4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
41 #include <linux/uaccess.h>
42 #include <asm/unistd.h>
44 #include <generated/timeconst.h>
45 #include "timekeeping.h"
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
51 struct timezone sys_tz
;
53 EXPORT_SYMBOL(sys_tz
);
55 #ifdef __ARCH_WANT_SYS_TIME
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
63 SYSCALL_DEFINE1(time
, time_t __user
*, tloc
)
65 time_t i
= get_seconds();
71 force_successful_syscall_return();
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
82 SYSCALL_DEFINE1(stime
, time_t __user
*, tptr
)
87 if (get_user(tv
.tv_sec
, tptr
))
92 err
= security_settime(&tv
, NULL
);
100 #endif /* __ARCH_WANT_SYS_TIME */
102 SYSCALL_DEFINE2(gettimeofday
, struct timeval __user
*, tv
,
103 struct timezone __user
*, tz
)
105 if (likely(tv
!= NULL
)) {
107 do_gettimeofday(&ktv
);
108 if (copy_to_user(tv
, &ktv
, sizeof(ktv
)))
111 if (unlikely(tz
!= NULL
)) {
112 if (copy_to_user(tz
, &sys_tz
, sizeof(sys_tz
)))
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
122 int persistent_clock_is_local
;
125 * Adjust the time obtained from the CMOS to be UTC time instead of
128 * This is ugly, but preferable to the alternatives. Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours) or
132 * compile in the timezone information into the kernel. Bad, bad....
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
140 static inline void warp_clock(void)
142 if (sys_tz
.tz_minuteswest
!= 0) {
143 struct timespec adjust
;
145 persistent_clock_is_local
= 1;
146 adjust
.tv_sec
= sys_tz
.tz_minuteswest
* 60;
148 timekeeping_inject_offset(&adjust
);
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
163 int do_sys_settimeofday64(const struct timespec64
*tv
, const struct timezone
*tz
)
165 static int firsttime
= 1;
168 if (tv
&& !timespec64_valid(tv
))
171 error
= security_settime64(tv
, tz
);
176 /* Verify we're witin the +-15 hrs range */
177 if (tz
->tz_minuteswest
> 15*60 || tz
->tz_minuteswest
< -15*60)
181 update_vsyscall_tz();
189 return do_settimeofday64(tv
);
193 SYSCALL_DEFINE2(settimeofday
, struct timeval __user
*, tv
,
194 struct timezone __user
*, tz
)
196 struct timeval user_tv
;
197 struct timespec new_ts
;
198 struct timezone new_tz
;
201 if (copy_from_user(&user_tv
, tv
, sizeof(*tv
)))
204 if (!timeval_valid(&user_tv
))
207 new_ts
.tv_sec
= user_tv
.tv_sec
;
208 new_ts
.tv_nsec
= user_tv
.tv_usec
* NSEC_PER_USEC
;
211 if (copy_from_user(&new_tz
, tz
, sizeof(*tz
)))
215 return do_sys_settimeofday(tv
? &new_ts
: NULL
, tz
? &new_tz
: NULL
);
218 SYSCALL_DEFINE1(adjtimex
, struct timex __user
*, txc_p
)
220 struct timex txc
; /* Local copy of parameter */
223 /* Copy the user data space into the kernel copy
224 * structure. But bear in mind that the structures
227 if(copy_from_user(&txc
, txc_p
, sizeof(struct timex
)))
229 ret
= do_adjtimex(&txc
);
230 return copy_to_user(txc_p
, &txc
, sizeof(struct timex
)) ? -EFAULT
: ret
;
234 * current_fs_time - Return FS time
237 * Return the current time truncated to the time granularity supported by
240 struct timespec
current_fs_time(struct super_block
*sb
)
242 struct timespec now
= current_kernel_time();
243 return timespec_trunc(now
, sb
->s_time_gran
);
245 EXPORT_SYMBOL(current_fs_time
);
248 * Convert jiffies to milliseconds and back.
