2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 #include <asm/sections.h>
28 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
29 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions
[INIT_PHYSMEM_REGIONS
] __initdata_memblock
;
34 struct memblock memblock __initdata_memblock
= {
35 .memory
.regions
= memblock_memory_init_regions
,
36 .memory
.cnt
= 1, /* empty dummy entry */
37 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
38 .memory
.name
= "memory",
40 .reserved
.regions
= memblock_reserved_init_regions
,
41 .reserved
.cnt
= 1, /* empty dummy entry */
42 .reserved
.max
= INIT_MEMBLOCK_REGIONS
,
43 .reserved
.name
= "reserved",
45 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
46 .physmem
.regions
= memblock_physmem_init_regions
,
47 .physmem
.cnt
= 1, /* empty dummy entry */
48 .physmem
.max
= INIT_PHYSMEM_REGIONS
,
49 .physmem
.name
= "physmem",
53 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
56 int memblock_debug __initdata_memblock
;
57 #ifdef CONFIG_MOVABLE_NODE
58 bool movable_node_enabled __initdata_memblock
= false;
60 static bool system_has_some_mirror __initdata_memblock
= false;
61 static int memblock_can_resize __initdata_memblock
;
62 static int memblock_memory_in_slab __initdata_memblock
= 0;
63 static int memblock_reserved_in_slab __initdata_memblock
= 0;
65 ulong __init_memblock
choose_memblock_flags(void)
67 return system_has_some_mirror
? MEMBLOCK_MIRROR
: MEMBLOCK_NONE
;
70 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
71 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
73 return *size
= min(*size
, (phys_addr_t
)ULLONG_MAX
- base
);
77 * Address comparison utilities
79 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
80 phys_addr_t base2
, phys_addr_t size2
)
82 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
85 bool __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
86 phys_addr_t base
, phys_addr_t size
)
90 for (i
= 0; i
< type
->cnt
; i
++)
91 if (memblock_addrs_overlap(base
, size
, type
->regions
[i
].base
,
92 type
->regions
[i
].size
))
98 * __memblock_find_range_bottom_up - find free area utility in bottom-up
99 * @start: start of candidate range
100 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
101 * @size: size of free area to find
102 * @align: alignment of free area to find
103 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
104 * @flags: pick from blocks based on memory attributes
106 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
109 * Found address on success, 0 on failure.
111 static phys_addr_t __init_memblock
112 __memblock_find_range_bottom_up(phys_addr_t start
, phys_addr_t end
,
113 phys_addr_t size
, phys_addr_t align
, int nid
,
116 phys_addr_t this_start
, this_end
, cand
;
119 for_each_free_mem_range(i
, nid
, flags
, &this_start
, &this_end
, NULL
) {
120 this_start
= clamp(this_start
, start
, end
);
121 this_end
= clamp(this_end
, start
, end
);
123 cand
= round_up(this_start
, align
);
124 if (cand
< this_end
&& this_end
- cand
>= size
)
132 * __memblock_find_range_top_down - find free area utility, in top-down
133 * @start: start of candidate range
134 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
135 * @size: size of free area to find
136 * @align: alignment of free area to find
137 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
138 * @flags: pick from blocks based on memory attributes
140 * Utility called from memblock_find_in_range_node(), find free area top-down.
143 * Found address on success, 0 on failure.
145 static phys_addr_t __init_memblock
146 __memblock_find_range_top_down(phys_addr_t start
, phys_addr_t end
,
147 phys_addr_t size
, phys_addr_t align
, int nid
,
150 phys_addr_t this_start
, this_end
, cand
;
153 for_each_free_mem_range_reverse(i
, nid
, flags
, &this_start
, &this_end
,
155 this_start
= clamp(this_start
, start
, end
);
156 this_end
= clamp(this_end
, start
, end
);
161 cand
= round_down(this_end
- size
, align
);
162 if (cand
>= this_start
)
170 * memblock_find_in_range_node - find free area in given range and node
171 * @size: size of free area to find
172 * @align: alignment of free area to find
173 * @start: start of candidate range
174 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
175 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
176 * @flags: pick from blocks based on memory attributes
178 * Find @size free area aligned to @align in the specified range and node.
180 * When allocation direction is bottom-up, the @start should be greater
181 * than the end of the kernel image. Otherwise, it will be trimmed. The
182 * reason is that we want the bottom-up allocation just near the kernel
183 * image so it is highly likely that the allocated memory and the kernel
184 * will reside in the same node.
186 * If bottom-up allocation failed, will try to allocate memory top-down.
189 * Found address on success, 0 on failure.
191 phys_addr_t __init_memblock
memblock_find_in_range_node(phys_addr_t size
,
192 phys_addr_t align
, phys_addr_t start
,
193 phys_addr_t end
, int nid
, ulong flags
)
195 phys_addr_t kernel_end
, ret
;
198 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
199 end
= memblock
.current_limit
;
201 /* avoid allocating the first page */
202 start
= max_t(phys_addr_t
, start
, PAGE_SIZE
);
203 end
= max(start
, end
);
204 kernel_end
= __pa_symbol(_end
);
207 * try bottom-up allocation only when bottom-up mode
208 * is set and @end is above the kernel image.
