2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched/signal.h>
6 #include <linux/sched/cputime.h>
7 #include <linux/posix-timers.h>
8 #include <linux/errno.h>
9 #include <linux/math64.h>
10 #include <linux/uaccess.h>
11 #include <linux/kernel_stat.h>
12 #include <trace/events/timer.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
17 * Called after updating RLIMIT_CPU to run cpu timer and update
18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
19 * siglock protection since other code may update expiration cache as
22 void update_rlimit_cpu(struct task_struct
*task
, unsigned long rlim_new
)
24 u64 nsecs
= rlim_new
* NSEC_PER_SEC
;
26 spin_lock_irq(&task
->sighand
->siglock
);
27 set_process_cpu_timer(task
, CPUCLOCK_PROF
, &nsecs
, NULL
);
28 spin_unlock_irq(&task
->sighand
->siglock
);
31 static int check_clock(const clockid_t which_clock
)
34 struct task_struct
*p
;
35 const pid_t pid
= CPUCLOCK_PID(which_clock
);
37 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
44 p
= find_task_by_vpid(pid
);
45 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
46 same_thread_group(p
, current
) : has_group_leader_pid(p
))) {
55 * Update expiry time from increment, and increase overrun count,
56 * given the current clock sample.
58 static void bump_cpu_timer(struct k_itimer
*timer
, u64 now
)
63 if (timer
->it
.cpu
.incr
== 0)
66 if (now
< timer
->it
.cpu
.expires
)
69 incr
= timer
->it
.cpu
.incr
;
70 delta
= now
+ incr
- timer
->it
.cpu
.expires
;
72 /* Don't use (incr*2 < delta), incr*2 might overflow. */
73 for (i
= 0; incr
< delta
- incr
; i
++)
76 for (; i
>= 0; incr
>>= 1, i
--) {
80 timer
->it
.cpu
.expires
+= incr
;
81 timer
->it_overrun
+= 1 << i
;
87 * task_cputime_zero - Check a task_cputime struct for all zero fields.
89 * @cputime: The struct to compare.
91 * Checks @cputime to see if all fields are zero. Returns true if all fields
92 * are zero, false if any field is nonzero.
94 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
96 if (!cputime
->utime
&& !cputime
->stime
&& !cputime
->sum_exec_runtime
)
101 static inline u64
prof_ticks(struct task_struct
*p
)
105 task_cputime(p
, &utime
, &stime
);
107 return utime
+ stime
;
109 static inline u64
virt_ticks(struct task_struct
*p
)
113 task_cputime(p
, &utime
, &stime
);
119 posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
121 int error
= check_clock(which_clock
);
124 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
125 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
127 * If sched_clock is using a cycle counter, we
128 * don't have any idea of its true resolution
129 * exported, but it is much more than 1s/HZ.
138 posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
141 * You can never reset a CPU clock, but we check for other errors
142 * in the call before failing with EPERM.
144 int error
= check_clock(which_clock
);
153 * Sample a per-thread clock for the given task.
155 static int cpu_clock_sample(const clockid_t which_clock
,
156 struct task_struct
*p
, u64
*sample
)
158 switch (CPUCLOCK_WHICH(which_clock
)) {
162 *sample
= prof_ticks(p
);
165 *sample
= virt_ticks(p
);
168 *sample
= task_sched_runtime(p
);
175 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
176 * to avoid race conditions with concurrent updates to cputime.
178 static inline void __update_gt_cputime(atomic64_t
*cputime
, u64 sum_cputime
)
182 curr_cputime
= atomic64_read(cputime
);
183 if (sum_cputime
> curr_cputime
) {
184 if (atomic64_cmpxchg(cputime
, curr_cputime
, sum_cputime
) != curr_cputime
)
189 static void update_gt_cputime(struct task_cputime_atomic
*cputime_atomic
, struct task_cputime
*sum
)
191 __update_gt_cputime(&cputime_atomic
->utime
, sum
->utime
);
192 __update_gt_cputime(&cputime_atomic
->stime
, sum
->stime
);
193 __update_gt_cputime(&cputime_atomic
->sum_exec_runtime
, sum
->sum_exec_runtime
);
196 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
197 static inline void sample_cputime_atomic(struct task_cputime
*times
,
198 struct task_cputime_atomic
*atomic_times
)
200 times
->utime
= atomic64_read(&atomic_times
->utime
);
201 times
->stime
= atomic64_read(&atomic_times
->stime
);
202 times
->sum_exec_runtime
= atomic64_read(&atomic_times
->sum_exec_runtime
);
205 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
207 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
208 struct task_cputime sum
;
210 /* Check if cputimer isn't running. This is accessed without locking. */
211 if (!READ_ONCE(cputimer
->running
)) {
213 * The POSIX timer interface allows for absolute time expiry
214 * values through the TIMER_ABSTIME flag, therefore we have
215 * to synchronize the timer to the clock every time we start it.
