Merge 4.11-rc4 into tty-next
[linux/fpc-iii.git] / fs / exec.c
blob65145a3df065192345c66ebc311d464fe09a6f29
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
70 #include <trace/events/task.h>
71 #include "internal.h"
73 #include <trace/events/sched.h>
75 int suid_dumpable = 0;
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
82 BUG_ON(!fmt);
83 if (WARN_ON(!fmt->load_binary))
84 return;
85 write_lock(&binfmt_lock);
86 insert ? list_add(&fmt->lh, &formats) :
87 list_add_tail(&fmt->lh, &formats);
88 write_unlock(&binfmt_lock);
91 EXPORT_SYMBOL(__register_binfmt);
93 void unregister_binfmt(struct linux_binfmt * fmt)
95 write_lock(&binfmt_lock);
96 list_del(&fmt->lh);
97 write_unlock(&binfmt_lock);
100 EXPORT_SYMBOL(unregister_binfmt);
102 static inline void put_binfmt(struct linux_binfmt * fmt)
104 module_put(fmt->module);
107 bool path_noexec(const struct path *path)
109 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 #ifdef CONFIG_USELIB
115 * Note that a shared library must be both readable and executable due to
116 * security reasons.
118 * Also note that we take the address to load from from the file itself.
120 SYSCALL_DEFINE1(uselib, const char __user *, library)
122 struct linux_binfmt *fmt;
123 struct file *file;
124 struct filename *tmp = getname(library);
125 int error = PTR_ERR(tmp);
126 static const struct open_flags uselib_flags = {
127 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128 .acc_mode = MAY_READ | MAY_EXEC,
129 .intent = LOOKUP_OPEN,
130 .lookup_flags = LOOKUP_FOLLOW,
133 if (IS_ERR(tmp))
134 goto out;
136 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137 putname(tmp);
138 error = PTR_ERR(file);
139 if (IS_ERR(file))
140 goto out;
142 error = -EINVAL;
143 if (!S_ISREG(file_inode(file)->i_mode))
144 goto exit;
146 error = -EACCES;
147 if (path_noexec(&file->f_path))
148 goto exit;
150 fsnotify_open(file);
152 error = -ENOEXEC;
154 read_lock(&binfmt_lock);
155 list_for_each_entry(fmt, &formats, lh) {
156 if (!fmt->load_shlib)
157 continue;
158 if (!try_module_get(fmt->module))
159 continue;
160 read_unlock(&binfmt_lock);
161 error = fmt->load_shlib(file);
162 read_lock(&binfmt_lock);
163 put_binfmt(fmt);
164 if (error != -ENOEXEC)
165 break;
167 read_unlock(&binfmt_lock);
168 exit:
169 fput(file);
170 out:
171 return error;
173 #endif /* #ifdef CONFIG_USELIB */
175 #ifdef CONFIG_MMU
177 * The nascent bprm->mm is not visible until exec_mmap() but it can
178 * use a lot of memory, account these pages in current->mm temporary
179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180 * change the counter back via acct_arg_size(0).
182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
184 struct mm_struct *mm = current->mm;
185 long diff = (long)(pages - bprm->vma_pages);
187 if (!mm || !diff)
188 return;
190 bprm->vma_pages = pages;
191 add_mm_counter(mm, MM_ANONPAGES, diff);
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195 int write)
197 struct page *page;
198 int ret;
199 unsigned int gup_flags = FOLL_FORCE;
201 #ifdef CONFIG_STACK_GROWSUP
202 if (write) {
203 ret = expand_downwards(bprm->vma, pos);
204 if (ret < 0)
205 return NULL;
207 #endif
209 if (write)
210 gup_flags |= FOLL_WRITE;
213 * We are doing an exec(). 'current' is the process
214 * doing the exec and bprm->mm is the new process's mm.
216 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217 &page, NULL, NULL);
218 if (ret <= 0)
219 return NULL;
221 if (write) {
222 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
223 struct rlimit *rlim;
225 acct_arg_size(bprm, size / PAGE_SIZE);
228 * We've historically supported up to 32 pages (ARG_MAX)
229 * of argument strings even with small stacks
231 if (size <= ARG_MAX)
232 return page;
235 * Limit to 1/4-th the stack size for the argv+env strings.
236 * This ensures that:
237 * - the remaining binfmt code will not run out of stack space,
238 * - the program will have a reasonable amount of stack left
239 * to work from.
241 rlim = current->signal->rlim;
242 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
243 put_page(page);
244 return NULL;
248 return page;
251 static void put_arg_page(struct page *page)
253 put_page(page);
256 static void free_arg_pages(struct linux_binprm *bprm)
260 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
261 struct page *page)
263 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
266 static int __bprm_mm_init(struct linux_binprm *bprm)
268 int err;
269 struct vm_area_struct *vma = NULL;
270 struct mm_struct *mm = bprm->mm;
272 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
273 if (!vma)
274 return -ENOMEM;
276 if (down_write_killable(&mm->mmap_sem)) {
277 err = -EINTR;
278 goto err_free;
280 vma->vm_mm = mm;
283 * Place the stack at the largest stack address the architecture
284 * supports. Later, we'll move this to an appropriate place. We don't
285 * use STACK_TOP because that can depend on attributes which aren't
286 * configured yet.