210 if (memblock_bottom_up() && end
> kernel_end
) {
211 phys_addr_t bottom_up_start
;
213 /* make sure we will allocate above the kernel */
214 bottom_up_start
= max(start
, kernel_end
);
216 /* ok, try bottom-up allocation first */
217 ret
= __memblock_find_range_bottom_up(bottom_up_start
, end
,
218 size
, align
, nid
, flags
);
223 * we always limit bottom-up allocation above the kernel,
224 * but top-down allocation doesn't have the limit, so
225 * retrying top-down allocation may succeed when bottom-up
228 * bottom-up allocation is expected to be fail very rarely,
229 * so we use WARN_ONCE() here to see the stack trace if
232 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
235 return __memblock_find_range_top_down(start
, end
, size
, align
, nid
,
240 * memblock_find_in_range - find free area in given range
241 * @start: start of candidate range
242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
243 * @size: size of free area to find
244 * @align: alignment of free area to find
246 * Find @size free area aligned to @align in the specified range.
249 * Found address on success, 0 on failure.
251 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
,
252 phys_addr_t end
, phys_addr_t size
,
256 ulong flags
= choose_memblock_flags();
259 ret
= memblock_find_in_range_node(size
, align
, start
, end
,
260 NUMA_NO_NODE
, flags
);
262 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
263 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
265 flags
&= ~MEMBLOCK_MIRROR
;
272 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
274 type
->total_size
-= type
->regions
[r
].size
;
275 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
276 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
279 /* Special case for empty arrays */
280 if (type
->cnt
== 0) {
281 WARN_ON(type
->total_size
!= 0);
283 type
->regions
[0].base
= 0;
284 type
->regions
[0].size
= 0;
285 type
->regions
[0].flags
= 0;
286 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
290 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
292 phys_addr_t __init_memblock
get_allocated_memblock_reserved_regions_info(
295 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
298 *addr
= __pa(memblock
.reserved
.regions
);
300 return PAGE_ALIGN(sizeof(struct memblock_region
) *
301 memblock
.reserved
.max
);
304 phys_addr_t __init_memblock
get_allocated_memblock_memory_regions_info(
307 if (memblock
.memory
.regions
== memblock_memory_init_regions
)
310 *addr
= __pa(memblock
.memory
.regions
);
312 return PAGE_ALIGN(sizeof(struct memblock_region
) *
313 memblock
.memory
.max
);
319 * memblock_double_array - double the size of the memblock regions array
320 * @type: memblock type of the regions array being doubled
321 * @new_area_start: starting address of memory range to avoid overlap with
322 * @new_area_size: size of memory range to avoid overlap with
324 * Double the size of the @type regions array. If memblock is being used to
325 * allocate memory for a new reserved regions array and there is a previously
326 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
327 * waiting to be reserved, ensure the memory used by the new array does
331 * 0 on success, -1 on failure.
333 static int __init_memblock
memblock_double_array(struct memblock_type
*type
,
334 phys_addr_t new_area_start
,
335 phys_addr_t new_area_size
)
337 struct memblock_region
*new_array
, *old_array
;
338 phys_addr_t old_alloc_size
, new_alloc_size
;
339 phys_addr_t old_size
, new_size
, addr
;
340 int use_slab
= slab_is_available();
343 /* We don't allow resizing until we know about the reserved regions
344 * of memory that aren't suitable for allocation
346 if (!memblock_can_resize
)
349 /* Calculate new doubled size */
350 old_size
= type
->max
* sizeof(struct memblock_region
);
351 new_size
= old_size
<< 1;
353 * We need to allocated new one align to PAGE_SIZE,
354 * so we can free them completely later.
356 old_alloc_size
= PAGE_ALIGN(old_size
);
357 new_alloc_size
= PAGE_ALIGN(new_size
);
359 /* Retrieve the slab flag */
360 if (type
== &memblock
.memory
)
361 in_slab
= &memblock_memory_in_slab
;
363 in_slab
= &memblock_reserved_in_slab
;
365 /* Try to find some space for it.
367 * WARNING: We assume that either slab_is_available() and we use it or
368 * we use MEMBLOCK for allocations. That means that this is unsafe to
369 * use when bootmem is currently active (unless bootmem itself is
370 * implemented on top of MEMBLOCK which isn't the case yet)
372 * This should however not be an issue for now, as we currently only
373 * call into MEMBLOCK while it's still active, or much later when slab
374 * is active for memory hotplug operations
377 new_array
= kmalloc(new_size
, GFP_KERNEL
);
378 addr
= new_array
? __pa(new_array
) : 0;
380 /* only exclude range when trying to double reserved.regions */
381 if (type
!= &memblock
.reserved
)
382 new_area_start
= new_area_size
= 0;
384 addr
= memblock_find_in_range(new_area_start
+ new_area_size
,
385 memblock
.current_limit
,
386 new_alloc_size
, PAGE_SIZE
);
387 if (!addr
&& new_area_size
)
388 addr
= memblock_find_in_range(0,
389 min(new_area_start
, memblock
.current_limit
),
390 new_alloc_size
, PAGE_SIZE
);
392 new_array
= addr
? __va(addr
) : NULL
;
395 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
396 type
->name
, type
->max
, type
->max
* 2);
400 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
401 type
->name
, type
->max
* 2, (u64
)addr
,
402 (u64
)addr
+ new_size
- 1);
405 * Found space, we now need to move the array over before we add the
406 * reserved region since it may be our reserved array itself that is
409 memcpy(new_array
, type
->regions
, old_size
);
410 memset(new_array
+ type
->max
, 0, old_size
);
411 old_array
= type
->regions
;
412 type
->regions
= new_array
;
415 /* Free old array. We needn't free it if the array is the static one */
418 else if (old_array
!= memblock_memory_init_regions
&&
419 old_array
!= memblock_reserved_init_regions
)
420 memblock_free(__pa(old_array
), old_alloc_size
);
423 * Reserve the new array if that comes from the memblock. Otherwise, we
427 BUG_ON(memblock_reserve(addr
, new_alloc_size
));
429 /* Update slab flag */
436 * memblock_merge_regions - merge neighboring compatible regions
437 * @type: memblock type to scan
439 * Scan @type and merge neighboring compatible regions.
