2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/sched/signal.h>
31 #include <linux/uio.h>
32 #include <linux/vmstat.h>
33 #include <linux/pfn_t.h>
34 #include <linux/sizes.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/iomap.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/fs_dax.h>
42 /* We choose 4096 entries - same as per-zone page wait tables */
43 #define DAX_WAIT_TABLE_BITS 12
44 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
46 static wait_queue_head_t wait_table
[DAX_WAIT_TABLE_ENTRIES
];
48 static int __init
init_dax_wait_table(void)
52 for (i
= 0; i
< DAX_WAIT_TABLE_ENTRIES
; i
++)
53 init_waitqueue_head(wait_table
+ i
);
56 fs_initcall(init_dax_wait_table
);
58 static long dax_map_atomic(struct block_device
*bdev
, struct blk_dax_ctl
*dax
)
60 struct request_queue
*q
= bdev
->bd_queue
;
63 dax
->addr
= ERR_PTR(-EIO
);
64 if (blk_queue_enter(q
, true) != 0)
67 rc
= bdev_direct_access(bdev
, dax
);
69 dax
->addr
= ERR_PTR(rc
);
76 static void dax_unmap_atomic(struct block_device
*bdev
,
77 const struct blk_dax_ctl
*dax
)
79 if (IS_ERR(dax
->addr
))
81 blk_queue_exit(bdev
->bd_queue
);
84 static int dax_is_pmd_entry(void *entry
)
86 return (unsigned long)entry
& RADIX_DAX_PMD
;
89 static int dax_is_pte_entry(void *entry
)
91 return !((unsigned long)entry
& RADIX_DAX_PMD
);
94 static int dax_is_zero_entry(void *entry
)
96 return (unsigned long)entry
& RADIX_DAX_HZP
;
99 static int dax_is_empty_entry(void *entry
)
101 return (unsigned long)entry
& RADIX_DAX_EMPTY
;
104 struct page
*read_dax_sector(struct block_device
*bdev
, sector_t n
)
106 struct page
*page
= alloc_pages(GFP_KERNEL
, 0);
107 struct blk_dax_ctl dax
= {
109 .sector
= n
& ~((((int) PAGE_SIZE
) / 512) - 1),
114 return ERR_PTR(-ENOMEM
);
116 rc
= dax_map_atomic(bdev
, &dax
);
119 memcpy_from_pmem(page_address(page
), dax
.addr
, PAGE_SIZE
);
120 dax_unmap_atomic(bdev
, &dax
);
125 * DAX radix tree locking
127 struct exceptional_entry_key
{
128 struct address_space
*mapping
;
132 struct wait_exceptional_entry_queue
{
134 struct exceptional_entry_key key
;
137 static wait_queue_head_t
*dax_entry_waitqueue(struct address_space
*mapping
,
138 pgoff_t index
, void *entry
, struct exceptional_entry_key
*key
)
143 * If 'entry' is a PMD, align the 'index' that we use for the wait
144 * queue to the start of that PMD. This ensures that all offsets in
145 * the range covered by the PMD map to the same bit lock.
147 if (dax_is_pmd_entry(entry
))
148 index
&= ~((1UL << (PMD_SHIFT
- PAGE_SHIFT
)) - 1);
150 key
->mapping
= mapping
;
151 key
->entry_start
= index
;
153 hash
= hash_long((unsigned long)mapping
^ index
, DAX_WAIT_TABLE_BITS
);
154 return wait_table
+ hash
;
157 static int wake_exceptional_entry_func(wait_queue_t
*wait
, unsigned int mode
,
158 int sync
, void *keyp
)
160 struct exceptional_entry_key
*key
= keyp
;
161 struct wait_exceptional_entry_queue
*ewait
=
162 container_of(wait
, struct wait_exceptional_entry_queue
, wait
);
164 if (key
->mapping
!= ewait
->key
.mapping
||
165 key
->entry_start
!= ewait
->key
.entry_start
)
167 return autoremove_wake_function(wait
, mode
, sync
, NULL
);
171 * Check whether the given slot is locked. The function must be called with
172 * mapping->tree_lock held
174 static inline int slot_locked(struct address_space
*mapping
, void **slot
)
176 unsigned long entry
= (unsigned long)
177 radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
178 return entry
& RADIX_DAX_ENTRY_LOCK
;
182 * Mark the given slot is locked. The function must be called with
183 * mapping->tree_lock held
185 static inline void *lock_slot(struct address_space
*mapping
, void **slot
)
187 unsigned long entry
= (unsigned long)
188 radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
190 entry
|= RADIX_DAX_ENTRY_LOCK
;
191 radix_tree_replace_slot(&mapping
->page_tree
, slot
, (void *)entry
);
192 return (void *)entry
;
196 * Mark the given slot is unlocked. The function must be called with
197 * mapping->tree_lock held
199 static inline void *unlock_slot(struct address_space
*mapping
, void **slot
)
201 unsigned long entry
= (unsigned long)
202 radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
204 entry
&= ~(unsigned long)RADIX_DAX_ENTRY_LOCK
;
205 radix_tree_replace_slot(&mapping
->page_tree
, slot
, (void *)entry
);
206 return (void *)entry
;
210 * Lookup entry in radix tree, wait for it to become unlocked if it is
211 * exceptional entry and return it. The caller must call
212 * put_unlocked_mapping_entry() when he decided not to lock the entry or
213 * put_locked_mapping_entry() when he locked the entry and now wants to
216 * The function must be called with mapping->tree_lock held.
