv
,
137 maps
[EFUSE_CTRL
] + 3);
144 data
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
]);
150 /* EXPORT_SYMBOL(efuse_read_1byte); */
152 void efuse_write_1byte(struct ieee80211_hw
*hw
, u16 address
, u8 value
)
154 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
158 const u32 efuse_real_content_len
=
159 rtlpriv
->cfg
->maps
[EFUSE_REAL_CONTENT_SIZE
];
161 RT_TRACE(COMP_EFUSE
, DBG_LOUD
,
162 ("Addr=%x Data =%x\n", address
, value
));
164 if (address
< efuse_real_content_len
) {
165 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
], value
);
167 temp
= address
& 0xFF;
168 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 1,
170 bytetemp
= rtl_read_byte(rtlpriv
,
171 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2);
173 temp
= ((address
>> 8) & 0x03) | (bytetemp
& 0xFC);
174 rtl_write_byte(rtlpriv
,
175 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2, temp
);
177 bytetemp
= rtl_read_byte(rtlpriv
,
178 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3);
179 temp
= bytetemp
| 0x80;
180 rtl_write_byte(rtlpriv
,
181 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3, temp
);
183 bytetemp
= rtl_read_byte(rtlpriv
,
184 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3);
186 while (bytetemp
& 0x80) {
187 bytetemp
= rtl_read_byte(rtlpriv
,
189 maps
[EFUSE_CTRL
] + 3);
200 void read_efuse_byte(struct ieee80211_hw
*hw
, u16 _offset
, u8
*pbuf
)
202 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
207 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 1,
209 readbyte
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2);
210 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2,
211 ((_offset
>> 8) & 0x03) | (readbyte
& 0xfc));
213 readbyte
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3);
214 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3,
218 value32
= rtl_read_dword(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
]);
219 while (!(((value32
>> 24) & 0xff) & 0x80) && (retry
< 10000)) {
220 value32
= rtl_read_dword(rtlpriv
,
221 rtlpriv
->cfg
->maps
[EFUSE_CTRL
]);
226 value32
= rtl_read_dword(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
]);
228 *pbuf
= (u8
) (value32
& 0xff);
231 void read_efuse(struct ieee80211_hw
*hw
, u16 _offset
, u16 _size_byte
, u8
*pbuf
)
233 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
234 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
235 u8 efuse_tbl
[rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
]];
242 const u16 efuse_max_section
=
243 rtlpriv
->cfg
->maps
[EFUSE_MAX_SECTION_MAP
];
244 const u32 efuse_real_content_len
=
245 rtlpriv
->cfg
->maps
[EFUSE_REAL_CONTENT_SIZE
];
246 u16 efuse_word
[efuse_max_section
][EFUSE_MAX_WORD_UNIT
];
247 u16 efuse_utilized
= 0;
250 if ((_offset
+ _size_byte
) > rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
]) {
251 RT_TRACE(COMP_EFUSE
, DBG_LOUD
,
252 ("read_efuse(): Invalid offset(%#x) with read "
253 "bytes(%#x)!!\n", _offset
, _size_byte
));
257 for (i
= 0; i
< efuse_max_section
; i
++)
258 for (j
= 0; j
< EFUSE_MAX_WORD_UNIT
; j
++)
259 efuse_word
[i
][j
] = 0xFFFF;
261 read_efuse_byte(hw
, efuse_addr
, rtemp8
);
262 if (*rtemp8
!= 0xFF) {
264 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_READ_ALL
,
265 ("Addr=%d\n", efuse_addr
));
269 while ((*rtemp8
!= 0xFF) && (efuse_addr
< efuse_real_content_len
)) {
270 /* Check PG header for section num. */
271 if((*rtemp8
& 0x1F ) == 0x0F) {/* extended header */
272 u1temp
=( (*rtemp8
& 0xE0) >> 5);
273 read_efuse_byte(hw
, efuse_addr
, rtemp8
);
275 if((*rtemp8
& 0x0F) == 0x0F) {
277 read_efuse_byte(hw
, efuse_addr
, rtemp8
);
279 if (*rtemp8
!= 0xFF &&
