ARM64: juno: add GPIO keys
[linux/fpc-iii.git] / fs / ext4 / extents.c
blobd74e08029643d3e5eeb1f8a14d9a78c290549863
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <asm/uaccess.h>
41 #include <linux/fiemap.h>
42 #include "ext4_jbd2.h"
43 #include "ext4_extents.h"
44 #include "xattr.h"
46 #include <trace/events/ext4.h>
49 * used by extent splitting.
51 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
52 due to ENOSPC */
53 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */
54 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */
56 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
57 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
59 static __le32 ext4_extent_block_csum(struct inode *inode,
60 struct ext4_extent_header *eh)
62 struct ext4_inode_info *ei = EXT4_I(inode);
63 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
64 __u32 csum;
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
67 EXT4_EXTENT_TAIL_OFFSET(eh));
68 return cpu_to_le32(csum);
71 static int ext4_extent_block_csum_verify(struct inode *inode,
72 struct ext4_extent_header *eh)
74 struct ext4_extent_tail *et;
76 if (!ext4_has_metadata_csum(inode->i_sb))
77 return 1;
79 et = find_ext4_extent_tail(eh);
80 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
81 return 0;
82 return 1;
85 static void ext4_extent_block_csum_set(struct inode *inode,
86 struct ext4_extent_header *eh)
88 struct ext4_extent_tail *et;
90 if (!ext4_has_metadata_csum(inode->i_sb))
91 return;
93 et = find_ext4_extent_tail(eh);
94 et->et_checksum = ext4_extent_block_csum(inode, eh);
97 static int ext4_split_extent(handle_t *handle,
98 struct inode *inode,
99 struct ext4_ext_path **ppath,
100 struct ext4_map_blocks *map,
101 int split_flag,
102 int flags);
104 static int ext4_split_extent_at(handle_t *handle,
105 struct inode *inode,
106 struct ext4_ext_path **ppath,
107 ext4_lblk_t split,
108 int split_flag,
109 int flags);
111 static int ext4_find_delayed_extent(struct inode *inode,
112 struct extent_status *newes);
114 static int ext4_ext_truncate_extend_restart(handle_t *handle,
115 struct inode *inode,
116 int needed)
118 int err;
120 if (!ext4_handle_valid(handle))
121 return 0;
122 if (handle->h_buffer_credits > needed)
123 return 0;
124 err = ext4_journal_extend(handle, needed);
125 if (err <= 0)
126 return err;
127 err = ext4_truncate_restart_trans(handle, inode, needed);
128 if (err == 0)
129 err = -EAGAIN;
131 return err;
135 * could return:
136 * - EROFS
137 * - ENOMEM
139 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
140 struct ext4_ext_path *path)
142 if (path->p_bh) {
143 /* path points to block */
144 BUFFER_TRACE(path->p_bh, "get_write_access");
145 return ext4_journal_get_write_access(handle, path->p_bh);
147 /* path points to leaf/index in inode body */
148 /* we use in-core data, no need to protect them */
149 return 0;
153 * could return:
154 * - EROFS
155 * - ENOMEM
156 * - EIO
158 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
159 struct inode *inode, struct ext4_ext_path *path)
161 int err;
163 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
164 if (path->p_bh) {
165 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166 /* path points to block */
167 err = __ext4_handle_dirty_metadata(where, line, handle,
168 inode, path->p_bh);
169 } else {
170 /* path points to leaf/index in inode body */
171 err = ext4_mark_inode_dirty(handle, inode);
173 return err;
176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177 struct ext4_ext_path *path,
178 ext4_lblk_t block)
180 if (path) {
181 int depth = path->p_depth;
182 struct ext4_extent *ex;
185 * Try to predict block placement assuming that we are
186 * filling in a file which will eventually be
187 * non-sparse --- i.e., in the case of libbfd writing
188 * an ELF object sections out-of-order but in a way
189 * the eventually results in a contiguous object or
190 * executable file, or some database extending a table
191 * space file. However, this is actually somewhat
192 * non-ideal if we are writing a sparse file such as
193 * qemu or KVM writing a raw image file that is going
194 * to stay fairly sparse, since it will end up
195 * fragmenting the file system's free space. Maybe we
196 * should have some hueristics or some way to allow
197 * userspace to pass a hint to file system,
198 * especially if the latter case turns out to be
199 * common.
201 ex = path[depth].p_ext;
202 if (ex) {
203 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
206 if (block > ext_block)
207 return ext_pblk + (block - ext_block);
208 else
209 return ext_pblk - (ext_block - block);
212 /* it looks like index is empty;
213 * try to find starting block from index itself */
214 if (path[depth].p_bh)
215 return path[depth].p_bh->b_blocknr;
218 /* OK. use inode's group */
219 return ext4_inode_to_goal_block(inode);
223 * Allocation for a meta data block
225 static ext4_fsblk_t
226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227 struct ext4_ext_path *path,
228 struct ext4_extent *ex, int *err, unsigned int flags)
230 ext4_fsblk_t goal, newblock;
232 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
234 NULL, err);
235 return newblock;
238 static inline int ext4_ext_space_block(struct inode *inode, int check)
240 int size;
242 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243 / sizeof(struct ext4_extent);
244 #ifdef AGGRESSIVE_TEST
245 if (!check && size > 6)
246 size = 6;
247 #endif
248 return size;
251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
253 int size;
255 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256 / sizeof(struct ext4_extent_idx);
257 #ifdef AGGRESSIVE_TEST
258 if (!check && size > 5)
259 size = 5;
260 #endif
261 return size;
264 static inline int ext4_ext_space_root(struct inode *inode, int check)
266 int size;
268 size = sizeof(EXT4_I(inode)->i_data);
269 size -= sizeof(struct ext4_extent_header);
270 size /= sizeof(struct ext4_extent);
271 #ifdef AGGRESSIVE_TEST
272 if (!check && size > 3)
273 size = 3;
274 #endif
275 return size;
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
280 int size;
282 size = sizeof(EXT4_I(inode)->i_data);
283 size -= sizeof(struct ext4_extent_header);
284 size /= sizeof(struct ext4_extent_idx);
285 #ifdef AGGRESSIVE_TEST
286 if (!check && size > 4)
287 size = 4;
288 #endif
289 return size;
292 static inline int
293 ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
294 struct ext4_ext_path **ppath, ext4_lblk_t lblk,
295 int nofail)
297 struct ext4_ext_path *path = *ppath;
298 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
300 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
301 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
302 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
303 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
307 * Calculate the number of metadata blocks needed
308 * to allocate @blocks
309 * Worse case is one block per extent
311 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
313 struct ext4_inode_info *ei = EXT4_I(inode);
314 int idxs;
316 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
317 / sizeof(struct ext4_extent_idx));
320 * If the new delayed allocation block is contiguous with the
321 * previous da block, it can share index blocks with the
322 * previous block, so we only need to allocate a new index
323 * block every idxs leaf blocks. At ldxs**2 blocks, we need
324 * an additional index block, and at ldxs**3 blocks, yet
325 * another index blocks.
327 if (ei->i_da_metadata_calc_len &&
328 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
329 int num = 0;
331 if ((ei->i_da_metadata_calc_len % idxs) == 0)
332 num++;
333 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
334 num++;
335 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
336 num++;
337 ei->i_da_metadata_calc_len = 0;
338 } else
339 ei->i_da_metadata_calc_len++;
340 ei->i_da_metadata_calc_last_lblock++;
341 return num;
345 * In the worst case we need a new set of index blocks at
346 * every level of the inode's extent tree.
348 ei->i_da_metadata_calc_len = 1;
349 ei->i_da_metadata_calc_last_lblock = lblock;
350 return ext_depth(inode) + 1;
353 static int
354 ext4_ext_max_entries(struct inode *inode, int depth)
356 int max;
358 if (depth == ext_depth(inode)) {
359 if (depth == 0)
360 max = ext4_ext_space_root(inode, 1);
361 else
362 max = ext4_ext_space_root_idx(inode, 1);
363 } else {
364 if (depth == 0)
365 max = ext4_ext_space_block(inode, 1);
366 else
367 max = ext4_ext_space_block_idx(inode, 1);
370 return max;
373 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
375 ext4_fsblk_t block = ext4_ext_pblock(ext);
376 int len = ext4_ext_get_actual_len(ext);
377 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
378 ext4_lblk_t last = lblock + len - 1;
380 if (lblock > last)
381 return 0;
382 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
385 static int ext4_valid_extent_idx(struct inode *inode,
386 struct ext4_extent_idx *ext_idx)
388 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
390 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
393 static int ext4_valid_extent_entries(struct inode *inode,
394 struct ext4_extent_header *eh,
395 int depth)
397 unsigned short entries;
398 if (eh->eh_entries == 0)
399 return 1;
401 entries = le16_to_cpu(eh->eh_entries);
403 if (depth == 0) {
404 /* leaf entries */
405 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
406 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
407 ext4_fsblk_t pblock = 0;
408 ext4_lblk_t lblock = 0;
409 ext4_lblk_t prev = 0;
410 int len = 0;
411 while (entries) {
412 if (!ext4_valid_extent(inode, ext))
413 return 0;
415 /* Check for overlapping extents */
416 lblock = le32_to_cpu(ext->ee_block);
417 len = ext4_ext_get_actual_len(ext);
418 if ((lblock <= prev) && prev) {
419 pblock = ext4_ext_pblock(ext);
420 es->s_last_error_block = cpu_to_le64(pblock);
421 return 0;
423 ext++;
424 entries--;
425 prev = lblock + len - 1;
427 } else {
428 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
429 while (entries) {
430 if (!ext4_valid_extent_idx(inode, ext_idx))
431 return 0;
432 ext_idx++;
433 entries--;
436 return 1;
439 static int __ext4_ext_check(const char *function, unsigned int line,
440 struct inode *inode, struct ext4_extent_header *eh,
441 int depth, ext4_fsblk_t pblk)
443 const char *error_msg;
444 int max = 0;
446 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
447 error_msg = "invalid magic";
448 goto corrupted;
450 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
451 error_msg = "unexpected eh_depth";
452 goto corrupted;
454 if (unlikely(eh->eh_max == 0)) {
455 error_msg = "invalid eh_max";
456 goto corrupted;
458 max = ext4_ext_max_entries(inode, depth);
459 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
460 error_msg = "too large eh_max";
461 goto corrupted;
463 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
464 error_msg = "invalid eh_entries";
465 goto corrupted;
467 if (!ext4_valid_extent_entries(inode, eh, depth)) {
468 error_msg = "invalid extent entries";
469 goto corrupted;
471 /* Verify checksum on non-root extent tree nodes */
472 if (ext_depth(inode) != depth &&
473 !ext4_extent_block_csum_verify(inode, eh)) {
474 error_msg = "extent tree corrupted";
475 goto corrupted;
477 return 0;
479 corrupted:
480 ext4_error_inode(inode, function, line, 0,
481 "pblk %llu bad header/extent: %s - magic %x, "
482 "entries %u, max %u(%u), depth %u(%u)",
483 (unsigned long long) pblk, error_msg,
484 le16_to_cpu(eh->eh_magic),
485 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
486 max, le16_to_cpu(eh->eh_depth), depth);
487 return -EIO;
490 #define ext4_ext_check(inode, eh, depth, pblk) \
491 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
493 int ext4_ext_check_inode(struct inode *inode)
495 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
498 static struct buffer_head *
499 __read_extent_tree_block(const char *function, unsigned int line,
500 struct inode *inode, ext4_fsblk_t pblk, int depth,
501 int flags)
503 struct buffer_head *bh;
504 int err;
506 bh = sb_getblk(inode->i_sb, pblk);
507 if (unlikely(!bh))
508 return ERR_PTR(-ENOMEM);
510 if (!bh_uptodate_or_lock(bh)) {
511 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
512 err = bh_submit_read(bh);
513 if (err < 0)
514 goto errout;
516 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
517 return bh;
518 err = __ext4_ext_check(function, line, inode,
519 ext_block_hdr(bh), depth, pblk);
520 if (err)
521 goto errout;
522 set_buffer_verified(bh);
524 * If this is a leaf block, cache all of its entries
526 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
527 struct ext4_extent_header *eh = ext_block_hdr(bh);
528 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
529 ext4_lblk_t prev = 0;
530 int i;
532 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
533 unsigned int status = EXTENT_STATUS_WRITTEN;
534 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
535 int len = ext4_ext_get_actual_len(ex);
537 if (prev && (prev != lblk))
538 ext4_es_cache_extent(inode, prev,
539 lblk - prev, ~0,
540 EXTENT_STATUS_HOLE);
542 if (ext4_ext_is_unwritten(ex))
543 status = EXTENT_STATUS_UNWRITTEN;
544 ext4_es_cache_extent(inode, lblk, len,
545 ext4_ext_pblock(ex), status);
546 prev = lblk + len;
549 return bh;
550 errout:
551 put_bh(bh);
552 return ERR_PTR(err);
556 #define read_extent_tree_block(inode, pblk, depth, flags) \
557 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \
558 (depth), (flags))
561 * This function is called to cache a file's extent information in the
562 * extent status tree
564 int ext4_ext_precache(struct inode *inode)
566 struct ext4_inode_info *ei = EXT4_I(inode);
567 struct ext4_ext_path *path = NULL;
568 struct buffer_head *bh;
569 int i = 0, depth, ret = 0;
571 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
572 return 0; /* not an extent-mapped inode */
574 down_read(&ei->i_data_sem);
575 depth = ext_depth(inode);
577 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
578 GFP_NOFS);
579 if (path == NULL) {
580 up_read(&ei->i_data_sem);
581 return -ENOMEM;
584 /* Don't cache anything if there are no external extent blocks */
585 if (depth == 0)
586 goto out;
587 path[0].p_hdr = ext_inode_hdr(inode);
588 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
589 if (ret)
590 goto out;
591 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
592 while (i >= 0) {
594 * If this is a leaf block or we've reached the end of
595 * the index block, go up
597 if ((i == depth) ||
598 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
599 brelse(path[i].p_bh);
600 path[i].p_bh = NULL;
601 i--;
602 continue;
604 bh = read_extent_tree_block(inode,
605 ext4_idx_pblock(path[i].p_idx++),
606 depth - i - 1,
607 EXT4_EX_FORCE_CACHE);
608 if (IS_ERR(bh)) {
609 ret = PTR_ERR(bh);
610 break;
612 i++;
613 path[i].p_bh = bh;
614 path[i].p_hdr = ext_block_hdr(bh);
615 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
617 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
618 out:
619 up_read(&ei->i_data_sem);
620 ext4_ext_drop_refs(path);
621 kfree(path);
622 return ret;
625 #ifdef EXT_DEBUG
626 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
628 int k, l = path->p_depth;
630 ext_debug("path:");
631 for (k = 0; k <= l; k++, path++) {
632 if (path->p_idx) {
633 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
634 ext4_idx_pblock(path->p_idx));
635 } else if (path->p_ext) {
636 ext_debug(" %d:[%d]%d:%llu ",
637 le32_to_cpu(path->p_ext->ee_block),
638 ext4_ext_is_unwritten(path->p_ext),
639 ext4_ext_get_actual_len(path->p_ext),
640 ext4_ext_pblock(path->p_ext));
641 } else
642 ext_debug(" []");
644 ext_debug("\n");
647 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
649 int depth = ext_depth(inode);
650 struct ext4_extent_header *eh;
651 struct ext4_extent *ex;
652 int i;
654 if (!path)
655 return;
657 eh = path[depth].p_hdr;
658 ex = EXT_FIRST_EXTENT(eh);
660 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
662 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
663 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
664 ext4_ext_is_unwritten(ex),
665 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
667 ext_debug("\n");
670 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
671 ext4_fsblk_t newblock, int level)
673 int depth = ext_depth(inode);
674 struct ext4_extent *ex;
676 if (depth != level) {
677 struct ext4_extent_idx *idx;
678 idx = path[level].p_idx;
679 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
680 ext_debug("%d: move %d:%llu in new index %llu\n", level,
681 le32_to_cpu(idx->ei_block),
682 ext4_idx_pblock(idx),
683 newblock);
684 idx++;
687 return;
690 ex = path[depth].p_ext;
691 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
692 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
693 le32_to_cpu(ex->ee_block),
694 ext4_ext_pblock(ex),
695 ext4_ext_is_unwritten(ex),
696 ext4_ext_get_actual_len(ex),
697 newblock);
698 ex++;
702 #else
703 #define ext4_ext_show_path(inode, path)
704 #define ext4_ext_show_leaf(inode, path)
705 #define ext4_ext_show_move(inode, path, newblock, level)
706 #endif
708 void ext4_ext_drop_refs(struct ext4_ext_path *path)
710 int depth, i;
712 if (!path)
713 return;
714 depth = path->p_depth;
715 for (i = 0; i <= depth; i++, path++)
716 if (path->p_bh) {
717 brelse(path->p_bh);
718 path->p_bh = NULL;
723 * ext4_ext_binsearch_idx:
724 * binary search for the closest index of the given block
725 * the header must be checked before calling this
727 static void
728 ext4_ext_binsearch_idx(struct inode *inode,
729 struct ext4_ext_path *path, ext4_lblk_t block)
731 struct ext4_extent_header *eh = path->p_hdr;
732 struct ext4_extent_idx *r, *l, *m;
735 ext_debug("binsearch for %u(idx): ", block);
737 l = EXT_FIRST_INDEX(eh) + 1;
738 r = EXT_LAST_INDEX(eh);
739 while (l <= r) {
740 m = l + (r - l) / 2;
741 if (block < le32_to_cpu(m->ei_block))
742 r = m - 1;
743 else
744 l = m + 1;
745 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
746 m, le32_to_cpu(m->ei_block),
747 r, le32_to_cpu(r->ei_block));
750 path->p_idx = l - 1;
751 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
752 ext4_idx_pblock(path->p_idx));
754 #ifdef CHECK_BINSEARCH
756 struct ext4_extent_idx *chix, *ix;
757 int k;
759 chix = ix = EXT_FIRST_INDEX(eh);
760 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
761 if (k != 0 &&
762 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
763 printk(KERN_DEBUG "k=%d, ix=0x%p, "
764 "first=0x%p\n", k,
765 ix, EXT_FIRST_INDEX(eh));
766 printk(KERN_DEBUG "%u <= %u\n",
767 le32_to_cpu(ix->ei_block),
768 le32_to_cpu(ix[-1].ei_block));
770 BUG_ON(k && le32_to_cpu(ix->ei_block)
771 <= le32_to_cpu(ix[-1].ei_block));
772 if (block < le32_to_cpu(ix->ei_block))
773 break;
774 chix = ix;
776 BUG_ON(chix != path->p_idx);
778 #endif
783 * ext4_ext_binsearch:
784 * binary search for closest extent of the given block
785 * the header must be checked before calling this
787 static void
788 ext4_ext_binsearch(struct inode *inode,
789 struct ext4_ext_path *path, ext4_lblk_t block)
791 struct ext4_extent_header *eh = path->p_hdr;
792 struct ext4_extent *r, *l, *m;
794 if (eh->eh_entries == 0) {
796 * this leaf is empty:
797 * we get such a leaf in split/add case
799 return;
802 ext_debug("binsearch for %u: ", block);
804 l = EXT_FIRST_EXTENT(eh) + 1;
805 r = EXT_LAST_EXTENT(eh);
807 while (l <= r) {
808 m = l + (r - l) / 2;
809 if (block < le32_to_cpu(m->ee_block))
810 r = m - 1;
811 else
812 l = m + 1;
813 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
814 m, le32_to_cpu(m->ee_block),
815 r, le32_to_cpu(r->ee_block));
818 path->p_ext = l - 1;
819 ext_debug(" -> %d:%llu:[%d]%d ",
820 le32_to_cpu(path->p_ext->ee_block),
821 ext4_ext_pblock(path->p_ext),
822 ext4_ext_is_unwritten(path->p_ext),
823 ext4_ext_get_actual_len(path->p_ext));
825 #ifdef CHECK_BINSEARCH
827 struct ext4_extent *chex, *ex;
828 int k;
830 chex = ex = EXT_FIRST_EXTENT(eh);
831 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
832 BUG_ON(k && le32_to_cpu(ex->ee_block)
833 <= le32_to_cpu(ex[-1].ee_block));
834 if (block < le32_to_cpu(ex->ee_block))
835 break;
836 chex = ex;
838 BUG_ON(chex != path->p_ext);
840 #endif
844 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
846 struct ext4_extent_header *eh;
848 eh = ext_inode_hdr(inode);
849 eh->eh_depth = 0;
850 eh->eh_entries = 0;
851 eh->eh_magic = EXT4_EXT_MAGIC;
852 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
853 ext4_mark_inode_dirty(handle, inode);
854 return 0;
857 struct ext4_ext_path *
858 ext4_find_extent(struct inode *inode, ext4_lblk_t block,
859 struct ext4_ext_path **orig_path, int flags)
861 struct ext4_extent_header *eh;
862 struct buffer_head *bh;
863 struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
864 short int depth, i, ppos = 0;
865 int ret;
867 eh = ext_inode_hdr(inode);
868 depth = ext_depth(inode);
870 if (path) {
871 ext4_ext_drop_refs(path);
872 if (depth > path[0].p_maxdepth) {
873 kfree(path);
874 *orig_path = path = NULL;
877 if (!path) {
878 /* account possible depth increase */
879 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
880 GFP_NOFS);
881 if (unlikely(!path))
882 return ERR_PTR(-ENOMEM);
883 path[0].p_maxdepth = depth + 1;
885 path[0].p_hdr = eh;
886 path[0].p_bh = NULL;
888 i = depth;
889 /* walk through the tree */
890 while (i) {
891 ext_debug("depth %d: num %d, max %d\n",
892 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
894 ext4_ext_binsearch_idx(inode, path + ppos, block);
895 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
896 path[ppos].p_depth = i;
897 path[ppos].p_ext = NULL;
899 bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
900 flags);
901 if (unlikely(IS_ERR(bh))) {
902 ret = PTR_ERR(bh);
903 goto err;
906 eh = ext_block_hdr(bh);
907 ppos++;
908 if (unlikely(ppos > depth)) {
909 put_bh(bh);
910 EXT4_ERROR_INODE(inode,
911 "ppos %d > depth %d", ppos, depth);
912 ret = -EIO;
913 goto err;
915 path[ppos].p_bh = bh;
916 path[ppos].p_hdr = eh;
919 path[ppos].p_depth = i;
920 path[ppos].p_ext = NULL;
921 path[ppos].p_idx = NULL;
923 /* find extent */
924 ext4_ext_binsearch(inode, path + ppos, block);
925 /* if not an empty leaf */
926 if (path[ppos].p_ext)
927 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
929 ext4_ext_show_path(inode, path);
931 return path;
933 err:
934 ext4_ext_drop_refs(path);
935 kfree(path);
936 if (orig_path)
937 *orig_path = NULL;
938 return ERR_PTR(ret);
942 * ext4_ext_insert_index:
943 * insert new index [@logical;@ptr] into the block at @curp;
944 * check where to insert: before @curp or after @curp
946 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
947 struct ext4_ext_path *curp,
948 int logical, ext4_fsblk_t ptr)
950 struct ext4_extent_idx *ix;
951 int len, err;
953 err = ext4_ext_get_access(handle, inode, curp);
954 if (err)
955 return err;
957 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
958 EXT4_ERROR_INODE(inode,
959 "logical %d == ei_block %d!",
960 logical, le32_to_cpu(curp->p_idx->ei_block));
961 return -EIO;
964 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
965 >= le16_to_cpu(curp->p_hdr->eh_max))) {
966 EXT4_ERROR_INODE(inode,
967 "eh_entries %d >= eh_max %d!",
968 le16_to_cpu(curp->p_hdr->eh_entries),
969 le16_to_cpu(curp->p_hdr->eh_max));
970 return -EIO;
973 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
974 /* insert after */
975 ext_debug("insert new index %d after: %llu\n", logical, ptr);
976 ix = curp->p_idx + 1;
977 } else {
978 /* insert before */
979 ext_debug("insert new index %d before: %llu\n", logical, ptr);
980 ix = curp->p_idx;
983 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
984 BUG_ON(len < 0);
985 if (len > 0) {
986 ext_debug("insert new index %d: "
987 "move %d indices from 0x%p to 0x%p\n",
988 logical, len, ix, ix + 1);
989 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
992 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
993 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
994 return -EIO;
997 ix->ei_block = cpu_to_le32(logical);
998 ext4_idx_store_pblock(ix, ptr);
999 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
1001 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
1002 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
1003 return -EIO;
1006 err = ext4_ext_dirty(handle, inode, curp);
1007 ext4_std_error(inode->i_sb, err);
1009 return err;
1013 * ext4_ext_split:
1014 * inserts new subtree into the path, using free index entry
1015 * at depth @at:
1016 * - allocates all needed blocks (new leaf and all intermediate index blocks)
1017 * - makes decision where to split
1018 * - moves remaining extents and index entries (right to the split point)
1019 * into the newly allocated blocks
1020 * - initializes subtree
1022 static int ext4_ext_split(handle_t *handle, struct inode *inode,
1023 unsigned int flags,
1024 struct ext4_ext_path *path,
1025 struct ext4_extent *newext, int at)
1027 struct buffer_head *bh = NULL;
1028 int depth = ext_depth(inode);
1029 struct ext4_extent_header *neh;
1030 struct ext4_extent_idx *fidx;
1031 int i = at, k, m, a;
1032 ext4_fsblk_t newblock, oldblock;
1033 __le32 border;
1034 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1035 int err = 0;
1037 /* make decision: where to split? */
1038 /* FIXME: now decision is simplest: at current extent */
1040 /* if current leaf will be split, then we should use
1041 * border from split point */
1042 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1043 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1044 return -EIO;
1046 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1047 border = path[depth].p_ext[1].ee_block;
1048 ext_debug("leaf will be split."