218 static void *get_unlocked_mapping_entry(struct address_space
*mapping
,
219 pgoff_t index
, void ***slotp
)
222 struct wait_exceptional_entry_queue ewait
;
223 wait_queue_head_t
*wq
;
225 init_wait(&ewait
.wait
);
226 ewait
.wait
.func
= wake_exceptional_entry_func
;
229 entry
= __radix_tree_lookup(&mapping
->page_tree
, index
, NULL
,
231 if (!entry
|| !radix_tree_exceptional_entry(entry
) ||
232 !slot_locked(mapping
, slot
)) {
238 wq
= dax_entry_waitqueue(mapping
, index
, entry
, &ewait
.key
);
239 prepare_to_wait_exclusive(wq
, &ewait
.wait
,
240 TASK_UNINTERRUPTIBLE
);
241 spin_unlock_irq(&mapping
->tree_lock
);
243 finish_wait(wq
, &ewait
.wait
);
244 spin_lock_irq(&mapping
->tree_lock
);
248 static void dax_unlock_mapping_entry(struct address_space
*mapping
,
253 spin_lock_irq(&mapping
->tree_lock
);
254 entry
= __radix_tree_lookup(&mapping
->page_tree
, index
, NULL
, &slot
);
255 if (WARN_ON_ONCE(!entry
|| !radix_tree_exceptional_entry(entry
) ||
256 !slot_locked(mapping
, slot
))) {
257 spin_unlock_irq(&mapping
->tree_lock
);
260 unlock_slot(mapping
, slot
);
261 spin_unlock_irq(&mapping
->tree_lock
);
262 dax_wake_mapping_entry_waiter(mapping
, index
, entry
, false);
265 static void put_locked_mapping_entry(struct address_space
*mapping
,
266 pgoff_t index
, void *entry
)
268 if (!radix_tree_exceptional_entry(entry
)) {
272 dax_unlock_mapping_entry(mapping
, index
);
277 * Called when we are done with radix tree entry we looked up via
278 * get_unlocked_mapping_entry() and which we didn't lock in the end.
280 static void put_unlocked_mapping_entry(struct address_space
*mapping
,
281 pgoff_t index
, void *entry
)
283 if (!radix_tree_exceptional_entry(entry
))
286 /* We have to wake up next waiter for the radix tree entry lock */
287 dax_wake_mapping_entry_waiter(mapping
, index
, entry
, false);
291 * Find radix tree entry at given index. If it points to a page, return with
292 * the page locked. If it points to the exceptional entry, return with the
293 * radix tree entry locked. If the radix tree doesn't contain given index,
294 * create empty exceptional entry for the index and return with it locked.
296 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
297 * either return that locked entry or will return an error. This error will
298 * happen if there are any 4k entries (either zero pages or DAX entries)
299 * within the 2MiB range that we are requesting.
301 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
302 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
303 * insertion will fail if it finds any 4k entries already in the tree, and a
304 * 4k insertion will cause an existing 2MiB entry to be unmapped and
305 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
306 * well as 2MiB empty entries.
308 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
309 * real storage backing them. We will leave these real 2MiB DAX entries in
310 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
312 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
313 * persistent memory the benefit is doubtful. We can add that later if we can
316 static void *grab_mapping_entry(struct address_space
*mapping
, pgoff_t index
,
317 unsigned long size_flag
)
319 bool pmd_downgrade
= false; /* splitting 2MiB entry into 4k entries? */
323 spin_lock_irq(&mapping
->tree_lock
);
324 entry
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
327 if (size_flag
& RADIX_DAX_PMD
) {
328 if (!radix_tree_exceptional_entry(entry
) ||
329 dax_is_pte_entry(entry
)) {
330 put_unlocked_mapping_entry(mapping
, index
,
332 entry
= ERR_PTR(-EEXIST
);
335 } else { /* trying to grab a PTE entry */
336 if (radix_tree_exceptional_entry(entry
) &&
337 dax_is_pmd_entry(entry
) &&
338 (dax_is_zero_entry(entry
) ||
339 dax_is_empty_entry(entry
))) {
340 pmd_downgrade
= true;
345 /* No entry for given index? Make sure radix tree is big enough. */
346 if (!entry
|| pmd_downgrade
) {
351 * Make sure 'entry' remains valid while we drop
352 * mapping->tree_lock.
354 entry
= lock_slot(mapping
, slot
);
357 spin_unlock_irq(&mapping
->tree_lock
);
359 * Besides huge zero pages the only other thing that gets
360 * downgraded are empty entries which don't need to be
363 if (pmd_downgrade
&& dax_is_zero_entry(entry
))
364 unmap_mapping_range(mapping
,
365 (index
<< PAGE_SHIFT
) & PMD_MASK
, PMD_SIZE
, 0);
367 err
= radix_tree_preload(
368 mapping_gfp_mask(mapping
) & ~__GFP_HIGHMEM
);
371 put_locked_mapping_entry(mapping
, index
, entry
);
374 spin_lock_irq(&mapping
->tree_lock
);
377 radix_tree_delete(&mapping
->page_tree
, index
);
378 mapping
->nrexceptional
--;
379 dax_wake_mapping_entry_waiter(mapping
, index
, entry
,
383 entry
= dax_radix_locked_entry(0, size_flag
| RADIX_DAX_EMPTY
);
385 err
= __radix_tree_insert(&mapping
->page_tree
, index
,
386 dax_radix_order(entry
), entry
);
387 radix_tree_preload_end();
389 spin_unlock_irq(&mapping
->tree_lock
);
391 * Someone already created the entry? This is a
392 * normal failure when inserting PMDs in a range
393 * that already contains PTEs. In that case we want
394 * to return -EEXIST immediately.