280 (efuse_addr
< efuse_real_content_len
)) {
285 offset
= ((*rtemp8
& 0xF0) >> 1) | u1temp
;
286 wren
= (*rtemp8
& 0x0F);
290 offset
= ((*rtemp8
>> 4) & 0x0f);
291 wren
= (*rtemp8
& 0x0f);
294 if (offset
< efuse_max_section
) {
295 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_READ_ALL
,
296 ("offset-%d Worden=%x\n", offset
, wren
));
298 for (i
= 0; i
< EFUSE_MAX_WORD_UNIT
; i
++) {
299 if (!(wren
& 0x01)) {
300 RTPRINT(rtlpriv
, FEEPROM
,
301 EFUSE_READ_ALL
, ("Addr=%d\n",
304 read_efuse_byte(hw
, efuse_addr
, rtemp8
);
307 efuse_word
[offset
][i
] = (*rtemp8
&
311 efuse_real_content_len
)
314 RTPRINT(rtlpriv
, FEEPROM
,
315 EFUSE_READ_ALL
, ("Addr=%d\n",
318 read_efuse_byte(hw
, efuse_addr
, rtemp8
);
321 efuse_word
[offset
][i
] |=
322 (((u16
) * rtemp8
<< 8) & 0xff00);
324 if (efuse_addr
>= efuse_real_content_len
)
332 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_READ_ALL
,
333 ("Addr=%d\n", efuse_addr
));
334 read_efuse_byte(hw
, efuse_addr
, rtemp8
);
335 if (*rtemp8
!= 0xFF && (efuse_addr
< efuse_real_content_len
)) {
341 for (i
= 0; i
< efuse_max_section
; i
++) {
342 for (j
= 0; j
< EFUSE_MAX_WORD_UNIT
; j
++) {
343 efuse_tbl
[(i
* 8) + (j
* 2)] =
344 (efuse_word
[i
][j
] & 0xff);
345 efuse_tbl
[(i
* 8) + ((j
* 2) + 1)] =
346 ((efuse_word
[i
][j
] >> 8) & 0xff);
350 for (i
= 0; i
< _size_byte
; i
++)
351 pbuf
[i
] = efuse_tbl
[_offset
+ i
];
353 rtlefuse
->efuse_usedbytes
= efuse_utilized
;
354 efuse_usage
= (u8
) ((efuse_utilized
* 100) / efuse_real_content_len
);
355 rtlefuse
->efuse_usedpercentage
= efuse_usage
;
356 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_EFUSE_BYTES
,
357 (u8
*) & efuse_utilized
);
358 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_EFUSE_USAGE
,
359 (u8
*) & efuse_usage
);
362 bool efuse_shadow_update_chk(struct ieee80211_hw
*hw
)
364 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
365 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
366 u8 section_idx
, i
, Base
;
367 u16 words_need
= 0, hdr_num
= 0, totalbytes
, efuse_used
;
368 bool bwordchanged
, bresult
= true;
370 for (section_idx
= 0; section_idx
< 16; section_idx
++) {
371 Base
= section_idx
* 8;
372 bwordchanged
= false;
374 for (i
= 0; i
< 8; i
= i
+ 2) {
375 if ((rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][Base
+ i
] !=
376 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][Base
+ i
]) ||
377 (rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][Base
+ i
+ 1] !=
378 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][Base
+ i
+
385 if (bwordchanged
== true)
389 totalbytes
= hdr_num
+ words_need
* 2;
390 efuse_used
= rtlefuse
->efuse_usedbytes
;
392 if ((totalbytes
+ efuse_used
) >= (EFUSE_MAX_SIZE
-
393 rtlpriv
->cfg
->maps
[EFUSE_OOB_PROTECT_BYTES_LEN
]))
396 RT_TRACE(COMP_EFUSE
, DBG_LOUD
,
397 ("efuse_shadow_update_chk(): totalbytes(%#x), "
398 "hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
399 totalbytes
, hdr_num
, words_need
, efuse_used
));
404 void efuse_shadow_read(struct ieee80211_hw
*hw
, u8 type
,
405 u16 offset
, u32
*value
)
408 efuse_shadow_read_1byte(hw
, offset
, (u8
*) value
);
410 efuse_shadow_read_2byte(hw
, offset
, (u16
*) value
);
412 efuse_shadow_read_4byte(hw
, offset
, (u32
*) value
);
416 void efuse_shadow_write(struct ieee80211_hw
*hw
, u8 type
, u16 offset
,
420 efuse_shadow_write_1byte(hw
, offset
, (u8
) value
);
422 efuse_shadow_write_2byte(hw
, offset
, (u16
) value
);
424 efuse_shadow_write_4byte(hw
, offset
, (u32
) value
);
428 bool efuse_shadow_update(struct ieee80211_hw
*hw
)
430 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
431 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