441 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
445 /* cnt never goes below 1 */
446 while (i
< type
->cnt
- 1) {
447 struct memblock_region
*this = &type
->regions
[i
];
448 struct memblock_region
*next
= &type
->regions
[i
+ 1];
450 if (this->base
+ this->size
!= next
->base
||
451 memblock_get_region_node(this) !=
452 memblock_get_region_node(next
) ||
453 this->flags
!= next
->flags
) {
454 BUG_ON(this->base
+ this->size
> next
->base
);
459 this->size
+= next
->size
;
460 /* move forward from next + 1, index of which is i + 2 */
461 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 2)) * sizeof(*next
));
467 * memblock_insert_region - insert new memblock region
468 * @type: memblock type to insert into
469 * @idx: index for the insertion point
470 * @base: base address of the new region
471 * @size: size of the new region
472 * @nid: node id of the new region
473 * @flags: flags of the new region
475 * Insert new memblock region [@base,@base+@size) into @type at @idx.
476 * @type must already have extra room to accommodate the new region.
478 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
479 int idx
, phys_addr_t base
,
481 int nid
, unsigned long flags
)
483 struct memblock_region
*rgn
= &type
->regions
[idx
];
485 BUG_ON(type
->cnt
>= type
->max
);
486 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
490 memblock_set_region_node(rgn
, nid
);
492 type
->total_size
+= size
;
496 * memblock_add_range - add new memblock region
497 * @type: memblock type to add new region into
498 * @base: base address of the new region
499 * @size: size of the new region
500 * @nid: nid of the new region
501 * @flags: flags of the new region
503 * Add new memblock region [@base,@base+@size) into @type. The new region
504 * is allowed to overlap with existing ones - overlaps don't affect already
505 * existing regions. @type is guaranteed to be minimal (all neighbouring
506 * compatible regions are merged) after the addition.
509 * 0 on success, -errno on failure.
511 int __init_memblock
memblock_add_range(struct memblock_type
*type
,
512 phys_addr_t base
, phys_addr_t size
,
513 int nid
, unsigned long flags
)
516 phys_addr_t obase
= base
;
517 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
519 struct memblock_region
*rgn
;
524 /* special case for empty array */
525 if (type
->regions
[0].size
== 0) {
526 WARN_ON(type
->cnt
!= 1 || type
->total_size
);
527 type
->regions
[0].base
= base
;
528 type
->regions
[0].size
= size
;
529 type
->regions
[0].flags
= flags
;
530 memblock_set_region_node(&type
->regions
[0], nid
);
531 type
->total_size
= size
;
536 * The following is executed twice. Once with %false @insert and
537 * then with %true. The first counts the number of regions needed
538 * to accommodate the new area. The second actually inserts them.
543 for_each_memblock_type(type
, rgn
) {
544 phys_addr_t rbase
= rgn
->base
;
545 phys_addr_t rend
= rbase
+ rgn
->size
;
552 * @rgn overlaps. If it separates the lower part of new
553 * area, insert that portion.
556 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
557 WARN_ON(nid
!= memblock_get_region_node(rgn
));
559 WARN_ON(flags
!= rgn
->flags
);
562 memblock_insert_region(type
, idx
++, base
,
566 /* area below @rend is dealt with, forget about it */
567 base
= min(rend
, end
);
570 /* insert the remaining portion */
574 memblock_insert_region(type
, idx
, base
, end
- base
,
582 * If this was the first round, resize array and repeat for actual
583 * insertions; otherwise, merge and return.
586 while (type
->cnt
+ nr_new
> type
->max
)
587 if (memblock_double_array(type
, obase
, size
) < 0)
592 memblock_merge_regions(type
);
597 int __init_memblock
memblock_add_node(phys_addr_t base
, phys_addr_t size
,
600 return memblock_add_range(&memblock
.memory
, base
, size
, nid
, 0);
603 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
605 phys_addr_t end
= base
+ size
- 1;
607 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
608 &base
, &end
, (void *)_RET_IP_
);
610 return memblock_add_range(&memblock
.memory
, base
, size
, MAX_NUMNODES
, 0);
614 * memblock_isolate_range - isolate given range into disjoint memblocks
615 * @type: memblock type to isolate range for
616 * @base: base of range to isolate
617 * @size: size of range to isolate
618 * @start_rgn: out parameter for the start of isolated region
619 * @end_rgn: out parameter for the end of isolated region
621 * Walk @type and ensure that regions don't cross the boundaries defined by
622 * [@base,@base+@size). Crossing regions are split at the boundaries,
623 * which may create at most two more regions. The index of the first
624 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
627 * 0 on success, -errno on failure.
629 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
630 phys_addr_t base
, phys_addr_t size
,
631 int *start_rgn
, int *end_rgn
)
633 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
635 struct memblock_region
*rgn
;
637 *start_rgn
= *end_rgn
= 0;
642 /* we'll create at most two more regions */
643 while (type
->cnt
+ 2 > type
->max
)
644 if (memblock_double_array(type
, base
, size
) < 0)
647 for_each_memblock_type(type
, rgn
) {
648 phys_addr_t rbase
= rgn
->base
;
649 phys_addr_t rend
= rbase
+ rgn
->size
;
658 * @rgn intersects from below. Split and continue
659 * to process the next region - the new top half.