396 if (err
== -EEXIST
&& !(size_flag
& RADIX_DAX_PMD
))
399 * Our insertion of a DAX PMD entry failed, most
400 * likely because it collided with a PTE sized entry
401 * at a different index in the PMD range. We haven't
402 * inserted anything into the radix tree and have no
407 /* Good, we have inserted empty locked entry into the tree. */
408 mapping
->nrexceptional
++;
409 spin_unlock_irq(&mapping
->tree_lock
);
412 /* Normal page in radix tree? */
413 if (!radix_tree_exceptional_entry(entry
)) {
414 struct page
*page
= entry
;
417 spin_unlock_irq(&mapping
->tree_lock
);
419 /* Page got truncated? Retry... */
420 if (unlikely(page
->mapping
!= mapping
)) {
427 entry
= lock_slot(mapping
, slot
);
429 spin_unlock_irq(&mapping
->tree_lock
);
434 * We do not necessarily hold the mapping->tree_lock when we call this
435 * function so it is possible that 'entry' is no longer a valid item in the
436 * radix tree. This is okay because all we really need to do is to find the
437 * correct waitqueue where tasks might be waiting for that old 'entry' and
440 void dax_wake_mapping_entry_waiter(struct address_space
*mapping
,
441 pgoff_t index
, void *entry
, bool wake_all
)
443 struct exceptional_entry_key key
;
444 wait_queue_head_t
*wq
;
446 wq
= dax_entry_waitqueue(mapping
, index
, entry
, &key
);
449 * Checking for locked entry and prepare_to_wait_exclusive() happens
450 * under mapping->tree_lock, ditto for entry handling in our callers.
451 * So at this point all tasks that could have seen our entry locked
452 * must be in the waitqueue and the following check will see them.
454 if (waitqueue_active(wq
))
455 __wake_up(wq
, TASK_NORMAL
, wake_all
? 0 : 1, &key
);
458 static int __dax_invalidate_mapping_entry(struct address_space
*mapping
,
459 pgoff_t index
, bool trunc
)
463 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
465 spin_lock_irq(&mapping
->tree_lock
);
466 entry
= get_unlocked_mapping_entry(mapping
, index
, NULL
);
467 if (!entry
|| !radix_tree_exceptional_entry(entry
))
470 (radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_DIRTY
) ||
471 radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_TOWRITE
)))
473 radix_tree_delete(page_tree
, index
);
474 mapping
->nrexceptional
--;
477 put_unlocked_mapping_entry(mapping
, index
, entry
);
478 spin_unlock_irq(&mapping
->tree_lock
);
482 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
483 * entry to get unlocked before deleting it.
485 int dax_delete_mapping_entry(struct address_space
*mapping
, pgoff_t index
)
487 int ret
= __dax_invalidate_mapping_entry(mapping
, index
, true);
490 * This gets called from truncate / punch_hole path. As such, the caller
491 * must hold locks protecting against concurrent modifications of the
492 * radix tree (usually fs-private i_mmap_sem for writing). Since the
493 * caller has seen exceptional entry for this index, we better find it
494 * at that index as well...
501 * Invalidate exceptional DAX entry if easily possible. This handles DAX
502 * entries for invalidate_inode_pages() so we evict the entry only if we can
503 * do so without blocking.
505 int dax_invalidate_mapping_entry(struct address_space
*mapping
, pgoff_t index
)
509 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
511 spin_lock_irq(&mapping
->tree_lock
);
512 entry
= __radix_tree_lookup(page_tree
, index
, NULL
, &slot
);
513 if (!entry
|| !radix_tree_exceptional_entry(entry
) ||
514 slot_locked(mapping
, slot
))
516 if (radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_DIRTY
) ||
517 radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_TOWRITE
))
519 radix_tree_delete(page_tree
, index
);
520 mapping
->nrexceptional
--;
523 spin_unlock_irq(&mapping
->tree_lock
);
525 dax_wake_mapping_entry_waiter(mapping
, index
, entry
, true);
530 * Invalidate exceptional DAX entry if it is clean.
532 int dax_invalidate_mapping_entry_sync(struct address_space
*mapping
,
535 return __dax_invalidate_mapping_entry(mapping
, index
, false);
539 * The user has performed a load from a hole in the file. Allocating
540 * a new page in the file would cause excessive storage usage for
541 * workloads with sparse files. We allocate a page cache page instead.
542 * We'll kick it out of the page cache if it's ever written to,
543 * otherwise it will simply fall out of the page cache under memory
544 * pressure without ever having been dirtied.