436 RT_TRACE(COMP_EFUSE
, DBG_LOUD
, ("\n"));
438 if (!efuse_shadow_update_chk(hw
)) {
439 efuse_read_all_map(hw
, &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0]);
440 memcpy(&rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][0],
441 &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0],
442 rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
]);
444 RT_TRACE(COMP_EFUSE
, DBG_LOUD
,
445 ("efuse out of capacity!!\n"));
448 efuse_power_switch(hw
, true, true);
450 for (offset
= 0; offset
< 16; offset
++) {
455 for (i
= 0; i
< 8; i
++) {
456 if (first_pg
== true) {
458 word_en
&= ~(BIT(i
/ 2));
460 rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][base
+ i
] =
461 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][base
+ i
];
464 if (rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][base
+ i
] !=
465 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][base
+ i
]) {
466 word_en
&= ~(BIT(i
/ 2));
468 rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][base
+ i
] =
469 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][base
+ i
];
474 if (word_en
!= 0x0F) {
476 memcpy(tmpdata
, (&rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][base
]), 8);
477 RT_PRINT_DATA(rtlpriv
, COMP_INIT
, DBG_LOUD
,
478 ("U-efuse\n"), tmpdata
, 8);
480 if (!efuse_pg_packet_write(hw
, (u8
) offset
, word_en
,
482 RT_TRACE(COMP_ERR
, DBG_WARNING
,
483 ("PG section(%#x) fail!!\n", offset
));
490 efuse_power_switch(hw
, true, false);
491 efuse_read_all_map(hw
, &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0]);
493 memcpy(&rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][0],
494 &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0],
495 rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
]);
497 RT_TRACE(COMP_EFUSE
, DBG_LOUD
, ("\n"));
501 void rtl_efuse_shadow_map_update(struct ieee80211_hw
*hw
)
503 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
504 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
506 if (rtlefuse
->autoload_failflag
== true) {
507 memset((&rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0]),
508 0xFF, rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
]);
510 efuse_read_all_map(hw
, &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0]);
513 memcpy(&rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][0],
514 &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0],
515 rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
]);
518 /* EXPORT_SYMBOL(rtl_efuse_shadow_map_update); */
520 void efuse_force_write_vendor_Id(struct ieee80211_hw
*hw
)
522 u8 tmpdata
[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
524 efuse_power_switch(hw
, true, true);
526 efuse_pg_packet_write(hw
, 1, 0xD, tmpdata
);
528 efuse_power_switch(hw
, true, false);
532 void efuse_re_pg_section(struct ieee80211_hw
*hw
, u8 section_idx
)
536 static void efuse_shadow_read_1byte(struct ieee80211_hw
*hw
,
537 u16 offset
, u8
*value
)
539 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
540 *value
= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
];
543 static void efuse_shadow_read_2byte(struct ieee80211_hw
*hw
,
544 u16 offset
, u16
*value
)
546 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
548 *value
= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
];
549 *value
|= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 1] << 8;
553 static void efuse_shadow_read_4byte(struct ieee80211_hw
*hw
,
554 u16 offset
, u32
*value
)
556 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
558 *value
= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
];
559 *value
|= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 1] << 8;