288 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
289 vma->vm_end = STACK_TOP_MAX;
290 vma->vm_start = vma->vm_end - PAGE_SIZE;
291 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
292 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
293 INIT_LIST_HEAD(&vma->anon_vma_chain);
295 err = insert_vm_struct(mm, vma);
296 if (err)
297 goto err;
299 mm->stack_vm = mm->total_vm = 1;
300 arch_bprm_mm_init(mm, vma);
301 up_write(&mm->mmap_sem);
302 bprm->p = vma->vm_end - sizeof(void *);
303 return 0;
304 err:
305 up_write(&mm->mmap_sem);
306 err_free:
307 bprm->vma = NULL;
308 kmem_cache_free(vm_area_cachep, vma);
309 return err;
312 static bool valid_arg_len(struct linux_binprm *bprm, long len)
314 return len <= MAX_ARG_STRLEN;
317 #else
319 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
323 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
324 int write)
326 struct page *page;
328 page = bprm->page[pos / PAGE_SIZE];
329 if (!page && write) {
330 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
331 if (!page)
332 return NULL;
333 bprm->page[pos / PAGE_SIZE] = page;
336 return page;
339 static void put_arg_page(struct page *page)
343 static void free_arg_page(struct linux_binprm *bprm, int i)
345 if (bprm->page[i]) {
346 __free_page(bprm->page[i]);
347 bprm->page[i] = NULL;
351 static void free_arg_pages(struct linux_binprm *bprm)
353 int i;
355 for (i = 0; i < MAX_ARG_PAGES; i++)
356 free_arg_page(bprm, i);
359 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
360 struct page *page)
364 static int __bprm_mm_init(struct linux_binprm *bprm)
366 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
367 return 0;
370 static bool valid_arg_len(struct linux_binprm *bprm, long len)
372 return len <= bprm->p;
375 #endif /* CONFIG_MMU */
378 * Create a new mm_struct and populate it with a temporary stack
379 * vm_area_struct. We don't have enough context at this point to set the stack
380 * flags, permissions, and offset, so we use temporary values. We'll update
381 * them later in setup_arg_pages().
383 static int bprm_mm_init(struct linux_binprm *bprm)
385 int err;
386 struct mm_struct *mm = NULL;
388 bprm->mm = mm = mm_alloc();
389 err = -ENOMEM;
390 if (!mm)
391 goto err;
393 err = __bprm_mm_init(bprm);
394 if (err)
395 goto err;
397 return 0;
399 err:
400 if (mm) {
401 bprm->mm = NULL;
402 mmdrop(mm);
405 return err;
408 struct user_arg_ptr {
409 #ifdef CONFIG_COMPAT
410 bool is_compat;
411 #endif
412 union {
413 const char __user *const __user *native;
414 #ifdef CONFIG_COMPAT
415 const compat_uptr_t __user *compat;
416 #endif
417 } ptr;
420 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
422 const char __user *native;
424 #ifdef CONFIG_COMPAT
425 if (unlikely(argv.is_compat)) {
426 compat_uptr_t compat;
428 if (get_user(compat, argv.ptr.compat + nr))
429 return ERR_PTR(-EFAULT);
431 return compat_ptr(compat);
433 #endif
435 if (get_user(native, argv.ptr.native + nr))
436 return ERR_PTR(-EFAULT);
438 return native;
442 * count() counts the number of strings in array ARGV.
444 static int count(struct user_arg_ptr argv, int max)
446 int i = 0;
448 if (argv.ptr.native != NULL) {
449 for (;;) {
450 const char __user *p = get_user_arg_ptr(argv, i);
452 if (!p)
453 break;
455 if (IS_ERR(p))
456 return -EFAULT;
458 if (i >= max)
459 return -E2BIG;
460 ++i;
462 if (fatal_signal_pending(current))
463 return -ERESTARTNOHAND;
464 cond_resched();
467 return i;
471 * 'copy_strings()' copies argument/environment strings from the old
472 * processes's memory to the new process's stack. The call to get_user_pages()
473 * ensures the destination page is created and not swapped out.
475 static int copy_strings(int argc, struct user_arg_ptr argv,
476 struct linux_binprm *bprm)
478 struct page *kmapped_page = NULL;
479 char *kaddr = NULL;
480 unsigned long kpos = 0;
481 int ret;
483 while (argc-- > 0) {
484 const char __user *str;
485 int len;
486 unsigned long pos;
488 ret = -EFAULT;
489 str = get_user_arg_ptr(argv, argc);
490 if (IS_ERR(str))
491 goto out;
493 len = strnlen_user(str, MAX_ARG_STRLEN);
494 if (!len)
495 goto out;
497 ret = -E2BIG;
498 if (!valid_arg_len(bprm, len))
499 goto out;
501 /* We're going to work our way backwords. */
502 pos = bprm->p;
503 str += len;
504 bprm->p -= len;
506 while (len > 0) {
507 int offset, bytes_to_copy;
509 if (fatal_signal_pending(current)) {
510 ret = -ERESTARTNOHAND;
511 goto out;
513 cond_resched();
515 offset = pos % PAGE_SIZE;
516 if (offset == 0)
517 offset = PAGE_SIZE;
519 bytes_to_copy = offset;
520 if (bytes_to_copy > len)
521 bytes_to_copy = len;
523 offset -= bytes_to_copy;
524 pos -= bytes_to_copy;
525 str -= bytes_to_copy;
526 len -= bytes_to_copy;
528 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
529 struct page *page;
531 page = get_arg_page(bprm, pos, 1);
532 if (!page) {
533 ret = -E2BIG;
534 goto out;
537 if (kmapped_page) {
538 flush_kernel_dcache_page(kmapped_page);
539 kunmap(kmapped_page);
540 put_arg_page(kmapped_page);
542 kmapped_page = page;
543 kaddr = kmap(kmapped_page);
544 kpos = pos & PAGE_MASK;
545 flush_arg_page(bprm, kpos, kmapped_page);
547 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
548 ret = -EFAULT;
549 goto out;
553 ret = 0;
554 out:
555 if (kmapped_page) {
556 flush_kernel_dcache_page(kmapped_page);
557 kunmap(kmapped_page);
558 put_arg_page(kmapped_page);
560 return ret;
564 * Like copy_strings, but get argv and its values from kernel memory.
566 int copy_strings_kernel(int argc, const char *const *__argv,
567 struct linux_binprm *bprm)
569 int r;
570 mm_segment_t oldfs = get_fs();
571 struct user_arg_ptr argv = {
572 .ptr.native = (const char __user *const __user *)__argv,
575 set_fs(KERNEL_DS);
576 r = copy_strings(argc, argv, bprm);
577 set_fs(oldfs);
579 return r;
581 EXPORT_SYMBOL(copy_strings_kernel);
583 #ifdef CONFIG_MMU
586 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
587 * the binfmt code determines where the new stack should reside, we shift it to
588 * its final location. The process proceeds as follows:
590 * 1) Use shift to calculate the new vma endpoints.
591 * 2) Extend vma to cover both the old and new ranges. This ensures the
592 * arguments passed to subsequent functions are consistent.
593 * 3) Move vma's page tables to the new range.