662 rgn
->size
-= base
- rbase
;
663 type
->total_size
-= base
- rbase
;
664 memblock_insert_region(type
, idx
, rbase
, base
- rbase
,
665 memblock_get_region_node(rgn
),
667 } else if (rend
> end
) {
669 * @rgn intersects from above. Split and redo the
670 * current region - the new bottom half.
673 rgn
->size
-= end
- rbase
;
674 type
->total_size
-= end
- rbase
;
675 memblock_insert_region(type
, idx
--, rbase
, end
- rbase
,
676 memblock_get_region_node(rgn
),
679 /* @rgn is fully contained, record it */
689 static int __init_memblock
memblock_remove_range(struct memblock_type
*type
,
690 phys_addr_t base
, phys_addr_t size
)
692 int start_rgn
, end_rgn
;
695 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
699 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
700 memblock_remove_region(type
, i
);
704 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
706 return memblock_remove_range(&memblock
.memory
, base
, size
);
710 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
712 phys_addr_t end
= base
+ size
- 1;
714 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
715 &base
, &end
, (void *)_RET_IP_
);
717 kmemleak_free_part_phys(base
, size
);
718 return memblock_remove_range(&memblock
.reserved
, base
, size
);
721 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
723 phys_addr_t end
= base
+ size
- 1;
725 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
726 &base
, &end
, (void *)_RET_IP_
);
728 return memblock_add_range(&memblock
.reserved
, base
, size
, MAX_NUMNODES
, 0);
733 * This function isolates region [@base, @base + @size), and sets/clears flag
735 * Return 0 on success, -errno on failure.
737 static int __init_memblock
memblock_setclr_flag(phys_addr_t base
,
738 phys_addr_t size
, int set
, int flag
)
740 struct memblock_type
*type
= &memblock
.memory
;
741 int i
, ret
, start_rgn
, end_rgn
;
743 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
747 for (i
= start_rgn
; i
< end_rgn
; i
++)
749 memblock_set_region_flags(&type
->regions
[i
], flag
);
751 memblock_clear_region_flags(&type
->regions
[i
], flag
);
753 memblock_merge_regions(type
);
758 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
759 * @base: the base phys addr of the region
760 * @size: the size of the region
762 * Return 0 on success, -errno on failure.
764 int __init_memblock
memblock_mark_hotplug(phys_addr_t base
, phys_addr_t size
)
766 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_HOTPLUG
);
770 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
771 * @base: the base phys addr of the region
772 * @size: the size of the region
774 * Return 0 on success, -errno on failure.
776 int __init_memblock
memblock_clear_hotplug(phys_addr_t base
, phys_addr_t size
)
778 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_HOTPLUG
);
782 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
783 * @base: the base phys addr of the region
784 * @size: the size of the region
786 * Return 0 on success, -errno on failure.
788 int __init_memblock
memblock_mark_mirror(phys_addr_t base
, phys_addr_t size
)
790 system_has_some_mirror
= true;
792 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_MIRROR
);
796 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
797 * @base: the base phys addr of the region
798 * @size: the size of the region
800 * Return 0 on success, -errno on failure.
802 int __init_memblock
memblock_mark_nomap(phys_addr_t base
, phys_addr_t size
)
804 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_NOMAP
);
808 * __next_reserved_mem_region - next function for for_each_reserved_region()
809 * @idx: pointer to u64 loop variable
810 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
811 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
813 * Iterate over all reserved memory regions.
815 void __init_memblock
__next_reserved_mem_region(u64
*idx
,
816 phys_addr_t
*out_start
,
817 phys_addr_t
*out_end
)
819 struct memblock_type
*type
= &memblock
.reserved
;
821 if (*idx
< type
->cnt
) {
822 struct memblock_region
*r
= &type
->regions
[*idx
];
823 phys_addr_t base
= r
->base
;
824 phys_addr_t size
= r
->size
;
829 *out_end
= base
+ size
- 1;
835 /* signal end of iteration */
840 * __next__mem_range - next function for for_each_free_mem_range() etc.
841 * @idx: pointer to u64 loop variable
842 * @nid: node selector, %NUMA_NO_NODE for all nodes
843 * @flags: pick from blocks based on memory attributes
844 * @type_a: pointer to memblock_type from where the range is taken
845 * @type_b: pointer to memblock_type which excludes memory from being taken
846 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
847 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
848 * @out_nid: ptr to int for nid of the range, can be %NULL
850 * Find the first area from *@idx which matches @nid, fill the out
851 * parameters, and update *@idx for the next iteration. The lower 32bit of
852 * *@idx contains index into type_a and the upper 32bit indexes the
853 * areas before each region in type_b. For example, if type_b regions
854 * look like the following,
856 * 0:[0-16), 1:[32-48), 2:[128-130)
858 * The upper 32bit indexes the following regions.
860 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
862 * As both region arrays are sorted, the function advances the two indices
863 * in lockstep and returns each intersection.