560 *value
|= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 2] << 16;
561 *value
|= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 3] << 24;
564 static void efuse_shadow_write_1byte(struct ieee80211_hw
*hw
,
565 u16 offset
, u8 value
)
567 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
569 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
] = value
;
572 static void efuse_shadow_write_2byte(struct ieee80211_hw
*hw
,
573 u16 offset
, u16 value
)
575 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
577 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
] = value
& 0x00FF;
578 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 1] = value
>> 8;
582 static void efuse_shadow_write_4byte(struct ieee80211_hw
*hw
,
583 u16 offset
, u32 value
)
585 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
587 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
] =
588 (u8
) (value
& 0x000000FF);
589 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 1] =
590 (u8
) ((value
>> 8) & 0x0000FF);
591 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 2] =
592 (u8
) ((value
>> 16) & 0x00FF);
593 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 3] =
594 (u8
) ((value
>> 24) & 0xFF);
598 int efuse_one_byte_read(struct ieee80211_hw
*hw
, u16 addr
, u8
*data
)
600 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
604 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 1,
606 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2,
607 ((u8
) ((addr
>> 8) & 0x03)) |
608 (rtl_read_byte(rtlpriv
,
609 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2) &
612 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3, 0x72);
614 while (!(0x80 & rtl_read_byte(rtlpriv
,
615 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3))
621 *data
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
]);
629 /* EXPORT_SYMBOL(efuse_one_byte_read); */
631 static int efuse_one_byte_write(struct ieee80211_hw
*hw
, u16 addr
, u8 data
)
633 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
637 RT_TRACE(COMP_EFUSE
, DBG_LOUD
,
638 ("Addr = %x Data=%x\n", addr
, data
));
640 rtl_write_byte(rtlpriv
,
641 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 1, (u8
) (addr
& 0xff));
642 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2,
643 (rtl_read_byte(rtlpriv
,
644 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] +
645 2) & 0xFC) | (u8
) ((addr
>> 8) & 0x03));
647 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
], data
);
648 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3, 0xF2);
650 while ((0x80 & rtl_read_byte(rtlpriv
,
651 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3))
664 static void efuse_read_all_map(struct ieee80211_hw
*hw
, u8
* efuse
)
666 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
667 efuse_power_switch(hw
, false, true);
668 read_efuse(hw
, 0, rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
], efuse
);
669 efuse_power_switch(hw
, false, false);
672 static void efuse_read_data_case1(struct ieee80211_hw
*hw
, u16
*efuse_addr
,
673 u8 efuse_data
, u8 offset
, u8
*tmpdata
,
676 bool bdataempty
= true;
682 hoffset
= (efuse_data
>> 4) & 0x0F;
683 hworden
= efuse_data
& 0x0F;
684 word_cnts
= efuse_calculate_word_cnts(hworden
);
686 if (hoffset
== offset
) {
687 for (tmpidx
= 0; tmpidx
< word_cnts
* 2; tmpidx
++) {
688 if (efuse_one_byte_read(hw
, *efuse_addr
+ 1 + tmpidx
,
690 tmpdata
[tmpidx
] = efuse_data
;
691 if (efuse_data
!= 0xff)
696 if (bdataempty
== true) {
697 *readstate
= PG_STATE_DATA
;
699 *efuse_addr
= *efuse_addr
+ (word_cnts
* 2) + 1;
700 *readstate
= PG_STATE_HEADER
;