250 * Avoid unnecessary multiplications/divisions in the
251 * two most common HZ cases:
253 unsigned int jiffies_to_msecs(const unsigned long j
)
255 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
256 return (MSEC_PER_SEC
/ HZ
) * j
;
257 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
258 return (j
+ (HZ
/ MSEC_PER_SEC
) - 1)/(HZ
/ MSEC_PER_SEC
);
260 # if BITS_PER_LONG == 32
261 return (HZ_TO_MSEC_MUL32
* j
) >> HZ_TO_MSEC_SHR32
;
263 return (j
* HZ_TO_MSEC_NUM
) / HZ_TO_MSEC_DEN
;
267 EXPORT_SYMBOL(jiffies_to_msecs
);
269 unsigned int jiffies_to_usecs(const unsigned long j
)
272 * Hz usually doesn't go much further MSEC_PER_SEC.
273 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
275 BUILD_BUG_ON(HZ
> USEC_PER_SEC
);
277 #if !(USEC_PER_SEC % HZ)
278 return (USEC_PER_SEC
/ HZ
) * j
;
280 # if BITS_PER_LONG == 32
281 return (HZ_TO_USEC_MUL32
* j
) >> HZ_TO_USEC_SHR32
;
283 return (j
* HZ_TO_USEC_NUM
) / HZ_TO_USEC_DEN
;
287 EXPORT_SYMBOL(jiffies_to_usecs
);
290 * timespec_trunc - Truncate timespec to a granularity
292 * @gran: Granularity in ns.
294 * Truncate a timespec to a granularity. Always rounds down. gran must
295 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
297 struct timespec
timespec_trunc(struct timespec t
, unsigned gran
)
299 /* Avoid division in the common cases 1 ns and 1 s. */
302 } else if (gran
== NSEC_PER_SEC
) {
304 } else if (gran
> 1 && gran
< NSEC_PER_SEC
) {
305 t
.tv_nsec
-= t
.tv_nsec
% gran
;
307 WARN(1, "illegal file time granularity: %u", gran
);
311 EXPORT_SYMBOL(timespec_trunc
);
314 * mktime64 - Converts date to seconds.
315 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
316 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
317 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
319 * [For the Julian calendar (which was used in Russia before 1917,
320 * Britain & colonies before 1752, anywhere else before 1582,
321 * and is still in use by some communities) leave out the
322 * -year/100+year/400 terms, and add 10.]
324 * This algorithm was first published by Gauss (I think).
326 * A leap second can be indicated by calling this function with sec as
327 * 60 (allowable under ISO 8601). The leap second is treated the same
328 * as the following second since they don't exist in UNIX time.
330 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
331 * tomorrow - (allowable under ISO 8601) is supported.
333 time64_t
mktime64(const unsigned int year0
, const unsigned int mon0
,
334 const unsigned int day
, const unsigned int hour
,
335 const unsigned int min
, const unsigned int sec
)
337 unsigned int mon
= mon0
, year
= year0
;
339 /* 1..12 -> 11,12,1..10 */
340 if (0 >= (int) (mon
-= 2)) {
341 mon
+= 12; /* Puts Feb last since it has leap day */
346 (year
/4 - year
/100 + year
/400 + 367*mon
/12 + day
) +
348 )*24 + hour
/* now have hours - midnight tomorrow handled here */
349 )*60 + min
/* now have minutes */
350 )*60 + sec
; /* finally seconds */
352 EXPORT_SYMBOL(mktime64
);
355 * set_normalized_timespec - set timespec sec and nsec parts and normalize
357 * @ts: pointer to timespec variable to be set
358 * @sec: seconds to set
359 * @nsec: nanoseconds to set
361 * Set seconds and nanoseconds field of a timespec variable and
362 * normalize to the timespec storage format
364 * Note: The tv_nsec part is always in the range of
365 * 0 <= tv_nsec < NSEC_PER_SEC
366 * For negative values only the tv_sec field is negative !