594 * 4) Free up any cleared pgd range.
595 * 5) Shrink the vma to cover only the new range.
597 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
599 struct mm_struct *mm = vma->vm_mm;
600 unsigned long old_start = vma->vm_start;
601 unsigned long old_end = vma->vm_end;
602 unsigned long length = old_end - old_start;
603 unsigned long new_start = old_start - shift;
604 unsigned long new_end = old_end - shift;
605 struct mmu_gather tlb;
607 BUG_ON(new_start > new_end);
610 * ensure there are no vmas between where we want to go
611 * and where we are
613 if (vma != find_vma(mm, new_start))
614 return -EFAULT;
617 * cover the whole range: [new_start, old_end)
619 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
620 return -ENOMEM;
623 * move the page tables downwards, on failure we rely on
624 * process cleanup to remove whatever mess we made.
626 if (length != move_page_tables(vma, old_start,
627 vma, new_start, length, false))
628 return -ENOMEM;
630 lru_add_drain();
631 tlb_gather_mmu(&tlb, mm, old_start, old_end);
632 if (new_end > old_start) {
634 * when the old and new regions overlap clear from new_end.
636 free_pgd_range(&tlb, new_end, old_end, new_end,
637 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
638 } else {
640 * otherwise, clean from old_start; this is done to not touch
641 * the address space in [new_end, old_start) some architectures
642 * have constraints on va-space that make this illegal (IA64) -
643 * for the others its just a little faster.
645 free_pgd_range(&tlb, old_start, old_end, new_end,
646 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
648 tlb_finish_mmu(&tlb, old_start, old_end);
651 * Shrink the vma to just the new range. Always succeeds.
653 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
655 return 0;
659 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
660 * the stack is optionally relocated, and some extra space is added.
662 int setup_arg_pages(struct linux_binprm *bprm,
663 unsigned long stack_top,
664 int executable_stack)
666 unsigned long ret;
667 unsigned long stack_shift;
668 struct mm_struct *mm = current->mm;
669 struct vm_area_struct *vma = bprm->vma;
670 struct vm_area_struct *prev = NULL;
671 unsigned long vm_flags;
672 unsigned long stack_base;
673 unsigned long stack_size;
674 unsigned long stack_expand;
675 unsigned long rlim_stack;
677 #ifdef CONFIG_STACK_GROWSUP
678 /* Limit stack size */
679 stack_base = rlimit_max(RLIMIT_STACK);
680 if (stack_base > STACK_SIZE_MAX)
681 stack_base = STACK_SIZE_MAX;
683 /* Add space for stack randomization. */
684 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
686 /* Make sure we didn't let the argument array grow too large. */
687 if (vma->vm_end - vma->vm_start > stack_base)
688 return -ENOMEM;
690 stack_base = PAGE_ALIGN(stack_top - stack_base);
692 stack_shift = vma->vm_start - stack_base;
693 mm->arg_start = bprm->p - stack_shift;
694 bprm->p = vma->vm_end - stack_shift;
695 #else
696 stack_top = arch_align_stack(stack_top);
697 stack_top = PAGE_ALIGN(stack_top);
699 if (unlikely(stack_top < mmap_min_addr) ||
700 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
701 return -ENOMEM;
703 stack_shift = vma->vm_end - stack_top;
705 bprm->p -= stack_shift;
706 mm->arg_start = bprm->p;
707 #endif
709 if (bprm->loader)
710 bprm->loader -= stack_shift;
711 bprm->exec -= stack_shift;
713 if (down_write_killable(&mm->mmap_sem))
714 return -EINTR;
716 vm_flags = VM_STACK_FLAGS;
719 * Adjust stack execute permissions; explicitly enable for
720 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
721 * (arch default) otherwise.
723 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
724 vm_flags |= VM_EXEC;
725 else if (executable_stack == EXSTACK_DISABLE_X)
726 vm_flags &= ~VM_EXEC;
727 vm_flags |= mm->def_flags;
728 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
730 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
731 vm_flags);
732 if (ret)
733 goto out_unlock;
734 BUG_ON(prev != vma);
736 /* Move stack pages down in memory. */
737 if (stack_shift) {
738 ret = shift_arg_pages(vma, stack_shift);
739 if (ret)
740 goto out_unlock;
743 /* mprotect_fixup is overkill to remove the temporary stack flags */
744 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
746 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
747 stack_size = vma->vm_end - vma->vm_start;
749 * Align this down to a page boundary as expand_stack
750 * will align it up.
752 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
753 #ifdef CONFIG_STACK_GROWSUP
754 if (stack_size + stack_expand > rlim_stack)
755 stack_base = vma->vm_start + rlim_stack;
756 else
757 stack_base = vma->vm_end + stack_expand;
758 #else
759 if (stack_size + stack_expand > rlim_stack)
760 stack_base = vma->vm_end - rlim_stack;
761 else
762 stack_base = vma->vm_start - stack_expand;
763 #endif
764 current->mm->start_stack = bprm->p;
765 ret = expand_stack(vma, stack_base);
766 if (ret)
767 ret = -EFAULT;
769 out_unlock:
770 up_write(&mm->mmap_sem);
771 return ret;
773 EXPORT_SYMBOL(setup_arg_pages);
775 #else
778 * Transfer the program arguments and environment from the holding pages
779 * onto the stack. The provided stack pointer is adjusted accordingly.