546 static int dax_load_hole(struct address_space
*mapping
, void **entry
,
547 struct vm_fault
*vmf
)
552 /* Hole page already exists? Return it... */
553 if (!radix_tree_exceptional_entry(*entry
)) {
558 /* This will replace locked radix tree entry with a hole page */
559 page
= find_or_create_page(mapping
, vmf
->pgoff
,
560 vmf
->gfp_mask
| __GFP_ZERO
);
565 ret
= finish_fault(vmf
);
569 /* Grab reference for PTE that is now referencing the page */
571 return VM_FAULT_NOPAGE
;
576 static int copy_user_dax(struct block_device
*bdev
, sector_t sector
, size_t size
,
577 struct page
*to
, unsigned long vaddr
)
579 struct blk_dax_ctl dax
= {
585 if (dax_map_atomic(bdev
, &dax
) < 0)
586 return PTR_ERR(dax
.addr
);
587 vto
= kmap_atomic(to
);
588 copy_user_page(vto
, (void __force
*)dax
.addr
, vaddr
, to
);
590 dax_unmap_atomic(bdev
, &dax
);
595 * By this point grab_mapping_entry() has ensured that we have a locked entry
596 * of the appropriate size so we don't have to worry about downgrading PMDs to
597 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
598 * already in the tree, we will skip the insertion and just dirty the PMD as
601 static void *dax_insert_mapping_entry(struct address_space
*mapping
,
602 struct vm_fault
*vmf
,
603 void *entry
, sector_t sector
,
606 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
608 bool hole_fill
= false;
610 pgoff_t index
= vmf
->pgoff
;
612 if (vmf
->flags
& FAULT_FLAG_WRITE
)
613 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
615 /* Replacing hole page with block mapping? */
616 if (!radix_tree_exceptional_entry(entry
)) {
619 * Unmap the page now before we remove it from page cache below.
620 * The page is locked so it cannot be faulted in again.
622 unmap_mapping_range(mapping
, vmf
->pgoff
<< PAGE_SHIFT
,
624 error
= radix_tree_preload(vmf
->gfp_mask
& ~__GFP_HIGHMEM
);
626 return ERR_PTR(error
);
627 } else if (dax_is_zero_entry(entry
) && !(flags
& RADIX_DAX_HZP
)) {
628 /* replacing huge zero page with PMD block mapping */
629 unmap_mapping_range(mapping
,
630 (vmf
->pgoff
<< PAGE_SHIFT
) & PMD_MASK
, PMD_SIZE
, 0);
633 spin_lock_irq(&mapping
->tree_lock
);
634 new_entry
= dax_radix_locked_entry(sector
, flags
);
637 __delete_from_page_cache(entry
, NULL
);
638 /* Drop pagecache reference */
640 error
= __radix_tree_insert(page_tree
, index
,
641 dax_radix_order(new_entry
), new_entry
);
643 new_entry
= ERR_PTR(error
);
646 mapping
->nrexceptional
++;
647 } else if (dax_is_zero_entry(entry
) || dax_is_empty_entry(entry
)) {
649 * Only swap our new entry into the radix tree if the current
650 * entry is a zero page or an empty entry. If a normal PTE or
651 * PMD entry is already in the tree, we leave it alone. This
652 * means that if we are trying to insert a PTE and the
653 * existing entry is a PMD, we will just leave the PMD in the
654 * tree and dirty it if necessary.
656 struct radix_tree_node
*node
;
660 ret
= __radix_tree_lookup(page_tree
, index
, &node
, &slot
);
661 WARN_ON_ONCE(ret
!= entry
);
662 __radix_tree_replace(page_tree
, node
, slot
,
663 new_entry
, NULL
, NULL
);
665 if (vmf
->flags
& FAULT_FLAG_WRITE
)
666 radix_tree_tag_set(page_tree
, index
, PAGECACHE_TAG_DIRTY
);
668 spin_unlock_irq(&mapping
->tree_lock
);
670 radix_tree_preload_end();
672 * We don't need hole page anymore, it has been replaced with
673 * locked radix tree entry now.
675 if (mapping
->a_ops
->freepage
)
676 mapping
->a_ops
->freepage(entry
);
683 static inline unsigned long
684 pgoff_address(pgoff_t pgoff
, struct vm_area_struct
*vma
)
686 unsigned long address
;
688 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
689 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
693 /* Walk all mappings of a given index of a file and writeprotect them */
694 static void dax_mapping_entry_mkclean(struct address_space
*mapping
,
695 pgoff_t index
, unsigned long pfn
)
697 struct vm_area_struct
*vma
;
698 pte_t pte
, *ptep
= NULL
;
703 i_mmap_lock_read(mapping
);
704 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, index
, index
) {
705 unsigned long address
;
709 if (!(vma
->vm_flags
& VM_SHARED
))
712 address
= pgoff_address(index
, vma
);
714 if (follow_pte_pmd(vma
->vm_mm
, address
, &ptep
, &pmdp
, &ptl
))
718 #ifdef CONFIG_FS_DAX_PMD
721 if (pfn
!= pmd_pfn(*pmdp
))
723 if (!pmd_dirty(*pmdp
) && !pmd_write(*pmdp
))
726 flush_cache_page(vma
, address
, pfn
);
727 pmd
= pmdp_huge_clear_flush(vma
, address
, pmdp
);
728 pmd
= pmd_wrprotect(pmd
);
729 pmd
= pmd_mkclean(pmd
);
730 set_pmd_at(vma
->vm_mm
, address
, pmdp
, pmd
);
736 if (pfn
!= pte_pfn(*ptep
))
738 if (!pte_dirty(*ptep
) && !pte_write(*ptep
))
741 flush_cache_page(vma
, address
, pfn
);
742 pte
= ptep_clear_flush(vma
, address
, ptep
);
743 pte
= pte_wrprotect(pte
);
744 pte
= pte_mkclean(pte
);
745 set_pte_at(vma
->vm_mm
, address
, ptep
, pte
);
748 pte_unmap_unlock(ptep
, ptl
);
752 mmu_notifier_invalidate_page(vma
->vm_mm
, address
);
754 i_mmap_unlock_read(mapping
);
757 static int dax_writeback_one(struct block_device
*bdev
,
758 struct address_space
*mapping
, pgoff_t index
, void *entry
)
760 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
761 struct blk_dax_ctl dax
;
762 void *entry2
, **slot
;
766 * A page got tagged dirty in DAX mapping? Something is seriously
769 if (WARN_ON(!radix_tree_exceptional_entry(entry
)))
772 spin_lock_irq(&mapping
->tree_lock
);
773 entry2
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
774 /* Entry got punched out / reallocated? */
775 if (!entry2
|| !radix_tree_exceptional_entry(entry2
))
778 * Entry got reallocated elsewhere? No need to writeback. We have to
779 * compare sectors as we must not bail out due to difference in lockbit
782 if (dax_radix_sector(entry2
) != dax_radix_sector(entry
))
784 if (WARN_ON_ONCE(dax_is_empty_entry(entry
) ||
785 dax_is_zero_entry(entry
))) {
790 /* Another fsync thread may have already written back this entry */
791 if (!radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_TOWRITE
))
793 /* Lock the entry to serialize with page faults */
794 entry
= lock_slot(mapping
, slot
);
796 * We can clear the tag now but we have to be careful so that concurrent
797 * dax_writeback_one() calls for the same index cannot finish before we
798 * actually flush the caches. This is achieved as the calls will look
799 * at the entry only under tree_lock and once they do that they will
800 * see the entry locked and wait for it to unlock.