865 void __init_memblock
__next_mem_range(u64
*idx
, int nid
, ulong flags
,
866 struct memblock_type
*type_a
,
867 struct memblock_type
*type_b
,
868 phys_addr_t
*out_start
,
869 phys_addr_t
*out_end
, int *out_nid
)
871 int idx_a
= *idx
& 0xffffffff;
872 int idx_b
= *idx
>> 32;
874 if (WARN_ONCE(nid
== MAX_NUMNODES
,
875 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
878 for (; idx_a
< type_a
->cnt
; idx_a
++) {
879 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
881 phys_addr_t m_start
= m
->base
;
882 phys_addr_t m_end
= m
->base
+ m
->size
;
883 int m_nid
= memblock_get_region_node(m
);
885 /* only memory regions are associated with nodes, check it */
886 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
889 /* skip hotpluggable memory regions if needed */
890 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
893 /* if we want mirror memory skip non-mirror memory regions */
894 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
897 /* skip nomap memory unless we were asked for it explicitly */
898 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
903 *out_start
= m_start
;
909 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
913 /* scan areas before each reservation */
914 for (; idx_b
< type_b
->cnt
+ 1; idx_b
++) {
915 struct memblock_region
*r
;
919 r
= &type_b
->regions
[idx_b
];
920 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
921 r_end
= idx_b
< type_b
->cnt
?
922 r
->base
: ULLONG_MAX
;
925 * if idx_b advanced past idx_a,
926 * break out to advance idx_a
928 if (r_start
>= m_end
)
930 /* if the two regions intersect, we're done */
931 if (m_start
< r_end
) {
934 max(m_start
, r_start
);
936 *out_end
= min(m_end
, r_end
);
940 * The region which ends first is
941 * advanced for the next iteration.
947 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
953 /* signal end of iteration */
958 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
960 * Finds the next range from type_a which is not marked as unsuitable
963 * @idx: pointer to u64 loop variable
964 * @nid: node selector, %NUMA_NO_NODE for all nodes
965 * @flags: pick from blocks based on memory attributes
966 * @type_a: pointer to memblock_type from where the range is taken
967 * @type_b: pointer to memblock_type which excludes memory from being taken
968 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
969 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
970 * @out_nid: ptr to int for nid of the range, can be %NULL
972 * Reverse of __next_mem_range().
974 void __init_memblock
__next_mem_range_rev(u64
*idx
, int nid
, ulong flags
,
975 struct memblock_type
*type_a
,
976 struct memblock_type
*type_b
,
977 phys_addr_t
*out_start
,
978 phys_addr_t
*out_end
, int *out_nid
)
980 int idx_a
= *idx
& 0xffffffff;
981 int idx_b
= *idx
>> 32;
983 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
986 if (*idx
== (u64
)ULLONG_MAX
) {
987 idx_a
= type_a
->cnt
- 1;
994 for (; idx_a
>= 0; idx_a
--) {
995 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
997 phys_addr_t m_start
= m
->base
;
998 phys_addr_t m_end
= m
->base
+ m
->size
;
999 int m_nid
= memblock_get_region_node(m
);
1001 /* only memory regions are associated with nodes, check it */
1002 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
1005 /* skip hotpluggable memory regions if needed */
1006 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
1009 /* if we want mirror memory skip non-mirror memory regions */
1010 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
1013 /* skip nomap memory unless we were asked for it explicitly */
1014 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
1019 *out_start
= m_start
;
1025 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1029 /* scan areas before each reservation */
1030 for (; idx_b
>= 0; idx_b
--) {
1031 struct memblock_region
*r
;
1032 phys_addr_t r_start
;
1035 r
= &type_b
->regions
[idx_b
];
1036 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
1037 r_end
= idx_b
< type_b
->cnt
?
1038 r
->base
: ULLONG_MAX
;
1040 * if idx_b advanced past idx_a,
1041 * break out to advance idx_a
1044 if (r_end
<= m_start
)
1046 /* if the two regions intersect, we're done */
1047 if (m_end
> r_start
) {
1049 *out_start
= max(m_start
, r_start
);
1051 *out_end
= min(m_end
, r_end
);
1054 if (m_start
>= r_start
)
1058 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1063 /* signal end of iteration */
1067 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1069 * Common iterator interface used to define for_each_mem_range().
1071 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
1072 unsigned long *out_start_pfn
,
1073 unsigned long *out_end_pfn
, int *out_nid
)
1075 struct memblock_type
*type
= &memblock
.memory
;
1076 struct memblock_region
*r
;
1078 while (++*idx
< type
->cnt
) {
1079 r
= &type
->regions
[*idx
];
1081 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
1083 if (nid
== MAX_NUMNODES
|| nid
== r
->nid
)
1086 if (*idx
>= type
->cnt
) {
1092 *out_start_pfn
= PFN_UP(r
->base
);
1094 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
1099 unsigned long __init_memblock
memblock_next_valid_pfn(unsigned long pfn
,
1100 unsigned long max_pfn
)
1102 struct memblock_type
*type
= &memblock
.memory
;
1103 unsigned int right
= type
->cnt
;
1104 unsigned int mid
, left
= 0;
1105 phys_addr_t addr
= PFN_PHYS(pfn
+ 1);
1108 mid
= (right
+ left
) / 2;
1110 if (addr
< type
->regions
[mid
].base
)
1112 else if (addr
>= (type
->regions
[mid
].base
+
1113 type
->regions
[mid
].size
))
1116 /* addr is within the region, so pfn + 1 is valid */
1117 return min(pfn
+ 1, max_pfn
);
1119 } while (left
< right
);
1121 if (right
== type
->cnt
)
1124 return min(PHYS_PFN(type
->regions
[right
].base
), max_pfn
);
1128 * memblock_set_node - set node ID on memblock regions
1129 * @base: base of area to set node ID for
1130 * @size: size of area to set node ID for
1131 * @type: memblock type to set node ID for
1132 * @nid: node ID to set
1134 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1135 * Regions which cross the area boundaries are split as necessary.
1138 * 0 on success, -errno on failure.