781 int transfer_args_to_stack(struct linux_binprm *bprm,
782 unsigned long *sp_location)
784 unsigned long index, stop, sp;
785 int ret = 0;
787 stop = bprm->p >> PAGE_SHIFT;
788 sp = *sp_location;
790 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
791 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
792 char *src = kmap(bprm->page[index]) + offset;
793 sp -= PAGE_SIZE - offset;
794 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
795 ret = -EFAULT;
796 kunmap(bprm->page[index]);
797 if (ret)
798 goto out;
801 *sp_location = sp;
803 out:
804 return ret;
806 EXPORT_SYMBOL(transfer_args_to_stack);
808 #endif /* CONFIG_MMU */
810 static struct file *do_open_execat(int fd, struct filename *name, int flags)
812 struct file *file;
813 int err;
814 struct open_flags open_exec_flags = {
815 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
816 .acc_mode = MAY_EXEC,
817 .intent = LOOKUP_OPEN,
818 .lookup_flags = LOOKUP_FOLLOW,
821 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
822 return ERR_PTR(-EINVAL);
823 if (flags & AT_SYMLINK_NOFOLLOW)
824 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
825 if (flags & AT_EMPTY_PATH)
826 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
828 file = do_filp_open(fd, name, &open_exec_flags);
829 if (IS_ERR(file))
830 goto out;
832 err = -EACCES;
833 if (!S_ISREG(file_inode(file)->i_mode))
834 goto exit;
836 if (path_noexec(&file->f_path))
837 goto exit;
839 err = deny_write_access(file);
840 if (err)
841 goto exit;
843 if (name->name[0] != '\0')
844 fsnotify_open(file);
846 out:
847 return file;
849 exit:
850 fput(file);
851 return ERR_PTR(err);
854 struct file *open_exec(const char *name)
856 struct filename *filename = getname_kernel(name);
857 struct file *f = ERR_CAST(filename);
859 if (!IS_ERR(filename)) {
860 f = do_open_execat(AT_FDCWD, filename, 0);
861 putname(filename);
863 return f;
865 EXPORT_SYMBOL(open_exec);
867 int kernel_read(struct file *file, loff_t offset,
868 char *addr, unsigned long count)
870 mm_segment_t old_fs;
871 loff_t pos = offset;
872 int result;
874 old_fs = get_fs();
875 set_fs(get_ds());
876 /* The cast to a user pointer is valid due to the set_fs() */
877 result = vfs_read(file, (void __user *)addr, count, &pos);
878 set_fs(old_fs);
879 return result;
882 EXPORT_SYMBOL(kernel_read);
884 int kernel_read_file(struct file *file, void **buf, loff_t *size,
885 loff_t max_size, enum kernel_read_file_id id)
887 loff_t i_size, pos;
888 ssize_t bytes = 0;
889 int ret;
891 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
892 return -EINVAL;
894 ret = security_kernel_read_file(file, id);
895 if (ret)
896 return ret;
898 ret = deny_write_access(file);
899 if (ret)
900 return ret;
902 i_size = i_size_read(file_inode(file));
903 if (max_size > 0 && i_size > max_size) {
904 ret = -EFBIG;
905 goto out;
907 if (i_size <= 0) {
908 ret = -EINVAL;
909 goto out;
912 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
913 *buf = vmalloc(i_size);
914 if (!*buf) {
915 ret = -ENOMEM;
916 goto out;
919 pos = 0;
920 while (pos < i_size) {
921 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
922 i_size - pos);
923 if (bytes < 0) {
924 ret = bytes;
925 goto out;
928 if (bytes == 0)
929 break;
930 pos += bytes;
933 if (pos != i_size) {
934 ret = -EIO;
935 goto out_free;
938 ret = security_kernel_post_read_file(file, *buf, i_size, id);
939 if (!ret)
940 *size = pos;
942 out_free:
943 if (ret < 0) {
944 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
945 vfree(*buf);
946 *buf = NULL;
950 out:
951 allow_write_access(file);
952 return ret;
954 EXPORT_SYMBOL_GPL(kernel_read_file);
956 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
957 loff_t max_size, enum kernel_read_file_id id)
959 struct file *file;
960 int ret;
962 if (!path || !*path)
963 return -EINVAL;
965 file = filp_open(path, O_RDONLY, 0);
966 if (IS_ERR(file))
967 return PTR_ERR(file);
969 ret = kernel_read_file(file, buf, size, max_size, id);
970 fput(file);
971 return ret;
973 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
975 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
976 enum kernel_read_file_id id)
978 struct fd f = fdget(fd);
979 int ret = -EBADF;
981 if (!f.file)
982 goto out;
984 ret = kernel_read_file(f.file, buf, size, max_size, id);
985 out:
986 fdput(f);
987 return ret;
989 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
991 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
993 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
994 if (res > 0)
995 flush_icache_range(addr, addr + len);
996 return res;
998 EXPORT_SYMBOL(read_code);
1000 static int exec_mmap(struct mm_struct *mm)
1002 struct task_struct *tsk;
1003 struct mm_struct *old_mm, *active_mm;
1005 /* Notify parent that we're no longer interested in the old VM */
1006 tsk = current;
1007 old_mm = current->mm;
1008 mm_release(tsk, old_mm);
1010 if (old_mm) {
1011 sync_mm_rss(old_mm);
1013 * Make sure that if there is a core dump in progress
1014 * for the old mm, we get out and die instead of going
1015 * through with the exec. We must hold mmap_sem around
1016 * checking core_state and changing tsk->mm.
1018 down_read(&old_mm->mmap_sem);
1019 if (unlikely(old_mm->core_state)) {
1020 up_read(&old_mm->mmap_sem);
1021 return -EINTR;
1024 task_lock(tsk);
1025 active_mm = tsk->active_mm;
1026 tsk->mm = mm;
1027 tsk->active_mm = mm;
1028 activate_mm(active_mm, mm);
1029 tsk->mm->vmacache_seqnum = 0;
1030 vmacache_flush(tsk);
1031 task_unlock(tsk);
1032 if (old_mm) {
1033 up_read(&old_mm->mmap_sem);
1034 BUG_ON(active_mm != old_mm);
1035 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1036 mm_update_next_owner(old_mm);
1037 mmput(old_mm);
1038 return 0;
1040 mmdrop(active_mm);
1041 return 0;
1045 * This function makes sure the current process has its own signal table,
1046 * so that flush_signal_handlers can later reset the handlers without
1047 * disturbing other processes. (Other processes might share the signal
1048 * table via the CLONE_SIGHAND option to clone().)
1050 static int de_thread(struct task_struct *tsk)
1052 struct signal_struct *sig = tsk->signal;
1053 struct sighand_struct *oldsighand = tsk->sighand;
1054 spinlock_t *lock = &oldsighand->siglock;
1056 if (thread_group_empty(tsk))
1057 goto no_thread_group;
1060 * Kill all other threads in the thread group.
1062 spin_lock_irq(lock);
1063 if (signal_group_exit(sig)) {
1065 * Another group action in progress, just
1066 * return so that the signal is processed.