802 radix_tree_tag_clear(page_tree
, index
, PAGECACHE_TAG_TOWRITE
);
803 spin_unlock_irq(&mapping
->tree_lock
);
806 * Even if dax_writeback_mapping_range() was given a wbc->range_start
807 * in the middle of a PMD, the 'index' we are given will be aligned to
808 * the start index of the PMD, as will the sector we pull from
809 * 'entry'. This allows us to flush for PMD_SIZE and not have to
810 * worry about partial PMD writebacks.
812 dax
.sector
= dax_radix_sector(entry
);
813 dax
.size
= PAGE_SIZE
<< dax_radix_order(entry
);
816 * We cannot hold tree_lock while calling dax_map_atomic() because it
817 * eventually calls cond_resched().
819 ret
= dax_map_atomic(bdev
, &dax
);
821 put_locked_mapping_entry(mapping
, index
, entry
);
825 if (WARN_ON_ONCE(ret
< dax
.size
)) {
830 dax_mapping_entry_mkclean(mapping
, index
, pfn_t_to_pfn(dax
.pfn
));
831 wb_cache_pmem(dax
.addr
, dax
.size
);
833 * After we have flushed the cache, we can clear the dirty tag. There
834 * cannot be new dirty data in the pfn after the flush has completed as
835 * the pfn mappings are writeprotected and fault waits for mapping
838 spin_lock_irq(&mapping
->tree_lock
);
839 radix_tree_tag_clear(page_tree
, index
, PAGECACHE_TAG_DIRTY
);
840 spin_unlock_irq(&mapping
->tree_lock
);
842 dax_unmap_atomic(bdev
, &dax
);
843 put_locked_mapping_entry(mapping
, index
, entry
);
847 put_unlocked_mapping_entry(mapping
, index
, entry2
);
848 spin_unlock_irq(&mapping
->tree_lock
);
853 * Flush the mapping to the persistent domain within the byte range of [start,
854 * end]. This is required by data integrity operations to ensure file data is
855 * on persistent storage prior to completion of the operation.
857 int dax_writeback_mapping_range(struct address_space
*mapping
,
858 struct block_device
*bdev
, struct writeback_control
*wbc
)
860 struct inode
*inode
= mapping
->host
;
861 pgoff_t start_index
, end_index
;
862 pgoff_t indices
[PAGEVEC_SIZE
];
867 if (WARN_ON_ONCE(inode
->i_blkbits
!= PAGE_SHIFT
))
870 if (!mapping
->nrexceptional
|| wbc
->sync_mode
!= WB_SYNC_ALL
)
873 start_index
= wbc
->range_start
>> PAGE_SHIFT
;
874 end_index
= wbc
->range_end
>> PAGE_SHIFT
;
876 tag_pages_for_writeback(mapping
, start_index
, end_index
);
878 pagevec_init(&pvec
, 0);
880 pvec
.nr
= find_get_entries_tag(mapping
, start_index
,
881 PAGECACHE_TAG_TOWRITE
, PAGEVEC_SIZE
,
882 pvec
.pages
, indices
);
887 for (i
= 0; i
< pvec
.nr
; i
++) {
888 if (indices
[i
] > end_index
) {
893 ret
= dax_writeback_one(bdev
, mapping
, indices
[i
],
901 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range
);
903 static int dax_insert_mapping(struct address_space
*mapping
,
904 struct block_device
*bdev
, sector_t sector
, size_t size
,
905 void **entryp
, struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
907 unsigned long vaddr
= vmf
->address
;
908 struct blk_dax_ctl dax
= {
913 void *entry
= *entryp
;
915 if (dax_map_atomic(bdev
, &dax
) < 0)
916 return PTR_ERR(dax
.addr
);
917 dax_unmap_atomic(bdev
, &dax
);
919 ret
= dax_insert_mapping_entry(mapping
, vmf
, entry
, dax
.sector
, 0);
924 return vm_insert_mixed(vma
, vaddr
, dax
.pfn
);
928 * dax_pfn_mkwrite - handle first write to DAX page
929 * @vmf: The description of the fault
931 int dax_pfn_mkwrite(struct vm_fault
*vmf
)
933 struct file
*file
= vmf
->vma
->vm_file
;
934 struct address_space
*mapping
= file
->f_mapping
;
936 pgoff_t index
= vmf
->pgoff
;
938 spin_lock_irq(&mapping
->tree_lock
);
939 entry
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
940 if (!entry
|| !radix_tree_exceptional_entry(entry
)) {
942 put_unlocked_mapping_entry(mapping
, index
, entry
);
943 spin_unlock_irq(&mapping
->tree_lock
);
944 return VM_FAULT_NOPAGE
;
946 radix_tree_tag_set(&mapping
->page_tree
, index
, PAGECACHE_TAG_DIRTY
);
947 entry
= lock_slot(mapping
, slot
);
948 spin_unlock_irq(&mapping
->tree_lock
);
950 * If we race with somebody updating the PTE and finish_mkwrite_fault()
951 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
952 * the fault in either case.