368 void set_normalized_timespec(struct timespec
*ts
, time_t sec
, s64 nsec
)
370 while (nsec
>= NSEC_PER_SEC
) {
372 * The following asm() prevents the compiler from
373 * optimising this loop into a modulo operation. See
374 * also __iter_div_u64_rem() in include/linux/time.h
376 asm("" : "+rm"(nsec
));
377 nsec
-= NSEC_PER_SEC
;
381 asm("" : "+rm"(nsec
));
382 nsec
+= NSEC_PER_SEC
;
388 EXPORT_SYMBOL(set_normalized_timespec
);
391 * ns_to_timespec - Convert nanoseconds to timespec
392 * @nsec: the nanoseconds value to be converted
394 * Returns the timespec representation of the nsec parameter.
396 struct timespec
ns_to_timespec(const s64 nsec
)
402 return (struct timespec
) {0, 0};
404 ts
.tv_sec
= div_s64_rem(nsec
, NSEC_PER_SEC
, &rem
);
405 if (unlikely(rem
< 0)) {
413 EXPORT_SYMBOL(ns_to_timespec
);
416 * ns_to_timeval - Convert nanoseconds to timeval
417 * @nsec: the nanoseconds value to be converted
419 * Returns the timeval representation of the nsec parameter.
421 struct timeval
ns_to_timeval(const s64 nsec
)
423 struct timespec ts
= ns_to_timespec(nsec
);
426 tv
.tv_sec
= ts
.tv_sec
;
427 tv
.tv_usec
= (suseconds_t
) ts
.tv_nsec
/ 1000;
431 EXPORT_SYMBOL(ns_to_timeval
);
433 #if BITS_PER_LONG == 32
435 * set_normalized_timespec - set timespec sec and nsec parts and normalize
437 * @ts: pointer to timespec variable to be set
438 * @sec: seconds to set
439 * @nsec: nanoseconds to set
441 * Set seconds and nanoseconds field of a timespec variable and
442 * normalize to the timespec storage format
444 * Note: The tv_nsec part is always in the range of
445 * 0 <= tv_nsec < NSEC_PER_SEC
446 * For negative values only the tv_sec field is negative !
448 void set_normalized_timespec64(struct timespec64
*ts
, time64_t sec
, s64 nsec
)
450 while (nsec
>= NSEC_PER_SEC
) {
452 * The following asm() prevents the compiler from
453 * optimising this loop into a modulo operation. See
454 * also __iter_div_u64_rem() in include/linux/time.h
456 asm("" : "+rm"(nsec
));
457 nsec
-= NSEC_PER_SEC
;
461 asm("" : "+rm"(nsec
));
462 nsec
+= NSEC_PER_SEC
;
468 EXPORT_SYMBOL(set_normalized_timespec64
);
471 * ns_to_timespec64 - Convert nanoseconds to timespec64
472 * @nsec: the nanoseconds value to be converted
474 * Returns the timespec64 representation of the nsec parameter.
476 struct timespec64
ns_to_timespec64(const s64 nsec
)
478 struct timespec64 ts
;
482 return (struct timespec64
) {0, 0};
484 ts
.tv_sec
= div_s64_rem(nsec
, NSEC_PER_SEC
, &rem
);
485 if (unlikely(rem
< 0)) {
493 EXPORT_SYMBOL(ns_to_timespec64
);
496 * msecs_to_jiffies: - convert milliseconds to jiffies
497 * @m: time in milliseconds
499 * conversion is done as follows:
501 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
503 * - 'too large' values [that would result in larger than
504 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
506 * - all other values are converted to jiffies by either multiplying
507 * the input value by a factor or dividing it with a factor and
508 * handling any 32-bit overflows.