217 thread_group_cputime(tsk
, &sum
);
218 update_gt_cputime(&cputimer
->cputime_atomic
, &sum
);
221 * We're setting cputimer->running without a lock. Ensure
222 * this only gets written to in one operation. We set
223 * running after update_gt_cputime() as a small optimization,
224 * but barriers are not required because update_gt_cputime()
225 * can handle concurrent updates.
227 WRITE_ONCE(cputimer
->running
, true);
229 sample_cputime_atomic(times
, &cputimer
->cputime_atomic
);
233 * Sample a process (thread group) clock for the given group_leader task.
234 * Must be called with task sighand lock held for safe while_each_thread()
237 static int cpu_clock_sample_group(const clockid_t which_clock
,
238 struct task_struct
*p
,
241 struct task_cputime cputime
;
243 switch (CPUCLOCK_WHICH(which_clock
)) {
247 thread_group_cputime(p
, &cputime
);
248 *sample
= cputime
.utime
+ cputime
.stime
;
251 thread_group_cputime(p
, &cputime
);
252 *sample
= cputime
.utime
;
255 thread_group_cputime(p
, &cputime
);
256 *sample
= cputime
.sum_exec_runtime
;
262 static int posix_cpu_clock_get_task(struct task_struct
*tsk
,
263 const clockid_t which_clock
,
269 if (CPUCLOCK_PERTHREAD(which_clock
)) {
270 if (same_thread_group(tsk
, current
))
271 err
= cpu_clock_sample(which_clock
, tsk
, &rtn
);
273 if (tsk
== current
|| thread_group_leader(tsk
))
274 err
= cpu_clock_sample_group(which_clock
, tsk
, &rtn
);
278 *tp
= ns_to_timespec(rtn
);
284 static int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
286 const pid_t pid
= CPUCLOCK_PID(which_clock
);
291 * Special case constant value for our own clocks.
292 * We don't have to do any lookup to find ourselves.
294 err
= posix_cpu_clock_get_task(current
, which_clock
, tp
);
297 * Find the given PID, and validate that the caller
298 * should be able to see it.
300 struct task_struct
*p
;
302 p
= find_task_by_vpid(pid
);
304 err
= posix_cpu_clock_get_task(p
, which_clock
, tp
);
312 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
313 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
314 * new timer already all-zeros initialized.
316 static int posix_cpu_timer_create(struct k_itimer
*new_timer
)
319 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
320 struct task_struct
*p
;
322 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
325 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
328 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
332 p
= find_task_by_vpid(pid
);
333 if (p
&& !same_thread_group(p
, current
))
338 p
= current
->group_leader
;
340 p
= find_task_by_vpid(pid
);
341 if (p
&& !has_group_leader_pid(p
))
345 new_timer
->it
.cpu
.task
= p
;
357 * Clean up a CPU-clock timer that is about to be destroyed.
358 * This is called from timer deletion with the timer already locked.
359 * If we return TIMER_RETRY, it's necessary to release the timer's lock
360 * and try again. (This happens when the timer is in the middle of firing.)
362 static int posix_cpu_timer_del(struct k_itimer
*timer
)
366 struct sighand_struct
*sighand
;
367 struct task_struct
*p
= timer
->it
.cpu
.task
;
369 WARN_ON_ONCE(p
== NULL
);
372 * Protect against sighand release/switch in exit/exec and process/
373 * thread timer list entry concurrent read/writes.
375 sighand
= lock_task_sighand(p
, &flags
);
376 if (unlikely(sighand
== NULL
)) {
378 * We raced with the reaping of the task.
379 * The deletion should have cleared us off the list.
381 WARN_ON_ONCE(!list_empty(&timer
->it
.cpu
.entry
));
383 if (timer
->it
.cpu
.firing
)
386 list_del(&timer
->it
.cpu
.entry
);
388 unlock_task_sighand(p
, &flags
);
397 static void cleanup_timers_list(struct list_head
*head
)
399 struct cpu_timer_list
*timer
, *next
;
401 list_for_each_entry_safe(timer
, next
, head
, entry
)
402 list_del_init(&timer
->entry
);
406 * Clean out CPU timers still ticking when a thread exited. The task
407 * pointer is cleared, and the expiry time is replaced with the residual
408 * time for later timer_gettime calls to return.