704 *efuse_addr
= *efuse_addr
+ (word_cnts
* 2) + 1;
705 *readstate
= PG_STATE_HEADER
;
709 static int efuse_pg_packet_read(struct ieee80211_hw
*hw
, u8 offset
, u8
*data
)
711 u8 readstate
= PG_STATE_HEADER
;
713 bool bcontinual
= true;
715 u8 efuse_data
, word_cnts
= 0;
725 memset(data
, 0xff, PGPKT_DATA_SIZE
* sizeof(u8
));
726 memset(tmpdata
, 0xff, PGPKT_DATA_SIZE
* sizeof(u8
));
728 while (bcontinual
&& (efuse_addr
< EFUSE_MAX_SIZE
)) {
729 if (readstate
& PG_STATE_HEADER
) {
730 if (efuse_one_byte_read(hw
, efuse_addr
, &efuse_data
)
731 && (efuse_data
!= 0xFF))
732 efuse_read_data_case1(hw
, &efuse_addr
, efuse_data
, offset
,
733 tmpdata
, &readstate
);
736 } else if (readstate
& PG_STATE_DATA
) {
737 efuse_word_enable_data_read(hworden
, tmpdata
, data
);
738 efuse_addr
= efuse_addr
+ (word_cnts
* 2) + 1;
739 readstate
= PG_STATE_HEADER
;
744 if ((data
[0] == 0xff) && (data
[1] == 0xff) &&
745 (data
[2] == 0xff) && (data
[3] == 0xff) &&
746 (data
[4] == 0xff) && (data
[5] == 0xff) &&
747 (data
[6] == 0xff) && (data
[7] == 0xff))
754 static void efuse_write_data_case1(struct ieee80211_hw
*hw
, u16
*efuse_addr
,
755 u8 efuse_data
, u8 offset
, int *bcontinual
,
756 u8
*write_state
, struct pgpkt_struct
*target_pkt
,
757 int *repeat_times
, int *bresult
, u8 word_en
)
759 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
760 struct pgpkt_struct tmp_pkt
;
761 int bdataempty
= true;
762 u8 originaldata
[8 * sizeof(u8
)];
764 u8 match_word_en
, tmp_word_en
;
766 u8 tmp_header
= efuse_data
;
769 tmp_pkt
.offset
= (tmp_header
>> 4) & 0x0F;
770 tmp_pkt
.word_en
= tmp_header
& 0x0F;
771 tmp_word_cnts
= efuse_calculate_word_cnts(tmp_pkt
.word_en
);
773 if (tmp_pkt
.offset
!= target_pkt
->offset
) {
774 *efuse_addr
= *efuse_addr
+ (tmp_word_cnts
* 2) + 1;
775 *write_state
= PG_STATE_HEADER
;
777 for (tmpindex
= 0; tmpindex
< (tmp_word_cnts
* 2); tmpindex
++) {
778 if (efuse_one_byte_read(hw
,
779 (*efuse_addr
+ 1 + tmpindex
),
780 &efuse_data
) && (efuse_data
!= 0xFF))
784 if (bdataempty
== false) {
785 *efuse_addr
= *efuse_addr
+ (tmp_word_cnts
* 2) + 1;
786 *write_state
= PG_STATE_HEADER
;
788 match_word_en
= 0x0F;
789 if (!((target_pkt
->word_en
& BIT(0)) |
790 (tmp_pkt
.word_en
& BIT(0))))
791 match_word_en
&= (~BIT(0));
793 if (!((target_pkt
->word_en
& BIT(1)) |
794 (tmp_pkt
.word_en
& BIT(1))))
795 match_word_en
&= (~BIT(1));
797 if (!((target_pkt
->word_en
& BIT(2)) |
798 (tmp_pkt
.word_en
& BIT(2))))
799 match_word_en
&= (~BIT(2));
801 if (!((target_pkt
->word_en
& BIT(3)) |
802 (tmp_pkt
.word_en
& BIT(3))))
803 match_word_en
&= (~BIT(3));
805 if ((match_word_en
& 0x0F) != 0x0F) {
806 badworden
= efuse_word_enable_data_write(hw
,
811 if (0x0F != (badworden
& 0x0F)) {
812 u8 reorg_offset
= offset
;
813 u8 reorg_worden
= badworden
;
814 efuse_pg_packet_write(hw
, reorg_offset
,
820 if ((target_pkt
->word_en
& BIT(0)) ^
821 (match_word_en
& BIT(0)))
822 tmp_word_en
&= (~BIT(0));
824 if ((target_pkt
->word_en
& BIT(1)) ^
825 (match_word_en
& BIT(1)))
826 tmp_word_en
&= (~BIT(1));
828 if ((target_pkt
->word_en
& BIT(2)) ^
829 (match_word_en
& BIT(2)))
830 tmp_word_en
&= (~BIT(2));
832 if ((target_pkt
->word_en
& BIT(3)) ^
833 (match_word_en
& BIT(3)))
834 tmp_word_en
&= (~BIT(3));
836 if ((tmp_word_en
& 0x0F) != 0x0F) {
837 *efuse_addr
= efuse_get_current_size(hw
);
838 target_pkt
->offset
= offset
;
839 target_pkt
->word_en
= tmp_word_en
;
843 *write_state
= PG_STATE_HEADER
;
845 if (*repeat_times
> EFUSE_REPEAT_THRESHOLD_
) {
850 *efuse_addr
+= (2 * tmp_word_cnts
) + 1;
851 target_pkt
->offset
= offset
;
852 target_pkt
->word_en
= word_en
;
853 *write_state
= PG_STATE_HEADER
;