509 * for the details see __msecs_to_jiffies()
511 * msecs_to_jiffies() checks for the passed in value being a constant
512 * via __builtin_constant_p() allowing gcc to eliminate most of the
513 * code, __msecs_to_jiffies() is called if the value passed does not
514 * allow constant folding and the actual conversion must be done at
516 * the _msecs_to_jiffies helpers are the HZ dependent conversion
517 * routines found in include/linux/jiffies.h
519 unsigned long __msecs_to_jiffies(const unsigned int m
)
522 * Negative value, means infinite timeout:
525 return MAX_JIFFY_OFFSET
;
526 return _msecs_to_jiffies(m
);
528 EXPORT_SYMBOL(__msecs_to_jiffies
);
530 unsigned long __usecs_to_jiffies(const unsigned int u
)
532 if (u
> jiffies_to_usecs(MAX_JIFFY_OFFSET
))
533 return MAX_JIFFY_OFFSET
;
534 return _usecs_to_jiffies(u
);
536 EXPORT_SYMBOL(__usecs_to_jiffies
);
539 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
540 * that a remainder subtract here would not do the right thing as the
541 * resolution values don't fall on second boundries. I.e. the line:
542 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
543 * Note that due to the small error in the multiplier here, this
544 * rounding is incorrect for sufficiently large values of tv_nsec, but
545 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
548 * Rather, we just shift the bits off the right.
550 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
551 * value to a scaled second value.
554 __timespec64_to_jiffies(u64 sec
, long nsec
)
556 nsec
= nsec
+ TICK_NSEC
- 1;
558 if (sec
>= MAX_SEC_IN_JIFFIES
){
559 sec
= MAX_SEC_IN_JIFFIES
;
562 return ((sec
* SEC_CONVERSION
) +
563 (((u64
)nsec
* NSEC_CONVERSION
) >>
564 (NSEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
569 __timespec_to_jiffies(unsigned long sec
, long nsec
)
571 return __timespec64_to_jiffies((u64
)sec
, nsec
);
575 timespec64_to_jiffies(const struct timespec64
*value
)
577 return __timespec64_to_jiffies(value
->tv_sec
, value
->tv_nsec
);
579 EXPORT_SYMBOL(timespec64_to_jiffies
);
582 jiffies_to_timespec64(const unsigned long jiffies
, struct timespec64
*value
)
585 * Convert jiffies to nanoseconds and separate with
589 value
->tv_sec
= div_u64_rem((u64
)jiffies
* TICK_NSEC
,
591 value
->tv_nsec
= rem
;
593 EXPORT_SYMBOL(jiffies_to_timespec64
);
596 * We could use a similar algorithm to timespec_to_jiffies (with a
597 * different multiplier for usec instead of nsec). But this has a
598 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
599 * usec value, since it's not necessarily integral.
601 * We could instead round in the intermediate scaled representation
602 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
603 * perilous: the scaling introduces a small positive error, which
604 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
605 * units to the intermediate before shifting) leads to accidental
606 * overflow and overestimates.
608 * At the cost of one additional multiplication by a constant, just
609 * use the timespec implementation.
612 timeval_to_jiffies(const struct timeval
*value
)
614 return __timespec_to_jiffies(value
->tv_sec
,
615 value
->tv_usec
* NSEC_PER_USEC
);
617 EXPORT_SYMBOL(timeval_to_jiffies
);
619 void jiffies_to_timeval(const unsigned long jiffies
, struct timeval
*value
)
622 * Convert jiffies to nanoseconds and separate with
627 value
->tv_sec
= div_u64_rem((u64
)jiffies
* TICK_NSEC
,
629 value
->tv_usec
= rem
/ NSEC_PER_USEC
;
631 EXPORT_SYMBOL(jiffies_to_timeval
);
634 * Convert jiffies/jiffies_64 to clock_t and back.