1049 " next leaf starts at %d\n",
1050 le32_to_cpu(border));
1051 } else {
1052 border = newext->ee_block;
1053 ext_debug("leaf will be added."
1054 " next leaf starts at %d\n",
1055 le32_to_cpu(border));
1059 * If error occurs, then we break processing
1060 * and mark filesystem read-only. index won't
1061 * be inserted and tree will be in consistent
1062 * state. Next mount will repair buffers too.
1066 * Get array to track all allocated blocks.
1067 * We need this to handle errors and free blocks
1068 * upon them.
1070 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1071 if (!ablocks)
1072 return -ENOMEM;
1074 /* allocate all needed blocks */
1075 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1076 for (a = 0; a < depth - at; a++) {
1077 newblock = ext4_ext_new_meta_block(handle, inode, path,
1078 newext, &err, flags);
1079 if (newblock == 0)
1080 goto cleanup;
1081 ablocks[a] = newblock;
1084 /* initialize new leaf */
1085 newblock = ablocks[--a];
1086 if (unlikely(newblock == 0)) {
1087 EXT4_ERROR_INODE(inode, "newblock == 0!");
1088 err = -EIO;
1089 goto cleanup;
1091 bh = sb_getblk(inode->i_sb, newblock);
1092 if (unlikely(!bh)) {
1093 err = -ENOMEM;
1094 goto cleanup;
1096 lock_buffer(bh);
1098 err = ext4_journal_get_create_access(handle, bh);
1099 if (err)
1100 goto cleanup;
1102 neh = ext_block_hdr(bh);
1103 neh->eh_entries = 0;
1104 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1105 neh->eh_magic = EXT4_EXT_MAGIC;
1106 neh->eh_depth = 0;
1108 /* move remainder of path[depth] to the new leaf */
1109 if (unlikely(path[depth].p_hdr->eh_entries !=
1110 path[depth].p_hdr->eh_max)) {
1111 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1112 path[depth].p_hdr->eh_entries,
1113 path[depth].p_hdr->eh_max);
1114 err = -EIO;
1115 goto cleanup;
1117 /* start copy from next extent */
1118 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1119 ext4_ext_show_move(inode, path, newblock, depth);
1120 if (m) {
1121 struct ext4_extent *ex;
1122 ex = EXT_FIRST_EXTENT(neh);
1123 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1124 le16_add_cpu(&neh->eh_entries, m);
1127 ext4_extent_block_csum_set(inode, neh);
1128 set_buffer_uptodate(bh);
1129 unlock_buffer(bh);
1131 err = ext4_handle_dirty_metadata(handle, inode, bh);
1132 if (err)
1133 goto cleanup;
1134 brelse(bh);
1135 bh = NULL;
1137 /* correct old leaf */
1138 if (m) {
1139 err = ext4_ext_get_access(handle, inode, path + depth);
1140 if (err)
1141 goto cleanup;
1142 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1143 err = ext4_ext_dirty(handle, inode, path + depth);
1144 if (err)
1145 goto cleanup;
1149 /* create intermediate indexes */
1150 k = depth - at - 1;
1151 if (unlikely(k < 0)) {
1152 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1153 err = -EIO;
1154 goto cleanup;
1156 if (k)
1157 ext_debug("create %d intermediate indices\n", k);
1158 /* insert new index into current index block */
1159 /* current depth stored in i var */
1160 i = depth - 1;
1161 while (k--) {
1162 oldblock = newblock;
1163 newblock = ablocks[--a];
1164 bh = sb_getblk(inode->i_sb, newblock);
1165 if (unlikely(!bh)) {
1166 err = -ENOMEM;
1167 goto cleanup;
1169 lock_buffer(bh);
1171 err = ext4_journal_get_create_access(handle, bh);
1172 if (err)
1173 goto cleanup;
1175 neh = ext_block_hdr(bh);
1176 neh->eh_entries = cpu_to_le16(1);
1177 neh->eh_magic = EXT4_EXT_MAGIC;
1178 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1179 neh->eh_depth = cpu_to_le16(depth - i);
1180 fidx = EXT_FIRST_INDEX(neh);
1181 fidx->ei_block = border;
1182 ext4_idx_store_pblock(fidx, oldblock);
1184 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1185 i, newblock, le32_to_cpu(border), oldblock);
1187 /* move remainder of path[i] to the new index block */
1188 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1189 EXT_LAST_INDEX(path[i].p_hdr))) {
1190 EXT4_ERROR_INODE(inode,
1191 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1192 le32_to_cpu(path[i].p_ext->ee_block));
1193 err = -EIO;
1194 goto cleanup;
1196 /* start copy indexes */
1197 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1198 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1199 EXT_MAX_INDEX(path[i].p_hdr));
1200 ext4_ext_show_move(inode, path, newblock, i);
1201 if (m) {
1202 memmove(++fidx, path[i].p_idx,
1203 sizeof(struct ext4_extent_idx) * m);
1204 le16_add_cpu(&neh->eh_entries, m);
1206 ext4_extent_block_csum_set(inode, neh);
1207 set_buffer_uptodate(bh);
1208 unlock_buffer(bh);
1210 err = ext4_handle_dirty_metadata(handle, inode, bh);
1211 if (err)
1212 goto cleanup;
1213 brelse(bh);
1214 bh = NULL;
1216 /* correct old index */
1217 if (m) {
1218 err = ext4_ext_get_access(handle, inode, path + i);
1219 if (err)
1220 goto cleanup;
1221 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1222 err = ext4_ext_dirty(handle, inode, path + i);
1223 if (err)
1224 goto cleanup;
1227 i--;
1230 /* insert new index */
1231 err = ext4_ext_insert_index(handle, inode, path + at,
1232 le32_to_cpu(border), newblock);
1234 cleanup:
1235 if (bh) {
1236 if (buffer_locked(bh))
1237 unlock_buffer(bh);
1238 brelse(bh);
1241 if (err) {
1242 /* free all allocated blocks in error case */
1243 for (i = 0; i < depth; i++) {
1244 if (!ablocks[i])
1245 continue;
1246 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1247 EXT4_FREE_BLOCKS_METADATA);
1250 kfree(ablocks);
1252 return err;
1256 * ext4_ext_grow_indepth:
1257 * implements tree growing procedure:
1258 * - allocates new block
1259 * - moves top-level data (index block or leaf) into the new block
1260 * - initializes new top-level, creating index that points to the
1261 * just created block
1263 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1264 unsigned int flags)
1266 struct ext4_extent_header *neh;
1267 struct buffer_head *bh;
1268 ext4_fsblk_t newblock, goal = 0;
1269 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
1270 int err = 0;
1272 /* Try to prepend new index to old one */
1273 if (ext_depth(inode))
1274 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
1275 if (goal > le32_to_cpu(es->s_first_data_block)) {
1276 flags |= EXT4_MB_HINT_TRY_GOAL;
1277 goal--;
1278 } else
1279 goal = ext4_inode_to_goal_block(inode);
1280 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
1281 NULL, &err);
1282 if (newblock == 0)
1283 return err;
1285 bh = sb_getblk(inode->i_sb, newblock);
1286 if (unlikely(!bh))
1287 return -ENOMEM;
1288 lock_buffer(bh);
1290 err = ext4_journal_get_create_access(handle, bh);
1291 if (err) {
1292 unlock_buffer(bh);
1293 goto out;
1296 /* move top-level index/leaf into new block */
1297 memmove(bh->b_data, EXT4_I(inode)->i_data,
1298 sizeof(EXT4_I(inode)->i_data));
1300 /* set size of new block */
1301 neh = ext_block_hdr(bh);
1302 /* old root could have indexes or leaves
1303 * so calculate e_max right way */
1304 if (ext_depth(inode))
1305 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1306 else
1307 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1308 neh->eh_magic = EXT4_EXT_MAGIC;
1309 ext4_extent_block_csum_set(inode, neh);
1310 set_buffer_uptodate(bh);
1311 unlock_buffer(bh);
1313 err = ext4_handle_dirty_metadata(handle, inode, bh);
1314 if (err)
1315 goto out;
1317 /* Update top-level index: num,max,pointer */
1318 neh = ext_inode_hdr(inode);
1319 neh->eh_entries = cpu_to_le16(1);
1320 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1321 if (neh->eh_depth == 0) {
1322 /* Root extent block becomes index block */
1323 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1324 EXT_FIRST_INDEX(neh)->ei_block =
1325 EXT_FIRST_EXTENT(neh)->ee_block;
1327 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1328 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1329 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1330 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1332 le16_add_cpu(&neh->eh_depth, 1);
1333 ext4_mark_inode_dirty(handle, inode);
1334 out:
1335 brelse(bh);
1337 return err;
1341 * ext4_ext_create_new_leaf:
1342 * finds empty index and adds new leaf.
1343 * if no free index is found, then it requests in-depth growing.
1345 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1346 unsigned int mb_flags,
1347 unsigned int gb_flags,
1348 struct ext4_ext_path **ppath,
1349 struct ext4_extent *newext)
1351 struct ext4_ext_path *path = *ppath;
1352 struct ext4_ext_path *curp;
1353 int depth, i, err = 0;
1355 repeat:
1356 i = depth = ext_depth(inode);
1358 /* walk up to the tree and look for free index entry */
1359 curp = path + depth;
1360 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1361 i--;
1362 curp--;
1365 /* we use already allocated block for index block,
1366 * so subsequent data blocks should be contiguous */
1367 if (EXT_HAS_FREE_INDEX(curp)) {
1368 /* if we found index with free entry, then use that
1369 * entry: create all needed subtree and add new leaf */
1370 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1371 if (err)
1372 goto out;
1374 /* refill path */
1375 path = ext4_find_extent(inode,
1376 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1377 ppath, gb_flags);
1378 if (IS_ERR(path))
1379 err = PTR_ERR(path);
1380 } else {
1381 /* tree is full, time to grow in depth */
1382 err = ext4_ext_grow_indepth(handle, inode, mb_flags);
1383 if (err)
1384 goto out;
1386 /* refill path */
1387 path = ext4_find_extent(inode,
1388 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1389 ppath, gb_flags);
1390 if (IS_ERR(path)) {
1391 err = PTR_ERR(path);
1392 goto out;
1396 * only first (depth 0 -> 1) produces free space;
1397 * in all other cases we have to split the grown tree
1399 depth = ext_depth(inode);
1400 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1401 /* now we need to split */
1402 goto repeat;
1406 out:
1407 return err;
1411 * search the closest allocated block to the left for *logical
1412 * and returns it at @logical + it's physical address at @phys
1413 * if *logical is the smallest allocated block, the function
1414 * returns 0 at @phys
1415 * return value contains 0 (success) or error code
1417 static int ext4_ext_search_left(struct inode *inode,
1418 struct ext4_ext_path *path,
1419 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1421 struct ext4_extent_idx *ix;
1422 struct ext4_extent *ex;
1423 int depth, ee_len;
1425 if (unlikely(path == NULL)) {
1426 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1427 return -EIO;
1429 depth = path->p_depth;
1430 *phys = 0;
1432 if (depth == 0 && path->p_ext == NULL)
1433 return 0;
1435 /* usually extent in the path covers blocks smaller
1436 * then *logical, but it can be that extent is the
1437 * first one in the file */
1439 ex = path[depth].p_ext;
1440 ee_len = ext4_ext_get_actual_len(ex);
1441 if (*logical < le32_to_cpu(ex->ee_block)) {
1442 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1443 EXT4_ERROR_INODE(inode,
1444 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1445 *logical, le32_to_cpu(ex->ee_block));
1446 return -EIO;
1448 while (--depth >= 0) {
1449 ix = path[depth].p_idx;
1450 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1451 EXT4_ERROR_INODE(inode,
1452 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1453 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1454 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1455 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1456 depth);
1457 return -EIO;
1460 return 0;
1463 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1464 EXT4_ERROR_INODE(inode,
1465 "logical %d < ee_block %d + ee_len %d!",
1466 *logical, le32_to_cpu(ex->ee_block), ee_len);
1467 return -EIO;
1470 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1471 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1472 return 0;
1476 * search the closest allocated block to the right for *logical
1477 * and returns it at @logical + it's physical address at @phys
1478 * if *logical is the largest allocated block, the function
1479 * returns 0 at @phys
1480 * return value contains 0 (success) or error code
1482 static int ext4_ext_search_right(struct inode *inode,
1483 struct ext4_ext_path *path,
1484 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1485 struct ext4_extent **ret_ex)
1487 struct buffer_head *bh = NULL;
1488 struct ext4_extent_header *eh;
1489 struct ext4_extent_idx *ix;
1490 struct ext4_extent *ex;
1491 ext4_fsblk_t block;
1492 int depth; /* Note, NOT eh_depth; depth from top of tree */
1493 int ee_len;
1495 if (unlikely(path == NULL)) {
1496 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1497 return -EIO;
1499 depth = path->p_depth;
1500 *phys = 0;
1502 if (depth == 0 && path->p_ext == NULL)
1503 return 0;
1505 /* usually extent in the path covers blocks smaller
1506 * then *logical, but it can be that extent is the
1507 * first one in the file */
1509 ex = path[depth].p_ext;
1510 ee_len = ext4_ext_get_actual_len(ex);
1511 if (*logical < le32_to_cpu(ex->ee_block)) {
1512 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1513 EXT4_ERROR_INODE(inode,
1514 "first_extent(path[%d].p_hdr) != ex",
1515 depth);
1516 return -EIO;
1518 while (--depth >= 0) {
1519 ix = path[depth].p_idx;
1520 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1521 EXT4_ERROR_INODE(inode,
1522 "ix != EXT_FIRST_INDEX *logical %d!",
1523 *logical);
1524 return -EIO;
1527 goto found_extent;
1530 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1531 EXT4_ERROR_INODE(inode,
1532 "logical %d < ee_block %d + ee_len %d!",
1533 *logical, le32_to_cpu(ex->ee_block), ee_len);
1534 return -EIO;
1537 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1538 /* next allocated block in this leaf */
1539 ex++;
1540 goto found_extent;
1543 /* go up and search for index to the right */
1544 while (--depth >= 0) {
1545 ix = path[depth].p_idx;
1546 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1547 goto got_index;
1550 /* we've gone up to the root and found no index to the right */
1551 return 0;
1553 got_index:
1554 /* we've found index to the right, let's
1555 * follow it and find the closest allocated
1556 * block to the right */
1557 ix++;
1558 block = ext4_idx_pblock(ix);
1559 while (++depth < path->p_depth) {
1560 /* subtract from p_depth to get proper eh_depth */
1561 bh = read_extent_tree_block(inode, block,
1562 path->p_depth - depth, 0);
1563 if (IS_ERR(bh))
1564 return PTR_ERR(bh);
1565 eh = ext_block_hdr(bh);
1566 ix = EXT_FIRST_INDEX(eh);
1567 block = ext4_idx_pblock(ix);
1568 put_bh(bh);
1571 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1572 if (IS_ERR(bh))
1573 return PTR_ERR(bh);
1574 eh = ext_block_hdr(bh);
1575 ex = EXT_FIRST_EXTENT(eh);
1576 found_extent:
1577 *logical = le32_to_cpu(ex->ee_block);
1578 *phys = ext4_ext_pblock(ex);
1579 *ret_ex = ex;
1580 if (bh)
1581 put_bh(bh);
1582 return 0;
1586 * ext4_ext_next_allocated_block:
1587 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1588 * NOTE: it considers block number from index entry as
1589 * allocated block. Thus, index entries have to be consistent
1590 * with leaves.