857 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
, ("efuse PG_STATE_HEADER-1\n"));
860 static void efuse_write_data_case2(struct ieee80211_hw
*hw
, u16
*efuse_addr
,
861 int *bcontinual
, u8
*write_state
,
862 struct pgpkt_struct target_pkt
,
863 int *repeat_times
, int *bresult
)
865 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
866 struct pgpkt_struct tmp_pkt
;
869 u8 originaldata
[8 * sizeof(u8
)];
873 pg_header
= ((target_pkt
.offset
<< 4) & 0xf0) | target_pkt
.word_en
;
874 efuse_one_byte_write(hw
, *efuse_addr
, pg_header
);
875 efuse_one_byte_read(hw
, *efuse_addr
, &tmp_header
);
877 if (tmp_header
== pg_header
) {
878 *write_state
= PG_STATE_DATA
;
879 } else if (tmp_header
== 0xFF) {
880 *write_state
= PG_STATE_HEADER
;
882 if (*repeat_times
> EFUSE_REPEAT_THRESHOLD_
) {
887 tmp_pkt
.offset
= (tmp_header
>> 4) & 0x0F;
888 tmp_pkt
.word_en
= tmp_header
& 0x0F;
890 tmp_word_cnts
= efuse_calculate_word_cnts(tmp_pkt
.word_en
);
892 memset(originaldata
, 0xff, 8 * sizeof(u8
));
894 if (efuse_pg_packet_read(hw
, tmp_pkt
.offset
, originaldata
)) {
895 badworden
= efuse_word_enable_data_write(hw
,
900 if (0x0F != (badworden
& 0x0F)) {
901 u8 reorg_offset
= tmp_pkt
.offset
;
902 u8 reorg_worden
= badworden
;
903 efuse_pg_packet_write(hw
, reorg_offset
,
906 *efuse_addr
= efuse_get_current_size(hw
);
908 *efuse_addr
= *efuse_addr
+
909 (tmp_word_cnts
* 2) + 1;
912 *efuse_addr
= *efuse_addr
+ (tmp_word_cnts
* 2) + 1;
915 *write_state
= PG_STATE_HEADER
;
917 if (*repeat_times
> EFUSE_REPEAT_THRESHOLD_
) {
922 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
,
923 ("efuse PG_STATE_HEADER-2\n"));
927 static int efuse_pg_packet_write(struct ieee80211_hw
*hw
,
928 u8 offset
, u8 word_en
, u8
*data
)
930 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
931 struct pgpkt_struct target_pkt
;
932 u8 write_state
= PG_STATE_HEADER
;
933 int bcontinual
= true, bdataempty
= true, bresult
= true;
936 u8 target_word_cnts
= 0;
938 static int repeat_times
= 0;
940 if (efuse_get_current_size(hw
) >= (EFUSE_MAX_SIZE
-
941 rtlpriv
->cfg
->maps
[EFUSE_OOB_PROTECT_BYTES_LEN
])) {
942 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
,
943 ("efuse_pg_packet_write error \n"));
947 target_pkt
.offset
= offset
;
948 target_pkt
.word_en
= word_en
;
950 memset(target_pkt
.data
, 0xFF, 8 * sizeof(u8
));
952 efuse_word_enable_data_read(word_en
, data
, target_pkt
.data
);
953 target_word_cnts
= efuse_calculate_word_cnts(target_pkt
.word_en
);
955 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
, ("efuse Power ON\n"));
957 while (bcontinual
&& (efuse_addr
< (EFUSE_MAX_SIZE
-
958 rtlpriv
->cfg
->maps
[EFUSE_OOB_PROTECT_BYTES_LEN
]))) {
960 if (write_state
== PG_STATE_HEADER
) {
963 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
,
964 ("efuse PG_STATE_HEADER\n"));
966 if (efuse_one_byte_read(hw
, efuse_addr
, &efuse_data
) &&
967 (efuse_data
!= 0xFF))
968 efuse_write_data_case1(hw
, &efuse_addr
,
973 &repeat_times
, &bresult
,
976 efuse_write_data_case2(hw
, &efuse_addr
,
983 } else if (write_state
== PG_STATE_DATA
) {
984 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
,
985 ("efuse PG_STATE_DATA\n"));
988 efuse_word_enable_data_write(hw
, efuse_addr
+ 1,
992 if ((badworden
& 0x0F) == 0x0F) {
996 efuse_addr
+ (2 * target_word_cnts
) + 1;
998 target_pkt
.offset
= offset
;
999 target_pkt
.word_en
= badworden
;
1001 efuse_calculate_word_cnts(target_pkt
.
1003 write_state
= PG_STATE_HEADER
;
1005 if (repeat_times
> EFUSE_REPEAT_THRESHOLD_
) {
1009 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
,
1010 ("efuse PG_STATE_HEADER-3\n"));
1015 if (efuse_addr
>= (EFUSE_MAX_SIZE