1068 spin_unlock_irq(lock);
1069 return -EAGAIN;
1072 sig->group_exit_task = tsk;
1073 sig->notify_count = zap_other_threads(tsk);
1074 if (!thread_group_leader(tsk))
1075 sig->notify_count--;
1077 while (sig->notify_count) {
1078 __set_current_state(TASK_KILLABLE);
1079 spin_unlock_irq(lock);
1080 schedule();
1081 if (unlikely(__fatal_signal_pending(tsk)))
1082 goto killed;
1083 spin_lock_irq(lock);
1085 spin_unlock_irq(lock);
1088 * At this point all other threads have exited, all we have to
1089 * do is to wait for the thread group leader to become inactive,
1090 * and to assume its PID:
1092 if (!thread_group_leader(tsk)) {
1093 struct task_struct *leader = tsk->group_leader;
1095 for (;;) {
1096 cgroup_threadgroup_change_begin(tsk);
1097 write_lock_irq(&tasklist_lock);
1099 * Do this under tasklist_lock to ensure that
1100 * exit_notify() can't miss ->group_exit_task
1102 sig->notify_count = -1;
1103 if (likely(leader->exit_state))
1104 break;
1105 __set_current_state(TASK_KILLABLE);
1106 write_unlock_irq(&tasklist_lock);
1107 cgroup_threadgroup_change_end(tsk);
1108 schedule();
1109 if (unlikely(__fatal_signal_pending(tsk)))
1110 goto killed;
1114 * The only record we have of the real-time age of a
1115 * process, regardless of execs it's done, is start_time.
1116 * All the past CPU time is accumulated in signal_struct
1117 * from sister threads now dead. But in this non-leader
1118 * exec, nothing survives from the original leader thread,
1119 * whose birth marks the true age of this process now.
1120 * When we take on its identity by switching to its PID, we
1121 * also take its birthdate (always earlier than our own).
1123 tsk->start_time = leader->start_time;
1124 tsk->real_start_time = leader->real_start_time;
1126 BUG_ON(!same_thread_group(leader, tsk));
1127 BUG_ON(has_group_leader_pid(tsk));
1129 * An exec() starts a new thread group with the
1130 * TGID of the previous thread group. Rehash the
1131 * two threads with a switched PID, and release
1132 * the former thread group leader:
1135 /* Become a process group leader with the old leader's pid.
1136 * The old leader becomes a thread of the this thread group.
1137 * Note: The old leader also uses this pid until release_task
1138 * is called. Odd but simple and correct.
1140 tsk->pid = leader->pid;
1141 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1142 transfer_pid(leader, tsk, PIDTYPE_PGID);
1143 transfer_pid(leader, tsk, PIDTYPE_SID);
1145 list_replace_rcu(&leader->tasks, &tsk->tasks);
1146 list_replace_init(&leader->sibling, &tsk->sibling);
1148 tsk->group_leader = tsk;
1149 leader->group_leader = tsk;
1151 tsk->exit_signal = SIGCHLD;
1152 leader->exit_signal = -1;
1154 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1155 leader->exit_state = EXIT_DEAD;
1158 * We are going to release_task()->ptrace_unlink() silently,
1159 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1160 * the tracer wont't block again waiting for this thread.
1162 if (unlikely(leader->ptrace))
1163 __wake_up_parent(leader, leader->parent);
1164 write_unlock_irq(&tasklist_lock);
1165 cgroup_threadgroup_change_end(tsk);
1167 release_task(leader);
1170 sig->group_exit_task = NULL;
1171 sig->notify_count = 0;
1173 no_thread_group:
1174 /* we have changed execution domain */
1175 tsk->exit_signal = SIGCHLD;
1177 #ifdef CONFIG_POSIX_TIMERS
1178 exit_itimers(sig);
1179 flush_itimer_signals();
1180 #endif
1182 if (atomic_read(&oldsighand->count) != 1) {
1183 struct sighand_struct *newsighand;
1185 * This ->sighand is shared with the CLONE_SIGHAND
1186 * but not CLONE_THREAD task, switch to the new one.
1188 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1189 if (!newsighand)
1190 return -ENOMEM;
1192 atomic_set(&newsighand->count, 1);
1193 memcpy(newsighand->action, oldsighand->action,
1194 sizeof(newsighand->action));
1196 write_lock_irq(&tasklist_lock);
1197 spin_lock(&oldsighand->siglock);
1198 rcu_assign_pointer(tsk->sighand, newsighand);
1199 spin_unlock(&oldsighand->siglock);
1200 write_unlock_irq(&tasklist_lock);
1202 __cleanup_sighand(oldsighand);
1205 BUG_ON(!thread_group_leader(tsk));
1206 return 0;
1208 killed:
1209 /* protects against exit_notify() and __exit_signal() */
1210 read_lock(&tasklist_lock);
1211 sig->group_exit_task = NULL;
1212 sig->notify_count = 0;
1213 read_unlock(&tasklist_lock);
1214 return -EAGAIN;
1217 char *get_task_comm(char *buf, struct task_struct *tsk)
1219 /* buf must be at least sizeof(tsk->comm) in size */
1220 task_lock(tsk);
1221 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1222 task_unlock(tsk);
1223 return buf;
1225 EXPORT_SYMBOL_GPL(get_task_comm);
1228 * These functions flushes out all traces of the currently running executable
1229 * so that a new one can be started
1232 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1234 task_lock(tsk);
1235 trace_task_rename(tsk, buf);
1236 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1237 task_unlock(tsk);
1238 perf_event_comm(tsk, exec);
1241 int flush_old_exec(struct linux_binprm * bprm)
1243 int retval;
1246 * Make sure we have a private signal table and that
1247 * we are unassociated from the previous thread group.
1249 retval = de_thread(current);
1250 if (retval)
1251 goto out;
1254 * Must be called _before_ exec_mmap() as bprm->mm is
1255 * not visibile until then. This also enables the update
1256 * to be lockless.