409 * This must be called with the siglock held.
411 static void cleanup_timers(struct list_head
*head
)
413 cleanup_timers_list(head
);
414 cleanup_timers_list(++head
);
415 cleanup_timers_list(++head
);
419 * These are both called with the siglock held, when the current thread
420 * is being reaped. When the final (leader) thread in the group is reaped,
421 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
423 void posix_cpu_timers_exit(struct task_struct
*tsk
)
425 cleanup_timers(tsk
->cpu_timers
);
427 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
429 cleanup_timers(tsk
->signal
->cpu_timers
);
432 static inline int expires_gt(u64 expires
, u64 new_exp
)
434 return expires
== 0 || expires
> new_exp
;
438 * Insert the timer on the appropriate list before any timers that
439 * expire later. This must be called with the sighand lock held.
441 static void arm_timer(struct k_itimer
*timer
)
443 struct task_struct
*p
= timer
->it
.cpu
.task
;
444 struct list_head
*head
, *listpos
;
445 struct task_cputime
*cputime_expires
;
446 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
447 struct cpu_timer_list
*next
;
449 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
450 head
= p
->cpu_timers
;
451 cputime_expires
= &p
->cputime_expires
;
453 head
= p
->signal
->cpu_timers
;
454 cputime_expires
= &p
->signal
->cputime_expires
;
456 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
459 list_for_each_entry(next
, head
, entry
) {
460 if (nt
->expires
< next
->expires
)
462 listpos
= &next
->entry
;
464 list_add(&nt
->entry
, listpos
);
466 if (listpos
== head
) {
467 u64 exp
= nt
->expires
;
470 * We are the new earliest-expiring POSIX 1.b timer, hence
471 * need to update expiration cache. Take into account that
472 * for process timers we share expiration cache with itimers
473 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
476 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
478 if (expires_gt(cputime_expires
->prof_exp
, exp
))
479 cputime_expires
->prof_exp
= exp
;
482 if (expires_gt(cputime_expires
->virt_exp
, exp
))
483 cputime_expires
->virt_exp
= exp
;
486 if (expires_gt(cputime_expires
->sched_exp
, exp
))
487 cputime_expires
->sched_exp
= exp
;
490 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
491 tick_dep_set_task(p
, TICK_DEP_BIT_POSIX_TIMER
);
493 tick_dep_set_signal(p
->signal
, TICK_DEP_BIT_POSIX_TIMER
);
498 * The timer is locked, fire it and arrange for its reload.
500 static void cpu_timer_fire(struct k_itimer
*timer
)
502 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
504 * User don't want any signal.
506 timer
->it
.cpu
.expires
= 0;
507 } else if (unlikely(timer
->sigq
== NULL
)) {
509 * This a special case for clock_nanosleep,
510 * not a normal timer from sys_timer_create.
512 wake_up_process(timer
->it_process
);
513 timer
->it
.cpu
.expires
= 0;
514 } else if (timer
->it
.cpu
.incr
== 0) {
516 * One-shot timer. Clear it as soon as it's fired.
518 posix_timer_event(timer
, 0);
519 timer
->it
.cpu
.expires
= 0;
520 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
522 * The signal did not get queued because the signal
523 * was ignored, so we won't get any callback to
524 * reload the timer. But we need to keep it
525 * ticking in case the signal is deliverable next time.
527 posix_cpu_timer_schedule(timer
);
532 * Sample a process (thread group) timer for the given group_leader task.
533 * Must be called with task sighand lock held for safe while_each_thread()
536 static int cpu_timer_sample_group(const clockid_t which_clock
,
537 struct task_struct
*p
, u64
*sample
)
539 struct task_cputime cputime
;
541 thread_group_cputimer(p
, &cputime
);
542 switch (CPUCLOCK_WHICH(which_clock
)) {
546 *sample
= cputime
.utime
+ cputime
.stime
;
549 *sample
= cputime
.utime
;
552 *sample
= cputime
.sum_exec_runtime
;
559 * Guts of sys_timer_settime for CPU timers.
560 * This is called with the timer locked and interrupts disabled.
561 * If we return TIMER_RETRY, it's necessary to release the timer's lock
562 * and try again. (This happens when the timer is in the middle of firing.)
564 static int posix_cpu_timer_set(struct k_itimer
*timer
, int timer_flags
,
565 struct itimerspec
*new, struct itimerspec
*old
)
568 struct sighand_struct
*sighand
;
569 struct task_struct
*p
= timer
->it
.cpu
.task
;
570 u64 old_expires
, new_expires
, old_incr
, val
;
573 WARN_ON_ONCE(p
== NULL
);
575 new_expires
= timespec_to_ns(&new->it_value
);
578 * Protect against sighand release/switch in exit/exec and p->cpu_timers
579 * and p->signal->cpu_timers read/write in arm_timer()
581 sighand
= lock_task_sighand(p
, &flags
);
583 * If p has just been reaped, we can no
584 * longer get any information about it at all.