954 finish_mkwrite_fault(vmf
);
955 put_locked_mapping_entry(mapping
, index
, entry
);
956 return VM_FAULT_NOPAGE
;
958 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite
);
960 static bool dax_range_is_aligned(struct block_device
*bdev
,
961 unsigned int offset
, unsigned int length
)
963 unsigned short sector_size
= bdev_logical_block_size(bdev
);
965 if (!IS_ALIGNED(offset
, sector_size
))
967 if (!IS_ALIGNED(length
, sector_size
))
973 int __dax_zero_page_range(struct block_device
*bdev
, sector_t sector
,
974 unsigned int offset
, unsigned int length
)
976 struct blk_dax_ctl dax
= {
981 if (dax_range_is_aligned(bdev
, offset
, length
)) {
982 sector_t start_sector
= dax
.sector
+ (offset
>> 9);
984 return blkdev_issue_zeroout(bdev
, start_sector
,
985 length
>> 9, GFP_NOFS
, true);
987 if (dax_map_atomic(bdev
, &dax
) < 0)
988 return PTR_ERR(dax
.addr
);
989 clear_pmem(dax
.addr
+ offset
, length
);
990 dax_unmap_atomic(bdev
, &dax
);
994 EXPORT_SYMBOL_GPL(__dax_zero_page_range
);
996 static sector_t
dax_iomap_sector(struct iomap
*iomap
, loff_t pos
)
998 return iomap
->blkno
+ (((pos
& PAGE_MASK
) - iomap
->offset
) >> 9);
1002 dax_iomap_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
1003 struct iomap
*iomap
)
1005 struct iov_iter
*iter
= data
;
1006 loff_t end
= pos
+ length
, done
= 0;
1009 if (iov_iter_rw(iter
) == READ
) {
1010 end
= min(end
, i_size_read(inode
));
1014 if (iomap
->type
== IOMAP_HOLE
|| iomap
->type
== IOMAP_UNWRITTEN
)
1015 return iov_iter_zero(min(length
, end
- pos
), iter
);
1018 if (WARN_ON_ONCE(iomap
->type
!= IOMAP_MAPPED
))
1022 * Write can allocate block for an area which has a hole page mapped
1023 * into page tables. We have to tear down these mappings so that data
1024 * written by write(2) is visible in mmap.
1026 if ((iomap
->flags
& IOMAP_F_NEW
) && inode
->i_mapping
->nrpages
) {
1027 invalidate_inode_pages2_range(inode
->i_mapping
,
1029 (end
- 1) >> PAGE_SHIFT
);
1033 unsigned offset
= pos
& (PAGE_SIZE
- 1);
1034 struct blk_dax_ctl dax
= { 0 };
1037 if (fatal_signal_pending(current
)) {
1042 dax
.sector
= dax_iomap_sector(iomap
, pos
);
1043 dax
.size
= (length
+ offset
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1044 map_len
= dax_map_atomic(iomap
->bdev
, &dax
);
1052 if (map_len
> end
- pos
)
1053 map_len
= end
- pos
;
1055 if (iov_iter_rw(iter
) == WRITE
)
1056 map_len
= copy_from_iter_pmem(dax
.addr
, map_len
, iter
);
1058 map_len
= copy_to_iter(dax
.addr
, map_len
, iter
);
1059 dax_unmap_atomic(iomap
->bdev
, &dax
);
1061 ret
= map_len
? map_len
: -EFAULT
;
1070 return done
? done
: ret
;
1074 * dax_iomap_rw - Perform I/O to a DAX file
1075 * @iocb: The control block for this I/O
1076 * @iter: The addresses to do I/O from or to
1077 * @ops: iomap ops passed from the file system
1079 * This function performs read and write operations to directly mapped
1080 * persistent memory. The callers needs to take care of read/write exclusion
1081 * and evicting any page cache pages in the region under I/O.
1084 dax_iomap_rw(struct kiocb
*iocb
, struct iov_iter
*iter
,
1085 const struct iomap_ops
*ops
)
1087 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
1088 struct inode
*inode
= mapping
->host
;
1089 loff_t pos
= iocb
->ki_pos
, ret
= 0, done
= 0;
1092 if (iov_iter_rw(iter
) == WRITE
) {
1093 lockdep_assert_held_exclusive(&inode
->i_rwsem
);
1094 flags
|= IOMAP_WRITE
;
1096 lockdep_assert_held(&inode
->i_rwsem
);
1099 while (iov_iter_count(iter
)) {
1100 ret
= iomap_apply(inode
, pos
, iov_iter_count(iter
), flags
, ops
,
1101 iter
, dax_iomap_actor
);
1108 iocb
->ki_pos
+= done
;
1109 return done
? done
: ret
;
1111 EXPORT_SYMBOL_GPL(dax_iomap_rw
);
1113 static int dax_fault_return(int error
)
1116 return VM_FAULT_NOPAGE
;
1117 if (error
== -ENOMEM
)
1118 return VM_FAULT_OOM
;
1119 return VM_FAULT_SIGBUS
;
1122 static int dax_iomap_pte_fault(struct vm_fault
*vmf
,
1123 const struct iomap_ops
*ops
)
1125 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1126 struct inode
*inode
= mapping
->host
;
1127 unsigned long vaddr
= vmf
->address
;
1128 loff_t pos
= (loff_t
)vmf
->pgoff
<< PAGE_SHIFT
;
1130 struct iomap iomap
= { 0 };
1131 unsigned flags
= IOMAP_FAULT
;
1132 int error
, major
= 0;
1137 * Check whether offset isn't beyond end of file now. Caller is supposed
1138 * to hold locks serializing us with truncate / punch hole so this is
1141 if (pos
>= i_size_read(inode
))
1142 return VM_FAULT_SIGBUS
;
1144 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && !vmf
->cow_page
)
1145 flags
|= IOMAP_WRITE
;
1148 * Note that we don't bother to use iomap_apply here: DAX required
1149 * the file system block size to be equal the page size, which means
1150 * that we never have to deal with more than a single extent here.