1258 set_mm_exe_file(bprm->mm, bprm->file);
1261 * Release all of the old mmap stuff
1263 acct_arg_size(bprm, 0);
1264 retval = exec_mmap(bprm->mm);
1265 if (retval)
1266 goto out;
1268 bprm->mm = NULL; /* We're using it now */
1270 set_fs(USER_DS);
1271 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1272 PF_NOFREEZE | PF_NO_SETAFFINITY);
1273 flush_thread();
1274 current->personality &= ~bprm->per_clear;
1277 * We have to apply CLOEXEC before we change whether the process is
1278 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1279 * trying to access the should-be-closed file descriptors of a process
1280 * undergoing exec(2).
1282 do_close_on_exec(current->files);
1283 return 0;
1285 out:
1286 return retval;
1288 EXPORT_SYMBOL(flush_old_exec);
1290 void would_dump(struct linux_binprm *bprm, struct file *file)
1292 struct inode *inode = file_inode(file);
1293 if (inode_permission(inode, MAY_READ) < 0) {
1294 struct user_namespace *old, *user_ns;
1295 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1297 /* Ensure mm->user_ns contains the executable */
1298 user_ns = old = bprm->mm->user_ns;
1299 while ((user_ns != &init_user_ns) &&
1300 !privileged_wrt_inode_uidgid(user_ns, inode))
1301 user_ns = user_ns->parent;
1303 if (old != user_ns) {
1304 bprm->mm->user_ns = get_user_ns(user_ns);
1305 put_user_ns(old);
1309 EXPORT_SYMBOL(would_dump);
1311 void setup_new_exec(struct linux_binprm * bprm)
1313 arch_pick_mmap_layout(current->mm);
1315 /* This is the point of no return */
1316 current->sas_ss_sp = current->sas_ss_size = 0;
1318 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1319 set_dumpable(current->mm, SUID_DUMP_USER);
1320 else
1321 set_dumpable(current->mm, suid_dumpable);
1323 perf_event_exec();
1324 __set_task_comm(current, kbasename(bprm->filename), true);
1326 /* Set the new mm task size. We have to do that late because it may
1327 * depend on TIF_32BIT which is only updated in flush_thread() on
1328 * some architectures like powerpc
1330 current->mm->task_size = TASK_SIZE;
1332 /* install the new credentials */
1333 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1334 !gid_eq(bprm->cred->gid, current_egid())) {
1335 current->pdeath_signal = 0;
1336 } else {
1337 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1338 set_dumpable(current->mm, suid_dumpable);
1341 /* An exec changes our domain. We are no longer part of the thread
1342 group */
1343 current->self_exec_id++;
1344 flush_signal_handlers(current, 0);
1346 EXPORT_SYMBOL(setup_new_exec);
1349 * Prepare credentials and lock ->cred_guard_mutex.
1350 * install_exec_creds() commits the new creds and drops the lock.
1351 * Or, if exec fails before, free_bprm() should release ->cred and
1352 * and unlock.
1354 int prepare_bprm_creds(struct linux_binprm *bprm)
1356 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1357 return -ERESTARTNOINTR;
1359 bprm->cred = prepare_exec_creds();
1360 if (likely(bprm->cred))
1361 return 0;
1363 mutex_unlock(&current->signal->cred_guard_mutex);
1364 return -ENOMEM;
1367 static void free_bprm(struct linux_binprm *bprm)
1369 free_arg_pages(bprm);
1370 if (bprm->cred) {
1371 mutex_unlock(&current->signal->cred_guard_mutex);
1372 abort_creds(bprm->cred);
1374 if (bprm->file) {
1375 allow_write_access(bprm->file);
1376 fput(bprm->file);
1378 /* If a binfmt changed the interp, free it. */
1379 if (bprm->interp != bprm->filename)
1380 kfree(bprm->interp);
1381 kfree(bprm);
1384 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1386 /* If a binfmt changed the interp, free it first. */
1387 if (bprm->interp != bprm->filename)
1388 kfree(bprm->interp);
1389 bprm->interp = kstrdup(interp, GFP_KERNEL);
1390 if (!bprm->interp)
1391 return -ENOMEM;
1392 return 0;
1394 EXPORT_SYMBOL(bprm_change_interp);
1397 * install the new credentials for this executable
1399 void install_exec_creds(struct linux_binprm *bprm)
1401 security_bprm_committing_creds(bprm);
1403 commit_creds(bprm->cred);
1404 bprm->cred = NULL;
1407 * Disable monitoring for regular users
1408 * when executing setuid binaries. Must
1409 * wait until new credentials are committed
1410 * by commit_creds() above
1412 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1413 perf_event_exit_task(current);
1415 * cred_guard_mutex must be held at least to this point to prevent
1416 * ptrace_attach() from altering our determination of the task's
1417 * credentials; any time after this it may be unlocked.
1419 security_bprm_committed_creds(bprm);
1420 mutex_unlock(&current->signal->cred_guard_mutex);
1422 EXPORT_SYMBOL(install_exec_creds);
1425 * determine how safe it is to execute the proposed program
1426 * - the caller must hold ->cred_guard_mutex to protect against
1427 * PTRACE_ATTACH or seccomp thread-sync
1429 static void check_unsafe_exec(struct linux_binprm *bprm)
1431 struct task_struct *p = current, *t;
1432 unsigned n_fs;
1434 if (p->ptrace)
1435 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1438 * This isn't strictly necessary, but it makes it harder for LSMs to
1439 * mess up.
1441 if (task_no_new_privs(current))
1442 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1444 t = p;
1445 n_fs = 1;
1446 spin_lock(&p->fs->lock);
1447 rcu_read_lock();
1448 while_each_thread(p, t) {
1449 if (t->fs == p->fs)
1450 n_fs++;
1452 rcu_read_unlock();
1454 if (p->fs->users > n_fs)
1455 bprm->unsafe |= LSM_UNSAFE_SHARE;
1456 else
1457 p->fs->in_exec = 1;
1458 spin_unlock(&p->fs->lock);
1461 static void bprm_fill_uid(struct linux_binprm *bprm)
1463 struct inode *inode;
1464 unsigned int mode;
1465 kuid_t uid;
1466 kgid_t gid;
1469 * Since this can be called multiple times (via prepare_binprm),
1470 * we must clear any previous work done when setting set[ug]id
1471 * bits from any earlier bprm->file uses (for example when run
1472 * first for a setuid script then again for its interpreter).