1592 ext4_lblk_t
1593 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1595 int depth;
1597 BUG_ON(path == NULL);
1598 depth = path->p_depth;
1600 if (depth == 0 && path->p_ext == NULL)
1601 return EXT_MAX_BLOCKS;
1603 while (depth >= 0) {
1604 if (depth == path->p_depth) {
1605 /* leaf */
1606 if (path[depth].p_ext &&
1607 path[depth].p_ext !=
1608 EXT_LAST_EXTENT(path[depth].p_hdr))
1609 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1610 } else {
1611 /* index */
1612 if (path[depth].p_idx !=
1613 EXT_LAST_INDEX(path[depth].p_hdr))
1614 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1616 depth--;
1619 return EXT_MAX_BLOCKS;
1623 * ext4_ext_next_leaf_block:
1624 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1626 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1628 int depth;
1630 BUG_ON(path == NULL);
1631 depth = path->p_depth;
1633 /* zero-tree has no leaf blocks at all */
1634 if (depth == 0)
1635 return EXT_MAX_BLOCKS;
1637 /* go to index block */
1638 depth--;
1640 while (depth >= 0) {
1641 if (path[depth].p_idx !=
1642 EXT_LAST_INDEX(path[depth].p_hdr))
1643 return (ext4_lblk_t)
1644 le32_to_cpu(path[depth].p_idx[1].ei_block);
1645 depth--;
1648 return EXT_MAX_BLOCKS;
1652 * ext4_ext_correct_indexes:
1653 * if leaf gets modified and modified extent is first in the leaf,
1654 * then we have to correct all indexes above.
1655 * TODO: do we need to correct tree in all cases?
1657 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1658 struct ext4_ext_path *path)
1660 struct ext4_extent_header *eh;
1661 int depth = ext_depth(inode);
1662 struct ext4_extent *ex;
1663 __le32 border;
1664 int k, err = 0;
1666 eh = path[depth].p_hdr;
1667 ex = path[depth].p_ext;
1669 if (unlikely(ex == NULL || eh == NULL)) {
1670 EXT4_ERROR_INODE(inode,
1671 "ex %p == NULL or eh %p == NULL", ex, eh);
1672 return -EIO;
1675 if (depth == 0) {
1676 /* there is no tree at all */
1677 return 0;
1680 if (ex != EXT_FIRST_EXTENT(eh)) {
1681 /* we correct tree if first leaf got modified only */
1682 return 0;
1686 * TODO: we need correction if border is smaller than current one
1688 k = depth - 1;
1689 border = path[depth].p_ext->ee_block;
1690 err = ext4_ext_get_access(handle, inode, path + k);
1691 if (err)
1692 return err;
1693 path[k].p_idx->ei_block = border;
1694 err = ext4_ext_dirty(handle, inode, path + k);
1695 if (err)
1696 return err;
1698 while (k--) {
1699 /* change all left-side indexes */
1700 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1701 break;
1702 err = ext4_ext_get_access(handle, inode, path + k);
1703 if (err)
1704 break;
1705 path[k].p_idx->ei_block = border;
1706 err = ext4_ext_dirty(handle, inode, path + k);
1707 if (err)
1708 break;
1711 return err;
1715 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1716 struct ext4_extent *ex2)
1718 unsigned short ext1_ee_len, ext2_ee_len;
1720 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
1721 return 0;
1723 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1724 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1726 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1727 le32_to_cpu(ex2->ee_block))
1728 return 0;
1731 * To allow future support for preallocated extents to be added
1732 * as an RO_COMPAT feature, refuse to merge to extents if
1733 * this can result in the top bit of ee_len being set.
1735 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1736 return 0;
1737 if (ext4_ext_is_unwritten(ex1) &&
1738 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1739 atomic_read(&EXT4_I(inode)->i_unwritten) ||
1740 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1741 return 0;
1742 #ifdef AGGRESSIVE_TEST
1743 if (ext1_ee_len >= 4)
1744 return 0;
1745 #endif
1747 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1748 return 1;
1749 return 0;
1753 * This function tries to merge the "ex" extent to the next extent in the tree.
1754 * It always tries to merge towards right. If you want to merge towards
1755 * left, pass "ex - 1" as argument instead of "ex".
1756 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1757 * 1 if they got merged.
1759 static int ext4_ext_try_to_merge_right(struct inode *inode,
1760 struct ext4_ext_path *path,
1761 struct ext4_extent *ex)
1763 struct ext4_extent_header *eh;
1764 unsigned int depth, len;
1765 int merge_done = 0, unwritten;
1767 depth = ext_depth(inode);
1768 BUG_ON(path[depth].p_hdr == NULL);
1769 eh = path[depth].p_hdr;
1771 while (ex < EXT_LAST_EXTENT(eh)) {
1772 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1773 break;
1774 /* merge with next extent! */
1775 unwritten = ext4_ext_is_unwritten(ex);
1776 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1777 + ext4_ext_get_actual_len(ex + 1));
1778 if (unwritten)
1779 ext4_ext_mark_unwritten(ex);
1781 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1782 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1783 * sizeof(struct ext4_extent);
1784 memmove(ex + 1, ex + 2, len);
1786 le16_add_cpu(&eh->eh_entries, -1);
1787 merge_done = 1;
1788 WARN_ON(eh->eh_entries == 0);
1789 if (!eh->eh_entries)
1790 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1793 return merge_done;
1797 * This function does a very simple check to see if we can collapse
1798 * an extent tree with a single extent tree leaf block into the inode.
1800 static void ext4_ext_try_to_merge_up(handle_t *handle,
1801 struct inode *inode,
1802 struct ext4_ext_path *path)
1804 size_t s;
1805 unsigned max_root = ext4_ext_space_root(inode, 0);
1806 ext4_fsblk_t blk;
1808 if ((path[0].p_depth != 1) ||
1809 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1810 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1811 return;
1814 * We need to modify the block allocation bitmap and the block
1815 * group descriptor to release the extent tree block. If we
1816 * can't get the journal credits, give up.
1818 if (ext4_journal_extend(handle, 2))
1819 return;
1822 * Copy the extent data up to the inode
1824 blk = ext4_idx_pblock(path[0].p_idx);
1825 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1826 sizeof(struct ext4_extent_idx);
1827 s += sizeof(struct ext4_extent_header);
1829 path[1].p_maxdepth = path[0].p_maxdepth;
1830 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1831 path[0].p_depth = 0;
1832 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1833 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1834 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1836 brelse(path[1].p_bh);
1837 ext4_free_blocks(handle, inode, NULL, blk, 1,
1838 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1842 * This function tries to merge the @ex extent to neighbours in the tree.
1843 * return 1 if merge left else 0.
1845 static void ext4_ext_try_to_merge(handle_t *handle,
1846 struct inode *inode,
1847 struct ext4_ext_path *path,
1848 struct ext4_extent *ex) {
1849 struct ext4_extent_header *eh;
1850 unsigned int depth;
1851 int merge_done = 0;
1853 depth = ext_depth(inode);
1854 BUG_ON(path[depth].p_hdr == NULL);
1855 eh = path[depth].p_hdr;
1857 if (ex > EXT_FIRST_EXTENT(eh))
1858 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1860 if (!merge_done)
1861 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1863 ext4_ext_try_to_merge_up(handle, inode, path);
1867 * check if a portion of the "newext" extent overlaps with an
1868 * existing extent.
1870 * If there is an overlap discovered, it updates the length of the newext
1871 * such that there will be no overlap, and then returns 1.
1872 * If there is no overlap found, it returns 0.
1874 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1875 struct inode *inode,
1876 struct ext4_extent *newext,
1877 struct ext4_ext_path *path)
1879 ext4_lblk_t b1, b2;
1880 unsigned int depth, len1;
1881 unsigned int ret = 0;
1883 b1 = le32_to_cpu(newext->ee_block);
1884 len1 = ext4_ext_get_actual_len(newext);
1885 depth = ext_depth(inode);
1886 if (!path[depth].p_ext)
1887 goto out;
1888 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1891 * get the next allocated block if the extent in the path
1892 * is before the requested block(s)
1894 if (b2 < b1) {
1895 b2 = ext4_ext_next_allocated_block(path);
1896 if (b2 == EXT_MAX_BLOCKS)
1897 goto out;
1898 b2 = EXT4_LBLK_CMASK(sbi, b2);
1901 /* check for wrap through zero on extent logical start block*/
1902 if (b1 + len1 < b1) {
1903 len1 = EXT_MAX_BLOCKS - b1;
1904 newext->ee_len = cpu_to_le16(len1);
1905 ret = 1;
1908 /* check for overlap */
1909 if (b1 + len1 > b2) {
1910 newext->ee_len = cpu_to_le16(b2 - b1);
1911 ret = 1;
1913 out:
1914 return ret;
1918 * ext4_ext_insert_extent:
1919 * tries to merge requsted extent into the existing extent or
1920 * inserts requested extent as new one into the tree,
1921 * creating new leaf in the no-space case.
1923 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1924 struct ext4_ext_path **ppath,
1925 struct ext4_extent *newext, int gb_flags)
1927 struct ext4_ext_path *path = *ppath;
1928 struct ext4_extent_header *eh;
1929 struct ext4_extent *ex, *fex;
1930 struct ext4_extent *nearex; /* nearest extent */
1931 struct ext4_ext_path *npath = NULL;
1932 int depth, len, err;
1933 ext4_lblk_t next;
1934 int mb_flags = 0, unwritten;
1936 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1937 mb_flags |= EXT4_MB_DELALLOC_RESERVED;
1938 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1939 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1940 return -EIO;
1942 depth = ext_depth(inode);
1943 ex = path[depth].p_ext;
1944 eh = path[depth].p_hdr;
1945 if (unlikely(path[depth].p_hdr == NULL)) {
1946 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1947 return -EIO;
1950 /* try to insert block into found extent and return */
1951 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1954 * Try to see whether we should rather test the extent on
1955 * right from ex, or from the left of ex. This is because
1956 * ext4_find_extent() can return either extent on the
1957 * left, or on the right from the searched position. This
1958 * will make merging more effective.
1960 if (ex < EXT_LAST_EXTENT(eh) &&
1961 (le32_to_cpu(ex->ee_block) +
1962 ext4_ext_get_actual_len(ex) <
1963 le32_to_cpu(newext->ee_block))) {
1964 ex += 1;
1965 goto prepend;
1966 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1967 (le32_to_cpu(newext->ee_block) +
1968 ext4_ext_get_actual_len(newext) <
1969 le32_to_cpu(ex->ee_block)))
1970 ex -= 1;
1972 /* Try to append newex to the ex */
1973 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1974 ext_debug("append [%d]%d block to %u:[%d]%d"
1975 "(from %llu)\n",
1976 ext4_ext_is_unwritten(newext),
1977 ext4_ext_get_actual_len(newext),
1978 le32_to_cpu(ex->ee_block),
1979 ext4_ext_is_unwritten(ex),
1980 ext4_ext_get_actual_len(ex),
1981 ext4_ext_pblock(ex));
1982 err = ext4_ext_get_access(handle, inode,
1983 path + depth);
1984 if (err)
1985 return err;
1986 unwritten = ext4_ext_is_unwritten(ex);
1987 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1988 + ext4_ext_get_actual_len(newext));
1989 if (unwritten)
1990 ext4_ext_mark_unwritten(ex);
1991 eh = path[depth].p_hdr;
1992 nearex = ex;
1993 goto merge;
1996 prepend:
1997 /* Try to prepend newex to the ex */
1998 if (ext4_can_extents_be_merged(inode, newext, ex)) {
1999 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
2000 "(from %llu)\n",
2001 le32_to_cpu(newext->ee_block),
2002 ext4_ext_is_unwritten(newext),
2003 ext4_ext_get_actual_len(newext),
2004 le32_to_cpu(ex->ee_block),
2005 ext4_ext_is_unwritten(ex),
2006 ext4_ext_get_actual_len(ex),
2007 ext4_ext_pblock(ex));
2008 err = ext4_ext_get_access(handle, inode,
2009 path + depth);
2010 if (err)
2011 return err;
2013 unwritten = ext4_ext_is_unwritten(ex);
2014 ex->ee_block = newext->ee_block;
2015 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
2016 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2017 + ext4_ext_get_actual_len(newext));
2018 if (unwritten)
2019 ext4_ext_mark_unwritten(ex);
2020 eh = path[depth].p_hdr;
2021 nearex = ex;
2022 goto merge;
2026 depth = ext_depth(inode);
2027 eh = path[depth].p_hdr;
2028 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2029 goto has_space;
2031 /* probably next leaf has space for us? */
2032 fex = EXT_LAST_EXTENT(eh);
2033 next = EXT_MAX_BLOCKS;
2034 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2035 next = ext4_ext_next_leaf_block(path);
2036 if (next != EXT_MAX_BLOCKS) {
2037 ext_debug("next leaf block - %u\n", next);
2038 BUG_ON(npath != NULL);
2039 npath = ext4_find_extent(inode, next, NULL, 0);
2040 if (IS_ERR(npath))
2041 return PTR_ERR(npath);
2042 BUG_ON(npath->p_depth != path->p_depth);
2043 eh = npath[depth].p_hdr;
2044 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2045 ext_debug("next leaf isn't full(%d)\n",
2046 le16_to_cpu(eh->eh_entries));
2047 path = npath;
2048 goto has_space;
2050 ext_debug("next leaf has no free space(%d,%d)\n",
2051 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2055 * There is no free space in the found leaf.
2056 * We're gonna add a new leaf in the tree.
2058 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2059 mb_flags |= EXT4_MB_USE_RESERVED;
2060 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2061 ppath, newext);
2062 if (err)
2063 goto cleanup;
2064 depth = ext_depth(inode);
2065 eh = path[depth].p_hdr;
2067 has_space:
2068 nearex = path[depth].p_ext;
2070 err = ext4_ext_get_access(handle, inode, path + depth);
2071 if (err)
2072 goto cleanup;
2074 if (!nearex) {
2075 /* there is no extent in this leaf, create first one */
2076 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2077 le32_to_cpu(newext->ee_block),
2078 ext4_ext_pblock(newext),
2079 ext4_ext_is_unwritten(newext),
2080 ext4_ext_get_actual_len(newext));
2081 nearex = EXT_FIRST_EXTENT(eh);
2082 } else {
2083 if (le32_to_cpu(newext->ee_block)
2084 > le32_to_cpu(nearex->ee_block)) {
2085 /* Insert after */
2086 ext_debug("insert %u:%llu:[%d]%d before: "
2087 "nearest %p\n",
2088 le32_to_cpu(newext->ee_block),
2089 ext4_ext_pblock(newext),
2090 ext4_ext_is_unwritten(newext),
2091 ext4_ext_get_actual_len(newext),
2092 nearex);
2093 nearex++;
2094 } else {
2095 /* Insert before */
2096 BUG_ON(newext->ee_block == nearex->ee_block);
2097 ext_debug("insert %u:%llu:[%d]%d after: "
2098 "nearest %p\n",
2099 le32_to_cpu(newext->ee_block),
2100 ext4_ext_pblock(newext),
2101 ext4_ext_is_unwritten(newext),
2102 ext4_ext_get_actual_len(newext),
2103 nearex);
2105 len = EXT_LAST_EXTENT(eh) - nearex + 1;
2106 if (len > 0) {
2107 ext_debug("insert %u:%llu:[%d]%d: "
2108 "move %d extents from 0x%p to 0x%p\n",
2109 le32_to_cpu(newext->ee_block),
2110 ext4_ext_pblock(newext),
2111 ext4_ext_is_unwritten(newext),
2112 ext4_ext_get_actual_len(newext),
2113 len, nearex, nearex + 1);
2114 memmove(nearex + 1, nearex,
2115 len * sizeof(struct ext4_extent));
2119 le16_add_cpu(&eh->eh_entries, 1);
2120 path[depth].p_ext = nearex;
2121 nearex->ee_block = newext->ee_block;
2122 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2123 nearex->ee_len = newext->ee_len;
2125 merge:
2126 /* try to merge extents */
2127 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2128 ext4_ext_try_to_merge(handle, inode, path, nearex);
2131 /* time to correct all indexes above */
2132 err = ext4_ext_correct_indexes(handle, inode, path);
2133 if (err)
2134 goto cleanup;
2136 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2138 cleanup:
2139 ext4_ext_drop_refs(npath);
2140 kfree(npath);
2141 return err;
2144 static int ext4_fill_fiemap_extents(struct inode *inode,
2145 ext4_lblk_t block, ext4_lblk_t num,
2146 struct fiemap_extent_info *fieinfo)
2148 struct ext4_ext_path *path = NULL;
2149 struct ext4_extent *ex;
2150 struct extent_status es;
2151 ext4_lblk_t next, next_del, start = 0, end = 0;
2152 ext4_lblk_t last = block + num;
2153 int exists, depth = 0, err = 0;
2154 unsigned int flags = 0;
2155 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2157 while (block < last && block != EXT_MAX_BLOCKS) {
2158 num = last - block;
2159 /* find extent for this block */
2160 down_read(&EXT4_I(inode)->i_data_sem);
2162 path = ext4_find_extent(inode, block, &path, 0);
2163 if (IS_ERR(path)) {
2164 up_read(&EXT4_I(inode)->i_data_sem);
2165 err = PTR_ERR(path);
2166 path = NULL;
2167 break;
2170 depth = ext_depth(inode);
2171 if (unlikely(path[depth].p_hdr == NULL)) {
2172 up_read(&EXT4_I(inode)->i_data_sem);
2173 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2174 err = -EIO;
2175 break;
2177 ex = path[depth].p_ext;
2178 next = ext4_ext_next_allocated_block(path);
2180 flags = 0;
2181 exists = 0;
2182 if (!ex) {
2183 /* there is no extent yet, so try to allocate
2184 * all requested space */
2185 start = block;
2186 end = block + num;
2187 } else if (le32_to_cpu(ex->ee_block) > block) {
2188 /* need to allocate space before found extent */
2189 start = block;
2190 end = le32_to_cpu(ex->ee_block);
2191 if (block + num < end)
2192 end = block + num;
2193 } else if (block >= le32_to_cpu(ex->ee_block)
2194 + ext4_ext_get_actual_len(ex)) {
2195 /* need to allocate space after found extent */
2196 start = block;
2197 end = block + num;
2198 if (end >= next)
2199 end = next;
2200 } else if (block >= le32_to_cpu(ex->ee_block)) {
2202 * some part of requested space is covered
2203 * by found extent
2205 start = block;
2206 end = le32_to_cpu(ex->ee_block)
2207 + ext4_ext_get_actual_len(ex);
2208 if (block + num < end)
2209 end = block + num;
2210 exists = 1;
2211 } else {
2212 BUG();
2214 BUG_ON(end <= start);
2216 if (!exists) {
2217 es.es_lblk = start;
2218 es.es_len = end - start;
2219 es.es_pblk = 0;
2220 } else {
2221 es.es_lblk = le32_to_cpu(ex->ee_block);
2222 es.es_len = ext4_ext_get_actual_len(ex);
2223 es.es_pblk = ext4_ext_pblock(ex);
2224 if (ext4_ext_is_unwritten(ex))
2225 flags |= FIEMAP_EXTENT_UNWRITTEN;
2229 * Find delayed extent and update es accordingly. We call
2230 * it even in !exists case to find out whether es is the
2231 * last existing extent or not.
2233 next_del = ext4_find_delayed_extent(inode, &es);
2234 if (!exists && next_del) {
2235 exists = 1;
2236 flags |= (FIEMAP_EXTENT_DELALLOC |
2237 FIEMAP_EXTENT_UNKNOWN);
2239 up_read(&EXT4_I(inode)->i_data_sem);
2241 if (unlikely(es.es_len == 0)) {
2242 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2243 err = -EIO;
2244 break;
2248 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2249 * we need to check next == EXT_MAX_BLOCKS because it is
2250 * possible that an extent is with unwritten and delayed
2251 * status due to when an extent is delayed allocated and
2252 * is allocated by fallocate status tree will track both of
2253 * them in a extent.
2255 * So we could return a unwritten and delayed extent, and
2256 * its block is equal to 'next'.