-
1016 rtlpriv
->cfg
->maps
[EFUSE_OOB_PROTECT_BYTES_LEN
])) {
1017 RT_TRACE(COMP_EFUSE
, DBG_LOUD
,
1018 ("efuse_addr(%#x) Out of size!!\n", efuse_addr
));
1024 static void efuse_word_enable_data_read(u8 word_en
, u8
* sourdata
,
1027 if (!(word_en
& BIT(0))) {
1028 targetdata
[0] = sourdata
[0];
1029 targetdata
[1] = sourdata
[1];
1032 if (!(word_en
& BIT(1))) {
1033 targetdata
[2] = sourdata
[2];
1034 targetdata
[3] = sourdata
[3];
1037 if (!(word_en
& BIT(2))) {
1038 targetdata
[4] = sourdata
[4];
1039 targetdata
[5] = sourdata
[5];
1042 if (!(word_en
& BIT(3))) {
1043 targetdata
[6] = sourdata
[6];
1044 targetdata
[7] = sourdata
[7];
1048 static u8
efuse_word_enable_data_write(struct ieee80211_hw
*hw
,
1049 u16 efuse_addr
, u8 word_en
, u8
*data
)
1051 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1053 u16 start_addr
= efuse_addr
;
1054 u8 badworden
= 0x0F;
1057 memset(tmpdata
, 0xff, PGPKT_DATA_SIZE
);
1058 RT_TRACE(COMP_EFUSE
, DBG_LOUD
,
1059 ("word_en = %x efuse_addr=%x\n", word_en
, efuse_addr
));
1061 if (!(word_en
& BIT(0))) {
1062 tmpaddr
= start_addr
;
1063 efuse_one_byte_write(hw
, start_addr
++, data
[0]);
1064 efuse_one_byte_write(hw
, start_addr
++, data
[1]);
1066 efuse_one_byte_read(hw
, tmpaddr
, &tmpdata
[0]);
1067 efuse_one_byte_read(hw
, tmpaddr
+ 1, &tmpdata
[1]);
1068 if ((data
[0] != tmpdata
[0]) || (data
[1] != tmpdata
[1]))
1069 badworden
&= (~BIT(0));
1072 if (!(word_en
& BIT(1))) {
1073 tmpaddr
= start_addr
;
1074 efuse_one_byte_write(hw
, start_addr
++, data
[2]);
1075 efuse_one_byte_write(hw
, start_addr
++, data
[3]);
1077 efuse_one_byte_read(hw
, tmpaddr
, &tmpdata
[2]);
1078 efuse_one_byte_read(hw
, tmpaddr
+ 1, &tmpdata
[3]);
1079 if ((data
[2] != tmpdata
[2]) || (data
[3] != tmpdata
[3]))
1080 badworden
&= (~BIT(1));
1083 if (!(word_en
& BIT(2))) {
1084 tmpaddr
= start_addr
;
1085 efuse_one_byte_write(hw
, start_addr
++, data
[4]);
1086 efuse_one_byte_write(hw
, start_addr
++, data
[5]);
1088 efuse_one_byte_read(hw
, tmpaddr
, &tmpdata
[4]);
1089 efuse_one_byte_read(hw
, tmpaddr
+ 1, &tmpdata
[5]);
1090 if ((data
[4] != tmpdata
[4]) || (data
[5] != tmpdata
[5]))
1091 badworden
&= (~BIT(2));
1094 if (!(word_en
& BIT(3))) {
1095 tmpaddr
= start_addr
;
1096 efuse_one_byte_write(hw
, start_addr
++, data
[6]);
1097 efuse_one_byte_write(hw
, start_addr
++, data
[7]);
1099 efuse_one_byte_read(hw
, tmpaddr
, &tmpdata
[6]);
1100 efuse_one_byte_read(hw
, tmpaddr
+ 1, &tmpdata
[7]);
1101 if ((data
[6] != tmpdata
[6]) || (data
[7] != tmpdata
[7]))
1102 badworden
&= (~BIT(3));
1108 static void efuse_power_switch(struct ieee80211_hw
*hw
, u8 bwrite
, u8 pwrstate
)
1110 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1111 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1115 if(rtlhal
->hw_type
== HARDWARE_TYPE_RTL8812AE
)
1117 if (pwrstate
== true)
1119 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_ACCESS
], 0x69);
1121 /* 1.2V Power: From VDDON with Power Cut(0x0000h[15]), default valid */
1122 tmpV16
= rtl_read_word(rtlpriv
,
1123 rtlpriv
->cfg
->maps
[SYS_ISO_CTRL
]);
1125 printk("SYS_ISO_CTRL=%04x.\n",tmpV16
);
1126 if( ! (tmpV16
& PWC_EV12V
) ){
1127 tmpV16
|= PWC_EV12V
;
1128 /* PlatformEFIOWrite2Byte(pAdapter,REG_SYS_ISO_CTRL,tmpV16); */
1130 /* Reset: 0x0000h[28], default valid */
1131 tmpV16
= rtl_read_word(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_FUNC_EN
]);
1132 printk("SYS_FUNC_EN=%04x.\n",tmpV16
);
1133 if( !(tmpV16
& FEN_ELDR
) ){
1134 tmpV16
|= FEN_ELDR
;
1135 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_FUNC_EN
], tmpV16
);
1138 /* Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
1139 tmpV16