1140 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
1141 struct memblock_type
*type
, int nid
)
1143 int start_rgn
, end_rgn
;
1146 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
1150 for (i
= start_rgn
; i
< end_rgn
; i
++)
1151 memblock_set_region_node(&type
->regions
[i
], nid
);
1153 memblock_merge_regions(type
);
1156 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1158 static phys_addr_t __init
memblock_alloc_range_nid(phys_addr_t size
,
1159 phys_addr_t align
, phys_addr_t start
,
1160 phys_addr_t end
, int nid
, ulong flags
)
1165 align
= SMP_CACHE_BYTES
;
1167 found
= memblock_find_in_range_node(size
, align
, start
, end
, nid
,
1169 if (found
&& !memblock_reserve(found
, size
)) {
1171 * The min_count is set to 0 so that memblock allocations are
1172 * never reported as leaks.
1174 kmemleak_alloc_phys(found
, size
, 0, 0);
1180 phys_addr_t __init
memblock_alloc_range(phys_addr_t size
, phys_addr_t align
,
1181 phys_addr_t start
, phys_addr_t end
,
1184 return memblock_alloc_range_nid(size
, align
, start
, end
, NUMA_NO_NODE
,
1188 static phys_addr_t __init
memblock_alloc_base_nid(phys_addr_t size
,
1189 phys_addr_t align
, phys_addr_t max_addr
,
1190 int nid
, ulong flags
)
1192 return memblock_alloc_range_nid(size
, align
, 0, max_addr
, nid
, flags
);
1195 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1197 ulong flags
= choose_memblock_flags();
1201 ret
= memblock_alloc_base_nid(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
,
1204 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
1205 flags
&= ~MEMBLOCK_MIRROR
;
1211 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1213 return memblock_alloc_base_nid(size
, align
, max_addr
, NUMA_NO_NODE
,
1217 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1221 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
1224 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1230 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
1232 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1235 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1237 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
1241 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1245 * memblock_virt_alloc_internal - allocate boot memory block
1246 * @size: size of memory block to be allocated in bytes
1247 * @align: alignment of the region and block's size
1248 * @min_addr: the lower bound of the memory region to allocate (phys address)
1249 * @max_addr: the upper bound of the memory region to allocate (phys address)
1250 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1252 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1253 * will fall back to memory below @min_addr. Also, allocation may fall back
1254 * to any node in the system if the specified node can not
1255 * hold the requested memory.
1257 * The allocation is performed from memory region limited by
1258 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1260 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1262 * The phys address of allocated boot memory block is converted to virtual and
1263 * allocated memory is reset to 0.
1265 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1266 * allocated boot memory block, so that it is never reported as leaks.
1269 * Virtual address of allocated memory block on success, NULL on failure.
1271 static void * __init
memblock_virt_alloc_internal(
1272 phys_addr_t size
, phys_addr_t align
,
1273 phys_addr_t min_addr
, phys_addr_t max_addr
,
1278 ulong flags
= choose_memblock_flags();
1280 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1284 * Detect any accidental use of these APIs after slab is ready, as at
1285 * this moment memblock may be deinitialized already and its
1286 * internal data may be destroyed (after execution of free_all_bootmem)
1288 if (WARN_ON_ONCE(slab_is_available()))
1289 return kzalloc_node(size
, GFP_NOWAIT
, nid
);
1292 align
= SMP_CACHE_BYTES
;
1294 if (max_addr
> memblock
.current_limit
)
1295 max_addr
= memblock
.current_limit
;
1297 alloc
= memblock_find_in_range_node(size
, align
, min_addr
, max_addr
,
1299 if (alloc
&& !memblock_reserve(alloc
, size
))
1302 if (nid
!= NUMA_NO_NODE
) {
1303 alloc
= memblock_find_in_range_node(size
, align
, min_addr
,
1304 max_addr
, NUMA_NO_NODE
,
1306 if (alloc
&& !memblock_reserve(alloc
, size
))
1315 if (flags
& MEMBLOCK_MIRROR
) {
1316 flags
&= ~MEMBLOCK_MIRROR
;
1317 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1324 ptr
= phys_to_virt(alloc
);
1325 memset(ptr
, 0, size
);
1328 * The min_count is set to 0 so that bootmem allocated blocks
1329 * are never reported as leaks. This is because many of these blocks
1330 * are only referred via the physical address which is not
1331 * looked up by kmemleak.
1333 kmemleak_alloc(ptr
, size
, 0, 0);
1339 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1340 * @size: size of memory block to be allocated in bytes
1341 * @align: alignment of the region and block's size
1342 * @min_addr: the lower bound of the memory region from where the allocation
1343 * is preferred (phys address)
1344 * @max_addr: the upper bound of the memory region from where the allocation
1345 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1346 * allocate only from memory limited by memblock.current_limit value
1347 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1349 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1350 * additional debug information (including caller info), if enabled.
1353 * Virtual address of allocated memory block on success, NULL on failure.
1355 void * __init
memblock_virt_alloc_try_nid_nopanic(
1356 phys_addr_t size
, phys_addr_t align
,
1357 phys_addr_t min_addr
, phys_addr_t max_addr
,
1360 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1361 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1362 (u64
)max_addr
, (void *)_RET_IP_
);
1363 return memblock_virt_alloc_internal(size
, align
, min_addr
,
1368 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1369 * @size: size of memory block to be allocated in bytes
1370 * @align: alignment of the region and block's size
1371 * @min_addr: the lower bound of the memory region from where the allocation
1372 * is preferred (phys address)
1373 * @max_addr: the upper bound of the memory region from where the allocation
1374 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1375 * allocate only from memory limited by memblock.current_limit value
1376 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1378 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1379 * which provides debug information (including caller info), if enabled,
1380 * and panics if the request can not be satisfied.