1152 error
= ops
->iomap_begin(inode
, pos
, PAGE_SIZE
, flags
, &iomap
);
1154 return dax_fault_return(error
);
1155 if (WARN_ON_ONCE(iomap
.offset
+ iomap
.length
< pos
+ PAGE_SIZE
)) {
1156 vmf_ret
= dax_fault_return(-EIO
); /* fs corruption? */
1160 entry
= grab_mapping_entry(mapping
, vmf
->pgoff
, 0);
1161 if (IS_ERR(entry
)) {
1162 vmf_ret
= dax_fault_return(PTR_ERR(entry
));
1166 sector
= dax_iomap_sector(&iomap
, pos
);
1168 if (vmf
->cow_page
) {
1169 switch (iomap
.type
) {
1171 case IOMAP_UNWRITTEN
:
1172 clear_user_highpage(vmf
->cow_page
, vaddr
);
1175 error
= copy_user_dax(iomap
.bdev
, sector
, PAGE_SIZE
,
1176 vmf
->cow_page
, vaddr
);
1185 goto error_unlock_entry
;
1187 __SetPageUptodate(vmf
->cow_page
);
1188 vmf_ret
= finish_fault(vmf
);
1190 vmf_ret
= VM_FAULT_DONE_COW
;
1194 switch (iomap
.type
) {
1196 if (iomap
.flags
& IOMAP_F_NEW
) {
1197 count_vm_event(PGMAJFAULT
);
1198 mem_cgroup_count_vm_event(vmf
->vma
->vm_mm
, PGMAJFAULT
);
1199 major
= VM_FAULT_MAJOR
;
1201 error
= dax_insert_mapping(mapping
, iomap
.bdev
, sector
,
1202 PAGE_SIZE
, &entry
, vmf
->vma
, vmf
);
1203 /* -EBUSY is fine, somebody else faulted on the same PTE */
1204 if (error
== -EBUSY
)
1207 case IOMAP_UNWRITTEN
:
1209 if (!(vmf
->flags
& FAULT_FLAG_WRITE
)) {
1210 vmf_ret
= dax_load_hole(mapping
, &entry
, vmf
);
1221 vmf_ret
= dax_fault_return(error
) | major
;
1223 put_locked_mapping_entry(mapping
, vmf
->pgoff
, entry
);
1225 if (ops
->iomap_end
) {
1226 int copied
= PAGE_SIZE
;
1228 if (vmf_ret
& VM_FAULT_ERROR
)
1231 * The fault is done by now and there's no way back (other
1232 * thread may be already happily using PTE we have installed).
1233 * Just ignore error from ->iomap_end since we cannot do much
1236 ops
->iomap_end(inode
, pos
, PAGE_SIZE
, copied
, flags
, &iomap
);
1241 #ifdef CONFIG_FS_DAX_PMD
1243 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
1244 * more often than one might expect in the below functions.