586 if (unlikely(sighand
== NULL
)) {
591 * Disarm any old timer after extracting its expiry time.
593 WARN_ON_ONCE(!irqs_disabled());
596 old_incr
= timer
->it
.cpu
.incr
;
597 old_expires
= timer
->it
.cpu
.expires
;
598 if (unlikely(timer
->it
.cpu
.firing
)) {
599 timer
->it
.cpu
.firing
= -1;
602 list_del_init(&timer
->it
.cpu
.entry
);
605 * We need to sample the current value to convert the new
606 * value from to relative and absolute, and to convert the
607 * old value from absolute to relative. To set a process
608 * timer, we need a sample to balance the thread expiry
609 * times (in arm_timer). With an absolute time, we must
610 * check if it's already passed. In short, we need a sample.
612 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
613 cpu_clock_sample(timer
->it_clock
, p
, &val
);
615 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
619 if (old_expires
== 0) {
620 old
->it_value
.tv_sec
= 0;
621 old
->it_value
.tv_nsec
= 0;
624 * Update the timer in case it has
625 * overrun already. If it has,
626 * we'll report it as having overrun
627 * and with the next reloaded timer
628 * already ticking, though we are
629 * swallowing that pending
630 * notification here to install the
633 bump_cpu_timer(timer
, val
);
634 if (val
< timer
->it
.cpu
.expires
) {
635 old_expires
= timer
->it
.cpu
.expires
- val
;
636 old
->it_value
= ns_to_timespec(old_expires
);
638 old
->it_value
.tv_nsec
= 1;
639 old
->it_value
.tv_sec
= 0;
646 * We are colliding with the timer actually firing.
647 * Punt after filling in the timer's old value, and
648 * disable this firing since we are already reporting
649 * it as an overrun (thanks to bump_cpu_timer above).
651 unlock_task_sighand(p
, &flags
);
655 if (new_expires
!= 0 && !(timer_flags
& TIMER_ABSTIME
)) {
660 * Install the new expiry time (or zero).
661 * For a timer with no notification action, we don't actually
662 * arm the timer (we'll just fake it for timer_gettime).
664 timer
->it
.cpu
.expires
= new_expires
;
665 if (new_expires
!= 0 && val
< new_expires
) {
669 unlock_task_sighand(p
, &flags
);
671 * Install the new reload setting, and
672 * set up the signal and overrun bookkeeping.
674 timer
->it
.cpu
.incr
= timespec_to_ns(&new->it_interval
);
677 * This acts as a modification timestamp for the timer,
678 * so any automatic reload attempt will punt on seeing
679 * that we have reset the timer manually.
681 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
683 timer
->it_overrun_last
= 0;
684 timer
->it_overrun
= -1;
686 if (new_expires
!= 0 && !(val
< new_expires
)) {
688 * The designated time already passed, so we notify
689 * immediately, even if the thread never runs to
690 * accumulate more time on this clock.
692 cpu_timer_fire(timer
);
698 old
->it_interval
= ns_to_timespec(old_incr
);
703 static void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
706 struct task_struct
*p
= timer
->it
.cpu
.task
;
708 WARN_ON_ONCE(p
== NULL
);
711 * Easy part: convert the reload time.
713 itp
->it_interval
= ns_to_timespec(timer
->it
.cpu
.incr
);
715 if (timer
->it
.cpu
.expires
== 0) { /* Timer not armed at all. */
716 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
721 * Sample the clock to take the difference with the expiry time.
723 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
724 cpu_clock_sample(timer
->it_clock
, p
, &now
);
726 struct sighand_struct
*sighand
;
730 * Protect against sighand release/switch in exit/exec and
731 * also make timer sampling safe if it ends up calling
732 * thread_group_cputime().
734 sighand
= lock_task_sighand(p
, &flags
);
735 if (unlikely(sighand
== NULL
)) {
737 * The process has been reaped.
738 * We can't even collect a sample any more.
739 * Call the timer disarmed, nothing else to do.
741 timer
->it
.cpu
.expires
= 0;
742 itp
->it_value
= ns_to_timespec(timer
->it
.cpu
.expires
);
745 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
746 unlock_task_sighand(p
, &flags
);
750 if (now
< timer
->it
.cpu
.expires
) {
751 itp
->it_value
= ns_to_timespec(timer
->it
.cpu
.expires
- now
);
754 * The timer should have expired already, but the firing
755 * hasn't taken place yet. Say it's just about to expire.