2258 if (next == next_del && next == EXT_MAX_BLOCKS) {
2259 flags |= FIEMAP_EXTENT_LAST;
2260 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2261 next != EXT_MAX_BLOCKS)) {
2262 EXT4_ERROR_INODE(inode,
2263 "next extent == %u, next "
2264 "delalloc extent = %u",
2265 next, next_del);
2266 err = -EIO;
2267 break;
2271 if (exists) {
2272 err = fiemap_fill_next_extent(fieinfo,
2273 (__u64)es.es_lblk << blksize_bits,
2274 (__u64)es.es_pblk << blksize_bits,
2275 (__u64)es.es_len << blksize_bits,
2276 flags);
2277 if (err < 0)
2278 break;
2279 if (err == 1) {
2280 err = 0;
2281 break;
2285 block = es.es_lblk + es.es_len;
2288 ext4_ext_drop_refs(path);
2289 kfree(path);
2290 return err;
2294 * ext4_ext_put_gap_in_cache:
2295 * calculate boundaries of the gap that the requested block fits into
2296 * and cache this gap
2298 static void
2299 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2300 ext4_lblk_t block)
2302 int depth = ext_depth(inode);
2303 ext4_lblk_t len;
2304 ext4_lblk_t lblock;
2305 struct ext4_extent *ex;
2306 struct extent_status es;
2308 ex = path[depth].p_ext;
2309 if (ex == NULL) {
2310 /* there is no extent yet, so gap is [0;-] */
2311 lblock = 0;
2312 len = EXT_MAX_BLOCKS;
2313 ext_debug("cache gap(whole file):");
2314 } else if (block < le32_to_cpu(ex->ee_block)) {
2315 lblock = block;
2316 len = le32_to_cpu(ex->ee_block) - block;
2317 ext_debug("cache gap(before): %u [%u:%u]",
2318 block,
2319 le32_to_cpu(ex->ee_block),
2320 ext4_ext_get_actual_len(ex));
2321 } else if (block >= le32_to_cpu(ex->ee_block)
2322 + ext4_ext_get_actual_len(ex)) {
2323 ext4_lblk_t next;
2324 lblock = le32_to_cpu(ex->ee_block)
2325 + ext4_ext_get_actual_len(ex);
2327 next = ext4_ext_next_allocated_block(path);
2328 ext_debug("cache gap(after): [%u:%u] %u",
2329 le32_to_cpu(ex->ee_block),
2330 ext4_ext_get_actual_len(ex),
2331 block);
2332 BUG_ON(next == lblock);
2333 len = next - lblock;
2334 } else {
2335 BUG();
2338 ext4_es_find_delayed_extent_range(inode, lblock, lblock + len - 1, &es);
2339 if (es.es_len) {
2340 /* There's delayed extent containing lblock? */
2341 if (es.es_lblk <= lblock)
2342 return;
2343 len = min(es.es_lblk - lblock, len);
2345 ext_debug(" -> %u:%u\n", lblock, len);
2346 ext4_es_insert_extent(inode, lblock, len, ~0, EXTENT_STATUS_HOLE);
2350 * ext4_ext_rm_idx:
2351 * removes index from the index block.
2353 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2354 struct ext4_ext_path *path, int depth)
2356 int err;
2357 ext4_fsblk_t leaf;
2359 /* free index block */
2360 depth--;
2361 path = path + depth;
2362 leaf = ext4_idx_pblock(path->p_idx);
2363 if (unlikely(path->p_hdr->eh_entries == 0)) {
2364 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2365 return -EIO;
2367 err = ext4_ext_get_access(handle, inode, path);
2368 if (err)
2369 return err;
2371 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2372 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2373 len *= sizeof(struct ext4_extent_idx);
2374 memmove(path->p_idx, path->p_idx + 1, len);
2377 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2378 err = ext4_ext_dirty(handle, inode, path);
2379 if (err)
2380 return err;
2381 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2382 trace_ext4_ext_rm_idx(inode, leaf);
2384 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2385 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2387 while (--depth >= 0) {
2388 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2389 break;
2390 path--;
2391 err = ext4_ext_get_access(handle, inode, path);
2392 if (err)
2393 break;
2394 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2395 err = ext4_ext_dirty(handle, inode, path);
2396 if (err)
2397 break;
2399 return err;
2403 * ext4_ext_calc_credits_for_single_extent:
2404 * This routine returns max. credits that needed to insert an extent
2405 * to the extent tree.
2406 * When pass the actual path, the caller should calculate credits
2407 * under i_data_sem.
2409 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2410 struct ext4_ext_path *path)
2412 if (path) {
2413 int depth = ext_depth(inode);
2414 int ret = 0;
2416 /* probably there is space in leaf? */
2417 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2418 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2421 * There are some space in the leaf tree, no
2422 * need to account for leaf block credit
2424 * bitmaps and block group descriptor blocks
2425 * and other metadata blocks still need to be
2426 * accounted.
2428 /* 1 bitmap, 1 block group descriptor */
2429 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2430 return ret;
2434 return ext4_chunk_trans_blocks(inode, nrblocks);
2438 * How many index/leaf blocks need to change/allocate to add @extents extents?
2440 * If we add a single extent, then in the worse case, each tree level
2441 * index/leaf need to be changed in case of the tree split.
2443 * If more extents are inserted, they could cause the whole tree split more
2444 * than once, but this is really rare.
2446 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2448 int index;
2449 int depth;
2451 /* If we are converting the inline data, only one is needed here. */
2452 if (ext4_has_inline_data(inode))
2453 return 1;
2455 depth = ext_depth(inode);
2457 if (extents <= 1)
2458 index = depth * 2;
2459 else
2460 index = depth * 3;
2462 return index;
2465 static inline int get_default_free_blocks_flags(struct inode *inode)
2467 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2468 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2469 else if (ext4_should_journal_data(inode))
2470 return EXT4_FREE_BLOCKS_FORGET;
2471 return 0;
2474 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2475 struct ext4_extent *ex,
2476 long long *partial_cluster,
2477 ext4_lblk_t from, ext4_lblk_t to)
2479 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2480 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2481 ext4_fsblk_t pblk;
2482 int flags = get_default_free_blocks_flags(inode);
2485 * For bigalloc file systems, we never free a partial cluster
2486 * at the beginning of the extent. Instead, we make a note
2487 * that we tried freeing the cluster, and check to see if we
2488 * need to free it on a subsequent call to ext4_remove_blocks,
2489 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space.
2491 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2493 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2495 * If we have a partial cluster, and it's different from the
2496 * cluster of the last block, we need to explicitly free the
2497 * partial cluster here.
2499 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2500 if (*partial_cluster > 0 &&
2501 *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2502 ext4_free_blocks(handle, inode, NULL,
2503 EXT4_C2B(sbi, *partial_cluster),
2504 sbi->s_cluster_ratio, flags);
2505 *partial_cluster = 0;
2508 #ifdef EXTENTS_STATS
2510 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2511 spin_lock(&sbi->s_ext_stats_lock);
2512 sbi->s_ext_blocks += ee_len;
2513 sbi->s_ext_extents++;
2514 if (ee_len < sbi->s_ext_min)
2515 sbi->s_ext_min = ee_len;
2516 if (ee_len > sbi->s_ext_max)
2517 sbi->s_ext_max = ee_len;
2518 if (ext_depth(inode) > sbi->s_depth_max)
2519 sbi->s_depth_max = ext_depth(inode);
2520 spin_unlock(&sbi->s_ext_stats_lock);
2522 #endif
2523 if (from >= le32_to_cpu(ex->ee_block)
2524 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2525 /* tail removal */
2526 ext4_lblk_t num;
2527 long long first_cluster;
2529 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2530 pblk = ext4_ext_pblock(ex) + ee_len - num;
2532 * Usually we want to free partial cluster at the end of the
2533 * extent, except for the situation when the cluster is still
2534 * used by any other extent (partial_cluster is negative).
2536 if (*partial_cluster < 0 &&
2537 *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1))
2538 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2540 ext_debug("free last %u blocks starting %llu partial %lld\n",
2541 num, pblk, *partial_cluster);
2542 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2544 * If the block range to be freed didn't start at the
2545 * beginning of a cluster, and we removed the entire
2546 * extent and the cluster is not used by any other extent,
2547 * save the partial cluster here, since we might need to
2548 * delete if we determine that the truncate or punch hole
2549 * operation has removed all of the blocks in the cluster.
2550 * If that cluster is used by another extent, preserve its
2551 * negative value so it isn't freed later on.
2553 * If the whole extent wasn't freed, we've reached the
2554 * start of the truncated/punched region and have finished
2555 * removing blocks. If there's a partial cluster here it's
2556 * shared with the remainder of the extent and is no longer
2557 * a candidate for removal.
2559 if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) {
2560 first_cluster = (long long) EXT4_B2C(sbi, pblk);
2561 if (first_cluster != -*partial_cluster)
2562 *partial_cluster = first_cluster;
2563 } else {
2564 *partial_cluster = 0;
2566 } else
2567 ext4_error(sbi->s_sb, "strange request: removal(2) "
2568 "%u-%u from %u:%u\n",
2569 from, to, le32_to_cpu(ex->ee_block), ee_len);
2570 return 0;
2575 * ext4_ext_rm_leaf() Removes the extents associated with the
2576 * blocks appearing between "start" and "end". Both "start"
2577 * and "end" must appear in the same extent or EIO is returned.
2579 * @handle: The journal handle
2580 * @inode: The files inode
2581 * @path: The path to the leaf
2582 * @partial_cluster: The cluster which we'll have to free if all extents
2583 * has been released from it. However, if this value is
2584 * negative, it's a cluster just to the right of the
2585 * punched region and it must not be freed.
2586 * @start: The first block to remove
2587 * @end: The last block to remove
2589 static int
2590 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2591 struct ext4_ext_path *path,
2592 long long *partial_cluster,
2593 ext4_lblk_t start, ext4_lblk_t end)
2595 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2596 int err = 0, correct_index = 0;
2597 int depth = ext_depth(inode), credits;
2598 struct ext4_extent_header *eh;
2599 ext4_lblk_t a, b;
2600 unsigned num;
2601 ext4_lblk_t ex_ee_block;
2602 unsigned short ex_ee_len;
2603 unsigned unwritten = 0;
2604 struct ext4_extent *ex;
2605 ext4_fsblk_t pblk;
2607 /* the header must be checked already in ext4_ext_remove_space() */
2608 ext_debug("truncate since %u in leaf to %u\n", start, end);
2609 if (!path[depth].p_hdr)
2610 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2611 eh = path[depth].p_hdr;
2612 if (unlikely(path[depth].p_hdr == NULL)) {
2613 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2614 return -EIO;
2616 /* find where to start removing */
2617 ex = path[depth].p_ext;
2618 if (!ex)
2619 ex = EXT_LAST_EXTENT(eh);
2621 ex_ee_block = le32_to_cpu(ex->ee_block);
2622 ex_ee_len = ext4_ext_get_actual_len(ex);
2624 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2626 while (ex >= EXT_FIRST_EXTENT(eh) &&
2627 ex_ee_block + ex_ee_len > start) {
2629 if (ext4_ext_is_unwritten(ex))
2630 unwritten = 1;
2631 else
2632 unwritten = 0;
2634 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2635 unwritten, ex_ee_len);
2636 path[depth].p_ext = ex;
2638 a = ex_ee_block > start ? ex_ee_block : start;
2639 b = ex_ee_block+ex_ee_len - 1 < end ?
2640 ex_ee_block+ex_ee_len - 1 : end;
2642 ext_debug(" border %u:%u\n", a, b);
2644 /* If this extent is beyond the end of the hole, skip it */
2645 if (end < ex_ee_block) {
2647 * We're going to skip this extent and move to another,
2648 * so note that its first cluster is in use to avoid
2649 * freeing it when removing blocks. Eventually, the
2650 * right edge of the truncated/punched region will
2651 * be just to the left.
2653 if (sbi->s_cluster_ratio > 1) {
2654 pblk = ext4_ext_pblock(ex);
2655 *partial_cluster =
2656 -(long long) EXT4_B2C(sbi, pblk);
2658 ex--;
2659 ex_ee_block = le32_to_cpu(ex->ee_block);
2660 ex_ee_len = ext4_ext_get_actual_len(ex);
2661 continue;
2662 } else if (b != ex_ee_block + ex_ee_len - 1) {
2663 EXT4_ERROR_INODE(inode,
2664 "can not handle truncate %u:%u "
2665 "on extent %u:%u",
2666 start, end, ex_ee_block,
2667 ex_ee_block + ex_ee_len - 1);
2668 err = -EIO;
2669 goto out;
2670 } else if (a != ex_ee_block) {
2671 /* remove tail of the extent */
2672 num = a - ex_ee_block;
2673 } else {
2674 /* remove whole extent: excellent! */
2675 num = 0;
2678 * 3 for leaf, sb, and inode plus 2 (bmap and group
2679 * descriptor) for each block group; assume two block
2680 * groups plus ex_ee_len/blocks_per_block_group for
2681 * the worst case
2683 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2684 if (ex == EXT_FIRST_EXTENT(eh)) {
2685 correct_index = 1;
2686 credits += (ext_depth(inode)) + 1;
2688 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2690 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2691 if (err)
2692 goto out;
2694 err = ext4_ext_get_access(handle, inode, path + depth);
2695 if (err)
2696 goto out;
2698 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2699 a, b);
2700 if (err)
2701 goto out;
2703 if (num == 0)
2704 /* this extent is removed; mark slot entirely unused */
2705 ext4_ext_store_pblock(ex, 0);
2707 ex->ee_len = cpu_to_le16(num);
2709 * Do not mark unwritten if all the blocks in the
2710 * extent have been removed.
2712 if (unwritten && num)
2713 ext4_ext_mark_unwritten(ex);
2715 * If the extent was completely released,
2716 * we need to remove it from the leaf
2718 if (num == 0) {
2719 if (end != EXT_MAX_BLOCKS - 1) {
2721 * For hole punching, we need to scoot all the
2722 * extents up when an extent is removed so that
2723 * we dont have blank extents in the middle
2725 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2726 sizeof(struct ext4_extent));
2728 /* Now get rid of the one at the end */
2729 memset(EXT_LAST_EXTENT(eh), 0,
2730 sizeof(struct ext4_extent));
2732 le16_add_cpu(&eh->eh_entries, -1);
2735 err = ext4_ext_dirty(handle, inode, path + depth);
2736 if (err)
2737 goto out;
2739 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2740 ext4_ext_pblock(ex));
2741 ex--;
2742 ex_ee_block = le32_to_cpu(ex->ee_block);
2743 ex_ee_len = ext4_ext_get_actual_len(ex);
2746 if (correct_index && eh->eh_entries)
2747 err = ext4_ext_correct_indexes(handle, inode, path);
2750 * If there's a partial cluster and at least one extent remains in
2751 * the leaf, free the partial cluster if it isn't shared with the
2752 * current extent. If it is shared with the current extent
2753 * we zero partial_cluster because we've reached the start of the
2754 * truncated/punched region and we're done removing blocks.
2756 if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) {
2757 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2758 if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2759 ext4_free_blocks(handle, inode, NULL,
2760 EXT4_C2B(sbi, *partial_cluster),
2761 sbi->s_cluster_ratio,
2762 get_default_free_blocks_flags(inode));
2764 *partial_cluster = 0;
2767 /* if this leaf is free, then we should
2768 * remove it from index block above */
2769 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2770 err = ext4_ext_rm_idx(handle, inode, path, depth);
2772 out:
2773 return err;
2777 * ext4_ext_more_to_rm:
2778 * returns 1 if current index has to be freed (even partial)
2780 static int
2781 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2783 BUG_ON(path->p_idx == NULL);
2785 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2786 return 0;
2789 * if truncate on deeper level happened, it wasn't partial,
2790 * so we have to consider current index for truncation
2792 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2793 return 0;
2794 return 1;
2797 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2798 ext4_lblk_t end)
2800 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2801 int depth = ext_depth(inode);
2802 struct ext4_ext_path *path = NULL;
2803 long long partial_cluster = 0;
2804 handle_t *handle;
2805 int i = 0, err = 0;
2807 ext_debug("truncate since %u to %u\n", start, end);
2809 /* probably first extent we're gonna free will be last in block */
2810 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2811 if (IS_ERR(handle))
2812 return PTR_ERR(handle);
2814 again:
2815 trace_ext4_ext_remove_space(inode, start, end, depth);
2818 * Check if we are removing extents inside the extent tree. If that
2819 * is the case, we are going to punch a hole inside the extent tree
2820 * so we have to check whether we need to split the extent covering
2821 * the last block to remove so we can easily remove the part of it
2822 * in ext4_ext_rm_leaf().
2824 if (end < EXT_MAX_BLOCKS - 1) {
2825 struct ext4_extent *ex;
2826 ext4_lblk_t ee_block, ex_end, lblk;
2827 ext4_fsblk_t pblk;
2829 /* find extent for or closest extent to this block */
2830 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2831 if (IS_ERR(path)) {
2832 ext4_journal_stop(handle);
2833 return PTR_ERR(path);
2835 depth = ext_depth(inode);
2836 /* Leaf not may not exist only if inode has no blocks at all */
2837 ex = path[depth].p_ext;
2838 if (!ex) {
2839 if (depth) {
2840 EXT4_ERROR_INODE(inode,
2841 "path[%d].p_hdr == NULL",
2842 depth);
2843 err = -EIO;
2845 goto out;
2848 ee_block = le32_to_cpu(ex->ee_block);
2849 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1;
2852 * See if the last block is inside the extent, if so split
2853 * the extent at 'end' block so we can easily remove the
2854 * tail of the first part of the split extent in
2855 * ext4_ext_rm_leaf().
2857 if (end >= ee_block && end < ex_end) {
2860 * If we're going to split the extent, note that
2861 * the cluster containing the block after 'end' is
2862 * in use to avoid freeing it when removing blocks.
2864 if (sbi->s_cluster_ratio > 1) {
2865 pblk = ext4_ext_pblock(ex) + end - ee_block + 2;
2866 partial_cluster =
2867 -(long long) EXT4_B2C(sbi, pblk);
2871 * Split the extent in two so that 'end' is the last
2872 * block in the first new extent. Also we should not
2873 * fail removing space due to ENOSPC so try to use
2874 * reserved block if that happens.
2876 err = ext4_force_split_extent_at(handle, inode, &path,
2877 end + 1, 1);
2878 if (err < 0)
2879 goto out;
2881 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end) {
2883 * If there's an extent to the right its first cluster
2884 * contains the immediate right boundary of the
2885 * truncated/punched region. Set partial_cluster to
2886 * its negative value so it won't be freed if shared
2887 * with the current extent. The end < ee_block case
2888 * is handled in ext4_ext_rm_leaf().
2890 lblk = ex_end + 1;
2891 err = ext4_ext_search_right(inode, path, &lblk, &pblk,
2892 &ex);
2893 if (err)
2894 goto out;
2895 if (pblk)
2896 partial_cluster =
2897 -(long long) EXT4_B2C(sbi, pblk);
2901 * We start scanning from right side, freeing all the blocks
2902 * after i_size and walking into the tree depth-wise.
2904 depth = ext_depth(inode);
2905 if (path) {
2906 int k = i = depth;
2907 while (--k > 0)
2908 path[k].p_block =
2909 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2910 } else {
2911 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2912 GFP_NOFS);
2913 if (path == NULL) {
2914 ext4_journal_stop(handle);
2915 return -ENOMEM;
2917 path[0].p_maxdepth = path[0].p_depth = depth;
2918 path[0].p_hdr = ext_inode_hdr(inode);
2919 i = 0;
2921 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2922 err = -EIO;
2923 goto out;
2926 err = 0;
2928 while (i >= 0 && err == 0) {
2929 if (i == depth) {
2930 /* this is leaf block */
2931 err = ext4_ext_rm_leaf(handle, inode, path,
2932 &partial_cluster, start,
2933 end);
2934 /* root level has p_bh == NULL, brelse() eats this */
2935 brelse(path[i].p_bh);
2936 path[i].p_bh = NULL;
2937 i--;
2938 continue;
2941 /* this is index block */
2942 if (!path[i].p_hdr) {
2943 ext_debug("initialize header\n");
2944 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2947 if (!path[i].p_idx) {
2948 /* this level hasn't been touched yet */
2949 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2950 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2951 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2952 path[i].p_hdr,
2953 le16_to_cpu(path[i].p_hdr->eh_entries));
2954 } else {
2955 /* we were already here, see at next index */
2956 path[i].p_idx--;
2959 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2960 i, EXT_FIRST_INDEX(path[i].p_hdr),
2961 path[i].p_idx);
2962 if (ext4_ext_more_to_rm(path + i)) {
2963 struct buffer_head *bh;
2964 /* go to the next level */
2965 ext_debug("move to level %d (block %llu)\n",
2966 i + 1, ext4_idx_pblock(path[i].p_idx));
2967 memset(path + i + 1, 0, sizeof(*path));
2968 bh = read_extent_tree_block(inode,
2969 ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2970 EXT4_EX_NOCACHE);
2971 if (IS_ERR(bh)) {
2972 /* should we reset i_size? */
2973 err = PTR_ERR(bh);
2974 break;
2976 /* Yield here to deal with large extent trees.