1474 bprm->cred->euid = current_euid();
1475 bprm->cred->egid = current_egid();
1477 if (!mnt_may_suid(bprm->file->f_path.mnt))
1478 return;
1480 if (task_no_new_privs(current))
1481 return;
1483 inode = bprm->file->f_path.dentry->d_inode;
1484 mode = READ_ONCE(inode->i_mode);
1485 if (!(mode & (S_ISUID|S_ISGID)))
1486 return;
1488 /* Be careful if suid/sgid is set */
1489 inode_lock(inode);
1491 /* reload atomically mode/uid/gid now that lock held */
1492 mode = inode->i_mode;
1493 uid = inode->i_uid;
1494 gid = inode->i_gid;
1495 inode_unlock(inode);
1497 /* We ignore suid/sgid if there are no mappings for them in the ns */
1498 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1499 !kgid_has_mapping(bprm->cred->user_ns, gid))
1500 return;
1502 if (mode & S_ISUID) {
1503 bprm->per_clear |= PER_CLEAR_ON_SETID;
1504 bprm->cred->euid = uid;
1507 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1508 bprm->per_clear |= PER_CLEAR_ON_SETID;
1509 bprm->cred->egid = gid;
1514 * Fill the binprm structure from the inode.
1515 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1517 * This may be called multiple times for binary chains (scripts for example).
1519 int prepare_binprm(struct linux_binprm *bprm)
1521 int retval;
1523 bprm_fill_uid(bprm);
1525 /* fill in binprm security blob */
1526 retval = security_bprm_set_creds(bprm);
1527 if (retval)
1528 return retval;
1529 bprm->cred_prepared = 1;
1531 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1532 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1535 EXPORT_SYMBOL(prepare_binprm);
1538 * Arguments are '\0' separated strings found at the location bprm->p
1539 * points to; chop off the first by relocating brpm->p to right after
1540 * the first '\0' encountered.
1542 int remove_arg_zero(struct linux_binprm *bprm)
1544 int ret = 0;
1545 unsigned long offset;
1546 char *kaddr;
1547 struct page *page;
1549 if (!bprm->argc)
1550 return 0;
1552 do {
1553 offset = bprm->p & ~PAGE_MASK;
1554 page = get_arg_page(bprm, bprm->p, 0);
1555 if (!page) {
1556 ret = -EFAULT;
1557 goto out;
1559 kaddr = kmap_atomic(page);
1561 for (; offset < PAGE_SIZE && kaddr[offset];
1562 offset++, bprm->p++)
1565 kunmap_atomic(kaddr);
1566 put_arg_page(page);
1567 } while (offset == PAGE_SIZE);
1569 bprm->p++;
1570 bprm->argc--;
1571 ret = 0;
1573 out:
1574 return ret;
1576 EXPORT_SYMBOL(remove_arg_zero);
1578 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1580 * cycle the list of binary formats handler, until one recognizes the image
1582 int search_binary_handler(struct linux_binprm *bprm)
1584 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1585 struct linux_binfmt *fmt;
1586 int retval;
1588 /* This allows 4 levels of binfmt rewrites before failing hard. */
1589 if (bprm->recursion_depth > 5)
1590 return -ELOOP;
1592 retval = security_bprm_check(bprm);
1593 if (retval)
1594 return retval;
1596 retval = -ENOENT;
1597 retry:
1598 read_lock(&binfmt_lock);
1599 list_for_each_entry(fmt, &formats, lh) {
1600 if (!try_module_get(fmt->module))
1601 continue;
1602 read_unlock(&binfmt_lock);
1603 bprm->recursion_depth++;
1604 retval = fmt->load_binary(bprm);
1605 read_lock(&binfmt_lock);
1606 put_binfmt(fmt);
1607 bprm->recursion_depth--;
1608 if (retval < 0 && !bprm->mm) {
1609 /* we got to flush_old_exec() and failed after it */
1610 read_unlock(&binfmt_lock);
1611 force_sigsegv(SIGSEGV, current);
1612 return retval;
1614 if (retval != -ENOEXEC || !bprm->file) {
1615 read_unlock(&binfmt_lock);
1616 return retval;
1619 read_unlock(&binfmt_lock);
1621 if (need_retry) {
1622 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1623 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1624 return retval;
1625 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1626 return retval;
1627 need_retry = false;
1628 goto retry;
1631 return retval;
1633 EXPORT_SYMBOL(search_binary_handler);
1635 static int exec_binprm(struct linux_binprm *bprm)
1637 pid_t old_pid, old_vpid;
1638 int ret;
1640 /* Need to fetch pid before load_binary changes it */
1641 old_pid = current->pid;
1642 rcu_read_lock();
1643 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1644 rcu_read_unlock();
1646 ret = search_binary_handler(bprm);
1647 if (ret >= 0) {
1648 audit_bprm(bprm);
1649 trace_sched_process_exec(current, old_pid, bprm);
1650 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1651 proc_exec_connector(current);
1654 return ret;
1658 * sys_execve() executes a new program.
1660 static int do_execveat_common(int fd, struct filename *filename,
1661 struct user_arg_ptr argv,
1662 struct user_arg_ptr envp,
1663 int flags)
1665 char *pathbuf = NULL;
1666 struct linux_binprm *bprm;
1667 struct file *file;
1668 struct files_struct *displaced;
1669 int retval;
1671 if (IS_ERR(filename))
1672 return PTR_ERR(filename);
1675 * We move the actual failure in case of RLIMIT_NPROC excess from
1676 * set*uid() to execve() because too many poorly written programs
1677 * don't check setuid() return code. Here we additionally recheck
1678 * whether NPROC limit is still exceeded.