757 itp
->it_value
.tv_nsec
= 1;
758 itp
->it_value
.tv_sec
= 0;
762 static unsigned long long
763 check_timers_list(struct list_head
*timers
,
764 struct list_head
*firing
,
765 unsigned long long curr
)
769 while (!list_empty(timers
)) {
770 struct cpu_timer_list
*t
;
772 t
= list_first_entry(timers
, struct cpu_timer_list
, entry
);
774 if (!--maxfire
|| curr
< t
->expires
)
778 list_move_tail(&t
->entry
, firing
);
785 * Check for any per-thread CPU timers that have fired and move them off
786 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
787 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
789 static void check_thread_timers(struct task_struct
*tsk
,
790 struct list_head
*firing
)
792 struct list_head
*timers
= tsk
->cpu_timers
;
793 struct signal_struct
*const sig
= tsk
->signal
;
794 struct task_cputime
*tsk_expires
= &tsk
->cputime_expires
;
799 * If cputime_expires is zero, then there are no active
800 * per thread CPU timers.
802 if (task_cputime_zero(&tsk
->cputime_expires
))
805 expires
= check_timers_list(timers
, firing
, prof_ticks(tsk
));
806 tsk_expires
->prof_exp
= expires
;
808 expires
= check_timers_list(++timers
, firing
, virt_ticks(tsk
));
809 tsk_expires
->virt_exp
= expires
;
811 tsk_expires
->sched_exp
= check_timers_list(++timers
, firing
,
812 tsk
->se
.sum_exec_runtime
);
815 * Check for the special case thread timers.
817 soft
= READ_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
);
818 if (soft
!= RLIM_INFINITY
) {
820 READ_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_max
);
822 if (hard
!= RLIM_INFINITY
&&
823 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
825 * At the hard limit, we just die.
826 * No need to calculate anything else now.
828 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
831 if (tsk
->rt
.timeout
> DIV_ROUND_UP(soft
, USEC_PER_SEC
/HZ
)) {
833 * At the soft limit, send a SIGXCPU every second.
836 soft
+= USEC_PER_SEC
;
837 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
= soft
;
840 "RT Watchdog Timeout: %s[%d]\n",
841 tsk
->comm
, task_pid_nr(tsk
));
842 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
845 if (task_cputime_zero(tsk_expires
))
846 tick_dep_clear_task(tsk
, TICK_DEP_BIT_POSIX_TIMER
);
849 static inline void stop_process_timers(struct signal_struct
*sig
)
851 struct thread_group_cputimer
*cputimer
= &sig
->cputimer
;
853 /* Turn off cputimer->running. This is done without locking. */
854 WRITE_ONCE(cputimer
->running
, false);
855 tick_dep_clear_signal(sig
, TICK_DEP_BIT_POSIX_TIMER
);
858 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
859 u64
*expires
, u64 cur_time
, int signo
)
864 if (cur_time
>= it
->expires
) {
866 it
->expires
+= it
->incr
;
870 trace_itimer_expire(signo
== SIGPROF
?
871 ITIMER_PROF
: ITIMER_VIRTUAL
,
872 tsk
->signal
->leader_pid
, cur_time
);
873 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
876 if (it
->expires
&& (!*expires
|| it
->expires
< *expires
))
877 *expires
= it
->expires
;
881 * Check for any per-thread CPU timers that have fired and move them
882 * off the tsk->*_timers list onto the firing list. Per-thread timers
883 * have already been taken off.
885 static void check_process_timers(struct task_struct
*tsk
,
886 struct list_head
*firing
)
888 struct signal_struct
*const sig
= tsk
->signal
;
889 u64 utime
, ptime
, virt_expires
, prof_expires
;
890 u64 sum_sched_runtime
, sched_expires
;
891 struct list_head
*timers
= sig
->cpu_timers
;
892 struct task_cputime cputime
;
896 * If cputimer is not running, then there are no active
897 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
899 if (!READ_ONCE(tsk
->signal
->cputimer
.running
))
903 * Signify that a thread is checking for process timers.
904 * Write access to this field is protected by the sighand lock.
906 sig
->cputimer
.checking_timer
= true;
909 * Collect the current process totals.