2977 * Should be a no-op if we did IO above. */
2978 cond_resched();
2979 if (WARN_ON(i + 1 > depth)) {
2980 err = -EIO;
2981 break;
2983 path[i + 1].p_bh = bh;
2985 /* save actual number of indexes since this
2986 * number is changed at the next iteration */
2987 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2988 i++;
2989 } else {
2990 /* we finished processing this index, go up */
2991 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2992 /* index is empty, remove it;
2993 * handle must be already prepared by the
2994 * truncatei_leaf() */
2995 err = ext4_ext_rm_idx(handle, inode, path, i);
2997 /* root level has p_bh == NULL, brelse() eats this */
2998 brelse(path[i].p_bh);
2999 path[i].p_bh = NULL;
3000 i--;
3001 ext_debug("return to level %d\n", i);
3005 trace_ext4_ext_remove_space_done(inode, start, end, depth,
3006 partial_cluster, path->p_hdr->eh_entries);
3009 * If we still have something in the partial cluster and we have removed
3010 * even the first extent, then we should free the blocks in the partial
3011 * cluster as well. (This code will only run when there are no leaves
3012 * to the immediate left of the truncated/punched region.)
3014 if (partial_cluster > 0 && err == 0) {
3015 /* don't zero partial_cluster since it's not used afterwards */
3016 ext4_free_blocks(handle, inode, NULL,
3017 EXT4_C2B(sbi, partial_cluster),
3018 sbi->s_cluster_ratio,
3019 get_default_free_blocks_flags(inode));
3022 /* TODO: flexible tree reduction should be here */
3023 if (path->p_hdr->eh_entries == 0) {
3025 * truncate to zero freed all the tree,
3026 * so we need to correct eh_depth
3028 err = ext4_ext_get_access(handle, inode, path);
3029 if (err == 0) {
3030 ext_inode_hdr(inode)->eh_depth = 0;
3031 ext_inode_hdr(inode)->eh_max =
3032 cpu_to_le16(ext4_ext_space_root(inode, 0));
3033 err = ext4_ext_dirty(handle, inode, path);
3036 out:
3037 ext4_ext_drop_refs(path);
3038 kfree(path);
3039 path = NULL;
3040 if (err == -EAGAIN)
3041 goto again;
3042 ext4_journal_stop(handle);
3044 return err;
3048 * called at mount time
3050 void ext4_ext_init(struct super_block *sb)
3053 * possible initialization would be here
3056 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
3057 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3058 printk(KERN_INFO "EXT4-fs: file extents enabled"
3059 #ifdef AGGRESSIVE_TEST
3060 ", aggressive tests"
3061 #endif
3062 #ifdef CHECK_BINSEARCH
3063 ", check binsearch"
3064 #endif
3065 #ifdef EXTENTS_STATS
3066 ", stats"
3067 #endif
3068 "\n");
3069 #endif
3070 #ifdef EXTENTS_STATS
3071 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3072 EXT4_SB(sb)->s_ext_min = 1 << 30;
3073 EXT4_SB(sb)->s_ext_max = 0;
3074 #endif
3079 * called at umount time
3081 void ext4_ext_release(struct super_block *sb)
3083 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3084 return;
3086 #ifdef EXTENTS_STATS
3087 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3088 struct ext4_sb_info *sbi = EXT4_SB(sb);
3089 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3090 sbi->s_ext_blocks, sbi->s_ext_extents,
3091 sbi->s_ext_blocks / sbi->s_ext_extents);
3092 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3093 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3095 #endif
3098 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3100 ext4_lblk_t ee_block;
3101 ext4_fsblk_t ee_pblock;
3102 unsigned int ee_len;
3104 ee_block = le32_to_cpu(ex->ee_block);
3105 ee_len = ext4_ext_get_actual_len(ex);
3106 ee_pblock = ext4_ext_pblock(ex);
3108 if (ee_len == 0)
3109 return 0;
3111 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3112 EXTENT_STATUS_WRITTEN);
3115 /* FIXME!! we need to try to merge to left or right after zero-out */
3116 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3118 ext4_fsblk_t ee_pblock;
3119 unsigned int ee_len;
3120 int ret;
3122 ee_len = ext4_ext_get_actual_len(ex);
3123 ee_pblock = ext4_ext_pblock(ex);
3125 if (ext4_encrypted_inode(inode))
3126 return ext4_encrypted_zeroout(inode, ex);
3128 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3129 if (ret > 0)
3130 ret = 0;
3132 return ret;
3136 * ext4_split_extent_at() splits an extent at given block.
3138 * @handle: the journal handle
3139 * @inode: the file inode
3140 * @path: the path to the extent
3141 * @split: the logical block where the extent is splitted.
3142 * @split_flags: indicates if the extent could be zeroout if split fails, and
3143 * the states(init or unwritten) of new extents.
3144 * @flags: flags used to insert new extent to extent tree.
3147 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3148 * of which are deterimined by split_flag.
3150 * There are two cases:
3151 * a> the extent are splitted into two extent.
3152 * b> split is not needed, and just mark the extent.
3154 * return 0 on success.
3156 static int ext4_split_extent_at(handle_t *handle,
3157 struct inode *inode,
3158 struct ext4_ext_path **ppath,
3159 ext4_lblk_t split,
3160 int split_flag,
3161 int flags)
3163 struct ext4_ext_path *path = *ppath;
3164 ext4_fsblk_t newblock;
3165 ext4_lblk_t ee_block;
3166 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3167 struct ext4_extent *ex2 = NULL;
3168 unsigned int ee_len, depth;
3169 int err = 0;
3171 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3172 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3174 ext_debug("ext4_split_extents_at: inode %lu, logical"
3175 "block %llu\n", inode->i_ino, (unsigned long long)split);
3177 ext4_ext_show_leaf(inode, path);
3179 depth = ext_depth(inode);
3180 ex = path[depth].p_ext;
3181 ee_block = le32_to_cpu(ex->ee_block);
3182 ee_len = ext4_ext_get_actual_len(ex);
3183 newblock = split - ee_block + ext4_ext_pblock(ex);
3185 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3186 BUG_ON(!ext4_ext_is_unwritten(ex) &&
3187 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3188 EXT4_EXT_MARK_UNWRIT1 |
3189 EXT4_EXT_MARK_UNWRIT2));
3191 err = ext4_ext_get_access(handle, inode, path + depth);
3192 if (err)
3193 goto out;
3195 if (split == ee_block) {
3197 * case b: block @split is the block that the extent begins with
3198 * then we just change the state of the extent, and splitting
3199 * is not needed.
3201 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3202 ext4_ext_mark_unwritten(ex);
3203 else
3204 ext4_ext_mark_initialized(ex);
3206 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3207 ext4_ext_try_to_merge(handle, inode, path, ex);
3209 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3210 goto out;
3213 /* case a */
3214 memcpy(&orig_ex, ex, sizeof(orig_ex));
3215 ex->ee_len = cpu_to_le16(split - ee_block);
3216 if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3217 ext4_ext_mark_unwritten(ex);
3220 * path may lead to new leaf, not to original leaf any more
3221 * after ext4_ext_insert_extent() returns,
3223 err = ext4_ext_dirty(handle, inode, path + depth);
3224 if (err)
3225 goto fix_extent_len;
3227 ex2 = &newex;
3228 ex2->ee_block = cpu_to_le32(split);
3229 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3230 ext4_ext_store_pblock(ex2, newblock);
3231 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3232 ext4_ext_mark_unwritten(ex2);
3234 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
3235 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3236 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3237 if (split_flag & EXT4_EXT_DATA_VALID1) {
3238 err = ext4_ext_zeroout(inode, ex2);
3239 zero_ex.ee_block = ex2->ee_block;
3240 zero_ex.ee_len = cpu_to_le16(
3241 ext4_ext_get_actual_len(ex2));
3242 ext4_ext_store_pblock(&zero_ex,
3243 ext4_ext_pblock(ex2));
3244 } else {
3245 err = ext4_ext_zeroout(inode, ex);
3246 zero_ex.ee_block = ex->ee_block;
3247 zero_ex.ee_len = cpu_to_le16(
3248 ext4_ext_get_actual_len(ex));
3249 ext4_ext_store_pblock(&zero_ex,
3250 ext4_ext_pblock(ex));
3252 } else {
3253 err = ext4_ext_zeroout(inode, &orig_ex);
3254 zero_ex.ee_block = orig_ex.ee_block;
3255 zero_ex.ee_len = cpu_to_le16(
3256 ext4_ext_get_actual_len(&orig_ex));
3257 ext4_ext_store_pblock(&zero_ex,
3258 ext4_ext_pblock(&orig_ex));
3261 if (err)
3262 goto fix_extent_len;
3263 /* update the extent length and mark as initialized */
3264 ex->ee_len = cpu_to_le16(ee_len);
3265 ext4_ext_try_to_merge(handle, inode, path, ex);
3266 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3267 if (err)
3268 goto fix_extent_len;
3270 /* update extent status tree */
3271 err = ext4_zeroout_es(inode, &zero_ex);
3273 goto out;
3274 } else if (err)
3275 goto fix_extent_len;
3277 out:
3278 ext4_ext_show_leaf(inode, path);
3279 return err;
3281 fix_extent_len:
3282 ex->ee_len = orig_ex.ee_len;
3283 ext4_ext_dirty(handle, inode, path + path->p_depth);
3284 return err;
3288 * ext4_split_extents() splits an extent and mark extent which is covered
3289 * by @map as split_flags indicates
3291 * It may result in splitting the extent into multiple extents (up to three)
3292 * There are three possibilities:
3293 * a> There is no split required
3294 * b> Splits in two extents: Split is happening at either end of the extent
3295 * c> Splits in three extents: Somone is splitting in middle of the extent
3298 static int ext4_split_extent(handle_t *handle,
3299 struct inode *inode,
3300 struct ext4_ext_path **ppath,
3301 struct ext4_map_blocks *map,
3302 int split_flag,
3303 int flags)
3305 struct ext4_ext_path *path = *ppath;
3306 ext4_lblk_t ee_block;
3307 struct ext4_extent *ex;
3308 unsigned int ee_len, depth;
3309 int err = 0;
3310 int unwritten;
3311 int split_flag1, flags1;
3312 int allocated = map->m_len;
3314 depth = ext_depth(inode);
3315 ex = path[depth].p_ext;
3316 ee_block = le32_to_cpu(ex->ee_block);
3317 ee_len = ext4_ext_get_actual_len(ex);
3318 unwritten = ext4_ext_is_unwritten(ex);
3320 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3321 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3322 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3323 if (unwritten)
3324 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3325 EXT4_EXT_MARK_UNWRIT2;
3326 if (split_flag & EXT4_EXT_DATA_VALID2)
3327 split_flag1 |= EXT4_EXT_DATA_VALID1;
3328 err = ext4_split_extent_at(handle, inode, ppath,
3329 map->m_lblk + map->m_len, split_flag1, flags1);
3330 if (err)
3331 goto out;
3332 } else {
3333 allocated = ee_len - (map->m_lblk - ee_block);
3336 * Update path is required because previous ext4_split_extent_at() may
3337 * result in split of original leaf or extent zeroout.
3339 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3340 if (IS_ERR(path))
3341 return PTR_ERR(path);
3342 depth = ext_depth(inode);
3343 ex = path[depth].p_ext;
3344 if (!ex) {
3345 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3346 (unsigned long) map->m_lblk);
3347 return -EIO;
3349 unwritten = ext4_ext_is_unwritten(ex);
3350 split_flag1 = 0;
3352 if (map->m_lblk >= ee_block) {
3353 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3354 if (unwritten) {
3355 split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3356 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3357 EXT4_EXT_MARK_UNWRIT2);
3359 err = ext4_split_extent_at(handle, inode, ppath,
3360 map->m_lblk, split_flag1, flags);
3361 if (err)
3362 goto out;
3365 ext4_ext_show_leaf(inode, path);
3366 out:
3367 return err ? err : allocated;
3371 * This function is called by ext4_ext_map_blocks() if someone tries to write
3372 * to an unwritten extent. It may result in splitting the unwritten
3373 * extent into multiple extents (up to three - one initialized and two
3374 * unwritten).
3375 * There are three possibilities:
3376 * a> There is no split required: Entire extent should be initialized
3377 * b> Splits in two extents: Write is happening at either end of the extent
3378 * c> Splits in three extents: Somone is writing in middle of the extent
3380 * Pre-conditions:
3381 * - The extent pointed to by 'path' is unwritten.
3382 * - The extent pointed to by 'path' contains a superset
3383 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3385 * Post-conditions on success:
3386 * - the returned value is the number of blocks beyond map->l_lblk
3387 * that are allocated and initialized.
3388 * It is guaranteed to be >= map->m_len.
3390 static int ext4_ext_convert_to_initialized(handle_t *handle,
3391 struct inode *inode,
3392 struct ext4_map_blocks *map,
3393 struct ext4_ext_path **ppath,
3394 int flags)
3396 struct ext4_ext_path *path = *ppath;
3397 struct ext4_sb_info *sbi;
3398 struct ext4_extent_header *eh;
3399 struct ext4_map_blocks split_map;
3400 struct ext4_extent zero_ex;
3401 struct ext4_extent *ex, *abut_ex;
3402 ext4_lblk_t ee_block, eof_block;
3403 unsigned int ee_len, depth, map_len = map->m_len;
3404 int allocated = 0, max_zeroout = 0;
3405 int err = 0;
3406 int split_flag = 0;
3408 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3409 "block %llu, max_blocks %u\n", inode->i_ino,
3410 (unsigned long long)map->m_lblk, map_len);
3412 sbi = EXT4_SB(inode->i_sb);
3413 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3414 inode->i_sb->s_blocksize_bits;
3415 if (eof_block < map->m_lblk + map_len)
3416 eof_block = map->m_lblk + map_len;
3418 depth = ext_depth(inode);
3419 eh = path[depth].p_hdr;
3420 ex = path[depth].p_ext;
3421 ee_block = le32_to_cpu(ex->ee_block);
3422 ee_len = ext4_ext_get_actual_len(ex);
3423 zero_ex.ee_len = 0;
3425 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3427 /* Pre-conditions */
3428 BUG_ON(!ext4_ext_is_unwritten(ex));
3429 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3432 * Attempt to transfer newly initialized blocks from the currently
3433 * unwritten extent to its neighbor. This is much cheaper
3434 * than an insertion followed by a merge as those involve costly
3435 * memmove() calls. Transferring to the left is the common case in
3436 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3437 * followed by append writes.
3439 * Limitations of the current logic:
3440 * - L1: we do not deal with writes covering the whole extent.
3441 * This would require removing the extent if the transfer
3442 * is possible.
3443 * - L2: we only attempt to merge with an extent stored in the
3444 * same extent tree node.
3446 if ((map->m_lblk == ee_block) &&
3447 /* See if we can merge left */
3448 (map_len < ee_len) && /*L1*/
3449 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3450 ext4_lblk_t prev_lblk;
3451 ext4_fsblk_t prev_pblk, ee_pblk;
3452 unsigned int prev_len;
3454 abut_ex = ex - 1;
3455 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3456 prev_len = ext4_ext_get_actual_len(abut_ex);
3457 prev_pblk = ext4_ext_pblock(abut_ex);
3458 ee_pblk = ext4_ext_pblock(ex);
3461 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3462 * upon those conditions:
3463 * - C1: abut_ex is initialized,
3464 * - C2: abut_ex is logically abutting ex,
3465 * - C3: abut_ex is physically abutting ex,
3466 * - C4: abut_ex can receive the additional blocks without
3467 * overflowing the (initialized) length limit.
3469 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3470 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3471 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3472 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3473 err = ext4_ext_get_access(handle, inode, path + depth);
3474 if (err)
3475 goto out;
3477 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3478 map, ex, abut_ex);
3480 /* Shift the start of ex by 'map_len' blocks */
3481 ex->ee_block = cpu_to_le32(ee_block + map_len);
3482 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3483 ex->ee_len = cpu_to_le16(ee_len - map_len);
3484 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3486 /* Extend abut_ex by 'map_len' blocks */
3487 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3489 /* Result: number of initialized blocks past m_lblk */
3490 allocated = map_len;
3492 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3493 (map_len < ee_len) && /*L1*/
3494 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3495 /* See if we can merge right */
3496 ext4_lblk_t next_lblk;
3497 ext4_fsblk_t next_pblk, ee_pblk;
3498 unsigned int next_len;
3500 abut_ex = ex + 1;
3501 next_lblk = le32_to_cpu(abut_ex->ee_block);
3502 next_len = ext4_ext_get_actual_len(abut_ex);
3503 next_pblk = ext4_ext_pblock(abut_ex);
3504 ee_pblk = ext4_ext_pblock(ex);
3507 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3508 * upon those conditions:
3509 * - C1: abut_ex is initialized,
3510 * - C2: abut_ex is logically abutting ex,
3511 * - C3: abut_ex is physically abutting ex,
3512 * - C4: abut_ex can receive the additional blocks without
3513 * overflowing the (initialized) length limit.
3515 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3516 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3517 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3518 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3519 err = ext4_ext_get_access(handle, inode, path + depth);
3520 if (err)
3521 goto out;
3523 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3524 map, ex, abut_ex);
3526 /* Shift the start of abut_ex by 'map_len' blocks */
3527 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3528 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3529 ex->ee_len = cpu_to_le16(ee_len - map_len);
3530 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3532 /* Extend abut_ex by 'map_len' blocks */
3533 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3535 /* Result: number of initialized blocks past m_lblk */
3536 allocated = map_len;
3539 if (allocated) {
3540 /* Mark the block containing both extents as dirty */
3541 ext4_ext_dirty(handle, inode, path + depth);
3543 /* Update path to point to the right extent */
3544 path[depth].p_ext = abut_ex;
3545 goto out;
3546 } else
3547 allocated = ee_len - (map->m_lblk - ee_block);
3549 WARN_ON(map->m_lblk < ee_block);
3551 * It is safe to convert extent to initialized via explicit
3552 * zeroout only if extent is fully inside i_size or new_size.
3554 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3556 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3557 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3558 (inode->i_sb->s_blocksize_bits - 10);
3560 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3561 if (max_zeroout && (ee_len <= max_zeroout)) {
3562 err = ext4_ext_zeroout(inode, ex);
3563 if (err)
3564 goto out;
3565 zero_ex.ee_block = ex->ee_block;
3566 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3567 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3569 err = ext4_ext_get_access(handle, inode, path + depth);
3570 if (err)
3571 goto out;
3572 ext4_ext_mark_initialized(ex);
3573 ext4_ext_try_to_merge(handle, inode, path, ex);
3574 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3575 goto out;
3579 * four cases:
3580 * 1. split the extent into three extents.
3581 * 2. split the extent into two extents, zeroout the first half.
3582 * 3. split the extent into two extents, zeroout the second half.
3583 * 4. split the extent into two extents with out zeroout.
3585 split_map.m_lblk = map->m_lblk;
3586 split_map.m_len = map->m_len;
3588 if (max_zeroout && (allocated > map->m_len)) {
3589 if (allocated <= max_zeroout) {
3590 /* case 3 */
3591 zero_ex.ee_block =
3592 cpu_to_le32(map->m_lblk);
3593 zero_ex.ee_len = cpu_to_le16(allocated);
3594 ext4_ext_store_pblock(&zero_ex,
3595 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3596 err = ext4_ext_zeroout(inode, &zero_ex);
3597 if (err)
3598 goto out;
3599 split_map.m_lblk = map->m_lblk;
3600 split_map.m_len = allocated;
3601 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3602 /* case 2 */
3603 if (map->m_lblk != ee_block) {
3604 zero_ex.ee_block = ex->ee_block;
3605 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3606 ee_block);
3607 ext4_ext_store_pblock(&zero_ex,
3608 ext4_ext_pblock(ex));
3609 err = ext4_ext_zeroout(inode, &zero_ex);
3610 if (err)
3611 goto out;
3614 split_map.m_lblk = ee_block;
3615 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3616 allocated = map->m_len;
3620 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
3621 flags);
3622 if (err > 0)
3623 err = 0;
3624 out:
3625 /* If we have gotten a failure, don't zero out status tree */
3626 if (!err)
3627 err = ext4_zeroout_es(inode, &zero_ex);
3628 return err ? err : allocated;
3632 * This function is called by ext4_ext_map_blocks() from
3633 * ext4_get_blocks_dio_write() when DIO to write
3634 * to an unwritten extent.