= rtl_read_word(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_CLK
] );
1140 printk("SYS_CLK=%04x.\n",tmpV16
);
1141 if( (!(tmpV16
& LOADER_CLK_EN
) ) ||(!(tmpV16
& ANA8M
) ) )
1143 tmpV16
|= (LOADER_CLK_EN
|ANA8M
) ;
1144 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_CLK
], tmpV16
);
1149 /* Enable LDO 2.5V before read/write action */
1150 tempval
= rtl_read_word(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_TEST
] + 3);
1151 printk("EFUSE_TEST=%04x.\n",tmpV16
);
1152 tempval
&= ~(BIT(3) | BIT(4) |BIT(5) | BIT(6));
1153 tempval
|= (VOLTAGE_V25
<< 3);
1155 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_TEST
] + 3, tempval
);
1160 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_ACCESS
], 0x00);
1162 /* Disable LDO 2.5V after read/write action */
1163 tempval
= rtl_read_word(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_TEST
] + 3);
1164 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_TEST
] + 3, (tempval
& 0x7F));
1170 if (pwrstate
== true && (rtlhal
->hw_type
!=
1171 HARDWARE_TYPE_RTL8192SE
)) {
1173 if(rtlhal
->hw_type
== HARDWARE_TYPE_RTL8188EE
)
1174 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_ACCESS
],
1177 tmpV16
= rtl_read_word(rtlpriv
,
1178 rtlpriv
->cfg
->maps
[SYS_ISO_CTRL
]);
1179 if (!(tmpV16
& rtlpriv
->cfg
->maps
[EFUSE_PWC_EV12V
])) {
1180 tmpV16
|= rtlpriv
->cfg
->maps
[EFUSE_PWC_EV12V
];
1181 rtl_write_word(rtlpriv
,
1182 rtlpriv
->cfg
->maps
[SYS_ISO_CTRL
],
1186 tmpV16
= rtl_read_word(rtlpriv
,
1187 rtlpriv
->cfg
->maps
[SYS_FUNC_EN
]);
1188 if (!(tmpV16
& rtlpriv
->cfg
->maps
[EFUSE_FEN_ELDR
])) {
1189 tmpV16
|= rtlpriv
->cfg
->maps
[EFUSE_FEN_ELDR
];
1190 rtl_write_word(rtlpriv
,
1191 rtlpriv
->cfg
->maps
[SYS_FUNC_EN
], tmpV16
);
1194 tmpV16
= rtl_read_word(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_CLK
]);
1195 if ((!(tmpV16
& rtlpriv
->cfg
->maps
[EFUSE_LOADER_CLK_EN
])) ||
1196 (!(tmpV16
& rtlpriv
->cfg
->maps
[EFUSE_ANA8M
]))) {
1197 tmpV16
|= (rtlpriv
->cfg
->maps
[EFUSE_LOADER_CLK_EN
] |
1198 rtlpriv
->cfg
->maps
[EFUSE_ANA8M
]);
1199 rtl_write_word(rtlpriv
,
1200 rtlpriv
->cfg
->maps
[SYS_CLK
], tmpV16
);
1204 if (pwrstate
== true) {
1205 if (bwrite
== true) {
1206 tempval
= rtl_read_byte(rtlpriv
,
1207 rtlpriv
->cfg
->maps
[EFUSE_TEST
] +
1210 if (rtlhal
->hw_type
!= HARDWARE_TYPE_RTL8192SE
) {
1212 tempval
|= (VOLTAGE_V25
<< 4);
1215 rtl_write_byte(rtlpriv
,
1216 rtlpriv
->cfg
->maps
[EFUSE_TEST
] + 3,
1220 if (rtlhal
->hw_type
== HARDWARE_TYPE_RTL8192SE
) {
1221 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CLK
],
1226 if(rtlhal
->hw_type
== HARDWARE_TYPE_RTL8188EE
)
1227 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_ACCESS
], 0);
1229 if (bwrite
== true) {
1230 tempval
= rtl_read_byte(rtlpriv
,
1231 rtlpriv
->cfg
->maps
[EFUSE_TEST
] +
1233 rtl_write_byte(rtlpriv
,
1234 rtlpriv
->cfg
->maps
[EFUSE_TEST
] + 3,
1238 if (rtlhal
->hw_type
== HARDWARE_TYPE_RTL8192SE
) {
1239 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CLK
],
1248 static u16
efuse_get_current_size(struct ieee80211_hw
*hw
)
1250 int bcontinual
= true;
1252 u8 hoffset
, hworden
;
1253 u8 efuse_data
, word_cnts
;
1255 while (bcontinual
&& efuse_one_byte_read(hw
, efuse_addr
, &efuse_data
)
1256 && (efuse_addr
< EFUSE_MAX_SIZE
)) {
1257 if (efuse_data
!= 0xFF) {
1258 hoffset
= (efuse_data
>> 4) & 0x0F;
1259 hworden
= efuse_data
& 0x0F;
1260 word_cnts
= efuse_calculate_word_cnts(hworden
);
1261 efuse_addr
= efuse_addr
+ (word_cnts
* 2) + 1;
1270 static u8
efuse_calculate_word_cnts(u8 word_en
)
1273 if (!(word_en
& BIT(0)))
1275 if (!(word_en
& BIT(1)))
1277 if (!(word_en
& BIT(2)))
1279 if (!(word_en
& BIT(3)))