911 thread_group_cputimer(tsk
, &cputime
);
912 utime
= cputime
.utime
;
913 ptime
= utime
+ cputime
.stime
;
914 sum_sched_runtime
= cputime
.sum_exec_runtime
;
916 prof_expires
= check_timers_list(timers
, firing
, ptime
);
917 virt_expires
= check_timers_list(++timers
, firing
, utime
);
918 sched_expires
= check_timers_list(++timers
, firing
, sum_sched_runtime
);
921 * Check for the special case process timers.
923 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
], &prof_expires
, ptime
,
925 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
], &virt_expires
, utime
,
927 soft
= READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
928 if (soft
!= RLIM_INFINITY
) {
929 unsigned long psecs
= div_u64(ptime
, NSEC_PER_SEC
);
931 READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_max
);
935 * At the hard limit, we just die.
936 * No need to calculate anything else now.
938 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
943 * At the soft limit, send a SIGXCPU every second.
945 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
948 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
;
951 x
= soft
* NSEC_PER_SEC
;
952 if (!prof_expires
|| x
< prof_expires
)
956 sig
->cputime_expires
.prof_exp
= prof_expires
;
957 sig
->cputime_expires
.virt_exp
= virt_expires
;
958 sig
->cputime_expires
.sched_exp
= sched_expires
;
959 if (task_cputime_zero(&sig
->cputime_expires
))
960 stop_process_timers(sig
);
962 sig
->cputimer
.checking_timer
= false;
966 * This is called from the signal code (via do_schedule_next_timer)
967 * when the last timer signal was delivered and we have to reload the timer.
969 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
971 struct sighand_struct
*sighand
;
973 struct task_struct
*p
= timer
->it
.cpu
.task
;
976 WARN_ON_ONCE(p
== NULL
);
979 * Fetch the current sample and update the timer's expiry time.
981 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
982 cpu_clock_sample(timer
->it_clock
, p
, &now
);
983 bump_cpu_timer(timer
, now
);
984 if (unlikely(p
->exit_state
))
987 /* Protect timer list r/w in arm_timer() */
988 sighand
= lock_task_sighand(p
, &flags
);
993 * Protect arm_timer() and timer sampling in case of call to
994 * thread_group_cputime().
996 sighand
= lock_task_sighand(p
, &flags
);
997 if (unlikely(sighand
== NULL
)) {
999 * The process has been reaped.
1000 * We can't even collect a sample any more.
1002 timer
->it
.cpu
.expires
= 0;
1004 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1005 unlock_task_sighand(p
, &flags
);
1006 /* Optimizations: if the process is dying, no need to rearm */
1009 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1010 bump_cpu_timer(timer
, now
);
1011 /* Leave the sighand locked for the call below. */
1015 * Now re-arm for the new expiry time.
1017 WARN_ON_ONCE(!irqs_disabled());
1019 unlock_task_sighand(p
, &flags
);
1022 timer
->it_overrun_last
= timer
->it_overrun
;
1023 timer
->it_overrun
= -1;
1024 ++timer
->it_requeue_pending
;
1028 * task_cputime_expired - Compare two task_cputime entities.
1030 * @sample: The task_cputime structure to be checked for expiration.
1031 * @expires: Expiration times, against which @sample will be checked.
1033 * Checks @sample against @expires to see if any field of @sample has expired.
1034 * Returns true if any field of the former is greater than the corresponding
1035 * field of the latter if the latter field is set. Otherwise returns false.
1037 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1038 const struct task_cputime
*expires
)
1040 if (expires
->utime
&& sample
->utime
>= expires
->utime
)
1042 if (expires
->stime
&& sample
->utime
+ sample
->stime
>= expires
->stime
)
1044 if (expires
->sum_exec_runtime
!= 0 &&
1045 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1051 * fastpath_timer_check - POSIX CPU timers fast path.
1053 * @tsk: The task (thread) being checked.
1055 * Check the task and thread group timers. If both are zero (there are no
1056 * timers set) return false. Otherwise snapshot the task and thread group
1057 * timers and compare them with the corresponding expiration times. Return
1058 * true if a timer has expired, else return false.
1060 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1062 struct signal_struct
*sig
;
1064 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1065 struct task_cputime task_sample
;
1067 task_cputime(tsk
, &task_sample
.utime
, &task_sample
.stime
);
1068 task_sample
.sum_exec_runtime
= tsk
->se
.sum_exec_runtime
;
1069 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1075 * Check if thread group timers expired when the cputimer is
1076 * running and no other thread in the group is already checking
1077 * for thread group cputimers. These fields are read without the
1078 * sighand lock. However, this is fine because this is meant to
1079 * be a fastpath heuristic to determine whether we should try to
1080 * acquire the sighand lock to check/handle timers.