3636 * Writing to an unwritten extent may result in splitting the unwritten
3637 * extent into multiple initialized/unwritten extents (up to three)
3638 * There are three possibilities:
3639 * a> There is no split required: Entire extent should be unwritten
3640 * b> Splits in two extents: Write is happening at either end of the extent
3641 * c> Splits in three extents: Somone is writing in middle of the extent
3643 * This works the same way in the case of initialized -> unwritten conversion.
3645 * One of more index blocks maybe needed if the extent tree grow after
3646 * the unwritten extent split. To prevent ENOSPC occur at the IO
3647 * complete, we need to split the unwritten extent before DIO submit
3648 * the IO. The unwritten extent called at this time will be split
3649 * into three unwritten extent(at most). After IO complete, the part
3650 * being filled will be convert to initialized by the end_io callback function
3651 * via ext4_convert_unwritten_extents().
3653 * Returns the size of unwritten extent to be written on success.
3655 static int ext4_split_convert_extents(handle_t *handle,
3656 struct inode *inode,
3657 struct ext4_map_blocks *map,
3658 struct ext4_ext_path **ppath,
3659 int flags)
3661 struct ext4_ext_path *path = *ppath;
3662 ext4_lblk_t eof_block;
3663 ext4_lblk_t ee_block;
3664 struct ext4_extent *ex;
3665 unsigned int ee_len;
3666 int split_flag = 0, depth;
3668 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3669 __func__, inode->i_ino,
3670 (unsigned long long)map->m_lblk, map->m_len);
3672 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3673 inode->i_sb->s_blocksize_bits;
3674 if (eof_block < map->m_lblk + map->m_len)
3675 eof_block = map->m_lblk + map->m_len;
3677 * It is safe to convert extent to initialized via explicit
3678 * zeroout only if extent is fully insde i_size or new_size.
3680 depth = ext_depth(inode);
3681 ex = path[depth].p_ext;
3682 ee_block = le32_to_cpu(ex->ee_block);
3683 ee_len = ext4_ext_get_actual_len(ex);
3685 /* Convert to unwritten */
3686 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3687 split_flag |= EXT4_EXT_DATA_VALID1;
3688 /* Convert to initialized */
3689 } else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3690 split_flag |= ee_block + ee_len <= eof_block ?
3691 EXT4_EXT_MAY_ZEROOUT : 0;
3692 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3694 flags |= EXT4_GET_BLOCKS_PRE_IO;
3695 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
3698 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3699 struct inode *inode,
3700 struct ext4_map_blocks *map,
3701 struct ext4_ext_path **ppath)
3703 struct ext4_ext_path *path = *ppath;
3704 struct ext4_extent *ex;
3705 ext4_lblk_t ee_block;
3706 unsigned int ee_len;
3707 int depth;
3708 int err = 0;
3710 depth = ext_depth(inode);
3711 ex = path[depth].p_ext;
3712 ee_block = le32_to_cpu(ex->ee_block);
3713 ee_len = ext4_ext_get_actual_len(ex);
3715 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3716 "block %llu, max_blocks %u\n", inode->i_ino,
3717 (unsigned long long)ee_block, ee_len);
3719 /* If extent is larger than requested it is a clear sign that we still
3720 * have some extent state machine issues left. So extent_split is still
3721 * required.
3722 * TODO: Once all related issues will be fixed this situation should be
3723 * illegal.
3725 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3726 #ifdef EXT4_DEBUG
3727 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3728 " len %u; IO logical block %llu, len %u\n",
3729 inode->i_ino, (unsigned long long)ee_block, ee_len,
3730 (unsigned long long)map->m_lblk, map->m_len);
3731 #endif
3732 err = ext4_split_convert_extents(handle, inode, map, ppath,
3733 EXT4_GET_BLOCKS_CONVERT);
3734 if (err < 0)
3735 return err;
3736 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3737 if (IS_ERR(path))
3738 return PTR_ERR(path);
3739 depth = ext_depth(inode);
3740 ex = path[depth].p_ext;
3743 err = ext4_ext_get_access(handle, inode, path + depth);
3744 if (err)
3745 goto out;
3746 /* first mark the extent as initialized */
3747 ext4_ext_mark_initialized(ex);
3749 /* note: ext4_ext_correct_indexes() isn't needed here because
3750 * borders are not changed
3752 ext4_ext_try_to_merge(handle, inode, path, ex);
3754 /* Mark modified extent as dirty */
3755 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3756 out:
3757 ext4_ext_show_leaf(inode, path);
3758 return err;
3761 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3762 sector_t block, int count)
3764 int i;
3765 for (i = 0; i < count; i++)
3766 unmap_underlying_metadata(bdev, block + i);
3770 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3772 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3773 ext4_lblk_t lblk,
3774 struct ext4_ext_path *path,
3775 unsigned int len)
3777 int i, depth;
3778 struct ext4_extent_header *eh;
3779 struct ext4_extent *last_ex;
3781 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3782 return 0;
3784 depth = ext_depth(inode);
3785 eh = path[depth].p_hdr;
3788 * We're going to remove EOFBLOCKS_FL entirely in future so we
3789 * do not care for this case anymore. Simply remove the flag
3790 * if there are no extents.
3792 if (unlikely(!eh->eh_entries))
3793 goto out;
3794 last_ex = EXT_LAST_EXTENT(eh);
3796 * We should clear the EOFBLOCKS_FL flag if we are writing the
3797 * last block in the last extent in the file. We test this by
3798 * first checking to see if the caller to
3799 * ext4_ext_get_blocks() was interested in the last block (or
3800 * a block beyond the last block) in the current extent. If
3801 * this turns out to be false, we can bail out from this
3802 * function immediately.
3804 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3805 ext4_ext_get_actual_len(last_ex))
3806 return 0;
3808 * If the caller does appear to be planning to write at or
3809 * beyond the end of the current extent, we then test to see
3810 * if the current extent is the last extent in the file, by
3811 * checking to make sure it was reached via the rightmost node
3812 * at each level of the tree.
3814 for (i = depth-1; i >= 0; i--)
3815 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3816 return 0;
3817 out:
3818 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3819 return ext4_mark_inode_dirty(handle, inode);
3823 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3825 * Return 1 if there is a delalloc block in the range, otherwise 0.
3827 int ext4_find_delalloc_range(struct inode *inode,
3828 ext4_lblk_t lblk_start,
3829 ext4_lblk_t lblk_end)
3831 struct extent_status es;
3833 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3834 if (es.es_len == 0)
3835 return 0; /* there is no delay extent in this tree */
3836 else if (es.es_lblk <= lblk_start &&
3837 lblk_start < es.es_lblk + es.es_len)
3838 return 1;
3839 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3840 return 1;
3841 else
3842 return 0;
3845 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3847 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3848 ext4_lblk_t lblk_start, lblk_end;
3849 lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3850 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3852 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3856 * Determines how many complete clusters (out of those specified by the 'map')
3857 * are under delalloc and were reserved quota for.
3858 * This function is called when we are writing out the blocks that were
3859 * originally written with their allocation delayed, but then the space was
3860 * allocated using fallocate() before the delayed allocation could be resolved.
3861 * The cases to look for are:
3862 * ('=' indicated delayed allocated blocks
3863 * '-' indicates non-delayed allocated blocks)
3864 * (a) partial clusters towards beginning and/or end outside of allocated range
3865 * are not delalloc'ed.
3866 * Ex:
3867 * |----c---=|====c====|====c====|===-c----|
3868 * |++++++ allocated ++++++|
3869 * ==> 4 complete clusters in above example
3871 * (b) partial cluster (outside of allocated range) towards either end is
3872 * marked for delayed allocation. In this case, we will exclude that
3873 * cluster.
3874 * Ex:
3875 * |----====c========|========c========|
3876 * |++++++ allocated ++++++|
3877 * ==> 1 complete clusters in above example
3879 * Ex:
3880 * |================c================|
3881 * |++++++ allocated ++++++|
3882 * ==> 0 complete clusters in above example
3884 * The ext4_da_update_reserve_space will be called only if we
3885 * determine here that there were some "entire" clusters that span
3886 * this 'allocated' range.
3887 * In the non-bigalloc case, this function will just end up returning num_blks
3888 * without ever calling ext4_find_delalloc_range.
3890 static unsigned int
3891 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3892 unsigned int num_blks)
3894 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3895 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3896 ext4_lblk_t lblk_from, lblk_to, c_offset;
3897 unsigned int allocated_clusters = 0;
3899 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3900 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3902 /* max possible clusters for this allocation */
3903 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3905 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3907 /* Check towards left side */
3908 c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3909 if (c_offset) {
3910 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3911 lblk_to = lblk_from + c_offset - 1;
3913 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3914 allocated_clusters--;
3917 /* Now check towards right. */
3918 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3919 if (allocated_clusters && c_offset) {
3920 lblk_from = lblk_start + num_blks;
3921 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3923 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3924 allocated_clusters--;
3927 return allocated_clusters;
3930 static int
3931 convert_initialized_extent(handle_t *handle, struct inode *inode,
3932 struct ext4_map_blocks *map,
3933 struct ext4_ext_path **ppath, int flags,
3934 unsigned int allocated, ext4_fsblk_t newblock)
3936 struct ext4_ext_path *path = *ppath;
3937 struct ext4_extent *ex;
3938 ext4_lblk_t ee_block;
3939 unsigned int ee_len;
3940 int depth;
3941 int err = 0;
3944 * Make sure that the extent is no bigger than we support with
3945 * unwritten extent
3947 if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3948 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3950 depth = ext_depth(inode);
3951 ex = path[depth].p_ext;
3952 ee_block = le32_to_cpu(ex->ee_block);
3953 ee_len = ext4_ext_get_actual_len(ex);
3955 ext_debug("%s: inode %lu, logical"
3956 "block %llu, max_blocks %u\n", __func__, inode->i_ino,
3957 (unsigned long long)ee_block, ee_len);
3959 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3960 err = ext4_split_convert_extents(handle, inode, map, ppath,
3961 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3962 if (err < 0)
3963 return err;
3964 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3965 if (IS_ERR(path))
3966 return PTR_ERR(path);
3967 depth = ext_depth(inode);
3968 ex = path[depth].p_ext;
3969 if (!ex) {
3970 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3971 (unsigned long) map->m_lblk);
3972 return -EIO;
3976 err = ext4_ext_get_access(handle, inode, path + depth);
3977 if (err)
3978 return err;
3979 /* first mark the extent as unwritten */
3980 ext4_ext_mark_unwritten(ex);
3982 /* note: ext4_ext_correct_indexes() isn't needed here because
3983 * borders are not changed
3985 ext4_ext_try_to_merge(handle, inode, path, ex);
3987 /* Mark modified extent as dirty */
3988 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3989 if (err)
3990 return err;
3991 ext4_ext_show_leaf(inode, path);
3993 ext4_update_inode_fsync_trans(handle, inode, 1);
3994 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len);
3995 if (err)
3996 return err;
3997 map->m_flags |= EXT4_MAP_UNWRITTEN;
3998 if (allocated > map->m_len)
3999 allocated = map->m_len;
4000 map->m_len = allocated;
4001 return allocated;
4004 static int
4005 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
4006 struct ext4_map_blocks *map,
4007 struct ext4_ext_path **ppath, int flags,
4008 unsigned int allocated, ext4_fsblk_t newblock)
4010 struct ext4_ext_path *path = *ppath;
4011 int ret = 0;
4012 int err = 0;
4013 ext4_io_end_t *io = ext4_inode_aio(inode);
4015 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
4016 "block %llu, max_blocks %u, flags %x, allocated %u\n",
4017 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4018 flags, allocated);
4019 ext4_ext_show_leaf(inode, path);
4022 * When writing into unwritten space, we should not fail to
4023 * allocate metadata blocks for the new extent block if needed.
4025 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4027 trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4028 allocated, newblock);
4030 /* get_block() before submit the IO, split the extent */
4031 if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4032 ret = ext4_split_convert_extents(handle, inode, map, ppath,
4033 flags | EXT4_GET_BLOCKS_CONVERT);
4034 if (ret <= 0)
4035 goto out;
4037 * Flag the inode(non aio case) or end_io struct (aio case)
4038 * that this IO needs to conversion to written when IO is
4039 * completed
4041 if (io)
4042 ext4_set_io_unwritten_flag(inode, io);
4043 else
4044 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4045 map->m_flags |= EXT4_MAP_UNWRITTEN;
4046 goto out;
4048 /* IO end_io complete, convert the filled extent to written */
4049 if (flags & EXT4_GET_BLOCKS_CONVERT) {
4050 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4051 ppath);
4052 if (ret >= 0) {
4053 ext4_update_inode_fsync_trans(handle, inode, 1);
4054 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4055 path, map->m_len);
4056 } else
4057 err = ret;
4058 map->m_flags |= EXT4_MAP_MAPPED;
4059 map->m_pblk = newblock;
4060 if (allocated > map->m_len)
4061 allocated = map->m_len;
4062 map->m_len = allocated;
4063 goto out2;
4065 /* buffered IO case */
4067 * repeat fallocate creation request
4068 * we already have an unwritten extent
4070 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4071 map->m_flags |= EXT4_MAP_UNWRITTEN;
4072 goto map_out;
4075 /* buffered READ or buffered write_begin() lookup */
4076 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4078 * We have blocks reserved already. We
4079 * return allocated blocks so that delalloc
4080 * won't do block reservation for us. But
4081 * the buffer head will be unmapped so that
4082 * a read from the block returns 0s.
4084 map->m_flags |= EXT4_MAP_UNWRITTEN;
4085 goto out1;
4088 /* buffered write, writepage time, convert*/
4089 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
4090 if (ret >= 0)
4091 ext4_update_inode_fsync_trans(handle, inode, 1);
4092 out:
4093 if (ret <= 0) {
4094 err = ret;
4095 goto out2;
4096 } else
4097 allocated = ret;
4098 map->m_flags |= EXT4_MAP_NEW;
4100 * if we allocated more blocks than requested
4101 * we need to make sure we unmap the extra block
4102 * allocated. The actual needed block will get
4103 * unmapped later when we find the buffer_head marked
4104 * new.
4106 if (allocated > map->m_len) {
4107 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
4108 newblock + map->m_len,
4109 allocated - map->m_len);
4110 allocated = map->m_len;
4112 map->m_len = allocated;
4115 * If we have done fallocate with the offset that is already
4116 * delayed allocated, we would have block reservation
4117 * and quota reservation done in the delayed write path.
4118 * But fallocate would have already updated quota and block
4119 * count for this offset. So cancel these reservation
4121 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4122 unsigned int reserved_clusters;
4123 reserved_clusters = get_reserved_cluster_alloc(inode,
4124 map->m_lblk, map->m_len);
4125 if (reserved_clusters)
4126 ext4_da_update_reserve_space(inode,
4127 reserved_clusters,
4131 map_out:
4132 map->m_flags |= EXT4_MAP_MAPPED;
4133 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4134 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4135 map->m_len);
4136 if (err < 0)
4137 goto out2;
4139 out1:
4140 if (allocated > map->m_len)
4141 allocated = map->m_len;
4142 ext4_ext_show_leaf(inode, path);
4143 map->m_pblk = newblock;
4144 map->m_len = allocated;
4145 out2:
4146 return err ? err : allocated;
4150 * get_implied_cluster_alloc - check to see if the requested
4151 * allocation (in the map structure) overlaps with a cluster already
4152 * allocated in an extent.
4153 * @sb The filesystem superblock structure
4154 * @map The requested lblk->pblk mapping
4155 * @ex The extent structure which might contain an implied
4156 * cluster allocation
4158 * This function is called by ext4_ext_map_blocks() after we failed to
4159 * find blocks that were already in the inode's extent tree. Hence,
4160 * we know that the beginning of the requested region cannot overlap
4161 * the extent from the inode's extent tree. There are three cases we
4162 * want to catch. The first is this case:
4164 * |--- cluster # N--|
4165 * |--- extent ---| |---- requested region ---|
4166 * |==========|
4168 * The second case that we need to test for is this one:
4170 * |--------- cluster # N ----------------|
4171 * |--- requested region --| |------- extent ----|
4172 * |=======================|
4174 * The third case is when the requested region lies between two extents
4175 * within the same cluster:
4176 * |------------- cluster # N-------------|
4177 * |----- ex -----| |---- ex_right ----|
4178 * |------ requested region ------|
4179 * |================|
4181 * In each of the above cases, we need to set the map->m_pblk and
4182 * map->m_len so it corresponds to the return the extent labelled as
4183 * "|====|" from cluster #N, since it is already in use for data in
4184 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
4185 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4186 * as a new "allocated" block region. Otherwise, we will return 0 and
4187 * ext4_ext_map_blocks() will then allocate one or more new clusters
4188 * by calling ext4_mb_new_blocks().
4190 static int get_implied_cluster_alloc(struct super_block *sb,
4191 struct ext4_map_blocks *map,
4192 struct ext4_extent *ex,
4193 struct ext4_ext_path *path)
4195 struct ext4_sb_info *sbi = EXT4_SB(sb);
4196 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4197 ext4_lblk_t ex_cluster_start, ex_cluster_end;
4198 ext4_lblk_t rr_cluster_start;
4199 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4200 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4201 unsigned short ee_len = ext4_ext_get_actual_len(ex);
4203 /* The extent passed in that we are trying to match */
4204 ex_cluster_start = EXT4_B2C(sbi, ee_block);
4205 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4207 /* The requested region passed into ext4_map_blocks() */
4208 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4210 if ((rr_cluster_start == ex_cluster_end) ||
4211 (rr_cluster_start == ex_cluster_start)) {
4212 if (rr_cluster_start == ex_cluster_end)
4213 ee_start += ee_len - 1;
4214 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4215 map->m_len = min(map->m_len,
4216 (unsigned) sbi->s_cluster_ratio - c_offset);
4218 * Check for and handle this case:
4220 * |--------- cluster # N-------------|
4221 * |------- extent ----|
4222 * |--- requested region ---|
4223 * |===========|
4226 if (map->m_lblk < ee_block)
4227 map->m_len = min(map->m_len, ee_block - map->m_lblk);
4230 * Check for the case where there is already another allocated
4231 * block to the right of 'ex' but before the end of the cluster.
4233 * |------------- cluster # N-------------|
4234 * |----- ex -----| |---- ex_right ----|
4235 * |------ requested region ------|
4236 * |================|
4238 if (map->m_lblk > ee_block) {
4239 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4240 map->m_len = min(map->m_len, next - map->m_lblk);
4243 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4244 return 1;
4247 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4248 return 0;
4253 * Block allocation/map/preallocation routine for extents based files
4256 * Need to be called with
4257 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4258 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4260 * return > 0, number of of blocks already mapped/allocated
4261 * if create == 0 and these are pre-allocated blocks
4262 * buffer head is unmapped
4263 * otherwise blocks are mapped
4265 * return = 0, if plain look up failed (blocks have not been allocated)
4266 * buffer head is unmapped
4268 * return < 0, error case.
4270 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4271 struct ext4_map_blocks *map, int flags)
4273 struct ext4_ext_path *path = NULL;
4274 struct ext4_extent newex, *ex, *ex2;
4275 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4276 ext4_fsblk_t newblock = 0;
4277 int free_on_err = 0, err = 0, depth, ret;
4278 unsigned int allocated = 0, offset = 0;
4279 unsigned int allocated_clusters = 0;
4280 struct ext4_allocation_request ar;
4281 ext4_io_end_t *io = ext4_inode_aio(inode);
4282 ext4_lblk_t cluster_offset;
4283 int set_unwritten = 0;
4284 bool map_from_cluster = false;
4286 ext_debug("blocks %u/%u requested for inode %lu\n",
4287 map->m_lblk, map->m_len, inode->i_ino);
4288 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4290 /* find extent for this block */
4291 path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
4292 if (IS_ERR(path)) {
4293 err = PTR_ERR(path);
4294 path = NULL;
4295 goto out2;
4298 depth = ext_depth(inode);
4301 * consistent leaf must not be empty;
4302 * this situation is possible, though, _during_ tree modification;
4303 * this is why assert can't be put in ext4_find_extent()
4305 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4306 EXT4_ERROR_INODE(inode, "bad extent address "
4307 "lblock: %lu, depth: %d pblock %lld",
4308 (unsigned long) map->m_lblk, depth,
4309 path[depth].p_block);
4310 err = -EIO;
4311 goto out2;
4314 ex = path[depth].p_ext;
4315 if (ex) {
4316 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4317 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4318 unsigned short ee_len;
4322 * unwritten extents are treated as holes, except that
4323 * we split out initialized portions during a write.