1246 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
1248 static int dax_pmd_insert_mapping(struct vm_fault
*vmf
, struct iomap
*iomap
,
1249 loff_t pos
, void **entryp
)
1251 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1252 struct block_device
*bdev
= iomap
->bdev
;
1253 struct inode
*inode
= mapping
->host
;
1254 struct blk_dax_ctl dax
= {
1255 .sector
= dax_iomap_sector(iomap
, pos
),
1258 long length
= dax_map_atomic(bdev
, &dax
);
1261 if (length
< 0) /* dax_map_atomic() failed */
1263 if (length
< PMD_SIZE
)
1264 goto unmap_fallback
;
1265 if (pfn_t_to_pfn(dax
.pfn
) & PG_PMD_COLOUR
)
1266 goto unmap_fallback
;
1267 if (!pfn_t_devmap(dax
.pfn
))
1268 goto unmap_fallback
;
1270 dax_unmap_atomic(bdev
, &dax
);
1272 ret
= dax_insert_mapping_entry(mapping
, vmf
, *entryp
, dax
.sector
,
1278 trace_dax_pmd_insert_mapping(inode
, vmf
, length
, dax
.pfn
, ret
);
1279 return vmf_insert_pfn_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
,
1280 dax
.pfn
, vmf
->flags
& FAULT_FLAG_WRITE
);
1283 dax_unmap_atomic(bdev
, &dax
);
1285 trace_dax_pmd_insert_mapping_fallback(inode
, vmf
, length
,
1287 return VM_FAULT_FALLBACK
;
1290 static int dax_pmd_load_hole(struct vm_fault
*vmf
, struct iomap
*iomap
,
1293 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1294 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1295 struct inode
*inode
= mapping
->host
;
1296 struct page
*zero_page
;
1301 zero_page
= mm_get_huge_zero_page(vmf
->vma
->vm_mm
);
1303 if (unlikely(!zero_page
))
1306 ret
= dax_insert_mapping_entry(mapping
, vmf
, *entryp
, 0,
1307 RADIX_DAX_PMD
| RADIX_DAX_HZP
);
1312 ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1313 if (!pmd_none(*(vmf
->pmd
))) {
1318 pmd_entry
= mk_pmd(zero_page
, vmf
->vma
->vm_page_prot
);
1319 pmd_entry
= pmd_mkhuge(pmd_entry
);
1320 set_pmd_at(vmf
->vma
->vm_mm
, pmd_addr
, vmf
->pmd
, pmd_entry
);
1322 trace_dax_pmd_load_hole(inode
, vmf
, zero_page
, ret
);
1323 return VM_FAULT_NOPAGE
;
1326 trace_dax_pmd_load_hole_fallback(inode
, vmf
, zero_page
, ret
);
1327 return VM_FAULT_FALLBACK
;
1330 static int dax_iomap_pmd_fault(struct vm_fault
*vmf
,
1331 const struct iomap_ops
*ops
)
1333 struct vm_area_struct
*vma
= vmf
->vma
;
1334 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1335 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1336 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1337 unsigned int iomap_flags
= (write
? IOMAP_WRITE
: 0) | IOMAP_FAULT
;
1338 struct inode
*inode
= mapping
->host
;
1339 int result
= VM_FAULT_FALLBACK
;
1340 struct iomap iomap
= { 0 };
1341 pgoff_t max_pgoff
, pgoff
;
1347 * Check whether offset isn't beyond end of file now. Caller is
1348 * supposed to hold locks serializing us with truncate / punch hole so
1349 * this is a reliable test.
1351 pgoff
= linear_page_index(vma
, pmd_addr
);
1352 max_pgoff
= (i_size_read(inode
) - 1) >> PAGE_SHIFT
;
1354 trace_dax_pmd_fault(inode
, vmf
, max_pgoff
, 0);
1356 /* Fall back to PTEs if we're going to COW */
1357 if (write
&& !(vma
->vm_flags
& VM_SHARED
))
1360 /* If the PMD would extend outside the VMA */
1361 if (pmd_addr
< vma
->vm_start
)
1363 if ((pmd_addr
+ PMD_SIZE
) > vma
->vm_end
)
1366 if (pgoff
> max_pgoff
) {
1367 result
= VM_FAULT_SIGBUS
;
1371 /* If the PMD would extend beyond the file size */
1372 if ((pgoff
| PG_PMD_COLOUR
) > max_pgoff
)
1376 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1377 * setting up a mapping, so really we're using iomap_begin() as a way
1378 * to look up our filesystem block.
1380 pos
= (loff_t
)pgoff
<< PAGE_SHIFT
;
1381 error
= ops
->iomap_begin(inode
, pos
, PMD_SIZE
, iomap_flags
, &iomap
);
1385 if (iomap
.offset
+ iomap
.length
< pos
+ PMD_SIZE
)
1389 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1390 * PMD or a HZP entry. If it can't (because a 4k page is already in
1391 * the tree, for instance), it will return -EEXIST and we just fall
1392 * back to 4k entries.
1394 entry
= grab_mapping_entry(mapping
, pgoff
, RADIX_DAX_PMD
);
1398 switch (iomap
.type
) {
1400 result
= dax_pmd_insert_mapping(vmf
, &iomap
, pos
, &entry
);
1402 case IOMAP_UNWRITTEN
:
1404 if (WARN_ON_ONCE(write
))
1406 result
= dax_pmd_load_hole(vmf
, &iomap
, &entry
);
1414 put_locked_mapping_entry(mapping
, pgoff
, entry
);
1416 if (ops
->iomap_end
) {
1417 int copied
= PMD_SIZE
;
1419 if (result
== VM_FAULT_FALLBACK
)
1422 * The fault is done by now and there's no way back (other
1423 * thread may be already happily using PMD we have installed).
1424 * Just ignore error from ->iomap_end since we cannot do much
1427 ops
->iomap_end(inode
, pos
, PMD_SIZE
, copied
, iomap_flags
,
1431 if (result
== VM_FAULT_FALLBACK
) {
1432 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1433 count_vm_event(THP_FAULT_FALLBACK
);
1436 trace_dax_pmd_fault_done(inode
, vmf
, max_pgoff
, result
);
1440 static int dax_iomap_pmd_fault(struct vm_fault
*vmf
,
1441 const struct iomap_ops
*ops
)
1443 return VM_FAULT_FALLBACK
;
1445 #endif /* CONFIG_FS_DAX_PMD */
1448 * dax_iomap_fault - handle a page fault on a DAX file
1449 * @vmf: The description of the fault
1450 * @ops: iomap ops passed from the file system
1452 * When a page fault occurs, filesystems may call this helper in
1453 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1454 * has done all the necessary locking for page fault to proceed
1457 int dax_iomap_fault(struct vm_fault
*vmf
, enum page_entry_size pe_size
,
1458 const struct iomap_ops
*ops
)
1462 return dax_iomap_pte_fault(vmf
, ops
);
1464 return dax_iomap_pmd_fault(vmf
, ops
);
1466 return VM_FAULT_FALLBACK
;
1469 EXPORT_SYMBOL_GPL(dax_iomap_fault
);