1082 * In the worst case scenario, if 'running' or 'checking_timer' gets
1083 * set but the current thread doesn't see the change yet, we'll wait
1084 * until the next thread in the group gets a scheduler interrupt to
1085 * handle the timer. This isn't an issue in practice because these
1086 * types of delays with signals actually getting sent are expected.
1088 if (READ_ONCE(sig
->cputimer
.running
) &&
1089 !READ_ONCE(sig
->cputimer
.checking_timer
)) {
1090 struct task_cputime group_sample
;
1092 sample_cputime_atomic(&group_sample
, &sig
->cputimer
.cputime_atomic
);
1094 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1102 * This is called from the timer interrupt handler. The irq handler has
1103 * already updated our counts. We need to check if any timers fire now.
1104 * Interrupts are disabled.
1106 void run_posix_cpu_timers(struct task_struct
*tsk
)
1109 struct k_itimer
*timer
, *next
;
1110 unsigned long flags
;
1112 WARN_ON_ONCE(!irqs_disabled());
1115 * The fast path checks that there are no expired thread or thread
1116 * group timers. If that's so, just return.
1118 if (!fastpath_timer_check(tsk
))
1121 if (!lock_task_sighand(tsk
, &flags
))
1124 * Here we take off tsk->signal->cpu_timers[N] and
1125 * tsk->cpu_timers[N] all the timers that are firing, and
1126 * put them on the firing list.
1128 check_thread_timers(tsk
, &firing
);
1130 check_process_timers(tsk
, &firing
);
1133 * We must release these locks before taking any timer's lock.
1134 * There is a potential race with timer deletion here, as the
1135 * siglock now protects our private firing list. We have set
1136 * the firing flag in each timer, so that a deletion attempt
1137 * that gets the timer lock before we do will give it up and
1138 * spin until we've taken care of that timer below.
1140 unlock_task_sighand(tsk
, &flags
);
1143 * Now that all the timers on our list have the firing flag,
1144 * no one will touch their list entries but us. We'll take
1145 * each timer's lock before clearing its firing flag, so no
1146 * timer call will interfere.
1148 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1151 spin_lock(&timer
->it_lock
);
1152 list_del_init(&timer
->it
.cpu
.entry
);
1153 cpu_firing
= timer
->it
.cpu
.firing
;
1154 timer
->it
.cpu
.firing
= 0;
1156 * The firing flag is -1 if we collided with a reset
1157 * of the timer, which already reported this
1158 * almost-firing as an overrun. So don't generate an event.
1160 if (likely(cpu_firing
>= 0))
1161 cpu_timer_fire(timer
);
1162 spin_unlock(&timer
->it_lock
);
1167 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1168 * The tsk->sighand->siglock must be held by the caller.
1170 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1171 u64
*newval
, u64
*oldval
)
1175 WARN_ON_ONCE(clock_idx
== CPUCLOCK_SCHED
);
1176 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1180 * We are setting itimer. The *oldval is absolute and we update
1181 * it to be relative, *newval argument is relative and we update
1182 * it to be absolute.
1185 if (*oldval
<= now
) {
1186 /* Just about to fire. */
1187 *oldval
= TICK_NSEC
;
1199 * Update expiration cache if we are the earliest timer, or eventually
1200 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1202 switch (clock_idx
) {
1204 if (expires_gt(tsk
->signal
->cputime_expires
.prof_exp
, *newval
))
1205 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1208 if (expires_gt(tsk
->signal
->cputime_expires
.virt_exp
, *newval
))
1209 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1213 tick_dep_set_signal(tsk
->signal
, TICK_DEP_BIT_POSIX_TIMER
);
1216 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1217 struct timespec
*rqtp
, struct itimerspec
*it
)
1219 struct k_itimer timer
;
1223 * Set up a temporary timer and then wait for it to go off.
1225 memset(&timer
, 0, sizeof timer
);
1226 spin_lock_init(&timer
.it_lock
);
1227 timer
.it_clock
= which_clock
;
1228 timer
.it_overrun
= -1;
1229 error
= posix_cpu_timer_create(&timer
);
1230 timer
.it_process
= current
;
1232 static struct itimerspec zero_it
;
1234 memset(it
, 0, sizeof *it
);
1235 it
->it_value
= *rqtp
;
1237 spin_lock_irq(&timer
.it_lock
);
1238 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1240 spin_unlock_irq(&timer
.it_lock
);
1244 while (!signal_pending(current
)) {
1245 if (timer
.it
.cpu
.expires
== 0) {
1247 * Our timer fired and was reset, below
1248 * deletion can not fail.
1250 posix_cpu_timer_del(&timer
);
1251 spin_unlock_irq(&timer
.it_lock
);
1256 * Block until cpu_timer_fire (or a signal) wakes us.