4325 ee_len = ext4_ext_get_actual_len(ex);
4327 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4329 /* if found extent covers block, simply return it */
4330 if (in_range(map->m_lblk, ee_block, ee_len)) {
4331 newblock = map->m_lblk - ee_block + ee_start;
4332 /* number of remaining blocks in the extent */
4333 allocated = ee_len - (map->m_lblk - ee_block);
4334 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4335 ee_block, ee_len, newblock);
4338 * If the extent is initialized check whether the
4339 * caller wants to convert it to unwritten.
4341 if ((!ext4_ext_is_unwritten(ex)) &&
4342 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4343 allocated = convert_initialized_extent(
4344 handle, inode, map, &path,
4345 flags, allocated, newblock);
4346 goto out2;
4347 } else if (!ext4_ext_is_unwritten(ex))
4348 goto out;
4350 ret = ext4_ext_handle_unwritten_extents(
4351 handle, inode, map, &path, flags,
4352 allocated, newblock);
4353 if (ret < 0)
4354 err = ret;
4355 else
4356 allocated = ret;
4357 goto out2;
4362 * requested block isn't allocated yet;
4363 * we couldn't try to create block if create flag is zero
4365 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4367 * put just found gap into cache to speed up
4368 * subsequent requests
4370 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4371 goto out2;
4375 * Okay, we need to do block allocation.
4377 newex.ee_block = cpu_to_le32(map->m_lblk);
4378 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4381 * If we are doing bigalloc, check to see if the extent returned
4382 * by ext4_find_extent() implies a cluster we can use.
4384 if (cluster_offset && ex &&
4385 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4386 ar.len = allocated = map->m_len;
4387 newblock = map->m_pblk;
4388 map_from_cluster = true;
4389 goto got_allocated_blocks;
4392 /* find neighbour allocated blocks */
4393 ar.lleft = map->m_lblk;
4394 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4395 if (err)
4396 goto out2;
4397 ar.lright = map->m_lblk;
4398 ex2 = NULL;
4399 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4400 if (err)
4401 goto out2;
4403 /* Check if the extent after searching to the right implies a
4404 * cluster we can use. */
4405 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4406 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4407 ar.len = allocated = map->m_len;
4408 newblock = map->m_pblk;
4409 map_from_cluster = true;
4410 goto got_allocated_blocks;
4414 * See if request is beyond maximum number of blocks we can have in
4415 * a single extent. For an initialized extent this limit is
4416 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4417 * EXT_UNWRITTEN_MAX_LEN.
4419 if (map->m_len > EXT_INIT_MAX_LEN &&
4420 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4421 map->m_len = EXT_INIT_MAX_LEN;
4422 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4423 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4424 map->m_len = EXT_UNWRITTEN_MAX_LEN;
4426 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4427 newex.ee_len = cpu_to_le16(map->m_len);
4428 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4429 if (err)
4430 allocated = ext4_ext_get_actual_len(&newex);
4431 else
4432 allocated = map->m_len;
4434 /* allocate new block */
4435 ar.inode = inode;
4436 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4437 ar.logical = map->m_lblk;
4439 * We calculate the offset from the beginning of the cluster
4440 * for the logical block number, since when we allocate a
4441 * physical cluster, the physical block should start at the
4442 * same offset from the beginning of the cluster. This is
4443 * needed so that future calls to get_implied_cluster_alloc()
4444 * work correctly.
4446 offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4447 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4448 ar.goal -= offset;
4449 ar.logical -= offset;
4450 if (S_ISREG(inode->i_mode))
4451 ar.flags = EXT4_MB_HINT_DATA;
4452 else
4453 /* disable in-core preallocation for non-regular files */
4454 ar.flags = 0;
4455 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4456 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4457 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4458 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
4459 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4460 if (!newblock)
4461 goto out2;
4462 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4463 ar.goal, newblock, allocated);
4464 free_on_err = 1;
4465 allocated_clusters = ar.len;
4466 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4467 if (ar.len > allocated)
4468 ar.len = allocated;
4470 got_allocated_blocks:
4471 /* try to insert new extent into found leaf and return */
4472 ext4_ext_store_pblock(&newex, newblock + offset);
4473 newex.ee_len = cpu_to_le16(ar.len);
4474 /* Mark unwritten */
4475 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4476 ext4_ext_mark_unwritten(&newex);
4477 map->m_flags |= EXT4_MAP_UNWRITTEN;
4479 * io_end structure was created for every IO write to an
4480 * unwritten extent. To avoid unnecessary conversion,
4481 * here we flag the IO that really needs the conversion.
4482 * For non asycn direct IO case, flag the inode state
4483 * that we need to perform conversion when IO is done.
4485 if (flags & EXT4_GET_BLOCKS_PRE_IO)
4486 set_unwritten = 1;
4489 err = 0;
4490 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4491 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4492 path, ar.len);
4493 if (!err)
4494 err = ext4_ext_insert_extent(handle, inode, &path,
4495 &newex, flags);
4497 if (!err && set_unwritten) {
4498 if (io)
4499 ext4_set_io_unwritten_flag(inode, io);
4500 else
4501 ext4_set_inode_state(inode,
4502 EXT4_STATE_DIO_UNWRITTEN);
4505 if (err && free_on_err) {
4506 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4507 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4508 /* free data blocks we just allocated */
4509 /* not a good idea to call discard here directly,
4510 * but otherwise we'd need to call it every free() */
4511 ext4_discard_preallocations(inode);
4512 ext4_free_blocks(handle, inode, NULL, newblock,
4513 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4514 goto out2;
4517 /* previous routine could use block we allocated */
4518 newblock = ext4_ext_pblock(&newex);
4519 allocated = ext4_ext_get_actual_len(&newex);
4520 if (allocated > map->m_len)
4521 allocated = map->m_len;
4522 map->m_flags |= EXT4_MAP_NEW;
4525 * Update reserved blocks/metadata blocks after successful
4526 * block allocation which had been deferred till now.
4528 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4529 unsigned int reserved_clusters;
4531 * Check how many clusters we had reserved this allocated range
4533 reserved_clusters = get_reserved_cluster_alloc(inode,
4534 map->m_lblk, allocated);
4535 if (!map_from_cluster) {
4536 BUG_ON(allocated_clusters < reserved_clusters);
4537 if (reserved_clusters < allocated_clusters) {
4538 struct ext4_inode_info *ei = EXT4_I(inode);
4539 int reservation = allocated_clusters -
4540 reserved_clusters;
4542 * It seems we claimed few clusters outside of
4543 * the range of this allocation. We should give
4544 * it back to the reservation pool. This can
4545 * happen in the following case:
4547 * * Suppose s_cluster_ratio is 4 (i.e., each
4548 * cluster has 4 blocks. Thus, the clusters
4549 * are [0-3],[4-7],[8-11]...
4550 * * First comes delayed allocation write for
4551 * logical blocks 10 & 11. Since there were no
4552 * previous delayed allocated blocks in the
4553 * range [8-11], we would reserve 1 cluster
4554 * for this write.
4555 * * Next comes write for logical blocks 3 to 8.
4556 * In this case, we will reserve 2 clusters
4557 * (for [0-3] and [4-7]; and not for [8-11] as
4558 * that range has a delayed allocated blocks.
4559 * Thus total reserved clusters now becomes 3.
4560 * * Now, during the delayed allocation writeout
4561 * time, we will first write blocks [3-8] and
4562 * allocate 3 clusters for writing these
4563 * blocks. Also, we would claim all these
4564 * three clusters above.
4565 * * Now when we come here to writeout the
4566 * blocks [10-11], we would expect to claim
4567 * the reservation of 1 cluster we had made
4568 * (and we would claim it since there are no
4569 * more delayed allocated blocks in the range
4570 * [8-11]. But our reserved cluster count had
4571 * already gone to 0.
4573 * Thus, at the step 4 above when we determine
4574 * that there are still some unwritten delayed
4575 * allocated blocks outside of our current
4576 * block range, we should increment the
4577 * reserved clusters count so that when the
4578 * remaining blocks finally gets written, we
4579 * could claim them.
4581 dquot_reserve_block(inode,
4582 EXT4_C2B(sbi, reservation));
4583 spin_lock(&ei->i_block_reservation_lock);
4584 ei->i_reserved_data_blocks += reservation;
4585 spin_unlock(&ei->i_block_reservation_lock);
4588 * We will claim quota for all newly allocated blocks.
4589 * We're updating the reserved space *after* the
4590 * correction above so we do not accidentally free
4591 * all the metadata reservation because we might
4592 * actually need it later on.
4594 ext4_da_update_reserve_space(inode, allocated_clusters,
4600 * Cache the extent and update transaction to commit on fdatasync only
4601 * when it is _not_ an unwritten extent.
4603 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
4604 ext4_update_inode_fsync_trans(handle, inode, 1);
4605 else
4606 ext4_update_inode_fsync_trans(handle, inode, 0);
4607 out:
4608 if (allocated > map->m_len)
4609 allocated = map->m_len;
4610 ext4_ext_show_leaf(inode, path);
4611 map->m_flags |= EXT4_MAP_MAPPED;
4612 map->m_pblk = newblock;
4613 map->m_len = allocated;
4614 out2:
4615 ext4_ext_drop_refs(path);
4616 kfree(path);
4618 trace_ext4_ext_map_blocks_exit(inode, flags, map,
4619 err ? err : allocated);
4620 return err ? err : allocated;
4623 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4625 struct super_block *sb = inode->i_sb;
4626 ext4_lblk_t last_block;
4627 int err = 0;
4630 * TODO: optimization is possible here.
4631 * Probably we need not scan at all,
4632 * because page truncation is enough.
4635 /* we have to know where to truncate from in crash case */
4636 EXT4_I(inode)->i_disksize = inode->i_size;
4637 ext4_mark_inode_dirty(handle, inode);
4639 last_block = (inode->i_size + sb->s_blocksize - 1)
4640 >> EXT4_BLOCK_SIZE_BITS(sb);
4641 retry:
4642 err = ext4_es_remove_extent(inode, last_block,
4643 EXT_MAX_BLOCKS - last_block);
4644 if (err == -ENOMEM) {
4645 cond_resched();
4646 congestion_wait(BLK_RW_ASYNC, HZ/50);
4647 goto retry;
4649 if (err) {
4650 ext4_std_error(inode->i_sb, err);
4651 return;
4653 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4654 ext4_std_error(inode->i_sb, err);
4657 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4658 ext4_lblk_t len, loff_t new_size,
4659 int flags, int mode)
4661 struct inode *inode = file_inode(file);
4662 handle_t *handle;
4663 int ret = 0;
4664 int ret2 = 0;
4665 int retries = 0;
4666 struct ext4_map_blocks map;
4667 unsigned int credits;
4668 loff_t epos;
4670 map.m_lblk = offset;
4671 map.m_len = len;
4673 * Don't normalize the request if it can fit in one extent so
4674 * that it doesn't get unnecessarily split into multiple
4675 * extents.
4677 if (len <= EXT_UNWRITTEN_MAX_LEN)
4678 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4681 * credits to insert 1 extent into extent tree
4683 credits = ext4_chunk_trans_blocks(inode, len);
4685 retry:
4686 while (ret >= 0 && len) {
4687 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4688 credits);
4689 if (IS_ERR(handle)) {
4690 ret = PTR_ERR(handle);
4691 break;
4693 ret = ext4_map_blocks(handle, inode, &map, flags);
4694 if (ret <= 0) {
4695 ext4_debug("inode #%lu: block %u: len %u: "
4696 "ext4_ext_map_blocks returned %d",
4697 inode->i_ino, map.m_lblk,
4698 map.m_len, ret);
4699 ext4_mark_inode_dirty(handle, inode);
4700 ret2 = ext4_journal_stop(handle);
4701 break;
4703 map.m_lblk += ret;
4704 map.m_len = len = len - ret;
4705 epos = (loff_t)map.m_lblk << inode->i_blkbits;
4706 inode->i_ctime = ext4_current_time(inode);
4707 if (new_size) {
4708 if (epos > new_size)
4709 epos = new_size;
4710 if (ext4_update_inode_size(inode, epos) & 0x1)
4711 inode->i_mtime = inode->i_ctime;
4712 } else {
4713 if (epos > inode->i_size)
4714 ext4_set_inode_flag(inode,
4715 EXT4_INODE_EOFBLOCKS);
4717 ext4_mark_inode_dirty(handle, inode);
4718 ret2 = ext4_journal_stop(handle);
4719 if (ret2)
4720 break;
4722 if (ret == -ENOSPC &&
4723 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4724 ret = 0;
4725 goto retry;
4728 return ret > 0 ? ret2 : ret;
4731 static long ext4_zero_range(struct file *file, loff_t offset,
4732 loff_t len, int mode)
4734 struct inode *inode = file_inode(file);
4735 handle_t *handle = NULL;
4736 unsigned int max_blocks;
4737 loff_t new_size = 0;
4738 int ret = 0;
4739 int flags;
4740 int credits;
4741 int partial_begin, partial_end;
4742 loff_t start, end;
4743 ext4_lblk_t lblk;
4744 struct address_space *mapping = inode->i_mapping;
4745 unsigned int blkbits = inode->i_blkbits;
4747 trace_ext4_zero_range(inode, offset, len, mode);
4749 if (!S_ISREG(inode->i_mode))
4750 return -EINVAL;
4752 /* Call ext4_force_commit to flush all data in case of data=journal. */
4753 if (ext4_should_journal_data(inode)) {
4754 ret = ext4_force_commit(inode->i_sb);
4755 if (ret)
4756 return ret;
4760 * Write out all dirty pages to avoid race conditions
4761 * Then release them.
4763 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4764 ret = filemap_write_and_wait_range(mapping, offset,
4765 offset + len - 1);
4766 if (ret)
4767 return ret;
4771 * Round up offset. This is not fallocate, we neet to zero out
4772 * blocks, so convert interior block aligned part of the range to
4773 * unwritten and possibly manually zero out unaligned parts of the
4774 * range.
4776 start = round_up(offset, 1 << blkbits);
4777 end = round_down((offset + len), 1 << blkbits);
4779 if (start < offset || end > offset + len)
4780 return -EINVAL;
4781 partial_begin = offset & ((1 << blkbits) - 1);
4782 partial_end = (offset + len) & ((1 << blkbits) - 1);
4784 lblk = start >> blkbits;
4785 max_blocks = (end >> blkbits);
4786 if (max_blocks < lblk)
4787 max_blocks = 0;
4788 else
4789 max_blocks -= lblk;
4791 mutex_lock(&inode->i_mutex);
4794 * Indirect files do not support unwritten extnets
4796 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4797 ret = -EOPNOTSUPP;
4798 goto out_mutex;
4801 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4802 offset + len > i_size_read(inode)) {
4803 new_size = offset + len;
4804 ret = inode_newsize_ok(inode, new_size);
4805 if (ret)
4806 goto out_mutex;
4809 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4810 if (mode & FALLOC_FL_KEEP_SIZE)
4811 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4813 /* Preallocate the range including the unaligned edges */
4814 if (partial_begin || partial_end) {
4815 ret = ext4_alloc_file_blocks(file,
4816 round_down(offset, 1 << blkbits) >> blkbits,
4817 (round_up((offset + len), 1 << blkbits) -
4818 round_down(offset, 1 << blkbits)) >> blkbits,
4819 new_size, flags, mode);
4820 if (ret)
4821 goto out_mutex;
4825 /* Zero range excluding the unaligned edges */
4826 if (max_blocks > 0) {
4827 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
4828 EXT4_EX_NOCACHE);
4830 /* Now release the pages and zero block aligned part of pages*/
4831 truncate_pagecache_range(inode, start, end - 1);
4832 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4834 /* Wait all existing dio workers, newcomers will block on i_mutex */
4835 ext4_inode_block_unlocked_dio(inode);
4836 inode_dio_wait(inode);
4838 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4839 flags, mode);
4840 if (ret)
4841 goto out_dio;
4843 if (!partial_begin && !partial_end)
4844 goto out_dio;
4847 * In worst case we have to writeout two nonadjacent unwritten
4848 * blocks and update the inode
4850 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
4851 if (ext4_should_journal_data(inode))
4852 credits += 2;
4853 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
4854 if (IS_ERR(handle)) {
4855 ret = PTR_ERR(handle);
4856 ext4_std_error(inode->i_sb, ret);
4857 goto out_dio;
4860 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4861 if (new_size) {
4862 ext4_update_inode_size(inode, new_size);
4863 } else {
4865 * Mark that we allocate beyond EOF so the subsequent truncate
4866 * can proceed even if the new size is the same as i_size.
4868 if ((offset + len) > i_size_read(inode))
4869 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4871 ext4_mark_inode_dirty(handle, inode);
4873 /* Zero out partial block at the edges of the range */
4874 ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4876 if (file->f_flags & O_SYNC)
4877 ext4_handle_sync(handle);
4879 ext4_journal_stop(handle);
4880 out_dio:
4881 ext4_inode_resume_unlocked_dio(inode);
4882 out_mutex:
4883 mutex_unlock(&inode->i_mutex);
4884 return ret;
4888 * preallocate space for a file. This implements ext4's fallocate file
4889 * operation, which gets called from sys_fallocate system call.
4890 * For block-mapped files, posix_fallocate should fall back to the method
4891 * of writing zeroes to the required new blocks (the same behavior which is
4892 * expected for file systems which do not support fallocate() system call).
4894 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4896 struct inode *inode = file_inode(file);
4897 loff_t new_size = 0;
4898 unsigned int max_blocks;
4899 int ret = 0;
4900 int flags;
4901 ext4_lblk_t lblk;
4902 unsigned int blkbits = inode->i_blkbits;
4905 * Encrypted inodes can't handle collapse range or insert
4906 * range since we would need to re-encrypt blocks with a
4907 * different IV or XTS tweak (which are based on the logical
4908 * block number).
4910 * XXX It's not clear why zero range isn't working, but we'll
4911 * leave it disabled for encrypted inodes for now. This is a
4912 * bug we should fix....
4914 if (ext4_encrypted_inode(inode) &&
4915 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE)))
4916 return -EOPNOTSUPP;
4918 /* Return error if mode is not supported */
4919 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4920 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
4921 return -EOPNOTSUPP;
4923 if (mode & FALLOC_FL_PUNCH_HOLE)
4924 return ext4_punch_hole(inode, offset, len);
4926 ret = ext4_convert_inline_data(inode);
4927 if (ret)
4928 return ret;
4930 if (mode & FALLOC_FL_COLLAPSE_RANGE)
4931 return ext4_collapse_range(inode, offset, len);
4933 if (mode & FALLOC_FL_ZERO_RANGE)
4934 return ext4_zero_range(file, offset, len, mode);
4936 trace_ext4_fallocate_enter(inode, offset, len, mode);
4937 lblk = offset >> blkbits;
4939 * We can't just convert len to max_blocks because
4940 * If blocksize = 4096 offset = 3072 and len = 2048
4942 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4943 - lblk;
4945 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4946 if (mode & FALLOC_FL_KEEP_SIZE)
4947 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4949 mutex_lock(&inode->i_mutex);
4952 * We only support preallocation for extent-based files only
4954 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4955 ret = -EOPNOTSUPP;
4956 goto out;
4959 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4960 offset + len > i_size_read(inode)) {
4961 new_size = offset + len;
4962 ret = inode_newsize_ok(inode, new_size);
4963 if (ret)
4964 goto out;
4967 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4968 flags, mode);
4969 if (ret)
4970 goto out;
4972 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
4973 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
4974 EXT4_I(inode)->i_sync_tid);
4976 out:
4977 mutex_unlock(&inode->i_mutex);
4978 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4979 return ret;
4983 * This function convert a range of blocks to written extents
4984 * The caller of this function will pass the start offset and the size.
4985 * all unwritten extents within this range will be converted to
4986 * written extents.
4988 * This function is called from the direct IO end io call back
4989 * function, to convert the fallocated extents after IO is completed.
4990 * Returns 0 on success.
4992 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4993 loff_t offset, ssize_t len)
4995 unsigned int max_blocks;
4996 int ret = 0;
4997 int ret2 = 0;
4998 struct ext4_map_blocks map;
4999 unsigned int credits, blkbits = inode->i_blkbits;
5001 map.m_lblk = offset >> blkbits;
5003 * We can't just convert len to max_blocks because
5004 * If blocksize = 4096 offset = 3072 and len = 2048
5006 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
5007 map.m_lblk);
5009 * This is somewhat ugly but the idea is clear: When transaction is
5010 * reserved, everything goes into it. Otherwise we rather start several
5011 * smaller transactions for conversion of each extent separately.