1383 * Virtual address of allocated memory block on success, NULL on failure.
1385 void * __init
memblock_virt_alloc_try_nid(
1386 phys_addr_t size
, phys_addr_t align
,
1387 phys_addr_t min_addr
, phys_addr_t max_addr
,
1392 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1393 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1394 (u64
)max_addr
, (void *)_RET_IP_
);
1395 ptr
= memblock_virt_alloc_internal(size
, align
,
1396 min_addr
, max_addr
, nid
);
1400 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1401 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1407 * __memblock_free_early - free boot memory block
1408 * @base: phys starting address of the boot memory block
1409 * @size: size of the boot memory block in bytes
1411 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1412 * The freeing memory will not be released to the buddy allocator.
1414 void __init
__memblock_free_early(phys_addr_t base
, phys_addr_t size
)
1416 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1417 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1419 kmemleak_free_part_phys(base
, size
);
1420 memblock_remove_range(&memblock
.reserved
, base
, size
);
1424 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1425 * @addr: phys starting address of the boot memory block
1426 * @size: size of the boot memory block in bytes
1428 * This is only useful when the bootmem allocator has already been torn
1429 * down, but we are still initializing the system. Pages are released directly
1430 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1432 void __init
__memblock_free_late(phys_addr_t base
, phys_addr_t size
)
1436 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1437 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1439 kmemleak_free_part_phys(base
, size
);
1440 cursor
= PFN_UP(base
);
1441 end
= PFN_DOWN(base
+ size
);
1443 for (; cursor
< end
; cursor
++) {
1444 __free_pages_bootmem(pfn_to_page(cursor
), cursor
, 0);
1450 * Remaining API functions
1453 phys_addr_t __init_memblock
memblock_phys_mem_size(void)
1455 return memblock
.memory
.total_size
;
1458 phys_addr_t __init_memblock
memblock_reserved_size(void)
1460 return memblock
.reserved
.total_size
;
1463 phys_addr_t __init
memblock_mem_size(unsigned long limit_pfn
)
1465 unsigned long pages
= 0;
1466 struct memblock_region
*r
;
1467 unsigned long start_pfn
, end_pfn
;
1469 for_each_memblock(memory
, r
) {
1470 start_pfn
= memblock_region_memory_base_pfn(r
);
1471 end_pfn
= memblock_region_memory_end_pfn(r
);
1472 start_pfn
= min_t(unsigned long, start_pfn
, limit_pfn
);
1473 end_pfn
= min_t(unsigned long, end_pfn
, limit_pfn
);
1474 pages
+= end_pfn
- start_pfn
;
1477 return PFN_PHYS(pages
);
1480 /* lowest address */
1481 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
1483 return memblock
.memory
.regions
[0].base
;
1486 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
1488 int idx
= memblock
.memory
.cnt
- 1;
1490 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
1493 static phys_addr_t __init_memblock
__find_max_addr(phys_addr_t limit
)
1495 phys_addr_t max_addr
= (phys_addr_t
)ULLONG_MAX
;
1496 struct memblock_region
*r
;
1499 * translate the memory @limit size into the max address within one of
1500 * the memory memblock regions, if the @limit exceeds the total size
1501 * of those regions, max_addr will keep original value ULLONG_MAX
1503 for_each_memblock(memory
, r
) {
1504 if (limit
<= r
->size
) {
1505 max_addr
= r
->base
+ limit
;
1514 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
1516 phys_addr_t max_addr
= (phys_addr_t
)ULLONG_MAX
;
1521 max_addr
= __find_max_addr(limit
);
1523 /* @limit exceeds the total size of the memory, do nothing */
1524 if (max_addr
== (phys_addr_t
)ULLONG_MAX
)
1527 /* truncate both memory and reserved regions */
1528 memblock_remove_range(&memblock
.memory
, max_addr
,
1529 (phys_addr_t
)ULLONG_MAX
);
1530 memblock_remove_range(&memblock
.reserved
, max_addr
,
1531 (phys_addr_t
)ULLONG_MAX
);
1534 void __init
memblock_mem_limit_remove_map(phys_addr_t limit
)
1536 struct memblock_type
*type
= &memblock
.memory
;
1537 phys_addr_t max_addr
;
1538 int i
, ret
, start_rgn
, end_rgn
;
1543 max_addr
= __find_max_addr(limit
);
1545 /* @limit exceeds the total size of the memory, do nothing */
1546 if (max_addr
== (phys_addr_t
)ULLONG_MAX
)
1549 ret
= memblock_isolate_range(type
, max_addr
, (phys_addr_t
)ULLONG_MAX
,
1550 &start_rgn
, &end_rgn
);
1554 /* remove all the MAP regions above the limit */
1555 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--) {
1556 if (!memblock_is_nomap(&type
->regions
[i
]))
1557 memblock_remove_region(type
, i
);
1559 /* truncate the reserved regions */
1560 memblock_remove_range(&memblock
.reserved
, max_addr
,
1561 (phys_addr_t
)ULLONG_MAX
);
1564 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
1566 unsigned int left
= 0, right
= type
->cnt
;
1569 unsigned int mid
= (right
+ left
) / 2;
1571 if (addr
< type
->regions
[mid
].base
)
1573 else if (addr
>= (type
->regions
[mid
].base
+
1574 type
->regions
[mid
].size
))
1578 } while (left
< right
);
1582 bool __init
memblock_is_reserved(phys_addr_t addr
)
1584 return memblock_search(&memblock
.reserved
, addr
) != -1;
1587 bool __init_memblock
memblock_is_memory(phys_addr_t addr
)
1589 return memblock_search(&memblock
.memory
, addr
) != -1;
1592 int __init_memblock
memblock_is_map_memory(phys_addr_t addr
)
1594 int i
= memblock_search(&memblock
.memory
, addr
);
1598 return !memblock_is_nomap(&memblock
.memory
.regions
[i
]);
1601 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1602 int __init_memblock
memblock_search_pfn_nid(unsigned long pfn
,
1603 unsigned long *start_pfn
, unsigned long *end_pfn
)
1605 struct memblock_type
*type
= &memblock
.memory
;
1606 int mid
= memblock_search(type
, PFN_PHYS(pfn
));
1611 *start_pfn
= PFN_DOWN(type
->regions
[mid
].base
);
1612 *end_pfn
= PFN_DOWN(type
->regions
[mid
].base
+ type
->regions
[mid
].size
);
1614 return type
->regions
[mid
].nid
;
1619 * memblock_is_region_memory - check if a region is a subset of memory
1620 * @base: base of region to check
1621 * @size: size of region to check
1623 * Check if the region [@base, @base+@size) is a subset of a memory block.