1680 if ((current->flags & PF_NPROC_EXCEEDED) &&
1681 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1682 retval = -EAGAIN;
1683 goto out_ret;
1686 /* We're below the limit (still or again), so we don't want to make
1687 * further execve() calls fail. */
1688 current->flags &= ~PF_NPROC_EXCEEDED;
1690 retval = unshare_files(&displaced);
1691 if (retval)
1692 goto out_ret;
1694 retval = -ENOMEM;
1695 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1696 if (!bprm)
1697 goto out_files;
1699 retval = prepare_bprm_creds(bprm);
1700 if (retval)
1701 goto out_free;
1703 check_unsafe_exec(bprm);
1704 current->in_execve = 1;
1706 file = do_open_execat(fd, filename, flags);
1707 retval = PTR_ERR(file);
1708 if (IS_ERR(file))
1709 goto out_unmark;
1711 sched_exec();
1713 bprm->file = file;
1714 if (fd == AT_FDCWD || filename->name[0] == '/') {
1715 bprm->filename = filename->name;
1716 } else {
1717 if (filename->name[0] == '\0')
1718 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1719 else
1720 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1721 fd, filename->name);
1722 if (!pathbuf) {
1723 retval = -ENOMEM;
1724 goto out_unmark;
1727 * Record that a name derived from an O_CLOEXEC fd will be
1728 * inaccessible after exec. Relies on having exclusive access to
1729 * current->files (due to unshare_files above).
1731 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1732 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1733 bprm->filename = pathbuf;
1735 bprm->interp = bprm->filename;
1737 retval = bprm_mm_init(bprm);
1738 if (retval)
1739 goto out_unmark;
1741 bprm->argc = count(argv, MAX_ARG_STRINGS);
1742 if ((retval = bprm->argc) < 0)
1743 goto out;
1745 bprm->envc = count(envp, MAX_ARG_STRINGS);
1746 if ((retval = bprm->envc) < 0)
1747 goto out;
1749 retval = prepare_binprm(bprm);
1750 if (retval < 0)
1751 goto out;
1753 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1754 if (retval < 0)
1755 goto out;
1757 bprm->exec = bprm->p;
1758 retval = copy_strings(bprm->envc, envp, bprm);
1759 if (retval < 0)
1760 goto out;
1762 retval = copy_strings(bprm->argc, argv, bprm);
1763 if (retval < 0)
1764 goto out;
1766 would_dump(bprm, bprm->file);
1768 retval = exec_binprm(bprm);
1769 if (retval < 0)
1770 goto out;
1772 /* execve succeeded */
1773 current->fs->in_exec = 0;
1774 current->in_execve = 0;
1775 acct_update_integrals(current);
1776 task_numa_free(current);
1777 free_bprm(bprm);
1778 kfree(pathbuf);
1779 putname(filename);
1780 if (displaced)
1781 put_files_struct(displaced);
1782 return retval;
1784 out:
1785 if (bprm->mm) {
1786 acct_arg_size(bprm, 0);
1787 mmput(bprm->mm);
1790 out_unmark:
1791 current->fs->in_exec = 0;
1792 current->in_execve = 0;
1794 out_free:
1795 free_bprm(bprm);
1796 kfree(pathbuf);
1798 out_files:
1799 if (displaced)
1800 reset_files_struct(displaced);
1801 out_ret:
1802 putname(filename);
1803 return retval;
1806 int do_execve(struct filename *filename,
1807 const char __user *const __user *__argv,
1808 const char __user *const __user *__envp)
1810 struct user_arg_ptr argv = { .ptr.native = __argv };
1811 struct user_arg_ptr envp = { .ptr.native = __envp };
1812 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1815 int do_execveat(int fd, struct filename *filename,
1816 const char __user *const __user *__argv,
1817 const char __user *const __user *__envp,
1818 int flags)
1820 struct user_arg_ptr argv = { .ptr.native = __argv };
1821 struct user_arg_ptr envp = { .ptr.native = __envp };
1823 return do_execveat_common(fd, filename, argv, envp, flags);
1826 #ifdef CONFIG_COMPAT
1827 static int compat_do_execve(struct filename *filename,
1828 const compat_uptr_t __user *__argv,
1829 const compat_uptr_t __user *__envp)
1831 struct user_arg_ptr argv = {
1832 .is_compat = true,
1833 .ptr.compat = __argv,
1835 struct user_arg_ptr envp = {
1836 .is_compat = true,
1837 .ptr.compat = __envp,
1839 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1842 static int compat_do_execveat(int fd, struct filename *filename,
1843 const compat_uptr_t __user *__argv,
1844 const compat_uptr_t __user *__envp,
1845 int flags)
1847 struct user_arg_ptr argv = {
1848 .is_compat = true,
1849 .ptr.compat = __argv,
1851 struct user_arg_ptr envp = {
1852 .is_compat = true,
1853 .ptr.compat = __envp,
1855 return do_execveat_common(fd, filename, argv, envp, flags);
1857 #endif
1859 void set_binfmt(struct linux_binfmt *new)
1861 struct mm_struct *mm = current->mm;
1863 if (mm->binfmt)
1864 module_put(mm->binfmt->module);
1866 mm->binfmt = new;
1867 if (new)
1868 __module_get(new->module);
1870 EXPORT_SYMBOL(set_binfmt);
1873 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1875 void set_dumpable(struct mm_struct *mm, int value)
1877 unsigned long old, new;
1879 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1880 return;
1882 do {
1883 old = ACCESS_ONCE(mm->flags);
1884 new = (old & ~MMF_DUMPABLE_MASK) | value;
1885 } while (cmpxchg(&mm->flags, old, new) != old);
1888 SYSCALL_DEFINE3(execve,
1889 const char __user *, filename,
1890 const char __user *const __user *, argv,
1891 const char __user *const __user *, envp)
1893 return do_execve(getname(filename), argv, envp);
1896 SYSCALL_DEFINE5(execveat,
1897 int, fd, const char __user *, filename,
1898 const char __user *const __user *, argv,
1899 const char __user *const __user *, envp,
1900 int, flags)
1902 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1904 return do_execveat(fd,
1905 getname_flags(filename, lookup_flags, NULL),
1906 argv, envp, flags);
1909 #ifdef CONFIG_COMPAT
1910 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1911 const compat_uptr_t __user *, argv,
1912 const compat_uptr_t __user *, envp)
1914 return compat_do_execve(getname(filename), argv, envp);
1917 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1918 const char __user *, filename,
1919 const compat_uptr_t __user *, argv,
1920 const compat_uptr_t __user *, envp,
1921 int, flags)
1923 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1925 return compat_do_execveat(fd,
1926 getname_flags(filename, lookup_flags, NULL),
1927 argv, envp, flags);
1929 #endif