5013 if (handle) {
5014 handle = ext4_journal_start_reserved(handle,
5015 EXT4_HT_EXT_CONVERT);
5016 if (IS_ERR(handle))
5017 return PTR_ERR(handle);
5018 credits = 0;
5019 } else {
5021 * credits to insert 1 extent into extent tree
5023 credits = ext4_chunk_trans_blocks(inode, max_blocks);
5025 while (ret >= 0 && ret < max_blocks) {
5026 map.m_lblk += ret;
5027 map.m_len = (max_blocks -= ret);
5028 if (credits) {
5029 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5030 credits);
5031 if (IS_ERR(handle)) {
5032 ret = PTR_ERR(handle);
5033 break;
5036 ret = ext4_map_blocks(handle, inode, &map,
5037 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5038 if (ret <= 0)
5039 ext4_warning(inode->i_sb,
5040 "inode #%lu: block %u: len %u: "
5041 "ext4_ext_map_blocks returned %d",
5042 inode->i_ino, map.m_lblk,
5043 map.m_len, ret);
5044 ext4_mark_inode_dirty(handle, inode);
5045 if (credits)
5046 ret2 = ext4_journal_stop(handle);
5047 if (ret <= 0 || ret2)
5048 break;
5050 if (!credits)
5051 ret2 = ext4_journal_stop(handle);
5052 return ret > 0 ? ret2 : ret;
5056 * If newes is not existing extent (newes->ec_pblk equals zero) find
5057 * delayed extent at start of newes and update newes accordingly and
5058 * return start of the next delayed extent.
5060 * If newes is existing extent (newes->ec_pblk is not equal zero)
5061 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5062 * extent found. Leave newes unmodified.
5064 static int ext4_find_delayed_extent(struct inode *inode,
5065 struct extent_status *newes)
5067 struct extent_status es;
5068 ext4_lblk_t block, next_del;
5070 if (newes->es_pblk == 0) {
5071 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5072 newes->es_lblk + newes->es_len - 1, &es);
5075 * No extent in extent-tree contains block @newes->es_pblk,
5076 * then the block may stay in 1)a hole or 2)delayed-extent.
5078 if (es.es_len == 0)
5079 /* A hole found. */
5080 return 0;
5082 if (es.es_lblk > newes->es_lblk) {
5083 /* A hole found. */
5084 newes->es_len = min(es.es_lblk - newes->es_lblk,
5085 newes->es_len);
5086 return 0;
5089 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5092 block = newes->es_lblk + newes->es_len;
5093 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5094 if (es.es_len == 0)
5095 next_del = EXT_MAX_BLOCKS;
5096 else
5097 next_del = es.es_lblk;
5099 return next_del;
5101 /* fiemap flags we can handle specified here */
5102 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5104 static int ext4_xattr_fiemap(struct inode *inode,
5105 struct fiemap_extent_info *fieinfo)
5107 __u64 physical = 0;
5108 __u64 length;
5109 __u32 flags = FIEMAP_EXTENT_LAST;
5110 int blockbits = inode->i_sb->s_blocksize_bits;
5111 int error = 0;
5113 /* in-inode? */
5114 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5115 struct ext4_iloc iloc;
5116 int offset; /* offset of xattr in inode */
5118 error = ext4_get_inode_loc(inode, &iloc);
5119 if (error)
5120 return error;
5121 physical = (__u64)iloc.bh->b_blocknr << blockbits;
5122 offset = EXT4_GOOD_OLD_INODE_SIZE +
5123 EXT4_I(inode)->i_extra_isize;
5124 physical += offset;
5125 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5126 flags |= FIEMAP_EXTENT_DATA_INLINE;
5127 brelse(iloc.bh);
5128 } else { /* external block */
5129 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5130 length = inode->i_sb->s_blocksize;
5133 if (physical)
5134 error = fiemap_fill_next_extent(fieinfo, 0, physical,
5135 length, flags);
5136 return (error < 0 ? error : 0);
5139 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5140 __u64 start, __u64 len)
5142 ext4_lblk_t start_blk;
5143 int error = 0;
5145 if (ext4_has_inline_data(inode)) {
5146 int has_inline = 1;
5148 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline,
5149 start, len);
5151 if (has_inline)
5152 return error;
5155 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5156 error = ext4_ext_precache(inode);
5157 if (error)
5158 return error;
5161 /* fallback to generic here if not in extents fmt */
5162 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5163 return generic_block_fiemap(inode, fieinfo, start, len,
5164 ext4_get_block);
5166 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5167 return -EBADR;
5169 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5170 error = ext4_xattr_fiemap(inode, fieinfo);
5171 } else {
5172 ext4_lblk_t len_blks;
5173 __u64 last_blk;
5175 start_blk = start >> inode->i_sb->s_blocksize_bits;
5176 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5177 if (last_blk >= EXT_MAX_BLOCKS)
5178 last_blk = EXT_MAX_BLOCKS-1;
5179 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5182 * Walk the extent tree gathering extent information
5183 * and pushing extents back to the user.
5185 error = ext4_fill_fiemap_extents(inode, start_blk,
5186 len_blks, fieinfo);
5188 return error;
5192 * ext4_access_path:
5193 * Function to access the path buffer for marking it dirty.
5194 * It also checks if there are sufficient credits left in the journal handle
5195 * to update path.
5197 static int
5198 ext4_access_path(handle_t *handle, struct inode *inode,
5199 struct ext4_ext_path *path)
5201 int credits, err;
5203 if (!ext4_handle_valid(handle))
5204 return 0;
5207 * Check if need to extend journal credits
5208 * 3 for leaf, sb, and inode plus 2 (bmap and group
5209 * descriptor) for each block group; assume two block
5210 * groups
5212 if (handle->h_buffer_credits < 7) {
5213 credits = ext4_writepage_trans_blocks(inode);
5214 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5215 /* EAGAIN is success */
5216 if (err && err != -EAGAIN)
5217 return err;
5220 err = ext4_ext_get_access(handle, inode, path);
5221 return err;
5225 * ext4_ext_shift_path_extents:
5226 * Shift the extents of a path structure lying between path[depth].p_ext
5227 * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift
5228 * from starting block for each extent.
5230 static int
5231 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5232 struct inode *inode, handle_t *handle,
5233 ext4_lblk_t *start)
5235 int depth, err = 0;
5236 struct ext4_extent *ex_start, *ex_last;
5237 bool update = 0;
5238 depth = path->p_depth;
5240 while (depth >= 0) {
5241 if (depth == path->p_depth) {
5242 ex_start = path[depth].p_ext;
5243 if (!ex_start)
5244 return -EIO;
5246 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5248 err = ext4_access_path(handle, inode, path + depth);
5249 if (err)
5250 goto out;
5252 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5253 update = 1;
5255 *start = le32_to_cpu(ex_last->ee_block) +
5256 ext4_ext_get_actual_len(ex_last);
5258 while (ex_start <= ex_last) {
5259 le32_add_cpu(&ex_start->ee_block, -shift);
5260 /* Try to merge to the left. */
5261 if ((ex_start >
5262 EXT_FIRST_EXTENT(path[depth].p_hdr)) &&
5263 ext4_ext_try_to_merge_right(inode,
5264 path, ex_start - 1))
5265 ex_last--;
5266 else
5267 ex_start++;
5269 err = ext4_ext_dirty(handle, inode, path + depth);
5270 if (err)
5271 goto out;
5273 if (--depth < 0 || !update)
5274 break;
5277 /* Update index too */
5278 err = ext4_access_path(handle, inode, path + depth);
5279 if (err)
5280 goto out;
5282 le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5283 err = ext4_ext_dirty(handle, inode, path + depth);
5284 if (err)
5285 goto out;
5287 /* we are done if current index is not a starting index */
5288 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5289 break;
5291 depth--;
5294 out:
5295 return err;
5299 * ext4_ext_shift_extents:
5300 * All the extents which lies in the range from start to the last allocated
5301 * block for the file are shifted downwards by shift blocks.
5302 * On success, 0 is returned, error otherwise.
5304 static int
5305 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5306 ext4_lblk_t start, ext4_lblk_t shift)
5308 struct ext4_ext_path *path;
5309 int ret = 0, depth;
5310 struct ext4_extent *extent;
5311 ext4_lblk_t stop_block;
5312 ext4_lblk_t ex_start, ex_end;
5314 /* Let path point to the last extent */
5315 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0);
5316 if (IS_ERR(path))
5317 return PTR_ERR(path);
5319 depth = path->p_depth;
5320 extent = path[depth].p_ext;
5321 if (!extent)
5322 goto out;
5324 stop_block = le32_to_cpu(extent->ee_block) +
5325 ext4_ext_get_actual_len(extent);
5327 /* Nothing to shift, if hole is at the end of file */
5328 if (start >= stop_block)
5329 goto out;
5332 * Don't start shifting extents until we make sure the hole is big
5333 * enough to accomodate the shift.
5335 path = ext4_find_extent(inode, start - 1, &path, 0);
5336 if (IS_ERR(path))
5337 return PTR_ERR(path);
5338 depth = path->p_depth;
5339 extent = path[depth].p_ext;
5340 if (extent) {
5341 ex_start = le32_to_cpu(extent->ee_block);
5342 ex_end = le32_to_cpu(extent->ee_block) +
5343 ext4_ext_get_actual_len(extent);
5344 } else {
5345 ex_start = 0;
5346 ex_end = 0;
5349 if ((start == ex_start && shift > ex_start) ||
5350 (shift > start - ex_end))
5351 return -EINVAL;
5353 /* Its safe to start updating extents */
5354 while (start < stop_block) {
5355 path = ext4_find_extent(inode, start, &path, 0);
5356 if (IS_ERR(path))
5357 return PTR_ERR(path);
5358 depth = path->p_depth;
5359 extent = path[depth].p_ext;
5360 if (!extent) {
5361 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5362 (unsigned long) start);
5363 return -EIO;
5365 if (start > le32_to_cpu(extent->ee_block)) {
5366 /* Hole, move to the next extent */
5367 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
5368 path[depth].p_ext++;
5369 } else {
5370 start = ext4_ext_next_allocated_block(path);
5371 continue;
5374 ret = ext4_ext_shift_path_extents(path, shift, inode,
5375 handle, &start);
5376 if (ret)
5377 break;
5379 out:
5380 ext4_ext_drop_refs(path);
5381 kfree(path);
5382 return ret;
5386 * ext4_collapse_range:
5387 * This implements the fallocate's collapse range functionality for ext4
5388 * Returns: 0 and non-zero on error.
5390 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5392 struct super_block *sb = inode->i_sb;
5393 ext4_lblk_t punch_start, punch_stop;
5394 handle_t *handle;
5395 unsigned int credits;
5396 loff_t new_size, ioffset;
5397 int ret;
5399 /* Collapse range works only on fs block size aligned offsets. */
5400 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5401 len & (EXT4_CLUSTER_SIZE(sb) - 1))
5402 return -EINVAL;
5404 if (!S_ISREG(inode->i_mode))
5405 return -EINVAL;
5407 trace_ext4_collapse_range(inode, offset, len);
5409 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5410 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5412 /* Call ext4_force_commit to flush all data in case of data=journal. */
5413 if (ext4_should_journal_data(inode)) {
5414 ret = ext4_force_commit(inode->i_sb);
5415 if (ret)
5416 return ret;
5420 * Need to round down offset to be aligned with page size boundary
5421 * for page size > block size.
5423 ioffset = round_down(offset, PAGE_SIZE);
5425 /* Write out all dirty pages */
5426 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5427 LLONG_MAX);
5428 if (ret)
5429 return ret;
5431 /* Take mutex lock */
5432 mutex_lock(&inode->i_mutex);
5435 * There is no need to overlap collapse range with EOF, in which case
5436 * it is effectively a truncate operation
5438 if (offset + len >= i_size_read(inode)) {
5439 ret = -EINVAL;
5440 goto out_mutex;
5443 /* Currently just for extent based files */
5444 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5445 ret = -EOPNOTSUPP;
5446 goto out_mutex;
5449 truncate_pagecache(inode, ioffset);
5451 /* Wait for existing dio to complete */
5452 ext4_inode_block_unlocked_dio(inode);
5453 inode_dio_wait(inode);
5455 credits = ext4_writepage_trans_blocks(inode);
5456 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5457 if (IS_ERR(handle)) {
5458 ret = PTR_ERR(handle);
5459 goto out_dio;
5462 down_write(&EXT4_I(inode)->i_data_sem);
5463 ext4_discard_preallocations(inode);
5465 ret = ext4_es_remove_extent(inode, punch_start,
5466 EXT_MAX_BLOCKS - punch_start);
5467 if (ret) {
5468 up_write(&EXT4_I(inode)->i_data_sem);
5469 goto out_stop;
5472 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5473 if (ret) {
5474 up_write(&EXT4_I(inode)->i_data_sem);
5475 goto out_stop;
5477 ext4_discard_preallocations(inode);
5479 ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5480 punch_stop - punch_start);
5481 if (ret) {
5482 up_write(&EXT4_I(inode)->i_data_sem);
5483 goto out_stop;
5486 new_size = i_size_read(inode) - len;
5487 i_size_write(inode, new_size);
5488 EXT4_I(inode)->i_disksize = new_size;
5490 up_write(&EXT4_I(inode)->i_data_sem);
5491 if (IS_SYNC(inode))
5492 ext4_handle_sync(handle);
5493 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5494 ext4_mark_inode_dirty(handle, inode);
5496 out_stop:
5497 ext4_journal_stop(handle);
5498 out_dio:
5499 ext4_inode_resume_unlocked_dio(inode);
5500 out_mutex:
5501 mutex_unlock(&inode->i_mutex);
5502 return ret;
5506 * ext4_swap_extents - Swap extents between two inodes
5508 * @inode1: First inode
5509 * @inode2: Second inode
5510 * @lblk1: Start block for first inode
5511 * @lblk2: Start block for second inode
5512 * @count: Number of blocks to swap
5513 * @mark_unwritten: Mark second inode's extents as unwritten after swap
5514 * @erp: Pointer to save error value
5516 * This helper routine does exactly what is promise "swap extents". All other
5517 * stuff such as page-cache locking consistency, bh mapping consistency or
5518 * extent's data copying must be performed by caller.
5519 * Locking:
5520 * i_mutex is held for both inodes
5521 * i_data_sem is locked for write for both inodes
5522 * Assumptions:
5523 * All pages from requested range are locked for both inodes
5526 ext4_swap_extents(handle_t *handle, struct inode *inode1,
5527 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
5528 ext4_lblk_t count, int unwritten, int *erp)
5530 struct ext4_ext_path *path1 = NULL;
5531 struct ext4_ext_path *path2 = NULL;
5532 int replaced_count = 0;
5534 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
5535 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
5536 BUG_ON(!mutex_is_locked(&inode1->i_mutex));
5537 BUG_ON(!mutex_is_locked(&inode1->i_mutex));
5539 *erp = ext4_es_remove_extent(inode1, lblk1, count);
5540 if (unlikely(*erp))
5541 return 0;
5542 *erp = ext4_es_remove_extent(inode2, lblk2, count);
5543 if (unlikely(*erp))
5544 return 0;
5546 while (count) {
5547 struct ext4_extent *ex1, *ex2, tmp_ex;
5548 ext4_lblk_t e1_blk, e2_blk;
5549 int e1_len, e2_len, len;
5550 int split = 0;
5552 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
5553 if (unlikely(IS_ERR(path1))) {
5554 *erp = PTR_ERR(path1);
5555 path1 = NULL;
5556 finish:
5557 count = 0;
5558 goto repeat;
5560 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
5561 if (unlikely(IS_ERR(path2))) {
5562 *erp = PTR_ERR(path2);
5563 path2 = NULL;
5564 goto finish;
5566 ex1 = path1[path1->p_depth].p_ext;
5567 ex2 = path2[path2->p_depth].p_ext;
5568 /* Do we have somthing to swap ? */
5569 if (unlikely(!ex2 || !ex1))
5570 goto finish;
5572 e1_blk = le32_to_cpu(ex1->ee_block);
5573 e2_blk = le32_to_cpu(ex2->ee_block);
5574 e1_len = ext4_ext_get_actual_len(ex1);
5575 e2_len = ext4_ext_get_actual_len(ex2);
5577 /* Hole handling */
5578 if (!in_range(lblk1, e1_blk, e1_len) ||
5579 !in_range(lblk2, e2_blk, e2_len)) {
5580 ext4_lblk_t next1, next2;
5582 /* if hole after extent, then go to next extent */
5583 next1 = ext4_ext_next_allocated_block(path1);
5584 next2 = ext4_ext_next_allocated_block(path2);
5585 /* If hole before extent, then shift to that extent */
5586 if (e1_blk > lblk1)
5587 next1 = e1_blk;
5588 if (e2_blk > lblk2)
5589 next2 = e1_blk;
5590 /* Do we have something to swap */
5591 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
5592 goto finish;
5593 /* Move to the rightest boundary */
5594 len = next1 - lblk1;
5595 if (len < next2 - lblk2)
5596 len = next2 - lblk2;
5597 if (len > count)
5598 len = count;
5599 lblk1 += len;
5600 lblk2 += len;
5601 count -= len;
5602 goto repeat;
5605 /* Prepare left boundary */
5606 if (e1_blk < lblk1) {
5607 split = 1;
5608 *erp = ext4_force_split_extent_at(handle, inode1,
5609 &path1, lblk1, 0);
5610 if (unlikely(*erp))
5611 goto finish;
5613 if (e2_blk < lblk2) {
5614 split = 1;
5615 *erp = ext4_force_split_extent_at(handle, inode2,
5616 &path2, lblk2, 0);
5617 if (unlikely(*erp))
5618 goto finish;
5620 /* ext4_split_extent_at() may result in leaf extent split,
5621 * path must to be revalidated. */
5622 if (split)
5623 goto repeat;
5625 /* Prepare right boundary */
5626 len = count;
5627 if (len > e1_blk + e1_len - lblk1)
5628 len = e1_blk + e1_len - lblk1;
5629 if (len > e2_blk + e2_len - lblk2)
5630 len = e2_blk + e2_len - lblk2;
5632 if (len != e1_len) {
5633 split = 1;
5634 *erp = ext4_force_split_extent_at(handle, inode1,
5635 &path1, lblk1 + len, 0);
5636 if (unlikely(*erp))
5637 goto finish;
5639 if (len != e2_len) {
5640 split = 1;
5641 *erp = ext4_force_split_extent_at(handle, inode2,
5642 &path2, lblk2 + len, 0);
5643 if (*erp)
5644 goto finish;
5646 /* ext4_split_extent_at() may result in leaf extent split,
5647 * path must to be revalidated. */
5648 if (split)
5649 goto repeat;
5651 BUG_ON(e2_len != e1_len);
5652 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
5653 if (unlikely(*erp))
5654 goto finish;
5655 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
5656 if (unlikely(*erp))
5657 goto finish;
5659 /* Both extents are fully inside boundaries. Swap it now */
5660 tmp_ex = *ex1;
5661 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
5662 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
5663 ex1->ee_len = cpu_to_le16(e2_len);
5664 ex2->ee_len = cpu_to_le16(e1_len);
5665 if (unwritten)
5666 ext4_ext_mark_unwritten(ex2);
5667 if (ext4_ext_is_unwritten(&tmp_ex))
5668 ext4_ext_mark_unwritten(ex1);
5670 ext4_ext_try_to_merge(handle, inode2, path2, ex2);
5671 ext4_ext_try_to_merge(handle, inode1, path1, ex1);
5672 *erp = ext4_ext_dirty(handle, inode2, path2 +
5673 path2->p_depth);
5674 if (unlikely(*erp))
5675 goto finish;
5676 *erp = ext4_ext_dirty(handle, inode1, path1 +
5677 path1->p_depth);
5679 * Looks scarry ah..? second inode already points to new blocks,
5680 * and it was successfully dirtied. But luckily error may happen
5681 * only due to journal error, so full transaction will be
5682 * aborted anyway.
5684 if (unlikely(*erp))
5685 goto finish;
5686 lblk1 += len;
5687 lblk2 += len;
5688 replaced_count += len;
5689 count -= len;
5691 repeat:
5692 ext4_ext_drop_refs(path1);
5693 kfree(path1);
5694 ext4_ext_drop_refs(path2);
5695 kfree(path2);
5696 path1 = path2 = NULL;
5698 return replaced_count;