636 clock_t jiffies_to_clock_t(unsigned long x
)
638 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
640 return x
* (USER_HZ
/ HZ
);
642 return x
/ (HZ
/ USER_HZ
);
645 return div_u64((u64
)x
* TICK_NSEC
, NSEC_PER_SEC
/ USER_HZ
);
648 EXPORT_SYMBOL(jiffies_to_clock_t
);
650 unsigned long clock_t_to_jiffies(unsigned long x
)
652 #if (HZ % USER_HZ)==0
653 if (x
>= ~0UL / (HZ
/ USER_HZ
))
655 return x
* (HZ
/ USER_HZ
);
657 /* Don't worry about loss of precision here .. */
658 if (x
>= ~0UL / HZ
* USER_HZ
)
661 /* .. but do try to contain it here */
662 return div_u64((u64
)x
* HZ
, USER_HZ
);
665 EXPORT_SYMBOL(clock_t_to_jiffies
);
667 u64
jiffies_64_to_clock_t(u64 x
)
669 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
671 x
= div_u64(x
* USER_HZ
, HZ
);
673 x
= div_u64(x
, HZ
/ USER_HZ
);
679 * There are better ways that don't overflow early,
680 * but even this doesn't overflow in hundreds of years
683 x
= div_u64(x
* TICK_NSEC
, (NSEC_PER_SEC
/ USER_HZ
));
687 EXPORT_SYMBOL(jiffies_64_to_clock_t
);
689 u64
nsec_to_clock_t(u64 x
)
691 #if (NSEC_PER_SEC % USER_HZ) == 0
692 return div_u64(x
, NSEC_PER_SEC
/ USER_HZ
);
693 #elif (USER_HZ % 512) == 0
694 return div_u64(x
* USER_HZ
/ 512, NSEC_PER_SEC
/ 512);
697 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
698 * overflow after 64.99 years.
699 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
701 return div_u64(x
* 9, (9ull * NSEC_PER_SEC
+ (USER_HZ
/ 2)) / USER_HZ
);
705 u64
jiffies64_to_nsecs(u64 j
)
707 #if !(NSEC_PER_SEC % HZ)
708 return (NSEC_PER_SEC
/ HZ
) * j
;
710 return div_u64(j
* HZ_TO_NSEC_NUM
, HZ_TO_NSEC_DEN
);
713 EXPORT_SYMBOL(jiffies64_to_nsecs
);
716 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
720 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
721 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
722 * for scheduler, not for use in device drivers to calculate timeout value.
725 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
726 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
728 u64
nsecs_to_jiffies64(u64 n
)
730 #if (NSEC_PER_SEC % HZ) == 0
731 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
732 return div_u64(n
, NSEC_PER_SEC
/ HZ
);
733 #elif (HZ % 512) == 0
734 /* overflow after 292 years if HZ = 1024 */
735 return div_u64(n
* HZ
/ 512, NSEC_PER_SEC
/ 512);
738 * Generic case - optimized for cases where HZ is a multiple of 3.
739 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
741 return div_u64(n
* 9, (9ull * NSEC_PER_SEC
+ HZ
/ 2) / HZ
);
744 EXPORT_SYMBOL(nsecs_to_jiffies64
);
747 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
751 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
752 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
753 * for scheduler, not for use in device drivers to calculate timeout value.
756 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
757 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
759 unsigned long nsecs_to_jiffies(u64 n
)
761 return (unsigned long)nsecs_to_jiffies64(n
);
763 EXPORT_SYMBOL_GPL(nsecs_to_jiffies
);
766 * Add two timespec values and do a safety check for overflow.
767 * It's assumed that both values are valid (>= 0)
769 struct timespec
timespec_add_safe(const struct timespec lhs
,
770 const struct timespec rhs
)
774 set_normalized_timespec(&res
, lhs
.tv_sec
+ rhs
.tv_sec
,
775 lhs
.tv_nsec
+ rhs
.tv_nsec
);
777 if (res
.tv_sec
< lhs
.tv_sec
|| res
.tv_sec
< rhs
.tv_sec
)
778 res
.tv_sec
= TIME_T_MAX
;
784 * Add two timespec64 values and do a safety check for overflow.
785 * It's assumed that both values are valid (>= 0).
786 * And, each timespec64 is in normalized form.
788 struct timespec64
timespec64_add_safe(const struct timespec64 lhs
,
789 const struct timespec64 rhs
)
791 struct timespec64 res
;
793 set_normalized_timespec64(&res
, (timeu64_t
) lhs
.tv_sec
+ rhs
.tv_sec
,
794 lhs
.tv_nsec
+ rhs
.tv_nsec
);
796 if (unlikely(res
.tv_sec
< lhs
.tv_sec
|| res
.tv_sec
< rhs
.tv_sec
)) {
797 res
.tv_sec
= TIME64_MAX
;