1258 __set_current_state(TASK_INTERRUPTIBLE
);
1259 spin_unlock_irq(&timer
.it_lock
);
1261 spin_lock_irq(&timer
.it_lock
);
1265 * We were interrupted by a signal.
1267 *rqtp
= ns_to_timespec(timer
.it
.cpu
.expires
);
1268 error
= posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1271 * Timer is now unarmed, deletion can not fail.
1273 posix_cpu_timer_del(&timer
);
1275 spin_unlock_irq(&timer
.it_lock
);
1277 while (error
== TIMER_RETRY
) {
1279 * We need to handle case when timer was or is in the
1280 * middle of firing. In other cases we already freed
1283 spin_lock_irq(&timer
.it_lock
);
1284 error
= posix_cpu_timer_del(&timer
);
1285 spin_unlock_irq(&timer
.it_lock
);
1288 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1290 * It actually did fire already.
1295 error
= -ERESTART_RESTARTBLOCK
;
1301 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
);
1303 static int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1304 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1306 struct restart_block
*restart_block
= ¤t
->restart_block
;
1307 struct itimerspec it
;
1311 * Diagnose required errors first.
1313 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1314 (CPUCLOCK_PID(which_clock
) == 0 ||
1315 CPUCLOCK_PID(which_clock
) == current
->pid
))
1318 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1320 if (error
== -ERESTART_RESTARTBLOCK
) {
1322 if (flags
& TIMER_ABSTIME
)
1323 return -ERESTARTNOHAND
;
1325 * Report back to the user the time still remaining.
1327 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1330 restart_block
->fn
= posix_cpu_nsleep_restart
;
1331 restart_block
->nanosleep
.clockid
= which_clock
;
1332 restart_block
->nanosleep
.rmtp
= rmtp
;
1333 restart_block
->nanosleep
.expires
= timespec_to_ns(rqtp
);
1338 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1340 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1342 struct itimerspec it
;
1345 t
= ns_to_timespec(restart_block
->nanosleep
.expires
);
1347 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1349 if (error
== -ERESTART_RESTARTBLOCK
) {
1350 struct timespec __user
*rmtp
= restart_block
->nanosleep
.rmtp
;
1352 * Report back to the user the time still remaining.
1354 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1357 restart_block
->nanosleep
.expires
= timespec_to_ns(&t
);
1363 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1364 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1366 static int process_cpu_clock_getres(const clockid_t which_clock
,
1367 struct timespec
*tp
)
1369 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1371 static int process_cpu_clock_get(const clockid_t which_clock
,
1372 struct timespec
*tp
)
1374 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1376 static int process_cpu_timer_create(struct k_itimer
*timer
)
1378 timer
->it_clock
= PROCESS_CLOCK
;
1379 return posix_cpu_timer_create(timer
);
1381 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1382 struct timespec
*rqtp
,
1383 struct timespec __user
*rmtp
)
1385 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1387 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1391 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1392 struct timespec
*tp
)
1394 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1396 static int thread_cpu_clock_get(const clockid_t which_clock
,
1397 struct timespec
*tp
)
1399 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1401 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1403 timer
->it_clock
= THREAD_CLOCK
;
1404 return posix_cpu_timer_create(timer
);
1407 struct k_clock clock_posix_cpu
= {
1408 .clock_getres
= posix_cpu_clock_getres
,
1409 .clock_set
= posix_cpu_clock_set
,
1410 .clock_get
= posix_cpu_clock_get
,
1411 .timer_create
= posix_cpu_timer_create
,
1412 .nsleep
= posix_cpu_nsleep
,
1413 .nsleep_restart
= posix_cpu_nsleep_restart
,
1414 .timer_set
= posix_cpu_timer_set
,
1415 .timer_del
= posix_cpu_timer_del
,
1416 .timer_get
= posix_cpu_timer_get
,
1419 static __init
int init_posix_cpu_timers(void)
1421 struct k_clock process
= {
1422 .clock_getres
= process_cpu_clock_getres
,
1423 .clock_get
= process_cpu_clock_get
,
1424 .timer_create
= process_cpu_timer_create
,
1425 .nsleep
= process_cpu_nsleep
,
1426 .nsleep_restart
= process_cpu_nsleep_restart
,
1428 struct k_clock thread
= {
1429 .clock_getres
= thread_cpu_clock_getres
,
1430 .clock_get
= thread_cpu_clock_get
,
1431 .timer_create
= thread_cpu_timer_create
,
1434 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1435 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1439 __initcall(init_posix_cpu_timers
);