1626 * 0 if false, non-zero if true
1628 int __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
1630 int idx
= memblock_search(&memblock
.memory
, base
);
1631 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
1635 return (memblock
.memory
.regions
[idx
].base
+
1636 memblock
.memory
.regions
[idx
].size
) >= end
;
1640 * memblock_is_region_reserved - check if a region intersects reserved memory
1641 * @base: base of region to check
1642 * @size: size of region to check
1644 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1647 * True if they intersect, false if not.
1649 bool __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
1651 memblock_cap_size(base
, &size
);
1652 return memblock_overlaps_region(&memblock
.reserved
, base
, size
);
1655 void __init_memblock
memblock_trim_memory(phys_addr_t align
)
1657 phys_addr_t start
, end
, orig_start
, orig_end
;
1658 struct memblock_region
*r
;
1660 for_each_memblock(memory
, r
) {
1661 orig_start
= r
->base
;
1662 orig_end
= r
->base
+ r
->size
;
1663 start
= round_up(orig_start
, align
);
1664 end
= round_down(orig_end
, align
);
1666 if (start
== orig_start
&& end
== orig_end
)
1671 r
->size
= end
- start
;
1673 memblock_remove_region(&memblock
.memory
,
1674 r
- memblock
.memory
.regions
);
1680 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
1682 memblock
.current_limit
= limit
;
1685 phys_addr_t __init_memblock
memblock_get_current_limit(void)
1687 return memblock
.current_limit
;
1690 static void __init_memblock
memblock_dump(struct memblock_type
*type
)
1692 phys_addr_t base
, end
, size
;
1693 unsigned long flags
;
1695 struct memblock_region
*rgn
;
1697 pr_info(" %s.cnt = 0x%lx\n", type
->name
, type
->cnt
);
1699 for_each_memblock_type(type
, rgn
) {
1700 char nid_buf
[32] = "";
1704 end
= base
+ size
- 1;
1706 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1707 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
1708 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
1709 memblock_get_region_node(rgn
));
1711 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1712 type
->name
, idx
, &base
, &end
, &size
, nid_buf
, flags
);
1716 void __init_memblock
__memblock_dump_all(void)
1718 pr_info("MEMBLOCK configuration:\n");
1719 pr_info(" memory size = %pa reserved size = %pa\n",
1720 &memblock
.memory
.total_size
,
1721 &memblock
.reserved
.total_size
);
1723 memblock_dump(&memblock
.memory
);
1724 memblock_dump(&memblock
.reserved
);
1725 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1726 memblock_dump(&memblock
.physmem
);
1730 void __init
memblock_allow_resize(void)
1732 memblock_can_resize
= 1;
1735 static int __init
early_memblock(char *p
)
1737 if (p
&& strstr(p
, "debug"))
1741 early_param("memblock", early_memblock
);
1743 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1745 static int memblock_debug_show(struct seq_file
*m
, void *private)
1747 struct memblock_type
*type
= m
->private;
1748 struct memblock_region
*reg
;
1752 for (i
= 0; i
< type
->cnt
; i
++) {
1753 reg
= &type
->regions
[i
];
1754 end
= reg
->base
+ reg
->size
- 1;
1756 seq_printf(m
, "%4d: ", i
);
1757 seq_printf(m
, "%pa..%pa\n", ®
->base
, &end
);
1762 static int memblock_debug_open(struct inode
*inode
, struct file
*file
)
1764 return single_open(file
, memblock_debug_show
, inode
->i_private
);
1767 static const struct file_operations memblock_debug_fops
= {
1768 .open
= memblock_debug_open
,
1770 .llseek
= seq_lseek
,
1771 .release
= single_release
,
1774 static int __init
memblock_init_debugfs(void)
1776 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
1779 debugfs_create_file("memory", S_IRUGO
, root
, &memblock
.memory
, &memblock_debug_fops
);
1780 debugfs_create_file("reserved", S_IRUGO
, root
, &memblock
.reserved
, &memblock_debug_fops
);
1781 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1782 debugfs_create_file("physmem", S_IRUGO
, root
, &memblock
.physmem
, &memblock_debug_fops
);
1787 __initcall(memblock_init_debugfs
);
1789 #endif /* CONFIG_DEBUG_FS */